4 * Kernel scheduler and related syscalls
6 * Copyright (C) 1991-2002 Linus Torvalds
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
30 #include <linux/module.h>
31 #include <linux/nmi.h>
32 #include <linux/init.h>
33 #include <linux/uaccess.h>
34 #include <linux/highmem.h>
35 #include <linux/smp_lock.h>
36 #include <asm/mmu_context.h>
37 #include <linux/interrupt.h>
38 #include <linux/capability.h>
39 #include <linux/completion.h>
40 #include <linux/kernel_stat.h>
41 #include <linux/debug_locks.h>
42 #include <linux/perf_counter.h>
43 #include <linux/security.h>
44 #include <linux/notifier.h>
45 #include <linux/profile.h>
46 #include <linux/freezer.h>
47 #include <linux/vmalloc.h>
48 #include <linux/blkdev.h>
49 #include <linux/delay.h>
50 #include <linux/pid_namespace.h>
51 #include <linux/smp.h>
52 #include <linux/threads.h>
53 #include <linux/timer.h>
54 #include <linux/rcupdate.h>
55 #include <linux/cpu.h>
56 #include <linux/cpuset.h>
57 #include <linux/percpu.h>
58 #include <linux/kthread.h>
59 #include <linux/proc_fs.h>
60 #include <linux/seq_file.h>
61 #include <linux/sysctl.h>
62 #include <linux/syscalls.h>
63 #include <linux/times.h>
64 #include <linux/tsacct_kern.h>
65 #include <linux/kprobes.h>
66 #include <linux/delayacct.h>
67 #include <linux/reciprocal_div.h>
68 #include <linux/unistd.h>
69 #include <linux/pagemap.h>
70 #include <linux/hrtimer.h>
71 #include <linux/tick.h>
72 #include <linux/debugfs.h>
73 #include <linux/ctype.h>
74 #include <linux/ftrace.h>
77 #include <asm/irq_regs.h>
79 #include "sched_cpupri.h"
81 #define CREATE_TRACE_POINTS
82 #include <trace/events/sched.h>
85 * Convert user-nice values [ -20 ... 0 ... 19 ]
86 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
89 #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
90 #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
91 #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
94 * 'User priority' is the nice value converted to something we
95 * can work with better when scaling various scheduler parameters,
96 * it's a [ 0 ... 39 ] range.
98 #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
99 #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
100 #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
103 * Helpers for converting nanosecond timing to jiffy resolution
105 #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
107 #define NICE_0_LOAD SCHED_LOAD_SCALE
108 #define NICE_0_SHIFT SCHED_LOAD_SHIFT
111 * These are the 'tuning knobs' of the scheduler:
113 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
114 * Timeslices get refilled after they expire.
116 #define DEF_TIMESLICE (100 * HZ / 1000)
119 * single value that denotes runtime == period, ie unlimited time.
121 #define RUNTIME_INF ((u64)~0ULL)
125 static void double_rq_lock(struct rq
*rq1
, struct rq
*rq2
);
128 * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
129 * Since cpu_power is a 'constant', we can use a reciprocal divide.
131 static inline u32
sg_div_cpu_power(const struct sched_group
*sg
, u32 load
)
133 return reciprocal_divide(load
, sg
->reciprocal_cpu_power
);
137 * Each time a sched group cpu_power is changed,
138 * we must compute its reciprocal value
140 static inline void sg_inc_cpu_power(struct sched_group
*sg
, u32 val
)
142 sg
->__cpu_power
+= val
;
143 sg
->reciprocal_cpu_power
= reciprocal_value(sg
->__cpu_power
);
147 static inline int rt_policy(int policy
)
149 if (unlikely(policy
== SCHED_FIFO
|| policy
== SCHED_RR
))
154 static inline int task_has_rt_policy(struct task_struct
*p
)
156 return rt_policy(p
->policy
);
160 * This is the priority-queue data structure of the RT scheduling class:
162 struct rt_prio_array
{
163 DECLARE_BITMAP(bitmap
, MAX_RT_PRIO
+1); /* include 1 bit for delimiter */
164 struct list_head queue
[MAX_RT_PRIO
];
167 struct rt_bandwidth
{
168 /* nests inside the rq lock: */
169 spinlock_t rt_runtime_lock
;
172 struct hrtimer rt_period_timer
;
175 static struct rt_bandwidth def_rt_bandwidth
;
177 static int do_sched_rt_period_timer(struct rt_bandwidth
*rt_b
, int overrun
);
179 static enum hrtimer_restart
sched_rt_period_timer(struct hrtimer
*timer
)
181 struct rt_bandwidth
*rt_b
=
182 container_of(timer
, struct rt_bandwidth
, rt_period_timer
);
188 now
= hrtimer_cb_get_time(timer
);
189 overrun
= hrtimer_forward(timer
, now
, rt_b
->rt_period
);
194 idle
= do_sched_rt_period_timer(rt_b
, overrun
);
197 return idle
? HRTIMER_NORESTART
: HRTIMER_RESTART
;
201 void init_rt_bandwidth(struct rt_bandwidth
*rt_b
, u64 period
, u64 runtime
)
203 rt_b
->rt_period
= ns_to_ktime(period
);
204 rt_b
->rt_runtime
= runtime
;
206 spin_lock_init(&rt_b
->rt_runtime_lock
);
208 hrtimer_init(&rt_b
->rt_period_timer
,
209 CLOCK_MONOTONIC
, HRTIMER_MODE_REL
);
210 rt_b
->rt_period_timer
.function
= sched_rt_period_timer
;
213 static inline int rt_bandwidth_enabled(void)
215 return sysctl_sched_rt_runtime
>= 0;
218 static void start_rt_bandwidth(struct rt_bandwidth
*rt_b
)
222 if (!rt_bandwidth_enabled() || rt_b
->rt_runtime
== RUNTIME_INF
)
225 if (hrtimer_active(&rt_b
->rt_period_timer
))
228 spin_lock(&rt_b
->rt_runtime_lock
);
233 if (hrtimer_active(&rt_b
->rt_period_timer
))
236 now
= hrtimer_cb_get_time(&rt_b
->rt_period_timer
);
237 hrtimer_forward(&rt_b
->rt_period_timer
, now
, rt_b
->rt_period
);
239 soft
= hrtimer_get_softexpires(&rt_b
->rt_period_timer
);
240 hard
= hrtimer_get_expires(&rt_b
->rt_period_timer
);
241 delta
= ktime_to_ns(ktime_sub(hard
, soft
));
242 __hrtimer_start_range_ns(&rt_b
->rt_period_timer
, soft
, delta
,
243 HRTIMER_MODE_ABS
, 0);
245 spin_unlock(&rt_b
->rt_runtime_lock
);
248 #ifdef CONFIG_RT_GROUP_SCHED
249 static void destroy_rt_bandwidth(struct rt_bandwidth
*rt_b
)
251 hrtimer_cancel(&rt_b
->rt_period_timer
);
256 * sched_domains_mutex serializes calls to arch_init_sched_domains,
257 * detach_destroy_domains and partition_sched_domains.
259 static DEFINE_MUTEX(sched_domains_mutex
);
261 #ifdef CONFIG_GROUP_SCHED
263 #include <linux/cgroup.h>
267 static LIST_HEAD(task_groups
);
269 /* task group related information */
271 #ifdef CONFIG_CGROUP_SCHED
272 struct cgroup_subsys_state css
;
275 #ifdef CONFIG_USER_SCHED
279 #ifdef CONFIG_FAIR_GROUP_SCHED
280 /* schedulable entities of this group on each cpu */
281 struct sched_entity
**se
;
282 /* runqueue "owned" by this group on each cpu */
283 struct cfs_rq
**cfs_rq
;
284 unsigned long shares
;
287 #ifdef CONFIG_RT_GROUP_SCHED
288 struct sched_rt_entity
**rt_se
;
289 struct rt_rq
**rt_rq
;
291 struct rt_bandwidth rt_bandwidth
;
295 struct list_head list
;
297 struct task_group
*parent
;
298 struct list_head siblings
;
299 struct list_head children
;
302 #ifdef CONFIG_USER_SCHED
304 /* Helper function to pass uid information to create_sched_user() */
305 void set_tg_uid(struct user_struct
*user
)
307 user
->tg
->uid
= user
->uid
;
312 * Every UID task group (including init_task_group aka UID-0) will
313 * be a child to this group.
315 struct task_group root_task_group
;
317 #ifdef CONFIG_FAIR_GROUP_SCHED
318 /* Default task group's sched entity on each cpu */
319 static DEFINE_PER_CPU(struct sched_entity
, init_sched_entity
);
320 /* Default task group's cfs_rq on each cpu */
321 static DEFINE_PER_CPU(struct cfs_rq
, init_cfs_rq
) ____cacheline_aligned_in_smp
;
322 #endif /* CONFIG_FAIR_GROUP_SCHED */
324 #ifdef CONFIG_RT_GROUP_SCHED
325 static DEFINE_PER_CPU(struct sched_rt_entity
, init_sched_rt_entity
);
326 static DEFINE_PER_CPU(struct rt_rq
, init_rt_rq
) ____cacheline_aligned_in_smp
;
327 #endif /* CONFIG_RT_GROUP_SCHED */
328 #else /* !CONFIG_USER_SCHED */
329 #define root_task_group init_task_group
330 #endif /* CONFIG_USER_SCHED */
332 /* task_group_lock serializes add/remove of task groups and also changes to
333 * a task group's cpu shares.
335 static DEFINE_SPINLOCK(task_group_lock
);
338 static int root_task_group_empty(void)
340 return list_empty(&root_task_group
.children
);
344 #ifdef CONFIG_FAIR_GROUP_SCHED
345 #ifdef CONFIG_USER_SCHED
346 # define INIT_TASK_GROUP_LOAD (2*NICE_0_LOAD)
347 #else /* !CONFIG_USER_SCHED */
348 # define INIT_TASK_GROUP_LOAD NICE_0_LOAD
349 #endif /* CONFIG_USER_SCHED */
352 * A weight of 0 or 1 can cause arithmetics problems.
353 * A weight of a cfs_rq is the sum of weights of which entities
354 * are queued on this cfs_rq, so a weight of a entity should not be
355 * too large, so as the shares value of a task group.
356 * (The default weight is 1024 - so there's no practical
357 * limitation from this.)
360 #define MAX_SHARES (1UL << 18)
362 static int init_task_group_load
= INIT_TASK_GROUP_LOAD
;
365 /* Default task group.
366 * Every task in system belong to this group at bootup.
368 struct task_group init_task_group
;
370 /* return group to which a task belongs */
371 static inline struct task_group
*task_group(struct task_struct
*p
)
373 struct task_group
*tg
;
375 #ifdef CONFIG_USER_SCHED
377 tg
= __task_cred(p
)->user
->tg
;
379 #elif defined(CONFIG_CGROUP_SCHED)
380 tg
= container_of(task_subsys_state(p
, cpu_cgroup_subsys_id
),
381 struct task_group
, css
);
383 tg
= &init_task_group
;
388 /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
389 static inline void set_task_rq(struct task_struct
*p
, unsigned int cpu
)
391 #ifdef CONFIG_FAIR_GROUP_SCHED
392 p
->se
.cfs_rq
= task_group(p
)->cfs_rq
[cpu
];
393 p
->se
.parent
= task_group(p
)->se
[cpu
];
396 #ifdef CONFIG_RT_GROUP_SCHED
397 p
->rt
.rt_rq
= task_group(p
)->rt_rq
[cpu
];
398 p
->rt
.parent
= task_group(p
)->rt_se
[cpu
];
405 static int root_task_group_empty(void)
411 static inline void set_task_rq(struct task_struct
*p
, unsigned int cpu
) { }
412 static inline struct task_group
*task_group(struct task_struct
*p
)
417 #endif /* CONFIG_GROUP_SCHED */
419 /* CFS-related fields in a runqueue */
421 struct load_weight load
;
422 unsigned long nr_running
;
427 struct rb_root tasks_timeline
;
428 struct rb_node
*rb_leftmost
;
430 struct list_head tasks
;
431 struct list_head
*balance_iterator
;
434 * 'curr' points to currently running entity on this cfs_rq.
435 * It is set to NULL otherwise (i.e when none are currently running).
437 struct sched_entity
*curr
, *next
, *last
;
439 unsigned int nr_spread_over
;
441 #ifdef CONFIG_FAIR_GROUP_SCHED
442 struct rq
*rq
; /* cpu runqueue to which this cfs_rq is attached */
445 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
446 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
447 * (like users, containers etc.)
449 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
450 * list is used during load balance.
452 struct list_head leaf_cfs_rq_list
;
453 struct task_group
*tg
; /* group that "owns" this runqueue */
457 * the part of load.weight contributed by tasks
459 unsigned long task_weight
;
462 * h_load = weight * f(tg)
464 * Where f(tg) is the recursive weight fraction assigned to
467 unsigned long h_load
;
470 * this cpu's part of tg->shares
472 unsigned long shares
;
475 * load.weight at the time we set shares
477 unsigned long rq_weight
;
482 /* Real-Time classes' related field in a runqueue: */
484 struct rt_prio_array active
;
485 unsigned long rt_nr_running
;
486 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
488 int curr
; /* highest queued rt task prio */
490 int next
; /* next highest */
495 unsigned long rt_nr_migratory
;
497 struct plist_head pushable_tasks
;
502 /* Nests inside the rq lock: */
503 spinlock_t rt_runtime_lock
;
505 #ifdef CONFIG_RT_GROUP_SCHED
506 unsigned long rt_nr_boosted
;
509 struct list_head leaf_rt_rq_list
;
510 struct task_group
*tg
;
511 struct sched_rt_entity
*rt_se
;
518 * We add the notion of a root-domain which will be used to define per-domain
519 * variables. Each exclusive cpuset essentially defines an island domain by
520 * fully partitioning the member cpus from any other cpuset. Whenever a new
521 * exclusive cpuset is created, we also create and attach a new root-domain
528 cpumask_var_t online
;
531 * The "RT overload" flag: it gets set if a CPU has more than
532 * one runnable RT task.
534 cpumask_var_t rto_mask
;
537 struct cpupri cpupri
;
539 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
541 * Preferred wake up cpu nominated by sched_mc balance that will be
542 * used when most cpus are idle in the system indicating overall very
543 * low system utilisation. Triggered at POWERSAVINGS_BALANCE_WAKEUP(2)
545 unsigned int sched_mc_preferred_wakeup_cpu
;
550 * By default the system creates a single root-domain with all cpus as
551 * members (mimicking the global state we have today).
553 static struct root_domain def_root_domain
;
558 * This is the main, per-CPU runqueue data structure.
560 * Locking rule: those places that want to lock multiple runqueues
561 * (such as the load balancing or the thread migration code), lock
562 * acquire operations must be ordered by ascending &runqueue.
569 * nr_running and cpu_load should be in the same cacheline because
570 * remote CPUs use both these fields when doing load calculation.
572 unsigned long nr_running
;
573 #define CPU_LOAD_IDX_MAX 5
574 unsigned long cpu_load
[CPU_LOAD_IDX_MAX
];
576 unsigned long last_tick_seen
;
577 unsigned char in_nohz_recently
;
579 /* capture load from *all* tasks on this cpu: */
580 struct load_weight load
;
581 unsigned long nr_load_updates
;
583 u64 nr_migrations_in
;
588 #ifdef CONFIG_FAIR_GROUP_SCHED
589 /* list of leaf cfs_rq on this cpu: */
590 struct list_head leaf_cfs_rq_list
;
592 #ifdef CONFIG_RT_GROUP_SCHED
593 struct list_head leaf_rt_rq_list
;
597 * This is part of a global counter where only the total sum
598 * over all CPUs matters. A task can increase this counter on
599 * one CPU and if it got migrated afterwards it may decrease
600 * it on another CPU. Always updated under the runqueue lock:
602 unsigned long nr_uninterruptible
;
604 struct task_struct
*curr
, *idle
;
605 unsigned long next_balance
;
606 struct mm_struct
*prev_mm
;
613 struct root_domain
*rd
;
614 struct sched_domain
*sd
;
616 unsigned char idle_at_tick
;
617 /* For active balancing */
620 /* cpu of this runqueue: */
624 unsigned long avg_load_per_task
;
626 struct task_struct
*migration_thread
;
627 struct list_head migration_queue
;
630 /* calc_load related fields */
631 unsigned long calc_load_update
;
632 long calc_load_active
;
634 #ifdef CONFIG_SCHED_HRTICK
636 int hrtick_csd_pending
;
637 struct call_single_data hrtick_csd
;
639 struct hrtimer hrtick_timer
;
642 #ifdef CONFIG_SCHEDSTATS
644 struct sched_info rq_sched_info
;
645 unsigned long long rq_cpu_time
;
646 /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
648 /* sys_sched_yield() stats */
649 unsigned int yld_count
;
651 /* schedule() stats */
652 unsigned int sched_switch
;
653 unsigned int sched_count
;
654 unsigned int sched_goidle
;
656 /* try_to_wake_up() stats */
657 unsigned int ttwu_count
;
658 unsigned int ttwu_local
;
661 unsigned int bkl_count
;
665 static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq
, runqueues
);
667 static inline void check_preempt_curr(struct rq
*rq
, struct task_struct
*p
, int sync
)
669 rq
->curr
->sched_class
->check_preempt_curr(rq
, p
, sync
);
672 static inline int cpu_of(struct rq
*rq
)
682 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
683 * See detach_destroy_domains: synchronize_sched for details.
685 * The domain tree of any CPU may only be accessed from within
686 * preempt-disabled sections.
688 #define for_each_domain(cpu, __sd) \
689 for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
691 #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
692 #define this_rq() (&__get_cpu_var(runqueues))
693 #define task_rq(p) cpu_rq(task_cpu(p))
694 #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
696 inline void update_rq_clock(struct rq
*rq
)
698 rq
->clock
= sched_clock_cpu(cpu_of(rq
));
702 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
704 #ifdef CONFIG_SCHED_DEBUG
705 # define const_debug __read_mostly
707 # define const_debug static const
713 * Returns true if the current cpu runqueue is locked.
714 * This interface allows printk to be called with the runqueue lock
715 * held and know whether or not it is OK to wake up the klogd.
717 int runqueue_is_locked(void)
720 struct rq
*rq
= cpu_rq(cpu
);
723 ret
= spin_is_locked(&rq
->lock
);
729 * Debugging: various feature bits
732 #define SCHED_FEAT(name, enabled) \
733 __SCHED_FEAT_##name ,
736 #include "sched_features.h"
741 #define SCHED_FEAT(name, enabled) \
742 (1UL << __SCHED_FEAT_##name) * enabled |
744 const_debug
unsigned int sysctl_sched_features
=
745 #include "sched_features.h"
750 #ifdef CONFIG_SCHED_DEBUG
751 #define SCHED_FEAT(name, enabled) \
754 static __read_mostly
char *sched_feat_names
[] = {
755 #include "sched_features.h"
761 static int sched_feat_show(struct seq_file
*m
, void *v
)
765 for (i
= 0; sched_feat_names
[i
]; i
++) {
766 if (!(sysctl_sched_features
& (1UL << i
)))
768 seq_printf(m
, "%s ", sched_feat_names
[i
]);
776 sched_feat_write(struct file
*filp
, const char __user
*ubuf
,
777 size_t cnt
, loff_t
*ppos
)
787 if (copy_from_user(&buf
, ubuf
, cnt
))
792 if (strncmp(buf
, "NO_", 3) == 0) {
797 for (i
= 0; sched_feat_names
[i
]; i
++) {
798 int len
= strlen(sched_feat_names
[i
]);
800 if (strncmp(cmp
, sched_feat_names
[i
], len
) == 0) {
802 sysctl_sched_features
&= ~(1UL << i
);
804 sysctl_sched_features
|= (1UL << i
);
809 if (!sched_feat_names
[i
])
817 static int sched_feat_open(struct inode
*inode
, struct file
*filp
)
819 return single_open(filp
, sched_feat_show
, NULL
);
822 static struct file_operations sched_feat_fops
= {
823 .open
= sched_feat_open
,
824 .write
= sched_feat_write
,
827 .release
= single_release
,
830 static __init
int sched_init_debug(void)
832 debugfs_create_file("sched_features", 0644, NULL
, NULL
,
837 late_initcall(sched_init_debug
);
841 #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
844 * Number of tasks to iterate in a single balance run.
845 * Limited because this is done with IRQs disabled.
847 const_debug
unsigned int sysctl_sched_nr_migrate
= 32;
850 * ratelimit for updating the group shares.
853 unsigned int sysctl_sched_shares_ratelimit
= 250000;
856 * Inject some fuzzyness into changing the per-cpu group shares
857 * this avoids remote rq-locks at the expense of fairness.
860 unsigned int sysctl_sched_shares_thresh
= 4;
863 * period over which we measure -rt task cpu usage in us.
866 unsigned int sysctl_sched_rt_period
= 1000000;
868 static __read_mostly
int scheduler_running
;
871 * part of the period that we allow rt tasks to run in us.
874 int sysctl_sched_rt_runtime
= 950000;
876 static inline u64
global_rt_period(void)
878 return (u64
)sysctl_sched_rt_period
* NSEC_PER_USEC
;
881 static inline u64
global_rt_runtime(void)
883 if (sysctl_sched_rt_runtime
< 0)
886 return (u64
)sysctl_sched_rt_runtime
* NSEC_PER_USEC
;
889 #ifndef prepare_arch_switch
890 # define prepare_arch_switch(next) do { } while (0)
892 #ifndef finish_arch_switch
893 # define finish_arch_switch(prev) do { } while (0)
896 static inline int task_current(struct rq
*rq
, struct task_struct
*p
)
898 return rq
->curr
== p
;
901 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
902 static inline int task_running(struct rq
*rq
, struct task_struct
*p
)
904 return task_current(rq
, p
);
907 static inline void prepare_lock_switch(struct rq
*rq
, struct task_struct
*next
)
911 static inline void finish_lock_switch(struct rq
*rq
, struct task_struct
*prev
)
913 #ifdef CONFIG_DEBUG_SPINLOCK
914 /* this is a valid case when another task releases the spinlock */
915 rq
->lock
.owner
= current
;
918 * If we are tracking spinlock dependencies then we have to
919 * fix up the runqueue lock - which gets 'carried over' from
922 spin_acquire(&rq
->lock
.dep_map
, 0, 0, _THIS_IP_
);
924 spin_unlock_irq(&rq
->lock
);
927 #else /* __ARCH_WANT_UNLOCKED_CTXSW */
928 static inline int task_running(struct rq
*rq
, struct task_struct
*p
)
933 return task_current(rq
, p
);
937 static inline void prepare_lock_switch(struct rq
*rq
, struct task_struct
*next
)
941 * We can optimise this out completely for !SMP, because the
942 * SMP rebalancing from interrupt is the only thing that cares
947 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
948 spin_unlock_irq(&rq
->lock
);
950 spin_unlock(&rq
->lock
);
954 static inline void finish_lock_switch(struct rq
*rq
, struct task_struct
*prev
)
958 * After ->oncpu is cleared, the task can be moved to a different CPU.
959 * We must ensure this doesn't happen until the switch is completely
965 #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
969 #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
972 * __task_rq_lock - lock the runqueue a given task resides on.
973 * Must be called interrupts disabled.
975 static inline struct rq
*__task_rq_lock(struct task_struct
*p
)
979 struct rq
*rq
= task_rq(p
);
980 spin_lock(&rq
->lock
);
981 if (likely(rq
== task_rq(p
)))
983 spin_unlock(&rq
->lock
);
988 * task_rq_lock - lock the runqueue a given task resides on and disable
989 * interrupts. Note the ordering: we can safely lookup the task_rq without
990 * explicitly disabling preemption.
992 static struct rq
*task_rq_lock(struct task_struct
*p
, unsigned long *flags
)
998 local_irq_save(*flags
);
1000 spin_lock(&rq
->lock
);
1001 if (likely(rq
== task_rq(p
)))
1003 spin_unlock_irqrestore(&rq
->lock
, *flags
);
1007 void task_rq_unlock_wait(struct task_struct
*p
)
1009 struct rq
*rq
= task_rq(p
);
1011 smp_mb(); /* spin-unlock-wait is not a full memory barrier */
1012 spin_unlock_wait(&rq
->lock
);
1015 static void __task_rq_unlock(struct rq
*rq
)
1016 __releases(rq
->lock
)
1018 spin_unlock(&rq
->lock
);
1021 static inline void task_rq_unlock(struct rq
*rq
, unsigned long *flags
)
1022 __releases(rq
->lock
)
1024 spin_unlock_irqrestore(&rq
->lock
, *flags
);
1028 * this_rq_lock - lock this runqueue and disable interrupts.
1030 static struct rq
*this_rq_lock(void)
1031 __acquires(rq
->lock
)
1035 local_irq_disable();
1037 spin_lock(&rq
->lock
);
1042 #ifdef CONFIG_SCHED_HRTICK
1044 * Use HR-timers to deliver accurate preemption points.
1046 * Its all a bit involved since we cannot program an hrt while holding the
1047 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
1050 * When we get rescheduled we reprogram the hrtick_timer outside of the
1056 * - enabled by features
1057 * - hrtimer is actually high res
1059 static inline int hrtick_enabled(struct rq
*rq
)
1061 if (!sched_feat(HRTICK
))
1063 if (!cpu_active(cpu_of(rq
)))
1065 return hrtimer_is_hres_active(&rq
->hrtick_timer
);
1068 static void hrtick_clear(struct rq
*rq
)
1070 if (hrtimer_active(&rq
->hrtick_timer
))
1071 hrtimer_cancel(&rq
->hrtick_timer
);
1075 * High-resolution timer tick.
1076 * Runs from hardirq context with interrupts disabled.
1078 static enum hrtimer_restart
hrtick(struct hrtimer
*timer
)
1080 struct rq
*rq
= container_of(timer
, struct rq
, hrtick_timer
);
1082 WARN_ON_ONCE(cpu_of(rq
) != smp_processor_id());
1084 spin_lock(&rq
->lock
);
1085 update_rq_clock(rq
);
1086 rq
->curr
->sched_class
->task_tick(rq
, rq
->curr
, 1);
1087 spin_unlock(&rq
->lock
);
1089 return HRTIMER_NORESTART
;
1094 * called from hardirq (IPI) context
1096 static void __hrtick_start(void *arg
)
1098 struct rq
*rq
= arg
;
1100 spin_lock(&rq
->lock
);
1101 hrtimer_restart(&rq
->hrtick_timer
);
1102 rq
->hrtick_csd_pending
= 0;
1103 spin_unlock(&rq
->lock
);
1107 * Called to set the hrtick timer state.
1109 * called with rq->lock held and irqs disabled
1111 static void hrtick_start(struct rq
*rq
, u64 delay
)
1113 struct hrtimer
*timer
= &rq
->hrtick_timer
;
1114 ktime_t time
= ktime_add_ns(timer
->base
->get_time(), delay
);
1116 hrtimer_set_expires(timer
, time
);
1118 if (rq
== this_rq()) {
1119 hrtimer_restart(timer
);
1120 } else if (!rq
->hrtick_csd_pending
) {
1121 __smp_call_function_single(cpu_of(rq
), &rq
->hrtick_csd
, 0);
1122 rq
->hrtick_csd_pending
= 1;
1127 hotplug_hrtick(struct notifier_block
*nfb
, unsigned long action
, void *hcpu
)
1129 int cpu
= (int)(long)hcpu
;
1132 case CPU_UP_CANCELED
:
1133 case CPU_UP_CANCELED_FROZEN
:
1134 case CPU_DOWN_PREPARE
:
1135 case CPU_DOWN_PREPARE_FROZEN
:
1137 case CPU_DEAD_FROZEN
:
1138 hrtick_clear(cpu_rq(cpu
));
1145 static __init
void init_hrtick(void)
1147 hotcpu_notifier(hotplug_hrtick
, 0);
1151 * Called to set the hrtick timer state.
1153 * called with rq->lock held and irqs disabled
1155 static void hrtick_start(struct rq
*rq
, u64 delay
)
1157 __hrtimer_start_range_ns(&rq
->hrtick_timer
, ns_to_ktime(delay
), 0,
1158 HRTIMER_MODE_REL
, 0);
1161 static inline void init_hrtick(void)
1164 #endif /* CONFIG_SMP */
1166 static void init_rq_hrtick(struct rq
*rq
)
1169 rq
->hrtick_csd_pending
= 0;
1171 rq
->hrtick_csd
.flags
= 0;
1172 rq
->hrtick_csd
.func
= __hrtick_start
;
1173 rq
->hrtick_csd
.info
= rq
;
1176 hrtimer_init(&rq
->hrtick_timer
, CLOCK_MONOTONIC
, HRTIMER_MODE_REL
);
1177 rq
->hrtick_timer
.function
= hrtick
;
1179 #else /* CONFIG_SCHED_HRTICK */
1180 static inline void hrtick_clear(struct rq
*rq
)
1184 static inline void init_rq_hrtick(struct rq
*rq
)
1188 static inline void init_hrtick(void)
1191 #endif /* CONFIG_SCHED_HRTICK */
1194 * resched_task - mark a task 'to be rescheduled now'.
1196 * On UP this means the setting of the need_resched flag, on SMP it
1197 * might also involve a cross-CPU call to trigger the scheduler on
1202 #ifndef tsk_is_polling
1203 #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
1206 static void resched_task(struct task_struct
*p
)
1210 assert_spin_locked(&task_rq(p
)->lock
);
1212 if (test_tsk_need_resched(p
))
1215 set_tsk_need_resched(p
);
1218 if (cpu
== smp_processor_id())
1221 /* NEED_RESCHED must be visible before we test polling */
1223 if (!tsk_is_polling(p
))
1224 smp_send_reschedule(cpu
);
1227 static void resched_cpu(int cpu
)
1229 struct rq
*rq
= cpu_rq(cpu
);
1230 unsigned long flags
;
1232 if (!spin_trylock_irqsave(&rq
->lock
, flags
))
1234 resched_task(cpu_curr(cpu
));
1235 spin_unlock_irqrestore(&rq
->lock
, flags
);
1240 * When add_timer_on() enqueues a timer into the timer wheel of an
1241 * idle CPU then this timer might expire before the next timer event
1242 * which is scheduled to wake up that CPU. In case of a completely
1243 * idle system the next event might even be infinite time into the
1244 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
1245 * leaves the inner idle loop so the newly added timer is taken into
1246 * account when the CPU goes back to idle and evaluates the timer
1247 * wheel for the next timer event.
1249 void wake_up_idle_cpu(int cpu
)
1251 struct rq
*rq
= cpu_rq(cpu
);
1253 if (cpu
== smp_processor_id())
1257 * This is safe, as this function is called with the timer
1258 * wheel base lock of (cpu) held. When the CPU is on the way
1259 * to idle and has not yet set rq->curr to idle then it will
1260 * be serialized on the timer wheel base lock and take the new
1261 * timer into account automatically.
1263 if (rq
->curr
!= rq
->idle
)
1267 * We can set TIF_RESCHED on the idle task of the other CPU
1268 * lockless. The worst case is that the other CPU runs the
1269 * idle task through an additional NOOP schedule()
1271 set_tsk_need_resched(rq
->idle
);
1273 /* NEED_RESCHED must be visible before we test polling */
1275 if (!tsk_is_polling(rq
->idle
))
1276 smp_send_reschedule(cpu
);
1278 #endif /* CONFIG_NO_HZ */
1280 #else /* !CONFIG_SMP */
1281 static void resched_task(struct task_struct
*p
)
1283 assert_spin_locked(&task_rq(p
)->lock
);
1284 set_tsk_need_resched(p
);
1286 #endif /* CONFIG_SMP */
1288 #if BITS_PER_LONG == 32
1289 # define WMULT_CONST (~0UL)
1291 # define WMULT_CONST (1UL << 32)
1294 #define WMULT_SHIFT 32
1297 * Shift right and round:
1299 #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
1302 * delta *= weight / lw
1304 static unsigned long
1305 calc_delta_mine(unsigned long delta_exec
, unsigned long weight
,
1306 struct load_weight
*lw
)
1310 if (!lw
->inv_weight
) {
1311 if (BITS_PER_LONG
> 32 && unlikely(lw
->weight
>= WMULT_CONST
))
1314 lw
->inv_weight
= 1 + (WMULT_CONST
-lw
->weight
/2)
1318 tmp
= (u64
)delta_exec
* weight
;
1320 * Check whether we'd overflow the 64-bit multiplication:
1322 if (unlikely(tmp
> WMULT_CONST
))
1323 tmp
= SRR(SRR(tmp
, WMULT_SHIFT
/2) * lw
->inv_weight
,
1326 tmp
= SRR(tmp
* lw
->inv_weight
, WMULT_SHIFT
);
1328 return (unsigned long)min(tmp
, (u64
)(unsigned long)LONG_MAX
);
1331 static inline void update_load_add(struct load_weight
*lw
, unsigned long inc
)
1337 static inline void update_load_sub(struct load_weight
*lw
, unsigned long dec
)
1344 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1345 * of tasks with abnormal "nice" values across CPUs the contribution that
1346 * each task makes to its run queue's load is weighted according to its
1347 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
1348 * scaled version of the new time slice allocation that they receive on time
1352 #define WEIGHT_IDLEPRIO 3
1353 #define WMULT_IDLEPRIO 1431655765
1356 * Nice levels are multiplicative, with a gentle 10% change for every
1357 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
1358 * nice 1, it will get ~10% less CPU time than another CPU-bound task
1359 * that remained on nice 0.
1361 * The "10% effect" is relative and cumulative: from _any_ nice level,
1362 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
1363 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
1364 * If a task goes up by ~10% and another task goes down by ~10% then
1365 * the relative distance between them is ~25%.)
1367 static const int prio_to_weight
[40] = {
1368 /* -20 */ 88761, 71755, 56483, 46273, 36291,
1369 /* -15 */ 29154, 23254, 18705, 14949, 11916,
1370 /* -10 */ 9548, 7620, 6100, 4904, 3906,
1371 /* -5 */ 3121, 2501, 1991, 1586, 1277,
1372 /* 0 */ 1024, 820, 655, 526, 423,
1373 /* 5 */ 335, 272, 215, 172, 137,
1374 /* 10 */ 110, 87, 70, 56, 45,
1375 /* 15 */ 36, 29, 23, 18, 15,
1379 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
1381 * In cases where the weight does not change often, we can use the
1382 * precalculated inverse to speed up arithmetics by turning divisions
1383 * into multiplications:
1385 static const u32 prio_to_wmult
[40] = {
1386 /* -20 */ 48388, 59856, 76040, 92818, 118348,
1387 /* -15 */ 147320, 184698, 229616, 287308, 360437,
1388 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
1389 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
1390 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
1391 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
1392 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
1393 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
1396 static void activate_task(struct rq
*rq
, struct task_struct
*p
, int wakeup
);
1399 * runqueue iterator, to support SMP load-balancing between different
1400 * scheduling classes, without having to expose their internal data
1401 * structures to the load-balancing proper:
1403 struct rq_iterator
{
1405 struct task_struct
*(*start
)(void *);
1406 struct task_struct
*(*next
)(void *);
1410 static unsigned long
1411 balance_tasks(struct rq
*this_rq
, int this_cpu
, struct rq
*busiest
,
1412 unsigned long max_load_move
, struct sched_domain
*sd
,
1413 enum cpu_idle_type idle
, int *all_pinned
,
1414 int *this_best_prio
, struct rq_iterator
*iterator
);
1417 iter_move_one_task(struct rq
*this_rq
, int this_cpu
, struct rq
*busiest
,
1418 struct sched_domain
*sd
, enum cpu_idle_type idle
,
1419 struct rq_iterator
*iterator
);
1422 /* Time spent by the tasks of the cpu accounting group executing in ... */
1423 enum cpuacct_stat_index
{
1424 CPUACCT_STAT_USER
, /* ... user mode */
1425 CPUACCT_STAT_SYSTEM
, /* ... kernel mode */
1427 CPUACCT_STAT_NSTATS
,
1430 #ifdef CONFIG_CGROUP_CPUACCT
1431 static void cpuacct_charge(struct task_struct
*tsk
, u64 cputime
);
1432 static void cpuacct_update_stats(struct task_struct
*tsk
,
1433 enum cpuacct_stat_index idx
, cputime_t val
);
1435 static inline void cpuacct_charge(struct task_struct
*tsk
, u64 cputime
) {}
1436 static inline void cpuacct_update_stats(struct task_struct
*tsk
,
1437 enum cpuacct_stat_index idx
, cputime_t val
) {}
1440 static inline void inc_cpu_load(struct rq
*rq
, unsigned long load
)
1442 update_load_add(&rq
->load
, load
);
1445 static inline void dec_cpu_load(struct rq
*rq
, unsigned long load
)
1447 update_load_sub(&rq
->load
, load
);
1450 #if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED)
1451 typedef int (*tg_visitor
)(struct task_group
*, void *);
1454 * Iterate the full tree, calling @down when first entering a node and @up when
1455 * leaving it for the final time.
1457 static int walk_tg_tree(tg_visitor down
, tg_visitor up
, void *data
)
1459 struct task_group
*parent
, *child
;
1463 parent
= &root_task_group
;
1465 ret
= (*down
)(parent
, data
);
1468 list_for_each_entry_rcu(child
, &parent
->children
, siblings
) {
1475 ret
= (*up
)(parent
, data
);
1480 parent
= parent
->parent
;
1489 static int tg_nop(struct task_group
*tg
, void *data
)
1496 static unsigned long source_load(int cpu
, int type
);
1497 static unsigned long target_load(int cpu
, int type
);
1498 static int task_hot(struct task_struct
*p
, u64 now
, struct sched_domain
*sd
);
1500 static unsigned long cpu_avg_load_per_task(int cpu
)
1502 struct rq
*rq
= cpu_rq(cpu
);
1503 unsigned long nr_running
= ACCESS_ONCE(rq
->nr_running
);
1506 rq
->avg_load_per_task
= rq
->load
.weight
/ nr_running
;
1508 rq
->avg_load_per_task
= 0;
1510 return rq
->avg_load_per_task
;
1513 #ifdef CONFIG_FAIR_GROUP_SCHED
1515 static void __set_se_shares(struct sched_entity
*se
, unsigned long shares
);
1518 * Calculate and set the cpu's group shares.
