4 * Kernel scheduler and related syscalls
6 * Copyright (C) 1991-2002 Linus Torvalds
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
22 #include <linux/module.h>
23 #include <linux/nmi.h>
24 #include <linux/init.h>
25 #include <asm/uaccess.h>
26 #include <linux/highmem.h>
27 #include <linux/smp_lock.h>
28 #include <asm/mmu_context.h>
29 #include <linux/interrupt.h>
30 #include <linux/capability.h>
31 #include <linux/completion.h>
32 #include <linux/kernel_stat.h>
33 #include <linux/security.h>
34 #include <linux/notifier.h>
35 #include <linux/profile.h>
36 #include <linux/suspend.h>
37 #include <linux/vmalloc.h>
38 #include <linux/blkdev.h>
39 #include <linux/delay.h>
40 #include <linux/smp.h>
41 #include <linux/threads.h>
42 #include <linux/timer.h>
43 #include <linux/rcupdate.h>
44 #include <linux/cpu.h>
45 #include <linux/cpuset.h>
46 #include <linux/percpu.h>
47 #include <linux/kthread.h>
48 #include <linux/seq_file.h>
49 #include <linux/syscalls.h>
50 #include <linux/times.h>
51 #include <linux/acct.h>
52 #include <linux/kprobes.h>
55 #include <asm/unistd.h>
58 * Convert user-nice values [ -20 ... 0 ... 19 ]
59 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
62 #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
63 #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
64 #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
67 * 'User priority' is the nice value converted to something we
68 * can work with better when scaling various scheduler parameters,
69 * it's a [ 0 ... 39 ] range.
71 #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
72 #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
73 #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
76 * Some helpers for converting nanosecond timing to jiffy resolution
78 #define NS_TO_JIFFIES(TIME) ((TIME) / (1000000000 / HZ))
79 #define JIFFIES_TO_NS(TIME) ((TIME) * (1000000000 / HZ))
82 * These are the 'tuning knobs' of the scheduler:
84 * Minimum timeslice is 5 msecs (or 1 jiffy, whichever is larger),
85 * default timeslice is 100 msecs, maximum timeslice is 800 msecs.
86 * Timeslices get refilled after they expire.
88 #define MIN_TIMESLICE max(5 * HZ / 1000, 1)
89 #define DEF_TIMESLICE (100 * HZ / 1000)
90 #define ON_RUNQUEUE_WEIGHT 30
91 #define CHILD_PENALTY 95
92 #define PARENT_PENALTY 100
94 #define PRIO_BONUS_RATIO 25
95 #define MAX_BONUS (MAX_USER_PRIO * PRIO_BONUS_RATIO / 100)
96 #define INTERACTIVE_DELTA 2
97 #define MAX_SLEEP_AVG (DEF_TIMESLICE * MAX_BONUS)
98 #define STARVATION_LIMIT (MAX_SLEEP_AVG)
99 #define NS_MAX_SLEEP_AVG (JIFFIES_TO_NS(MAX_SLEEP_AVG))
102 * If a task is 'interactive' then we reinsert it in the active
103 * array after it has expired its current timeslice. (it will not
104 * continue to run immediately, it will still roundrobin with
105 * other interactive tasks.)
107 * This part scales the interactivity limit depending on niceness.
109 * We scale it linearly, offset by the INTERACTIVE_DELTA delta.
110 * Here are a few examples of different nice levels:
112 * TASK_INTERACTIVE(-20): [1,1,1,1,1,1,1,1,1,0,0]
113 * TASK_INTERACTIVE(-10): [1,1,1,1,1,1,1,0,0,0,0]
114 * TASK_INTERACTIVE( 0): [1,1,1,1,0,0,0,0,0,0,0]
115 * TASK_INTERACTIVE( 10): [1,1,0,0,0,0,0,0,0,0,0]
116 * TASK_INTERACTIVE( 19): [0,0,0,0,0,0,0,0,0,0,0]
118 * (the X axis represents the possible -5 ... 0 ... +5 dynamic
119 * priority range a task can explore, a value of '1' means the
120 * task is rated interactive.)
122 * Ie. nice +19 tasks can never get 'interactive' enough to be
123 * reinserted into the active array. And only heavily CPU-hog nice -20
124 * tasks will be expired. Default nice 0 tasks are somewhere between,
125 * it takes some effort for them to get interactive, but it's not
129 #define CURRENT_BONUS(p) \
130 (NS_TO_JIFFIES((p)->sleep_avg) * MAX_BONUS / \
133 #define GRANULARITY (10 * HZ / 1000 ? : 1)
136 #define TIMESLICE_GRANULARITY(p) (GRANULARITY * \
137 (1 << (((MAX_BONUS - CURRENT_BONUS(p)) ? : 1) - 1)) * \
140 #define TIMESLICE_GRANULARITY(p) (GRANULARITY * \
141 (1 << (((MAX_BONUS - CURRENT_BONUS(p)) ? : 1) - 1)))
144 #define SCALE(v1,v1_max,v2_max) \
145 (v1) * (v2_max) / (v1_max)
148 (SCALE(TASK_NICE(p) + 20, 40, MAX_BONUS) - 20 * MAX_BONUS / 40 + \
151 #define TASK_INTERACTIVE(p) \
152 ((p)->prio <= (p)->static_prio - DELTA(p))
154 #define INTERACTIVE_SLEEP(p) \
155 (JIFFIES_TO_NS(MAX_SLEEP_AVG * \
156 (MAX_BONUS / 2 + DELTA((p)) + 1) / MAX_BONUS - 1))
158 #define TASK_PREEMPTS_CURR(p, rq) \
159 ((p)->prio < (rq)->curr->prio)
162 * task_timeslice() scales user-nice values [ -20 ... 0 ... 19 ]
163 * to time slice values: [800ms ... 100ms ... 5ms]
165 * The higher a thread's priority, the bigger timeslices
166 * it gets during one round of execution. But even the lowest
167 * priority thread gets MIN_TIMESLICE worth of execution time.
170 #define SCALE_PRIO(x, prio) \
171 max(x * (MAX_PRIO - prio) / (MAX_USER_PRIO/2), MIN_TIMESLICE)
173 static unsigned int task_timeslice(task_t
*p
)
175 if (p
->static_prio
< NICE_TO_PRIO(0))
176 return SCALE_PRIO(DEF_TIMESLICE
*4, p
->static_prio
);
178 return SCALE_PRIO(DEF_TIMESLICE
, p
->static_prio
);
180 #define task_hot(p, now, sd) ((long long) ((now) - (p)->last_ran) \
181 < (long long) (sd)->cache_hot_time)
184 * These are the runqueue data structures:
187 typedef struct runqueue runqueue_t
;
190 unsigned int nr_active
;
191 DECLARE_BITMAP(bitmap
, MAX_PRIO
+1); /* include 1 bit for delimiter */
192 struct list_head queue
[MAX_PRIO
];
196 * This is the main, per-CPU runqueue data structure.
198 * Locking rule: those places that want to lock multiple runqueues
199 * (such as the load balancing or the thread migration code), lock
200 * acquire operations must be ordered by ascending &runqueue.
206 * nr_running and cpu_load should be in the same cacheline because
207 * remote CPUs use both these fields when doing load calculation.
209 unsigned long nr_running
;
211 unsigned long cpu_load
[3];
213 unsigned long long nr_switches
;
216 * This is part of a global counter where only the total sum
217 * over all CPUs matters. A task can increase this counter on
218 * one CPU and if it got migrated afterwards it may decrease
219 * it on another CPU. Always updated under the runqueue lock:
221 unsigned long nr_uninterruptible
;
223 unsigned long expired_timestamp
;
224 unsigned long long timestamp_last_tick
;
226 struct mm_struct
*prev_mm
;
227 prio_array_t
*active
, *expired
, arrays
[2];
228 int best_expired_prio
;
232 struct sched_domain
*sd
;
234 /* For active balancing */
238 task_t
*migration_thread
;
239 struct list_head migration_queue
;
242 #ifdef CONFIG_SCHEDSTATS
244 struct sched_info rq_sched_info
;
246 /* sys_sched_yield() stats */
247 unsigned long yld_exp_empty
;
248 unsigned long yld_act_empty
;
249 unsigned long yld_both_empty
;
250 unsigned long yld_cnt
;
252 /* schedule() stats */
253 unsigned long sched_switch
;
254 unsigned long sched_cnt
;
255 unsigned long sched_goidle
;
257 /* try_to_wake_up() stats */
258 unsigned long ttwu_cnt
;
259 unsigned long ttwu_local
;
263 static DEFINE_PER_CPU(struct runqueue
, runqueues
);
266 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
267 * See detach_destroy_domains: synchronize_sched for details.
269 * The domain tree of any CPU may only be accessed from within
270 * preempt-disabled sections.
272 #define for_each_domain(cpu, domain) \
273 for (domain = rcu_dereference(cpu_rq(cpu)->sd); domain; domain = domain->parent)
275 #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
276 #define this_rq() (&__get_cpu_var(runqueues))
277 #define task_rq(p) cpu_rq(task_cpu(p))
278 #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
280 #ifndef prepare_arch_switch
281 # define prepare_arch_switch(next) do { } while (0)
283 #ifndef finish_arch_switch
284 # define finish_arch_switch(prev) do { } while (0)
287 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
288 static inline int task_running(runqueue_t
*rq
, task_t
*p
)
290 return rq
->curr
== p
;
293 static inline void prepare_lock_switch(runqueue_t
*rq
, task_t
*next
)
297 static inline void finish_lock_switch(runqueue_t
*rq
, task_t
*prev
)
299 #ifdef CONFIG_DEBUG_SPINLOCK
300 /* this is a valid case when another task releases the spinlock */
301 rq
->lock
.owner
= current
;
303 spin_unlock_irq(&rq
->lock
);
306 #else /* __ARCH_WANT_UNLOCKED_CTXSW */
307 static inline int task_running(runqueue_t
*rq
, task_t
*p
)
312 return rq
->curr
== p
;
316 static inline void prepare_lock_switch(runqueue_t
*rq
, task_t
*next
)
320 * We can optimise this out completely for !SMP, because the
321 * SMP rebalancing from interrupt is the only thing that cares
326 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
327 spin_unlock_irq(&rq
->lock
);
329 spin_unlock(&rq
->lock
);
333 static inline void finish_lock_switch(runqueue_t
*rq
, task_t
*prev
)
337 * After ->oncpu is cleared, the task can be moved to a different CPU.
338 * We must ensure this doesn't happen until the switch is completely
344 #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
348 #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
351 * task_rq_lock - lock the runqueue a given task resides on and disable
352 * interrupts. Note the ordering: we can safely lookup the task_rq without
353 * explicitly disabling preemption.
355 static inline runqueue_t
*task_rq_lock(task_t
*p
, unsigned long *flags
)
361 local_irq_save(*flags
);
363 spin_lock(&rq
->lock
);
364 if (unlikely(rq
!= task_rq(p
))) {
365 spin_unlock_irqrestore(&rq
->lock
, *flags
);
366 goto repeat_lock_task
;
371 static inline void task_rq_unlock(runqueue_t
*rq
, unsigned long *flags
)
374 spin_unlock_irqrestore(&rq
->lock
, *flags
);
377 #ifdef CONFIG_SCHEDSTATS
379 * bump this up when changing the output format or the meaning of an existing
380 * format, so that tools can adapt (or abort)
382 #define SCHEDSTAT_VERSION 12
384 static int show_schedstat(struct seq_file
*seq
, void *v
)
388 seq_printf(seq
, "version %d\n", SCHEDSTAT_VERSION
);
389 seq_printf(seq
, "timestamp %lu\n", jiffies
);
390 for_each_online_cpu(cpu
) {
391 runqueue_t
*rq
= cpu_rq(cpu
);
393 struct sched_domain
*sd
;
397 /* runqueue-specific stats */
399 "cpu%d %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu",
400 cpu
, rq
->yld_both_empty
,
401 rq
->yld_act_empty
, rq
->yld_exp_empty
, rq
->yld_cnt
,
402 rq
->sched_switch
, rq
->sched_cnt
, rq
->sched_goidle
,
403 rq
->ttwu_cnt
, rq
->ttwu_local
,
404 rq
->rq_sched_info
.cpu_time
,
405 rq
->rq_sched_info
.run_delay
, rq
->rq_sched_info
.pcnt
);
407 seq_printf(seq
, "\n");
410 /* domain-specific stats */
412 for_each_domain(cpu
, sd
) {
413 enum idle_type itype
;
414 char mask_str
[NR_CPUS
];
416 cpumask_scnprintf(mask_str
, NR_CPUS
, sd
->span
);
417 seq_printf(seq
, "domain%d %s", dcnt
++, mask_str
);
418 for (itype
= SCHED_IDLE
; itype
< MAX_IDLE_TYPES
;
420 seq_printf(seq
, " %lu %lu %lu %lu %lu %lu %lu %lu",
422 sd
->lb_balanced
[itype
],
423 sd
->lb_failed
[itype
],
424 sd
->lb_imbalance
[itype
],
425 sd
->lb_gained
[itype
],
426 sd
->lb_hot_gained
[itype
],
427 sd
->lb_nobusyq
[itype
],
428 sd
->lb_nobusyg
[itype
]);
430 seq_printf(seq
, " %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu\n",
431 sd
->alb_cnt
, sd
->alb_failed
, sd
->alb_pushed
,
432 sd
->sbe_cnt
, sd
->sbe_balanced
, sd
->sbe_pushed
,
433 sd
->sbf_cnt
, sd
->sbf_balanced
, sd
->sbf_pushed
,
434 sd
->ttwu_wake_remote
, sd
->ttwu_move_affine
, sd
->ttwu_move_balance
);
442 static int schedstat_open(struct inode
*inode
, struct file
*file
)
444 unsigned int size
= PAGE_SIZE
* (1 + num_online_cpus() / 32);
445 char *buf
= kmalloc(size
, GFP_KERNEL
);
451 res
= single_open(file
, show_schedstat
, NULL
);
453 m
= file
->private_data
;
461 struct file_operations proc_schedstat_operations
= {
462 .open
= schedstat_open
,
465 .release
= single_release
,
468 # define schedstat_inc(rq, field) do { (rq)->field++; } while (0)
469 # define schedstat_add(rq, field, amt) do { (rq)->field += (amt); } while (0)
470 #else /* !CONFIG_SCHEDSTATS */
471 # define schedstat_inc(rq, field) do { } while (0)
472 # define schedstat_add(rq, field, amt) do { } while (0)
476 * rq_lock - lock a given runqueue and disable interrupts.
478 static inline runqueue_t
*this_rq_lock(void)
485 spin_lock(&rq
->lock
);
490 #ifdef CONFIG_SCHEDSTATS
492 * Called when a process is dequeued from the active array and given
493 * the cpu. We should note that with the exception of interactive
494 * tasks, the expired queue will become the active queue after the active
495 * queue is empty, without explicitly dequeuing and requeuing tasks in the
496 * expired queue. (Interactive tasks may be requeued directly to the
497 * active queue, thus delaying tasks in the expired queue from running;
498 * see scheduler_tick()).
500 * This function is only called from sched_info_arrive(), rather than
501 * dequeue_task(). Even though a task may be queued and dequeued multiple
502 * times as it is shuffled about, we're really interested in knowing how
503 * long it was from the *first* time it was queued to the time that it
506 static inline void sched_info_dequeued(task_t
*t
)
508 t
->sched_info
.last_queued
= 0;
512 * Called when a task finally hits the cpu. We can now calculate how
513 * long it was waiting to run. We also note when it began so that we
514 * can keep stats on how long its timeslice is.
516 static void sched_info_arrive(task_t
*t
)
518 unsigned long now
= jiffies
, diff
= 0;
519 struct runqueue
*rq
= task_rq(t
);
521 if (t
->sched_info
.last_queued
)
522 diff
= now
- t
->sched_info
.last_queued
;
523 sched_info_dequeued(t
);
524 t
->sched_info
.run_delay
+= diff
;
525 t
->sched_info
.last_arrival
= now
;
526 t
->sched_info
.pcnt
++;
531 rq
->rq_sched_info
.run_delay
+= diff
;
532 rq
->rq_sched_info
.pcnt
++;
536 * Called when a process is queued into either the active or expired
537 * array. The time is noted and later used to determine how long we
538 * had to wait for us to reach the cpu. Since the expired queue will
539 * become the active queue after active queue is empty, without dequeuing
540 * and requeuing any tasks, we are interested in queuing to either. It
541 * is unusual but not impossible for tasks to be dequeued and immediately
542 * requeued in the same or another array: this can happen in sched_yield(),
543 * set_user_nice(), and even load_balance() as it moves tasks from runqueue
546 * This function is only called from enqueue_task(), but also only updates
547 * the timestamp if it is already not set. It's assumed that
548 * sched_info_dequeued() will clear that stamp when appropriate.
550 static inline void sched_info_queued(task_t
*t
)
552 if (!t
->sched_info
.last_queued
)
553 t
->sched_info
.last_queued
= jiffies
;
557 * Called when a process ceases being the active-running process, either
558 * voluntarily or involuntarily. Now we can calculate how long we ran.
560 static inline void sched_info_depart(task_t
*t
)
562 struct runqueue
*rq
= task_rq(t
);
563 unsigned long diff
= jiffies
- t
->sched_info
.last_arrival
;
565 t
->sched_info
.cpu_time
+= diff
;
568 rq
->rq_sched_info
.cpu_time
+= diff
;
572 * Called when tasks are switched involuntarily due, typically, to expiring
573 * their time slice. (This may also be called when switching to or from
574 * the idle task.) We are only called when prev != next.
576 static inline void sched_info_switch(task_t
*prev
, task_t
*next
)
578 struct runqueue
*rq
= task_rq(prev
);
581 * prev now departs the cpu. It's not interesting to record
582 * stats about how efficient we were at scheduling the idle
585 if (prev
!= rq
->idle
)
586 sched_info_depart(prev
);
588 if (next
!= rq
->idle
)
589 sched_info_arrive(next
);
592 #define sched_info_queued(t) do { } while (0)
593 #define sched_info_switch(t, next) do { } while (0)
594 #endif /* CONFIG_SCHEDSTATS */
597 * Adding/removing a task to/from a priority array:
599 static void dequeue_task(struct task_struct
*p
, prio_array_t
*array
)
602 list_del(&p
->run_list
);
603 if (list_empty(array
->queue
+ p
->prio
))
604 __clear_bit(p
->prio
, array
->bitmap
);
607 static void enqueue_task(struct task_struct
*p
, prio_array_t
*array
)
609 sched_info_queued(p
);
610 list_add_tail(&p
->run_list
, array
->queue
+ p
->prio
);
611 __set_bit(p
->prio
, array
->bitmap
);
617 * Put task to the end of the run list without the overhead of dequeue
618 * followed by enqueue.
620 static void requeue_task(struct task_struct
*p
, prio_array_t
*array
)
622 list_move_tail(&p
->run_list
, array
->queue
+ p
->prio
);
625 static inline void enqueue_task_head(struct task_struct
*p
, prio_array_t
*array
)
627 list_add(&p
->run_list
, array
->queue
+ p
->prio
);
628 __set_bit(p
->prio
, array
->bitmap
);
634 * effective_prio - return the priority that is based on the static
635 * priority but is modified by bonuses/penalties.
637 * We scale the actual sleep average [0 .... MAX_SLEEP_AVG]
638 * into the -5 ... 0 ... +5 bonus/penalty range.
640 * We use 25% of the full 0...39 priority range so that:
642 * 1) nice +19 interactive tasks do not preempt nice 0 CPU hogs.