1521 update_group_shares_cpu(struct task_group
*tg
, int cpu
,
1522 unsigned long sd_shares
, unsigned long sd_rq_weight
)
1524 unsigned long shares
;
1525 unsigned long rq_weight
;
1530 rq_weight
= tg
->cfs_rq
[cpu
]->rq_weight
;
1533 * \Sum shares * rq_weight
1534 * shares = -----------------------
1538 shares
= (sd_shares
* rq_weight
) / sd_rq_weight
;
1539 shares
= clamp_t(unsigned long, shares
, MIN_SHARES
, MAX_SHARES
);
1541 if (abs(shares
- tg
->se
[cpu
]->load
.weight
) >
1542 sysctl_sched_shares_thresh
) {
1543 struct rq
*rq
= cpu_rq(cpu
);
1544 unsigned long flags
;
1546 spin_lock_irqsave(&rq
->lock
, flags
);
1547 tg
->cfs_rq
[cpu
]->shares
= shares
;
1549 __set_se_shares(tg
->se
[cpu
], shares
);
1550 spin_unlock_irqrestore(&rq
->lock
, flags
);
1555 * Re-compute the task group their per cpu shares over the given domain.
1556 * This needs to be done in a bottom-up fashion because the rq weight of a
1557 * parent group depends on the shares of its child groups.
1559 static int tg_shares_up(struct task_group
*tg
, void *data
)
1561 unsigned long weight
, rq_weight
= 0;
1562 unsigned long shares
= 0;
1563 struct sched_domain
*sd
= data
;
1566 for_each_cpu(i
, sched_domain_span(sd
)) {
1568 * If there are currently no tasks on the cpu pretend there
1569 * is one of average load so that when a new task gets to
1570 * run here it will not get delayed by group starvation.
1572 weight
= tg
->cfs_rq
[i
]->load
.weight
;
1574 weight
= NICE_0_LOAD
;
1576 tg
->cfs_rq
[i
]->rq_weight
= weight
;
1577 rq_weight
+= weight
;
1578 shares
+= tg
->cfs_rq
[i
]->shares
;
1581 if ((!shares
&& rq_weight
) || shares
> tg
->shares
)
1582 shares
= tg
->shares
;
1584 if (!sd
->parent
|| !(sd
->parent
->flags
& SD_LOAD_BALANCE
))
1585 shares
= tg
->shares
;
1587 for_each_cpu(i
, sched_domain_span(sd
))
1588 update_group_shares_cpu(tg
, i
, shares
, rq_weight
);
1594 * Compute the cpu's hierarchical load factor for each task group.
1595 * This needs to be done in a top-down fashion because the load of a child
1596 * group is a fraction of its parents load.
1598 static int tg_load_down(struct task_group
*tg
, void *data
)
1601 long cpu
= (long)data
;
1604 load
= cpu_rq(cpu
)->load
.weight
;
1606 load
= tg
->parent
->cfs_rq
[cpu
]->h_load
;
1607 load
*= tg
->cfs_rq
[cpu
]->shares
;
1608 load
/= tg
->parent
->cfs_rq
[cpu
]->load
.weight
+ 1;
1611 tg
->cfs_rq
[cpu
]->h_load
= load
;
1616 static void update_shares(struct sched_domain
*sd
)
1618 u64 now
= cpu_clock(raw_smp_processor_id());
1619 s64 elapsed
= now
- sd
->last_update
;
1621 if (elapsed
>= (s64
)(u64
)sysctl_sched_shares_ratelimit
) {
1622 sd
->last_update
= now
;
1623 walk_tg_tree(tg_nop
, tg_shares_up
, sd
);
1627 static void update_shares_locked(struct rq
*rq
, struct sched_domain
*sd
)
1629 spin_unlock(&rq
->lock
);
1631 spin_lock(&rq
->lock
);
1634 static void update_h_load(long cpu
)
1636 walk_tg_tree(tg_load_down
, tg_nop
, (void *)cpu
);
1641 static inline void update_shares(struct sched_domain
*sd
)
1645 static inline void update_shares_locked(struct rq
*rq
, struct sched_domain
*sd
)
1651 #ifdef CONFIG_PREEMPT
1654 * fair double_lock_balance: Safely acquires both rq->locks in a fair
1655 * way at the expense of forcing extra atomic operations in all
1656 * invocations. This assures that the double_lock is acquired using the
1657 * same underlying policy as the spinlock_t on this architecture, which
1658 * reduces latency compared to the unfair variant below. However, it
1659 * also adds more overhead and therefore may reduce throughput.
1661 static inline int _double_lock_balance(struct rq
*this_rq
, struct rq
*busiest
)
1662 __releases(this_rq
->lock
)
1663 __acquires(busiest
->lock
)
1664 __acquires(this_rq
->lock
)
1666 spin_unlock(&this_rq
->lock
);
1667 double_rq_lock(this_rq
, busiest
);
1674 * Unfair double_lock_balance: Optimizes throughput at the expense of
1675 * latency by eliminating extra atomic operations when the locks are
1676 * already in proper order on entry. This favors lower cpu-ids and will
1677 * grant the double lock to lower cpus over higher ids under contention,
1678 * regardless of entry order into the function.
1680 static int _double_lock_balance(struct rq
*this_rq
, struct rq
*busiest
)
1681 __releases(this_rq
->lock
)
1682 __acquires(busiest
->lock
)
1683 __acquires(this_rq
->lock
)
1687 if (unlikely(!spin_trylock(&busiest
->lock
))) {
1688 if (busiest
< this_rq
) {
1689 spin_unlock(&this_rq
->lock
);
1690 spin_lock(&busiest
->lock
);
1691 spin_lock_nested(&this_rq
->lock
, SINGLE_DEPTH_NESTING
);
1694 spin_lock_nested(&busiest
->lock
, SINGLE_DEPTH_NESTING
);
1699 #endif /* CONFIG_PREEMPT */
1702 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1704 static int double_lock_balance(struct rq
*this_rq
, struct rq
*busiest
)
1706 if (unlikely(!irqs_disabled())) {
1707 /* printk() doesn't work good under rq->lock */
1708 spin_unlock(&this_rq
->lock
);
1712 return _double_lock_balance(this_rq
, busiest
);
1715 static inline void double_unlock_balance(struct rq
*this_rq
, struct rq
*busiest
)
1716 __releases(busiest
->lock
)
1718 spin_unlock(&busiest
->lock
);
1719 lock_set_subclass(&this_rq
->lock
.dep_map
, 0, _RET_IP_
);
1723 #ifdef CONFIG_FAIR_GROUP_SCHED
1724 static void cfs_rq_set_shares(struct cfs_rq
*cfs_rq
, unsigned long shares
)
1727 cfs_rq
->shares
= shares
;
1732 static void calc_load_account_active(struct rq
*this_rq
);
1734 #include "sched_stats.h"
1735 #include "sched_idletask.c"
1736 #include "sched_fair.c"
1737 #include "sched_rt.c"
1738 #ifdef CONFIG_SCHED_DEBUG
1739 # include "sched_debug.c"
1742 #define sched_class_highest (&rt_sched_class)
1743 #define for_each_class(class) \
1744 for (class = sched_class_highest; class; class = class->next)
1746 static void inc_nr_running(struct rq
*rq
)
1751 static void dec_nr_running(struct rq
*rq
)
1756 static void set_load_weight(struct task_struct
*p
)
1758 if (task_has_rt_policy(p
)) {
1759 p
->se
.load
.weight
= prio_to_weight
[0] * 2;
1760 p
->se
.load
.inv_weight
= prio_to_wmult
[0] >> 1;
1765 * SCHED_IDLE tasks get minimal weight:
1767 if (p
->policy
== SCHED_IDLE
) {
1768 p
->se
.load
.weight
= WEIGHT_IDLEPRIO
;
1769 p
->se
.load
.inv_weight
= WMULT_IDLEPRIO
;
1773 p
->se
.load
.weight
= prio_to_weight
[p
->static_prio
- MAX_RT_PRIO
];
1774 p
->se
.load
.inv_weight
= prio_to_wmult
[p
->static_prio
- MAX_RT_PRIO
];
1777 static void update_avg(u64
*avg
, u64 sample
)
1779 s64 diff
= sample
- *avg
;
1783 static void enqueue_task(struct rq
*rq
, struct task_struct
*p
, int wakeup
)
1786 p
->se
.start_runtime
= p
->se
.sum_exec_runtime
;
1788 sched_info_queued(p
);
1789 p
->sched_class
->enqueue_task(rq
, p
, wakeup
);
1793 static void dequeue_task(struct rq
*rq
, struct task_struct
*p
, int sleep
)
1796 if (p
->se
.last_wakeup
) {
1797 update_avg(&p
->se
.avg_overlap
,
1798 p
->se
.sum_exec_runtime
- p
->se
.last_wakeup
);
1799 p
->se
.last_wakeup
= 0;
1801 update_avg(&p
->se
.avg_wakeup
,
1802 sysctl_sched_wakeup_granularity
);
1806 sched_info_dequeued(p
);
1807 p
->sched_class
->dequeue_task(rq
, p
, sleep
);
1812 * __normal_prio - return the priority that is based on the static prio
1814 static inline int __normal_prio(struct task_struct
*p
)
1816 return p
->static_prio
;
1820 * Calculate the expected normal priority: i.e. priority
1821 * without taking RT-inheritance into account. Might be
1822 * boosted by interactivity modifiers. Changes upon fork,
1823 * setprio syscalls, and whenever the interactivity
1824 * estimator recalculates.
1826 static inline int normal_prio(struct task_struct
*p
)
1830 if (task_has_rt_policy(p
))
1831 prio
= MAX_RT_PRIO
-1 - p
->rt_priority
;
1833 prio
= __normal_prio(p
);
1838 * Calculate the current priority, i.e. the priority
1839 * taken into account by the scheduler. This value might
1840 * be boosted by RT tasks, or might be boosted by
1841 * interactivity modifiers. Will be RT if the task got
1842 * RT-boosted. If not then it returns p->normal_prio.
1844 static int effective_prio(struct task_struct
*p
)
1846 p
->normal_prio
= normal_prio(p
);
1848 * If we are RT tasks or we were boosted to RT priority,
1849 * keep the priority unchanged. Otherwise, update priority
1850 * to the normal priority:
1852 if (!rt_prio(p
->prio
))
1853 return p
->normal_prio
;
1858 * activate_task - move a task to the runqueue.
1860 static void activate_task(struct rq
*rq
, struct task_struct
*p
, int wakeup
)
1862 if (task_contributes_to_load(p
))
1863 rq
->nr_uninterruptible
--;
1865 enqueue_task(rq
, p
, wakeup
);
1870 * deactivate_task - remove a task from the runqueue.
1872 static void deactivate_task(struct rq
*rq
, struct task_struct
*p
, int sleep
)
1874 if (task_contributes_to_load(p
))
1875 rq
->nr_uninterruptible
++;
1877 dequeue_task(rq
, p
, sleep
);
1882 * task_curr - is this task currently executing on a CPU?
1883 * @p: the task in question.
1885 inline int task_curr(const struct task_struct
*p
)
1887 return cpu_curr(task_cpu(p
)) == p
;
1890 static inline void __set_task_cpu(struct task_struct
*p
, unsigned int cpu
)
1892 set_task_rq(p
, cpu
);
1895 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1896 * successfuly executed on another CPU. We must ensure that updates of
1897 * per-task data have been completed by this moment.
1900 task_thread_info(p
)->cpu
= cpu
;
1904 static inline void check_class_changed(struct rq
*rq
, struct task_struct
*p
,
1905 const struct sched_class
*prev_class
,
1906 int oldprio
, int running
)
1908 if (prev_class
!= p
->sched_class
) {
1909 if (prev_class
->switched_from
)
1910 prev_class
->switched_from(rq
, p
, running
);
1911 p
->sched_class
->switched_to(rq
, p
, running
);
1913 p
->sched_class
->prio_changed(rq
, p
, oldprio
, running
);
1918 /* Used instead of source_load when we know the type == 0 */
1919 static unsigned long weighted_cpuload(const int cpu
)
1921 return cpu_rq(cpu
)->load
.weight
;
1925 * Is this task likely cache-hot:
1928 task_hot(struct task_struct
*p
, u64 now
, struct sched_domain
*sd
)
1933 * Buddy candidates are cache hot:
1935 if (sched_feat(CACHE_HOT_BUDDY
) &&
1936 (&p
->se
== cfs_rq_of(&p
->se
)->next
||
1937 &p
->se
== cfs_rq_of(&p
->se
)->last
))
1940 if (p
->sched_class
!= &fair_sched_class
)
1943 if (sysctl_sched_migration_cost
== -1)
1945 if (sysctl_sched_migration_cost
== 0)
1948 delta
= now
- p
->se
.exec_start
;
1950 return delta
< (s64
)sysctl_sched_migration_cost
;
1954 void set_task_cpu(struct task_struct
*p
, unsigned int new_cpu
)
1956 int old_cpu
= task_cpu(p
);
1957 struct rq
*old_rq
= cpu_rq(old_cpu
), *new_rq
= cpu_rq(new_cpu
);
1958 struct cfs_rq
*old_cfsrq
= task_cfs_rq(p
),
1959 *new_cfsrq
= cpu_cfs_rq(old_cfsrq
, new_cpu
);
1962 clock_offset
= old_rq
->clock
- new_rq
->clock
;
1964 trace_sched_migrate_task(p
, new_cpu
);
1966 #ifdef CONFIG_SCHEDSTATS
1967 if (p
->se
.wait_start
)
1968 p
->se
.wait_start
-= clock_offset
;
1969 if (p
->se
.sleep_start
)
1970 p
->se
.sleep_start
-= clock_offset
;
1971 if (p
->se
.block_start
)
1972 p
->se
.block_start
-= clock_offset
;
1974 if (old_cpu
!= new_cpu
) {
1975 p
->se
.nr_migrations
++;
1976 new_rq
->nr_migrations_in
++;
1977 #ifdef CONFIG_SCHEDSTATS
1978 if (task_hot(p
, old_rq
->clock
, NULL
))
1979 schedstat_inc(p
, se
.nr_forced2_migrations
);
1981 perf_counter_task_migration(p
, new_cpu
);
1983 p
->se
.vruntime
-= old_cfsrq
->min_vruntime
-
1984 new_cfsrq
->min_vruntime
;
1986 __set_task_cpu(p
, new_cpu
);
1989 struct migration_req
{
1990 struct list_head list
;
1992 struct task_struct
*task
;
1995 struct completion done
;
1999 * The task's runqueue lock must be held.
2000 * Returns true if you have to wait for migration thread.
2003 migrate_task(struct task_struct
*p
, int dest_cpu
, struct migration_req
*req
)
2005 struct rq
*rq
= task_rq(p
);
2008 * If the task is not on a runqueue (and not running), then
2009 * it is sufficient to simply update the task's cpu field.
2011 if (!p
->se
.on_rq
&& !task_running(rq
, p
)) {
2012 set_task_cpu(p
, dest_cpu
);
2016 init_completion(&req
->done
);
2018 req
->dest_cpu
= dest_cpu
;
2019 list_add(&req
->list
, &rq
->migration_queue
);
2025 * wait_task_context_switch - wait for a thread to complete at least one
2028 * @p must not be current.
2030 void wait_task_context_switch(struct task_struct
*p
)
2032 unsigned long nvcsw
, nivcsw
, flags
;
2040 * The runqueue is assigned before the actual context
2041 * switch. We need to take the runqueue lock.
2043 * We could check initially without the lock but it is
2044 * very likely that we need to take the lock in every
2047 rq
= task_rq_lock(p
, &flags
);
2048 running
= task_running(rq
, p
);
2049 task_rq_unlock(rq
, &flags
);
2051 if (likely(!running
))
2054 * The switch count is incremented before the actual
2055 * context switch. We thus wait for two switches to be
2056 * sure at least one completed.
2058 if ((p
->nvcsw
- nvcsw
) > 1)
2060 if ((p
->nivcsw
- nivcsw
) > 1)
2068 * wait_task_inactive - wait for a thread to unschedule.
2070 * If @match_state is nonzero, it's the @p->state value just checked and
2071 * not expected to change. If it changes, i.e. @p might have woken up,
2072 * then return zero. When we succeed in waiting for @p to be off its CPU,
2073 * we return a positive number (its total switch count). If a second call
2074 * a short while later returns the same number, the caller can be sure that
2075 * @p has remained unscheduled the whole time.
2077 * The caller must ensure that the task *will* unschedule sometime soon,
2078 * else this function might spin for a *long* time. This function can't
2079 * be called with interrupts off, or it may introduce deadlock with
2080 * smp_call_function() if an IPI is sent by the same process we are
2081 * waiting to become inactive.
2083 unsigned long wait_task_inactive(struct task_struct
*p
, long match_state
)
2085 unsigned long flags
;
2092 * We do the initial early heuristics without holding
2093 * any task-queue locks at all. We'll only try to get
2094 * the runqueue lock when things look like they will
2100 * If the task is actively running on another CPU
2101 * still, just relax and busy-wait without holding
2104 * NOTE! Since we don't hold any locks, it's not
2105 * even sure that "rq" stays as the right runqueue!
2106 * But we don't care, since "task_running()" will
2107 * return false if the runqueue has changed and p
2108 * is actually now running somewhere else!
2110 while (task_running(rq
, p
)) {
2111 if (match_state
&& unlikely(p
->state
!= match_state
))
2117 * Ok, time to look more closely! We need the rq
2118 * lock now, to be *sure*. If we're wrong, we'll
2119 * just go back and repeat.
2121 rq
= task_rq_lock(p
, &flags
);
2122 trace_sched_wait_task(rq
, p
);
2123 running
= task_running(rq
, p
);
2124 on_rq
= p
->se
.on_rq
;
2126 if (!match_state
|| p
->state
== match_state
)
2127 ncsw
= p
->nvcsw
| LONG_MIN
; /* sets MSB */
2128 task_rq_unlock(rq
, &flags
);
2131 * If it changed from the expected state, bail out now.
2133 if (unlikely(!ncsw
))
2137 * Was it really running after all now that we
2138 * checked with the proper locks actually held?
2140 * Oops. Go back and try again..
2142 if (unlikely(running
)) {
2148 * It's not enough that it's not actively running,
2149 * it must be off the runqueue _entirely_, and not
2152 * So if it was still runnable (but just not actively
2153 * running right now), it's preempted, and we should
2154 * yield - it could be a while.
2156 if (unlikely(on_rq
)) {
2157 schedule_timeout_uninterruptible(1);
2162 * Ahh, all good. It wasn't running, and it wasn't
2163 * runnable, which means that it will never become
2164 * running in the future either. We're all done!
2173 * kick_process - kick a running thread to enter/exit the kernel
2174 * @p: the to-be-kicked thread
2176 * Cause a process which is running on another CPU to enter
2177 * kernel-mode, without any delay. (to get signals handled.)
2179 * NOTE: this function doesnt have to take the runqueue lock,
2180 * because all it wants to ensure is that the remote task enters
2181 * the kernel. If the IPI races and the task has been migrated
2182 * to another CPU then no harm is done and the purpose has been
2185 void kick_process(struct task_struct
*p
)
2191 if ((cpu
!= smp_processor_id()) && task_curr(p
))
2192 smp_send_reschedule(cpu
);
2195 EXPORT_SYMBOL_GPL(kick_process
);
2198 * Return a low guess at the load of a migration-source cpu weighted
2199 * according to the scheduling class and "nice" value.
2201 * We want to under-estimate the load of migration sources, to
2202 * balance conservatively.
2204 static unsigned long source_load(int cpu
, int type
)
2206 struct rq
*rq
= cpu_rq(cpu
);
2207 unsigned long total
= weighted_cpuload(cpu
);
2209 if (type
== 0 || !sched_feat(LB_BIAS
))
2212 return min(rq
->cpu_load
[type
-1], total
);
2216 * Return a high guess at the load of a migration-target cpu weighted
2217 * according to the scheduling class and "nice" value.
2219 static unsigned long target_load(int cpu
, int type
)
2221 struct rq
*rq
= cpu_rq(cpu
);
2222 unsigned long total
= weighted_cpuload(cpu
);
2224 if (type
== 0 || !sched_feat(LB_BIAS
))
2227 return max(rq
->cpu_load
[type
-1], total
);
2231 * find_idlest_group finds and returns the least busy CPU group within the
2234 static struct sched_group
*
2235 find_idlest_group(struct sched_domain
*sd
, struct task_struct
*p
, int this_cpu
)
2237 struct sched_group
*idlest
= NULL
, *this = NULL
, *group
= sd
->groups
;
2238 unsigned long min_load
= ULONG_MAX
, this_load
= 0;
2239 int load_idx
= sd
->forkexec_idx
;
2240 int imbalance
= 100 + (sd
->imbalance_pct
-100)/2;
2243 unsigned long load
, avg_load
;
2247 /* Skip over this group if it has no CPUs allowed */
2248 if (!cpumask_intersects(sched_group_cpus(group
),
2252 local_group
= cpumask_test_cpu(this_cpu
,
2253 sched_group_cpus(group
));
2255 /* Tally up the load of all CPUs in the group */
2258 for_each_cpu(i
, sched_group_cpus(group
)) {
2259 /* Bias balancing toward cpus of our domain */
2261 load
= source_load(i
, load_idx
);
2263 load
= target_load(i
, load_idx
);
2268 /* Adjust by relative CPU power of the group */
2269 avg_load
= sg_div_cpu_power(group
,
2270 avg_load
* SCHED_LOAD_SCALE
);
2273 this_load
= avg_load
;
2275 } else if (avg_load
< min_load
) {
2276 min_load
= avg_load
;
2279 } while (group
= group
->next
, group
!= sd
->groups
);
2281 if (!idlest
|| 100*this_load
< imbalance
*min_load
)
2287 * find_idlest_cpu - find the idlest cpu among the cpus in group.
2290 find_idlest_cpu(struct sched_group
*group
, struct task_struct
*p
, int this_cpu
)
2292 unsigned long load
, min_load
= ULONG_MAX
;
2296 /* Traverse only the allowed CPUs */
2297 for_each_cpu_and(i
, sched_group_cpus(group
), &p
->cpus_allowed
) {
2298 load
= weighted_cpuload(i
);
2300 if (load
< min_load
|| (load
== min_load
&& i
== this_cpu
)) {
2310 * sched_balance_self: balance the current task (running on cpu) in domains
2311 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
2314 * Balance, ie. select the least loaded group.
2316 * Returns the target CPU number, or the same CPU if no balancing is needed.
2318 * preempt must be disabled.
2320 static int sched_balance_self(int cpu
, int flag
)
2322 struct task_struct
*t
= current
;
2323 struct sched_domain
*tmp
, *sd
= NULL
;
2325 for_each_domain(cpu
, tmp
) {
2327 * If power savings logic is enabled for a domain, stop there.
2329 if (tmp
->flags
& SD_POWERSAVINGS_BALANCE
)
2331 if (tmp
->flags
& flag
)
2339 struct sched_group
*group
;
2340 int new_cpu
, weight
;
2342 if (!(sd
->flags
& flag
)) {
2347 group
= find_idlest_group(sd
, t
, cpu
);
2353 new_cpu
= find_idlest_cpu(group
, t
, cpu
);
2354 if (new_cpu
== -1 || new_cpu
== cpu
) {
2355 /* Now try balancing at a lower domain level of cpu */
2360 /* Now try balancing at a lower domain level of new_cpu */
2362 weight
= cpumask_weight(sched_domain_span(sd
));
2364 for_each_domain(cpu
, tmp
) {
2365 if (weight
<= cpumask_weight(sched_domain_span(tmp
)))
2367 if (tmp
->flags
& flag
)
2370 /* while loop will break here if sd == NULL */
2376 #endif /* CONFIG_SMP */
2379 * task_oncpu_function_call - call a function on the cpu on which a task runs
2380 * @p: the task to evaluate
2381 * @func: the function to be called
2382 * @info: the function call argument
2384 * Calls the function @func when the task is currently running. This might
2385 * be on the current CPU, which just calls the function directly
2387 void task_oncpu_function_call(struct task_struct
*p
,
2388 void (*func
) (void *info
), void *info
)
2395 smp_call_function_single(cpu
, func
, info
, 1);
2400 * try_to_wake_up - wake up a thread
2401 * @p: the to-be-woken-up thread
2402 * @state: the mask of task states that can be woken
2403 * @sync: do a synchronous wakeup?
2405 * Put it on the run-queue if it's not already there. The "current"
2406 * thread is always on the run-queue (except when the actual
2407 * re-schedule is in progress), and as such you're allowed to do
2408 * the simpler "current->state = TASK_RUNNING" to mark yourself
2409 * runnable without the overhead of this.
2411 * returns failure only if the task is already active.
2413 static int try_to_wake_up(struct task_struct
*p
, unsigned int state
, int sync
)
2415 int cpu
, orig_cpu
, this_cpu
, success
= 0;
2416 unsigned long flags
;
2420 if (!sched_feat(SYNC_WAKEUPS
))
2424 if (sched_feat(LB_WAKEUP_UPDATE
) && !root_task_group_empty()) {
2425 struct sched_domain
*sd
;
2427 this_cpu
= raw_smp_processor_id();
2430 for_each_domain(this_cpu
, sd
) {
2431 if (cpumask_test_cpu(cpu
, sched_domain_span(sd
))) {
2440 rq
= task_rq_lock(p
, &flags
);
2441 update_rq_clock(rq
);
2442 old_state
= p
->state
;
2443 if (!(old_state
& state
))
2451 this_cpu
= smp_processor_id();
2454 if (unlikely(task_running(rq
, p
)))
2457 cpu
= p
->sched_class
->select_task_rq(p
, sync
);
2458 if (cpu
!= orig_cpu
) {
2459 set_task_cpu(p
, cpu
);
2460 task_rq_unlock(rq
, &flags
);
2461 /* might preempt at this point */
2462 rq
= task_rq_lock(p
, &flags
);
2463 old_state
= p
->state
;
2464 if (!(old_state
& state
))
2469 this_cpu
= smp_processor_id();
2473 #ifdef CONFIG_SCHEDSTATS
2474 schedstat_inc(rq
, ttwu_count
);
2475 if (cpu
== this_cpu
)
2476 schedstat_inc(rq
, ttwu_local
);
2478 struct sched_domain
*sd
;
2479 for_each_domain(this_cpu
, sd
) {
2480 if (cpumask_test_cpu(cpu
, sched_domain_span(sd
))) {
2481 schedstat_inc(sd
, ttwu_wake_remote
);
2486 #endif /* CONFIG_SCHEDSTATS */
2489 #endif /* CONFIG_SMP */
2490 schedstat_inc(p
, se
.nr_wakeups
);
2492 schedstat_inc(p
, se
.nr_wakeups_sync
);
2493 if (orig_cpu
!= cpu
)
2494 schedstat_inc(p
, se
.nr_wakeups_migrate
);
2495 if (cpu
== this_cpu
)
2496 schedstat_inc(p
, se
.nr_wakeups_local
);
2498 schedstat_inc(p
, se
.nr_wakeups_remote
);
2499 activate_task(rq
, p
, 1);
2503 * Only attribute actual wakeups done by this task.
2505 if (!in_interrupt()) {
2506 struct sched_entity
*se
= ¤t
->se
;
2507 u64 sample
= se
->sum_exec_runtime
;
2509 if (se
->last_wakeup
)
2510 sample
-= se
->last_wakeup
;
2512 sample
-= se
->start_runtime
;
2513 update_avg(&se
->avg_wakeup
, sample
);
2515 se
->last_wakeup
= se
->sum_exec_runtime
;
2519 trace_sched_wakeup(rq
, p
, success
);
2520 check_preempt_curr(rq
, p
, sync
);
2522 p
->state
= TASK_RUNNING
;
2524 if (p
->sched_class
->task_wake_up
)
2525 p
->sched_class
->task_wake_up(rq
, p
);
2528 task_rq_unlock(rq
, &flags
);
2534 * wake_up_process - Wake up a specific process
2535 * @p: The process to be woken up.
2537 * Attempt to wake up the nominated process and move it to the set of runnable
2538 * processes. Returns 1 if the process was woken up, 0 if it was already
2541 * It may be assumed that this function implies a write memory barrier before
2542 * changing the task state if and only if any tasks are woken up.
2544 int wake_up_process(struct task_struct
*p
)
2546 return try_to_wake_up(p
, TASK_ALL
, 0);
2548 EXPORT_SYMBOL(wake_up_process
);
2550 int wake_up_state(struct task_struct
*p
, unsigned int state
)
2552 return try_to_wake_up(p
, state
, 0);
2556 * Perform scheduler related setup for a newly forked process p.
2557 * p is forked by current.
2559 * __sched_fork() is basic setup used by init_idle() too:
2561 static void __sched_fork(struct task_struct
*p
)
2563 p
->se
.exec_start
= 0;
2564 p
->se
.sum_exec_runtime
= 0;
2565 p
->se
.prev_sum_exec_runtime
= 0;
2566 p
->se
.nr_migrations
= 0;
2567 p
->se
.last_wakeup
= 0;
2568 p
->se
.avg_overlap
= 0;
2569 p
->se
.start_runtime
= 0;
2570 p
->se
.avg_wakeup
= sysctl_sched_wakeup_granularity
;
2572 #ifdef CONFIG_SCHEDSTATS
2573 p
->se
.wait_start
= 0;
2574 p
->se
.sum_sleep_runtime
= 0;
2575 p
->se
.sleep_start
= 0;
2576 p
->se
.block_start
= 0;
2577 p
->se
.sleep_max
= 0;
2578 p
->se
.block_max
= 0;
2580 p
->se
.slice_max
= 0;
2584 INIT_LIST_HEAD(&p
->rt
.run_list
);
2586 INIT_LIST_HEAD(&p
->se
.group_node
);
2588 #ifdef CONFIG_PREEMPT_NOTIFIERS
2589 INIT_HLIST_HEAD(&p
->preempt_notifiers
);
2593 * We mark the process as running here, but have not actually
2594 * inserted it onto the runqueue yet. This guarantees that
2595 * nobody will actually run it, and a signal or other external
2596 * event cannot wake it up and insert it on the runqueue either.
2598 p
->state
= TASK_RUNNING
;
2602 * fork()/clone()-time setup:
2604 void sched_fork(struct task_struct
*p
, int clone_flags
)
2606 int cpu
= get_cpu();
2611 cpu
= sched_balance_self(cpu
, SD_BALANCE_FORK
);
2613 set_task_cpu(p
, cpu
);
2616 * Make sure we do not leak PI boosting priority to the child:
2618 p
->prio
= current
->normal_prio
;
2619 if (!rt_prio(p
->prio
))
2620 p
->sched_class
= &fair_sched_class
;
2622 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
2623 if (likely(sched_info_on()))
2624 memset(&p
->sched_info
, 0, sizeof(p
->sched_info
));
2626 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
2629 #ifdef CONFIG_PREEMPT
2630 /* Want to start with kernel preemption disabled. */
2631 task_thread_info(p
)->preempt_count
= 1;
2633 plist_node_init(&p
->pushable_tasks
, MAX_PRIO
);
2639 * wake_up_new_task - wake up a newly created task for the first time.
2641 * This function will do some initial scheduler statistics housekeeping
2642 * that must be done for every newly created context, then puts the task
2643 * on the runqueue and wakes it.
2645 void wake_up_new_task(struct task_struct
*p
, unsigned long clone_flags
)
2647 unsigned long flags
;
2650 rq
= task_rq_lock(p
, &flags
);
2651 BUG_ON(p
->state
!= TASK_RUNNING
);
2652 update_rq_clock(rq
);
2654 p
->prio
= effective_prio(p
);
2656 if (!p
->sched_class
->task_new
|| !current
->se
.on_rq
) {
2657 activate_task(rq
, p
, 0);
2660 * Let the scheduling class do new task startup
2661 * management (if any):
2663 p
->sched_class
->task_new(rq
, p
);
2666 trace_sched_wakeup_new(rq
, p
, 1);
2667 check_preempt_curr(rq
, p
, 0);
2669 if (p
->sched_class
->task_wake_up
)
2670 p
->sched_class
->task_wake_up(rq
, p
);
2672 task_rq_unlock(rq
, &flags
);
2675 #ifdef CONFIG_PREEMPT_NOTIFIERS
2678 * preempt_notifier_register - tell me when current is being preempted & rescheduled
2679 * @notifier: notifier struct to register
2681 void preempt_notifier_register(struct preempt_notifier
*notifier
)
2683 hlist_add_head(¬ifier
->link
, ¤t
->preempt_notifiers
);
2685 EXPORT_SYMBOL_GPL(preempt_notifier_register
);
2688 * preempt_notifier_unregister - no longer interested in preemption notifications
2689 * @notifier: notifier struct to unregister
2691 * This is safe to call from within a preemption notifier.
2693 void preempt_notifier_unregister(struct preempt_notifier
*notifier
)
2695 hlist_del(¬ifier
->link
);
2697 EXPORT_SYMBOL_GPL(preempt_notifier_unregister
);
2699 static void fire_sched_in_preempt_notifiers(struct task_struct
*curr
)
2701 struct preempt_notifier
*notifier
;
2702 struct hlist_node
*node
;
2704 hlist_for_each_entry(notifier
, node
, &curr
->preempt_notifiers
, link
)
2705 notifier
->ops
->sched_in(notifier
, raw_smp_processor_id());
2709 fire_sched_out_preempt_notifiers(struct task_struct
*curr
,
2710 struct task_struct
*next
)
2712 struct preempt_notifier
*notifier
;
2713 struct hlist_node
*node
;
2715 hlist_for_each_entry(notifier
, node
, &curr
->preempt_notifiers
, link
)
2716 notifier
->ops
->sched_out(notifier
, next
);
2719 #else /* !CONFIG_PREEMPT_NOTIFIERS */
2721 static void fire_sched_in_preempt_notifiers(struct task_struct
*curr
)
2726 fire_sched_out_preempt_notifiers(struct task_struct
*curr
,
2727 struct task_struct
*next
)
2731 #endif /* CONFIG_PREEMPT_NOTIFIERS */
2734 * prepare_task_switch - prepare to switch tasks
2735 * @rq: the runqueue preparing to switch
2736 * @prev: the current task that is being switched out
2737 * @next: the task we are going to switch to.
2739 * This is called with the rq lock held and interrupts off. It must
2740 * be paired with a subsequent finish_task_switch after the context
2743 * prepare_task_switch sets up locking and calls architecture specific
2747 prepare_task_switch(struct rq
*rq
, struct task_struct
*prev
,
2748 struct task_struct
*next
)
2750 fire_sched_out_preempt_notifiers(prev
, next
);
2751 prepare_lock_switch(rq
, next
);
2752 prepare_arch_switch(next
);
2756 * finish_task_switch - clean up after a task-switch
2757 * @rq: runqueue associated with task-switch
2758 * @prev: the thread we just switched away from.
2760 * finish_task_switch must be called after the context switch, paired
2761 * with a prepare_task_switch call before the context switch.
2762 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2763 * and do any other architecture-specific cleanup actions.
2765 * Note that we may have delayed dropping an mm in context_switch(). If
2766 * so, we finish that here outside of the runqueue lock. (Doing it
2767 * with the lock held can cause deadlocks; see schedule() for
2770 static void finish_task_switch(struct rq
*rq
, struct task_struct
*prev
)
2771 __releases(rq
->lock
)
2773 struct mm_struct
*mm
= rq
->prev_mm
;
2776 int post_schedule
= 0;
2778 if (current
->sched_class
->needs_post_schedule
)
2779 post_schedule
= current
->sched_class
->needs_post_schedule(rq
);
2785 * A task struct has one reference for the use as "current".
2786 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
2787 * schedule one last time. The schedule call will never return, and
2788 * the scheduled task must drop that reference.
2789 * The test for TASK_DEAD must occur while the runqueue locks are
2790 * still held, otherwise prev could be scheduled on another cpu, die
2791 * there before we look at prev->state, and then the reference would
2793 * Manfred Spraul <manfred@colorfullife.com>
2795 prev_state
= prev
->state
;
2796 finish_arch_switch(prev
);
2797 perf_counter_task_sched_in(current
, cpu_of(rq
));
2798 finish_lock_switch(rq
, prev
);
2801 current
->sched_class
->post_schedule(rq
);
2804 fire_sched_in_preempt_notifiers(current
);
2807 if (unlikely(prev_state
== TASK_DEAD
)) {
2809 * Remove function-return probe instances associated with this
2810 * task and put them back on the free list.
2812 kprobe_flush_task(prev
);
2813 put_task_struct(prev
);
2818 * schedule_tail - first thing a freshly forked thread must call.
2819 * @prev: the thread we just switched away from.
2821 asmlinkage
void schedule_tail(struct task_struct
*prev
)
2822 __releases(rq
->lock
)
2824 struct rq
*rq
= this_rq();
2826 finish_task_switch(rq
, prev
);
2827 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
2828 /* In this case, finish_task_switch does not reenable preemption */
2831 if (current
->set_child_tid
)
2832 put_user(task_pid_vnr(current
), current
->set_child_tid
);
2836 * context_switch - switch to the new MM and the new
2837 * thread's register state.
2840 context_switch(struct rq
*rq
, struct task_struct
*prev
,
2841 struct task_struct
*next
)
2843 struct mm_struct
*mm
, *oldmm
;
2845 prepare_task_switch(rq
, prev
, next
);
2846 trace_sched_switch(rq
, prev
, next
);
2848 oldmm
= prev
->active_mm
;
2850 * For paravirt, this is coupled with an exit in switch_to to
2851 * combine the page table reload and the switch backend into
2854 arch_start_context_switch(prev
);
2856 if (unlikely(!mm
)) {
2857 next
->active_mm
= oldmm
;
2858 atomic_inc(&oldmm
->mm_count
);
2859 enter_lazy_tlb(oldmm
, next
);
2861 switch_mm(oldmm
, mm
, next
);
2863 if (unlikely(!prev
->mm
)) {
2864 prev
->active_mm
= NULL
;
2865 rq
->prev_mm
= oldmm
;
2868 * Since the runqueue lock will be released by the next
2869 * task (which is an invalid locking op but in the case
2870 * of the scheduler it's an obvious special-case), so we
2871 * do an early lockdep release here:
2873 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
2874 spin_release(&rq
->lock
.dep_map
, 1, _THIS_IP_
);
2877 /* Here we just switch the register state and the stack. */
2878 switch_to(prev
, next
, prev
);
2882 * this_rq must be evaluated again because prev may have moved
2883 * CPUs since it called schedule(), thus the 'rq' on its stack
2884 * frame will be invalid.
2886 finish_task_switch(this_rq(), prev
);
2890 * nr_running, nr_uninterruptible and nr_context_switches:
2892 * externally visible scheduler statistics: current number of runnable
2893 * threads, current number of uninterruptible-sleeping threads, total
2894 * number of context switches performed since bootup.
2896 unsigned long nr_running(void)
2898 unsigned long i
, sum
= 0;
2900 for_each_online_cpu(i
)
2901 sum
+= cpu_rq(i
)->nr_running
;
2906 unsigned long nr_uninterruptible(void)
2908 unsigned long i
, sum
= 0;
2910 for_each_possible_cpu(i
)
2911 sum
+= cpu_rq(i
)->nr_uninterruptible
;
2914 * Since we read the counters lockless, it might be slightly
2915 * inaccurate. Do not allow it to go below zero though:
2917 if (unlikely((long)sum
< 0))
2923 unsigned long long nr_context_switches(void)
2926 unsigned long long sum
= 0;
2928 for_each_possible_cpu(i
)
2929 sum
+= cpu_rq(i
)->nr_switches
;
2934 unsigned long nr_iowait(void)
2936 unsigned long i
, sum
= 0;
2938 for_each_possible_cpu(i
)
2939 sum
+= atomic_read(&cpu_rq(i
)->nr_iowait
);
2944 /* Variables and functions for calc_load */
2945 static atomic_long_t calc_load_tasks
;
2946 static unsigned long calc_load_update
;
2947 unsigned long avenrun
[3];
2948 EXPORT_SYMBOL(avenrun
);
2951 * get_avenrun - get the load average array
2952 * @loads: pointer to dest load array
2953 * @offset: offset to add
2954 * @shift: shift count to shift the result left
2956 * These values are estimates at best, so no need for locking.
2958 void get_avenrun(unsigned long *loads
, unsigned long offset
, int shift
)
2960 loads
[0] = (avenrun
[0] + offset
) << shift
;
2961 loads
[1] = (avenrun
[1] + offset
) << shift
;
2962 loads
[2] = (avenrun
[2] + offset
) << shift
;
2965 static unsigned long
2966 calc_load(unsigned long load
, unsigned long exp
, unsigned long active
)
2969 load
+= active
* (FIXED_1
- exp
);
2970 return load
>> FSHIFT
;
2974 * calc_load - update the avenrun load estimates 10 ticks after the
2975 * CPUs have updated calc_load_tasks.
2977 void calc_global_load(void)
2979 unsigned long upd
= calc_load_update
+ 10;
2982 if (time_before(jiffies
, upd
))
2985 active
= atomic_long_read(&calc_load_tasks
);
2986 active
= active
> 0 ? active
* FIXED_1
: 0;
2988 avenrun
[0] = calc_load(avenrun
[0], EXP_1
, active
);
2989 avenrun
[1] = calc_load(avenrun
[1], EXP_5
, active
);
2990 avenrun
[2] = calc_load(avenrun
[2], EXP_15
, active
);
2992 calc_load_update
+= LOAD_FREQ
;
2996 * Either called from update_cpu_load() or from a cpu going idle
2998 static void calc_load_account_active(struct rq
*this_rq
)
3000 long nr_active
, delta
;
3002 nr_active
= this_rq
->nr_running
;
3003 nr_active
+= (long) this_rq
->nr_uninterruptible
;
3005 if (nr_active
!= this_rq
->calc_load_active
) {
3006 delta
= nr_active
- this_rq
->calc_load_active
;
3007 this_rq
->calc_load_active
= nr_active
;
3008 atomic_long_add(delta
, &calc_load_tasks
);
3013 * Externally visible per-cpu scheduler statistics:
3014 * cpu_nr_migrations(cpu) - number of migrations into that cpu
3016 u64
cpu_nr_migrations(int cpu
)
3018 return cpu_rq(cpu
)->nr_migrations_in
;
3022 * Update rq->cpu_load[] statistics. This function is usually called every
3023 * scheduler tick (TICK_NSEC).
3025 static void update_cpu_load(struct rq
*this_rq
)
3027 unsigned long this_load
= this_rq
->load
.weight
;
3030 this_rq
->nr_load_updates
++;
3032 /* Update our load: */
3033 for (i
= 0, scale
= 1; i
< CPU_LOAD_IDX_MAX
; i
++, scale
+= scale
) {
3034 unsigned long old_load
, new_load
;
3036 /* scale is effectively 1 << i now, and >> i divides by scale */
3038 old_load
= this_rq
->cpu_load
[i
];
3039 new_load
= this_load
;
3041 * Round up the averaging division if load is increasing. This
3042 * prevents us from getting stuck on 9 if the load is 10, for
3045 if (new_load
> old_load
)
3046 new_load
+= scale
-1;
3047 this_rq
->cpu_load
[i
] = (old_load
*(scale
-1) + new_load
) >> i
;
3050 if (time_after_eq(jiffies
, this_rq
->calc_load_update
)) {
3051 this_rq
->calc_load_update
+= LOAD_FREQ
;
3052 calc_load_account_active(this_rq
);
3059 * double_rq_lock - safely lock two runqueues
3061 * Note this does not disable interrupts like task_rq_lock,
3062 * you need to do so manually before calling.
3064 static void double_rq_lock(struct rq
*rq1
, struct rq
*rq2
)
3065 __acquires(rq1
->lock
)
3066 __acquires(rq2
->lock
)
3068 BUG_ON(!irqs_disabled());
3070 spin_lock(&rq1
->lock
);
3071 __acquire(rq2
->lock
); /* Fake it out ;) */
3074 spin_lock(&rq1
->lock
);
3075 spin_lock_nested(&rq2
->lock
, SINGLE_DEPTH_NESTING
);
3077 spin_lock(&rq2
->lock
);
3078 spin_lock_nested(&rq1
->lock
, SINGLE_DEPTH_NESTING
);
3081 update_rq_clock(rq1
);
3082 update_rq_clock(rq2
);
3086 * double_rq_unlock - safely unlock two runqueues
3088 * Note this does not restore interrupts like task_rq_unlock,
3089 * you need to do so manually after calling.
3091 static void double_rq_unlock(struct rq
*rq1
, struct rq
*rq2
)
3092 __releases(rq1
->lock
)
3093 __releases(rq2
->lock
)
3095 spin_unlock(&rq1
->lock
);
3097 spin_unlock(&rq2
->lock
);
3099 __release(rq2
->lock
);
3103 * If dest_cpu is allowed for this process, migrate the task to it.
3104 * This is accomplished by forcing the cpu_allowed mask to only
3105 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
3106 * the cpu_allowed mask is restored.
3108 static void sched_migrate_task(struct task_struct
*p
, int dest_cpu
)
3110 struct migration_req req
;
3111 unsigned long flags
;
3114 rq
= task_rq_lock(p
, &flags
);
3115 if (!cpumask_test_cpu(dest_cpu
, &p
->cpus_allowed
)
3116 || unlikely(!cpu_active(dest_cpu
)))
3119 /* force the process onto the specified CPU */
3120 if (migrate_task(p
, dest_cpu
, &req
)) {
3121 /* Need to wait for migration thread (might exit: take ref). */
3122 struct task_struct
*mt
= rq
->migration_thread
;
3124 get_task_struct(mt
);
3125 task_rq_unlock(rq
, &flags
);
3126 wake_up_process(mt
);
3127 put_task_struct(mt
);
3128 wait_for_completion(&req
.done
);
3133 task_rq_unlock(rq
, &flags
);
3137 * sched_exec - execve() is a valuable balancing opportunity, because at
3138 * this point the task has the smallest effective memory and cache footprint.
3140 void sched_exec(void)
3142 int new_cpu
, this_cpu
= get_cpu();
3143 new_cpu
= sched_balance_self(this_cpu
, SD_BALANCE_EXEC
);
3145 if (new_cpu
!= this_cpu
)
3146 sched_migrate_task(current
, new_cpu
);
3150 * pull_task - move a task from a remote runqueue to the local runqueue.
3151 * Both runqueues must be locked.
3153 static void pull_task(struct rq
*src_rq
, struct task_struct
*p
,
3154 struct rq
*this_rq
, int this_cpu
)
3156 deactivate_task(src_rq
, p
, 0);
3157 set_task_cpu(p
, this_cpu
);
3158 activate_task(this_rq
, p
, 0);
3160 * Note that idle threads have a prio of MAX_PRIO, for this test
3161 * to be always true for them.
3163 check_preempt_curr(this_rq
, p
, 0);
3167 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
3170 int can_migrate_task(struct task_struct
*p
, struct rq
*rq
, int this_cpu
,
3171 struct sched_domain
*sd
, enum cpu_idle_type idle
,
3174 int tsk_cache_hot
= 0;
3176 * We do not migrate tasks that are:
3177 * 1) running (obviously), or
3178 * 2) cannot be migrated to this CPU due to cpus_allowed, or
3179 * 3) are cache-hot on their current CPU.
3181 if (!cpumask_test_cpu(this_cpu
, &p
->cpus_allowed
)) {
3182 schedstat_inc(p
, se
.nr_failed_migrations_affine
);
3187 if (task_running(rq
, p
)) {
3188 schedstat_inc(p
, se
.nr_failed_migrations_running
);
3193 * Aggressive migration if:
3194 * 1) task is cache cold, or
3195 * 2) too many balance attempts have failed.
3198 tsk_cache_hot
= task_hot(p
, rq
->clock
, sd
);
3199 if (!tsk_cache_hot
||
3200 sd
->nr_balance_failed
> sd
->cache_nice_tries
) {
3201 #ifdef CONFIG_SCHEDSTATS
3202 if (tsk_cache_hot
) {
3203 schedstat_inc(sd
, lb_hot_gained
[idle
]);
3204 schedstat_inc(p
, se
.nr_forced_migrations
);
3210 if (tsk_cache_hot
) {
3211 schedstat_inc(p
, se
.nr_failed_migrations_hot
);
3217 static unsigned long
3218 balance_tasks(struct rq
*this_rq
, int this_cpu
, struct rq
*busiest
,
3219 unsigned long max_load_move
, struct sched_domain
*sd
,
3220 enum cpu_idle_type idle
, int *all_pinned
,
3221 int *this_best_prio
, struct rq_iterator
*iterator
)
3223 int loops
= 0, pulled
= 0, pinned
= 0;
3224 struct task_struct
*p
;
3225 long rem_load_move
= max_load_move
;
3227 if (max_load_move
== 0)
3233 * Start the load-balancing iterator:
3235 p
= iterator
->start(iterator
->arg
);
3237 if (!p
|| loops
++ > sysctl_sched_nr_migrate
)
3240 if ((p
->se
.load
.weight
>> 1) > rem_load_move
||
3241 !can_migrate_task(p
, busiest
, this_cpu
, sd
, idle
, &pinned
)) {
3242 p
= iterator
->next(iterator
->arg
);
3246 pull_task(busiest
, p
, this_rq
, this_cpu
);
3248 rem_load_move
-= p
->se
.load
.weight
;
3250 #ifdef CONFIG_PREEMPT
3252 * NEWIDLE balancing is a source of latency, so preemptible kernels
3253 * will stop after the first task is pulled to minimize the critical
3256 if (idle
== CPU_NEWLY_IDLE
)
3261 * We only want to steal up to the prescribed amount of weighted load.
3263 if (rem_load_move
> 0) {
3264 if (p
->prio
< *this_best_prio
)
3265 *this_best_prio
= p
->prio
;
3266 p
= iterator
->next(iterator
->arg
);
3271 * Right now, this is one of only two places pull_task() is called,
3272 * so we can safely collect pull_task() stats here rather than
3273 * inside pull_task().
3275 schedstat_add(sd
, lb_gained
[idle
], pulled
);
3278 *all_pinned
= pinned
;
3280 return max_load_move
- rem_load_move
;
3284 * move_tasks tries to move up to max_load_move weighted load from busiest to
3285 * this_rq, as part of a balancing operation within domain "sd".
3286 * Returns 1 if successful and 0 otherwise.
3288 * Called with both runqueues locked.
3290 static int move_tasks(struct rq
*this_rq
, int this_cpu
, struct rq
*busiest
,
3291 unsigned long max_load_move
,
3292 struct sched_domain
*sd
, enum cpu_idle_type idle
,
3295 const struct sched_class
*class = sched_class_highest
;
3296 unsigned long total_load_moved
= 0;
3297 int this_best_prio
= this_rq
->curr
->prio
;
3301 class->load_balance(this_rq
, this_cpu
, busiest
,
3302 max_load_move
- total_load_moved
,
3303 sd
, idle
, all_pinned
, &this_best_prio
);
3304 class = class->next
;
3306 #ifdef CONFIG_PREEMPT
3308 * NEWIDLE balancing is a source of latency, so preemptible
3309 * kernels will stop after the first task is pulled to minimize
3310 * the critical section.
3312 if (idle
== CPU_NEWLY_IDLE
&& this_rq
->nr_running
)
3315 } while (class && max_load_move
> total_load_moved
);
3317 return total_load_moved
> 0;
3321 iter_move_one_task(struct rq
*this_rq
, int this_cpu
, struct rq
*busiest
,
3322 struct sched_domain
*sd
, enum cpu_idle_type idle
,
3323 struct rq_iterator
*iterator
)
3325 struct task_struct
*p
= iterator
->start(iterator
->arg
);
3329 if (can_migrate_task(p
, busiest
, this_cpu
, sd
, idle
, &pinned
)) {
3330 pull_task(busiest
, p
, this_rq
, this_cpu
);
3332 * Right now, this is only the second place pull_task()
3333 * is called, so we can safely collect pull_task()
3334 * stats here rather than inside pull_task().
3336 schedstat_inc(sd
, lb_gained
[idle
]);
3340 p
= iterator
->next(iterator
->arg
);
3347 * move_one_task tries to move exactly one task from busiest to this_rq, as
3348 * part of active balancing operations within "domain".
3349 * Returns 1 if successful and 0 otherwise.
3351 * Called with both runqueues locked.
3353 static int move_one_task(struct rq
*this_rq
, int this_cpu
, struct rq
*busiest
,
3354 struct sched_domain
*sd
, enum cpu_idle_type idle
)
3356 const struct sched_class
*class;
3358 for (class = sched_class_highest
; class; class = class->next
)
3359 if (class->move_one_task(this_rq
, this_cpu
, busiest
, sd
, idle
))
3364 /********** Helpers for find_busiest_group ************************/
3366 * sd_lb_stats - Structure to store the statistics of a sched_domain
3367 * during load balancing.
3369 struct sd_lb_stats
{
3370 struct sched_group
*busiest
; /* Busiest group in this sd */
3371 struct sched_group
*this; /* Local group in this sd */
3372 unsigned long total_load
; /* Total load of all groups in sd */
3373 unsigned long total_pwr
; /* Total power of all groups in sd */
3374 unsigned long avg_load
; /* Average load across all groups in sd */
3376 /** Statistics of this group */
3377 unsigned long this_load
;
3378 unsigned long this_load_per_task
;
3379 unsigned long this_nr_running
;
3381 /* Statistics of the busiest group */
3382 unsigned long max_load
;
3383 unsigned long busiest_load_per_task
;
3384 unsigned long busiest_nr_running
;
3386 int group_imb
; /* Is there imbalance in this sd */
3387 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3388 int power_savings_balance
; /* Is powersave balance needed for this sd */
3389 struct sched_group
*group_min
; /* Least loaded group in sd */
3390 struct sched_group
*group_leader
; /* Group which relieves group_min */
3391 unsigned long min_load_per_task
; /* load_per_task in group_min */
3392 unsigned long leader_nr_running
; /* Nr running of group_leader */
3393 unsigned long min_nr_running
; /* Nr running of group_min */
3398 * sg_lb_stats - stats of a sched_group required for load_balancing
3400 struct sg_lb_stats
{
3401 unsigned long avg_load
; /*Avg load across the CPUs of the group */
3402 unsigned long group_load
; /* Total load over the CPUs of the group */
3403 unsigned long sum_nr_running
; /* Nr tasks running in the group */
3404 unsigned long sum_weighted_load
; /* Weighted load of group's tasks */
3405 unsigned long group_capacity
;
3406 int group_imb
; /* Is there an imbalance in the group ? */
3410 * group_first_cpu - Returns the first cpu in the cpumask of a sched_group.
3411 * @group: The group whose first cpu is to be returned.
3413 static inline unsigned int group_first_cpu(struct sched_group
*group
)
3415 return cpumask_first(sched_group_cpus(group
));
3419 * get_sd_load_idx - Obtain the load index for a given sched domain.
3420 * @sd: The sched_domain whose load_idx is to be obtained.
3421 * @idle: The Idle status of the CPU for whose sd load_icx is obtained.
3423 static inline int get_sd_load_idx(struct sched_domain
*sd
,
3424 enum cpu_idle_type idle
)
3430 load_idx
= sd
->busy_idx
;
3433 case CPU_NEWLY_IDLE
:
3434 load_idx
= sd
->newidle_idx
;
3437 load_idx
= sd
->idle_idx
;
3445 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3447 * init_sd_power_savings_stats - Initialize power savings statistics for
3448 * the given sched_domain, during load balancing.
3450 * @sd: Sched domain whose power-savings statistics are to be initialized.
3451 * @sds: Variable containing the statistics for sd.
3452 * @idle: Idle status of the CPU at which we're performing load-balancing.
3454 static inline void init_sd_power_savings_stats(struct sched_domain
*sd
,
3455 struct sd_lb_stats
*sds
, enum cpu_idle_type idle
)
3458 * Busy processors will not participate in power savings
3461 if (idle
== CPU_NOT_IDLE
|| !(sd
->flags
& SD_POWERSAVINGS_BALANCE
))
3462 sds
->power_savings_balance
= 0;
3464 sds
->power_savings_balance
= 1;
3465 sds
->min_nr_running
= ULONG_MAX
;
3466 sds
->leader_nr_running
= 0;
3471 * update_sd_power_savings_stats - Update the power saving stats for a
3472 * sched_domain while performing load balancing.
3474 * @group: sched_group belonging to the sched_domain under consideration.
3475 * @sds: Variable containing the statistics of the sched_domain
3476 * @local_group: Does group contain the CPU for which we're performing
3478 * @sgs: Variable containing the statistics of the group.
3480 static inline void update_sd_power_savings_stats(struct sched_group
*group
,
3481 struct sd_lb_stats
*sds
, int local_group
, struct sg_lb_stats
*sgs
)
3484 if (!sds
->power_savings_balance
)
3488 * If the local group is idle or completely loaded
3489 * no need to do power savings balance at this domain
3491 if (local_group
&& (sds
->this_nr_running
>= sgs
->group_capacity
||
3492 !sds
->this_nr_running
))
3493 sds
->power_savings_balance
= 0;
3496 * If a group is already running at full capacity or idle,
3497 * don't include that group in power savings calculations
3499 if (!sds
->power_savings_balance
||
3500 sgs
->sum_nr_running
>= sgs
->group_capacity
||
3501 !sgs
->sum_nr_running
)
3505 * Calculate the group which has the least non-idle load.
3506 * This is the group from where we need to pick up the load
3509 if ((sgs
->sum_nr_running
< sds
->min_nr_running
) ||
3510 (sgs
->sum_nr_running
== sds
->min_nr_running
&&
3511 group_first_cpu(group
) > group_first_cpu(sds
->group_min
))) {
3512 sds
->group_min
= group
;
3513 sds
->min_nr_running
= sgs
->sum_nr_running
;
3514 sds
->min_load_per_task
= sgs
->sum_weighted_load
/
3515 sgs
->sum_nr_running
;
3519 * Calculate the group which is almost near its
3520 * capacity but still has some space to pick up some load
3521 * from other group and save more power
3523 if (sgs
->sum_nr_running
> sgs
->group_capacity
- 1)
3526 if (sgs
->sum_nr_running
> sds
->leader_nr_running
||
3527 (sgs
->sum_nr_running
== sds
->leader_nr_running
&&
3528 group_first_cpu(group
) < group_first_cpu(sds
->group_leader
))) {
3529 sds
->group_leader
= group
;
3530 sds
->leader_nr_running
= sgs
->sum_nr_running
;
3535 * check_power_save_busiest_group - see if there is potential for some power-savings balance
3536 * @sds: Variable containing the statistics of the sched_domain
3537 * under consideration.
3538 * @this_cpu: Cpu at which we're currently performing load-balancing.
3539 * @imbalance: Variable to store the imbalance.
3542 * Check if we have potential to perform some power-savings balance.
3543 * If yes, set the busiest group to be the least loaded group in the
3544 * sched_domain, so that it's CPUs can be put to idle.
3546 * Returns 1 if there is potential to perform power-savings balance.
3549 static inline int check_power_save_busiest_group(struct sd_lb_stats
*sds
,
3550 int this_cpu
, unsigned long *imbalance
)
3552 if (!sds
->power_savings_balance
)
3555 if (sds
->this != sds
->group_leader
||
3556 sds
->group_leader
== sds
->group_min
)
3559 *imbalance
= sds
->min_load_per_task
;
3560 sds
->busiest
= sds
->group_min
;
3562 if (sched_mc_power_savings
>= POWERSAVINGS_BALANCE_WAKEUP
) {
3563 cpu_rq(this_cpu
)->rd
->sched_mc_preferred_wakeup_cpu
=
3564 group_first_cpu(sds
->group_leader
);
3570 #else /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
3571 static inline void init_sd_power_savings_stats(struct sched_domain
*sd
,
3572 struct sd_lb_stats
*sds
, enum cpu_idle_type idle
)
3577 static inline void update_sd_power_savings_stats(struct sched_group
*group
,
3578 struct sd_lb_stats
*sds
, int local_group
, struct sg_lb_stats
*sgs
)
3583 static inline int check_power_save_busiest_group(struct sd_lb_stats
*sds
,
3584 int this_cpu
, unsigned long *imbalance
)
3588 #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
3592 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
3593 * @group: sched_group whose statistics are to be updated.
3594 * @this_cpu: Cpu for which load balance is currently performed.
3595 * @idle: Idle status of this_cpu
3596 * @load_idx: Load index of sched_domain of this_cpu for load calc.
3597 * @sd_idle: Idle status of the sched_domain containing group.
3598 * @local_group: Does group contain this_cpu.
3599 * @cpus: Set of cpus considered for load balancing.
3600 * @balance: Should we balance.
3601 * @sgs: variable to hold the statistics for this group.
3603 static inline void update_sg_lb_stats(struct sched_group
*group
, int this_cpu
,
3604 enum cpu_idle_type idle
, int load_idx
, int *sd_idle
,
3605 int local_group
, const struct cpumask
*cpus
,
3606 int *balance
, struct sg_lb_stats
*sgs
)
3608 unsigned long load
, max_cpu_load
, min_cpu_load
;
3610 unsigned int balance_cpu
= -1, first_idle_cpu
= 0;
3611 unsigned long sum_avg_load_per_task
;
3612 unsigned long avg_load_per_task
;
3615 balance_cpu
= group_first_cpu(group
);
3617 /* Tally up the load of all CPUs in the group */
3618 sum_avg_load_per_task
= avg_load_per_task
= 0;
3620 min_cpu_load
= ~0UL;
3622 for_each_cpu_and(i
, sched_group_cpus(group
), cpus
) {
3623 struct rq
*rq
= cpu_rq(i
);
3625 if (*sd_idle
&& rq
->nr_running
)
3628 /* Bias balancing toward cpus of our domain */
3630 if (idle_cpu(i
) && !first_idle_cpu
) {
3635 load
= target_load(i
, load_idx
);
3637 load
= source_load(i
, load_idx
);
3638 if (load
> max_cpu_load
)
3639 max_cpu_load
= load
;
3640 if (min_cpu_load
> load
)
3641 min_cpu_load
= load
;
3644 sgs
->group_load
+= load
;
3645 sgs
->sum_nr_running
+= rq
->nr_running
;
3646 sgs
->sum_weighted_load
+= weighted_cpuload(i
);
3648 sum_avg_load_per_task
+= cpu_avg_load_per_task(i
);
3652 * First idle cpu or the first cpu(busiest) in this sched group
3653 * is eligible for doing load balancing at this and above
3654 * domains. In the newly idle case, we will allow all the cpu's
3655 * to do the newly idle load balance.
3657 if (idle
!= CPU_NEWLY_IDLE
&& local_group
&&
3658 balance_cpu
!= this_cpu
&& balance
) {
3663 /* Adjust by relative CPU power of the group */
3664 sgs
->avg_load
= sg_div_cpu_power(group
,
3665 sgs
->group_load
* SCHED_LOAD_SCALE
);
3669 * Consider the group unbalanced when the imbalance is larger
3670 * than the average weight of two tasks.
3672 * APZ: with cgroup the avg task weight can vary wildly and
3673 * might not be a suitable number - should we keep a
3674 * normalized nr_running number somewhere that negates
3677 avg_load_per_task
= sg_div_cpu_power(group
,
3678 sum_avg_load_per_task
* SCHED_LOAD_SCALE
);
3680 if ((max_cpu_load
- min_cpu_load
) > 2*avg_load_per_task
)
3683 sgs
->group_capacity
= group
->__cpu_power
/ SCHED_LOAD_SCALE
;
3688 * update_sd_lb_stats - Update sched_group's statistics for load balancing.
3689 * @sd: sched_domain whose statistics are to be updated.
3690 * @this_cpu: Cpu for which load balance is currently performed.
3691 * @idle: Idle status of this_cpu
3692 * @sd_idle: Idle status of the sched_domain containing group.
3693 * @cpus: Set of cpus considered for load balancing.
3694 * @balance: Should we balance.
3695 * @sds: variable to hold the statistics for this sched_domain.
3697 static inline void update_sd_lb_stats(struct sched_domain
*sd
, int this_cpu
,
3698 enum cpu_idle_type idle
, int *sd_idle
,
3699 const struct cpumask
*cpus
, int *balance
,
3700 struct sd_lb_stats
*sds
)
3702 struct sched_group
*group
= sd
->groups
;
3703 struct sg_lb_stats sgs
;
3706 init_sd_power_savings_stats(sd
, sds
, idle
);
3707 load_idx
= get_sd_load_idx(sd
, idle
);
3712 local_group
= cpumask_test_cpu(this_cpu
,
3713 sched_group_cpus(group
));
3714 memset(&sgs
, 0, sizeof(sgs
));
3715 update_sg_lb_stats(group
, this_cpu
, idle
, load_idx
, sd_idle
,
3716 local_group
, cpus
, balance
, &sgs
);
3718 if (local_group
&& balance
&& !(*balance
))
3721 sds
->total_load
+= sgs
.group_load
;
3722 sds
->total_pwr
+= group
->__cpu_power
;
3725 sds
->this_load
= sgs
.avg_load
;
3727 sds
->this_nr_running
= sgs
.sum_nr_running
;
3728 sds
->this_load_per_task
= sgs
.sum_weighted_load
;
3729 } else if (sgs
.avg_load
> sds
->max_load
&&
3730 (sgs
.sum_nr_running
> sgs
.group_capacity
||
3732 sds
->max_load
= sgs
.avg_load
;
3733 sds
->busiest
= group
;
3734 sds
->busiest_nr_running
= sgs
.sum_nr_running
;
3735 sds
->busiest_load_per_task
= sgs
.sum_weighted_load
;
3736 sds
->group_imb
= sgs
.group_imb
;
3739 update_sd_power_savings_stats(group
, sds
, local_group
, &sgs
);
3740 group
= group
->next
;
3741 } while (group
!= sd
->groups
);
3746 * fix_small_imbalance - Calculate the minor imbalance that exists
3747 * amongst the groups of a sched_domain, during
3749 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
3750 * @this_cpu: The cpu at whose sched_domain we're performing load-balance.
3751 * @imbalance: Variable to store the imbalance.
3753 static inline void fix_small_imbalance(struct sd_lb_stats
*sds
,
3754 int this_cpu
, unsigned long *imbalance
)
3756 unsigned long tmp
, pwr_now
= 0, pwr_move
= 0;
3757 unsigned int imbn
= 2;
3759 if (sds
->this_nr_running
) {
3760 sds
->this_load_per_task
/= sds
->this_nr_running
;
3761 if (sds
->busiest_load_per_task
>
3762 sds
->this_load_per_task
)
3765 sds
->this_load_per_task
=
3766 cpu_avg_load_per_task(this_cpu
);
3768 if (sds
->max_load
- sds
->this_load
+ sds
->busiest_load_per_task
>=
3769 sds
->busiest_load_per_task
* imbn
) {
3770 *imbalance
= sds
->busiest_load_per_task
;
3775 * OK, we don't have enough imbalance to justify moving tasks,
3776 * however we may be able to increase total CPU power used by
3780 pwr_now
+= sds
->busiest
->__cpu_power
*
3781 min(sds
->busiest_load_per_task
, sds
->max_load
);
3782 pwr_now
+= sds
->this->__cpu_power
*
3783 min(sds
->this_load_per_task
, sds
->this_load
);
3784 pwr_now
/= SCHED_LOAD_SCALE
;
3786 /* Amount of load we'd subtract */
3787 tmp
= sg_div_cpu_power(sds
->busiest
,
3788 sds
->busiest_load_per_task
* SCHED_LOAD_SCALE
);
3789 if (sds
->max_load
> tmp
)
3790 pwr_move
+= sds
->busiest
->__cpu_power
*
3791 min(sds
->busiest_load_per_task
, sds
->max_load
- tmp
);
3793 /* Amount of load we'd add */
3794 if (sds
->max_load
* sds
->busiest
->__cpu_power
<
3795 sds
->busiest_load_per_task
* SCHED_LOAD_SCALE
)
3796 tmp
= sg_div_cpu_power(sds
->this,
3797 sds
->max_load
* sds
->busiest
->__cpu_power
);
3799 tmp
= sg_div_cpu_power(sds
->this,
3800 sds
->busiest_load_per_task
* SCHED_LOAD_SCALE
);
3801 pwr_move
+= sds
->this->__cpu_power
*
3802 min(sds
->this_load_per_task
, sds
->this_load
+ tmp
);
3803 pwr_move
/= SCHED_LOAD_SCALE
;
3805 /* Move if we gain throughput */
3806 if (pwr_move
> pwr_now
)
3807 *imbalance
= sds
->busiest_load_per_task
;
3811 * calculate_imbalance - Calculate the amount of imbalance present within the
3812 * groups of a given sched_domain during load balance.
3813 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
3814 * @this_cpu: Cpu for which currently load balance is being performed.
3815 * @imbalance: The variable to store the imbalance.
3817 static inline void calculate_imbalance(struct sd_lb_stats
*sds
, int this_cpu
,
3818 unsigned long *imbalance
)
3820 unsigned long max_pull
;
3822 * In the presence of smp nice balancing, certain scenarios can have
3823 * max load less than avg load(as we skip the groups at or below
3824 * its cpu_power, while calculating max_load..)
3826 if (sds
->max_load
< sds
->avg_load
) {
3828 return fix_small_imbalance(sds
, this_cpu
, imbalance
);
3831 /* Don't want to pull so many tasks that a group would go idle */
3832 max_pull
= min(sds
->max_load
- sds
->avg_load
,
3833 sds
->max_load
- sds
->busiest_load_per_task
);
3835 /* How much load to actually move to equalise the imbalance */
3836 *imbalance
= min(max_pull
* sds
->busiest
->__cpu_power
,
3837 (sds
->avg_load
- sds
->this_load
) * sds
->this->__cpu_power
)
3841 * if *imbalance is less than the average load per runnable task
3842 * there is no gaurantee that any tasks will be moved so we'll have
3843 * a think about bumping its value to force at least one task to be
3846 if (*imbalance
< sds
->busiest_load_per_task
)
3847 return fix_small_imbalance(sds
, this_cpu
, imbalance
);
3850 /******* find_busiest_group() helpers end here *********************/
3853 * find_busiest_group - Returns the busiest group within the sched_domain
3854 * if there is an imbalance. If there isn't an imbalance, and
3855 * the user has opted for power-savings, it returns a group whose
3856 * CPUs can be put to idle by rebalancing those tasks elsewhere, if
3857 * such a group exists.
3859 * Also calculates the amount of weighted load which should be moved
3860 * to restore balance.
3862 * @sd: The sched_domain whose busiest group is to be returned.
3863 * @this_cpu: The cpu for which load balancing is currently being performed.
3864 * @imbalance: Variable which stores amount of weighted load which should
3865 * be moved to restore balance/put a group to idle.
3866 * @idle: The idle status of this_cpu.
3867 * @sd_idle: The idleness of sd
3868 * @cpus: The set of CPUs under consideration for load-balancing.
3869 * @balance: Pointer to a variable indicating if this_cpu
3870 * is the appropriate cpu to perform load balancing at this_level.
3872 * Returns: - the busiest group if imbalance exists.
3873 * - If no imbalance and user has opted for power-savings balance,
3874 * return the least loaded group whose CPUs can be
3875 * put to idle by rebalancing its tasks onto our group.
3877 static struct sched_group
*
3878 find_busiest_group(struct sched_domain
*sd
, int this_cpu
,
3879 unsigned long *imbalance
, enum cpu_idle_type idle
,
3880 int *sd_idle
, const struct cpumask
*cpus
, int *balance
)
3882 struct sd_lb_stats sds
;
3884 memset(&sds
, 0, sizeof(sds
));
3887 * Compute the various statistics relavent for load balancing at
3890 update_sd_lb_stats(sd
, this_cpu
, idle
, sd_idle
, cpus
,
3893 /* Cases where imbalance does not exist from POV of this_cpu */
3894 /* 1) this_cpu is not the appropriate cpu to perform load balancing
3896 * 2) There is no busy sibling group to pull from.
3897 * 3) This group is the busiest group.
3898 * 4) This group is more busy than the avg busieness at this
3900 * 5) The imbalance is within the specified limit.
3901 * 6) Any rebalance would lead to ping-pong
3903 if (balance
&& !(*balance
))
3906 if (!sds
.busiest
|| sds
.busiest_nr_running
== 0)
3909 if (sds
.this_load
>= sds
.max_load
)
3912 sds
.avg_load
= (SCHED_LOAD_SCALE
* sds
.total_load
) / sds
.total_pwr
;
3914 if (sds
.this_load
>= sds
.avg_load
)
3917 if (100 * sds
.max_load
<= sd
->imbalance_pct
* sds
.this_load
)
3920 sds
.busiest_load_per_task
/= sds
.busiest_nr_running
;
3922 sds
.busiest_load_per_task
=
3923 min(sds
.busiest_load_per_task
, sds
.avg_load
);
3926 * We're trying to get all the cpus to the average_load, so we don't
3927 * want to push ourselves above the average load, nor do we wish to
3928 * reduce the max loaded cpu below the average load, as either of these
3929 * actions would just result in more rebalancing later, and ping-pong
3930 * tasks around. Thus we look for the minimum possible imbalance.
3931 * Negative imbalances (*we* are more loaded than anyone else) will
3932 * be counted as no imbalance for these purposes -- we can't fix that
3933 * by pulling tasks to us. Be careful of negative numbers as they'll
3934 * appear as very large values with unsigned longs.
3936 if (sds
.max_load
<= sds
.busiest_load_per_task
)
3939 /* Looks like there is an imbalance. Compute it */
3940 calculate_imbalance(&sds
, this_cpu
, imbalance
);
3945 * There is no obvious imbalance. But check if we can do some balancing
3948 if (check_power_save_busiest_group(&sds
, this_cpu
, imbalance
))
3956 * find_busiest_queue - find the busiest runqueue among the cpus in group.
3959 find_busiest_queue(struct sched_group
*group
, enum cpu_idle_type idle
,
3960 unsigned long imbalance
, const struct cpumask
*cpus
)
3962 struct rq
*busiest
= NULL
, *rq
;
3963 unsigned long max_load
= 0;
3966 for_each_cpu(i
, sched_group_cpus(group
)) {
3969 if (!cpumask_test_cpu(i
, cpus
))
3973 wl
= weighted_cpuload(i
);
3975 if (rq
->nr_running
== 1 && wl
> imbalance
)
3978 if (wl
> max_load
) {
3988 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
3989 * so long as it is large enough.
3991 #define MAX_PINNED_INTERVAL 512
3993 /* Working cpumask for load_balance and load_balance_newidle. */
3994 static DEFINE_PER_CPU(cpumask_var_t
, load_balance_tmpmask
);
3997 * Check this_cpu to ensure it is balanced within domain. Attempt to move
3998 * tasks if there is an imbalance.
4000 static int load_balance(int this_cpu
, struct rq
*this_rq
,
4001 struct sched_domain
*sd
, enum cpu_idle_type idle
,
4004 int ld_moved
, all_pinned
= 0, active_balance
= 0, sd_idle
= 0;
4005 struct sched_group
*group
;
4006 unsigned long imbalance
;
4008 unsigned long flags
;
4009 struct cpumask
*cpus
= __get_cpu_var(load_balance_tmpmask
);
4011 cpumask_setall(cpus
);
4014 * When power savings policy is enabled for the parent domain, idle
4015 * sibling can pick up load irrespective of busy siblings. In this case,
4016 * let the state of idle sibling percolate up as CPU_IDLE, instead of
4017 * portraying it as CPU_NOT_IDLE.
4019 if (idle
!= CPU_NOT_IDLE
&& sd
->flags
& SD_SHARE_CPUPOWER
&&
4020 !test_sd_parent(sd
, SD_POWERSAVINGS_BALANCE
))
4023 schedstat_inc(sd
, lb_count
[idle
]);
4027 group
= find_busiest_group(sd
, this_cpu
, &imbalance
, idle
, &sd_idle
,
4034 schedstat_inc(sd
, lb_nobusyg
[idle
]);
4038 busiest
= find_busiest_queue(group
, idle
, imbalance
, cpus
);
4040 schedstat_inc(sd
, lb_nobusyq
[idle
]);
4044 BUG_ON(busiest
== this_rq
);
4046 schedstat_add(sd
, lb_imbalance
[idle
], imbalance
);
4049 if (busiest
->nr_running
> 1) {
4051 * Attempt to move tasks. If find_busiest_group has found
4052 * an imbalance but busiest->nr_running <= 1, the group is
4053 * still unbalanced. ld_moved simply stays zero, so it is
4054 * correctly treated as an imbalance.