643 * 2) nice -20 CPU hogs do not get preempted by nice 0 tasks.
645 * Both properties are important to certain workloads.
647 static int effective_prio(task_t
*p
)
654 bonus
= CURRENT_BONUS(p
) - MAX_BONUS
/ 2;
656 prio
= p
->static_prio
- bonus
;
657 if (prio
< MAX_RT_PRIO
)
659 if (prio
> MAX_PRIO
-1)
665 * __activate_task - move a task to the runqueue.
667 static void __activate_task(task_t
*p
, runqueue_t
*rq
)
669 prio_array_t
*target
= rq
->active
;
672 target
= rq
->expired
;
673 enqueue_task(p
, target
);
678 * __activate_idle_task - move idle task to the _front_ of runqueue.
680 static inline void __activate_idle_task(task_t
*p
, runqueue_t
*rq
)
682 enqueue_task_head(p
, rq
->active
);
686 static int recalc_task_prio(task_t
*p
, unsigned long long now
)
688 /* Caller must always ensure 'now >= p->timestamp' */
689 unsigned long long __sleep_time
= now
- p
->timestamp
;
690 unsigned long sleep_time
;
695 if (__sleep_time
> NS_MAX_SLEEP_AVG
)
696 sleep_time
= NS_MAX_SLEEP_AVG
;
698 sleep_time
= (unsigned long)__sleep_time
;
701 if (likely(sleep_time
> 0)) {
703 * User tasks that sleep a long time are categorised as
704 * idle. They will only have their sleep_avg increased to a
705 * level that makes them just interactive priority to stay
706 * active yet prevent them suddenly becoming cpu hogs and
707 * starving other processes.
709 if (p
->mm
&& sleep_time
> INTERACTIVE_SLEEP(p
)) {
710 unsigned long ceiling
;
712 ceiling
= JIFFIES_TO_NS(MAX_SLEEP_AVG
-
714 if (p
->sleep_avg
< ceiling
)
715 p
->sleep_avg
= ceiling
;
718 * Tasks waking from uninterruptible sleep are
719 * limited in their sleep_avg rise as they
720 * are likely to be waiting on I/O
722 if (p
->sleep_type
== SLEEP_NONINTERACTIVE
&& p
->mm
) {
723 if (p
->sleep_avg
>= INTERACTIVE_SLEEP(p
))
725 else if (p
->sleep_avg
+ sleep_time
>=
726 INTERACTIVE_SLEEP(p
)) {
727 p
->sleep_avg
= INTERACTIVE_SLEEP(p
);
733 * This code gives a bonus to interactive tasks.
735 * The boost works by updating the 'average sleep time'
736 * value here, based on ->timestamp. The more time a
737 * task spends sleeping, the higher the average gets -
738 * and the higher the priority boost gets as well.
740 p
->sleep_avg
+= sleep_time
;
742 if (p
->sleep_avg
> NS_MAX_SLEEP_AVG
)
743 p
->sleep_avg
= NS_MAX_SLEEP_AVG
;
747 return effective_prio(p
);
751 * activate_task - move a task to the runqueue and do priority recalculation
753 * Update all the scheduling statistics stuff. (sleep average
754 * calculation, priority modifiers, etc.)
756 static void activate_task(task_t
*p
, runqueue_t
*rq
, int local
)
758 unsigned long long now
;
763 /* Compensate for drifting sched_clock */
764 runqueue_t
*this_rq
= this_rq();
765 now
= (now
- this_rq
->timestamp_last_tick
)
766 + rq
->timestamp_last_tick
;
771 p
->prio
= recalc_task_prio(p
, now
);
774 * This checks to make sure it's not an uninterruptible task
775 * that is now waking up.
777 if (p
->sleep_type
== SLEEP_NORMAL
) {
779 * Tasks which were woken up by interrupts (ie. hw events)
780 * are most likely of interactive nature. So we give them
781 * the credit of extending their sleep time to the period
782 * of time they spend on the runqueue, waiting for execution
783 * on a CPU, first time around:
786 p
->sleep_type
= SLEEP_INTERRUPTED
;
789 * Normal first-time wakeups get a credit too for
790 * on-runqueue time, but it will be weighted down:
792 p
->sleep_type
= SLEEP_INTERACTIVE
;
797 __activate_task(p
, rq
);
801 * deactivate_task - remove a task from the runqueue.
803 static void deactivate_task(struct task_struct
*p
, runqueue_t
*rq
)
806 dequeue_task(p
, p
->array
);
811 * resched_task - mark a task 'to be rescheduled now'.
813 * On UP this means the setting of the need_resched flag, on SMP it
814 * might also involve a cross-CPU call to trigger the scheduler on
819 #ifndef tsk_is_polling
820 #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
823 static void resched_task(task_t
*p
)
827 assert_spin_locked(&task_rq(p
)->lock
);
829 if (unlikely(test_tsk_thread_flag(p
, TIF_NEED_RESCHED
)))
832 set_tsk_thread_flag(p
, TIF_NEED_RESCHED
);
835 if (cpu
== smp_processor_id())
838 /* NEED_RESCHED must be visible before we test polling */
840 if (!tsk_is_polling(p
))
841 smp_send_reschedule(cpu
);
844 static inline void resched_task(task_t
*p
)
846 assert_spin_locked(&task_rq(p
)->lock
);
847 set_tsk_need_resched(p
);
852 * task_curr - is this task currently executing on a CPU?
853 * @p: the task in question.
855 inline int task_curr(const task_t
*p
)
857 return cpu_curr(task_cpu(p
)) == p
;
862 struct list_head list
;
867 struct completion done
;
871 * The task's runqueue lock must be held.
872 * Returns true if you have to wait for migration thread.
874 static int migrate_task(task_t
*p
, int dest_cpu
, migration_req_t
*req
)
876 runqueue_t
*rq
= task_rq(p
);
879 * If the task is not on a runqueue (and not running), then
880 * it is sufficient to simply update the task's cpu field.
882 if (!p
->array
&& !task_running(rq
, p
)) {
883 set_task_cpu(p
, dest_cpu
);
887 init_completion(&req
->done
);
889 req
->dest_cpu
= dest_cpu
;
890 list_add(&req
->list
, &rq
->migration_queue
);
895 * wait_task_inactive - wait for a thread to unschedule.
897 * The caller must ensure that the task *will* unschedule sometime soon,
898 * else this function might spin for a *long* time. This function can't
899 * be called with interrupts off, or it may introduce deadlock with
900 * smp_call_function() if an IPI is sent by the same process we are
901 * waiting to become inactive.
903 void wait_task_inactive(task_t
*p
)
910 rq
= task_rq_lock(p
, &flags
);
911 /* Must be off runqueue entirely, not preempted. */
912 if (unlikely(p
->array
|| task_running(rq
, p
))) {
913 /* If it's preempted, we yield. It could be a while. */
914 preempted
= !task_running(rq
, p
);
915 task_rq_unlock(rq
, &flags
);
921 task_rq_unlock(rq
, &flags
);
925 * kick_process - kick a running thread to enter/exit the kernel
926 * @p: the to-be-kicked thread
928 * Cause a process which is running on another CPU to enter
929 * kernel-mode, without any delay. (to get signals handled.)
931 * NOTE: this function doesnt have to take the runqueue lock,
932 * because all it wants to ensure is that the remote task enters
933 * the kernel. If the IPI races and the task has been migrated
934 * to another CPU then no harm is done and the purpose has been
937 void kick_process(task_t
*p
)
943 if ((cpu
!= smp_processor_id()) && task_curr(p
))
944 smp_send_reschedule(cpu
);
949 * Return a low guess at the load of a migration-source cpu.
951 * We want to under-estimate the load of migration sources, to
952 * balance conservatively.
954 static inline unsigned long source_load(int cpu
, int type
)
956 runqueue_t
*rq
= cpu_rq(cpu
);
957 unsigned long load_now
= rq
->nr_running
* SCHED_LOAD_SCALE
;
961 return min(rq
->cpu_load
[type
-1], load_now
);
965 * Return a high guess at the load of a migration-target cpu
967 static inline unsigned long target_load(int cpu
, int type
)
969 runqueue_t
*rq
= cpu_rq(cpu
);
970 unsigned long load_now
= rq
->nr_running
* SCHED_LOAD_SCALE
;
974 return max(rq
->cpu_load
[type
-1], load_now
);
978 * find_idlest_group finds and returns the least busy CPU group within the
981 static struct sched_group
*
982 find_idlest_group(struct sched_domain
*sd
, struct task_struct
*p
, int this_cpu
)
984 struct sched_group
*idlest
= NULL
, *this = NULL
, *group
= sd
->groups
;
985 unsigned long min_load
= ULONG_MAX
, this_load
= 0;
986 int load_idx
= sd
->forkexec_idx
;
987 int imbalance
= 100 + (sd
->imbalance_pct
-100)/2;
990 unsigned long load
, avg_load
;
994 /* Skip over this group if it has no CPUs allowed */
995 if (!cpus_intersects(group
->cpumask
, p
->cpus_allowed
))
998 local_group
= cpu_isset(this_cpu
, group
->cpumask
);
1000 /* Tally up the load of all CPUs in the group */
1003 for_each_cpu_mask(i
, group
->cpumask
) {
1004 /* Bias balancing toward cpus of our domain */
1006 load
= source_load(i
, load_idx
);
1008 load
= target_load(i
, load_idx
);
1013 /* Adjust by relative CPU power of the group */
1014 avg_load
= (avg_load
* SCHED_LOAD_SCALE
) / group
->cpu_power
;
1017 this_load
= avg_load
;
1019 } else if (avg_load
< min_load
) {
1020 min_load
= avg_load
;
1024 group
= group
->next
;
1025 } while (group
!= sd
->groups
);
1027 if (!idlest
|| 100*this_load
< imbalance
*min_load
)
1033 * find_idlest_queue - find the idlest runqueue among the cpus in group.
1036 find_idlest_cpu(struct sched_group
*group
, struct task_struct
*p
, int this_cpu
)
1039 unsigned long load
, min_load
= ULONG_MAX
;
1043 /* Traverse only the allowed CPUs */
1044 cpus_and(tmp
, group
->cpumask
, p
->cpus_allowed
);
1046 for_each_cpu_mask(i
, tmp
) {
1047 load
= source_load(i
, 0);
1049 if (load
< min_load
|| (load
== min_load
&& i
== this_cpu
)) {
1059 * sched_balance_self: balance the current task (running on cpu) in domains
1060 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
1063 * Balance, ie. select the least loaded group.
1065 * Returns the target CPU number, or the same CPU if no balancing is needed.
1067 * preempt must be disabled.
1069 static int sched_balance_self(int cpu
, int flag
)
1071 struct task_struct
*t
= current
;
1072 struct sched_domain
*tmp
, *sd
= NULL
;
1074 for_each_domain(cpu
, tmp
) {
1075 if (tmp
->flags
& flag
)
1081 struct sched_group
*group
;
1086 group
= find_idlest_group(sd
, t
, cpu
);
1090 new_cpu
= find_idlest_cpu(group
, t
, cpu
);
1091 if (new_cpu
== -1 || new_cpu
== cpu
)
1094 /* Now try balancing at a lower domain level */
1098 weight
= cpus_weight(span
);
1099 for_each_domain(cpu
, tmp
) {
1100 if (weight
<= cpus_weight(tmp
->span
))
1102 if (tmp
->flags
& flag
)
1105 /* while loop will break here if sd == NULL */
1111 #endif /* CONFIG_SMP */
1114 * wake_idle() will wake a task on an idle cpu if task->cpu is
1115 * not idle and an idle cpu is available. The span of cpus to
1116 * search starts with cpus closest then further out as needed,
1117 * so we always favor a closer, idle cpu.
1119 * Returns the CPU we should wake onto.
1121 #if defined(ARCH_HAS_SCHED_WAKE_IDLE)
1122 static int wake_idle(int cpu
, task_t
*p
)
1125 struct sched_domain
*sd
;
1131 for_each_domain(cpu
, sd
) {
1132 if (sd
->flags
& SD_WAKE_IDLE
) {
1133 cpus_and(tmp
, sd
->span
, p
->cpus_allowed
);
1134 for_each_cpu_mask(i
, tmp
) {
1145 static inline int wake_idle(int cpu
, task_t
*p
)
1152 * try_to_wake_up - wake up a thread
1153 * @p: the to-be-woken-up thread
1154 * @state: the mask of task states that can be woken
1155 * @sync: do a synchronous wakeup?
1157 * Put it on the run-queue if it's not already there. The "current"
1158 * thread is always on the run-queue (except when the actual
1159 * re-schedule is in progress), and as such you're allowed to do
1160 * the simpler "current->state = TASK_RUNNING" to mark yourself
1161 * runnable without the overhead of this.
1163 * returns failure only if the task is already active.
1165 static int try_to_wake_up(task_t
*p
, unsigned int state
, int sync
)
1167 int cpu
, this_cpu
, success
= 0;
1168 unsigned long flags
;
1172 unsigned long load
, this_load
;
1173 struct sched_domain
*sd
, *this_sd
= NULL
;
1177 rq
= task_rq_lock(p
, &flags
);
1178 old_state
= p
->state
;
1179 if (!(old_state
& state
))
1186 this_cpu
= smp_processor_id();
1189 if (unlikely(task_running(rq
, p
)))
1194 schedstat_inc(rq
, ttwu_cnt
);
1195 if (cpu
== this_cpu
) {
1196 schedstat_inc(rq
, ttwu_local
);
1200 for_each_domain(this_cpu
, sd
) {
1201 if (cpu_isset(cpu
, sd
->span
)) {
1202 schedstat_inc(sd
, ttwu_wake_remote
);
1208 if (unlikely(!cpu_isset(this_cpu
, p
->cpus_allowed
)))
1212 * Check for affine wakeup and passive balancing possibilities.
1215 int idx
= this_sd
->wake_idx
;
1216 unsigned int imbalance
;
1218 imbalance
= 100 + (this_sd
->imbalance_pct
- 100) / 2;
1220 load
= source_load(cpu
, idx
);
1221 this_load
= target_load(this_cpu
, idx
);
1223 new_cpu
= this_cpu
; /* Wake to this CPU if we can */
1225 if (this_sd
->flags
& SD_WAKE_AFFINE
) {
1226 unsigned long tl
= this_load
;
1228 * If sync wakeup then subtract the (maximum possible)
1229 * effect of the currently running task from the load
1230 * of the current CPU:
1233 tl
-= SCHED_LOAD_SCALE
;
1236 tl
+ target_load(cpu
, idx
) <= SCHED_LOAD_SCALE
) ||
1237 100*(tl
+ SCHED_LOAD_SCALE
) <= imbalance
*load
) {
1239 * This domain has SD_WAKE_AFFINE and
1240 * p is cache cold in this domain, and
1241 * there is no bad imbalance.
1243 schedstat_inc(this_sd
, ttwu_move_affine
);
1249 * Start passive balancing when half the imbalance_pct
1252 if (this_sd
->flags
& SD_WAKE_BALANCE
) {
1253 if (imbalance
*this_load
<= 100*load
) {
1254 schedstat_inc(this_sd
, ttwu_move_balance
);
1260 new_cpu
= cpu
; /* Could not wake to this_cpu. Wake to cpu instead */
1262 new_cpu
= wake_idle(new_cpu
, p
);
1263 if (new_cpu
!= cpu
) {
1264 set_task_cpu(p
, new_cpu
);
1265 task_rq_unlock(rq
, &flags
);
1266 /* might preempt at this point */
1267 rq
= task_rq_lock(p
, &flags
);
1268 old_state
= p
->state
;
1269 if (!(old_state
& state
))
1274 this_cpu
= smp_processor_id();
1279 #endif /* CONFIG_SMP */
1280 if (old_state
== TASK_UNINTERRUPTIBLE
) {
1281 rq
->nr_uninterruptible
--;
1283 * Tasks on involuntary sleep don't earn
1284 * sleep_avg beyond just interactive state.
1286 p
->sleep_type
= SLEEP_NONINTERACTIVE
;
1290 * Tasks that have marked their sleep as noninteractive get
1291 * woken up with their sleep average not weighted in an
1294 if (old_state
& TASK_NONINTERACTIVE
)
1295 p
->sleep_type
= SLEEP_NONINTERACTIVE
;
1298 activate_task(p
, rq
, cpu
== this_cpu
);
1300 * Sync wakeups (i.e. those types of wakeups where the waker
1301 * has indicated that it will leave the CPU in short order)
1302 * don't trigger a preemption, if the woken up task will run on
1303 * this cpu. (in this case the 'I will reschedule' promise of
1304 * the waker guarantees that the freshly woken up task is going
1305 * to be considered on this CPU.)
1307 if (!sync
|| cpu
!= this_cpu
) {
1308 if (TASK_PREEMPTS_CURR(p
, rq
))
1309 resched_task(rq
->curr
);
1314 p
->state
= TASK_RUNNING
;
1316 task_rq_unlock(rq
, &flags
);
1321 int fastcall
wake_up_process(task_t
*p
)
1323 return try_to_wake_up(p
, TASK_STOPPED
| TASK_TRACED
|
1324 TASK_INTERRUPTIBLE
| TASK_UNINTERRUPTIBLE
, 0);
1327 EXPORT_SYMBOL(wake_up_process
);
1329 int fastcall
wake_up_state(task_t
*p
, unsigned int state
)
1331 return try_to_wake_up(p
, state
, 0);
1335 * Perform scheduler related setup for a newly forked process p.
1336 * p is forked by current.
1338 void fastcall
sched_fork(task_t
*p
, int clone_flags
)
1340 int cpu
= get_cpu();
1343 cpu
= sched_balance_self(cpu
, SD_BALANCE_FORK
);
1345 set_task_cpu(p
, cpu
);
1348 * We mark the process as running here, but have not actually
1349 * inserted it onto the runqueue yet. This guarantees that
1350 * nobody will actually run it, and a signal or other external
1351 * event cannot wake it up and insert it on the runqueue either.
1353 p
->state
= TASK_RUNNING
;
1354 INIT_LIST_HEAD(&p
->run_list
);
1356 #ifdef CONFIG_SCHEDSTATS
1357 memset(&p
->sched_info
, 0, sizeof(p
->sched_info
));
1359 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
1362 #ifdef CONFIG_PREEMPT
1363 /* Want to start with kernel preemption disabled. */
1364 task_thread_info(p
)->preempt_count
= 1;
1367 * Share the timeslice between parent and child, thus the
1368 * total amount of pending timeslices in the system doesn't change,
1369 * resulting in more scheduling fairness.
1371 local_irq_disable();
1372 p
->time_slice
= (current
->time_slice
+ 1) >> 1;
1374 * The remainder of the first timeslice might be recovered by
1375 * the parent if the child exits early enough.
1377 p
->first_time_slice
= 1;
1378 current
->time_slice
>>= 1;
1379 p
->timestamp
= sched_clock();
1380 if (unlikely(!current
->time_slice
)) {
1382 * This case is rare, it happens when the parent has only
1383 * a single jiffy left from its timeslice. Taking the
1384 * runqueue lock is not a problem.
1386 current
->time_slice
= 1;
1394 * wake_up_new_task - wake up a newly created task for the first time.
1396 * This function will do some initial scheduler statistics housekeeping
1397 * that must be done for every newly created context, then puts the task
1398 * on the runqueue and wakes it.
1400 void fastcall
wake_up_new_task(task_t
*p
, unsigned long clone_flags
)
1402 unsigned long flags
;
1404 runqueue_t
*rq
, *this_rq
;
1406 rq
= task_rq_lock(p
, &flags
);
1407 BUG_ON(p
->state
!= TASK_RUNNING
);
1408 this_cpu
= smp_processor_id();
1412 * We decrease the sleep average of forking parents
1413 * and children as well, to keep max-interactive tasks
1414 * from forking tasks that are max-interactive. The parent
1415 * (current) is done further down, under its lock.
1417 p
->sleep_avg
= JIFFIES_TO_NS(CURRENT_BONUS(p
) *
1418 CHILD_PENALTY
/ 100 * MAX_SLEEP_AVG
/ MAX_BONUS
);
1420 p
->prio
= effective_prio(p
);
1422 if (likely(cpu
== this_cpu
)) {
1423 if (!(clone_flags
& CLONE_VM
)) {
1425 * The VM isn't cloned, so we're in a good position to
1426 * do child-runs-first in anticipation of an exec. This
1427 * usually avoids a lot of COW overhead.
1429 if (unlikely(!current
->array
))
1430 __activate_task(p
, rq
);
1432 p
->prio
= current
->prio
;
1433 list_add_tail(&p
->run_list
, ¤t
->run_list
);
1434 p
->array
= current
->array
;
1435 p
->array
->nr_active
++;
1440 /* Run child last */
1441 __activate_task(p
, rq
);
1443 * We skip the following code due to cpu == this_cpu
1445 * task_rq_unlock(rq, &flags);
1446 * this_rq = task_rq_lock(current, &flags);
1450 this_rq
= cpu_rq(this_cpu
);
1453 * Not the local CPU - must adjust timestamp. This should
1454 * get optimised away in the !CONFIG_SMP case.
1456 p
->timestamp
= (p
->timestamp
- this_rq
->timestamp_last_tick
)
1457 + rq
->timestamp_last_tick
;
1458 __activate_task(p
, rq
);
1459 if (TASK_PREEMPTS_CURR(p
, rq
))
1460 resched_task(rq
->curr
);
1463 * Parent and child are on different CPUs, now get the
1464 * parent runqueue to update the parent's ->sleep_avg:
1466 task_rq_unlock(rq
, &flags
);
1467 this_rq
= task_rq_lock(current
, &flags
);
1469 current
->sleep_avg
= JIFFIES_TO_NS(CURRENT_BONUS(current
) *
1470 PARENT_PENALTY
/ 100 * MAX_SLEEP_AVG
/ MAX_BONUS
);
1471 task_rq_unlock(this_rq
, &flags
);
1475 * Potentially available exiting-child timeslices are
1476 * retrieved here - this way the parent does not get
1477 * penalized for creating too many threads.
1479 * (this cannot be used to 'generate' timeslices
1480 * artificially, because any timeslice recovered here
1481 * was given away by the parent in the first place.)
1483 void fastcall
sched_exit(task_t
*p
)
1485 unsigned long flags
;
1489 * If the child was a (relative-) CPU hog then decrease
1490 * the sleep_avg of the parent as well.
1492 rq
= task_rq_lock(p
->parent
, &flags
);
1493 if (p
->first_time_slice
&& task_cpu(p
) == task_cpu(p
->parent
)) {
1494 p
->parent
->time_slice
+= p
->time_slice
;
1495 if (unlikely(p
->parent
->time_slice
> task_timeslice(p
)))
1496 p
->parent
->time_slice
= task_timeslice(p
);
1498 if (p
->sleep_avg
< p
->parent
->sleep_avg
)
1499 p
->parent
->sleep_avg
= p
->parent
->sleep_avg
/
1500 (EXIT_WEIGHT
+ 1) * EXIT_WEIGHT
+ p
->sleep_avg
/
1502 task_rq_unlock(rq
, &flags
);
1506 * prepare_task_switch - prepare to switch tasks
1507 * @rq: the runqueue preparing to switch
1508 * @next: the task we are going to switch to.
1510 * This is called with the rq lock held and interrupts off. It must
1511 * be paired with a subsequent finish_task_switch after the context
1514 * prepare_task_switch sets up locking and calls architecture specific
1517 static inline void prepare_task_switch(runqueue_t
*rq
, task_t
*next
)
1519 prepare_lock_switch(rq
, next
);
1520 prepare_arch_switch(next
);
1524 * finish_task_switch - clean up after a task-switch
1525 * @rq: runqueue associated with task-switch
1526 * @prev: the thread we just switched away from.
1528 * finish_task_switch must be called after the context switch, paired
1529 * with a prepare_task_switch call before the context switch.
1530 * finish_task_switch will reconcile locking set up by prepare_task_switch,
1531 * and do any other architecture-specific cleanup actions.
1533 * Note that we may have delayed dropping an mm in context_switch(). If
1534 * so, we finish that here outside of the runqueue lock. (Doing it
1535 * with the lock held can cause deadlocks; see schedule() for
1538 static inline void finish_task_switch(runqueue_t
*rq
, task_t
*prev
)
1539 __releases(rq
->lock
)
1541 struct mm_struct
*mm
= rq
->prev_mm
;
1542 unsigned long prev_task_flags
;
1547 * A task struct has one reference for the use as "current".
1548 * If a task dies, then it sets EXIT_ZOMBIE in tsk->exit_state and
1549 * calls schedule one last time. The schedule call will never return,
1550 * and the scheduled task must drop that reference.
1551 * The test for EXIT_ZOMBIE must occur while the runqueue locks are
1552 * still held, otherwise prev could be scheduled on another cpu, die
1553 * there before we look at prev->state, and then the reference would
1555 * Manfred Spraul <manfred@colorfullife.com>
1557 prev_task_flags
= prev
->flags
;
1558 finish_arch_switch(prev
);
1559 finish_lock_switch(rq
, prev
);
1562 if (unlikely(prev_task_flags
& PF_DEAD
)) {
1564 * Remove function-return probe instances associated with this
1565 * task and put them back on the free list.
1567 kprobe_flush_task(prev
);
1568 put_task_struct(prev
);
1573 * schedule_tail - first thing a freshly forked thread must call.
1574 * @prev: the thread we just switched away from.
1576 asmlinkage
void schedule_tail(task_t
*prev
)
1577 __releases(rq
->lock
)
1579 runqueue_t
*rq
= this_rq();
1580 finish_task_switch(rq
, prev
);
1581 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
1582 /* In this case, finish_task_switch does not reenable preemption */
1585 if (current
->set_child_tid
)
1586 put_user(current
->pid
, current
->set_child_tid
);
1590 * context_switch - switch to the new MM and the new
1591 * thread's register state.
1594 task_t
* context_switch(runqueue_t
*rq
, task_t
*prev
, task_t
*next
)
1596 struct mm_struct
*mm
= next
->mm
;
1597 struct mm_struct
*oldmm
= prev
->active_mm
;
1599 if (unlikely(!mm
)) {
1600 next
->active_mm
= oldmm
;
1601 atomic_inc(&oldmm
->mm_count
);
1602 enter_lazy_tlb(oldmm
, next
);
1604 switch_mm(oldmm
, mm
, next
);
1606 if (unlikely(!prev
->mm
)) {
1607 prev
->active_mm
= NULL
;
1608 WARN_ON(rq
->prev_mm
);
1609 rq
->prev_mm
= oldmm
;
1612 /* Here we just switch the register state and the stack. */
1613 switch_to(prev
, next
, prev
);
1619 * nr_running, nr_uninterruptible and nr_context_switches:
1621 * externally visible scheduler statistics: current number of runnable
1622 * threads, current number of uninterruptible-sleeping threads, total
1623 * number of context switches performed since bootup.
1625 unsigned long nr_running(void)
1627 unsigned long i
, sum
= 0;
1629 for_each_online_cpu(i
)
1630 sum
+= cpu_rq(i
)->nr_running
;
1635 unsigned long nr_uninterruptible(void)
1637 unsigned long i
, sum
= 0;
1639 for_each_possible_cpu(i
)
1640 sum
+= cpu_rq(i
)->nr_uninterruptible
;
1643 * Since we read the counters lockless, it might be slightly
1644 * inaccurate. Do not allow it to go below zero though:
1646 if (unlikely((long)sum
< 0))
1652 unsigned long long nr_context_switches(void)
1654 unsigned long long i
, sum
= 0;
1656 for_each_possible_cpu(i
)
1657 sum
+= cpu_rq(i
)->nr_switches
;
1662 unsigned long nr_iowait(void)
1664 unsigned long i
, sum
= 0;
1666 for_each_possible_cpu(i
)
1667 sum
+= atomic_read(&cpu_rq(i
)->nr_iowait
);
1672 unsigned long nr_active(void)
1674 unsigned long i
, running
= 0, uninterruptible
= 0;
1676 for_each_online_cpu(i
) {
1677 running
+= cpu_rq(i
)->nr_running
;
1678 uninterruptible
+= cpu_rq(i
)->nr_uninterruptible
;
1681 if (unlikely((long)uninterruptible
< 0))
1682 uninterruptible
= 0;
1684 return running
+ uninterruptible
;
1690 * double_rq_lock - safely lock two runqueues
1692 * Note this does not disable interrupts like task_rq_lock,
1693 * you need to do so manually before calling.
1695 static void double_rq_lock(runqueue_t
*rq1
, runqueue_t
*rq2
)
1696 __acquires(rq1
->lock
)
1697 __acquires(rq2
->lock
)
1700 spin_lock(&rq1
->lock
);
1701 __acquire(rq2
->lock
); /* Fake it out ;) */
1704 spin_lock(&rq1
->lock
);
1705 spin_lock(&rq2
->lock
);
1707 spin_lock(&rq2
->lock
);
1708 spin_lock(&rq1
->lock
);
1714 * double_rq_unlock - safely unlock two runqueues
1716 * Note this does not restore interrupts like task_rq_unlock,
1717 * you need to do so manually after calling.
1719 static void double_rq_unlock(runqueue_t
*rq1
, runqueue_t
*rq2
)
1720 __releases(rq1
->lock
)
1721 __releases(rq2
->lock
)
1723 spin_unlock(&rq1
->lock
);
1725 spin_unlock(&rq2
->lock
);
1727 __release(rq2
->lock
);
1731 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1733 static void double_lock_balance(runqueue_t
*this_rq
, runqueue_t
*busiest
)
1734 __releases(this_rq
->lock
)
1735 __acquires(busiest
->lock
)
1736 __acquires(this_rq
->lock
)
1738 if (unlikely(!spin_trylock(&busiest
->lock
))) {
1739 if (busiest
< this_rq
) {
1740 spin_unlock(&this_rq
->lock
);
1741 spin_lock(&busiest
->lock
);
1742 spin_lock(&this_rq
->lock
);
1744 spin_lock(&busiest
->lock
);
1749 * If dest_cpu is allowed for this process, migrate the task to it.
1750 * This is accomplished by forcing the cpu_allowed mask to only
1751 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
1752 * the cpu_allowed mask is restored.
1754 static void sched_migrate_task(task_t
*p
, int dest_cpu
)
1756 migration_req_t req
;
1758 unsigned long flags
;
1760 rq
= task_rq_lock(p
, &flags
);
1761 if (!cpu_isset(dest_cpu
, p
->cpus_allowed
)
1762 || unlikely(cpu_is_offline(dest_cpu
)))
1765 /* force the process onto the specified CPU */
1766 if (migrate_task(p
, dest_cpu
, &req
)) {
1767 /* Need to wait for migration thread (might exit: take ref). */
1768 struct task_struct
*mt
= rq
->migration_thread
;
1769 get_task_struct(mt
);
1770 task_rq_unlock(rq
, &flags
);
1771 wake_up_process(mt
);
1772 put_task_struct(mt
);
1773 wait_for_completion(&req
.done
);
1777 task_rq_unlock(rq
, &flags
);
1781 * sched_exec - execve() is a valuable balancing opportunity, because at
1782 * this point the task has the smallest effective memory and cache footprint.
1784 void sched_exec(void)
1786 int new_cpu
, this_cpu
= get_cpu();
1787 new_cpu
= sched_balance_self(this_cpu
, SD_BALANCE_EXEC
);
1789 if (new_cpu
!= this_cpu
)
1790 sched_migrate_task(current
, new_cpu
);
1794 * pull_task - move a task from a remote runqueue to the local runqueue.
1795 * Both runqueues must be locked.
1798 void pull_task(runqueue_t
*src_rq
, prio_array_t
*src_array
, task_t
*p
,
1799 runqueue_t
*this_rq
, prio_array_t
*this_array
, int this_cpu
)
1801 dequeue_task(p
, src_array
);
1802 src_rq
->nr_running
--;
1803 set_task_cpu(p
, this_cpu
);
1804 this_rq
->nr_running
++;
1805 enqueue_task(p
, this_array
);
1806 p
->timestamp
= (p
->timestamp
- src_rq
->timestamp_last_tick
)
1807 + this_rq
->timestamp_last_tick
;
1809 * Note that idle threads have a prio of MAX_PRIO, for this test
1810 * to be always true for them.
1812 if (TASK_PREEMPTS_CURR(p
, this_rq
))
1813 resched_task(this_rq
->curr
);
1817 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
1820 int can_migrate_task(task_t
*p
, runqueue_t
*rq
, int this_cpu
,
1821 struct sched_domain
*sd
, enum idle_type idle
,
1825 * We do not migrate tasks that are:
1826 * 1) running (obviously), or
1827 * 2) cannot be migrated to this CPU due to cpus_allowed, or
1828 * 3) are cache-hot on their current CPU.
1830 if (!cpu_isset(this_cpu
, p
->cpus_allowed
))
1834 if (task_running(rq
, p
))
1838 * Aggressive migration if:
1839 * 1) task is cache cold, or
1840 * 2) too many balance attempts have failed.
1843 if (sd
->nr_balance_failed
> sd
->cache_nice_tries
)
1846 if (task_hot(p
, rq
->timestamp_last_tick
, sd
))
1852 * move_tasks tries to move up to max_nr_move tasks from busiest to this_rq,
1853 * as part of a balancing operation within "domain". Returns the number of
1856 * Called with both runqueues locked.
1858 static int move_tasks(runqueue_t
*this_rq
, int this_cpu
, runqueue_t
*busiest
,
1859 unsigned long max_nr_move
, struct sched_domain
*sd
,
1860 enum idle_type idle
, int *all_pinned
)
1862 prio_array_t
*array
, *dst_array
;
1863 struct list_head
*head
, *curr
;
1864 int idx
, pulled
= 0, pinned
= 0;
1867 if (max_nr_move
== 0)
1873 * We first consider expired tasks. Those will likely not be
1874 * executed in the near future, and they are most likely to
1875 * be cache-cold, thus switching CPUs has the least effect
1878 if (busiest
->expired
->nr_active
) {
1879 array
= busiest
->expired
;
1880 dst_array
= this_rq
->expired
;
1882 array
= busiest
->active
;
1883 dst_array
= this_rq
->active
;
1887 /* Start searching at priority 0: */
1891 idx
= sched_find_first_bit(array
->bitmap
);
1893 idx
= find_next_bit(array
->bitmap
, MAX_PRIO
, idx
);
1894 if (idx
>= MAX_PRIO
) {
1895 if (array
== busiest
->expired
&& busiest
->active
->nr_active
) {
1896 array
= busiest
->active
;
1897 dst_array
= this_rq
->active
;
1903 head
= array
->queue
+ idx
;
1906 tmp
= list_entry(curr
, task_t
, run_list
);
1910 if (!can_migrate_task(tmp
, busiest
, this_cpu
, sd
, idle
, &pinned
)) {
1917 #ifdef CONFIG_SCHEDSTATS
1918 if (task_hot(tmp
, busiest
->timestamp_last_tick
, sd
))
1919 schedstat_inc(sd
, lb_hot_gained
[idle
]);
1922 pull_task(busiest
, array
, tmp
, this_rq
, dst_array
, this_cpu
);
1925 /* We only want to steal up to the prescribed number of tasks. */
1926 if (pulled
< max_nr_move
) {
1934 * Right now, this is the only place pull_task() is called,
1935 * so we can safely collect pull_task() stats here rather than
1936 * inside pull_task().
1938 schedstat_add(sd
, lb_gained
[idle
], pulled
);
1941 *all_pinned
= pinned
;
1946 * find_busiest_group finds and returns the busiest CPU group within the
1947 * domain. It calculates and returns the number of tasks which should be
1948 * moved to restore balance via the imbalance parameter.
1950 static struct sched_group
*
1951 find_busiest_group(struct sched_domain
*sd
, int this_cpu
,
1952 unsigned long *imbalance
, enum idle_type idle
, int *sd_idle
)
1954 struct sched_group
*busiest
= NULL
, *this = NULL
, *group
= sd
->groups
;
1955 unsigned long max_load
, avg_load
, total_load
, this_load
, total_pwr
;
1956 unsigned long max_pull
;
1959 max_load
= this_load
= total_load
= total_pwr
= 0;
1960 if (idle
== NOT_IDLE
)
1961 load_idx
= sd
->busy_idx
;
1962 else if (idle
== NEWLY_IDLE
)
1963 load_idx
= sd
->newidle_idx
;
1965 load_idx
= sd
->idle_idx
;
1972 local_group
= cpu_isset(this_cpu
, group
->cpumask
);
1974 /* Tally up the load of all CPUs in the group */
1977 for_each_cpu_mask(i
, group
->cpumask
) {
1978 if (*sd_idle
&& !idle_cpu(i
))
1981 /* Bias balancing toward cpus of our domain */
1983 load
= target_load(i
, load_idx
);
1985 load
= source_load(i
, load_idx
);
1990 total_load
+= avg_load
;
1991 total_pwr
+= group
->cpu_power
;
1993 /* Adjust by relative CPU power of the group */
1994 avg_load
= (avg_load
* SCHED_LOAD_SCALE
) / group
->cpu_power
;
1997 this_load
= avg_load
;
1999 } else if (avg_load
> max_load
) {
2000 max_load
= avg_load
;
2003 group
= group
->next
;
2004 } while (group
!= sd
->groups
);
2006 if (!busiest
|| this_load
>= max_load
|| max_load
<= SCHED_LOAD_SCALE
)
2009 avg_load
= (SCHED_LOAD_SCALE
* total_load
) / total_pwr
;
2011 if (this_load
>= avg_load
||
2012 100*max_load
<= sd
->imbalance_pct
*this_load
)
2016 * We're trying to get all the cpus to the average_load, so we don't
2017 * want to push ourselves above the average load, nor do we wish to
2018 * reduce the max loaded cpu below the average load, as either of these
2019 * actions would just result in more rebalancing later, and ping-pong
2020 * tasks around. Thus we look for the minimum possible imbalance.
2021 * Negative imbalances (*we* are more loaded than anyone else) will
2022 * be counted as no imbalance for these purposes -- we can't fix that
2023 * by pulling tasks to us. Be careful of negative numbers as they'll
2024 * appear as very large values with unsigned longs.