4056 local_irq_save(flags
);
4057 double_rq_lock(this_rq
, busiest
);
4058 ld_moved
= move_tasks(this_rq
, this_cpu
, busiest
,
4059 imbalance
, sd
, idle
, &all_pinned
);
4060 double_rq_unlock(this_rq
, busiest
);
4061 local_irq_restore(flags
);
4064 * some other cpu did the load balance for us.
4066 if (ld_moved
&& this_cpu
!= smp_processor_id())
4067 resched_cpu(this_cpu
);
4069 /* All tasks on this runqueue were pinned by CPU affinity */
4070 if (unlikely(all_pinned
)) {
4071 cpumask_clear_cpu(cpu_of(busiest
), cpus
);
4072 if (!cpumask_empty(cpus
))
4079 schedstat_inc(sd
, lb_failed
[idle
]);
4080 sd
->nr_balance_failed
++;
4082 if (unlikely(sd
->nr_balance_failed
> sd
->cache_nice_tries
+2)) {
4084 spin_lock_irqsave(&busiest
->lock
, flags
);
4086 /* don't kick the migration_thread, if the curr
4087 * task on busiest cpu can't be moved to this_cpu
4089 if (!cpumask_test_cpu(this_cpu
,
4090 &busiest
->curr
->cpus_allowed
)) {
4091 spin_unlock_irqrestore(&busiest
->lock
, flags
);
4093 goto out_one_pinned
;
4096 if (!busiest
->active_balance
) {
4097 busiest
->active_balance
= 1;
4098 busiest
->push_cpu
= this_cpu
;
4101 spin_unlock_irqrestore(&busiest
->lock
, flags
);
4103 wake_up_process(busiest
->migration_thread
);
4106 * We've kicked active balancing, reset the failure
4109 sd
->nr_balance_failed
= sd
->cache_nice_tries
+1;
4112 sd
->nr_balance_failed
= 0;
4114 if (likely(!active_balance
)) {
4115 /* We were unbalanced, so reset the balancing interval */
4116 sd
->balance_interval
= sd
->min_interval
;
4119 * If we've begun active balancing, start to back off. This
4120 * case may not be covered by the all_pinned logic if there
4121 * is only 1 task on the busy runqueue (because we don't call
4124 if (sd
->balance_interval
< sd
->max_interval
)
4125 sd
->balance_interval
*= 2;
4128 if (!ld_moved
&& !sd_idle
&& sd
->flags
& SD_SHARE_CPUPOWER
&&
4129 !test_sd_parent(sd
, SD_POWERSAVINGS_BALANCE
))
4135 schedstat_inc(sd
, lb_balanced
[idle
]);
4137 sd
->nr_balance_failed
= 0;
4140 /* tune up the balancing interval */
4141 if ((all_pinned
&& sd
->balance_interval
< MAX_PINNED_INTERVAL
) ||
4142 (sd
->balance_interval
< sd
->max_interval
))
4143 sd
->balance_interval
*= 2;
4145 if (!sd_idle
&& sd
->flags
& SD_SHARE_CPUPOWER
&&
4146 !test_sd_parent(sd
, SD_POWERSAVINGS_BALANCE
))
4157 * Check this_cpu to ensure it is balanced within domain. Attempt to move
4158 * tasks if there is an imbalance.
4160 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
4161 * this_rq is locked.
4164 load_balance_newidle(int this_cpu
, struct rq
*this_rq
, struct sched_domain
*sd
)
4166 struct sched_group
*group
;
4167 struct rq
*busiest
= NULL
;
4168 unsigned long imbalance
;
4172 struct cpumask
*cpus
= __get_cpu_var(load_balance_tmpmask
);
4174 cpumask_setall(cpus
);
4177 * When power savings policy is enabled for the parent domain, idle
4178 * sibling can pick up load irrespective of busy siblings. In this case,
4179 * let the state of idle sibling percolate up as IDLE, instead of
4180 * portraying it as CPU_NOT_IDLE.
4182 if (sd
->flags
& SD_SHARE_CPUPOWER
&&
4183 !test_sd_parent(sd
, SD_POWERSAVINGS_BALANCE
))
4186 schedstat_inc(sd
, lb_count
[CPU_NEWLY_IDLE
]);
4188 update_shares_locked(this_rq
, sd
);
4189 group
= find_busiest_group(sd
, this_cpu
, &imbalance
, CPU_NEWLY_IDLE
,
4190 &sd_idle
, cpus
, NULL
);
4192 schedstat_inc(sd
, lb_nobusyg
[CPU_NEWLY_IDLE
]);
4196 busiest
= find_busiest_queue(group
, CPU_NEWLY_IDLE
, imbalance
, cpus
);
4198 schedstat_inc(sd
, lb_nobusyq
[CPU_NEWLY_IDLE
]);
4202 BUG_ON(busiest
== this_rq
);
4204 schedstat_add(sd
, lb_imbalance
[CPU_NEWLY_IDLE
], imbalance
);
4207 if (busiest
->nr_running
> 1) {
4208 /* Attempt to move tasks */
4209 double_lock_balance(this_rq
, busiest
);
4210 /* this_rq->clock is already updated */
4211 update_rq_clock(busiest
);
4212 ld_moved
= move_tasks(this_rq
, this_cpu
, busiest
,
4213 imbalance
, sd
, CPU_NEWLY_IDLE
,
4215 double_unlock_balance(this_rq
, busiest
);
4217 if (unlikely(all_pinned
)) {
4218 cpumask_clear_cpu(cpu_of(busiest
), cpus
);
4219 if (!cpumask_empty(cpus
))
4225 int active_balance
= 0;
4227 schedstat_inc(sd
, lb_failed
[CPU_NEWLY_IDLE
]);
4228 if (!sd_idle
&& sd
->flags
& SD_SHARE_CPUPOWER
&&
4229 !test_sd_parent(sd
, SD_POWERSAVINGS_BALANCE
))
4232 if (sched_mc_power_savings
< POWERSAVINGS_BALANCE_WAKEUP
)
4235 if (sd
->nr_balance_failed
++ < 2)
4239 * The only task running in a non-idle cpu can be moved to this
4240 * cpu in an attempt to completely freeup the other CPU
4241 * package. The same method used to move task in load_balance()
4242 * have been extended for load_balance_newidle() to speedup
4243 * consolidation at sched_mc=POWERSAVINGS_BALANCE_WAKEUP (2)
4245 * The package power saving logic comes from
4246 * find_busiest_group(). If there are no imbalance, then
4247 * f_b_g() will return NULL. However when sched_mc={1,2} then
4248 * f_b_g() will select a group from which a running task may be
4249 * pulled to this cpu in order to make the other package idle.
4250 * If there is no opportunity to make a package idle and if
4251 * there are no imbalance, then f_b_g() will return NULL and no
4252 * action will be taken in load_balance_newidle().
4254 * Under normal task pull operation due to imbalance, there
4255 * will be more than one task in the source run queue and
4256 * move_tasks() will succeed. ld_moved will be true and this
4257 * active balance code will not be triggered.
4260 /* Lock busiest in correct order while this_rq is held */
4261 double_lock_balance(this_rq
, busiest
);
4264 * don't kick the migration_thread, if the curr
4265 * task on busiest cpu can't be moved to this_cpu
4267 if (!cpumask_test_cpu(this_cpu
, &busiest
->curr
->cpus_allowed
)) {
4268 double_unlock_balance(this_rq
, busiest
);
4273 if (!busiest
->active_balance
) {
4274 busiest
->active_balance
= 1;
4275 busiest
->push_cpu
= this_cpu
;
4279 double_unlock_balance(this_rq
, busiest
);
4281 * Should not call ttwu while holding a rq->lock
4283 spin_unlock(&this_rq
->lock
);
4285 wake_up_process(busiest
->migration_thread
);
4286 spin_lock(&this_rq
->lock
);
4289 sd
->nr_balance_failed
= 0;
4291 update_shares_locked(this_rq
, sd
);
4295 schedstat_inc(sd
, lb_balanced
[CPU_NEWLY_IDLE
]);
4296 if (!sd_idle
&& sd
->flags
& SD_SHARE_CPUPOWER
&&
4297 !test_sd_parent(sd
, SD_POWERSAVINGS_BALANCE
))
4299 sd
->nr_balance_failed
= 0;
4305 * idle_balance is called by schedule() if this_cpu is about to become
4306 * idle. Attempts to pull tasks from other CPUs.
4308 static void idle_balance(int this_cpu
, struct rq
*this_rq
)
4310 struct sched_domain
*sd
;
4311 int pulled_task
= 0;
4312 unsigned long next_balance
= jiffies
+ HZ
;
4314 for_each_domain(this_cpu
, sd
) {
4315 unsigned long interval
;
4317 if (!(sd
->flags
& SD_LOAD_BALANCE
))
4320 if (sd
->flags
& SD_BALANCE_NEWIDLE
)
4321 /* If we've pulled tasks over stop searching: */
4322 pulled_task
= load_balance_newidle(this_cpu
, this_rq
,
4325 interval
= msecs_to_jiffies(sd
->balance_interval
);
4326 if (time_after(next_balance
, sd
->last_balance
+ interval
))
4327 next_balance
= sd
->last_balance
+ interval
;
4331 if (pulled_task
|| time_after(jiffies
, this_rq
->next_balance
)) {
4333 * We are going idle. next_balance may be set based on
4334 * a busy processor. So reset next_balance.
4336 this_rq
->next_balance
= next_balance
;
4341 * active_load_balance is run by migration threads. It pushes running tasks
4342 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
4343 * running on each physical CPU where possible, and avoids physical /
4344 * logical imbalances.
4346 * Called with busiest_rq locked.
4348 static void active_load_balance(struct rq
*busiest_rq
, int busiest_cpu
)
4350 int target_cpu
= busiest_rq
->push_cpu
;
4351 struct sched_domain
*sd
;
4352 struct rq
*target_rq
;
4354 /* Is there any task to move? */
4355 if (busiest_rq
->nr_running
<= 1)
4358 target_rq
= cpu_rq(target_cpu
);
4361 * This condition is "impossible", if it occurs
4362 * we need to fix it. Originally reported by
4363 * Bjorn Helgaas on a 128-cpu setup.
4365 BUG_ON(busiest_rq
== target_rq
);
4367 /* move a task from busiest_rq to target_rq */
4368 double_lock_balance(busiest_rq
, target_rq
);
4369 update_rq_clock(busiest_rq
);
4370 update_rq_clock(target_rq
);
4372 /* Search for an sd spanning us and the target CPU. */
4373 for_each_domain(target_cpu
, sd
) {
4374 if ((sd
->flags
& SD_LOAD_BALANCE
) &&
4375 cpumask_test_cpu(busiest_cpu
, sched_domain_span(sd
)))
4380 schedstat_inc(sd
, alb_count
);
4382 if (move_one_task(target_rq
, target_cpu
, busiest_rq
,
4384 schedstat_inc(sd
, alb_pushed
);
4386 schedstat_inc(sd
, alb_failed
);
4388 double_unlock_balance(busiest_rq
, target_rq
);
4393 atomic_t load_balancer
;
4394 cpumask_var_t cpu_mask
;
4395 cpumask_var_t ilb_grp_nohz_mask
;
4396 } nohz ____cacheline_aligned
= {
4397 .load_balancer
= ATOMIC_INIT(-1),
4400 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
4402 * lowest_flag_domain - Return lowest sched_domain containing flag.
4403 * @cpu: The cpu whose lowest level of sched domain is to
4405 * @flag: The flag to check for the lowest sched_domain
4406 * for the given cpu.
4408 * Returns the lowest sched_domain of a cpu which contains the given flag.
4410 static inline struct sched_domain
*lowest_flag_domain(int cpu
, int flag
)
4412 struct sched_domain
*sd
;
4414 for_each_domain(cpu
, sd
)
4415 if (sd
&& (sd
->flags
& flag
))
4422 * for_each_flag_domain - Iterates over sched_domains containing the flag.
4423 * @cpu: The cpu whose domains we're iterating over.
4424 * @sd: variable holding the value of the power_savings_sd
4426 * @flag: The flag to filter the sched_domains to be iterated.
4428 * Iterates over all the scheduler domains for a given cpu that has the 'flag'
4429 * set, starting from the lowest sched_domain to the highest.
4431 #define for_each_flag_domain(cpu, sd, flag) \
4432 for (sd = lowest_flag_domain(cpu, flag); \
4433 (sd && (sd->flags & flag)); sd = sd->parent)
4436 * is_semi_idle_group - Checks if the given sched_group is semi-idle.
4437 * @ilb_group: group to be checked for semi-idleness
4439 * Returns: 1 if the group is semi-idle. 0 otherwise.
4441 * We define a sched_group to be semi idle if it has atleast one idle-CPU
4442 * and atleast one non-idle CPU. This helper function checks if the given
4443 * sched_group is semi-idle or not.
4445 static inline int is_semi_idle_group(struct sched_group
*ilb_group
)
4447 cpumask_and(nohz
.ilb_grp_nohz_mask
, nohz
.cpu_mask
,
4448 sched_group_cpus(ilb_group
));
4451 * A sched_group is semi-idle when it has atleast one busy cpu
4452 * and atleast one idle cpu.
4454 if (cpumask_empty(nohz
.ilb_grp_nohz_mask
))
4457 if (cpumask_equal(nohz
.ilb_grp_nohz_mask
, sched_group_cpus(ilb_group
)))
4463 * find_new_ilb - Finds the optimum idle load balancer for nomination.
4464 * @cpu: The cpu which is nominating a new idle_load_balancer.
4466 * Returns: Returns the id of the idle load balancer if it exists,
4467 * Else, returns >= nr_cpu_ids.
4469 * This algorithm picks the idle load balancer such that it belongs to a
4470 * semi-idle powersavings sched_domain. The idea is to try and avoid
4471 * completely idle packages/cores just for the purpose of idle load balancing
4472 * when there are other idle cpu's which are better suited for that job.
4474 static int find_new_ilb(int cpu
)
4476 struct sched_domain
*sd
;
4477 struct sched_group
*ilb_group
;
4480 * Have idle load balancer selection from semi-idle packages only
4481 * when power-aware load balancing is enabled
4483 if (!(sched_smt_power_savings
|| sched_mc_power_savings
))
4487 * Optimize for the case when we have no idle CPUs or only one
4488 * idle CPU. Don't walk the sched_domain hierarchy in such cases
4490 if (cpumask_weight(nohz
.cpu_mask
) < 2)
4493 for_each_flag_domain(cpu
, sd
, SD_POWERSAVINGS_BALANCE
) {
4494 ilb_group
= sd
->groups
;
4497 if (is_semi_idle_group(ilb_group
))
4498 return cpumask_first(nohz
.ilb_grp_nohz_mask
);
4500 ilb_group
= ilb_group
->next
;
4502 } while (ilb_group
!= sd
->groups
);
4506 return cpumask_first(nohz
.cpu_mask
);
4508 #else /* (CONFIG_SCHED_MC || CONFIG_SCHED_SMT) */
4509 static inline int find_new_ilb(int call_cpu
)
4511 return cpumask_first(nohz
.cpu_mask
);
4516 * This routine will try to nominate the ilb (idle load balancing)
4517 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
4518 * load balancing on behalf of all those cpus. If all the cpus in the system
4519 * go into this tickless mode, then there will be no ilb owner (as there is
4520 * no need for one) and all the cpus will sleep till the next wakeup event
4523 * For the ilb owner, tick is not stopped. And this tick will be used
4524 * for idle load balancing. ilb owner will still be part of
4527 * While stopping the tick, this cpu will become the ilb owner if there
4528 * is no other owner. And will be the owner till that cpu becomes busy
4529 * or if all cpus in the system stop their ticks at which point
4530 * there is no need for ilb owner.
4532 * When the ilb owner becomes busy, it nominates another owner, during the
4533 * next busy scheduler_tick()
4535 int select_nohz_load_balancer(int stop_tick
)
4537 int cpu
= smp_processor_id();
4540 cpu_rq(cpu
)->in_nohz_recently
= 1;
4542 if (!cpu_active(cpu
)) {
4543 if (atomic_read(&nohz
.load_balancer
) != cpu
)
4547 * If we are going offline and still the leader,
4550 if (atomic_cmpxchg(&nohz
.load_balancer
, cpu
, -1) != cpu
)
4556 cpumask_set_cpu(cpu
, nohz
.cpu_mask
);
4558 /* time for ilb owner also to sleep */
4559 if (cpumask_weight(nohz
.cpu_mask
) == num_online_cpus()) {
4560 if (atomic_read(&nohz
.load_balancer
) == cpu
)
4561 atomic_set(&nohz
.load_balancer
, -1);
4565 if (atomic_read(&nohz
.load_balancer
) == -1) {
4566 /* make me the ilb owner */
4567 if (atomic_cmpxchg(&nohz
.load_balancer
, -1, cpu
) == -1)
4569 } else if (atomic_read(&nohz
.load_balancer
) == cpu
) {
4572 if (!(sched_smt_power_savings
||
4573 sched_mc_power_savings
))
4576 * Check to see if there is a more power-efficient
4579 new_ilb
= find_new_ilb(cpu
);
4580 if (new_ilb
< nr_cpu_ids
&& new_ilb
!= cpu
) {
4581 atomic_set(&nohz
.load_balancer
, -1);
4582 resched_cpu(new_ilb
);
4588 if (!cpumask_test_cpu(cpu
, nohz
.cpu_mask
))
4591 cpumask_clear_cpu(cpu
, nohz
.cpu_mask
);
4593 if (atomic_read(&nohz
.load_balancer
) == cpu
)
4594 if (atomic_cmpxchg(&nohz
.load_balancer
, cpu
, -1) != cpu
)
4601 static DEFINE_SPINLOCK(balancing
);
4604 * It checks each scheduling domain to see if it is due to be balanced,
4605 * and initiates a balancing operation if so.
4607 * Balancing parameters are set up in arch_init_sched_domains.
4609 static void rebalance_domains(int cpu
, enum cpu_idle_type idle
)
4612 struct rq
*rq
= cpu_rq(cpu
);
4613 unsigned long interval
;
4614 struct sched_domain
*sd
;
4615 /* Earliest time when we have to do rebalance again */
4616 unsigned long next_balance
= jiffies
+ 60*HZ
;
4617 int update_next_balance
= 0;
4620 for_each_domain(cpu
, sd
) {
4621 if (!(sd
->flags
& SD_LOAD_BALANCE
))
4624 interval
= sd
->balance_interval
;
4625 if (idle
!= CPU_IDLE
)
4626 interval
*= sd
->busy_factor
;
4628 /* scale ms to jiffies */
4629 interval
= msecs_to_jiffies(interval
);
4630 if (unlikely(!interval
))
4632 if (interval
> HZ
*NR_CPUS
/10)
4633 interval
= HZ
*NR_CPUS
/10;
4635 need_serialize
= sd
->flags
& SD_SERIALIZE
;
4637 if (need_serialize
) {
4638 if (!spin_trylock(&balancing
))
4642 if (time_after_eq(jiffies
, sd
->last_balance
+ interval
)) {
4643 if (load_balance(cpu
, rq
, sd
, idle
, &balance
)) {
4645 * We've pulled tasks over so either we're no
4646 * longer idle, or one of our SMT siblings is
4649 idle
= CPU_NOT_IDLE
;
4651 sd
->last_balance
= jiffies
;
4654 spin_unlock(&balancing
);
4656 if (time_after(next_balance
, sd
->last_balance
+ interval
)) {
4657 next_balance
= sd
->last_balance
+ interval
;
4658 update_next_balance
= 1;
4662 * Stop the load balance at this level. There is another
4663 * CPU in our sched group which is doing load balancing more
4671 * next_balance will be updated only when there is a need.
4672 * When the cpu is attached to null domain for ex, it will not be
4675 if (likely(update_next_balance
))
4676 rq
->next_balance
= next_balance
;
4680 * run_rebalance_domains is triggered when needed from the scheduler tick.
4681 * In CONFIG_NO_HZ case, the idle load balance owner will do the
4682 * rebalancing for all the cpus for whom scheduler ticks are stopped.
4684 static void run_rebalance_domains(struct softirq_action
*h
)
4686 int this_cpu
= smp_processor_id();
4687 struct rq
*this_rq
= cpu_rq(this_cpu
);
4688 enum cpu_idle_type idle
= this_rq
->idle_at_tick
?
4689 CPU_IDLE
: CPU_NOT_IDLE
;
4691 rebalance_domains(this_cpu
, idle
);
4695 * If this cpu is the owner for idle load balancing, then do the
4696 * balancing on behalf of the other idle cpus whose ticks are
4699 if (this_rq
->idle_at_tick
&&
4700 atomic_read(&nohz
.load_balancer
) == this_cpu
) {
4704 for_each_cpu(balance_cpu
, nohz
.cpu_mask
) {
4705 if (balance_cpu
== this_cpu
)
4709 * If this cpu gets work to do, stop the load balancing
4710 * work being done for other cpus. Next load
4711 * balancing owner will pick it up.
4716 rebalance_domains(balance_cpu
, CPU_IDLE
);
4718 rq
= cpu_rq(balance_cpu
);
4719 if (time_after(this_rq
->next_balance
, rq
->next_balance
))
4720 this_rq
->next_balance
= rq
->next_balance
;
4726 static inline int on_null_domain(int cpu
)
4728 return !rcu_dereference(cpu_rq(cpu
)->sd
);
4732 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
4734 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
4735 * idle load balancing owner or decide to stop the periodic load balancing,
4736 * if the whole system is idle.
4738 static inline void trigger_load_balance(struct rq
*rq
, int cpu
)
4742 * If we were in the nohz mode recently and busy at the current
4743 * scheduler tick, then check if we need to nominate new idle
4746 if (rq
->in_nohz_recently
&& !rq
->idle_at_tick
) {
4747 rq
->in_nohz_recently
= 0;
4749 if (atomic_read(&nohz
.load_balancer
) == cpu
) {
4750 cpumask_clear_cpu(cpu
, nohz
.cpu_mask
);
4751 atomic_set(&nohz
.load_balancer
, -1);
4754 if (atomic_read(&nohz
.load_balancer
) == -1) {
4755 int ilb
= find_new_ilb(cpu
);
4757 if (ilb
< nr_cpu_ids
)
4763 * If this cpu is idle and doing idle load balancing for all the
4764 * cpus with ticks stopped, is it time for that to stop?
4766 if (rq
->idle_at_tick
&& atomic_read(&nohz
.load_balancer
) == cpu
&&
4767 cpumask_weight(nohz
.cpu_mask
) == num_online_cpus()) {
4773 * If this cpu is idle and the idle load balancing is done by
4774 * someone else, then no need raise the SCHED_SOFTIRQ
4776 if (rq
->idle_at_tick
&& atomic_read(&nohz
.load_balancer
) != cpu
&&
4777 cpumask_test_cpu(cpu
, nohz
.cpu_mask
))
4780 /* Don't need to rebalance while attached to NULL domain */
4781 if (time_after_eq(jiffies
, rq
->next_balance
) &&
4782 likely(!on_null_domain(cpu
)))
4783 raise_softirq(SCHED_SOFTIRQ
);
4786 #else /* CONFIG_SMP */
4789 * on UP we do not need to balance between CPUs:
4791 static inline void idle_balance(int cpu
, struct rq
*rq
)
4797 DEFINE_PER_CPU(struct kernel_stat
, kstat
);
4799 EXPORT_PER_CPU_SYMBOL(kstat
);
4802 * Return any ns on the sched_clock that have not yet been accounted in
4803 * @p in case that task is currently running.
4805 * Called with task_rq_lock() held on @rq.
4807 static u64
do_task_delta_exec(struct task_struct
*p
, struct rq
*rq
)
4811 if (task_current(rq
, p
)) {
4812 update_rq_clock(rq
);
4813 ns
= rq
->clock
- p
->se
.exec_start
;
4821 unsigned long long task_delta_exec(struct task_struct
*p
)
4823 unsigned long flags
;
4827 rq
= task_rq_lock(p
, &flags
);
4828 ns
= do_task_delta_exec(p
, rq
);
4829 task_rq_unlock(rq
, &flags
);
4835 * Return accounted runtime for the task.
4836 * In case the task is currently running, return the runtime plus current's
4837 * pending runtime that have not been accounted yet.
4839 unsigned long long task_sched_runtime(struct task_struct
*p
)
4841 unsigned long flags
;
4845 rq
= task_rq_lock(p
, &flags
);
4846 ns
= p
->se
.sum_exec_runtime
+ do_task_delta_exec(p
, rq
);
4847 task_rq_unlock(rq
, &flags
);
4853 * Return sum_exec_runtime for the thread group.
4854 * In case the task is currently running, return the sum plus current's
4855 * pending runtime that have not been accounted yet.
4857 * Note that the thread group might have other running tasks as well,
4858 * so the return value not includes other pending runtime that other
4859 * running tasks might have.
4861 unsigned long long thread_group_sched_runtime(struct task_struct
*p
)
4863 struct task_cputime totals
;
4864 unsigned long flags
;
4868 rq
= task_rq_lock(p
, &flags
);
4869 thread_group_cputime(p
, &totals
);
4870 ns
= totals
.sum_exec_runtime
+ do_task_delta_exec(p
, rq
);
4871 task_rq_unlock(rq
, &flags
);
4877 * Account user cpu time to a process.
4878 * @p: the process that the cpu time gets accounted to
4879 * @cputime: the cpu time spent in user space since the last update
4880 * @cputime_scaled: cputime scaled by cpu frequency
4882 void account_user_time(struct task_struct
*p
, cputime_t cputime
,
4883 cputime_t cputime_scaled
)
4885 struct cpu_usage_stat
*cpustat
= &kstat_this_cpu
.cpustat
;
4888 /* Add user time to process. */
4889 p
->utime
= cputime_add(p
->utime
, cputime
);
4890 p
->utimescaled
= cputime_add(p
->utimescaled
, cputime_scaled
);
4891 account_group_user_time(p
, cputime
);
4893 /* Add user time to cpustat. */
4894 tmp
= cputime_to_cputime64(cputime
);
4895 if (TASK_NICE(p
) > 0)
4896 cpustat
->nice
= cputime64_add(cpustat
->nice
, tmp
);
4898 cpustat
->user
= cputime64_add(cpustat
->user
, tmp
);
4900 cpuacct_update_stats(p
, CPUACCT_STAT_USER
, cputime
);
4901 /* Account for user time used */
4902 acct_update_integrals(p
);
4906 * Account guest cpu time to a process.
4907 * @p: the process that the cpu time gets accounted to
4908 * @cputime: the cpu time spent in virtual machine since the last update
4909 * @cputime_scaled: cputime scaled by cpu frequency
4911 static void account_guest_time(struct task_struct
*p
, cputime_t cputime
,
4912 cputime_t cputime_scaled
)
4915 struct cpu_usage_stat
*cpustat
= &kstat_this_cpu
.cpustat
;
4917 tmp
= cputime_to_cputime64(cputime
);
4919 /* Add guest time to process. */
4920 p
->utime
= cputime_add(p
->utime
, cputime
);
4921 p
->utimescaled
= cputime_add(p
->utimescaled
, cputime_scaled
);
4922 account_group_user_time(p
, cputime
);
4923 p
->gtime
= cputime_add(p
->gtime
, cputime
);
4925 /* Add guest time to cpustat. */
4926 cpustat
->user
= cputime64_add(cpustat
->user
, tmp
);
4927 cpustat
->guest
= cputime64_add(cpustat
->guest
, tmp
);
4931 * Account system cpu time to a process.
4932 * @p: the process that the cpu time gets accounted to
4933 * @hardirq_offset: the offset to subtract from hardirq_count()
4934 * @cputime: the cpu time spent in kernel space since the last update
4935 * @cputime_scaled: cputime scaled by cpu frequency
4937 void account_system_time(struct task_struct
*p
, int hardirq_offset
,
4938 cputime_t cputime
, cputime_t cputime_scaled
)
4940 struct cpu_usage_stat
*cpustat
= &kstat_this_cpu
.cpustat
;
4943 if ((p
->flags
& PF_VCPU
) && (irq_count() - hardirq_offset
== 0)) {
4944 account_guest_time(p
, cputime
, cputime_scaled
);
4948 /* Add system time to process. */
4949 p
->stime
= cputime_add(p
->stime
, cputime
);
4950 p
->stimescaled
= cputime_add(p
->stimescaled
, cputime_scaled
);
4951 account_group_system_time(p
, cputime
);
4953 /* Add system time to cpustat. */
4954 tmp
= cputime_to_cputime64(cputime
);
4955 if (hardirq_count() - hardirq_offset
)
4956 cpustat
->irq
= cputime64_add(cpustat
->irq
, tmp
);
4957 else if (softirq_count())
4958 cpustat
->softirq
= cputime64_add(cpustat
->softirq
, tmp
);
4960 cpustat
->system
= cputime64_add(cpustat
->system
, tmp
);
4962 cpuacct_update_stats(p
, CPUACCT_STAT_SYSTEM
, cputime
);
4964 /* Account for system time used */
4965 acct_update_integrals(p
);
4969 * Account for involuntary wait time.
4970 * @steal: the cpu time spent in involuntary wait
4972 void account_steal_time(cputime_t cputime
)
4974 struct cpu_usage_stat
*cpustat
= &kstat_this_cpu
.cpustat
;
4975 cputime64_t cputime64
= cputime_to_cputime64(cputime
);
4977 cpustat
->steal
= cputime64_add(cpustat
->steal
, cputime64
);
4981 * Account for idle time.
4982 * @cputime: the cpu time spent in idle wait
4984 void account_idle_time(cputime_t cputime
)
4986 struct cpu_usage_stat
*cpustat
= &kstat_this_cpu
.cpustat
;
4987 cputime64_t cputime64
= cputime_to_cputime64(cputime
);
4988 struct rq
*rq
= this_rq();
4990 if (atomic_read(&rq
->nr_iowait
) > 0)
4991 cpustat
->iowait
= cputime64_add(cpustat
->iowait
, cputime64
);
4993 cpustat
->idle
= cputime64_add(cpustat
->idle
, cputime64
);
4996 #ifndef CONFIG_VIRT_CPU_ACCOUNTING
4999 * Account a single tick of cpu time.
5000 * @p: the process that the cpu time gets accounted to
5001 * @user_tick: indicates if the tick is a user or a system tick
5003 void account_process_tick(struct task_struct
*p
, int user_tick
)
5005 cputime_t one_jiffy
= jiffies_to_cputime(1);
5006 cputime_t one_jiffy_scaled
= cputime_to_scaled(one_jiffy
);
5007 struct rq
*rq
= this_rq();
5010 account_user_time(p
, one_jiffy
, one_jiffy_scaled
);
5011 else if ((p
!= rq
->idle
) || (irq_count() != HARDIRQ_OFFSET
))
5012 account_system_time(p
, HARDIRQ_OFFSET
, one_jiffy
,
5015 account_idle_time(one_jiffy
);
5019 * Account multiple ticks of steal time.
5020 * @p: the process from which the cpu time has been stolen
5021 * @ticks: number of stolen ticks
5023 void account_steal_ticks(unsigned long ticks
)
5025 account_steal_time(jiffies_to_cputime(ticks
));
5029 * Account multiple ticks of idle time.
5030 * @ticks: number of stolen ticks
5032 void account_idle_ticks(unsigned long ticks
)
5034 account_idle_time(jiffies_to_cputime(ticks
));
5040 * Use precise platform statistics if available:
5042 #ifdef CONFIG_VIRT_CPU_ACCOUNTING
5043 cputime_t
task_utime(struct task_struct
*p
)
5048 cputime_t
task_stime(struct task_struct
*p
)
5053 cputime_t
task_utime(struct task_struct
*p
)
5055 clock_t utime
= cputime_to_clock_t(p
->utime
),
5056 total
= utime
+ cputime_to_clock_t(p
->stime
);
5060 * Use CFS's precise accounting:
5062 temp
= (u64
)nsec_to_clock_t(p
->se
.sum_exec_runtime
);
5066 do_div(temp
, total
);
5068 utime
= (clock_t)temp
;
5070 p
->prev_utime
= max(p
->prev_utime
, clock_t_to_cputime(utime
));
5071 return p
->prev_utime
;
5074 cputime_t
task_stime(struct task_struct
*p
)
5079 * Use CFS's precise accounting. (we subtract utime from
5080 * the total, to make sure the total observed by userspace
5081 * grows monotonically - apps rely on that):
5083 stime
= nsec_to_clock_t(p
->se
.sum_exec_runtime
) -
5084 cputime_to_clock_t(task_utime(p
));
5087 p
->prev_stime
= max(p
->prev_stime
, clock_t_to_cputime(stime
));
5089 return p
->prev_stime
;
5093 inline cputime_t
task_gtime(struct task_struct
*p
)
5099 * This function gets called by the timer code, with HZ frequency.
5100 * We call it with interrupts disabled.
5102 * It also gets called by the fork code, when changing the parent's
5105 void scheduler_tick(void)
5107 int cpu
= smp_processor_id();
5108 struct rq
*rq
= cpu_rq(cpu
);
5109 struct task_struct
*curr
= rq
->curr
;
5113 spin_lock(&rq
->lock
);
5114 update_rq_clock(rq
);
5115 update_cpu_load(rq
);
5116 curr
->sched_class
->task_tick(rq
, curr
, 0);
5117 spin_unlock(&rq
->lock
);
5119 perf_counter_task_tick(curr
, cpu
);
5122 rq
->idle_at_tick
= idle_cpu(cpu
);
5123 trigger_load_balance(rq
, cpu
);
5127 notrace
unsigned long get_parent_ip(unsigned long addr
)
5129 if (in_lock_functions(addr
)) {
5130 addr
= CALLER_ADDR2
;
5131 if (in_lock_functions(addr
))
5132 addr
= CALLER_ADDR3
;
5137 #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
5138 defined(CONFIG_PREEMPT_TRACER))
5140 void __kprobes
add_preempt_count(int val
)
5142 #ifdef CONFIG_DEBUG_PREEMPT
5146 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
5149 preempt_count() += val
;
5150 #ifdef CONFIG_DEBUG_PREEMPT
5152 * Spinlock count overflowing soon?
5154 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK
) >=
5157 if (preempt_count() == val
)
5158 trace_preempt_off(CALLER_ADDR0
, get_parent_ip(CALLER_ADDR1
));
5160 EXPORT_SYMBOL(add_preempt_count
);
5162 void __kprobes
sub_preempt_count(int val
)
5164 #ifdef CONFIG_DEBUG_PREEMPT
5168 if (DEBUG_LOCKS_WARN_ON(val
> preempt_count()))
5171 * Is the spinlock portion underflowing?
5173 if (DEBUG_LOCKS_WARN_ON((val
< PREEMPT_MASK
) &&
5174 !(preempt_count() & PREEMPT_MASK
)))
5178 if (preempt_count() == val
)
5179 trace_preempt_on(CALLER_ADDR0
, get_parent_ip(CALLER_ADDR1
));
5180 preempt_count() -= val
;
5182 EXPORT_SYMBOL(sub_preempt_count
);
5187 * Print scheduling while atomic bug:
5189 static noinline
void __schedule_bug(struct task_struct
*prev
)
5191 struct pt_regs
*regs
= get_irq_regs();
5193 printk(KERN_ERR
"BUG: scheduling while atomic: %s/%d/0x%08x\n",
5194 prev
->comm
, prev
->pid
, preempt_count());
5196 debug_show_held_locks(prev
);
5198 if (irqs_disabled())
5199 print_irqtrace_events(prev
);
5208 * Various schedule()-time debugging checks and statistics:
5210 static inline void schedule_debug(struct task_struct
*prev
)
5213 * Test if we are atomic. Since do_exit() needs to call into
5214 * schedule() atomically, we ignore that path for now.
5215 * Otherwise, whine if we are scheduling when we should not be.
5217 if (unlikely(in_atomic_preempt_off() && !prev
->exit_state
))
5218 __schedule_bug(prev
);
5220 profile_hit(SCHED_PROFILING
, __builtin_return_address(0));
5222 schedstat_inc(this_rq(), sched_count
);
5223 #ifdef CONFIG_SCHEDSTATS
5224 if (unlikely(prev
->lock_depth
>= 0)) {
5225 schedstat_inc(this_rq(), bkl_count
);
5226 schedstat_inc(prev
, sched_info
.bkl_count
);
5231 static void put_prev_task(struct rq
*rq
, struct task_struct
*prev
)
5233 if (prev
->state
== TASK_RUNNING
) {
5234 u64 runtime
= prev
->se
.sum_exec_runtime
;
5236 runtime
-= prev
->se
.prev_sum_exec_runtime
;
5237 runtime
= min_t(u64
, runtime
, 2*sysctl_sched_migration_cost
);
5240 * In order to avoid avg_overlap growing stale when we are
5241 * indeed overlapping and hence not getting put to sleep, grow
5242 * the avg_overlap on preemption.
5244 * We use the average preemption runtime because that
5245 * correlates to the amount of cache footprint a task can
5248 update_avg(&prev
->se
.avg_overlap
, runtime
);
5250 prev
->sched_class
->put_prev_task(rq
, prev
);
5254 * Pick up the highest-prio task:
5256 static inline struct task_struct
*
5257 pick_next_task(struct rq
*rq
)
5259 const struct sched_class
*class;
5260 struct task_struct
*p
;
5263 * Optimization: we know that if all tasks are in
5264 * the fair class we can call that function directly:
5266 if (likely(rq
->nr_running
== rq
->cfs
.nr_running
)) {
5267 p
= fair_sched_class
.pick_next_task(rq
);
5272 class = sched_class_highest
;
5274 p
= class->pick_next_task(rq
);
5278 * Will never be NULL as the idle class always
5279 * returns a non-NULL p:
5281 class = class->next
;
5286 * schedule() is the main scheduler function.