2027 /* Don't want to pull so many tasks that a group would go idle */
2028 max_pull
= min(max_load
- avg_load
, max_load
- SCHED_LOAD_SCALE
);
2030 /* How much load to actually move to equalise the imbalance */
2031 *imbalance
= min(max_pull
* busiest
->cpu_power
,
2032 (avg_load
- this_load
) * this->cpu_power
)
2035 if (*imbalance
< SCHED_LOAD_SCALE
) {
2036 unsigned long pwr_now
= 0, pwr_move
= 0;
2039 if (max_load
- this_load
>= SCHED_LOAD_SCALE
*2) {
2045 * OK, we don't have enough imbalance to justify moving tasks,
2046 * however we may be able to increase total CPU power used by
2050 pwr_now
+= busiest
->cpu_power
*min(SCHED_LOAD_SCALE
, max_load
);
2051 pwr_now
+= this->cpu_power
*min(SCHED_LOAD_SCALE
, this_load
);
2052 pwr_now
/= SCHED_LOAD_SCALE
;
2054 /* Amount of load we'd subtract */
2055 tmp
= SCHED_LOAD_SCALE
*SCHED_LOAD_SCALE
/busiest
->cpu_power
;
2057 pwr_move
+= busiest
->cpu_power
*min(SCHED_LOAD_SCALE
,
2060 /* Amount of load we'd add */
2061 if (max_load
*busiest
->cpu_power
<
2062 SCHED_LOAD_SCALE
*SCHED_LOAD_SCALE
)
2063 tmp
= max_load
*busiest
->cpu_power
/this->cpu_power
;
2065 tmp
= SCHED_LOAD_SCALE
*SCHED_LOAD_SCALE
/this->cpu_power
;
2066 pwr_move
+= this->cpu_power
*min(SCHED_LOAD_SCALE
, this_load
+ tmp
);
2067 pwr_move
/= SCHED_LOAD_SCALE
;
2069 /* Move if we gain throughput */
2070 if (pwr_move
<= pwr_now
)
2077 /* Get rid of the scaling factor, rounding down as we divide */
2078 *imbalance
= *imbalance
/ SCHED_LOAD_SCALE
;
2088 * find_busiest_queue - find the busiest runqueue among the cpus in group.
2090 static runqueue_t
*find_busiest_queue(struct sched_group
*group
,
2091 enum idle_type idle
)
2093 unsigned long load
, max_load
= 0;
2094 runqueue_t
*busiest
= NULL
;
2097 for_each_cpu_mask(i
, group
->cpumask
) {
2098 load
= source_load(i
, 0);
2100 if (load
> max_load
) {
2102 busiest
= cpu_rq(i
);
2110 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
2111 * so long as it is large enough.
2113 #define MAX_PINNED_INTERVAL 512
2116 * Check this_cpu to ensure it is balanced within domain. Attempt to move
2117 * tasks if there is an imbalance.
2119 * Called with this_rq unlocked.
2121 static int load_balance(int this_cpu
, runqueue_t
*this_rq
,
2122 struct sched_domain
*sd
, enum idle_type idle
)
2124 struct sched_group
*group
;
2125 runqueue_t
*busiest
;
2126 unsigned long imbalance
;
2127 int nr_moved
, all_pinned
= 0;
2128 int active_balance
= 0;
2131 if (idle
!= NOT_IDLE
&& sd
->flags
& SD_SHARE_CPUPOWER
)
2134 schedstat_inc(sd
, lb_cnt
[idle
]);
2136 group
= find_busiest_group(sd
, this_cpu
, &imbalance
, idle
, &sd_idle
);
2138 schedstat_inc(sd
, lb_nobusyg
[idle
]);
2142 busiest
= find_busiest_queue(group
, idle
);
2144 schedstat_inc(sd
, lb_nobusyq
[idle
]);
2148 BUG_ON(busiest
== this_rq
);
2150 schedstat_add(sd
, lb_imbalance
[idle
], imbalance
);
2153 if (busiest
->nr_running
> 1) {
2155 * Attempt to move tasks. If find_busiest_group has found
2156 * an imbalance but busiest->nr_running <= 1, the group is
2157 * still unbalanced. nr_moved simply stays zero, so it is
2158 * correctly treated as an imbalance.
2160 double_rq_lock(this_rq
, busiest
);
2161 nr_moved
= move_tasks(this_rq
, this_cpu
, busiest
,
2162 imbalance
, sd
, idle
, &all_pinned
);
2163 double_rq_unlock(this_rq
, busiest
);
2165 /* All tasks on this runqueue were pinned by CPU affinity */
2166 if (unlikely(all_pinned
))
2171 schedstat_inc(sd
, lb_failed
[idle
]);
2172 sd
->nr_balance_failed
++;
2174 if (unlikely(sd
->nr_balance_failed
> sd
->cache_nice_tries
+2)) {
2176 spin_lock(&busiest
->lock
);
2178 /* don't kick the migration_thread, if the curr
2179 * task on busiest cpu can't be moved to this_cpu
2181 if (!cpu_isset(this_cpu
, busiest
->curr
->cpus_allowed
)) {
2182 spin_unlock(&busiest
->lock
);
2184 goto out_one_pinned
;
2187 if (!busiest
->active_balance
) {
2188 busiest
->active_balance
= 1;
2189 busiest
->push_cpu
= this_cpu
;
2192 spin_unlock(&busiest
->lock
);
2194 wake_up_process(busiest
->migration_thread
);
2197 * We've kicked active balancing, reset the failure
2200 sd
->nr_balance_failed
= sd
->cache_nice_tries
+1;
2203 sd
->nr_balance_failed
= 0;
2205 if (likely(!active_balance
)) {
2206 /* We were unbalanced, so reset the balancing interval */
2207 sd
->balance_interval
= sd
->min_interval
;
2210 * If we've begun active balancing, start to back off. This
2211 * case may not be covered by the all_pinned logic if there
2212 * is only 1 task on the busy runqueue (because we don't call
2215 if (sd
->balance_interval
< sd
->max_interval
)
2216 sd
->balance_interval
*= 2;
2219 if (!nr_moved
&& !sd_idle
&& sd
->flags
& SD_SHARE_CPUPOWER
)
2224 schedstat_inc(sd
, lb_balanced
[idle
]);
2226 sd
->nr_balance_failed
= 0;
2229 /* tune up the balancing interval */
2230 if ((all_pinned
&& sd
->balance_interval
< MAX_PINNED_INTERVAL
) ||
2231 (sd
->balance_interval
< sd
->max_interval
))
2232 sd
->balance_interval
*= 2;
2234 if (!sd_idle
&& sd
->flags
& SD_SHARE_CPUPOWER
)
2240 * Check this_cpu to ensure it is balanced within domain. Attempt to move
2241 * tasks if there is an imbalance.
2243 * Called from schedule when this_rq is about to become idle (NEWLY_IDLE).
2244 * this_rq is locked.
2246 static int load_balance_newidle(int this_cpu
, runqueue_t
*this_rq
,
2247 struct sched_domain
*sd
)
2249 struct sched_group
*group
;
2250 runqueue_t
*busiest
= NULL
;
2251 unsigned long imbalance
;
2255 if (sd
->flags
& SD_SHARE_CPUPOWER
)
2258 schedstat_inc(sd
, lb_cnt
[NEWLY_IDLE
]);
2259 group
= find_busiest_group(sd
, this_cpu
, &imbalance
, NEWLY_IDLE
, &sd_idle
);
2261 schedstat_inc(sd
, lb_nobusyg
[NEWLY_IDLE
]);
2265 busiest
= find_busiest_queue(group
, NEWLY_IDLE
);
2267 schedstat_inc(sd
, lb_nobusyq
[NEWLY_IDLE
]);
2271 BUG_ON(busiest
== this_rq
);
2273 schedstat_add(sd
, lb_imbalance
[NEWLY_IDLE
], imbalance
);
2276 if (busiest
->nr_running
> 1) {
2277 /* Attempt to move tasks */
2278 double_lock_balance(this_rq
, busiest
);
2279 nr_moved
= move_tasks(this_rq
, this_cpu
, busiest
,
2280 imbalance
, sd
, NEWLY_IDLE
, NULL
);
2281 spin_unlock(&busiest
->lock
);
2285 schedstat_inc(sd
, lb_failed
[NEWLY_IDLE
]);
2286 if (!sd_idle
&& sd
->flags
& SD_SHARE_CPUPOWER
)
2289 sd
->nr_balance_failed
= 0;
2294 schedstat_inc(sd
, lb_balanced
[NEWLY_IDLE
]);
2295 if (!sd_idle
&& sd
->flags
& SD_SHARE_CPUPOWER
)
2297 sd
->nr_balance_failed
= 0;
2302 * idle_balance is called by schedule() if this_cpu is about to become
2303 * idle. Attempts to pull tasks from other CPUs.
2305 static void idle_balance(int this_cpu
, runqueue_t
*this_rq
)
2307 struct sched_domain
*sd
;
2309 for_each_domain(this_cpu
, sd
) {
2310 if (sd
->flags
& SD_BALANCE_NEWIDLE
) {
2311 if (load_balance_newidle(this_cpu
, this_rq
, sd
)) {
2312 /* We've pulled tasks over so stop searching */
2320 * active_load_balance is run by migration threads. It pushes running tasks
2321 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
2322 * running on each physical CPU where possible, and avoids physical /
2323 * logical imbalances.
2325 * Called with busiest_rq locked.
2327 static void active_load_balance(runqueue_t
*busiest_rq
, int busiest_cpu
)
2329 struct sched_domain
*sd
;
2330 runqueue_t
*target_rq
;
2331 int target_cpu
= busiest_rq
->push_cpu
;
2333 if (busiest_rq
->nr_running
<= 1)
2334 /* no task to move */
2337 target_rq
= cpu_rq(target_cpu
);
2340 * This condition is "impossible", if it occurs
2341 * we need to fix it. Originally reported by
2342 * Bjorn Helgaas on a 128-cpu setup.
2344 BUG_ON(busiest_rq
== target_rq
);
2346 /* move a task from busiest_rq to target_rq */
2347 double_lock_balance(busiest_rq
, target_rq
);
2349 /* Search for an sd spanning us and the target CPU. */
2350 for_each_domain(target_cpu
, sd
) {
2351 if ((sd
->flags
& SD_LOAD_BALANCE
) &&
2352 cpu_isset(busiest_cpu
, sd
->span
))
2356 if (unlikely(sd
== NULL
))
2359 schedstat_inc(sd
, alb_cnt
);
2361 if (move_tasks(target_rq
, target_cpu
, busiest_rq
, 1, sd
, SCHED_IDLE
, NULL
))
2362 schedstat_inc(sd
, alb_pushed
);
2364 schedstat_inc(sd
, alb_failed
);
2366 spin_unlock(&target_rq
->lock
);
2370 * rebalance_tick will get called every timer tick, on every CPU.
2372 * It checks each scheduling domain to see if it is due to be balanced,
2373 * and initiates a balancing operation if so.
2375 * Balancing parameters are set up in arch_init_sched_domains.
2378 /* Don't have all balancing operations going off at once */
2379 #define CPU_OFFSET(cpu) (HZ * cpu / NR_CPUS)
2381 static void rebalance_tick(int this_cpu
, runqueue_t
*this_rq
,
2382 enum idle_type idle
)
2384 unsigned long old_load
, this_load
;
2385 unsigned long j
= jiffies
+ CPU_OFFSET(this_cpu
);
2386 struct sched_domain
*sd
;
2389 this_load
= this_rq
->nr_running
* SCHED_LOAD_SCALE
;
2390 /* Update our load */
2391 for (i
= 0; i
< 3; i
++) {
2392 unsigned long new_load
= this_load
;
2394 old_load
= this_rq
->cpu_load
[i
];
2396 * Round up the averaging division if load is increasing. This
2397 * prevents us from getting stuck on 9 if the load is 10, for
2400 if (new_load
> old_load
)
2401 new_load
+= scale
-1;
2402 this_rq
->cpu_load
[i
] = (old_load
*(scale
-1) + new_load
) / scale
;
2405 for_each_domain(this_cpu
, sd
) {
2406 unsigned long interval
;
2408 if (!(sd
->flags
& SD_LOAD_BALANCE
))
2411 interval
= sd
->balance_interval
;
2412 if (idle
!= SCHED_IDLE
)
2413 interval
*= sd
->busy_factor
;
2415 /* scale ms to jiffies */
2416 interval
= msecs_to_jiffies(interval
);
2417 if (unlikely(!interval
))
2420 if (j
- sd
->last_balance
>= interval
) {
2421 if (load_balance(this_cpu
, this_rq
, sd
, idle
)) {
2423 * We've pulled tasks over so either we're no
2424 * longer idle, or one of our SMT siblings is
2429 sd
->last_balance
+= interval
;
2435 * on UP we do not need to balance between CPUs:
2437 static inline void rebalance_tick(int cpu
, runqueue_t
*rq
, enum idle_type idle
)
2440 static inline void idle_balance(int cpu
, runqueue_t
*rq
)
2445 static inline int wake_priority_sleeper(runqueue_t
*rq
)
2448 #ifdef CONFIG_SCHED_SMT
2449 spin_lock(&rq
->lock
);
2451 * If an SMT sibling task has been put to sleep for priority
2452 * reasons reschedule the idle task to see if it can now run.
2454 if (rq
->nr_running
) {
2455 resched_task(rq
->idle
);
2458 spin_unlock(&rq
->lock
);
2463 DEFINE_PER_CPU(struct kernel_stat
, kstat
);
2465 EXPORT_PER_CPU_SYMBOL(kstat
);
2468 * This is called on clock ticks and on context switches.
2469 * Bank in p->sched_time the ns elapsed since the last tick or switch.
2471 static inline void update_cpu_clock(task_t
*p
, runqueue_t
*rq
,
2472 unsigned long long now
)
2474 unsigned long long last
= max(p
->timestamp
, rq
->timestamp_last_tick
);
2475 p
->sched_time
+= now
- last
;
2479 * Return current->sched_time plus any more ns on the sched_clock
2480 * that have not yet been banked.
2482 unsigned long long current_sched_time(const task_t
*tsk
)
2484 unsigned long long ns
;
2485 unsigned long flags
;
2486 local_irq_save(flags
);
2487 ns
= max(tsk
->timestamp
, task_rq(tsk
)->timestamp_last_tick
);
2488 ns
= tsk
->sched_time
+ (sched_clock() - ns
);
2489 local_irq_restore(flags
);
2494 * We place interactive tasks back into the active array, if possible.
2496 * To guarantee that this does not starve expired tasks we ignore the
2497 * interactivity of a task if the first expired task had to wait more
2498 * than a 'reasonable' amount of time. This deadline timeout is
2499 * load-dependent, as the frequency of array switched decreases with
2500 * increasing number of running tasks. We also ignore the interactivity
2501 * if a better static_prio task has expired:
2503 #define EXPIRED_STARVING(rq) \
2504 ((STARVATION_LIMIT && ((rq)->expired_timestamp && \
2505 (jiffies - (rq)->expired_timestamp >= \
2506 STARVATION_LIMIT * ((rq)->nr_running) + 1))) || \
2507 ((rq)->curr->static_prio > (rq)->best_expired_prio))
2510 * Account user cpu time to a process.
2511 * @p: the process that the cpu time gets accounted to
2512 * @hardirq_offset: the offset to subtract from hardirq_count()
2513 * @cputime: the cpu time spent in user space since the last update
2515 void account_user_time(struct task_struct
*p
, cputime_t cputime
)
2517 struct cpu_usage_stat
*cpustat
= &kstat_this_cpu
.cpustat
;
2520 p
->utime
= cputime_add(p
->utime
, cputime
);
2522 /* Add user time to cpustat. */
2523 tmp
= cputime_to_cputime64(cputime
);
2524 if (TASK_NICE(p
) > 0)
2525 cpustat
->nice
= cputime64_add(cpustat
->nice
, tmp
);
2527 cpustat
->user
= cputime64_add(cpustat
->user
, tmp
);
2531 * Account system cpu time to a process.
2532 * @p: the process that the cpu time gets accounted to
2533 * @hardirq_offset: the offset to subtract from hardirq_count()
2534 * @cputime: the cpu time spent in kernel space since the last update
2536 void account_system_time(struct task_struct
*p
, int hardirq_offset
,
2539 struct cpu_usage_stat
*cpustat
= &kstat_this_cpu
.cpustat
;
2540 runqueue_t
*rq
= this_rq();
2543 p
->stime
= cputime_add(p
->stime
, cputime
);
2545 /* Add system time to cpustat. */
2546 tmp
= cputime_to_cputime64(cputime
);
2547 if (hardirq_count() - hardirq_offset
)
2548 cpustat
->irq
= cputime64_add(cpustat
->irq
, tmp
);
2549 else if (softirq_count())
2550 cpustat
->softirq
= cputime64_add(cpustat
->softirq
, tmp
);
2551 else if (p
!= rq
->idle
)
2552 cpustat
->system
= cputime64_add(cpustat
->system
, tmp
);
2553 else if (atomic_read(&rq
->nr_iowait
) > 0)
2554 cpustat
->iowait
= cputime64_add(cpustat
->iowait
, tmp
);
2556 cpustat
->idle
= cputime64_add(cpustat
->idle
, tmp
);
2557 /* Account for system time used */
2558 acct_update_integrals(p
);
2562 * Account for involuntary wait time.
2563 * @p: the process from which the cpu time has been stolen
2564 * @steal: the cpu time spent in involuntary wait
2566 void account_steal_time(struct task_struct
*p
, cputime_t steal
)
2568 struct cpu_usage_stat
*cpustat
= &kstat_this_cpu
.cpustat
;
2569 cputime64_t tmp
= cputime_to_cputime64(steal
);
2570 runqueue_t
*rq
= this_rq();
2572 if (p
== rq
->idle
) {
2573 p
->stime
= cputime_add(p
->stime
, steal
);
2574 if (atomic_read(&rq
->nr_iowait
) > 0)
2575 cpustat
->iowait
= cputime64_add(cpustat
->iowait
, tmp
);
2577 cpustat
->idle
= cputime64_add(cpustat
->idle
, tmp
);
2579 cpustat
->steal
= cputime64_add(cpustat
->steal
, tmp
);
2583 * This function gets called by the timer code, with HZ frequency.
2584 * We call it with interrupts disabled.
2586 * It also gets called by the fork code, when changing the parent's
2589 void scheduler_tick(void)
2591 int cpu
= smp_processor_id();
2592 runqueue_t
*rq
= this_rq();
2593 task_t
*p
= current
;
2594 unsigned long long now
= sched_clock();
2596 update_cpu_clock(p
, rq
, now
);
2598 rq
->timestamp_last_tick
= now
;
2600 if (p
== rq
->idle
) {
2601 if (wake_priority_sleeper(rq
))
2603 rebalance_tick(cpu
, rq
, SCHED_IDLE
);
2607 /* Task might have expired already, but not scheduled off yet */
2608 if (p
->array
!= rq
->active
) {
2609 set_tsk_need_resched(p
);
2612 spin_lock(&rq
->lock
);
2614 * The task was running during this tick - update the
2615 * time slice counter. Note: we do not update a thread's
2616 * priority until it either goes to sleep or uses up its
2617 * timeslice. This makes it possible for interactive tasks
2618 * to use up their timeslices at their highest priority levels.
2622 * RR tasks need a special form of timeslice management.
2623 * FIFO tasks have no timeslices.