5288 asmlinkage
void __sched
schedule(void)
5290 struct task_struct
*prev
, *next
;
5291 unsigned long *switch_count
;
5297 cpu
= smp_processor_id();
5301 switch_count
= &prev
->nivcsw
;
5303 release_kernel_lock(prev
);
5304 need_resched_nonpreemptible
:
5306 schedule_debug(prev
);
5308 if (sched_feat(HRTICK
))
5311 spin_lock_irq(&rq
->lock
);
5312 update_rq_clock(rq
);
5313 clear_tsk_need_resched(prev
);
5315 if (prev
->state
&& !(preempt_count() & PREEMPT_ACTIVE
)) {
5316 if (unlikely(signal_pending_state(prev
->state
, prev
)))
5317 prev
->state
= TASK_RUNNING
;
5319 deactivate_task(rq
, prev
, 1);
5320 switch_count
= &prev
->nvcsw
;
5324 if (prev
->sched_class
->pre_schedule
)
5325 prev
->sched_class
->pre_schedule(rq
, prev
);
5328 if (unlikely(!rq
->nr_running
))
5329 idle_balance(cpu
, rq
);
5331 put_prev_task(rq
, prev
);
5332 next
= pick_next_task(rq
);
5334 if (likely(prev
!= next
)) {
5335 sched_info_switch(prev
, next
);
5336 perf_counter_task_sched_out(prev
, next
, cpu
);
5342 context_switch(rq
, prev
, next
); /* unlocks the rq */
5344 * the context switch might have flipped the stack from under
5345 * us, hence refresh the local variables.
5347 cpu
= smp_processor_id();
5350 spin_unlock_irq(&rq
->lock
);
5352 if (unlikely(reacquire_kernel_lock(current
) < 0))
5353 goto need_resched_nonpreemptible
;
5355 preempt_enable_no_resched();
5359 EXPORT_SYMBOL(schedule
);
5363 * Look out! "owner" is an entirely speculative pointer
5364 * access and not reliable.
5366 int mutex_spin_on_owner(struct mutex
*lock
, struct thread_info
*owner
)
5371 if (!sched_feat(OWNER_SPIN
))
5374 #ifdef CONFIG_DEBUG_PAGEALLOC
5376 * Need to access the cpu field knowing that
5377 * DEBUG_PAGEALLOC could have unmapped it if
5378 * the mutex owner just released it and exited.
5380 if (probe_kernel_address(&owner
->cpu
, cpu
))
5387 * Even if the access succeeded (likely case),
5388 * the cpu field may no longer be valid.
5390 if (cpu
>= nr_cpumask_bits
)
5394 * We need to validate that we can do a
5395 * get_cpu() and that we have the percpu area.
5397 if (!cpu_online(cpu
))
5404 * Owner changed, break to re-assess state.
5406 if (lock
->owner
!= owner
)
5410 * Is that owner really running on that cpu?
5412 if (task_thread_info(rq
->curr
) != owner
|| need_resched())
5422 #ifdef CONFIG_PREEMPT
5424 * this is the entry point to schedule() from in-kernel preemption
5425 * off of preempt_enable. Kernel preemptions off return from interrupt
5426 * occur there and call schedule directly.
5428 asmlinkage
void __sched
preempt_schedule(void)
5430 struct thread_info
*ti
= current_thread_info();
5433 * If there is a non-zero preempt_count or interrupts are disabled,
5434 * we do not want to preempt the current task. Just return..
5436 if (likely(ti
->preempt_count
|| irqs_disabled()))
5440 add_preempt_count(PREEMPT_ACTIVE
);
5442 sub_preempt_count(PREEMPT_ACTIVE
);
5445 * Check again in case we missed a preemption opportunity
5446 * between schedule and now.
5449 } while (need_resched());
5451 EXPORT_SYMBOL(preempt_schedule
);
5454 * this is the entry point to schedule() from kernel preemption
5455 * off of irq context.
5456 * Note, that this is called and return with irqs disabled. This will
5457 * protect us against recursive calling from irq.
5459 asmlinkage
void __sched
preempt_schedule_irq(void)
5461 struct thread_info
*ti
= current_thread_info();
5463 /* Catch callers which need to be fixed */
5464 BUG_ON(ti
->preempt_count
|| !irqs_disabled());
5467 add_preempt_count(PREEMPT_ACTIVE
);
5470 local_irq_disable();
5471 sub_preempt_count(PREEMPT_ACTIVE
);
5474 * Check again in case we missed a preemption opportunity
5475 * between schedule and now.
5478 } while (need_resched());
5481 #endif /* CONFIG_PREEMPT */
5483 int default_wake_function(wait_queue_t
*curr
, unsigned mode
, int sync
,
5486 return try_to_wake_up(curr
->private, mode
, sync
);
5488 EXPORT_SYMBOL(default_wake_function
);
5491 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
5492 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
5493 * number) then we wake all the non-exclusive tasks and one exclusive task.
5495 * There are circumstances in which we can try to wake a task which has already
5496 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
5497 * zero in this (rare) case, and we handle it by continuing to scan the queue.
5499 static void __wake_up_common(wait_queue_head_t
*q
, unsigned int mode
,
5500 int nr_exclusive
, int sync
, void *key
)
5502 wait_queue_t
*curr
, *next
;
5504 list_for_each_entry_safe(curr
, next
, &q
->task_list
, task_list
) {
5505 unsigned flags
= curr
->flags
;
5507 if (curr
->func(curr
, mode
, sync
, key
) &&
5508 (flags
& WQ_FLAG_EXCLUSIVE
) && !--nr_exclusive
)
5514 * __wake_up - wake up threads blocked on a waitqueue.
5516 * @mode: which threads
5517 * @nr_exclusive: how many wake-one or wake-many threads to wake up
5518 * @key: is directly passed to the wakeup function
5520 * It may be assumed that this function implies a write memory barrier before
5521 * changing the task state if and only if any tasks are woken up.
5523 void __wake_up(wait_queue_head_t
*q
, unsigned int mode
,
5524 int nr_exclusive
, void *key
)
5526 unsigned long flags
;
5528 spin_lock_irqsave(&q
->lock
, flags
);
5529 __wake_up_common(q
, mode
, nr_exclusive
, 0, key
);
5530 spin_unlock_irqrestore(&q
->lock
, flags
);
5532 EXPORT_SYMBOL(__wake_up
);
5535 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
5537 void __wake_up_locked(wait_queue_head_t
*q
, unsigned int mode
)
5539 __wake_up_common(q
, mode
, 1, 0, NULL
);
5542 void __wake_up_locked_key(wait_queue_head_t
*q
, unsigned int mode
, void *key
)
5544 __wake_up_common(q
, mode
, 1, 0, key
);
5548 * __wake_up_sync_key - wake up threads blocked on a waitqueue.
5550 * @mode: which threads
5551 * @nr_exclusive: how many wake-one or wake-many threads to wake up
5552 * @key: opaque value to be passed to wakeup targets
5554 * The sync wakeup differs that the waker knows that it will schedule
5555 * away soon, so while the target thread will be woken up, it will not
5556 * be migrated to another CPU - ie. the two threads are 'synchronized'
5557 * with each other. This can prevent needless bouncing between CPUs.
5559 * On UP it can prevent extra preemption.
5561 * It may be assumed that this function implies a write memory barrier before
5562 * changing the task state if and only if any tasks are woken up.
5564 void __wake_up_sync_key(wait_queue_head_t
*q
, unsigned int mode
,
5565 int nr_exclusive
, void *key
)
5567 unsigned long flags
;
5573 if (unlikely(!nr_exclusive
))
5576 spin_lock_irqsave(&q
->lock
, flags
);
5577 __wake_up_common(q
, mode
, nr_exclusive
, sync
, key
);
5578 spin_unlock_irqrestore(&q
->lock
, flags
);
5580 EXPORT_SYMBOL_GPL(__wake_up_sync_key
);
5583 * __wake_up_sync - see __wake_up_sync_key()
5585 void __wake_up_sync(wait_queue_head_t
*q
, unsigned int mode
, int nr_exclusive
)
5587 __wake_up_sync_key(q
, mode
, nr_exclusive
, NULL
);
5589 EXPORT_SYMBOL_GPL(__wake_up_sync
); /* For internal use only */
5592 * complete: - signals a single thread waiting on this completion
5593 * @x: holds the state of this particular completion
5595 * This will wake up a single thread waiting on this completion. Threads will be
5596 * awakened in the same order in which they were queued.
5598 * See also complete_all(), wait_for_completion() and related routines.
5600 * It may be assumed that this function implies a write memory barrier before
5601 * changing the task state if and only if any tasks are woken up.
5603 void complete(struct completion
*x
)
5605 unsigned long flags
;
5607 spin_lock_irqsave(&x
->wait
.lock
, flags
);
5609 __wake_up_common(&x
->wait
, TASK_NORMAL
, 1, 0, NULL
);
5610 spin_unlock_irqrestore(&x
->wait
.lock
, flags
);
5612 EXPORT_SYMBOL(complete
);
5615 * complete_all: - signals all threads waiting on this completion
5616 * @x: holds the state of this particular completion
5618 * This will wake up all threads waiting on this particular completion event.
5620 * It may be assumed that this function implies a write memory barrier before
5621 * changing the task state if and only if any tasks are woken up.
5623 void complete_all(struct completion
*x
)
5625 unsigned long flags
;
5627 spin_lock_irqsave(&x
->wait
.lock
, flags
);
5628 x
->done
+= UINT_MAX
/2;
5629 __wake_up_common(&x
->wait
, TASK_NORMAL
, 0, 0, NULL
);
5630 spin_unlock_irqrestore(&x
->wait
.lock
, flags
);
5632 EXPORT_SYMBOL(complete_all
);
5634 static inline long __sched
5635 do_wait_for_common(struct completion
*x
, long timeout
, int state
)
5638 DECLARE_WAITQUEUE(wait
, current
);
5640 wait
.flags
|= WQ_FLAG_EXCLUSIVE
;
5641 __add_wait_queue_tail(&x
->wait
, &wait
);
5643 if (signal_pending_state(state
, current
)) {
5644 timeout
= -ERESTARTSYS
;
5647 __set_current_state(state
);
5648 spin_unlock_irq(&x
->wait
.lock
);
5649 timeout
= schedule_timeout(timeout
);
5650 spin_lock_irq(&x
->wait
.lock
);
5651 } while (!x
->done
&& timeout
);
5652 __remove_wait_queue(&x
->wait
, &wait
);
5657 return timeout
?: 1;
5661 wait_for_common(struct completion
*x
, long timeout
, int state
)
5665 spin_lock_irq(&x
->wait
.lock
);
5666 timeout
= do_wait_for_common(x
, timeout
, state
);
5667 spin_unlock_irq(&x
->wait
.lock
);
5672 * wait_for_completion: - waits for completion of a task
5673 * @x: holds the state of this particular completion
5675 * This waits to be signaled for completion of a specific task. It is NOT
5676 * interruptible and there is no timeout.
5678 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
5679 * and interrupt capability. Also see complete().
5681 void __sched
wait_for_completion(struct completion
*x
)
5683 wait_for_common(x
, MAX_SCHEDULE_TIMEOUT
, TASK_UNINTERRUPTIBLE
);
5685 EXPORT_SYMBOL(wait_for_completion
);
5688 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
5689 * @x: holds the state of this particular completion
5690 * @timeout: timeout value in jiffies
5692 * This waits for either a completion of a specific task to be signaled or for a
5693 * specified timeout to expire. The timeout is in jiffies. It is not
5696 unsigned long __sched
5697 wait_for_completion_timeout(struct completion
*x
, unsigned long timeout
)
5699 return wait_for_common(x
, timeout
, TASK_UNINTERRUPTIBLE
);
5701 EXPORT_SYMBOL(wait_for_completion_timeout
);
5704 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
5705 * @x: holds the state of this particular completion
5707 * This waits for completion of a specific task to be signaled. It is
5710 int __sched
wait_for_completion_interruptible(struct completion
*x
)
5712 long t
= wait_for_common(x
, MAX_SCHEDULE_TIMEOUT
, TASK_INTERRUPTIBLE
);
5713 if (t
== -ERESTARTSYS
)
5717 EXPORT_SYMBOL(wait_for_completion_interruptible
);
5720 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
5721 * @x: holds the state of this particular completion
5722 * @timeout: timeout value in jiffies
5724 * This waits for either a completion of a specific task to be signaled or for a
5725 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
5727 unsigned long __sched
5728 wait_for_completion_interruptible_timeout(struct completion
*x
,
5729 unsigned long timeout
)
5731 return wait_for_common(x
, timeout
, TASK_INTERRUPTIBLE
);
5733 EXPORT_SYMBOL(wait_for_completion_interruptible_timeout
);
5736 * wait_for_completion_killable: - waits for completion of a task (killable)
5737 * @x: holds the state of this particular completion
5739 * This waits to be signaled for completion of a specific task. It can be
5740 * interrupted by a kill signal.
5742 int __sched
wait_for_completion_killable(struct completion
*x
)
5744 long t
= wait_for_common(x
, MAX_SCHEDULE_TIMEOUT
, TASK_KILLABLE
);
5745 if (t
== -ERESTARTSYS
)
5749 EXPORT_SYMBOL(wait_for_completion_killable
);
5752 * try_wait_for_completion - try to decrement a completion without blocking
5753 * @x: completion structure
5755 * Returns: 0 if a decrement cannot be done without blocking
5756 * 1 if a decrement succeeded.
5758 * If a completion is being used as a counting completion,
5759 * attempt to decrement the counter without blocking. This
5760 * enables us to avoid waiting if the resource the completion
5761 * is protecting is not available.
5763 bool try_wait_for_completion(struct completion
*x
)
5767 spin_lock_irq(&x
->wait
.lock
);
5772 spin_unlock_irq(&x
->wait
.lock
);
5775 EXPORT_SYMBOL(try_wait_for_completion
);
5778 * completion_done - Test to see if a completion has any waiters
5779 * @x: completion structure
5781 * Returns: 0 if there are waiters (wait_for_completion() in progress)
5782 * 1 if there are no waiters.
5785 bool completion_done(struct completion
*x
)
5789 spin_lock_irq(&x
->wait
.lock
);
5792 spin_unlock_irq(&x
->wait
.lock
);
5795 EXPORT_SYMBOL(completion_done
);
5798 sleep_on_common(wait_queue_head_t
*q
, int state
, long timeout
)
5800 unsigned long flags
;
5803 init_waitqueue_entry(&wait
, current
);
5805 __set_current_state(state
);
5807 spin_lock_irqsave(&q
->lock
, flags
);
5808 __add_wait_queue(q
, &wait
);
5809 spin_unlock(&q
->lock
);
5810 timeout
= schedule_timeout(timeout
);
5811 spin_lock_irq(&q
->lock
);
5812 __remove_wait_queue(q
, &wait
);
5813 spin_unlock_irqrestore(&q
->lock
, flags
);
5818 void __sched
interruptible_sleep_on(wait_queue_head_t
*q
)
5820 sleep_on_common(q
, TASK_INTERRUPTIBLE
, MAX_SCHEDULE_TIMEOUT
);
5822 EXPORT_SYMBOL(interruptible_sleep_on
);
5825 interruptible_sleep_on_timeout(wait_queue_head_t
*q
, long timeout
)
5827 return sleep_on_common(q
, TASK_INTERRUPTIBLE
, timeout
);
5829 EXPORT_SYMBOL(interruptible_sleep_on_timeout
);
5831 void __sched
sleep_on(wait_queue_head_t
*q
)
5833 sleep_on_common(q
, TASK_UNINTERRUPTIBLE
, MAX_SCHEDULE_TIMEOUT
);
5835 EXPORT_SYMBOL(sleep_on
);
5837 long __sched
sleep_on_timeout(wait_queue_head_t
*q
, long timeout
)
5839 return sleep_on_common(q
, TASK_UNINTERRUPTIBLE
, timeout
);
5841 EXPORT_SYMBOL(sleep_on_timeout
);
5843 #ifdef CONFIG_RT_MUTEXES
5846 * rt_mutex_setprio - set the current priority of a task
5848 * @prio: prio value (kernel-internal form)
5850 * This function changes the 'effective' priority of a task. It does
5851 * not touch ->normal_prio like __setscheduler().
5853 * Used by the rt_mutex code to implement priority inheritance logic.
5855 void rt_mutex_setprio(struct task_struct
*p
, int prio
)
5857 unsigned long flags
;
5858 int oldprio
, on_rq
, running
;
5860 const struct sched_class
*prev_class
= p
->sched_class
;
5862 BUG_ON(prio
< 0 || prio
> MAX_PRIO
);
5864 rq
= task_rq_lock(p
, &flags
);
5865 update_rq_clock(rq
);
5868 on_rq
= p
->se
.on_rq
;
5869 running
= task_current(rq
, p
);
5871 dequeue_task(rq
, p
, 0);
5873 p
->sched_class
->put_prev_task(rq
, p
);
5876 p
->sched_class
= &rt_sched_class
;
5878 p
->sched_class
= &fair_sched_class
;
5883 p
->sched_class
->set_curr_task(rq
);
5885 enqueue_task(rq
, p
, 0);
5887 check_class_changed(rq
, p
, prev_class
, oldprio
, running
);
5889 task_rq_unlock(rq
, &flags
);
5894 void set_user_nice(struct task_struct
*p
, long nice
)
5896 int old_prio
, delta
, on_rq
;
5897 unsigned long flags
;
5900 if (TASK_NICE(p
) == nice
|| nice
< -20 || nice
> 19)
5903 * We have to be careful, if called from sys_setpriority(),
5904 * the task might be in the middle of scheduling on another CPU.
5906 rq
= task_rq_lock(p
, &flags
);
5907 update_rq_clock(rq
);
5909 * The RT priorities are set via sched_setscheduler(), but we still
5910 * allow the 'normal' nice value to be set - but as expected
5911 * it wont have any effect on scheduling until the task is
5912 * SCHED_FIFO/SCHED_RR:
5914 if (task_has_rt_policy(p
)) {
5915 p
->static_prio
= NICE_TO_PRIO(nice
);
5918 on_rq
= p
->se
.on_rq
;
5920 dequeue_task(rq
, p
, 0);
5922 p
->static_prio
= NICE_TO_PRIO(nice
);
5925 p
->prio
= effective_prio(p
);
5926 delta
= p
->prio
- old_prio
;
5929 enqueue_task(rq
, p
, 0);
5931 * If the task increased its priority or is running and
5932 * lowered its priority, then reschedule its CPU:
5934 if (delta
< 0 || (delta
> 0 && task_running(rq
, p
)))
5935 resched_task(rq
->curr
);
5938 task_rq_unlock(rq
, &flags
);
5940 EXPORT_SYMBOL(set_user_nice
);
5943 * can_nice - check if a task can reduce its nice value
5947 int can_nice(const struct task_struct
*p
, const int nice
)
5949 /* convert nice value [19,-20] to rlimit style value [1,40] */
5950 int nice_rlim
= 20 - nice
;
5952 return (nice_rlim
<= p
->signal
->rlim
[RLIMIT_NICE
].rlim_cur
||
5953 capable(CAP_SYS_NICE
));
5956 #ifdef __ARCH_WANT_SYS_NICE
5959 * sys_nice - change the priority of the current process.
5960 * @increment: priority increment
5962 * sys_setpriority is a more generic, but much slower function that
5963 * does similar things.
5965 SYSCALL_DEFINE1(nice
, int, increment
)
5970 * Setpriority might change our priority at the same moment.
5971 * We don't have to worry. Conceptually one call occurs first
5972 * and we have a single winner.
5974 if (increment
< -40)
5979 nice
= TASK_NICE(current
) + increment
;
5985 if (increment
< 0 && !can_nice(current
, nice
))
5988 retval
= security_task_setnice(current
, nice
);
5992 set_user_nice(current
, nice
);
5999 * task_prio - return the priority value of a given task.
6000 * @p: the task in question.
6002 * This is the priority value as seen by users in /proc.
6003 * RT tasks are offset by -200. Normal tasks are centered
6004 * around 0, value goes from -16 to +15.
6006 int task_prio(const struct task_struct
*p
)
6008 return p
->prio
- MAX_RT_PRIO
;
6012 * task_nice - return the nice value of a given task.
6013 * @p: the task in question.
6015 int task_nice(const struct task_struct
*p
)
6017 return TASK_NICE(p
);
6019 EXPORT_SYMBOL(task_nice
);
6022 * idle_cpu - is a given cpu idle currently?
6023 * @cpu: the processor in question.
6025 int idle_cpu(int cpu
)
6027 return cpu_curr(cpu
) == cpu_rq(cpu
)->idle
;
6031 * idle_task - return the idle task for a given cpu.
6032 * @cpu: the processor in question.
6034 struct task_struct
*idle_task(int cpu
)
6036 return cpu_rq(cpu
)->idle
;
6040 * find_process_by_pid - find a process with a matching PID value.
6041 * @pid: the pid in question.
6043 static struct task_struct
*find_process_by_pid(pid_t pid
)
6045 return pid
? find_task_by_vpid(pid
) : current
;
6048 /* Actually do priority change: must hold rq lock. */
6050 __setscheduler(struct rq
*rq
, struct task_struct
*p
, int policy
, int prio
)
6052 BUG_ON(p
->se
.on_rq
);
6055 switch (p
->policy
) {
6059 p
->sched_class
= &fair_sched_class
;
6063 p
->sched_class
= &rt_sched_class
;
6067 p
->rt_priority
= prio
;
6068 p
->normal_prio
= normal_prio(p
);
6069 /* we are holding p->pi_lock already */
6070 p
->prio
= rt_mutex_getprio(p
);
6075 * check the target process has a UID that matches the current process's
6077 static bool check_same_owner(struct task_struct
*p
)
6079 const struct cred
*cred
= current_cred(), *pcred
;
6083 pcred
= __task_cred(p
);
6084 match
= (cred
->euid
== pcred
->euid
||
6085 cred
->euid
== pcred
->uid
);
6090 static int __sched_setscheduler(struct task_struct
*p
, int policy
,
6091 struct sched_param
*param
, bool user
)
6093 int retval
, oldprio
, oldpolicy
= -1, on_rq
, running
;
6094 unsigned long flags
;
6095 const struct sched_class
*prev_class
= p
->sched_class
;
6098 /* may grab non-irq protected spin_locks */
6099 BUG_ON(in_interrupt());
6101 /* double check policy once rq lock held */
6103 policy
= oldpolicy
= p
->policy
;
6104 else if (policy
!= SCHED_FIFO
&& policy
!= SCHED_RR
&&
6105 policy
!= SCHED_NORMAL
&& policy
!= SCHED_BATCH
&&
6106 policy
!= SCHED_IDLE
)
6109 * Valid priorities for SCHED_FIFO and SCHED_RR are
6110 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
6111 * SCHED_BATCH and SCHED_IDLE is 0.
6113 if (param
->sched_priority
< 0 ||
6114 (p
->mm
&& param
->sched_priority
> MAX_USER_RT_PRIO
-1) ||
6115 (!p
->mm
&& param
->sched_priority
> MAX_RT_PRIO
-1))
6117 if (rt_policy(policy
) != (param
->sched_priority
!= 0))
6121 * Allow unprivileged RT tasks to decrease priority:
6123 if (user
&& !capable(CAP_SYS_NICE
)) {
6124 if (rt_policy(policy
)) {
6125 unsigned long rlim_rtprio
;
6127 if (!lock_task_sighand(p
, &flags
))
6129 rlim_rtprio
= p
->signal
->rlim
[RLIMIT_RTPRIO
].rlim_cur
;
6130 unlock_task_sighand(p
, &flags
);
6132 /* can't set/change the rt policy */
6133 if (policy
!= p
->policy
&& !rlim_rtprio
)
6136 /* can't increase priority */
6137 if (param
->sched_priority
> p
->rt_priority
&&
6138 param
->sched_priority
> rlim_rtprio
)
6142 * Like positive nice levels, dont allow tasks to
6143 * move out of SCHED_IDLE either:
6145 if (p
->policy
== SCHED_IDLE
&& policy
!= SCHED_IDLE
)
6148 /* can't change other user's priorities */
6149 if (!check_same_owner(p
))
6154 #ifdef CONFIG_RT_GROUP_SCHED
6156 * Do not allow realtime tasks into groups that have no runtime
6159 if (rt_bandwidth_enabled() && rt_policy(policy
) &&
6160 task_group(p
)->rt_bandwidth
.rt_runtime
== 0)
6164 retval
= security_task_setscheduler(p
, policy
, param
);
6170 * make sure no PI-waiters arrive (or leave) while we are
6171 * changing the priority of the task:
6173 spin_lock_irqsave(&p
->pi_lock
, flags
);
6175 * To be able to change p->policy safely, the apropriate
6176 * runqueue lock must be held.
6178 rq
= __task_rq_lock(p
);
6179 /* recheck policy now with rq lock held */
6180 if (unlikely(oldpolicy
!= -1 && oldpolicy
!= p
->policy
)) {
6181 policy
= oldpolicy
= -1;
6182 __task_rq_unlock(rq
);
6183 spin_unlock_irqrestore(&p
->pi_lock
, flags
);
6186 update_rq_clock(rq
);
6187 on_rq
= p
->se
.on_rq
;
6188 running
= task_current(rq
, p
);
6190 deactivate_task(rq
, p
, 0);
6192 p
->sched_class
->put_prev_task(rq
, p
);
6195 __setscheduler(rq
, p
, policy
, param
->sched_priority
);
6198 p
->sched_class
->set_curr_task(rq
);
6200 activate_task(rq
, p
, 0);
6202 check_class_changed(rq
, p
, prev_class
, oldprio
, running
);
6204 __task_rq_unlock(rq
);
6205 spin_unlock_irqrestore(&p
->pi_lock
, flags
);
6207 rt_mutex_adjust_pi(p
);
6213 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
6214 * @p: the task in question.
6215 * @policy: new policy.
6216 * @param: structure containing the new RT priority.
6218 * NOTE that the task may be already dead.
6220 int sched_setscheduler(struct task_struct
*p
, int policy
,
6221 struct sched_param
*param
)
6223 return __sched_setscheduler(p
, policy
, param
, true);
6225 EXPORT_SYMBOL_GPL(sched_setscheduler
);
6228 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
6229 * @p: the task in question.
6230 * @policy: new policy.
6231 * @param: structure containing the new RT priority.
6233 * Just like sched_setscheduler, only don't bother checking if the
6234 * current context has permission. For example, this is needed in
6235 * stop_machine(): we create temporary high priority worker threads,
6236 * but our caller might not have that capability.
6238 int sched_setscheduler_nocheck(struct task_struct
*p
, int policy
,
6239 struct sched_param
*param
)
6241 return __sched_setscheduler(p
, policy
, param
, false);
6245 do_sched_setscheduler(pid_t pid
, int policy
, struct sched_param __user
*param
)
6247 struct sched_param lparam
;
6248 struct task_struct
*p
;
6251 if (!param
|| pid
< 0)
6253 if (copy_from_user(&lparam
, param
, sizeof(struct sched_param
)))
6258 p
= find_process_by_pid(pid
);
6260 retval
= sched_setscheduler(p
, policy
, &lparam
);
6267 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
6268 * @pid: the pid in question.
6269 * @policy: new policy.
6270 * @param: structure containing the new RT priority.
6272 SYSCALL_DEFINE3(sched_setscheduler
, pid_t
, pid
, int, policy
,
6273 struct sched_param __user
*, param
)
6275 /* negative values for policy are not valid */
6279 return do_sched_setscheduler(pid
, policy
, param
);
6283 * sys_sched_setparam - set/change the RT priority of a thread
6284 * @pid: the pid in question.
6285 * @param: structure containing the new RT priority.
6287 SYSCALL_DEFINE2(sched_setparam
, pid_t
, pid
, struct sched_param __user
*, param
)
6289 return do_sched_setscheduler(pid
, -1, param
);
6293 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
6294 * @pid: the pid in question.
6296 SYSCALL_DEFINE1(sched_getscheduler
, pid_t
, pid
)
6298 struct task_struct
*p
;
6305 read_lock(&tasklist_lock
);
6306 p
= find_process_by_pid(pid
);
6308 retval
= security_task_getscheduler(p
);
6312 read_unlock(&tasklist_lock
);
6317 * sys_sched_getscheduler - get the RT priority of a thread
6318 * @pid: the pid in question.
6319 * @param: structure containing the RT priority.
6321 SYSCALL_DEFINE2(sched_getparam
, pid_t
, pid
, struct sched_param __user
*, param
)
6323 struct sched_param lp
;
6324 struct task_struct
*p
;
6327 if (!param
|| pid
< 0)
6330 read_lock(&tasklist_lock
);
6331 p
= find_process_by_pid(pid
);
6336 retval
= security_task_getscheduler(p
);
6340 lp
.sched_priority
= p
->rt_priority
;
6341 read_unlock(&tasklist_lock
);
6344 * This one might sleep, we cannot do it with a spinlock held ...
6346 retval
= copy_to_user(param
, &lp
, sizeof(*param
)) ? -EFAULT
: 0;
6351 read_unlock(&tasklist_lock
);
6355 long sched_setaffinity(pid_t pid
, const struct cpumask
*in_mask
)
6357 cpumask_var_t cpus_allowed
, new_mask
;
6358 struct task_struct
*p
;
6362 read_lock(&tasklist_lock
);
6364 p
= find_process_by_pid(pid
);
6366 read_unlock(&tasklist_lock
);
6372 * It is not safe to call set_cpus_allowed with the
6373 * tasklist_lock held. We will bump the task_struct's
6374 * usage count and then drop tasklist_lock.
6377 read_unlock(&tasklist_lock
);
6379 if (!alloc_cpumask_var(&cpus_allowed
, GFP_KERNEL
)) {
6383 if (!alloc_cpumask_var(&new_mask
, GFP_KERNEL
)) {
6385 goto out_free_cpus_allowed
;
6388 if (!check_same_owner(p
) && !capable(CAP_SYS_NICE
))
6391 retval
= security_task_setscheduler(p
, 0, NULL
);
6395 cpuset_cpus_allowed(p
, cpus_allowed
);
6396 cpumask_and(new_mask
, in_mask
, cpus_allowed
);
6398 retval
= set_cpus_allowed_ptr(p
, new_mask
);
6401 cpuset_cpus_allowed(p
, cpus_allowed
);
6402 if (!cpumask_subset(new_mask
, cpus_allowed
)) {
6404 * We must have raced with a concurrent cpuset
6405 * update. Just reset the cpus_allowed to the
6406 * cpuset's cpus_allowed
6408 cpumask_copy(new_mask
, cpus_allowed
);
6413 free_cpumask_var(new_mask
);
6414 out_free_cpus_allowed
:
6415 free_cpumask_var(cpus_allowed
);
6422 static int get_user_cpu_mask(unsigned long __user
*user_mask_ptr
, unsigned len
,
6423 struct cpumask
*new_mask
)
6425 if (len
< cpumask_size())
6426 cpumask_clear(new_mask
);
6427 else if (len
> cpumask_size())
6428 len
= cpumask_size();
6430 return copy_from_user(new_mask
, user_mask_ptr
, len
) ? -EFAULT
: 0;
6434 * sys_sched_setaffinity - set the cpu affinity of a process
6435 * @pid: pid of the process
6436 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
6437 * @user_mask_ptr: user-space pointer to the new cpu mask
6439 SYSCALL_DEFINE3(sched_setaffinity
, pid_t
, pid
, unsigned int, len
,
6440 unsigned long __user
*, user_mask_ptr
)
6442 cpumask_var_t new_mask
;
6445 if (!alloc_cpumask_var(&new_mask
, GFP_KERNEL
))
6448 retval
= get_user_cpu_mask(user_mask_ptr
, len
, new_mask
);
6450 retval
= sched_setaffinity(pid
, new_mask
);
6451 free_cpumask_var(new_mask
);
6455 long sched_getaffinity(pid_t pid
, struct cpumask
*mask
)
6457 struct task_struct
*p
;
6461 read_lock(&tasklist_lock
);
6464 p
= find_process_by_pid(pid
);
6468 retval
= security_task_getscheduler(p
);
6472 cpumask_and(mask
, &p
->cpus_allowed
, cpu_online_mask
);
6475 read_unlock(&tasklist_lock
);
6482 * sys_sched_getaffinity - get the cpu affinity of a process
6483 * @pid: pid of the process
6484 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
6485 * @user_mask_ptr: user-space pointer to hold the current cpu mask
6487 SYSCALL_DEFINE3(sched_getaffinity
, pid_t
, pid
, unsigned int, len
,
6488 unsigned long __user
*, user_mask_ptr
)
6493 if (len
< cpumask_size())
6496 if (!alloc_cpumask_var(&mask
, GFP_KERNEL
))
6499 ret
= sched_getaffinity(pid
, mask
);
6501 if (copy_to_user(user_mask_ptr
, mask
, cpumask_size()))
6504 ret
= cpumask_size();
6506 free_cpumask_var(mask
);
6512 * sys_sched_yield - yield the current processor to other threads.
6514 * This function yields the current CPU to other tasks. If there are no
6515 * other threads running on this CPU then this function will return.
6517 SYSCALL_DEFINE0(sched_yield
)
6519 struct rq
*rq
= this_rq_lock();
6521 schedstat_inc(rq
, yld_count
);
6522 current
->sched_class
->yield_task(rq
);
6525 * Since we are going to call schedule() anyway, there's
6526 * no need to preempt or enable interrupts:
6528 __release(rq
->lock
);
6529 spin_release(&rq
->lock
.dep_map
, 1, _THIS_IP_
);
6530 _raw_spin_unlock(&rq
->lock
);
6531 preempt_enable_no_resched();
6538 static void __cond_resched(void)
6540 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
6541 __might_sleep(__FILE__
, __LINE__
);
6544 * The BKS might be reacquired before we have dropped
6545 * PREEMPT_ACTIVE, which could trigger a second
6546 * cond_resched() call.
6549 add_preempt_count(PREEMPT_ACTIVE
);
6551 sub_preempt_count(PREEMPT_ACTIVE
);
6552 } while (need_resched());
6555 int __sched
_cond_resched(void)
6557 if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE
) &&
6558 system_state
== SYSTEM_RUNNING
) {
6564 EXPORT_SYMBOL(_cond_resched
);
6567 * cond_resched_lock() - if a reschedule is pending, drop the given lock,
6568 * call schedule, and on return reacquire the lock.
6570 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
6571 * operations here to prevent schedule() from being called twice (once via
6572 * spin_unlock(), once by hand).
6574 int cond_resched_lock(spinlock_t
*lock
)
6576 int resched
= need_resched() && system_state
== SYSTEM_RUNNING
;
6579 if (spin_needbreak(lock
) || resched
) {
6581 if (resched
&& need_resched())
6590 EXPORT_SYMBOL(cond_resched_lock
);
6592 int __sched
cond_resched_softirq(void)
6594 BUG_ON(!in_softirq());
6596 if (need_resched() && system_state
== SYSTEM_RUNNING
) {
6604 EXPORT_SYMBOL(cond_resched_softirq
);
6607 * yield - yield the current processor to other threads.
6609 * This is a shortcut for kernel-space yielding - it marks the
6610 * thread runnable and calls sys_sched_yield().
6612 void __sched
yield(void)
6614 set_current_state(TASK_RUNNING
);
6617 EXPORT_SYMBOL(yield
);
6620 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
6621 * that process accounting knows that this is a task in IO wait state.
6623 * But don't do that if it is a deliberate, throttling IO wait (this task
6624 * has set its backing_dev_info: the queue against which it should throttle)
6626 void __sched
io_schedule(void)
6628 struct rq
*rq
= &__raw_get_cpu_var(runqueues
);
6630 delayacct_blkio_start();
6631 atomic_inc(&rq
->nr_iowait
);
6633 atomic_dec(&rq
->nr_iowait
);
6634 delayacct_blkio_end();
6636 EXPORT_SYMBOL(io_schedule
);
6638 long __sched
io_schedule_timeout(long timeout
)
6640 struct rq
*rq
= &__raw_get_cpu_var(runqueues
);
6643 delayacct_blkio_start();
6644 atomic_inc(&rq
->nr_iowait
);
6645 ret
= schedule_timeout(timeout
);
6646 atomic_dec(&rq
->nr_iowait
);
6647 delayacct_blkio_end();
6652 * sys_sched_get_priority_max - return maximum RT priority.
6653 * @policy: scheduling class.
6655 * this syscall returns the maximum rt_priority that can be used
6656 * by a given scheduling class.
6658 SYSCALL_DEFINE1(sched_get_priority_max
, int, policy
)
6665 ret
= MAX_USER_RT_PRIO
-1;
6677 * sys_sched_get_priority_min - return minimum RT priority.
6678 * @policy: scheduling class.
6680 * this syscall returns the minimum rt_priority that can be used
6681 * by a given scheduling class.
6683 SYSCALL_DEFINE1(sched_get_priority_min
, int, policy
)
6701 * sys_sched_rr_get_interval - return the default timeslice of a process.
6702 * @pid: pid of the process.
6703 * @interval: userspace pointer to the timeslice value.
6705 * this syscall writes the default timeslice value of a given process
6706 * into the user-space timespec buffer. A value of '0' means infinity.
6708 SYSCALL_DEFINE2(sched_rr_get_interval
, pid_t
, pid
,
6709 struct timespec __user
*, interval
)
6711 struct task_struct
*p
;
6712 unsigned int time_slice
;
6720 read_lock(&tasklist_lock
);
6721 p
= find_process_by_pid(pid
);
6725 retval
= security_task_getscheduler(p
);
6730 * Time slice is 0 for SCHED_FIFO tasks and for SCHED_OTHER
6731 * tasks that are on an otherwise idle runqueue:
6734 if (p
->policy
== SCHED_RR
) {
6735 time_slice
= DEF_TIMESLICE
;
6736 } else if (p
->policy
!= SCHED_FIFO
) {
6737 struct sched_entity
*se
= &p
->se
;
6738 unsigned long flags
;
6741 rq
= task_rq_lock(p
, &flags
);
6742 if (rq
->cfs
.load
.weight
)
6743 time_slice
= NS_TO_JIFFIES(sched_slice(&rq
->cfs
, se
));
6744 task_rq_unlock(rq
, &flags
);
6746 read_unlock(&tasklist_lock
);
6747 jiffies_to_timespec(time_slice
, &t
);
6748 retval
= copy_to_user(interval
, &t
, sizeof(t
)) ? -EFAULT
: 0;
6752 read_unlock(&tasklist_lock
);
6756 static const char stat_nam
[] = TASK_STATE_TO_CHAR_STR
;
6758 void sched_show_task(struct task_struct
*p
)
6760 unsigned long free
= 0;
6763 state
= p
->state
? __ffs(p
->state
) + 1 : 0;
6764 printk(KERN_INFO
"%-13.13s %c", p
->comm
,
6765 state
< sizeof(stat_nam
) - 1 ? stat_nam
[state
] : '?');
6766 #if BITS_PER_LONG == 32
6767 if (state
== TASK_RUNNING
)
6768 printk(KERN_CONT
" running ");
6770 printk(KERN_CONT
" %08lx ", thread_saved_pc(p
));
6772 if (state
== TASK_RUNNING
)
6773 printk(KERN_CONT
" running task ");
6775 printk(KERN_CONT
" %016lx ", thread_saved_pc(p
));
6777 #ifdef CONFIG_DEBUG_STACK_USAGE
6778 free
= stack_not_used(p
);
6780 printk(KERN_CONT
"%5lu %5d %6d 0x%08lx\n", free
,
6781 task_pid_nr(p
), task_pid_nr(p
->real_parent
),
6782 (unsigned long)task_thread_info(p
)->flags
);
6784 show_stack(p
, NULL
);
6787 void show_state_filter(unsigned long state_filter
)
6789 struct task_struct
*g
, *p
;
6791 #if BITS_PER_LONG == 32
6793 " task PC stack pid father\n");
6796 " task PC stack pid father\n");
6798 read_lock(&tasklist_lock
);
6799 do_each_thread(g
, p
) {
6801 * reset the NMI-timeout, listing all files on a slow
6802 * console might take alot of time:
6804 touch_nmi_watchdog();
6805 if (!state_filter
|| (p
->state
& state_filter
))
6807 } while_each_thread(g
, p
);
6809 touch_all_softlockup_watchdogs();
6811 #ifdef CONFIG_SCHED_DEBUG
6812 sysrq_sched_debug_show();
6814 read_unlock(&tasklist_lock
);
6816 * Only show locks if all tasks are dumped:
6818 if (state_filter
== -1)
6819 debug_show_all_locks();
6822 void __cpuinit
init_idle_bootup_task(struct task_struct
*idle
)
6824 idle
->sched_class
= &idle_sched_class
;
6828 * init_idle - set up an idle thread for a given CPU
6829 * @idle: task in question
6830 * @cpu: cpu the idle task belongs to
6832 * NOTE: this function does not set the idle thread's NEED_RESCHED
6833 * flag, to make booting more robust.
6835 void __cpuinit
init_idle(struct task_struct
*idle
, int cpu
)
6837 struct rq
*rq
= cpu_rq(cpu
);
6838 unsigned long flags
;
6840 spin_lock_irqsave(&rq
->lock
, flags
);
6843 idle
->se
.exec_start
= sched_clock();
6845 idle
->prio
= idle
->normal_prio
= MAX_PRIO
;
6846 cpumask_copy(&idle
->cpus_allowed
, cpumask_of(cpu
));
6847 __set_task_cpu(idle
, cpu
);
6849 rq
->curr
= rq
->idle
= idle
;
6850 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
6853 spin_unlock_irqrestore(&rq
->lock
, flags
);
6855 /* Set the preempt count _outside_ the spinlocks! */
6856 #if defined(CONFIG_PREEMPT)
6857 task_thread_info(idle
)->preempt_count
= (idle
->lock_depth
>= 0);
6859 task_thread_info(idle
)->preempt_count
= 0;
6862 * The idle tasks have their own, simple scheduling class:
6864 idle
->sched_class
= &idle_sched_class
;
6865 ftrace_graph_init_task(idle
);
6869 * In a system that switches off the HZ timer nohz_cpu_mask
6870 * indicates which cpus entered this state. This is used
6871 * in the rcu update to wait only for active cpus. For system
6872 * which do not switch off the HZ timer nohz_cpu_mask should
6873 * always be CPU_BITS_NONE.
6875 cpumask_var_t nohz_cpu_mask
;
6878 * Increase the granularity value when there are more CPUs,
6879 * because with more CPUs the 'effective latency' as visible
6880 * to users decreases. But the relationship is not linear,
6881 * so pick a second-best guess by going with the log2 of the
6884 * This idea comes from the SD scheduler of Con Kolivas:
6886 static inline void sched_init_granularity(void)
6888 unsigned int factor
= 1 + ilog2(num_online_cpus());
6889 const unsigned long limit
= 200000000;
6891 sysctl_sched_min_granularity
*= factor
;
6892 if (sysctl_sched_min_granularity
> limit
)
6893 sysctl_sched_min_granularity
= limit
;
6895 sysctl_sched_latency
*= factor
;
6896 if (sysctl_sched_latency
> limit
)
6897 sysctl_sched_latency
= limit
;
6899 sysctl_sched_wakeup_granularity
*= factor
;
6901 sysctl_sched_shares_ratelimit
*= factor
;
6906 * This is how migration works:
6908 * 1) we queue a struct migration_req structure in the source CPU's
6909 * runqueue and wake up that CPU's migration thread.
6910 * 2) we down() the locked semaphore => thread blocks.
6911 * 3) migration thread wakes up (implicitly it forces the migrated
6912 * thread off the CPU)
6913 * 4) it gets the migration request and checks whether the migrated
6914 * task is still in the wrong runqueue.
6915 * 5) if it's in the wrong runqueue then the migration thread removes
6916 * it and puts it into the right queue.
6917 * 6) migration thread up()s the semaphore.
6918 * 7) we wake up and the migration is done.
6922 * Change a given task's CPU affinity. Migrate the thread to a
6923 * proper CPU and schedule it away if the CPU it's executing on
6924 * is removed from the allowed bitmask.
6926 * NOTE: the caller must have a valid reference to the task, the
6927 * task must not exit() & deallocate itself prematurely. The
6928 * call is not atomic; no spinlocks may be held.
6930 int set_cpus_allowed_ptr(struct task_struct
*p
, const struct cpumask
*new_mask
)
6932 struct migration_req req
;
6933 unsigned long flags
;
6937 rq
= task_rq_lock(p
, &flags
);
6938 if (!cpumask_intersects(new_mask
, cpu_online_mask
)) {
6943 if (unlikely((p
->flags
& PF_THREAD_BOUND
) && p
!= current
&&
6944 !cpumask_equal(&p
->cpus_allowed
, new_mask
))) {
6949 if (p
->sched_class
->set_cpus_allowed
)
6950 p
->sched_class
->set_cpus_allowed(p
, new_mask
);
6952 cpumask_copy(&p
->cpus_allowed
, new_mask
);
6953 p
->rt
.nr_cpus_allowed
= cpumask_weight(new_mask
);
6956 /* Can the task run on the task's current CPU? If so, we're done */
6957 if (cpumask_test_cpu(task_cpu(p
), new_mask
))
6960 if (migrate_task(p
, cpumask_any_and(cpu_online_mask
, new_mask
), &req
)) {
6961 /* Need help from migration thread: drop lock and wait. */
6962 task_rq_unlock(rq
, &flags
);
6963 wake_up_process(rq
->migration_thread
);
6964 wait_for_completion(&req
.done
);
6965 tlb_migrate_finish(p
->mm
);
6969 task_rq_unlock(rq
, &flags
);
6973 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr
);
6976 * Move (not current) task off this cpu, onto dest cpu. We're doing
6977 * this because either it can't run here any more (set_cpus_allowed()
6978 * away from this CPU, or CPU going down), or because we're
6979 * attempting to rebalance this task on exec (sched_exec).
6981 * So we race with normal scheduler movements, but that's OK, as long
6982 * as the task is no longer on this CPU.
6984 * Returns non-zero if task was successfully migrated.
6986 static int __migrate_task(struct task_struct
*p
, int src_cpu
, int dest_cpu
)
6988 struct rq
*rq_dest
, *rq_src
;
6991 if (unlikely(!cpu_active(dest_cpu
)))
6994 rq_src
= cpu_rq(src_cpu
);
6995 rq_dest
= cpu_rq(dest_cpu
);
6997 double_rq_lock(rq_src
, rq_dest
);
6998 /* Already moved. */
6999 if (task_cpu(p
) != src_cpu
)
7001 /* Affinity changed (again). */
7002 if (!cpumask_test_cpu(dest_cpu
, &p
->cpus_allowed
))
7005 on_rq
= p
->se
.on_rq
;
7007 deactivate_task(rq_src
, p
, 0);
7009 set_task_cpu(p
, dest_cpu
);
7011 activate_task(rq_dest
, p
, 0);
7012 check_preempt_curr(rq_dest
, p
, 0);
7017 double_rq_unlock(rq_src
, rq_dest
);
7022 * migration_thread - this is a highprio system thread that performs
7023 * thread migration by bumping thread off CPU then 'pushing' onto
7026 static int migration_thread(void *data
)
7028 int cpu
= (long)data
;
7032 BUG_ON(rq
->migration_thread
!= current
);
7034 set_current_state(TASK_INTERRUPTIBLE
);
7035 while (!kthread_should_stop()) {
7036 struct migration_req
*req
;
7037 struct list_head
*head
;
7039 spin_lock_irq(&rq
->lock
);
7041 if (cpu_is_offline(cpu
)) {
7042 spin_unlock_irq(&rq
->lock
);
7046 if (rq
->active_balance
) {
7047 active_load_balance(rq
, cpu
);
7048 rq
->active_balance
= 0;
7051 head
= &rq
->migration_queue
;
7053 if (list_empty(head
)) {
7054 spin_unlock_irq(&rq
->lock
);
7056 set_current_state(TASK_INTERRUPTIBLE
);
7059 req
= list_entry(head
->next
, struct migration_req
, list
);
7060 list_del_init(head
->next
);
7062 spin_unlock(&rq
->lock
);
7063 __migrate_task(req
->task
, cpu
, req
->dest_cpu
);
7066 complete(&req
->done
);
7068 __set_current_state(TASK_RUNNING
);
7072 /* Wait for kthread_stop */
7073 set_current_state(TASK_INTERRUPTIBLE
);
7074 while (!kthread_should_stop()) {
7076 set_current_state(TASK_INTERRUPTIBLE
);
7078 __set_current_state(TASK_RUNNING
);
7082 #ifdef CONFIG_HOTPLUG_CPU
7084 static int __migrate_task_irq(struct task_struct
*p
, int src_cpu
, int dest_cpu
)
7088 local_irq_disable();
7089 ret
= __migrate_task(p
, src_cpu
, dest_cpu
);
7095 * Figure out where task on dead CPU should go, use force if necessary.
7097 static void move_task_off_dead_cpu(int dead_cpu
, struct task_struct
*p
)
7100 const struct cpumask
*nodemask
= cpumask_of_node(cpu_to_node(dead_cpu
));
7103 /* Look for allowed, online CPU in same node. */
7104 for_each_cpu_and(dest_cpu
, nodemask
, cpu_online_mask
)
7105 if (cpumask_test_cpu(dest_cpu
, &p
->cpus_allowed
))
7108 /* Any allowed, online CPU? */
7109 dest_cpu
= cpumask_any_and(&p
->cpus_allowed
, cpu_online_mask
);
7110 if (dest_cpu
< nr_cpu_ids
)
7113 /* No more Mr. Nice Guy. */
7114 if (dest_cpu
>= nr_cpu_ids
) {
7115 cpuset_cpus_allowed_locked(p
, &p
->cpus_allowed
);
7116 dest_cpu
= cpumask_any_and(cpu_online_mask
, &p
->cpus_allowed
);
7119 * Don't tell them about moving exiting tasks or
7120 * kernel threads (both mm NULL), since they never
7123 if (p
->mm
&& printk_ratelimit()) {
7124 printk(KERN_INFO
"process %d (%s) no "
7125 "longer affine to cpu%d\n",
7126 task_pid_nr(p
), p
->comm
, dead_cpu
);
7131 /* It can have affinity changed while we were choosing. */
7132 if (unlikely(!__migrate_task_irq(p
, dead_cpu
, dest_cpu
)))
7137 * While a dead CPU has no uninterruptible tasks queued at this point,
7138 * it might still have a nonzero ->nr_uninterruptible counter, because
7139 * for performance reasons the counter is not stricly tracking tasks to
7140 * their home CPUs. So we just add the counter to another CPU's counter,
7141 * to keep the global sum constant after CPU-down:
7143 static void migrate_nr_uninterruptible(struct rq
*rq_src
)
7145 struct rq
*rq_dest
= cpu_rq(cpumask_any(cpu_online_mask
));
7146 unsigned long flags
;
7148 local_irq_save(flags
);
7149 double_rq_lock(rq_src
, rq_dest
);
7150 rq_dest
->nr_uninterruptible
+= rq_src
->nr_uninterruptible
;
7151 rq_src
->nr_uninterruptible
= 0;
7152 double_rq_unlock(rq_src
, rq_dest
);
7153 local_irq_restore(flags
);
7156 /* Run through task list and migrate tasks from the dead cpu. */
7157 static void migrate_live_tasks(int src_cpu
)
7159 struct task_struct
*p
, *t
;
7161 read_lock(&tasklist_lock
);
7163 do_each_thread(t
, p
) {
7167 if (task_cpu(p
) == src_cpu
)
7168 move_task_off_dead_cpu(src_cpu
, p
);
7169 } while_each_thread(t
, p
);
7171 read_unlock(&tasklist_lock
);
7175 * Schedules idle task to be the next runnable task on current CPU.
7176 * It does so by boosting its priority to highest possible.
7177 * Used by CPU offline code.
7179 void sched_idle_next(void)
7181 int this_cpu
= smp_processor_id();
7182 struct rq
*rq
= cpu_rq(this_cpu
);
7183 struct task_struct
*p
= rq
->idle
;
7184 unsigned long flags
;
7186 /* cpu has to be offline */
7187 BUG_ON(cpu_online(this_cpu
));
7190 * Strictly not necessary since rest of the CPUs are stopped by now
7191 * and interrupts disabled on the current cpu.
7193 spin_lock_irqsave(&rq
->lock
, flags
);
7195 __setscheduler(rq
, p
, SCHED_FIFO
, MAX_RT_PRIO
-1);
7197 update_rq_clock(rq
);
7198 activate_task(rq
, p
, 0);
7200 spin_unlock_irqrestore(&rq
->lock
, flags
);
7204 * Ensures that the idle task is using init_mm right before its cpu goes
7207 void idle_task_exit(void)
7209 struct mm_struct
*mm
= current
->active_mm
;
7211 BUG_ON(cpu_online(smp_processor_id()));
7214 switch_mm(mm
, &init_mm
, current
);
7218 /* called under rq->lock with disabled interrupts */
7219 static void migrate_dead(unsigned int dead_cpu
, struct task_struct
*p
)
7221 struct rq
*rq
= cpu_rq(dead_cpu
);
7223 /* Must be exiting, otherwise would be on tasklist. */
7224 BUG_ON(!p
->exit_state
);
7226 /* Cannot have done final schedule yet: would have vanished. */
7227 BUG_ON(p
->state
== TASK_DEAD
);
7232 * Drop lock around migration; if someone else moves it,
7233 * that's OK. No task can be added to this CPU, so iteration is
7236 spin_unlock_irq(&rq
->lock
);
7237 move_task_off_dead_cpu(dead_cpu
, p
);
7238 spin_lock_irq(&rq
->lock
);
7243 /* release_task() removes task from tasklist, so we won't find dead tasks. */
7244 static void migrate_dead_tasks(unsigned int dead_cpu
)
7246 struct rq
*rq
= cpu_rq(dead_cpu
);
7247 struct task_struct
*next
;
7250 if (!rq
->nr_running
)
7252 update_rq_clock(rq
);
7253 next
= pick_next_task(rq
);
7256 next
->sched_class
->put_prev_task(rq
, next
);
7257 migrate_dead(dead_cpu
, next
);
7263 * remove the tasks which were accounted by rq from calc_load_tasks.
7265 static void calc_global_load_remove(struct rq
*rq
)
7267 atomic_long_sub(rq
->calc_load_active
, &calc_load_tasks
);
7269 #endif /* CONFIG_HOTPLUG_CPU */
7271 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
7273 static struct ctl_table sd_ctl_dir
[] = {
7275 .procname
= "sched_domain",
7281 static struct ctl_table sd_ctl_root
[] = {
7283 .ctl_name
= CTL_KERN
,
7284 .procname
= "kernel",
7286 .child
= sd_ctl_dir
,
7291 static struct ctl_table
*sd_alloc_ctl_entry(int n
)
7293 struct ctl_table
*entry
=
7294 kcalloc(n
, sizeof(struct ctl_table
), GFP_KERNEL
);
7299 static void sd_free_ctl_entry(struct ctl_table
**tablep
)
7301 struct ctl_table
*entry
;
7304 * In the intermediate directories, both the child directory and
7305 * procname are dynamically allocated and could fail but the mode
7306 * will always be set. In the lowest directory the names are
7307 * static strings and all have proc handlers.
7309 for (entry
= *tablep
; entry
->mode
; entry
++) {
7311 sd_free_ctl_entry(&entry
->child
);
7312 if (entry
->proc_handler
== NULL
)
7313 kfree(entry
->procname
);
7321 set_table_entry(struct ctl_table
*entry
,
7322 const char *procname
, void *data
, int maxlen
,
7323 mode_t mode
, proc_handler
*proc_handler
)
7325 entry
->procname
= procname
;
7327 entry
->maxlen
= maxlen
;
7329 entry
->proc_handler
= proc_handler
;
7332 static struct ctl_table
*
7333 sd_alloc_ctl_domain_table(struct sched_domain
*sd
)
7335 struct ctl_table
*table
= sd_alloc_ctl_entry(13);
7340 set_table_entry(&table
[0], "min_interval", &sd
->min_interval
,
7341 sizeof(long), 0644, proc_doulongvec_minmax
);
7342 set_table_entry(&table
[1], "max_interval", &sd
->max_interval
,
7343 sizeof(long), 0644, proc_doulongvec_minmax
);
7344 set_table_entry(&table
[2], "busy_idx", &sd
->busy_idx
,
7345 sizeof(int), 0644, proc_dointvec_minmax
);
7346 set_table_entry(&table
[3], "idle_idx", &sd
->idle_idx
,
7347 sizeof(int), 0644, proc_dointvec_minmax
);
7348 set_table_entry(&table
[4], "newidle_idx", &sd
->newidle_idx
,
7349 sizeof(int), 0644, proc_dointvec_minmax
);
7350 set_table_entry(&table
[5], "wake_idx", &sd
->wake_idx
,
7351 sizeof(int), 0644, proc_dointvec_minmax
);
7352 set_table_entry(&table
[6], "forkexec_idx", &sd
->forkexec_idx
,
7353 sizeof(int), 0644, proc_dointvec_minmax
);
7354 set_table_entry(&table
[7], "busy_factor", &sd
->busy_factor
,
7355 sizeof(int), 0644, proc_dointvec_minmax
);
7356 set_table_entry(&table
[8], "imbalance_pct", &sd
->imbalance_pct
,
7357 sizeof(int), 0644, proc_dointvec_minmax
);
7358 set_table_entry(&table
[9], "cache_nice_tries",
7359 &sd
->cache_nice_tries
,
7360 sizeof(int), 0644, proc_dointvec_minmax
);
7361 set_table_entry(&table
[10], "flags", &sd
->flags
,
7362 sizeof(int), 0644, proc_dointvec_minmax
);
7363 set_table_entry(&table
[11], "name", sd
->name
,
7364 CORENAME_MAX_SIZE
, 0444, proc_dostring
);
7365 /* &table[12] is terminator */
7370 static ctl_table
*sd_alloc_ctl_cpu_table(int cpu
)
7372 struct ctl_table
*entry
, *table
;
7373 struct sched_domain
*sd
;
7374 int domain_num
= 0, i
;
7377 for_each_domain(cpu
, sd
)
7379 entry
= table
= sd_alloc_ctl_entry(domain_num
+ 1);
7384 for_each_domain(cpu
, sd
) {
7385 snprintf(buf
, 32, "domain%d", i
);
7386 entry
->procname
= kstrdup(buf
, GFP_KERNEL
);
7388 entry
->child
= sd_alloc_ctl_domain_table(sd
);
7395 static struct ctl_table_header
*sd_sysctl_header
;
7396 static void register_sched_domain_sysctl(void)
7398 int i
, cpu_num
= num_online_cpus();
7399 struct ctl_table
*entry
= sd_alloc_ctl_entry(cpu_num
+ 1);
7402 WARN_ON(sd_ctl_dir
[0].child
);
7403 sd_ctl_dir
[0].child
= entry
;
7408 for_each_online_cpu(i
) {
7409 snprintf(buf
, 32, "cpu%d", i
);
7410 entry
->procname
= kstrdup(buf
, GFP_KERNEL
);
7412 entry
->child
= sd_alloc_ctl_cpu_table(i
);
7416 WARN_ON(sd_sysctl_header
);
7417 sd_sysctl_header
= register_sysctl_table(sd_ctl_root
);
7420 /* may be called multiple times per register */
7421 static void unregister_sched_domain_sysctl(void)
7423 if (sd_sysctl_header
)
7424 unregister_sysctl_table(sd_sysctl_header
);
7425 sd_sysctl_header
= NULL
;
7426 if (sd_ctl_dir
[0].child
)
7427 sd_free_ctl_entry(&sd_ctl_dir
[0].child
);
7430 static void register_sched_domain_sysctl(void)
7433 static void unregister_sched_domain_sysctl(void)
7438 static void set_rq_online(struct rq
*rq
)
7441 const struct sched_class
*class;
7443 cpumask_set_cpu(rq
->cpu
, rq
->rd
->online
);
7446 for_each_class(class) {
7447 if (class->rq_online
)
7448 class->rq_online(rq
);
7453 static void set_rq_offline(struct rq
*rq
)
7456 const struct sched_class
*class;
7458 for_each_class(class) {
7459 if (class->rq_offline
)
7460 class->rq_offline(rq
);
7463 cpumask_clear_cpu(rq
->cpu
, rq
->rd
->online
);
7469 * migration_call - callback that gets triggered when a CPU is added.
7470 * Here we can start up the necessary migration thread for the new CPU.
7472 static int __cpuinit
7473 migration_call(struct notifier_block
*nfb
, unsigned long action
, void *hcpu
)
7475 struct task_struct
*p
;
7476 int cpu
= (long)hcpu
;
7477 unsigned long flags
;
7482 case CPU_UP_PREPARE
:
7483 case CPU_UP_PREPARE_FROZEN
:
7484 p
= kthread_create(migration_thread
, hcpu
, "migration/%d", cpu
);
7487 kthread_bind(p
, cpu
);
7488 /* Must be high prio: stop_machine expects to yield to it. */
7489 rq
= task_rq_lock(p
, &flags
);
7490 __setscheduler(rq
, p
, SCHED_FIFO
, MAX_RT_PRIO
-1);
7491 task_rq_unlock(rq
, &flags
);
7492 cpu_rq(cpu
)->migration_thread
= p
;
7496 case CPU_ONLINE_FROZEN
:
7497 /* Strictly unnecessary, as first user will wake it. */
7498 wake_up_process(cpu_rq(cpu
)->migration_thread
);
7500 /* Update our root-domain */
7502 spin_lock_irqsave(&rq
->lock
, flags
);
7503 rq
->calc_load_update
= calc_load_update
;
7504 rq
->calc_load_active
= 0;
7506 BUG_ON(!cpumask_test_cpu(cpu
, rq
->rd
->span
));
7510 spin_unlock_irqrestore(&rq
->lock
, flags
);
7513 #ifdef CONFIG_HOTPLUG_CPU
7514 case CPU_UP_CANCELED
:
7515 case CPU_UP_CANCELED_FROZEN
:
7516 if (!cpu_rq(cpu
)->migration_thread
)
7518 /* Unbind it from offline cpu so it can run. Fall thru. */
7519 kthread_bind(cpu_rq(cpu
)->migration_thread
,
7520 cpumask_any(cpu_online_mask
));
7521 kthread_stop(cpu_rq(cpu
)->migration_thread
);
7522 cpu_rq(cpu
)->migration_thread
= NULL
;
7526 case CPU_DEAD_FROZEN
:
7527 cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
7528 migrate_live_tasks(cpu
);
7530 kthread_stop(rq
->migration_thread
);
7531 rq
->migration_thread
= NULL
;
7532 /* Idle task back to normal (off runqueue, low prio) */
7533 spin_lock_irq(&rq
->lock
);
7534 update_rq_clock(rq
);
7535 deactivate_task(rq
, rq
->idle
, 0);
7536 rq
->idle
->static_prio
= MAX_PRIO
;
7537 __setscheduler(rq
, rq
->idle
, SCHED_NORMAL
, 0);
7538 rq
->idle
->sched_class
= &idle_sched_class
;
7539 migrate_dead_tasks(cpu
);
7540 spin_unlock_irq(&rq
->lock
);
7542 migrate_nr_uninterruptible(rq
);
7543 BUG_ON(rq
->nr_running
!= 0);
7544 calc_global_load_remove(rq
);
7546 * No need to migrate the tasks: it was best-effort if
7547 * they didn't take sched_hotcpu_mutex. Just wake up
7550 spin_lock_irq(&rq
->lock
);
7551 while (!list_empty(&rq
->migration_queue
)) {
7552 struct migration_req
*req
;
7554 req
= list_entry(rq
->migration_queue
.next
,
7555 struct migration_req
, list
);
7556 list_del_init(&req
->list
);
7557 spin_unlock_irq(&rq
->lock
);
7558 complete(&req
->done
);
7559 spin_lock_irq(&rq
->lock
);
7561 spin_unlock_irq(&rq
->lock
);
7565 case CPU_DYING_FROZEN
:
7566 /* Update our root-domain */
7568 spin_lock_irqsave(&rq
->lock
, flags
);
7570 BUG_ON(!cpumask_test_cpu(cpu
, rq
->rd
->span
));
7573 spin_unlock_irqrestore(&rq
->lock
, flags
);
7581 * Register at high priority so that task migration (migrate_all_tasks)
7582 * happens before everything else. This has to be lower priority than
7583 * the notifier in the perf_counter subsystem, though.
7585 static struct notifier_block __cpuinitdata migration_notifier
= {
7586 .notifier_call
= migration_call
,
7590 static int __init
migration_init(void)
7592 void *cpu
= (void *)(long)smp_processor_id();
7595 /* Start one for the boot CPU: */
7596 err
= migration_call(&migration_notifier
, CPU_UP_PREPARE
, cpu
);
7597 BUG_ON(err
== NOTIFY_BAD
);
7598 migration_call(&migration_notifier
, CPU_ONLINE
, cpu
);
7599 register_cpu_notifier(&migration_notifier
);
7603 early_initcall(migration_init
);
7608 #ifdef CONFIG_SCHED_DEBUG
7610 static int sched_domain_debug_one(struct sched_domain
*sd
, int cpu
, int level
,
7611 struct cpumask
*groupmask
)
7613 struct sched_group
*group
= sd
->groups
;
7616 cpulist_scnprintf(str
, sizeof(str
), sched_domain_span(sd
));
7617 cpumask_clear(groupmask
);
7619 printk(KERN_DEBUG
"%*s domain %d: ", level
, "", level
);
7621 if (!(sd
->flags
& SD_LOAD_BALANCE
)) {
7622 printk("does not load-balance\n");
7624 printk(KERN_ERR
"ERROR: !SD_LOAD_BALANCE domain"
7629 printk(KERN_CONT
"span %s level %s\n", str
, sd
->name
);
7631 if (!cpumask_test_cpu(cpu
, sched_domain_span(sd
))) {
7632 printk(KERN_ERR
"ERROR: domain->span does not contain "
7635 if (!cpumask_test_cpu(cpu
, sched_group_cpus(group
))) {
7636 printk(KERN_ERR
"ERROR: domain->groups does not contain"
7640 printk(KERN_DEBUG
"%*s groups:", level
+ 1, "");
7644 printk(KERN_ERR
"ERROR: group is NULL\n");
7648 if (!group
->__cpu_power
) {
7649 printk(KERN_CONT
"\n");
7650 printk(KERN_ERR
"ERROR: domain->cpu_power not "
7655 if (!cpumask_weight(sched_group_cpus(group
))) {
7656 printk(KERN_CONT
"\n");
7657 printk(KERN_ERR
"ERROR: empty group\n");
7661 if (cpumask_intersects(groupmask
, sched_group_cpus(group
))) {
7662 printk(KERN_CONT
"\n");
7663 printk(KERN_ERR
"ERROR: repeated CPUs\n");
7667 cpumask_or(groupmask
, groupmask
, sched_group_cpus(group
));
7669 cpulist_scnprintf(str
, sizeof(str
), sched_group_cpus(group
));
7671 printk(KERN_CONT
" %s", str
);
7672 if (group
->__cpu_power
!= SCHED_LOAD_SCALE
) {
7673 printk(KERN_CONT
" (__cpu_power = %d)",
7674 group
->__cpu_power
);
7677 group
= group
->next
;
7678 } while (group
!= sd
->groups
);
7679 printk(KERN_CONT
"\n");
7681 if (!cpumask_equal(sched_domain_span(sd
), groupmask
))
7682 printk(KERN_ERR
"ERROR: groups don't span domain->span\n");
7685 !cpumask_subset(groupmask
, sched_domain_span(sd
->parent
)))
7686 printk(KERN_ERR
"ERROR: parent span is not a superset "
7687 "of domain->span\n");
7691 static void sched_domain_debug(struct sched_domain
*sd
, int cpu
)
7693 cpumask_var_t groupmask
;
7697 printk(KERN_DEBUG
"CPU%d attaching NULL sched-domain.\n", cpu
);
7701 printk(KERN_DEBUG
"CPU%d attaching sched-domain:\n", cpu
);
7703 if (!alloc_cpumask_var(&groupmask
, GFP_KERNEL
)) {
7704 printk(KERN_DEBUG
"Cannot load-balance (out of memory)\n");
7709 if (sched_domain_debug_one(sd
, cpu
, level
, groupmask
))
7716 free_cpumask_var(groupmask
);
7718 #else /* !CONFIG_SCHED_DEBUG */
7719 # define sched_domain_debug(sd, cpu) do { } while (0)
7720 #endif /* CONFIG_SCHED_DEBUG */
7722 static int sd_degenerate(struct sched_domain
*sd
)
7724 if (cpumask_weight(sched_domain_span(sd
)) == 1)
7727 /* Following flags need at least 2 groups */
7728 if (sd
->flags
& (SD_LOAD_BALANCE
|
7729 SD_BALANCE_NEWIDLE
|
7733 SD_SHARE_PKG_RESOURCES
)) {
7734 if (sd
->groups
!= sd
->groups
->next
)
7738 /* Following flags don't use groups */
7739 if (sd
->flags
& (SD_WAKE_IDLE
|
7748 sd_parent_degenerate(struct sched_domain
*sd
, struct sched_domain
*parent
)
7750 unsigned long cflags
= sd
->flags
, pflags
= parent
->flags
;
7752 if (sd_degenerate(parent
))
7755 if (!cpumask_equal(sched_domain_span(sd
), sched_domain_span(parent
)))
7758 /* Does parent contain flags not in child? */
7759 /* WAKE_BALANCE is a subset of WAKE_AFFINE */
7760 if (cflags
& SD_WAKE_AFFINE
)
7761 pflags
&= ~SD_WAKE_BALANCE
;
7762 /* Flags needing groups don't count if only 1 group in parent */
7763 if (parent
->groups
== parent
->groups
->next
) {
7764 pflags
&= ~(SD_LOAD_BALANCE
|
7765 SD_BALANCE_NEWIDLE
|
7769 SD_SHARE_PKG_RESOURCES
);
7770 if (nr_node_ids
== 1)
7771 pflags
&= ~SD_SERIALIZE
;
7773 if (~cflags
& pflags
)
7779 static void free_rootdomain(struct root_domain
*rd
)
7781 cpupri_cleanup(&rd
->cpupri
);
7783 free_cpumask_var(rd
->rto_mask
);
7784 free_cpumask_var(rd
->online
);
7785 free_cpumask_var(rd
->span
);
7789 static void rq_attach_root(struct rq
*rq
, struct root_domain
*rd
)
7791 struct root_domain
*old_rd
= NULL
;
7792 unsigned long flags
;
7794 spin_lock_irqsave(&rq
->lock
, flags
);
7799 if (cpumask_test_cpu(rq
->cpu
, old_rd
->online
))
7802 cpumask_clear_cpu(rq
->cpu
, old_rd
->span
);
7805 * If we dont want to free the old_rt yet then
7806 * set old_rd to NULL to skip the freeing later
7809 if (!atomic_dec_and_test(&old_rd
->refcount
))
7813 atomic_inc(&rd
->refcount
);
7816 cpumask_set_cpu(rq
->cpu
, rd
->span
);
7817 if (cpumask_test_cpu(rq
->cpu
, cpu_online_mask
))
7820 spin_unlock_irqrestore(&rq
->lock
, flags
);
7823 free_rootdomain(old_rd
);
7826 static int __init_refok
init_rootdomain(struct root_domain
*rd
, bool bootmem
)
7828 gfp_t gfp
= GFP_KERNEL
;
7830 memset(rd
, 0, sizeof(*rd
));
7835 if (!alloc_cpumask_var(&rd
->span
, gfp
))
7837 if (!alloc_cpumask_var(&rd
->online
, gfp
))
7839 if (!alloc_cpumask_var(&rd
->rto_mask
, gfp
))
7842 if (cpupri_init(&rd
->cpupri
, bootmem
) != 0)
7847 free_cpumask_var(rd
->rto_mask
);
7849 free_cpumask_var(rd
->online
);
7851 free_cpumask_var(rd
->span
);
7856 static void init_defrootdomain(void)
7858 init_rootdomain(&def_root_domain
, true);
7860 atomic_set(&def_root_domain
.refcount
, 1);
7863 static struct root_domain
*alloc_rootdomain(void)
7865 struct root_domain
*rd
;
7867 rd
= kmalloc(sizeof(*rd
), GFP_KERNEL
);
7871 if (init_rootdomain(rd
, false) != 0) {
7880 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
7881 * hold the hotplug lock.
7884 cpu_attach_domain(struct sched_domain
*sd
, struct root_domain
*rd
, int cpu
)
7886 struct rq
*rq
= cpu_rq(cpu
);
7887 struct sched_domain
*tmp
;
7889 /* Remove the sched domains which do not contribute to scheduling. */
7890 for (tmp
= sd
; tmp
; ) {
7891 struct sched_domain
*parent
= tmp
->parent
;
7895 if (sd_parent_degenerate(tmp
, parent
)) {
7896 tmp
->parent
= parent
->parent
;
7898 parent
->parent
->child
= tmp
;
7903 if (sd
&& sd_degenerate(sd
)) {
7909 sched_domain_debug(sd
, cpu
);
7911 rq_attach_root(rq
, rd
);
7912 rcu_assign_pointer(rq
->sd
, sd
);
7915 /* cpus with isolated domains */
7916 static cpumask_var_t cpu_isolated_map
;
7918 /* Setup the mask of cpus configured for isolated domains */
7919 static int __init
isolated_cpu_setup(char *str
)
7921 cpulist_parse(str
, cpu_isolated_map
);
7925 __setup("isolcpus=", isolated_cpu_setup
);
7928 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
7929 * to a function which identifies what group(along with sched group) a CPU
7930 * belongs to. The return value of group_fn must be a >= 0 and < nr_cpu_ids
7931 * (due to the fact that we keep track of groups covered with a struct cpumask).
7933 * init_sched_build_groups will build a circular linked list of the groups
7934 * covered by the given span, and will set each group's ->cpumask correctly,
7935 * and ->cpu_power to 0.
7938 init_sched_build_groups(const struct cpumask
*span
,
7939 const struct cpumask
*cpu_map
,
7940 int (*group_fn
)(int cpu
, const struct cpumask
*cpu_map
,
7941 struct sched_group
**sg
,
7942 struct cpumask
*tmpmask
),
7943 struct cpumask
*covered
, struct cpumask
*tmpmask
)
7945 struct sched_group
*first
= NULL
, *last
= NULL
;
7948 cpumask_clear(covered
);
7950 for_each_cpu(i
, span
) {
7951 struct sched_group
*sg
;
7952 int group
= group_fn(i
, cpu_map
, &sg
, tmpmask
);
7955 if (cpumask_test_cpu(i
, covered
))
7958 cpumask_clear(sched_group_cpus(sg
));
7959 sg
->__cpu_power
= 0;
7961 for_each_cpu(j
, span
) {
7962 if (group_fn(j
, cpu_map
, NULL
, tmpmask
) != group
)
7965 cpumask_set_cpu(j
, covered
);
7966 cpumask_set_cpu(j
, sched_group_cpus(sg
));
7977 #define SD_NODES_PER_DOMAIN 16
7982 * find_next_best_node - find the next node to include in a sched_domain
7983 * @node: node whose sched_domain we're building
7984 * @used_nodes: nodes already in the sched_domain
7986 * Find the next node to include in a given scheduling domain. Simply
7987 * finds the closest node not already in the @used_nodes map.
7989 * Should use nodemask_t.
7991 static int find_next_best_node(int node
, nodemask_t
*used_nodes
)
7993 int i
, n
, val
, min_val
, best_node
= 0;
7997 for (i
= 0; i
< nr_node_ids
; i
++) {
7998 /* Start at @node */
7999 n
= (node
+ i
) % nr_node_ids
;
8001 if (!nr_cpus_node(n
))
8004 /* Skip already used nodes */
8005 if (node_isset(n
, *used_nodes
))
8008 /* Simple min distance search */
8009 val
= node_distance(node
, n
);
8011 if (val
< min_val
) {
8017 node_set(best_node
, *used_nodes
);
8022 * sched_domain_node_span - get a cpumask for a node's sched_domain
8023 * @node: node whose cpumask we're constructing
8024 * @span: resulting cpumask
8026 * Given a node, construct a good cpumask for its sched_domain to span. It
8027 * should be one that prevents unnecessary balancing, but also spreads tasks
8030 static void sched_domain_node_span(int node
, struct cpumask
*span
)
8032 nodemask_t used_nodes
;
8035 cpumask_clear(span
);
8036 nodes_clear(used_nodes
);
8038 cpumask_or(span
, span
, cpumask_of_node(node
));
8039 node_set(node
, used_nodes
);
8041 for (i
= 1; i
< SD_NODES_PER_DOMAIN
; i
++) {
8042 int next_node
= find_next_best_node(node
, &used_nodes
);
8044 cpumask_or(span
, span
, cpumask_of_node(next_node
));
8047 #endif /* CONFIG_NUMA */
8049 int sched_smt_power_savings
= 0, sched_mc_power_savings
= 0;
8052 * The cpus mask in sched_group and sched_domain hangs off the end.