2625 if ((p
->policy
== SCHED_RR
) && !--p
->time_slice
) {
2626 p
->time_slice
= task_timeslice(p
);
2627 p
->first_time_slice
= 0;
2628 set_tsk_need_resched(p
);
2630 /* put it at the end of the queue: */
2631 requeue_task(p
, rq
->active
);
2635 if (!--p
->time_slice
) {
2636 dequeue_task(p
, rq
->active
);
2637 set_tsk_need_resched(p
);
2638 p
->prio
= effective_prio(p
);
2639 p
->time_slice
= task_timeslice(p
);
2640 p
->first_time_slice
= 0;
2642 if (!rq
->expired_timestamp
)
2643 rq
->expired_timestamp
= jiffies
;
2644 if (!TASK_INTERACTIVE(p
) || EXPIRED_STARVING(rq
)) {
2645 enqueue_task(p
, rq
->expired
);
2646 if (p
->static_prio
< rq
->best_expired_prio
)
2647 rq
->best_expired_prio
= p
->static_prio
;
2649 enqueue_task(p
, rq
->active
);
2652 * Prevent a too long timeslice allowing a task to monopolize
2653 * the CPU. We do this by splitting up the timeslice into
2656 * Note: this does not mean the task's timeslices expire or
2657 * get lost in any way, they just might be preempted by
2658 * another task of equal priority. (one with higher
2659 * priority would have preempted this task already.) We
2660 * requeue this task to the end of the list on this priority
2661 * level, which is in essence a round-robin of tasks with
2664 * This only applies to tasks in the interactive
2665 * delta range with at least TIMESLICE_GRANULARITY to requeue.
2667 if (TASK_INTERACTIVE(p
) && !((task_timeslice(p
) -
2668 p
->time_slice
) % TIMESLICE_GRANULARITY(p
)) &&
2669 (p
->time_slice
>= TIMESLICE_GRANULARITY(p
)) &&
2670 (p
->array
== rq
->active
)) {
2672 requeue_task(p
, rq
->active
);
2673 set_tsk_need_resched(p
);
2677 spin_unlock(&rq
->lock
);
2679 rebalance_tick(cpu
, rq
, NOT_IDLE
);
2682 #ifdef CONFIG_SCHED_SMT
2683 static inline void wakeup_busy_runqueue(runqueue_t
*rq
)
2685 /* If an SMT runqueue is sleeping due to priority reasons wake it up */
2686 if (rq
->curr
== rq
->idle
&& rq
->nr_running
)
2687 resched_task(rq
->idle
);
2691 * Called with interrupt disabled and this_rq's runqueue locked.
2693 static void wake_sleeping_dependent(int this_cpu
)
2695 struct sched_domain
*tmp
, *sd
= NULL
;
2698 for_each_domain(this_cpu
, tmp
) {
2699 if (tmp
->flags
& SD_SHARE_CPUPOWER
) {
2708 for_each_cpu_mask(i
, sd
->span
) {
2709 runqueue_t
*smt_rq
= cpu_rq(i
);
2713 if (unlikely(!spin_trylock(&smt_rq
->lock
)))
2716 wakeup_busy_runqueue(smt_rq
);
2717 spin_unlock(&smt_rq
->lock
);
2722 * number of 'lost' timeslices this task wont be able to fully
2723 * utilize, if another task runs on a sibling. This models the
2724 * slowdown effect of other tasks running on siblings:
2726 static inline unsigned long smt_slice(task_t
*p
, struct sched_domain
*sd
)
2728 return p
->time_slice
* (100 - sd
->per_cpu_gain
) / 100;
2732 * To minimise lock contention and not have to drop this_rq's runlock we only
2733 * trylock the sibling runqueues and bypass those runqueues if we fail to
2734 * acquire their lock. As we only trylock the normal locking order does not
2735 * need to be obeyed.
2737 static int dependent_sleeper(int this_cpu
, runqueue_t
*this_rq
, task_t
*p
)
2739 struct sched_domain
*tmp
, *sd
= NULL
;
2742 /* kernel/rt threads do not participate in dependent sleeping */
2743 if (!p
->mm
|| rt_task(p
))
2746 for_each_domain(this_cpu
, tmp
) {
2747 if (tmp
->flags
& SD_SHARE_CPUPOWER
) {
2756 for_each_cpu_mask(i
, sd
->span
) {
2764 if (unlikely(!spin_trylock(&smt_rq
->lock
)))
2767 smt_curr
= smt_rq
->curr
;
2773 * If a user task with lower static priority than the
2774 * running task on the SMT sibling is trying to schedule,
2775 * delay it till there is proportionately less timeslice
2776 * left of the sibling task to prevent a lower priority
2777 * task from using an unfair proportion of the
2778 * physical cpu's resources. -ck
2780 if (rt_task(smt_curr
)) {
2782 * With real time tasks we run non-rt tasks only
2783 * per_cpu_gain% of the time.
2785 if ((jiffies
% DEF_TIMESLICE
) >
2786 (sd
->per_cpu_gain
* DEF_TIMESLICE
/ 100))
2789 if (smt_curr
->static_prio
< p
->static_prio
&&
2790 !TASK_PREEMPTS_CURR(p
, smt_rq
) &&
2791 smt_slice(smt_curr
, sd
) > task_timeslice(p
))
2795 spin_unlock(&smt_rq
->lock
);
2800 static inline void wake_sleeping_dependent(int this_cpu
)
2804 static inline int dependent_sleeper(int this_cpu
, runqueue_t
*this_rq
,
2811 #if defined(CONFIG_PREEMPT) && defined(CONFIG_DEBUG_PREEMPT)
2813 void fastcall
add_preempt_count(int val
)
2818 BUG_ON((preempt_count() < 0));
2819 preempt_count() += val
;
2821 * Spinlock count overflowing soon?
2823 BUG_ON((preempt_count() & PREEMPT_MASK
) >= PREEMPT_MASK
-10);
2825 EXPORT_SYMBOL(add_preempt_count
);
2827 void fastcall
sub_preempt_count(int val
)
2832 BUG_ON(val
> preempt_count());
2834 * Is the spinlock portion underflowing?
2836 BUG_ON((val
< PREEMPT_MASK
) && !(preempt_count() & PREEMPT_MASK
));
2837 preempt_count() -= val
;
2839 EXPORT_SYMBOL(sub_preempt_count
);
2843 static inline int interactive_sleep(enum sleep_type sleep_type
)
2845 return (sleep_type
== SLEEP_INTERACTIVE
||
2846 sleep_type
== SLEEP_INTERRUPTED
);
2850 * schedule() is the main scheduler function.
2852 asmlinkage
void __sched
schedule(void)
2855 task_t
*prev
, *next
;
2857 prio_array_t
*array
;
2858 struct list_head
*queue
;
2859 unsigned long long now
;
2860 unsigned long run_time
;
2861 int cpu
, idx
, new_prio
;
2864 * Test if we are atomic. Since do_exit() needs to call into
2865 * schedule() atomically, we ignore that path for now.
2866 * Otherwise, whine if we are scheduling when we should not be.
2868 if (unlikely(in_atomic() && !current
->exit_state
)) {
2869 printk(KERN_ERR
"BUG: scheduling while atomic: "
2871 current
->comm
, preempt_count(), current
->pid
);
2874 profile_hit(SCHED_PROFILING
, __builtin_return_address(0));
2879 release_kernel_lock(prev
);
2880 need_resched_nonpreemptible
:
2884 * The idle thread is not allowed to schedule!
2885 * Remove this check after it has been exercised a bit.
2887 if (unlikely(prev
== rq
->idle
) && prev
->state
!= TASK_RUNNING
) {
2888 printk(KERN_ERR
"bad: scheduling from the idle thread!\n");
2892 schedstat_inc(rq
, sched_cnt
);
2893 now
= sched_clock();
2894 if (likely((long long)(now
- prev
->timestamp
) < NS_MAX_SLEEP_AVG
)) {
2895 run_time
= now
- prev
->timestamp
;
2896 if (unlikely((long long)(now
- prev
->timestamp
) < 0))
2899 run_time
= NS_MAX_SLEEP_AVG
;
2902 * Tasks charged proportionately less run_time at high sleep_avg to
2903 * delay them losing their interactive status
2905 run_time
/= (CURRENT_BONUS(prev
) ? : 1);
2907 spin_lock_irq(&rq
->lock
);
2909 if (unlikely(prev
->flags
& PF_DEAD
))
2910 prev
->state
= EXIT_DEAD
;
2912 switch_count
= &prev
->nivcsw
;
2913 if (prev
->state
&& !(preempt_count() & PREEMPT_ACTIVE
)) {
2914 switch_count
= &prev
->nvcsw
;
2915 if (unlikely((prev
->state
& TASK_INTERRUPTIBLE
) &&
2916 unlikely(signal_pending(prev
))))
2917 prev
->state
= TASK_RUNNING
;
2919 if (prev
->state
== TASK_UNINTERRUPTIBLE
)
2920 rq
->nr_uninterruptible
++;
2921 deactivate_task(prev
, rq
);
2925 cpu
= smp_processor_id();
2926 if (unlikely(!rq
->nr_running
)) {
2927 idle_balance(cpu
, rq
);
2928 if (!rq
->nr_running
) {
2930 rq
->expired_timestamp
= 0;
2931 wake_sleeping_dependent(cpu
);
2937 if (unlikely(!array
->nr_active
)) {
2939 * Switch the active and expired arrays.
2941 schedstat_inc(rq
, sched_switch
);
2942 rq
->active
= rq
->expired
;
2943 rq
->expired
= array
;
2945 rq
->expired_timestamp
= 0;
2946 rq
->best_expired_prio
= MAX_PRIO
;
2949 idx
= sched_find_first_bit(array
->bitmap
);
2950 queue
= array
->queue
+ idx
;
2951 next
= list_entry(queue
->next
, task_t
, run_list
);
2953 if (!rt_task(next
) && interactive_sleep(next
->sleep_type
)) {
2954 unsigned long long delta
= now
- next
->timestamp
;
2955 if (unlikely((long long)(now
- next
->timestamp
) < 0))
2958 if (next
->sleep_type
== SLEEP_INTERACTIVE
)
2959 delta
= delta
* (ON_RUNQUEUE_WEIGHT
* 128 / 100) / 128;
2961 array
= next
->array
;
2962 new_prio
= recalc_task_prio(next
, next
->timestamp
+ delta
);
2964 if (unlikely(next
->prio
!= new_prio
)) {
2965 dequeue_task(next
, array
);
2966 next
->prio
= new_prio
;
2967 enqueue_task(next
, array
);
2970 next
->sleep_type
= SLEEP_NORMAL
;
2971 if (dependent_sleeper(cpu
, rq
, next
))
2974 if (next
== rq
->idle
)
2975 schedstat_inc(rq
, sched_goidle
);
2977 prefetch_stack(next
);
2978 clear_tsk_need_resched(prev
);
2979 rcu_qsctr_inc(task_cpu(prev
));
2981 update_cpu_clock(prev
, rq
, now
);
2983 prev
->sleep_avg
-= run_time
;
2984 if ((long)prev
->sleep_avg
<= 0)
2985 prev
->sleep_avg
= 0;
2986 prev
->timestamp
= prev
->last_ran
= now
;
2988 sched_info_switch(prev
, next
);
2989 if (likely(prev
!= next
)) {
2990 next
->timestamp
= now
;
2995 prepare_task_switch(rq
, next
);
2996 prev
= context_switch(rq
, prev
, next
);
2999 * this_rq must be evaluated again because prev may have moved
3000 * CPUs since it called schedule(), thus the 'rq' on its stack
3001 * frame will be invalid.
3003 finish_task_switch(this_rq(), prev
);
3005 spin_unlock_irq(&rq
->lock
);
3008 if (unlikely(reacquire_kernel_lock(prev
) < 0))
3009 goto need_resched_nonpreemptible
;
3010 preempt_enable_no_resched();
3011 if (unlikely(test_thread_flag(TIF_NEED_RESCHED
)))
3015 EXPORT_SYMBOL(schedule
);
3017 #ifdef CONFIG_PREEMPT
3019 * this is is the entry point to schedule() from in-kernel preemption
3020 * off of preempt_enable. Kernel preemptions off return from interrupt
3021 * occur there and call schedule directly.
3023 asmlinkage
void __sched
preempt_schedule(void)
3025 struct thread_info
*ti
= current_thread_info();
3026 #ifdef CONFIG_PREEMPT_BKL
3027 struct task_struct
*task
= current
;
3028 int saved_lock_depth
;
3031 * If there is a non-zero preempt_count or interrupts are disabled,
3032 * we do not want to preempt the current task. Just return..
3034 if (unlikely(ti
->preempt_count
|| irqs_disabled()))
3038 add_preempt_count(PREEMPT_ACTIVE
);
3040 * We keep the big kernel semaphore locked, but we
3041 * clear ->lock_depth so that schedule() doesnt
3042 * auto-release the semaphore:
3044 #ifdef CONFIG_PREEMPT_BKL
3045 saved_lock_depth
= task
->lock_depth
;
3046 task
->lock_depth
= -1;
3049 #ifdef CONFIG_PREEMPT_BKL
3050 task
->lock_depth
= saved_lock_depth
;
3052 sub_preempt_count(PREEMPT_ACTIVE
);
3054 /* we could miss a preemption opportunity between schedule and now */
3056 if (unlikely(test_thread_flag(TIF_NEED_RESCHED
)))
3060 EXPORT_SYMBOL(preempt_schedule
);
3063 * this is is the entry point to schedule() from kernel preemption
3064 * off of irq context.
3065 * Note, that this is called and return with irqs disabled. This will
3066 * protect us against recursive calling from irq.
3068 asmlinkage
void __sched
preempt_schedule_irq(void)
3070 struct thread_info
*ti
= current_thread_info();
3071 #ifdef CONFIG_PREEMPT_BKL
3072 struct task_struct
*task
= current
;
3073 int saved_lock_depth
;
3075 /* Catch callers which need to be fixed*/
3076 BUG_ON(ti
->preempt_count
|| !irqs_disabled());
3079 add_preempt_count(PREEMPT_ACTIVE
);
3081 * We keep the big kernel semaphore locked, but we
3082 * clear ->lock_depth so that schedule() doesnt
3083 * auto-release the semaphore:
3085 #ifdef CONFIG_PREEMPT_BKL
3086 saved_lock_depth
= task
->lock_depth
;
3087 task
->lock_depth
= -1;
3091 local_irq_disable();
3092 #ifdef CONFIG_PREEMPT_BKL
3093 task
->lock_depth
= saved_lock_depth
;
3095 sub_preempt_count(PREEMPT_ACTIVE
);
3097 /* we could miss a preemption opportunity between schedule and now */
3099 if (unlikely(test_thread_flag(TIF_NEED_RESCHED
)))
3103 #endif /* CONFIG_PREEMPT */
3105 int default_wake_function(wait_queue_t
*curr
, unsigned mode
, int sync
,
3108 task_t
*p
= curr
->private;
3109 return try_to_wake_up(p
, mode
, sync
);
3112 EXPORT_SYMBOL(default_wake_function
);
3115 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
3116 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
3117 * number) then we wake all the non-exclusive tasks and one exclusive task.
3119 * There are circumstances in which we can try to wake a task which has already
3120 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
3121 * zero in this (rare) case, and we handle it by continuing to scan the queue.
3123 static void __wake_up_common(wait_queue_head_t
*q
, unsigned int mode
,
3124 int nr_exclusive
, int sync
, void *key
)
3126 struct list_head
*tmp
, *next
;
3128 list_for_each_safe(tmp
, next
, &q
->task_list
) {
3131 curr
= list_entry(tmp
, wait_queue_t
, task_list
);
3132 flags
= curr
->flags
;
3133 if (curr
->func(curr
, mode
, sync
, key
) &&
3134 (flags
& WQ_FLAG_EXCLUSIVE
) &&
3141 * __wake_up - wake up threads blocked on a waitqueue.
3143 * @mode: which threads
3144 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3145 * @key: is directly passed to the wakeup function
3147 void fastcall
__wake_up(wait_queue_head_t
*q
, unsigned int mode
,
3148 int nr_exclusive
, void *key
)
3150 unsigned long flags
;
3152 spin_lock_irqsave(&q
->lock
, flags
);
3153 __wake_up_common(q
, mode
, nr_exclusive
, 0, key
);
3154 spin_unlock_irqrestore(&q
->lock
, flags
);
3157 EXPORT_SYMBOL(__wake_up
);
3160 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
3162 void fastcall
__wake_up_locked(wait_queue_head_t
*q
, unsigned int mode
)
3164 __wake_up_common(q
, mode
, 1, 0, NULL
);
3168 * __wake_up_sync - wake up threads blocked on a waitqueue.
3170 * @mode: which threads
3171 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3173 * The sync wakeup differs that the waker knows that it will schedule
3174 * away soon, so while the target thread will be woken up, it will not
3175 * be migrated to another CPU - ie. the two threads are 'synchronized'
3176 * with each other. This can prevent needless bouncing between CPUs.
3178 * On UP it can prevent extra preemption.