8054 * ( See the the comments in include/linux/sched.h:struct sched_group
8055 * and struct sched_domain. )
8057 struct static_sched_group
{
8058 struct sched_group sg
;
8059 DECLARE_BITMAP(cpus
, CONFIG_NR_CPUS
);
8062 struct static_sched_domain
{
8063 struct sched_domain sd
;
8064 DECLARE_BITMAP(span
, CONFIG_NR_CPUS
);
8068 * SMT sched-domains:
8070 #ifdef CONFIG_SCHED_SMT
8071 static DEFINE_PER_CPU(struct static_sched_domain
, cpu_domains
);
8072 static DEFINE_PER_CPU(struct static_sched_group
, sched_group_cpus
);
8075 cpu_to_cpu_group(int cpu
, const struct cpumask
*cpu_map
,
8076 struct sched_group
**sg
, struct cpumask
*unused
)
8079 *sg
= &per_cpu(sched_group_cpus
, cpu
).sg
;
8082 #endif /* CONFIG_SCHED_SMT */
8085 * multi-core sched-domains:
8087 #ifdef CONFIG_SCHED_MC
8088 static DEFINE_PER_CPU(struct static_sched_domain
, core_domains
);
8089 static DEFINE_PER_CPU(struct static_sched_group
, sched_group_core
);
8090 #endif /* CONFIG_SCHED_MC */
8092 #if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
8094 cpu_to_core_group(int cpu
, const struct cpumask
*cpu_map
,
8095 struct sched_group
**sg
, struct cpumask
*mask
)
8099 cpumask_and(mask
, topology_thread_cpumask(cpu
), cpu_map
);
8100 group
= cpumask_first(mask
);
8102 *sg
= &per_cpu(sched_group_core
, group
).sg
;
8105 #elif defined(CONFIG_SCHED_MC)
8107 cpu_to_core_group(int cpu
, const struct cpumask
*cpu_map
,
8108 struct sched_group
**sg
, struct cpumask
*unused
)
8111 *sg
= &per_cpu(sched_group_core
, cpu
).sg
;
8116 static DEFINE_PER_CPU(struct static_sched_domain
, phys_domains
);
8117 static DEFINE_PER_CPU(struct static_sched_group
, sched_group_phys
);
8120 cpu_to_phys_group(int cpu
, const struct cpumask
*cpu_map
,
8121 struct sched_group
**sg
, struct cpumask
*mask
)
8124 #ifdef CONFIG_SCHED_MC
8125 cpumask_and(mask
, cpu_coregroup_mask(cpu
), cpu_map
);
8126 group
= cpumask_first(mask
);
8127 #elif defined(CONFIG_SCHED_SMT)
8128 cpumask_and(mask
, topology_thread_cpumask(cpu
), cpu_map
);
8129 group
= cpumask_first(mask
);
8134 *sg
= &per_cpu(sched_group_phys
, group
).sg
;
8140 * The init_sched_build_groups can't handle what we want to do with node
8141 * groups, so roll our own. Now each node has its own list of groups which
8142 * gets dynamically allocated.
8144 static DEFINE_PER_CPU(struct static_sched_domain
, node_domains
);
8145 static struct sched_group
***sched_group_nodes_bycpu
;
8147 static DEFINE_PER_CPU(struct static_sched_domain
, allnodes_domains
);
8148 static DEFINE_PER_CPU(struct static_sched_group
, sched_group_allnodes
);
8150 static int cpu_to_allnodes_group(int cpu
, const struct cpumask
*cpu_map
,
8151 struct sched_group
**sg
,
8152 struct cpumask
*nodemask
)
8156 cpumask_and(nodemask
, cpumask_of_node(cpu_to_node(cpu
)), cpu_map
);
8157 group
= cpumask_first(nodemask
);
8160 *sg
= &per_cpu(sched_group_allnodes
, group
).sg
;
8164 static void init_numa_sched_groups_power(struct sched_group
*group_head
)
8166 struct sched_group
*sg
= group_head
;
8172 for_each_cpu(j
, sched_group_cpus(sg
)) {
8173 struct sched_domain
*sd
;
8175 sd
= &per_cpu(phys_domains
, j
).sd
;
8176 if (j
!= group_first_cpu(sd
->groups
)) {
8178 * Only add "power" once for each
8184 sg_inc_cpu_power(sg
, sd
->groups
->__cpu_power
);
8187 } while (sg
!= group_head
);
8189 #endif /* CONFIG_NUMA */
8192 /* Free memory allocated for various sched_group structures */
8193 static void free_sched_groups(const struct cpumask
*cpu_map
,
8194 struct cpumask
*nodemask
)
8198 for_each_cpu(cpu
, cpu_map
) {
8199 struct sched_group
**sched_group_nodes
8200 = sched_group_nodes_bycpu
[cpu
];
8202 if (!sched_group_nodes
)
8205 for (i
= 0; i
< nr_node_ids
; i
++) {
8206 struct sched_group
*oldsg
, *sg
= sched_group_nodes
[i
];
8208 cpumask_and(nodemask
, cpumask_of_node(i
), cpu_map
);
8209 if (cpumask_empty(nodemask
))
8219 if (oldsg
!= sched_group_nodes
[i
])
8222 kfree(sched_group_nodes
);
8223 sched_group_nodes_bycpu
[cpu
] = NULL
;
8226 #else /* !CONFIG_NUMA */
8227 static void free_sched_groups(const struct cpumask
*cpu_map
,
8228 struct cpumask
*nodemask
)
8231 #endif /* CONFIG_NUMA */
8234 * Initialize sched groups cpu_power.
8236 * cpu_power indicates the capacity of sched group, which is used while
8237 * distributing the load between different sched groups in a sched domain.
8238 * Typically cpu_power for all the groups in a sched domain will be same unless
8239 * there are asymmetries in the topology. If there are asymmetries, group
8240 * having more cpu_power will pickup more load compared to the group having
8243 * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
8244 * the maximum number of tasks a group can handle in the presence of other idle
8245 * or lightly loaded groups in the same sched domain.
8247 static void init_sched_groups_power(int cpu
, struct sched_domain
*sd
)
8249 struct sched_domain
*child
;
8250 struct sched_group
*group
;
8252 WARN_ON(!sd
|| !sd
->groups
);
8254 if (cpu
!= group_first_cpu(sd
->groups
))
8259 sd
->groups
->__cpu_power
= 0;
8262 * For perf policy, if the groups in child domain share resources
8263 * (for example cores sharing some portions of the cache hierarchy
8264 * or SMT), then set this domain groups cpu_power such that each group
8265 * can handle only one task, when there are other idle groups in the
8266 * same sched domain.
8268 if (!child
|| (!(sd
->flags
& SD_POWERSAVINGS_BALANCE
) &&
8270 (SD_SHARE_CPUPOWER
| SD_SHARE_PKG_RESOURCES
)))) {
8271 sg_inc_cpu_power(sd
->groups
, SCHED_LOAD_SCALE
);
8276 * add cpu_power of each child group to this groups cpu_power
8278 group
= child
->groups
;
8280 sg_inc_cpu_power(sd
->groups
, group
->__cpu_power
);
8281 group
= group
->next
;
8282 } while (group
!= child
->groups
);
8286 * Initializers for schedule domains
8287 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
8290 #ifdef CONFIG_SCHED_DEBUG
8291 # define SD_INIT_NAME(sd, type) sd->name = #type
8293 # define SD_INIT_NAME(sd, type) do { } while (0)
8296 #define SD_INIT(sd, type) sd_init_##type(sd)
8298 #define SD_INIT_FUNC(type) \
8299 static noinline void sd_init_##type(struct sched_domain *sd) \
8301 memset(sd, 0, sizeof(*sd)); \
8302 *sd = SD_##type##_INIT; \
8303 sd->level = SD_LV_##type; \
8304 SD_INIT_NAME(sd, type); \
8309 SD_INIT_FUNC(ALLNODES
)
8312 #ifdef CONFIG_SCHED_SMT
8313 SD_INIT_FUNC(SIBLING
)
8315 #ifdef CONFIG_SCHED_MC
8319 static int default_relax_domain_level
= -1;
8321 static int __init
setup_relax_domain_level(char *str
)
8325 val
= simple_strtoul(str
, NULL
, 0);
8326 if (val
< SD_LV_MAX
)
8327 default_relax_domain_level
= val
;
8331 __setup("relax_domain_level=", setup_relax_domain_level
);
8333 static void set_domain_attribute(struct sched_domain
*sd
,
8334 struct sched_domain_attr
*attr
)
8338 if (!attr
|| attr
->relax_domain_level
< 0) {
8339 if (default_relax_domain_level
< 0)
8342 request
= default_relax_domain_level
;
8344 request
= attr
->relax_domain_level
;
8345 if (request
< sd
->level
) {
8346 /* turn off idle balance on this domain */
8347 sd
->flags
&= ~(SD_WAKE_IDLE
|SD_BALANCE_NEWIDLE
);
8349 /* turn on idle balance on this domain */
8350 sd
->flags
|= (SD_WAKE_IDLE_FAR
|SD_BALANCE_NEWIDLE
);
8355 * Build sched domains for a given set of cpus and attach the sched domains
8356 * to the individual cpus
8358 static int __build_sched_domains(const struct cpumask
*cpu_map
,
8359 struct sched_domain_attr
*attr
)
8361 int i
, err
= -ENOMEM
;
8362 struct root_domain
*rd
;
8363 cpumask_var_t nodemask
, this_sibling_map
, this_core_map
, send_covered
,
8366 cpumask_var_t domainspan
, covered
, notcovered
;
8367 struct sched_group
**sched_group_nodes
= NULL
;
8368 int sd_allnodes
= 0;
8370 if (!alloc_cpumask_var(&domainspan
, GFP_KERNEL
))
8372 if (!alloc_cpumask_var(&covered
, GFP_KERNEL
))
8373 goto free_domainspan
;
8374 if (!alloc_cpumask_var(¬covered
, GFP_KERNEL
))
8378 if (!alloc_cpumask_var(&nodemask
, GFP_KERNEL
))
8379 goto free_notcovered
;
8380 if (!alloc_cpumask_var(&this_sibling_map
, GFP_KERNEL
))
8382 if (!alloc_cpumask_var(&this_core_map
, GFP_KERNEL
))
8383 goto free_this_sibling_map
;
8384 if (!alloc_cpumask_var(&send_covered
, GFP_KERNEL
))
8385 goto free_this_core_map
;
8386 if (!alloc_cpumask_var(&tmpmask
, GFP_KERNEL
))
8387 goto free_send_covered
;
8391 * Allocate the per-node list of sched groups
8393 sched_group_nodes
= kcalloc(nr_node_ids
, sizeof(struct sched_group
*),
8395 if (!sched_group_nodes
) {
8396 printk(KERN_WARNING
"Can not alloc sched group node list\n");
8401 rd
= alloc_rootdomain();
8403 printk(KERN_WARNING
"Cannot alloc root domain\n");
8404 goto free_sched_groups
;
8408 sched_group_nodes_bycpu
[cpumask_first(cpu_map
)] = sched_group_nodes
;
8412 * Set up domains for cpus specified by the cpu_map.
8414 for_each_cpu(i
, cpu_map
) {
8415 struct sched_domain
*sd
= NULL
, *p
;
8417 cpumask_and(nodemask
, cpumask_of_node(cpu_to_node(i
)), cpu_map
);
8420 if (cpumask_weight(cpu_map
) >
8421 SD_NODES_PER_DOMAIN
*cpumask_weight(nodemask
)) {
8422 sd
= &per_cpu(allnodes_domains
, i
).sd
;
8423 SD_INIT(sd
, ALLNODES
);
8424 set_domain_attribute(sd
, attr
);
8425 cpumask_copy(sched_domain_span(sd
), cpu_map
);
8426 cpu_to_allnodes_group(i
, cpu_map
, &sd
->groups
, tmpmask
);
8432 sd
= &per_cpu(node_domains
, i
).sd
;
8434 set_domain_attribute(sd
, attr
);
8435 sched_domain_node_span(cpu_to_node(i
), sched_domain_span(sd
));
8439 cpumask_and(sched_domain_span(sd
),
8440 sched_domain_span(sd
), cpu_map
);
8444 sd
= &per_cpu(phys_domains
, i
).sd
;
8446 set_domain_attribute(sd
, attr
);
8447 cpumask_copy(sched_domain_span(sd
), nodemask
);
8451 cpu_to_phys_group(i
, cpu_map
, &sd
->groups
, tmpmask
);
8453 #ifdef CONFIG_SCHED_MC
8455 sd
= &per_cpu(core_domains
, i
).sd
;
8457 set_domain_attribute(sd
, attr
);
8458 cpumask_and(sched_domain_span(sd
), cpu_map
,
8459 cpu_coregroup_mask(i
));
8462 cpu_to_core_group(i
, cpu_map
, &sd
->groups
, tmpmask
);
8465 #ifdef CONFIG_SCHED_SMT
8467 sd
= &per_cpu(cpu_domains
, i
).sd
;
8468 SD_INIT(sd
, SIBLING
);
8469 set_domain_attribute(sd
, attr
);
8470 cpumask_and(sched_domain_span(sd
),
8471 topology_thread_cpumask(i
), cpu_map
);
8474 cpu_to_cpu_group(i
, cpu_map
, &sd
->groups
, tmpmask
);
8478 #ifdef CONFIG_SCHED_SMT
8479 /* Set up CPU (sibling) groups */
8480 for_each_cpu(i
, cpu_map
) {
8481 cpumask_and(this_sibling_map
,
8482 topology_thread_cpumask(i
), cpu_map
);
8483 if (i
!= cpumask_first(this_sibling_map
))
8486 init_sched_build_groups(this_sibling_map
, cpu_map
,
8488 send_covered
, tmpmask
);
8492 #ifdef CONFIG_SCHED_MC
8493 /* Set up multi-core groups */
8494 for_each_cpu(i
, cpu_map
) {
8495 cpumask_and(this_core_map
, cpu_coregroup_mask(i
), cpu_map
);
8496 if (i
!= cpumask_first(this_core_map
))
8499 init_sched_build_groups(this_core_map
, cpu_map
,
8501 send_covered
, tmpmask
);
8505 /* Set up physical groups */
8506 for (i
= 0; i
< nr_node_ids
; i
++) {
8507 cpumask_and(nodemask
, cpumask_of_node(i
), cpu_map
);
8508 if (cpumask_empty(nodemask
))
8511 init_sched_build_groups(nodemask
, cpu_map
,
8513 send_covered
, tmpmask
);
8517 /* Set up node groups */
8519 init_sched_build_groups(cpu_map
, cpu_map
,
8520 &cpu_to_allnodes_group
,
8521 send_covered
, tmpmask
);
8524 for (i
= 0; i
< nr_node_ids
; i
++) {
8525 /* Set up node groups */
8526 struct sched_group
*sg
, *prev
;
8529 cpumask_clear(covered
);
8530 cpumask_and(nodemask
, cpumask_of_node(i
), cpu_map
);
8531 if (cpumask_empty(nodemask
)) {
8532 sched_group_nodes
[i
] = NULL
;
8536 sched_domain_node_span(i
, domainspan
);
8537 cpumask_and(domainspan
, domainspan
, cpu_map
);
8539 sg
= kmalloc_node(sizeof(struct sched_group
) + cpumask_size(),
8542 printk(KERN_WARNING
"Can not alloc domain group for "
8546 sched_group_nodes
[i
] = sg
;
8547 for_each_cpu(j
, nodemask
) {
8548 struct sched_domain
*sd
;
8550 sd
= &per_cpu(node_domains
, j
).sd
;
8553 sg
->__cpu_power
= 0;
8554 cpumask_copy(sched_group_cpus(sg
), nodemask
);
8556 cpumask_or(covered
, covered
, nodemask
);
8559 for (j
= 0; j
< nr_node_ids
; j
++) {
8560 int n
= (i
+ j
) % nr_node_ids
;
8562 cpumask_complement(notcovered
, covered
);
8563 cpumask_and(tmpmask
, notcovered
, cpu_map
);
8564 cpumask_and(tmpmask
, tmpmask
, domainspan
);
8565 if (cpumask_empty(tmpmask
))
8568 cpumask_and(tmpmask
, tmpmask
, cpumask_of_node(n
));
8569 if (cpumask_empty(tmpmask
))
8572 sg
= kmalloc_node(sizeof(struct sched_group
) +
8577 "Can not alloc domain group for node %d\n", j
);
8580 sg
->__cpu_power
= 0;
8581 cpumask_copy(sched_group_cpus(sg
), tmpmask
);
8582 sg
->next
= prev
->next
;
8583 cpumask_or(covered
, covered
, tmpmask
);
8590 /* Calculate CPU power for physical packages and nodes */
8591 #ifdef CONFIG_SCHED_SMT
8592 for_each_cpu(i
, cpu_map
) {
8593 struct sched_domain
*sd
= &per_cpu(cpu_domains
, i
).sd
;
8595 init_sched_groups_power(i
, sd
);
8598 #ifdef CONFIG_SCHED_MC
8599 for_each_cpu(i
, cpu_map
) {
8600 struct sched_domain
*sd
= &per_cpu(core_domains
, i
).sd
;
8602 init_sched_groups_power(i
, sd
);
8606 for_each_cpu(i
, cpu_map
) {
8607 struct sched_domain
*sd
= &per_cpu(phys_domains
, i
).sd
;
8609 init_sched_groups_power(i
, sd
);
8613 for (i
= 0; i
< nr_node_ids
; i
++)
8614 init_numa_sched_groups_power(sched_group_nodes
[i
]);
8617 struct sched_group
*sg
;
8619 cpu_to_allnodes_group(cpumask_first(cpu_map
), cpu_map
, &sg
,
8621 init_numa_sched_groups_power(sg
);
8625 /* Attach the domains */
8626 for_each_cpu(i
, cpu_map
) {
8627 struct sched_domain
*sd
;
8628 #ifdef CONFIG_SCHED_SMT
8629 sd
= &per_cpu(cpu_domains
, i
).sd
;
8630 #elif defined(CONFIG_SCHED_MC)
8631 sd
= &per_cpu(core_domains
, i
).sd
;
8633 sd
= &per_cpu(phys_domains
, i
).sd
;
8635 cpu_attach_domain(sd
, rd
, i
);
8641 free_cpumask_var(tmpmask
);
8643 free_cpumask_var(send_covered
);
8645 free_cpumask_var(this_core_map
);
8646 free_this_sibling_map
:
8647 free_cpumask_var(this_sibling_map
);
8649 free_cpumask_var(nodemask
);
8652 free_cpumask_var(notcovered
);
8654 free_cpumask_var(covered
);
8656 free_cpumask_var(domainspan
);
8663 kfree(sched_group_nodes
);
8669 free_sched_groups(cpu_map
, tmpmask
);
8670 free_rootdomain(rd
);
8675 static int build_sched_domains(const struct cpumask
*cpu_map
)
8677 return __build_sched_domains(cpu_map
, NULL
);
8680 static struct cpumask
*doms_cur
; /* current sched domains */
8681 static int ndoms_cur
; /* number of sched domains in 'doms_cur' */
8682 static struct sched_domain_attr
*dattr_cur
;
8683 /* attribues of custom domains in 'doms_cur' */
8686 * Special case: If a kmalloc of a doms_cur partition (array of
8687 * cpumask) fails, then fallback to a single sched domain,
8688 * as determined by the single cpumask fallback_doms.
8690 static cpumask_var_t fallback_doms
;
8693 * arch_update_cpu_topology lets virtualized architectures update the
8694 * cpu core maps. It is supposed to return 1 if the topology changed
8695 * or 0 if it stayed the same.
8697 int __attribute__((weak
)) arch_update_cpu_topology(void)
8703 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
8704 * For now this just excludes isolated cpus, but could be used to
8705 * exclude other special cases in the future.
8707 static int arch_init_sched_domains(const struct cpumask
*cpu_map
)
8711 arch_update_cpu_topology();
8713 doms_cur
= kmalloc(cpumask_size(), GFP_KERNEL
);
8715 doms_cur
= fallback_doms
;
8716 cpumask_andnot(doms_cur
, cpu_map
, cpu_isolated_map
);
8718 err
= build_sched_domains(doms_cur
);
8719 register_sched_domain_sysctl();
8724 static void arch_destroy_sched_domains(const struct cpumask
*cpu_map
,
8725 struct cpumask
*tmpmask
)
8727 free_sched_groups(cpu_map
, tmpmask
);
8731 * Detach sched domains from a group of cpus specified in cpu_map
8732 * These cpus will now be attached to the NULL domain
8734 static void detach_destroy_domains(const struct cpumask
*cpu_map
)
8736 /* Save because hotplug lock held. */
8737 static DECLARE_BITMAP(tmpmask
, CONFIG_NR_CPUS
);
8740 for_each_cpu(i
, cpu_map
)
8741 cpu_attach_domain(NULL
, &def_root_domain
, i
);
8742 synchronize_sched();
8743 arch_destroy_sched_domains(cpu_map
, to_cpumask(tmpmask
));
8746 /* handle null as "default" */
8747 static int dattrs_equal(struct sched_domain_attr
*cur
, int idx_cur
,
8748 struct sched_domain_attr
*new, int idx_new
)
8750 struct sched_domain_attr tmp
;
8757 return !memcmp(cur
? (cur
+ idx_cur
) : &tmp
,
8758 new ? (new + idx_new
) : &tmp
,
8759 sizeof(struct sched_domain_attr
));
8763 * Partition sched domains as specified by the 'ndoms_new'
8764 * cpumasks in the array doms_new[] of cpumasks. This compares
8765 * doms_new[] to the current sched domain partitioning, doms_cur[].
8766 * It destroys each deleted domain and builds each new domain.
8768 * 'doms_new' is an array of cpumask's of length 'ndoms_new'.
8769 * The masks don't intersect (don't overlap.) We should setup one
8770 * sched domain for each mask. CPUs not in any of the cpumasks will
8771 * not be load balanced. If the same cpumask appears both in the
8772 * current 'doms_cur' domains and in the new 'doms_new', we can leave
8775 * The passed in 'doms_new' should be kmalloc'd. This routine takes
8776 * ownership of it and will kfree it when done with it. If the caller
8777 * failed the kmalloc call, then it can pass in doms_new == NULL &&
8778 * ndoms_new == 1, and partition_sched_domains() will fallback to
8779 * the single partition 'fallback_doms', it also forces the domains
8782 * If doms_new == NULL it will be replaced with cpu_online_mask.
8783 * ndoms_new == 0 is a special case for destroying existing domains,
8784 * and it will not create the default domain.
8786 * Call with hotplug lock held
8788 /* FIXME: Change to struct cpumask *doms_new[] */
8789 void partition_sched_domains(int ndoms_new
, struct cpumask
*doms_new
,
8790 struct sched_domain_attr
*dattr_new
)
8795 mutex_lock(&sched_domains_mutex
);
8797 /* always unregister in case we don't destroy any domains */
8798 unregister_sched_domain_sysctl();
8800 /* Let architecture update cpu core mappings. */
8801 new_topology
= arch_update_cpu_topology();
8803 n
= doms_new
? ndoms_new
: 0;
8805 /* Destroy deleted domains */
8806 for (i
= 0; i
< ndoms_cur
; i
++) {
8807 for (j
= 0; j
< n
&& !new_topology
; j
++) {
8808 if (cpumask_equal(&doms_cur
[i
], &doms_new
[j
])
8809 && dattrs_equal(dattr_cur
, i
, dattr_new
, j
))
8812 /* no match - a current sched domain not in new doms_new[] */
8813 detach_destroy_domains(doms_cur
+ i
);
8818 if (doms_new
== NULL
) {
8820 doms_new
= fallback_doms
;
8821 cpumask_andnot(&doms_new
[0], cpu_online_mask
, cpu_isolated_map
);
8822 WARN_ON_ONCE(dattr_new
);
8825 /* Build new domains */
8826 for (i
= 0; i
< ndoms_new
; i
++) {
8827 for (j
= 0; j
< ndoms_cur
&& !new_topology
; j
++) {
8828 if (cpumask_equal(&doms_new
[i
], &doms_cur
[j
])
8829 && dattrs_equal(dattr_new
, i
, dattr_cur
, j
))
8832 /* no match - add a new doms_new */
8833 __build_sched_domains(doms_new
+ i
,
8834 dattr_new
? dattr_new
+ i
: NULL
);
8839 /* Remember the new sched domains */
8840 if (doms_cur
!= fallback_doms
)
8842 kfree(dattr_cur
); /* kfree(NULL) is safe */
8843 doms_cur
= doms_new
;
8844 dattr_cur
= dattr_new
;
8845 ndoms_cur
= ndoms_new
;
8847 register_sched_domain_sysctl();
8849 mutex_unlock(&sched_domains_mutex
);
8852 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
8853 static void arch_reinit_sched_domains(void)
8857 /* Destroy domains first to force the rebuild */
8858 partition_sched_domains(0, NULL
, NULL
);
8860 rebuild_sched_domains();
8864 static ssize_t
sched_power_savings_store(const char *buf
, size_t count
, int smt
)
8866 unsigned int level
= 0;
8868 if (sscanf(buf
, "%u", &level
) != 1)
8872 * level is always be positive so don't check for
8873 * level < POWERSAVINGS_BALANCE_NONE which is 0
8874 * What happens on 0 or 1 byte write,
8875 * need to check for count as well?
8878 if (level
>= MAX_POWERSAVINGS_BALANCE_LEVELS
)
8882 sched_smt_power_savings
= level
;
8884 sched_mc_power_savings
= level
;
8886 arch_reinit_sched_domains();
8891 #ifdef CONFIG_SCHED_MC
8892 static ssize_t
sched_mc_power_savings_show(struct sysdev_class
*class,
8895 return sprintf(page
, "%u\n", sched_mc_power_savings
);
8897 static ssize_t
sched_mc_power_savings_store(struct sysdev_class
*class,
8898 const char *buf
, size_t count
)
8900 return sched_power_savings_store(buf
, count
, 0);
8902 static SYSDEV_CLASS_ATTR(sched_mc_power_savings
, 0644,
8903 sched_mc_power_savings_show
,
8904 sched_mc_power_savings_store
);
8907 #ifdef CONFIG_SCHED_SMT
8908 static ssize_t
sched_smt_power_savings_show(struct sysdev_class
*dev
,
8911 return sprintf(page
, "%u\n", sched_smt_power_savings
);
8913 static ssize_t
sched_smt_power_savings_store(struct sysdev_class
*dev
,
8914 const char *buf
, size_t count
)
8916 return sched_power_savings_store(buf
, count
, 1);
8918 static SYSDEV_CLASS_ATTR(sched_smt_power_savings
, 0644,
8919 sched_smt_power_savings_show
,
8920 sched_smt_power_savings_store
);
8923 int __init
sched_create_sysfs_power_savings_entries(struct sysdev_class
*cls
)
8927 #ifdef CONFIG_SCHED_SMT
8929 err
= sysfs_create_file(&cls
->kset
.kobj
,
8930 &attr_sched_smt_power_savings
.attr
);
8932 #ifdef CONFIG_SCHED_MC
8933 if (!err
&& mc_capable())
8934 err
= sysfs_create_file(&cls
->kset
.kobj
,
8935 &attr_sched_mc_power_savings
.attr
);
8939 #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
8941 #ifndef CONFIG_CPUSETS
8943 * Add online and remove offline CPUs from the scheduler domains.
8944 * When cpusets are enabled they take over this function.
8946 static int update_sched_domains(struct notifier_block
*nfb
,
8947 unsigned long action
, void *hcpu
)
8951 case CPU_ONLINE_FROZEN
:
8953 case CPU_DEAD_FROZEN
:
8954 partition_sched_domains(1, NULL
, NULL
);
8963 static int update_runtime(struct notifier_block
*nfb
,
8964 unsigned long action
, void *hcpu
)
8966 int cpu
= (int)(long)hcpu
;
8969 case CPU_DOWN_PREPARE
:
8970 case CPU_DOWN_PREPARE_FROZEN
:
8971 disable_runtime(cpu_rq(cpu
));
8974 case CPU_DOWN_FAILED
:
8975 case CPU_DOWN_FAILED_FROZEN
:
8977 case CPU_ONLINE_FROZEN
:
8978 enable_runtime(cpu_rq(cpu
));
8986 void __init
sched_init_smp(void)
8988 cpumask_var_t non_isolated_cpus
;
8990 alloc_cpumask_var(&non_isolated_cpus
, GFP_KERNEL
);
8992 #if defined(CONFIG_NUMA)
8993 sched_group_nodes_bycpu
= kzalloc(nr_cpu_ids
* sizeof(void **),
8995 BUG_ON(sched_group_nodes_bycpu
== NULL
);
8998 mutex_lock(&sched_domains_mutex
);
8999 arch_init_sched_domains(cpu_online_mask
);
9000 cpumask_andnot(non_isolated_cpus
, cpu_possible_mask
, cpu_isolated_map
);
9001 if (cpumask_empty(non_isolated_cpus
))
9002 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus
);
9003 mutex_unlock(&sched_domains_mutex
);
9006 #ifndef CONFIG_CPUSETS
9007 /* XXX: Theoretical race here - CPU may be hotplugged now */
9008 hotcpu_notifier(update_sched_domains
, 0);
9011 /* RT runtime code needs to handle some hotplug events */
9012 hotcpu_notifier(update_runtime
, 0);
9016 /* Move init over to a non-isolated CPU */
9017 if (set_cpus_allowed_ptr(current
, non_isolated_cpus
) < 0)
9019 sched_init_granularity();
9020 free_cpumask_var(non_isolated_cpus
);
9022 alloc_cpumask_var(&fallback_doms
, GFP_KERNEL
);
9023 init_sched_rt_class();
9026 void __init
sched_init_smp(void)
9028 sched_init_granularity();
9030 #endif /* CONFIG_SMP */
9032 int in_sched_functions(unsigned long addr
)
9034 return in_lock_functions(addr
) ||
9035 (addr
>= (unsigned long)__sched_text_start
9036 && addr
< (unsigned long)__sched_text_end
);
9039 static void init_cfs_rq(struct cfs_rq
*cfs_rq
, struct rq
*rq
)
9041 cfs_rq
->tasks_timeline
= RB_ROOT
;
9042 INIT_LIST_HEAD(&cfs_rq
->tasks
);
9043 #ifdef CONFIG_FAIR_GROUP_SCHED
9046 cfs_rq
->min_vruntime
= (u64
)(-(1LL << 20));
9049 static void init_rt_rq(struct rt_rq
*rt_rq
, struct rq
*rq
)
9051 struct rt_prio_array
*array
;
9054 array
= &rt_rq
->active
;
9055 for (i
= 0; i
< MAX_RT_PRIO
; i
++) {
9056 INIT_LIST_HEAD(array
->queue
+ i
);
9057 __clear_bit(i
, array
->bitmap
);
9059 /* delimiter for bitsearch: */
9060 __set_bit(MAX_RT_PRIO
, array
->bitmap
);
9062 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
9063 rt_rq
->highest_prio
.curr
= MAX_RT_PRIO
;
9065 rt_rq
->highest_prio
.next
= MAX_RT_PRIO
;
9069 rt_rq
->rt_nr_migratory
= 0;
9070 rt_rq
->overloaded
= 0;
9071 plist_head_init(&rq
->rt
.pushable_tasks
, &rq
->lock
);
9075 rt_rq
->rt_throttled
= 0;
9076 rt_rq
->rt_runtime
= 0;
9077 spin_lock_init(&rt_rq
->rt_runtime_lock
);
9079 #ifdef CONFIG_RT_GROUP_SCHED
9080 rt_rq
->rt_nr_boosted
= 0;
9085 #ifdef CONFIG_FAIR_GROUP_SCHED
9086 static void init_tg_cfs_entry(struct task_group
*tg
, struct cfs_rq
*cfs_rq
,
9087 struct sched_entity
*se
, int cpu
, int add
,
9088 struct sched_entity
*parent
)
9090 struct rq
*rq
= cpu_rq(cpu
);
9091 tg
->cfs_rq
[cpu
] = cfs_rq
;
9092 init_cfs_rq(cfs_rq
, rq
);
9095 list_add(&cfs_rq
->leaf_cfs_rq_list
, &rq
->leaf_cfs_rq_list
);
9098 /* se could be NULL for init_task_group */
9103 se
->cfs_rq
= &rq
->cfs
;
9105 se
->cfs_rq
= parent
->my_q
;
9108 se
->load
.weight
= tg
->shares
;
9109 se
->load
.inv_weight
= 0;
9110 se
->parent
= parent
;
9114 #ifdef CONFIG_RT_GROUP_SCHED
9115 static void init_tg_rt_entry(struct task_group
*tg
, struct rt_rq
*rt_rq
,
9116 struct sched_rt_entity
*rt_se
, int cpu
, int add
,
9117 struct sched_rt_entity
*parent
)
9119 struct rq
*rq
= cpu_rq(cpu
);
9121 tg
->rt_rq
[cpu
] = rt_rq
;
9122 init_rt_rq(rt_rq
, rq
);
9124 rt_rq
->rt_se
= rt_se
;
9125 rt_rq
->rt_runtime
= tg
->rt_bandwidth
.rt_runtime
;
9127 list_add(&rt_rq
->leaf_rt_rq_list
, &rq
->leaf_rt_rq_list
);
9129 tg
->rt_se
[cpu
] = rt_se
;
9134 rt_se
->rt_rq
= &rq
->rt
;
9136 rt_se
->rt_rq
= parent
->my_q
;
9138 rt_se
->my_q
= rt_rq
;
9139 rt_se
->parent
= parent
;
9140 INIT_LIST_HEAD(&rt_se
->run_list
);
9144 void __init
sched_init(void)
9147 unsigned long alloc_size
= 0, ptr
;
9149 #ifdef CONFIG_FAIR_GROUP_SCHED
9150 alloc_size
+= 2 * nr_cpu_ids
* sizeof(void **);
9152 #ifdef CONFIG_RT_GROUP_SCHED
9153 alloc_size
+= 2 * nr_cpu_ids
* sizeof(void **);
9155 #ifdef CONFIG_USER_SCHED
9158 #ifdef CONFIG_CPUMASK_OFFSTACK
9159 alloc_size
+= num_possible_cpus() * cpumask_size();
9162 * As sched_init() is called before page_alloc is setup,
9163 * we use alloc_bootmem().
9166 ptr
= (unsigned long)kzalloc(alloc_size
, GFP_NOWAIT
);
9168 #ifdef CONFIG_FAIR_GROUP_SCHED
9169 init_task_group
.se
= (struct sched_entity
**)ptr
;
9170 ptr
+= nr_cpu_ids
* sizeof(void **);
9172 init_task_group
.cfs_rq
= (struct cfs_rq
**)ptr
;
9173 ptr
+= nr_cpu_ids
* sizeof(void **);
9175 #ifdef CONFIG_USER_SCHED
9176 root_task_group
.se
= (struct sched_entity
**)ptr
;
9177 ptr
+= nr_cpu_ids
* sizeof(void **);
9179 root_task_group
.cfs_rq
= (struct cfs_rq
**)ptr
;
9180 ptr
+= nr_cpu_ids
* sizeof(void **);
9181 #endif /* CONFIG_USER_SCHED */
9182 #endif /* CONFIG_FAIR_GROUP_SCHED */
9183 #ifdef CONFIG_RT_GROUP_SCHED
9184 init_task_group
.rt_se
= (struct sched_rt_entity
**)ptr
;
9185 ptr
+= nr_cpu_ids
* sizeof(void **);
9187 init_task_group
.rt_rq
= (struct rt_rq
**)ptr
;
9188 ptr
+= nr_cpu_ids
* sizeof(void **);
9190 #ifdef CONFIG_USER_SCHED
9191 root_task_group
.rt_se
= (struct sched_rt_entity
**)ptr
;
9192 ptr
+= nr_cpu_ids
* sizeof(void **);
9194 root_task_group
.rt_rq
= (struct rt_rq
**)ptr
;
9195 ptr
+= nr_cpu_ids
* sizeof(void **);
9196 #endif /* CONFIG_USER_SCHED */
9197 #endif /* CONFIG_RT_GROUP_SCHED */
9198 #ifdef CONFIG_CPUMASK_OFFSTACK
9199 for_each_possible_cpu(i
) {
9200 per_cpu(load_balance_tmpmask
, i
) = (void *)ptr
;
9201 ptr
+= cpumask_size();
9203 #endif /* CONFIG_CPUMASK_OFFSTACK */
9207 init_defrootdomain();
9210 init_rt_bandwidth(&def_rt_bandwidth
,
9211 global_rt_period(), global_rt_runtime());
9213 #ifdef CONFIG_RT_GROUP_SCHED
9214 init_rt_bandwidth(&init_task_group
.rt_bandwidth
,
9215 global_rt_period(), global_rt_runtime());
9216 #ifdef CONFIG_USER_SCHED
9217 init_rt_bandwidth(&root_task_group
.rt_bandwidth
,
9218 global_rt_period(), RUNTIME_INF
);
9219 #endif /* CONFIG_USER_SCHED */
9220 #endif /* CONFIG_RT_GROUP_SCHED */
9222 #ifdef CONFIG_GROUP_SCHED
9223 list_add(&init_task_group
.list
, &task_groups
);
9224 INIT_LIST_HEAD(&init_task_group
.children
);
9226 #ifdef CONFIG_USER_SCHED
9227 INIT_LIST_HEAD(&root_task_group
.children
);
9228 init_task_group
.parent
= &root_task_group
;
9229 list_add(&init_task_group
.siblings
, &root_task_group
.children
);
9230 #endif /* CONFIG_USER_SCHED */
9231 #endif /* CONFIG_GROUP_SCHED */
9233 for_each_possible_cpu(i
) {
9237 spin_lock_init(&rq
->lock
);
9239 rq
->calc_load_active
= 0;
9240 rq
->calc_load_update
= jiffies
+ LOAD_FREQ
;
9241 init_cfs_rq(&rq
->cfs
, rq
);
9242 init_rt_rq(&rq
->rt
, rq
);
9243 #ifdef CONFIG_FAIR_GROUP_SCHED
9244 init_task_group
.shares
= init_task_group_load
;
9245 INIT_LIST_HEAD(&rq
->leaf_cfs_rq_list
);
9246 #ifdef CONFIG_CGROUP_SCHED
9248 * How much cpu bandwidth does init_task_group get?
9250 * In case of task-groups formed thr' the cgroup filesystem, it
9251 * gets 100% of the cpu resources in the system. This overall
9252 * system cpu resource is divided among the tasks of
9253 * init_task_group and its child task-groups in a fair manner,
9254 * based on each entity's (task or task-group's) weight
9255 * (se->load.weight).