3181 __wake_up_sync(wait_queue_head_t
*q
, unsigned int mode
, int nr_exclusive
)
3183 unsigned long flags
;
3189 if (unlikely(!nr_exclusive
))
3192 spin_lock_irqsave(&q
->lock
, flags
);
3193 __wake_up_common(q
, mode
, nr_exclusive
, sync
, NULL
);
3194 spin_unlock_irqrestore(&q
->lock
, flags
);
3196 EXPORT_SYMBOL_GPL(__wake_up_sync
); /* For internal use only */
3198 void fastcall
complete(struct completion
*x
)
3200 unsigned long flags
;
3202 spin_lock_irqsave(&x
->wait
.lock
, flags
);
3204 __wake_up_common(&x
->wait
, TASK_UNINTERRUPTIBLE
| TASK_INTERRUPTIBLE
,
3206 spin_unlock_irqrestore(&x
->wait
.lock
, flags
);
3208 EXPORT_SYMBOL(complete
);
3210 void fastcall
complete_all(struct completion
*x
)
3212 unsigned long flags
;
3214 spin_lock_irqsave(&x
->wait
.lock
, flags
);
3215 x
->done
+= UINT_MAX
/2;
3216 __wake_up_common(&x
->wait
, TASK_UNINTERRUPTIBLE
| TASK_INTERRUPTIBLE
,
3218 spin_unlock_irqrestore(&x
->wait
.lock
, flags
);
3220 EXPORT_SYMBOL(complete_all
);
3222 void fastcall __sched
wait_for_completion(struct completion
*x
)
3225 spin_lock_irq(&x
->wait
.lock
);
3227 DECLARE_WAITQUEUE(wait
, current
);
3229 wait
.flags
|= WQ_FLAG_EXCLUSIVE
;
3230 __add_wait_queue_tail(&x
->wait
, &wait
);
3232 __set_current_state(TASK_UNINTERRUPTIBLE
);
3233 spin_unlock_irq(&x
->wait
.lock
);
3235 spin_lock_irq(&x
->wait
.lock
);
3237 __remove_wait_queue(&x
->wait
, &wait
);
3240 spin_unlock_irq(&x
->wait
.lock
);
3242 EXPORT_SYMBOL(wait_for_completion
);
3244 unsigned long fastcall __sched
3245 wait_for_completion_timeout(struct completion
*x
, unsigned long timeout
)
3249 spin_lock_irq(&x
->wait
.lock
);
3251 DECLARE_WAITQUEUE(wait
, current
);
3253 wait
.flags
|= WQ_FLAG_EXCLUSIVE
;
3254 __add_wait_queue_tail(&x
->wait
, &wait
);
3256 __set_current_state(TASK_UNINTERRUPTIBLE
);
3257 spin_unlock_irq(&x
->wait
.lock
);
3258 timeout
= schedule_timeout(timeout
);
3259 spin_lock_irq(&x
->wait
.lock
);
3261 __remove_wait_queue(&x
->wait
, &wait
);
3265 __remove_wait_queue(&x
->wait
, &wait
);
3269 spin_unlock_irq(&x
->wait
.lock
);
3272 EXPORT_SYMBOL(wait_for_completion_timeout
);
3274 int fastcall __sched
wait_for_completion_interruptible(struct completion
*x
)
3280 spin_lock_irq(&x
->wait
.lock
);
3282 DECLARE_WAITQUEUE(wait
, current
);
3284 wait
.flags
|= WQ_FLAG_EXCLUSIVE
;
3285 __add_wait_queue_tail(&x
->wait
, &wait
);
3287 if (signal_pending(current
)) {
3289 __remove_wait_queue(&x
->wait
, &wait
);
3292 __set_current_state(TASK_INTERRUPTIBLE
);
3293 spin_unlock_irq(&x
->wait
.lock
);
3295 spin_lock_irq(&x
->wait
.lock
);
3297 __remove_wait_queue(&x
->wait
, &wait
);
3301 spin_unlock_irq(&x
->wait
.lock
);
3305 EXPORT_SYMBOL(wait_for_completion_interruptible
);
3307 unsigned long fastcall __sched
3308 wait_for_completion_interruptible_timeout(struct completion
*x
,
3309 unsigned long timeout
)
3313 spin_lock_irq(&x
->wait
.lock
);
3315 DECLARE_WAITQUEUE(wait
, current
);
3317 wait
.flags
|= WQ_FLAG_EXCLUSIVE
;
3318 __add_wait_queue_tail(&x
->wait
, &wait
);
3320 if (signal_pending(current
)) {
3321 timeout
= -ERESTARTSYS
;
3322 __remove_wait_queue(&x
->wait
, &wait
);
3325 __set_current_state(TASK_INTERRUPTIBLE
);
3326 spin_unlock_irq(&x
->wait
.lock
);
3327 timeout
= schedule_timeout(timeout
);
3328 spin_lock_irq(&x
->wait
.lock
);
3330 __remove_wait_queue(&x
->wait
, &wait
);
3334 __remove_wait_queue(&x
->wait
, &wait
);
3338 spin_unlock_irq(&x
->wait
.lock
);
3341 EXPORT_SYMBOL(wait_for_completion_interruptible_timeout
);
3344 #define SLEEP_ON_VAR \
3345 unsigned long flags; \
3346 wait_queue_t wait; \
3347 init_waitqueue_entry(&wait, current);
3349 #define SLEEP_ON_HEAD \
3350 spin_lock_irqsave(&q->lock,flags); \
3351 __add_wait_queue(q, &wait); \
3352 spin_unlock(&q->lock);
3354 #define SLEEP_ON_TAIL \
3355 spin_lock_irq(&q->lock); \
3356 __remove_wait_queue(q, &wait); \
3357 spin_unlock_irqrestore(&q->lock, flags);
3359 void fastcall __sched
interruptible_sleep_on(wait_queue_head_t
*q
)
3363 current
->state
= TASK_INTERRUPTIBLE
;
3370 EXPORT_SYMBOL(interruptible_sleep_on
);
3372 long fastcall __sched
3373 interruptible_sleep_on_timeout(wait_queue_head_t
*q
, long timeout
)
3377 current
->state
= TASK_INTERRUPTIBLE
;
3380 timeout
= schedule_timeout(timeout
);
3386 EXPORT_SYMBOL(interruptible_sleep_on_timeout
);
3388 void fastcall __sched
sleep_on(wait_queue_head_t
*q
)
3392 current
->state
= TASK_UNINTERRUPTIBLE
;
3399 EXPORT_SYMBOL(sleep_on
);
3401 long fastcall __sched
sleep_on_timeout(wait_queue_head_t
*q
, long timeout
)
3405 current
->state
= TASK_UNINTERRUPTIBLE
;
3408 timeout
= schedule_timeout(timeout
);
3414 EXPORT_SYMBOL(sleep_on_timeout
);
3416 void set_user_nice(task_t
*p
, long nice
)
3418 unsigned long flags
;
3419 prio_array_t
*array
;
3421 int old_prio
, new_prio
, delta
;
3423 if (TASK_NICE(p
) == nice
|| nice
< -20 || nice
> 19)
3426 * We have to be careful, if called from sys_setpriority(),
3427 * the task might be in the middle of scheduling on another CPU.
3429 rq
= task_rq_lock(p
, &flags
);
3431 * The RT priorities are set via sched_setscheduler(), but we still
3432 * allow the 'normal' nice value to be set - but as expected
3433 * it wont have any effect on scheduling until the task is
3434 * not SCHED_NORMAL/SCHED_BATCH:
3437 p
->static_prio
= NICE_TO_PRIO(nice
);
3442 dequeue_task(p
, array
);
3445 new_prio
= NICE_TO_PRIO(nice
);
3446 delta
= new_prio
- old_prio
;
3447 p
->static_prio
= NICE_TO_PRIO(nice
);
3451 enqueue_task(p
, array
);
3453 * If the task increased its priority or is running and
3454 * lowered its priority, then reschedule its CPU:
3456 if (delta
< 0 || (delta
> 0 && task_running(rq
, p
)))
3457 resched_task(rq
->curr
);
3460 task_rq_unlock(rq
, &flags
);
3463 EXPORT_SYMBOL(set_user_nice
);
3466 * can_nice - check if a task can reduce its nice value
3470 int can_nice(const task_t
*p
, const int nice
)
3472 /* convert nice value [19,-20] to rlimit style value [1,40] */
3473 int nice_rlim
= 20 - nice
;
3474 return (nice_rlim
<= p
->signal
->rlim
[RLIMIT_NICE
].rlim_cur
||
3475 capable(CAP_SYS_NICE
));
3478 #ifdef __ARCH_WANT_SYS_NICE
3481 * sys_nice - change the priority of the current process.
3482 * @increment: priority increment
3484 * sys_setpriority is a more generic, but much slower function that
3485 * does similar things.
3487 asmlinkage
long sys_nice(int increment
)
3493 * Setpriority might change our priority at the same moment.
3494 * We don't have to worry. Conceptually one call occurs first
3495 * and we have a single winner.
3497 if (increment
< -40)
3502 nice
= PRIO_TO_NICE(current
->static_prio
) + increment
;
3508 if (increment
< 0 && !can_nice(current
, nice
))
3511 retval
= security_task_setnice(current
, nice
);
3515 set_user_nice(current
, nice
);
3522 * task_prio - return the priority value of a given task.
3523 * @p: the task in question.
3525 * This is the priority value as seen by users in /proc.
3526 * RT tasks are offset by -200. Normal tasks are centered
3527 * around 0, value goes from -16 to +15.
3529 int task_prio(const task_t
*p
)
3531 return p
->prio
- MAX_RT_PRIO
;
3535 * task_nice - return the nice value of a given task.
3536 * @p: the task in question.
3538 int task_nice(const task_t
*p
)
3540 return TASK_NICE(p
);
3542 EXPORT_SYMBOL_GPL(task_nice
);
3545 * idle_cpu - is a given cpu idle currently?
3546 * @cpu: the processor in question.
3548 int idle_cpu(int cpu
)
3550 return cpu_curr(cpu
) == cpu_rq(cpu
)->idle
;
3554 * idle_task - return the idle task for a given cpu.
3555 * @cpu: the processor in question.
3557 task_t
*idle_task(int cpu
)
3559 return cpu_rq(cpu
)->idle
;
3563 * find_process_by_pid - find a process with a matching PID value.
3564 * @pid: the pid in question.
3566 static inline task_t
*find_process_by_pid(pid_t pid
)
3568 return pid
? find_task_by_pid(pid
) : current
;
3571 /* Actually do priority change: must hold rq lock. */
3572 static void __setscheduler(struct task_struct
*p
, int policy
, int prio
)
3576 p
->rt_priority
= prio
;
3577 if (policy
!= SCHED_NORMAL
&& policy
!= SCHED_BATCH
) {
3578 p
->prio
= MAX_RT_PRIO
-1 - p
->rt_priority
;
3580 p
->prio
= p
->static_prio
;
3582 * SCHED_BATCH tasks are treated as perpetual CPU hogs:
3584 if (policy
== SCHED_BATCH
)
3590 * sched_setscheduler - change the scheduling policy and/or RT priority of
3592 * @p: the task in question.
3593 * @policy: new policy.
3594 * @param: structure containing the new RT priority.
3596 int sched_setscheduler(struct task_struct
*p
, int policy
,
3597 struct sched_param
*param
)
3600 int oldprio
, oldpolicy
= -1;
3601 prio_array_t
*array
;
3602 unsigned long flags
;
3606 /* double check policy once rq lock held */
3608 policy
= oldpolicy
= p
->policy
;
3609 else if (policy
!= SCHED_FIFO
&& policy
!= SCHED_RR
&&
3610 policy
!= SCHED_NORMAL
&& policy
!= SCHED_BATCH
)
3613 * Valid priorities for SCHED_FIFO and SCHED_RR are
3614 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL and
3617 if (param
->sched_priority
< 0 ||
3618 (p
->mm
&& param
->sched_priority
> MAX_USER_RT_PRIO
-1) ||
3619 (!p
->mm
&& param
->sched_priority
> MAX_RT_PRIO
-1))
3621 if ((policy
== SCHED_NORMAL
|| policy
== SCHED_BATCH
)
3622 != (param
->sched_priority
== 0))
3626 * Allow unprivileged RT tasks to decrease priority:
3628 if (!capable(CAP_SYS_NICE
)) {
3630 * can't change policy, except between SCHED_NORMAL
3633 if (((policy
!= SCHED_NORMAL
&& p
->policy
!= SCHED_BATCH
) &&
3634 (policy
!= SCHED_BATCH
&& p
->policy
!= SCHED_NORMAL
)) &&
3635 !p
->signal
->rlim
[RLIMIT_RTPRIO
].rlim_cur
)
3637 /* can't increase priority */
3638 if ((policy
!= SCHED_NORMAL
&& policy
!= SCHED_BATCH
) &&
3639 param
->sched_priority
> p
->rt_priority
&&
3640 param
->sched_priority
>
3641 p
->signal
->rlim
[RLIMIT_RTPRIO
].rlim_cur
)
3643 /* can't change other user's priorities */
3644 if ((current
->euid
!= p
->euid
) &&
3645 (current
->euid
!= p
->uid
))
3649 retval
= security_task_setscheduler(p
, policy
, param
);
3653 * To be able to change p->policy safely, the apropriate
3654 * runqueue lock must be held.
3656 rq
= task_rq_lock(p
, &flags
);
3657 /* recheck policy now with rq lock held */
3658 if (unlikely(oldpolicy
!= -1 && oldpolicy
!= p
->policy
)) {
3659 policy
= oldpolicy
= -1;
3660 task_rq_unlock(rq
, &flags
);
3665 deactivate_task(p
, rq
);
3667 __setscheduler(p
, policy
, param
->sched_priority
);
3669 __activate_task(p
, rq
);
3671 * Reschedule if we are currently running on this runqueue and
3672 * our priority decreased, or if we are not currently running on
3673 * this runqueue and our priority is higher than the current's
3675 if (task_running(rq
, p
)) {
3676 if (p
->prio
> oldprio
)
3677 resched_task(rq
->curr
);
3678 } else if (TASK_PREEMPTS_CURR(p
, rq
))
3679 resched_task(rq
->curr
);
3681 task_rq_unlock(rq
, &flags
);
3684 EXPORT_SYMBOL_GPL(sched_setscheduler
);
3687 do_sched_setscheduler(pid_t pid
, int policy
, struct sched_param __user
*param
)
3690 struct sched_param lparam
;
3691 struct task_struct
*p
;
3693 if (!param
|| pid
< 0)
3695 if (copy_from_user(&lparam
, param
, sizeof(struct sched_param
)))
3697 read_lock_irq(&tasklist_lock
);
3698 p
= find_process_by_pid(pid
);
3700 read_unlock_irq(&tasklist_lock
);
3703 retval
= sched_setscheduler(p
, policy
, &lparam
);
3704 read_unlock_irq(&tasklist_lock
);
3709 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
3710 * @pid: the pid in question.
3711 * @policy: new policy.
3712 * @param: structure containing the new RT priority.
3714 asmlinkage
long sys_sched_setscheduler(pid_t pid
, int policy
,
3715 struct sched_param __user
*param
)
3717 /* negative values for policy are not valid */
3721 return do_sched_setscheduler(pid
, policy
, param
);
3725 * sys_sched_setparam - set/change the RT priority of a thread
3726 * @pid: the pid in question.
3727 * @param: structure containing the new RT priority.
3729 asmlinkage
long sys_sched_setparam(pid_t pid
, struct sched_param __user
*param
)
3731 return do_sched_setscheduler(pid
, -1, param
);
3735 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
3736 * @pid: the pid in question.
3738 asmlinkage
long sys_sched_getscheduler(pid_t pid
)
3740 int retval
= -EINVAL
;
3747 read_lock(&tasklist_lock
);
3748 p
= find_process_by_pid(pid
);
3750 retval
= security_task_getscheduler(p
);
3754 read_unlock(&tasklist_lock
);
3761 * sys_sched_getscheduler - get the RT priority of a thread
3762 * @pid: the pid in question.
3763 * @param: structure containing the RT priority.
3765 asmlinkage
long sys_sched_getparam(pid_t pid
, struct sched_param __user
*param
)
3767 struct sched_param lp
;
3768 int retval
= -EINVAL
;
3771 if (!param
|| pid
< 0)
3774 read_lock(&tasklist_lock
);
3775 p
= find_process_by_pid(pid
);
3780 retval
= security_task_getscheduler(p
);
3784 lp
.sched_priority
= p
->rt_priority
;
3785 read_unlock(&tasklist_lock
);
3788 * This one might sleep, we cannot do it with a spinlock held ...
3790 retval
= copy_to_user(param
, &lp
, sizeof(*param
)) ? -EFAULT
: 0;
3796 read_unlock(&tasklist_lock
);
3800 long sched_setaffinity(pid_t pid
, cpumask_t new_mask
)
3804 cpumask_t cpus_allowed
;
3807 read_lock(&tasklist_lock
);
3809 p
= find_process_by_pid(pid
);
3811 read_unlock(&tasklist_lock
);
3812 unlock_cpu_hotplug();
3817 * It is not safe to call set_cpus_allowed with the
3818 * tasklist_lock held. We will bump the task_struct's
3819 * usage count and then drop tasklist_lock.
3822 read_unlock(&tasklist_lock
);
3825 if ((current
->euid
!= p
->euid
) && (current
->euid
!= p
->uid
) &&
3826 !capable(CAP_SYS_NICE
))
3829 retval
= security_task_setscheduler(p
, 0, NULL
);
3833 cpus_allowed
= cpuset_cpus_allowed(p
);
3834 cpus_and(new_mask
, new_mask
, cpus_allowed
);
3835 retval
= set_cpus_allowed(p
, new_mask
);
3839 unlock_cpu_hotplug();
3843 static int get_user_cpu_mask(unsigned long __user
*user_mask_ptr
, unsigned len
,
3844 cpumask_t
*new_mask
)
3846 if (len
< sizeof(cpumask_t
)) {
3847 memset(new_mask
, 0, sizeof(cpumask_t
));
3848 } else if (len
> sizeof(cpumask_t
)) {
3849 len
= sizeof(cpumask_t
);
3851 return copy_from_user(new_mask
, user_mask_ptr
, len
) ? -EFAULT
: 0;
3855 * sys_sched_setaffinity - set the cpu affinity of a process
3856 * @pid: pid of the process
3857 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
3858 * @user_mask_ptr: user-space pointer to the new cpu mask
3860 asmlinkage
long sys_sched_setaffinity(pid_t pid
, unsigned int len
,
3861 unsigned long __user
*user_mask_ptr
)
3866 retval
= get_user_cpu_mask(user_mask_ptr
, len
, &new_mask
);
3870 return sched_setaffinity(pid
, new_mask
);
3874 * Represents all cpu's present in the system
3875 * In systems capable of hotplug, this map could dynamically grow
3876 * as new cpu's are detected in the system via any platform specific
3877 * method, such as ACPI for e.g.
3880 cpumask_t cpu_present_map __read_mostly
;
3881 EXPORT_SYMBOL(cpu_present_map
);
3884 cpumask_t cpu_online_map __read_mostly
= CPU_MASK_ALL
;
3885 cpumask_t cpu_possible_map __read_mostly
= CPU_MASK_ALL
;
3888 long sched_getaffinity(pid_t pid
, cpumask_t
*mask
)
3894 read_lock(&tasklist_lock
);
3897 p
= find_process_by_pid(pid
);
3901 retval
= security_task_getscheduler(p
);
3905 cpus_and(*mask
, p
->cpus_allowed
, cpu_online_map
);
3908 read_unlock(&tasklist_lock
);
3909 unlock_cpu_hotplug();
3917 * sys_sched_getaffinity - get the cpu affinity of a process
3918 * @pid: pid of the process
3919 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
3920 * @user_mask_ptr: user-space pointer to hold the current cpu mask
3922 asmlinkage
long sys_sched_getaffinity(pid_t pid
, unsigned int len
,
3923 unsigned long __user
*user_mask_ptr
)
3928 if (len
< sizeof(cpumask_t
))
3931 ret
= sched_getaffinity(pid
, &mask
);
3935 if (copy_to_user(user_mask_ptr
, &mask
, sizeof(cpumask_t
)))
3938 return sizeof(cpumask_t
);
3942 * sys_sched_yield - yield the current processor to other threads.
3944 * this function yields the current CPU by moving the calling thread
3945 * to the expired array. If there are no other threads running on this
3946 * CPU then this function will return.
3948 asmlinkage
long sys_sched_yield(void)
3950 runqueue_t
*rq
= this_rq_lock();
3951 prio_array_t
*array
= current
->array
;
3952 prio_array_t
*target
= rq
->expired
;
3954 schedstat_inc(rq
, yld_cnt
);
3956 * We implement yielding by moving the task into the expired
3959 * (special rule: RT tasks will just roundrobin in the active
3962 if (rt_task(current
))
3963 target
= rq
->active
;
3965 if (array
->nr_active
== 1) {
3966 schedstat_inc(rq
, yld_act_empty
);
3967 if (!rq
->expired
->nr_active
)
3968 schedstat_inc(rq
, yld_both_empty
);
3969 } else if (!rq
->expired
->nr_active
)
3970 schedstat_inc(rq
, yld_exp_empty
);
3972 if (array
!= target
) {
3973 dequeue_task(current
, array
);
3974 enqueue_task(current
, target
);
3977 * requeue_task is cheaper so perform that if possible.
3979 requeue_task(current
, array
);
3982 * Since we are going to call schedule() anyway, there's
3983 * no need to preempt or enable interrupts:
3985 __release(rq
->lock
);
3986 _raw_spin_unlock(&rq
->lock
);
3987 preempt_enable_no_resched();
3994 static inline void __cond_resched(void)
3996 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
3997 __might_sleep(__FILE__
, __LINE__
);
4000 * The BKS might be reacquired before we have dropped
4001 * PREEMPT_ACTIVE, which could trigger a second
4002 * cond_resched() call.
4004 if (unlikely(preempt_count()))
4006 if (unlikely(system_state
!= SYSTEM_RUNNING
))
4009 add_preempt_count(PREEMPT_ACTIVE
);
4011 sub_preempt_count(PREEMPT_ACTIVE
);
4012 } while (need_resched());
4015 int __sched
cond_resched(void)
4017 if (need_resched()) {
4024 EXPORT_SYMBOL(cond_resched
);
4027 * cond_resched_lock() - if a reschedule is pending, drop the given lock,
4028 * call schedule, and on return reacquire the lock.
4030 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
4031 * operations here to prevent schedule() from being called twice (once via
4032 * spin_unlock(), once by hand).