9257 * In other words, if init_task_group has 10 tasks of weight
9258 * 1024) and two child groups A0 and A1 (of weight 1024 each),
9259 * then A0's share of the cpu resource is:
9261 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
9263 * We achieve this by letting init_task_group's tasks sit
9264 * directly in rq->cfs (i.e init_task_group->se[] = NULL).
9266 init_tg_cfs_entry(&init_task_group
, &rq
->cfs
, NULL
, i
, 1, NULL
);
9267 #elif defined CONFIG_USER_SCHED
9268 root_task_group
.shares
= NICE_0_LOAD
;
9269 init_tg_cfs_entry(&root_task_group
, &rq
->cfs
, NULL
, i
, 0, NULL
);
9271 * In case of task-groups formed thr' the user id of tasks,
9272 * init_task_group represents tasks belonging to root user.
9273 * Hence it forms a sibling of all subsequent groups formed.
9274 * In this case, init_task_group gets only a fraction of overall
9275 * system cpu resource, based on the weight assigned to root
9276 * user's cpu share (INIT_TASK_GROUP_LOAD). This is accomplished
9277 * by letting tasks of init_task_group sit in a separate cfs_rq
9278 * (init_cfs_rq) and having one entity represent this group of
9279 * tasks in rq->cfs (i.e init_task_group->se[] != NULL).
9281 init_tg_cfs_entry(&init_task_group
,
9282 &per_cpu(init_cfs_rq
, i
),
9283 &per_cpu(init_sched_entity
, i
), i
, 1,
9284 root_task_group
.se
[i
]);
9287 #endif /* CONFIG_FAIR_GROUP_SCHED */
9289 rq
->rt
.rt_runtime
= def_rt_bandwidth
.rt_runtime
;
9290 #ifdef CONFIG_RT_GROUP_SCHED
9291 INIT_LIST_HEAD(&rq
->leaf_rt_rq_list
);
9292 #ifdef CONFIG_CGROUP_SCHED
9293 init_tg_rt_entry(&init_task_group
, &rq
->rt
, NULL
, i
, 1, NULL
);
9294 #elif defined CONFIG_USER_SCHED
9295 init_tg_rt_entry(&root_task_group
, &rq
->rt
, NULL
, i
, 0, NULL
);
9296 init_tg_rt_entry(&init_task_group
,
9297 &per_cpu(init_rt_rq
, i
),
9298 &per_cpu(init_sched_rt_entity
, i
), i
, 1,
9299 root_task_group
.rt_se
[i
]);
9303 for (j
= 0; j
< CPU_LOAD_IDX_MAX
; j
++)
9304 rq
->cpu_load
[j
] = 0;
9308 rq
->active_balance
= 0;
9309 rq
->next_balance
= jiffies
;
9313 rq
->migration_thread
= NULL
;
9314 INIT_LIST_HEAD(&rq
->migration_queue
);
9315 rq_attach_root(rq
, &def_root_domain
);
9318 atomic_set(&rq
->nr_iowait
, 0);
9321 set_load_weight(&init_task
);
9323 #ifdef CONFIG_PREEMPT_NOTIFIERS
9324 INIT_HLIST_HEAD(&init_task
.preempt_notifiers
);
9328 open_softirq(SCHED_SOFTIRQ
, run_rebalance_domains
);
9331 #ifdef CONFIG_RT_MUTEXES
9332 plist_head_init(&init_task
.pi_waiters
, &init_task
.pi_lock
);
9336 * The boot idle thread does lazy MMU switching as well:
9338 atomic_inc(&init_mm
.mm_count
);
9339 enter_lazy_tlb(&init_mm
, current
);
9342 * Make us the idle thread. Technically, schedule() should not be
9343 * called from this thread, however somewhere below it might be,
9344 * but because we are the idle thread, we just pick up running again
9345 * when this runqueue becomes "idle".
9347 init_idle(current
, smp_processor_id());
9349 calc_load_update
= jiffies
+ LOAD_FREQ
;
9352 * During early bootup we pretend to be a normal task:
9354 current
->sched_class
= &fair_sched_class
;
9356 /* Allocate the nohz_cpu_mask if CONFIG_CPUMASK_OFFSTACK */
9357 alloc_cpumask_var(&nohz_cpu_mask
, GFP_NOWAIT
);
9360 alloc_cpumask_var(&nohz
.cpu_mask
, GFP_NOWAIT
);
9361 alloc_cpumask_var(&nohz
.ilb_grp_nohz_mask
, GFP_NOWAIT
);
9363 alloc_cpumask_var(&cpu_isolated_map
, GFP_NOWAIT
);
9366 perf_counter_init();
9368 scheduler_running
= 1;
9371 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
9372 void __might_sleep(char *file
, int line
)
9375 static unsigned long prev_jiffy
; /* ratelimiting */
9377 if ((!in_atomic() && !irqs_disabled()) ||
9378 system_state
!= SYSTEM_RUNNING
|| oops_in_progress
)
9380 if (time_before(jiffies
, prev_jiffy
+ HZ
) && prev_jiffy
)
9382 prev_jiffy
= jiffies
;
9385 "BUG: sleeping function called from invalid context at %s:%d\n",
9388 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
9389 in_atomic(), irqs_disabled(),
9390 current
->pid
, current
->comm
);
9392 debug_show_held_locks(current
);
9393 if (irqs_disabled())
9394 print_irqtrace_events(current
);
9398 EXPORT_SYMBOL(__might_sleep
);
9401 #ifdef CONFIG_MAGIC_SYSRQ
9402 static void normalize_task(struct rq
*rq
, struct task_struct
*p
)
9406 update_rq_clock(rq
);
9407 on_rq
= p
->se
.on_rq
;
9409 deactivate_task(rq
, p
, 0);
9410 __setscheduler(rq
, p
, SCHED_NORMAL
, 0);
9412 activate_task(rq
, p
, 0);
9413 resched_task(rq
->curr
);
9417 void normalize_rt_tasks(void)
9419 struct task_struct
*g
, *p
;
9420 unsigned long flags
;
9423 read_lock_irqsave(&tasklist_lock
, flags
);
9424 do_each_thread(g
, p
) {
9426 * Only normalize user tasks:
9431 p
->se
.exec_start
= 0;
9432 #ifdef CONFIG_SCHEDSTATS
9433 p
->se
.wait_start
= 0;
9434 p
->se
.sleep_start
= 0;
9435 p
->se
.block_start
= 0;
9440 * Renice negative nice level userspace
9443 if (TASK_NICE(p
) < 0 && p
->mm
)
9444 set_user_nice(p
, 0);
9448 spin_lock(&p
->pi_lock
);
9449 rq
= __task_rq_lock(p
);
9451 normalize_task(rq
, p
);
9453 __task_rq_unlock(rq
);
9454 spin_unlock(&p
->pi_lock
);
9455 } while_each_thread(g
, p
);
9457 read_unlock_irqrestore(&tasklist_lock
, flags
);
9460 #endif /* CONFIG_MAGIC_SYSRQ */
9464 * These functions are only useful for the IA64 MCA handling.
9466 * They can only be called when the whole system has been
9467 * stopped - every CPU needs to be quiescent, and no scheduling
9468 * activity can take place. Using them for anything else would
9469 * be a serious bug, and as a result, they aren't even visible
9470 * under any other configuration.
9474 * curr_task - return the current task for a given cpu.
9475 * @cpu: the processor in question.
9477 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
9479 struct task_struct
*curr_task(int cpu
)
9481 return cpu_curr(cpu
);
9485 * set_curr_task - set the current task for a given cpu.
9486 * @cpu: the processor in question.
9487 * @p: the task pointer to set.
9489 * Description: This function must only be used when non-maskable interrupts
9490 * are serviced on a separate stack. It allows the architecture to switch the
9491 * notion of the current task on a cpu in a non-blocking manner. This function
9492 * must be called with all CPU's synchronized, and interrupts disabled, the
9493 * and caller must save the original value of the current task (see
9494 * curr_task() above) and restore that value before reenabling interrupts and
9495 * re-starting the system.
9497 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
9499 void set_curr_task(int cpu
, struct task_struct
*p
)
9506 #ifdef CONFIG_FAIR_GROUP_SCHED
9507 static void free_fair_sched_group(struct task_group
*tg
)
9511 for_each_possible_cpu(i
) {
9513 kfree(tg
->cfs_rq
[i
]);
9523 int alloc_fair_sched_group(struct task_group
*tg
, struct task_group
*parent
)
9525 struct cfs_rq
*cfs_rq
;
9526 struct sched_entity
*se
;
9530 tg
->cfs_rq
= kzalloc(sizeof(cfs_rq
) * nr_cpu_ids
, GFP_KERNEL
);
9533 tg
->se
= kzalloc(sizeof(se
) * nr_cpu_ids
, GFP_KERNEL
);
9537 tg
->shares
= NICE_0_LOAD
;
9539 for_each_possible_cpu(i
) {
9542 cfs_rq
= kzalloc_node(sizeof(struct cfs_rq
),
9543 GFP_KERNEL
, cpu_to_node(i
));
9547 se
= kzalloc_node(sizeof(struct sched_entity
),
9548 GFP_KERNEL
, cpu_to_node(i
));
9552 init_tg_cfs_entry(tg
, cfs_rq
, se
, i
, 0, parent
->se
[i
]);
9561 static inline void register_fair_sched_group(struct task_group
*tg
, int cpu
)
9563 list_add_rcu(&tg
->cfs_rq
[cpu
]->leaf_cfs_rq_list
,
9564 &cpu_rq(cpu
)->leaf_cfs_rq_list
);
9567 static inline void unregister_fair_sched_group(struct task_group
*tg
, int cpu
)
9569 list_del_rcu(&tg
->cfs_rq
[cpu
]->leaf_cfs_rq_list
);
9571 #else /* !CONFG_FAIR_GROUP_SCHED */
9572 static inline void free_fair_sched_group(struct task_group
*tg
)
9577 int alloc_fair_sched_group(struct task_group
*tg
, struct task_group
*parent
)
9582 static inline void register_fair_sched_group(struct task_group
*tg
, int cpu
)
9586 static inline void unregister_fair_sched_group(struct task_group
*tg
, int cpu
)
9589 #endif /* CONFIG_FAIR_GROUP_SCHED */
9591 #ifdef CONFIG_RT_GROUP_SCHED
9592 static void free_rt_sched_group(struct task_group
*tg
)
9596 destroy_rt_bandwidth(&tg
->rt_bandwidth
);
9598 for_each_possible_cpu(i
) {
9600 kfree(tg
->rt_rq
[i
]);
9602 kfree(tg
->rt_se
[i
]);
9610 int alloc_rt_sched_group(struct task_group
*tg
, struct task_group
*parent
)
9612 struct rt_rq
*rt_rq
;
9613 struct sched_rt_entity
*rt_se
;
9617 tg
->rt_rq
= kzalloc(sizeof(rt_rq
) * nr_cpu_ids
, GFP_KERNEL
);
9620 tg
->rt_se
= kzalloc(sizeof(rt_se
) * nr_cpu_ids
, GFP_KERNEL
);
9624 init_rt_bandwidth(&tg
->rt_bandwidth
,
9625 ktime_to_ns(def_rt_bandwidth
.rt_period
), 0);
9627 for_each_possible_cpu(i
) {
9630 rt_rq
= kzalloc_node(sizeof(struct rt_rq
),
9631 GFP_KERNEL
, cpu_to_node(i
));
9635 rt_se
= kzalloc_node(sizeof(struct sched_rt_entity
),
9636 GFP_KERNEL
, cpu_to_node(i
));
9640 init_tg_rt_entry(tg
, rt_rq
, rt_se
, i
, 0, parent
->rt_se
[i
]);
9649 static inline void register_rt_sched_group(struct task_group
*tg
, int cpu
)
9651 list_add_rcu(&tg
->rt_rq
[cpu
]->leaf_rt_rq_list
,
9652 &cpu_rq(cpu
)->leaf_rt_rq_list
);
9655 static inline void unregister_rt_sched_group(struct task_group
*tg
, int cpu
)
9657 list_del_rcu(&tg
->rt_rq
[cpu
]->leaf_rt_rq_list
);
9659 #else /* !CONFIG_RT_GROUP_SCHED */
9660 static inline void free_rt_sched_group(struct task_group
*tg
)
9665 int alloc_rt_sched_group(struct task_group
*tg
, struct task_group
*parent
)
9670 static inline void register_rt_sched_group(struct task_group
*tg
, int cpu
)
9674 static inline void unregister_rt_sched_group(struct task_group
*tg
, int cpu
)
9677 #endif /* CONFIG_RT_GROUP_SCHED */
9679 #ifdef CONFIG_GROUP_SCHED
9680 static void free_sched_group(struct task_group
*tg
)
9682 free_fair_sched_group(tg
);
9683 free_rt_sched_group(tg
);
9687 /* allocate runqueue etc for a new task group */
9688 struct task_group
*sched_create_group(struct task_group
*parent
)
9690 struct task_group
*tg
;
9691 unsigned long flags
;
9694 tg
= kzalloc(sizeof(*tg
), GFP_KERNEL
);
9696 return ERR_PTR(-ENOMEM
);
9698 if (!alloc_fair_sched_group(tg
, parent
))
9701 if (!alloc_rt_sched_group(tg
, parent
))
9704 spin_lock_irqsave(&task_group_lock
, flags
);
9705 for_each_possible_cpu(i
) {
9706 register_fair_sched_group(tg
, i
);
9707 register_rt_sched_group(tg
, i
);
9709 list_add_rcu(&tg
->list
, &task_groups
);
9711 WARN_ON(!parent
); /* root should already exist */
9713 tg
->parent
= parent
;
9714 INIT_LIST_HEAD(&tg
->children
);
9715 list_add_rcu(&tg
->siblings
, &parent
->children
);
9716 spin_unlock_irqrestore(&task_group_lock
, flags
);
9721 free_sched_group(tg
);
9722 return ERR_PTR(-ENOMEM
);
9725 /* rcu callback to free various structures associated with a task group */
9726 static void free_sched_group_rcu(struct rcu_head
*rhp
)
9728 /* now it should be safe to free those cfs_rqs */
9729 free_sched_group(container_of(rhp
, struct task_group
, rcu
));
9732 /* Destroy runqueue etc associated with a task group */
9733 void sched_destroy_group(struct task_group
*tg
)
9735 unsigned long flags
;
9738 spin_lock_irqsave(&task_group_lock
, flags
);
9739 for_each_possible_cpu(i
) {
9740 unregister_fair_sched_group(tg
, i
);
9741 unregister_rt_sched_group(tg
, i
);
9743 list_del_rcu(&tg
->list
);
9744 list_del_rcu(&tg
->siblings
);
9745 spin_unlock_irqrestore(&task_group_lock
, flags
);
9747 /* wait for possible concurrent references to cfs_rqs complete */
9748 call_rcu(&tg
->rcu
, free_sched_group_rcu
);
9751 /* change task's runqueue when it moves between groups.
9752 * The caller of this function should have put the task in its new group
9753 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
9754 * reflect its new group.
9756 void sched_move_task(struct task_struct
*tsk
)
9759 unsigned long flags
;
9762 rq
= task_rq_lock(tsk
, &flags
);
9764 update_rq_clock(rq
);
9766 running
= task_current(rq
, tsk
);
9767 on_rq
= tsk
->se
.on_rq
;
9770 dequeue_task(rq
, tsk
, 0);
9771 if (unlikely(running
))
9772 tsk
->sched_class
->put_prev_task(rq
, tsk
);
9774 set_task_rq(tsk
, task_cpu(tsk
));
9776 #ifdef CONFIG_FAIR_GROUP_SCHED
9777 if (tsk
->sched_class
->moved_group
)
9778 tsk
->sched_class
->moved_group(tsk
);
9781 if (unlikely(running
))
9782 tsk
->sched_class
->set_curr_task(rq
);
9784 enqueue_task(rq
, tsk
, 0);
9786 task_rq_unlock(rq
, &flags
);
9788 #endif /* CONFIG_GROUP_SCHED */
9790 #ifdef CONFIG_FAIR_GROUP_SCHED
9791 static void __set_se_shares(struct sched_entity
*se
, unsigned long shares
)
9793 struct cfs_rq
*cfs_rq
= se
->cfs_rq
;
9798 dequeue_entity(cfs_rq
, se
, 0);
9800 se
->load
.weight
= shares
;
9801 se
->load
.inv_weight
= 0;
9804 enqueue_entity(cfs_rq
, se
, 0);
9807 static void set_se_shares(struct sched_entity
*se
, unsigned long shares
)
9809 struct cfs_rq
*cfs_rq
= se
->cfs_rq
;
9810 struct rq
*rq
= cfs_rq
->rq
;
9811 unsigned long flags
;
9813 spin_lock_irqsave(&rq
->lock
, flags
);
9814 __set_se_shares(se
, shares
);
9815 spin_unlock_irqrestore(&rq
->lock
, flags
);
9818 static DEFINE_MUTEX(shares_mutex
);
9820 int sched_group_set_shares(struct task_group
*tg
, unsigned long shares
)
9823 unsigned long flags
;
9826 * We can't change the weight of the root cgroup.
9831 if (shares
< MIN_SHARES
)
9832 shares
= MIN_SHARES
;
9833 else if (shares
> MAX_SHARES
)
9834 shares
= MAX_SHARES
;
9836 mutex_lock(&shares_mutex
);
9837 if (tg
->shares
== shares
)
9840 spin_lock_irqsave(&task_group_lock
, flags
);
9841 for_each_possible_cpu(i
)
9842 unregister_fair_sched_group(tg
, i
);
9843 list_del_rcu(&tg
->siblings
);
9844 spin_unlock_irqrestore(&task_group_lock
, flags
);
9846 /* wait for any ongoing reference to this group to finish */
9847 synchronize_sched();
9850 * Now we are free to modify the group's share on each cpu
9851 * w/o tripping rebalance_share or load_balance_fair.
9853 tg
->shares
= shares
;
9854 for_each_possible_cpu(i
) {
9858 cfs_rq_set_shares(tg
->cfs_rq
[i
], 0);
9859 set_se_shares(tg
->se
[i
], shares
);
9863 * Enable load balance activity on this group, by inserting it back on
9864 * each cpu's rq->leaf_cfs_rq_list.
9866 spin_lock_irqsave(&task_group_lock
, flags
);
9867 for_each_possible_cpu(i
)
9868 register_fair_sched_group(tg
, i
);
9869 list_add_rcu(&tg
->siblings
, &tg
->parent
->children
);
9870 spin_unlock_irqrestore(&task_group_lock
, flags
);
9872 mutex_unlock(&shares_mutex
);
9876 unsigned long sched_group_shares(struct task_group
*tg
)
9882 #ifdef CONFIG_RT_GROUP_SCHED
9884 * Ensure that the real time constraints are schedulable.
9886 static DEFINE_MUTEX(rt_constraints_mutex
);
9888 static unsigned long to_ratio(u64 period
, u64 runtime
)
9890 if (runtime
== RUNTIME_INF
)
9893 return div64_u64(runtime
<< 20, period
);
9896 /* Must be called with tasklist_lock held */
9897 static inline int tg_has_rt_tasks(struct task_group
*tg
)
9899 struct task_struct
*g
, *p
;
9901 do_each_thread(g
, p
) {
9902 if (rt_task(p
) && rt_rq_of_se(&p
->rt
)->tg
== tg
)
9904 } while_each_thread(g
, p
);
9909 struct rt_schedulable_data
{
9910 struct task_group
*tg
;
9915 static int tg_schedulable(struct task_group
*tg
, void *data
)
9917 struct rt_schedulable_data
*d
= data
;
9918 struct task_group
*child
;
9919 unsigned long total
, sum
= 0;
9920 u64 period
, runtime
;
9922 period
= ktime_to_ns(tg
->rt_bandwidth
.rt_period
);
9923 runtime
= tg
->rt_bandwidth
.rt_runtime
;
9926 period
= d
->rt_period
;
9927 runtime
= d
->rt_runtime
;
9930 #ifdef CONFIG_USER_SCHED
9931 if (tg
== &root_task_group
) {
9932 period
= global_rt_period();
9933 runtime
= global_rt_runtime();
9938 * Cannot have more runtime than the period.
9940 if (runtime
> period
&& runtime
!= RUNTIME_INF
)
9944 * Ensure we don't starve existing RT tasks.
9946 if (rt_bandwidth_enabled() && !runtime
&& tg_has_rt_tasks(tg
))
9949 total
= to_ratio(period
, runtime
);
9952 * Nobody can have more than the global setting allows.
9954 if (total
> to_ratio(global_rt_period(), global_rt_runtime()))
9958 * The sum of our children's runtime should not exceed our own.
9960 list_for_each_entry_rcu(child
, &tg
->children
, siblings
) {
9961 period
= ktime_to_ns(child
->rt_bandwidth
.rt_period
);
9962 runtime
= child
->rt_bandwidth
.rt_runtime
;
9964 if (child
== d
->tg
) {
9965 period
= d
->rt_period
;
9966 runtime
= d
->rt_runtime
;
9969 sum
+= to_ratio(period
, runtime
);
9978 static int __rt_schedulable(struct task_group
*tg
, u64 period
, u64 runtime
)
9980 struct rt_schedulable_data data
= {
9982 .rt_period
= period
,
9983 .rt_runtime
= runtime
,
9986 return walk_tg_tree(tg_schedulable
, tg_nop
, &data
);
9989 static int tg_set_bandwidth(struct task_group
*tg
,
9990 u64 rt_period
, u64 rt_runtime
)
9994 mutex_lock(&rt_constraints_mutex
);
9995 read_lock(&tasklist_lock
);
9996 err
= __rt_schedulable(tg
, rt_period
, rt_runtime
);
10000 spin_lock_irq(&tg
->rt_bandwidth
.rt_runtime_lock
);
10001 tg
->rt_bandwidth
.rt_period
= ns_to_ktime(rt_period
);
10002 tg
->rt_bandwidth
.rt_runtime
= rt_runtime
;
10004 for_each_possible_cpu(i
) {
10005 struct rt_rq
*rt_rq
= tg
->rt_rq
[i
];
10007 spin_lock(&rt_rq
->rt_runtime_lock
);
10008 rt_rq
->rt_runtime
= rt_runtime
;
10009 spin_unlock(&rt_rq
->rt_runtime_lock
);
10011 spin_unlock_irq(&tg
->rt_bandwidth
.rt_runtime_lock
);
10013 read_unlock(&tasklist_lock
);
10014 mutex_unlock(&rt_constraints_mutex
);
10019 int sched_group_set_rt_runtime(struct task_group
*tg
, long rt_runtime_us
)
10021 u64 rt_runtime
, rt_period
;
10023 rt_period
= ktime_to_ns(tg
->rt_bandwidth
.rt_period
);
10024 rt_runtime
= (u64
)rt_runtime_us
* NSEC_PER_USEC
;
10025 if (rt_runtime_us
< 0)
10026 rt_runtime
= RUNTIME_INF
;
10028 return tg_set_bandwidth(tg
, rt_period
, rt_runtime
);
10031 long sched_group_rt_runtime(struct task_group
*tg
)
10035 if (tg
->rt_bandwidth
.rt_runtime
== RUNTIME_INF
)
10038 rt_runtime_us
= tg
->rt_bandwidth
.rt_runtime
;
10039 do_div(rt_runtime_us
, NSEC_PER_USEC
);
10040 return rt_runtime_us
;
10043 int sched_group_set_rt_period(struct task_group
*tg
, long rt_period_us
)
10045 u64 rt_runtime
, rt_period
;
10047 rt_period
= (u64
)rt_period_us
* NSEC_PER_USEC
;
10048 rt_runtime
= tg
->rt_bandwidth
.rt_runtime
;
10050 if (rt_period
== 0)
10053 return tg_set_bandwidth(tg
, rt_period
, rt_runtime
);
10056 long sched_group_rt_period(struct task_group
*tg
)
10060 rt_period_us
= ktime_to_ns(tg
->rt_bandwidth
.rt_period
);
10061 do_div(rt_period_us
, NSEC_PER_USEC
);
10062 return rt_period_us
;
10065 static int sched_rt_global_constraints(void)
10067 u64 runtime
, period
;
10070 if (sysctl_sched_rt_period
<= 0)
10073 runtime
= global_rt_runtime();
10074 period
= global_rt_period();
10077 * Sanity check on the sysctl variables.
10079 if (runtime
> period
&& runtime
!= RUNTIME_INF
)
10082 mutex_lock(&rt_constraints_mutex
);
10083 read_lock(&tasklist_lock
);
10084 ret
= __rt_schedulable(NULL
, 0, 0);
10085 read_unlock(&tasklist_lock
);
10086 mutex_unlock(&rt_constraints_mutex
);
10091 int sched_rt_can_attach(struct task_group
*tg
, struct task_struct
*tsk
)
10093 /* Don't accept realtime tasks when there is no way for them to run */
10094 if (rt_task(tsk
) && tg
->rt_bandwidth
.rt_runtime
== 0)
10100 #else /* !CONFIG_RT_GROUP_SCHED */
10101 static int sched_rt_global_constraints(void)
10103 unsigned long flags
;
10106 if (sysctl_sched_rt_period
<= 0)
10110 * There's always some RT tasks in the root group
10111 * -- migration, kstopmachine etc..
10113 if (sysctl_sched_rt_runtime
== 0)
10116 spin_lock_irqsave(&def_rt_bandwidth
.rt_runtime_lock
, flags
);
10117 for_each_possible_cpu(i
) {
10118 struct rt_rq
*rt_rq
= &cpu_rq(i
)->rt
;
10120 spin_lock(&rt_rq
->rt_runtime_lock
);
10121 rt_rq
->rt_runtime
= global_rt_runtime();
10122 spin_unlock(&rt_rq
->rt_runtime_lock
);
10124 spin_unlock_irqrestore(&def_rt_bandwidth
.rt_runtime_lock
, flags
);
10128 #endif /* CONFIG_RT_GROUP_SCHED */
10130 int sched_rt_handler(struct ctl_table
*table
, int write
,
10131 struct file
*filp
, void __user
*buffer
, size_t *lenp
,
10135 int old_period
, old_runtime
;
10136 static DEFINE_MUTEX(mutex
);
10138 mutex_lock(&mutex
);
10139 old_period
= sysctl_sched_rt_period
;
10140 old_runtime
= sysctl_sched_rt_runtime
;
10142 ret
= proc_dointvec(table
, write
, filp
, buffer
, lenp
, ppos
);
10144 if (!ret
&& write
) {
10145 ret
= sched_rt_global_constraints();
10147 sysctl_sched_rt_period
= old_period
;
10148 sysctl_sched_rt_runtime
= old_runtime
;
10150 def_rt_bandwidth
.rt_runtime
= global_rt_runtime();
10151 def_rt_bandwidth
.rt_period
=
10152 ns_to_ktime(global_rt_period());
10155 mutex_unlock(&mutex
);
10160 #ifdef CONFIG_CGROUP_SCHED
10162 /* return corresponding task_group object of a cgroup */
10163 static inline struct task_group
*cgroup_tg(struct cgroup
*cgrp
)
10165 return container_of(cgroup_subsys_state(cgrp
, cpu_cgroup_subsys_id
),
10166 struct task_group
, css
);
10169 static struct cgroup_subsys_state
*
10170 cpu_cgroup_create(struct cgroup_subsys
*ss
, struct cgroup
*cgrp
)
10172 struct task_group
*tg
, *parent
;
10174 if (!cgrp
->parent
) {
10175 /* This is early initialization for the top cgroup */
10176 return &init_task_group
.css
;
10179 parent
= cgroup_tg(cgrp
->parent
);
10180 tg
= sched_create_group(parent
);
10182 return ERR_PTR(-ENOMEM
);
10188 cpu_cgroup_destroy(struct cgroup_subsys
*ss
, struct cgroup
*cgrp
)
10190 struct task_group
*tg
= cgroup_tg(cgrp
);
10192 sched_destroy_group(tg
);
10196 cpu_cgroup_can_attach(struct cgroup_subsys
*ss
, struct cgroup
*cgrp
,
10197 struct task_struct
*tsk
)
10199 #ifdef CONFIG_RT_GROUP_SCHED
10200 if (!sched_rt_can_attach(cgroup_tg(cgrp
), tsk
))
10203 /* We don't support RT-tasks being in separate groups */
10204 if (tsk
->sched_class
!= &fair_sched_class
)
10212 cpu_cgroup_attach(struct cgroup_subsys
*ss
, struct cgroup
*cgrp
,
10213 struct cgroup
*old_cont
, struct task_struct
*tsk
)
10215 sched_move_task(tsk
);
10218 #ifdef CONFIG_FAIR_GROUP_SCHED
10219 static int cpu_shares_write_u64(struct cgroup
*cgrp
, struct cftype
*cftype
,
10222 return sched_group_set_shares(cgroup_tg(cgrp
), shareval
);
10225 static u64
cpu_shares_read_u64(struct cgroup
*cgrp
, struct cftype
*cft
)
10227 struct task_group
*tg
= cgroup_tg(cgrp
);
10229 return (u64
) tg
->shares
;
10231 #endif /* CONFIG_FAIR_GROUP_SCHED */
10233 #ifdef CONFIG_RT_GROUP_SCHED
10234 static int cpu_rt_runtime_write(struct cgroup
*cgrp
, struct cftype
*cft
,
10237 return sched_group_set_rt_runtime(cgroup_tg(cgrp
), val
);
10240 static s64
cpu_rt_runtime_read(struct cgroup
*cgrp
, struct cftype
*cft
)
10242 return sched_group_rt_runtime(cgroup_tg(cgrp
));
10245 static int cpu_rt_period_write_uint(struct cgroup
*cgrp
, struct cftype
*cftype
,
10248 return sched_group_set_rt_period(cgroup_tg(cgrp
), rt_period_us
);
10251 static u64
cpu_rt_period_read_uint(struct cgroup
*cgrp
, struct cftype
*cft
)
10253 return sched_group_rt_period(cgroup_tg(cgrp
));
10255 #endif /* CONFIG_RT_GROUP_SCHED */
10257 static struct cftype cpu_files
[] = {
10258 #ifdef CONFIG_FAIR_GROUP_SCHED
10261 .read_u64
= cpu_shares_read_u64
,
10262 .write_u64
= cpu_shares_write_u64
,
10265 #ifdef CONFIG_RT_GROUP_SCHED
10267 .name
= "rt_runtime_us",
10268 .read_s64
= cpu_rt_runtime_read
,
10269 .write_s64
= cpu_rt_runtime_write
,
10272 .name
= "rt_period_us",
10273 .read_u64
= cpu_rt_period_read_uint
,
10274 .write_u64
= cpu_rt_period_write_uint
,
10279 static int cpu_cgroup_populate(struct cgroup_subsys
*ss
, struct cgroup
*cont
)
10281 return cgroup_add_files(cont
, ss
, cpu_files
, ARRAY_SIZE(cpu_files
));
10284 struct cgroup_subsys cpu_cgroup_subsys
= {
10286 .create
= cpu_cgroup_create
,
10287 .destroy
= cpu_cgroup_destroy
,
10288 .can_attach
= cpu_cgroup_can_attach
,
10289 .attach
= cpu_cgroup_attach
,
10290 .populate
= cpu_cgroup_populate
,
10291 .subsys_id
= cpu_cgroup_subsys_id
,
10295 #endif /* CONFIG_CGROUP_SCHED */
10297 #ifdef CONFIG_CGROUP_CPUACCT
10300 * CPU accounting code for task groups.
10302 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
10303 * (balbir@in.ibm.com).
10306 /* track cpu usage of a group of tasks and its child groups */
10308 struct cgroup_subsys_state css
;
10309 /* cpuusage holds pointer to a u64-type object on every cpu */
10311 struct percpu_counter cpustat
[CPUACCT_STAT_NSTATS
];
10312 struct cpuacct
*parent
;
10315 struct cgroup_subsys cpuacct_subsys
;
10317 /* return cpu accounting group corresponding to this container */
10318 static inline struct cpuacct
*cgroup_ca(struct cgroup
*cgrp
)
10320 return container_of(cgroup_subsys_state(cgrp
, cpuacct_subsys_id
),
10321 struct cpuacct
, css
);
10324 /* return cpu accounting group to which this task belongs */
10325 static inline struct cpuacct
*task_ca(struct task_struct
*tsk
)
10327 return container_of(task_subsys_state(tsk
, cpuacct_subsys_id
),
10328 struct cpuacct
, css
);
10331 /* create a new cpu accounting group */
10332 static struct cgroup_subsys_state
*cpuacct_create(
10333 struct cgroup_subsys
*ss
, struct cgroup
*cgrp
)
10335 struct cpuacct
*ca
= kzalloc(sizeof(*ca
), GFP_KERNEL
);
10341 ca
->cpuusage
= alloc_percpu(u64
);
10345 for (i
= 0; i
< CPUACCT_STAT_NSTATS
; i
++)
10346 if (percpu_counter_init(&ca
->cpustat
[i
], 0))
10347 goto out_free_counters
;
10350 ca
->parent
= cgroup_ca(cgrp
->parent
);
10356 percpu_counter_destroy(&ca
->cpustat
[i
]);
10357 free_percpu(ca
->cpuusage
);
10361 return ERR_PTR(-ENOMEM
);
10364 /* destroy an existing cpu accounting group */
10366 cpuacct_destroy(struct cgroup_subsys
*ss
, struct cgroup
*cgrp
)
10368 struct cpuacct
*ca
= cgroup_ca(cgrp
);
10371 for (i
= 0; i
< CPUACCT_STAT_NSTATS
; i
++)
10372 percpu_counter_destroy(&ca
->cpustat
[i
]);
10373 free_percpu(ca
->cpuusage
);
10377 static u64
cpuacct_cpuusage_read(struct cpuacct
*ca
, int cpu
)
10379 u64
*cpuusage
= per_cpu_ptr(ca
->cpuusage
, cpu
);
10382 #ifndef CONFIG_64BIT
10384 * Take rq->lock to make 64-bit read safe on 32-bit platforms.
10386 spin_lock_irq(&cpu_rq(cpu
)->lock
);
10388 spin_unlock_irq(&cpu_rq(cpu
)->lock
);
10396 static void cpuacct_cpuusage_write(struct cpuacct
*ca
, int cpu
, u64 val
)
10398 u64
*cpuusage
= per_cpu_ptr(ca
->cpuusage
, cpu
);
10400 #ifndef CONFIG_64BIT
10402 * Take rq->lock to make 64-bit write safe on 32-bit platforms.
10404 spin_lock_irq(&cpu_rq(cpu
)->lock
);
10406 spin_unlock_irq(&cpu_rq(cpu
)->lock
);
10412 /* return total cpu usage (in nanoseconds) of a group */
10413 static u64
cpuusage_read(struct cgroup
*cgrp
, struct cftype
*cft
)
10415 struct cpuacct
*ca
= cgroup_ca(cgrp
);
10416 u64 totalcpuusage
= 0;
10419 for_each_present_cpu(i
)
10420 totalcpuusage
+= cpuacct_cpuusage_read(ca
, i
);
10422 return totalcpuusage
;
10425 static int cpuusage_write(struct cgroup
*cgrp
, struct cftype
*cftype
,
10428 struct cpuacct
*ca
= cgroup_ca(cgrp
);
10437 for_each_present_cpu(i
)
10438 cpuacct_cpuusage_write(ca
, i
, 0);
10444 static int cpuacct_percpu_seq_read(struct cgroup
*cgroup
, struct cftype
*cft
,
10445 struct seq_file
*m
)
10447 struct cpuacct
*ca
= cgroup_ca(cgroup
);
10451 for_each_present_cpu(i
) {
10452 percpu
= cpuacct_cpuusage_read(ca
, i
);
10453 seq_printf(m
, "%llu ", (unsigned long long) percpu
);
10455 seq_printf(m
, "\n");
10459 static const char *cpuacct_stat_desc
[] = {
10460 [CPUACCT_STAT_USER
] = "user",
10461 [CPUACCT_STAT_SYSTEM
] = "system",
10464 static int cpuacct_stats_show(struct cgroup
*cgrp
, struct cftype
*cft
,
10465 struct cgroup_map_cb
*cb
)
10467 struct cpuacct
*ca
= cgroup_ca(cgrp
);
10470 for (i
= 0; i
< CPUACCT_STAT_NSTATS
; i
++) {
10471 s64 val
= percpu_counter_read(&ca
->cpustat
[i
]);
10472 val
= cputime64_to_clock_t(val
);
10473 cb
->fill(cb
, cpuacct_stat_desc
[i
], val
);
10478 static struct cftype files
[] = {
10481 .read_u64
= cpuusage_read
,
10482 .write_u64
= cpuusage_write
,
10485 .name
= "usage_percpu",
10486 .read_seq_string
= cpuacct_percpu_seq_read
,
10490 .read_map
= cpuacct_stats_show
,
10494 static int cpuacct_populate(struct cgroup_subsys
*ss
, struct cgroup
*cgrp
)
10496 return cgroup_add_files(cgrp
, ss
, files
, ARRAY_SIZE(files
));
10500 * charge this task's execution time to its accounting group.
10502 * called with rq->lock held.
10504 static void cpuacct_charge(struct task_struct
*tsk
, u64 cputime
)
10506 struct cpuacct
*ca
;
10509 if (unlikely(!cpuacct_subsys
.active
))
10512 cpu
= task_cpu(tsk
);
10518 for (; ca
; ca
= ca
->parent
) {
10519 u64
*cpuusage
= per_cpu_ptr(ca
->cpuusage
, cpu
);
10520 *cpuusage
+= cputime
;
10527 * Charge the system/user time to the task's accounting group.
10529 static void cpuacct_update_stats(struct task_struct
*tsk
,
10530 enum cpuacct_stat_index idx
, cputime_t val
)
10532 struct cpuacct
*ca
;
10534 if (unlikely(!cpuacct_subsys
.active
))
10541 percpu_counter_add(&ca
->cpustat
[idx
], val
);
10547 struct cgroup_subsys cpuacct_subsys
= {
10549 .create
= cpuacct_create
,
10550 .destroy
= cpuacct_destroy
,
10551 .populate
= cpuacct_populate
,
10552 .subsys_id
= cpuacct_subsys_id
,
10554 #endif /* CONFIG_CGROUP_CPUACCT */