4034 int cond_resched_lock(spinlock_t
*lock
)
4038 if (need_lockbreak(lock
)) {
4044 if (need_resched()) {
4045 _raw_spin_unlock(lock
);
4046 preempt_enable_no_resched();
4054 EXPORT_SYMBOL(cond_resched_lock
);
4056 int __sched
cond_resched_softirq(void)
4058 BUG_ON(!in_softirq());
4060 if (need_resched()) {
4061 __local_bh_enable();
4069 EXPORT_SYMBOL(cond_resched_softirq
);
4073 * yield - yield the current processor to other threads.
4075 * this is a shortcut for kernel-space yielding - it marks the
4076 * thread runnable and calls sys_sched_yield().
4078 void __sched
yield(void)
4080 set_current_state(TASK_RUNNING
);
4084 EXPORT_SYMBOL(yield
);
4087 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
4088 * that process accounting knows that this is a task in IO wait state.
4090 * But don't do that if it is a deliberate, throttling IO wait (this task
4091 * has set its backing_dev_info: the queue against which it should throttle)
4093 void __sched
io_schedule(void)
4095 struct runqueue
*rq
= &__raw_get_cpu_var(runqueues
);
4097 atomic_inc(&rq
->nr_iowait
);
4099 atomic_dec(&rq
->nr_iowait
);
4102 EXPORT_SYMBOL(io_schedule
);
4104 long __sched
io_schedule_timeout(long timeout
)
4106 struct runqueue
*rq
= &__raw_get_cpu_var(runqueues
);
4109 atomic_inc(&rq
->nr_iowait
);
4110 ret
= schedule_timeout(timeout
);
4111 atomic_dec(&rq
->nr_iowait
);
4116 * sys_sched_get_priority_max - return maximum RT priority.
4117 * @policy: scheduling class.
4119 * this syscall returns the maximum rt_priority that can be used
4120 * by a given scheduling class.
4122 asmlinkage
long sys_sched_get_priority_max(int policy
)
4129 ret
= MAX_USER_RT_PRIO
-1;
4140 * sys_sched_get_priority_min - return minimum RT priority.
4141 * @policy: scheduling class.
4143 * this syscall returns the minimum rt_priority that can be used
4144 * by a given scheduling class.
4146 asmlinkage
long sys_sched_get_priority_min(int policy
)
4163 * sys_sched_rr_get_interval - return the default timeslice of a process.
4164 * @pid: pid of the process.
4165 * @interval: userspace pointer to the timeslice value.
4167 * this syscall writes the default timeslice value of a given process
4168 * into the user-space timespec buffer. A value of '0' means infinity.
4171 long sys_sched_rr_get_interval(pid_t pid
, struct timespec __user
*interval
)
4173 int retval
= -EINVAL
;
4181 read_lock(&tasklist_lock
);
4182 p
= find_process_by_pid(pid
);
4186 retval
= security_task_getscheduler(p
);
4190 jiffies_to_timespec(p
->policy
== SCHED_FIFO
?
4191 0 : task_timeslice(p
), &t
);
4192 read_unlock(&tasklist_lock
);
4193 retval
= copy_to_user(interval
, &t
, sizeof(t
)) ? -EFAULT
: 0;
4197 read_unlock(&tasklist_lock
);
4201 static inline struct task_struct
*eldest_child(struct task_struct
*p
)
4203 if (list_empty(&p
->children
)) return NULL
;
4204 return list_entry(p
->children
.next
,struct task_struct
,sibling
);
4207 static inline struct task_struct
*older_sibling(struct task_struct
*p
)
4209 if (p
->sibling
.prev
==&p
->parent
->children
) return NULL
;
4210 return list_entry(p
->sibling
.prev
,struct task_struct
,sibling
);
4213 static inline struct task_struct
*younger_sibling(struct task_struct
*p
)
4215 if (p
->sibling
.next
==&p
->parent
->children
) return NULL
;
4216 return list_entry(p
->sibling
.next
,struct task_struct
,sibling
);
4219 static void show_task(task_t
*p
)
4223 unsigned long free
= 0;
4224 static const char *stat_nam
[] = { "R", "S", "D", "T", "t", "Z", "X" };
4226 printk("%-13.13s ", p
->comm
);
4227 state
= p
->state
? __ffs(p
->state
) + 1 : 0;
4228 if (state
< ARRAY_SIZE(stat_nam
))
4229 printk(stat_nam
[state
]);
4232 #if (BITS_PER_LONG == 32)
4233 if (state
== TASK_RUNNING
)
4234 printk(" running ");
4236 printk(" %08lX ", thread_saved_pc(p
));
4238 if (state
== TASK_RUNNING
)
4239 printk(" running task ");
4241 printk(" %016lx ", thread_saved_pc(p
));
4243 #ifdef CONFIG_DEBUG_STACK_USAGE
4245 unsigned long *n
= end_of_stack(p
);
4248 free
= (unsigned long)n
- (unsigned long)end_of_stack(p
);
4251 printk("%5lu %5d %6d ", free
, p
->pid
, p
->parent
->pid
);
4252 if ((relative
= eldest_child(p
)))
4253 printk("%5d ", relative
->pid
);
4256 if ((relative
= younger_sibling(p
)))
4257 printk("%7d", relative
->pid
);
4260 if ((relative
= older_sibling(p
)))
4261 printk(" %5d", relative
->pid
);
4265 printk(" (L-TLB)\n");
4267 printk(" (NOTLB)\n");
4269 if (state
!= TASK_RUNNING
)
4270 show_stack(p
, NULL
);
4273 void show_state(void)
4277 #if (BITS_PER_LONG == 32)
4280 printk(" task PC pid father child younger older\n");
4284 printk(" task PC pid father child younger older\n");
4286 read_lock(&tasklist_lock
);
4287 do_each_thread(g
, p
) {
4289 * reset the NMI-timeout, listing all files on a slow
4290 * console might take alot of time:
4292 touch_nmi_watchdog();
4294 } while_each_thread(g
, p
);
4296 read_unlock(&tasklist_lock
);
4297 mutex_debug_show_all_locks();
4301 * init_idle - set up an idle thread for a given CPU
4302 * @idle: task in question
4303 * @cpu: cpu the idle task belongs to
4305 * NOTE: this function does not set the idle thread's NEED_RESCHED
4306 * flag, to make booting more robust.
4308 void __devinit
init_idle(task_t
*idle
, int cpu
)
4310 runqueue_t
*rq
= cpu_rq(cpu
);
4311 unsigned long flags
;
4313 idle
->timestamp
= sched_clock();
4314 idle
->sleep_avg
= 0;
4316 idle
->prio
= MAX_PRIO
;
4317 idle
->state
= TASK_RUNNING
;
4318 idle
->cpus_allowed
= cpumask_of_cpu(cpu
);
4319 set_task_cpu(idle
, cpu
);
4321 spin_lock_irqsave(&rq
->lock
, flags
);
4322 rq
->curr
= rq
->idle
= idle
;
4323 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
4326 spin_unlock_irqrestore(&rq
->lock
, flags
);
4328 /* Set the preempt count _outside_ the spinlocks! */
4329 #if defined(CONFIG_PREEMPT) && !defined(CONFIG_PREEMPT_BKL)
4330 task_thread_info(idle
)->preempt_count
= (idle
->lock_depth
>= 0);
4332 task_thread_info(idle
)->preempt_count
= 0;
4337 * In a system that switches off the HZ timer nohz_cpu_mask
4338 * indicates which cpus entered this state. This is used
4339 * in the rcu update to wait only for active cpus. For system
4340 * which do not switch off the HZ timer nohz_cpu_mask should
4341 * always be CPU_MASK_NONE.
4343 cpumask_t nohz_cpu_mask
= CPU_MASK_NONE
;
4347 * This is how migration works:
4349 * 1) we queue a migration_req_t structure in the source CPU's
4350 * runqueue and wake up that CPU's migration thread.
4351 * 2) we down() the locked semaphore => thread blocks.
4352 * 3) migration thread wakes up (implicitly it forces the migrated
4353 * thread off the CPU)
4354 * 4) it gets the migration request and checks whether the migrated
4355 * task is still in the wrong runqueue.
4356 * 5) if it's in the wrong runqueue then the migration thread removes
4357 * it and puts it into the right queue.
4358 * 6) migration thread up()s the semaphore.
4359 * 7) we wake up and the migration is done.
4363 * Change a given task's CPU affinity. Migrate the thread to a
4364 * proper CPU and schedule it away if the CPU it's executing on
4365 * is removed from the allowed bitmask.
4367 * NOTE: the caller must have a valid reference to the task, the
4368 * task must not exit() & deallocate itself prematurely. The
4369 * call is not atomic; no spinlocks may be held.
4371 int set_cpus_allowed(task_t
*p
, cpumask_t new_mask
)
4373 unsigned long flags
;
4375 migration_req_t req
;
4378 rq
= task_rq_lock(p
, &flags
);
4379 if (!cpus_intersects(new_mask
, cpu_online_map
)) {
4384 p
->cpus_allowed
= new_mask
;
4385 /* Can the task run on the task's current CPU? If so, we're done */
4386 if (cpu_isset(task_cpu(p
), new_mask
))
4389 if (migrate_task(p
, any_online_cpu(new_mask
), &req
)) {
4390 /* Need help from migration thread: drop lock and wait. */
4391 task_rq_unlock(rq
, &flags
);
4392 wake_up_process(rq
->migration_thread
);
4393 wait_for_completion(&req
.done
);
4394 tlb_migrate_finish(p
->mm
);
4398 task_rq_unlock(rq
, &flags
);
4402 EXPORT_SYMBOL_GPL(set_cpus_allowed
);
4405 * Move (not current) task off this cpu, onto dest cpu. We're doing
4406 * this because either it can't run here any more (set_cpus_allowed()
4407 * away from this CPU, or CPU going down), or because we're
4408 * attempting to rebalance this task on exec (sched_exec).
4410 * So we race with normal scheduler movements, but that's OK, as long
4411 * as the task is no longer on this CPU.
4413 static void __migrate_task(struct task_struct
*p
, int src_cpu
, int dest_cpu
)
4415 runqueue_t
*rq_dest
, *rq_src
;
4417 if (unlikely(cpu_is_offline(dest_cpu
)))
4420 rq_src
= cpu_rq(src_cpu
);
4421 rq_dest
= cpu_rq(dest_cpu
);
4423 double_rq_lock(rq_src
, rq_dest
);
4424 /* Already moved. */
4425 if (task_cpu(p
) != src_cpu
)
4427 /* Affinity changed (again). */
4428 if (!cpu_isset(dest_cpu
, p
->cpus_allowed
))
4431 set_task_cpu(p
, dest_cpu
);
4434 * Sync timestamp with rq_dest's before activating.
4435 * The same thing could be achieved by doing this step
4436 * afterwards, and pretending it was a local activate.
4437 * This way is cleaner and logically correct.
4439 p
->timestamp
= p
->timestamp
- rq_src
->timestamp_last_tick
4440 + rq_dest
->timestamp_last_tick
;
4441 deactivate_task(p
, rq_src
);
4442 activate_task(p
, rq_dest
, 0);
4443 if (TASK_PREEMPTS_CURR(p
, rq_dest
))
4444 resched_task(rq_dest
->curr
);
4448 double_rq_unlock(rq_src
, rq_dest
);
4452 * migration_thread - this is a highprio system thread that performs
4453 * thread migration by bumping thread off CPU then 'pushing' onto
4456 static int migration_thread(void *data
)
4459 int cpu
= (long)data
;
4462 BUG_ON(rq
->migration_thread
!= current
);
4464 set_current_state(TASK_INTERRUPTIBLE
);
4465 while (!kthread_should_stop()) {
4466 struct list_head
*head
;
4467 migration_req_t
*req
;
4471 spin_lock_irq(&rq
->lock
);
4473 if (cpu_is_offline(cpu
)) {
4474 spin_unlock_irq(&rq
->lock
);
4478 if (rq
->active_balance
) {
4479 active_load_balance(rq
, cpu
);
4480 rq
->active_balance
= 0;
4483 head
= &rq
->migration_queue
;
4485 if (list_empty(head
)) {
4486 spin_unlock_irq(&rq
->lock
);
4488 set_current_state(TASK_INTERRUPTIBLE
);
4491 req
= list_entry(head
->next
, migration_req_t
, list
);
4492 list_del_init(head
->next
);
4494 spin_unlock(&rq
->lock
);
4495 __migrate_task(req
->task
, cpu
, req
->dest_cpu
);
4498 complete(&req
->done
);
4500 __set_current_state(TASK_RUNNING
);
4504 /* Wait for kthread_stop */
4505 set_current_state(TASK_INTERRUPTIBLE
);
4506 while (!kthread_should_stop()) {
4508 set_current_state(TASK_INTERRUPTIBLE
);
4510 __set_current_state(TASK_RUNNING
);
4514 #ifdef CONFIG_HOTPLUG_CPU
4515 /* Figure out where task on dead CPU should go, use force if neccessary. */
4516 static void move_task_off_dead_cpu(int dead_cpu
, struct task_struct
*tsk
)
4522 mask
= node_to_cpumask(cpu_to_node(dead_cpu
));
4523 cpus_and(mask
, mask
, tsk
->cpus_allowed
);
4524 dest_cpu
= any_online_cpu(mask
);
4526 /* On any allowed CPU? */
4527 if (dest_cpu
== NR_CPUS
)
4528 dest_cpu
= any_online_cpu(tsk
->cpus_allowed
);
4530 /* No more Mr. Nice Guy. */
4531 if (dest_cpu
== NR_CPUS
) {
4532 cpus_setall(tsk
->cpus_allowed
);
4533 dest_cpu
= any_online_cpu(tsk
->cpus_allowed
);
4536 * Don't tell them about moving exiting tasks or
4537 * kernel threads (both mm NULL), since they never
4540 if (tsk
->mm
&& printk_ratelimit())
4541 printk(KERN_INFO
"process %d (%s) no "
4542 "longer affine to cpu%d\n",
4543 tsk
->pid
, tsk
->comm
, dead_cpu
);
4545 __migrate_task(tsk
, dead_cpu
, dest_cpu
);
4549 * While a dead CPU has no uninterruptible tasks queued at this point,
4550 * it might still have a nonzero ->nr_uninterruptible counter, because
4551 * for performance reasons the counter is not stricly tracking tasks to
4552 * their home CPUs. So we just add the counter to another CPU's counter,
4553 * to keep the global sum constant after CPU-down:
4555 static void migrate_nr_uninterruptible(runqueue_t
*rq_src
)
4557 runqueue_t
*rq_dest
= cpu_rq(any_online_cpu(CPU_MASK_ALL
));
4558 unsigned long flags
;
4560 local_irq_save(flags
);
4561 double_rq_lock(rq_src
, rq_dest
);
4562 rq_dest
->nr_uninterruptible
+= rq_src
->nr_uninterruptible
;
4563 rq_src
->nr_uninterruptible
= 0;
4564 double_rq_unlock(rq_src
, rq_dest
);
4565 local_irq_restore(flags
);
4568 /* Run through task list and migrate tasks from the dead cpu. */
4569 static void migrate_live_tasks(int src_cpu
)
4571 struct task_struct
*tsk
, *t
;
4573 write_lock_irq(&tasklist_lock
);
4575 do_each_thread(t
, tsk
) {
4579 if (task_cpu(tsk
) == src_cpu
)
4580 move_task_off_dead_cpu(src_cpu
, tsk
);
4581 } while_each_thread(t
, tsk
);
4583 write_unlock_irq(&tasklist_lock
);
4586 /* Schedules idle task to be the next runnable task on current CPU.
4587 * It does so by boosting its priority to highest possible and adding it to
4588 * the _front_ of runqueue. Used by CPU offline code.
4590 void sched_idle_next(void)
4592 int cpu
= smp_processor_id();
4593 runqueue_t
*rq
= this_rq();
4594 struct task_struct
*p
= rq
->idle
;
4595 unsigned long flags
;
4597 /* cpu has to be offline */
4598 BUG_ON(cpu_online(cpu
));
4600 /* Strictly not necessary since rest of the CPUs are stopped by now
4601 * and interrupts disabled on current cpu.
4603 spin_lock_irqsave(&rq
->lock
, flags
);
4605 __setscheduler(p
, SCHED_FIFO
, MAX_RT_PRIO
-1);
4606 /* Add idle task to _front_ of it's priority queue */
4607 __activate_idle_task(p
, rq
);
4609 spin_unlock_irqrestore(&rq
->lock
, flags
);
4612 /* Ensures that the idle task is using init_mm right before its cpu goes
4615 void idle_task_exit(void)
4617 struct mm_struct
*mm
= current
->active_mm
;
4619 BUG_ON(cpu_online(smp_processor_id()));
4622 switch_mm(mm
, &init_mm
, current
);
4626 static void migrate_dead(unsigned int dead_cpu
, task_t
*tsk
)
4628 struct runqueue
*rq
= cpu_rq(dead_cpu
);
4630 /* Must be exiting, otherwise would be on tasklist. */
4631 BUG_ON(tsk
->exit_state
!= EXIT_ZOMBIE
&& tsk
->exit_state
!= EXIT_DEAD
);
4633 /* Cannot have done final schedule yet: would have vanished. */
4634 BUG_ON(tsk
->flags
& PF_DEAD
);
4636 get_task_struct(tsk
);
4639 * Drop lock around migration; if someone else moves it,
4640 * that's OK. No task can be added to this CPU, so iteration is
4643 spin_unlock_irq(&rq
->lock
);
4644 move_task_off_dead_cpu(dead_cpu
, tsk
);
4645 spin_lock_irq(&rq
->lock
);
4647 put_task_struct(tsk
);
4650 /* release_task() removes task from tasklist, so we won't find dead tasks. */
4651 static void migrate_dead_tasks(unsigned int dead_cpu
)
4654 struct runqueue
*rq
= cpu_rq(dead_cpu
);
4656 for (arr
= 0; arr
< 2; arr
++) {
4657 for (i
= 0; i
< MAX_PRIO
; i
++) {
4658 struct list_head
*list
= &rq
->arrays
[arr
].queue
[i
];
4659 while (!list_empty(list
))
4660 migrate_dead(dead_cpu
,
4661 list_entry(list
->next
, task_t
,
4666 #endif /* CONFIG_HOTPLUG_CPU */
4669 * migration_call - callback that gets triggered when a CPU is added.
4670 * Here we can start up the necessary migration thread for the new CPU.
4672 static int __cpuinit
migration_call(struct notifier_block
*nfb
,
4673 unsigned long action
,
4676 int cpu
= (long)hcpu
;
4677 struct task_struct
*p
;
4678 struct runqueue
*rq
;
4679 unsigned long flags
;
4682 case CPU_UP_PREPARE
:
4683 p
= kthread_create(migration_thread
, hcpu
, "migration/%d",cpu
);
4686 p
->flags
|= PF_NOFREEZE
;
4687 kthread_bind(p
, cpu
);
4688 /* Must be high prio: stop_machine expects to yield to it. */
4689 rq
= task_rq_lock(p
, &flags
);
4690 __setscheduler(p
, SCHED_FIFO
, MAX_RT_PRIO
-1);
4691 task_rq_unlock(rq
, &flags
);
4692 cpu_rq(cpu
)->migration_thread
= p
;
4695 /* Strictly unneccessary, as first user will wake it. */
4696 wake_up_process(cpu_rq(cpu
)->migration_thread
);
4698 #ifdef CONFIG_HOTPLUG_CPU
4699 case CPU_UP_CANCELED
:
4700 if (!cpu_rq(cpu
)->migration_thread
)
4702 /* Unbind it from offline cpu so it can run. Fall thru. */
4703 kthread_bind(cpu_rq(cpu
)->migration_thread
,
4704 any_online_cpu(cpu_online_map
));
4705 kthread_stop(cpu_rq(cpu
)->migration_thread
);
4706 cpu_rq(cpu
)->migration_thread
= NULL
;
4709 migrate_live_tasks(cpu
);
4711 kthread_stop(rq
->migration_thread
);
4712 rq
->migration_thread
= NULL
;
4713 /* Idle task back to normal (off runqueue, low prio) */
4714 rq
= task_rq_lock(rq
->idle
, &flags
);
4715 deactivate_task(rq
->idle
, rq
);
4716 rq
->idle
->static_prio
= MAX_PRIO
;
4717 __setscheduler(rq
->idle
, SCHED_NORMAL
, 0);
4718 migrate_dead_tasks(cpu
);
4719 task_rq_unlock(rq
, &flags
);
4720 migrate_nr_uninterruptible(rq
);
4721 BUG_ON(rq
->nr_running
!= 0);
4723 /* No need to migrate the tasks: it was best-effort if
4724 * they didn't do lock_cpu_hotplug(). Just wake up
4725 * the requestors. */
4726 spin_lock_irq(&rq
->lock
);
4727 while (!list_empty(&rq
->migration_queue
)) {
4728 migration_req_t
*req
;
4729 req
= list_entry(rq
->migration_queue
.next
,
4730 migration_req_t
, list
);
4731 list_del_init(&req
->list
);
4732 complete(&req
->done
);
4734 spin_unlock_irq(&rq
->lock
);
4741 /* Register at highest priority so that task migration (migrate_all_tasks)
4742 * happens before everything else.
4744 static struct notifier_block __cpuinitdata migration_notifier
= {
4745 .notifier_call
= migration_call
,
4749 int __init
migration_init(void)
4751 void *cpu
= (void *)(long)smp_processor_id();
4752 /* Start one for boot CPU. */
4753 migration_call(&migration_notifier
, CPU_UP_PREPARE
, cpu
);
4754 migration_call(&migration_notifier
, CPU_ONLINE
, cpu
);
4755 register_cpu_notifier(&migration_notifier
);
4761 #undef SCHED_DOMAIN_DEBUG
4762 #ifdef SCHED_DOMAIN_DEBUG
4763 static void sched_domain_debug(struct sched_domain
*sd
, int cpu
)
4768 printk(KERN_DEBUG
"CPU%d attaching NULL sched-domain.\n", cpu
);
4772 printk(KERN_DEBUG
"CPU%d attaching sched-domain:\n", cpu
);
4777 struct sched_group
*group
= sd
->groups
;
4778 cpumask_t groupmask
;
4780 cpumask_scnprintf(str
, NR_CPUS
, sd
->span
);
4781 cpus_clear(groupmask
);
4784 for (i
= 0; i
< level
+ 1; i
++)
4786 printk("domain %d: ", level
);
4788 if (!(sd
->flags
& SD_LOAD_BALANCE
)) {
4789 printk("does not load-balance\n");
4791 printk(KERN_ERR
"ERROR: !SD_LOAD_BALANCE domain has parent");
4795 printk("span %s\n", str
);
4797 if (!cpu_isset(cpu
, sd
->span
))
4798 printk(KERN_ERR
"ERROR: domain->span does not contain CPU%d\n", cpu
);
4799 if (!cpu_isset(cpu
, group
->cpumask
))
4800 printk(KERN_ERR
"ERROR: domain->groups does not contain CPU%d\n", cpu
);
4803 for (i
= 0; i
< level
+ 2; i
++)
4809 printk(KERN_ERR
"ERROR: group is NULL\n");
4813 if (!group
->cpu_power
) {
4815 printk(KERN_ERR
"ERROR: domain->cpu_power not set\n");
4818 if (!cpus_weight(group
->cpumask
)) {
4820 printk(KERN_ERR
"ERROR: empty group\n");
4823 if (cpus_intersects(groupmask
, group
->cpumask
)) {
4825 printk(KERN_ERR
"ERROR: repeated CPUs\n");
4828 cpus_or(groupmask
, groupmask
, group
->cpumask
);
4830 cpumask_scnprintf(str
, NR_CPUS
, group
->cpumask
);
4833 group
= group
->next
;
4834 } while (group
!= sd
->groups
);
4837 if (!cpus_equal(sd
->span
, groupmask
))
4838 printk(KERN_ERR
"ERROR: groups don't span domain->span\n");
4844 if (!cpus_subset(groupmask
, sd
->span
))
4845 printk(KERN_ERR
"ERROR: parent span is not a superset of domain->span\n");
4851 #define sched_domain_debug(sd, cpu) {}
4854 static int sd_degenerate(struct sched_domain
*sd
)
4856 if (cpus_weight(sd
->span
) == 1)
4859 /* Following flags need at least 2 groups */
4860 if (sd
->flags
& (SD_LOAD_BALANCE
|
4861 SD_BALANCE_NEWIDLE
|
4864 if (sd
->groups
!= sd
->groups
->next
)
4868 /* Following flags don't use groups */
4869 if (sd
->flags
& (SD_WAKE_IDLE
|
4877 static int sd_parent_degenerate(struct sched_domain
*sd
,
4878 struct sched_domain
*parent
)
4880 unsigned long cflags
= sd
->flags
, pflags
= parent
->flags
;
4882 if (sd_degenerate(parent
))
4885 if (!cpus_equal(sd
->span
, parent
->span
))
4888 /* Does parent contain flags not in child? */
4889 /* WAKE_BALANCE is a subset of WAKE_AFFINE */
4890 if (cflags
& SD_WAKE_AFFINE
)
4891 pflags
&= ~SD_WAKE_BALANCE
;
4892 /* Flags needing groups don't count if only 1 group in parent */
4893 if (parent
->groups
== parent
->groups
->next
) {
4894 pflags
&= ~(SD_LOAD_BALANCE
|
4895 SD_BALANCE_NEWIDLE
|
4899 if (~cflags
& pflags
)
4906 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
4907 * hold the hotplug lock.
4909 static void cpu_attach_domain(struct sched_domain
*sd
, int cpu
)
4911 runqueue_t
*rq
= cpu_rq(cpu
);
4912 struct sched_domain
*tmp
;
4914 /* Remove the sched domains which do not contribute to scheduling. */
4915 for (tmp
= sd
; tmp
; tmp
= tmp
->parent
) {
4916 struct sched_domain
*parent
= tmp
->parent
;
4919 if (sd_parent_degenerate(tmp
, parent
))
4920 tmp
->parent
= parent
->parent
;
4923 if (sd
&& sd_degenerate(sd
))
4926 sched_domain_debug(sd
, cpu
);
4928 rcu_assign_pointer(rq
->sd
, sd
);
4931 /* cpus with isolated domains */
4932 static cpumask_t __devinitdata cpu_isolated_map
= CPU_MASK_NONE
;
4934 /* Setup the mask of cpus configured for isolated domains */
4935 static int __init
isolated_cpu_setup(char *str
)
4937 int ints
[NR_CPUS
], i
;
4939 str
= get_options(str
, ARRAY_SIZE(ints
), ints
);
4940 cpus_clear(cpu_isolated_map
);
4941 for (i
= 1; i
<= ints
[0]; i
++)
4942 if (ints
[i
] < NR_CPUS
)
4943 cpu_set(ints
[i
], cpu_isolated_map
);
4947 __setup ("isolcpus=", isolated_cpu_setup
);
4950 * init_sched_build_groups takes an array of groups, the cpumask we wish
4951 * to span, and a pointer to a function which identifies what group a CPU
4952 * belongs to. The return value of group_fn must be a valid index into the
4953 * groups[] array, and must be >= 0 and < NR_CPUS (due to the fact that we
4954 * keep track of groups covered with a cpumask_t).
4956 * init_sched_build_groups will build a circular linked list of the groups
4957 * covered by the given span, and will set each group's ->cpumask correctly,
4958 * and ->cpu_power to 0.
4960 static void init_sched_build_groups(struct sched_group groups
[], cpumask_t span
,
4961 int (*group_fn
)(int cpu
))
4963 struct sched_group
*first
= NULL
, *last
= NULL
;
4964 cpumask_t covered
= CPU_MASK_NONE
;
4967 for_each_cpu_mask(i
, span
) {
4968 int group
= group_fn(i
);
4969 struct sched_group
*sg
= &groups
[group
];
4972 if (cpu_isset(i
, covered
))
4975 sg
->cpumask
= CPU_MASK_NONE
;
4978 for_each_cpu_mask(j
, span
) {
4979 if (group_fn(j
) != group
)
4982 cpu_set(j
, covered
);
4983 cpu_set(j
, sg
->cpumask
);
4994 #define SD_NODES_PER_DOMAIN 16
4997 * Self-tuning task migration cost measurement between source and target CPUs.
4999 * This is done by measuring the cost of manipulating buffers of varying
5000 * sizes. For a given buffer-size here are the steps that are taken:
5002 * 1) the source CPU reads+dirties a shared buffer
5003 * 2) the target CPU reads+dirties the same shared buffer
5005 * We measure how long they take, in the following 4 scenarios:
5007 * - source: CPU1, target: CPU2 | cost1
5008 * - source: CPU2, target: CPU1 | cost2
5009 * - source: CPU1, target: CPU1 | cost3
5010 * - source: CPU2, target: CPU2 | cost4
5012 * We then calculate the cost3+cost4-cost1-cost2 difference - this is
5013 * the cost of migration.
5015 * We then start off from a small buffer-size and iterate up to larger
5016 * buffer sizes, in 5% steps - measuring each buffer-size separately, and
5017 * doing a maximum search for the cost. (The maximum cost for a migration
5018 * normally occurs when the working set size is around the effective cache
5021 #define SEARCH_SCOPE 2
5022 #define MIN_CACHE_SIZE (64*1024U)
5023 #define DEFAULT_CACHE_SIZE (5*1024*1024U)
5024 #define ITERATIONS 1
5025 #define SIZE_THRESH 130
5026 #define COST_THRESH 130
5029 * The migration cost is a function of 'domain distance'. Domain
5030 * distance is the number of steps a CPU has to iterate down its
5031 * domain tree to share a domain with the other CPU. The farther
5032 * two CPUs are from each other, the larger the distance gets.
5034 * Note that we use the distance only to cache measurement results,
5035 * the distance value is not used numerically otherwise. When two
5036 * CPUs have the same distance it is assumed that the migration
5037 * cost is the same. (this is a simplification but quite practical)
5039 #define MAX_DOMAIN_DISTANCE 32
5041 static unsigned long long migration_cost
[MAX_DOMAIN_DISTANCE
] =
5042 { [ 0 ... MAX_DOMAIN_DISTANCE
-1 ] =
5044 * Architectures may override the migration cost and thus avoid
5045 * boot-time calibration. Unit is nanoseconds. Mostly useful for
5046 * virtualized hardware:
5048 #ifdef CONFIG_DEFAULT_MIGRATION_COST
5049 CONFIG_DEFAULT_MIGRATION_COST
5056 * Allow override of migration cost - in units of microseconds.
5057 * E.g. migration_cost=1000,2000,3000 will set up a level-1 cost
5058 * of 1 msec, level-2 cost of 2 msecs and level3 cost of 3 msecs:
5060 static int __init
migration_cost_setup(char *str
)
5062 int ints
[MAX_DOMAIN_DISTANCE
+1], i
;
5064 str
= get_options(str
, ARRAY_SIZE(ints
), ints
);
5066 printk("#ints: %d\n", ints
[0]);
5067 for (i
= 1; i
<= ints
[0]; i
++) {
5068 migration_cost
[i
-1] = (unsigned long long)ints
[i
]*1000;
5069 printk("migration_cost[%d]: %Ld\n", i
-1, migration_cost
[i
-1]);
5074 __setup ("migration_cost=", migration_cost_setup
);
5077 * Global multiplier (divisor) for migration-cutoff values,
5078 * in percentiles. E.g. use a value of 150 to get 1.5 times
5079 * longer cache-hot cutoff times.
5081 * (We scale it from 100 to 128 to long long handling easier.)
5084 #define MIGRATION_FACTOR_SCALE 128
5086 static unsigned int migration_factor
= MIGRATION_FACTOR_SCALE
;
5088 static int __init
setup_migration_factor(char *str
)
5090 get_option(&str
, &migration_factor
);
5091 migration_factor
= migration_factor
* MIGRATION_FACTOR_SCALE
/ 100;
5095 __setup("migration_factor=", setup_migration_factor
);
5098 * Estimated distance of two CPUs, measured via the number of domains
5099 * we have to pass for the two CPUs to be in the same span:
5101 static unsigned long domain_distance(int cpu1
, int cpu2
)
5103 unsigned long distance
= 0;
5104 struct sched_domain
*sd
;
5106 for_each_domain(cpu1
, sd
) {
5107 WARN_ON(!cpu_isset(cpu1
, sd
->span
));
5108 if (cpu_isset(cpu2
, sd
->span
))
5112 if (distance
>= MAX_DOMAIN_DISTANCE
) {
5114 distance
= MAX_DOMAIN_DISTANCE
-1;
5120 static unsigned int migration_debug
;
5122 static int __init
setup_migration_debug(char *str
)
5124 get_option(&str
, &migration_debug
);
5128 __setup("migration_debug=", setup_migration_debug
);
5131 * Maximum cache-size that the scheduler should try to measure.
5132 * Architectures with larger caches should tune this up during
5133 * bootup. Gets used in the domain-setup code (i.e. during SMP
5136 unsigned int max_cache_size
;
5138 static int __init
setup_max_cache_size(char *str
)
5140 get_option(&str
, &max_cache_size
);
5144 __setup("max_cache_size=", setup_max_cache_size
);
5147 * Dirty a big buffer in a hard-to-predict (for the L2 cache) way. This
5148 * is the operation that is timed, so we try to generate unpredictable
5149 * cachemisses that still end up filling the L2 cache:
5151 static void touch_cache(void *__cache
, unsigned long __size
)
5153 unsigned long size
= __size
/sizeof(long), chunk1
= size
/3,
5155 unsigned long *cache
= __cache
;
5158 for (i
= 0; i
< size
/6; i
+= 8) {
5161 case 1: cache
[size
-1-i
]++;
5162 case 2: cache
[chunk1
-i
]++;
5163 case 3: cache
[chunk1
+i
]++;
5164 case 4: cache
[chunk2
-i
]++;
5165 case 5: cache
[chunk2
+i
]++;
5171 * Measure the cache-cost of one task migration. Returns in units of nsec.
5173 static unsigned long long measure_one(void *cache
, unsigned long size
,
5174 int source
, int target
)
5176 cpumask_t mask
, saved_mask
;
5177 unsigned long long t0
, t1
, t2
, t3
, cost
;
5179 saved_mask
= current
->cpus_allowed
;
5182 * Flush source caches to RAM and invalidate them:
5187 * Migrate to the source CPU:
5189 mask
= cpumask_of_cpu(source
);
5190 set_cpus_allowed(current
, mask
);
5191 WARN_ON(smp_processor_id() != source
);
5194 * Dirty the working set:
5197 touch_cache(cache
, size
);
5201 * Migrate to the target CPU, dirty the L2 cache and access
5202 * the shared buffer. (which represents the working set
5203 * of a migrated task.)
5205 mask
= cpumask_of_cpu(target
);
5206 set_cpus_allowed(current
, mask
);
5207 WARN_ON(smp_processor_id() != target
);
5210 touch_cache(cache
, size
);
5213 cost
= t1
-t0
+ t3
-t2
;
5215 if (migration_debug
>= 2)
5216 printk("[%d->%d]: %8Ld %8Ld %8Ld => %10Ld.\n",
5217 source
, target
, t1
-t0
, t1
-t0
, t3
-t2
, cost
);
5219 * Flush target caches to RAM and invalidate them:
5223 set_cpus_allowed(current
, saved_mask
);
5229 * Measure a series of task migrations and return the average
5230 * result. Since this code runs early during bootup the system
5231 * is 'undisturbed' and the average latency makes sense.
5233 * The algorithm in essence auto-detects the relevant cache-size,
5234 * so it will properly detect different cachesizes for different
5235 * cache-hierarchies, depending on how the CPUs are connected.
5237 * Architectures can prime the upper limit of the search range via
5238 * max_cache_size, otherwise the search range defaults to 20MB...64K.
5240 static unsigned long long
5241 measure_cost(int cpu1
, int cpu2
, void *cache
, unsigned int size
)
5243 unsigned long long cost1
, cost2
;
5247 * Measure the migration cost of 'size' bytes, over an
5248 * average of 10 runs:
5250 * (We perturb the cache size by a small (0..4k)
5251 * value to compensate size/alignment related artifacts.
5252 * We also subtract the cost of the operation done on
5258 * dry run, to make sure we start off cache-cold on cpu1,
5259 * and to get any vmalloc pagefaults in advance:
5261 measure_one(cache
, size
, cpu1
, cpu2
);
5262 for (i
= 0; i
< ITERATIONS
; i
++)
5263 cost1
+= measure_one(cache
, size
- i
*1024, cpu1
, cpu2
);
5265 measure_one(cache
, size
, cpu2
, cpu1
);
5266 for (i
= 0; i
< ITERATIONS
; i
++)
5267 cost1
+= measure_one(cache
, size
- i
*1024, cpu2
, cpu1
);
5270 * (We measure the non-migrating [cached] cost on both
5271 * cpu1 and cpu2, to handle CPUs with different speeds)
5275 measure_one(cache
, size
, cpu1
, cpu1
);
5276 for (i
= 0; i
< ITERATIONS
; i
++)
5277 cost2
+= measure_one(cache
, size
- i
*1024, cpu1
, cpu1
);
5279 measure_one(cache
, size
, cpu2
, cpu2
);
5280 for (i
= 0; i
< ITERATIONS
; i
++)
5281 cost2
+= measure_one(cache
, size
- i
*1024, cpu2
, cpu2
);
5284 * Get the per-iteration migration cost:
5286 do_div(cost1
, 2*ITERATIONS
);
5287 do_div(cost2
, 2*ITERATIONS
);
5289 return cost1
- cost2
;
5292 static unsigned long long measure_migration_cost(int cpu1
, int cpu2
)
5294 unsigned long long max_cost
= 0, fluct
= 0, avg_fluct
= 0;
5295 unsigned int max_size
, size
, size_found
= 0;
5296 long long cost
= 0, prev_cost
;
5300 * Search from max_cache_size*5 down to 64K - the real relevant
5301 * cachesize has to lie somewhere inbetween.
5303 if (max_cache_size
) {
5304 max_size
= max(max_cache_size
* SEARCH_SCOPE
, MIN_CACHE_SIZE
);
5305 size
= max(max_cache_size
/ SEARCH_SCOPE
, MIN_CACHE_SIZE
);
5308 * Since we have no estimation about the relevant
5311 max_size
= DEFAULT_CACHE_SIZE
* SEARCH_SCOPE
;
5312 size
= MIN_CACHE_SIZE
;
5315 if (!cpu_online(cpu1
) || !cpu_online(cpu2
)) {
5316 printk("cpu %d and %d not both online!\n", cpu1
, cpu2
);
5321 * Allocate the working set:
5323 cache
= vmalloc(max_size
);
5325 printk("could not vmalloc %d bytes for cache!\n", 2*max_size
);
5326 return 1000000; // return 1 msec on very small boxen
5329 while (size
<= max_size
) {
5331 cost
= measure_cost(cpu1
, cpu2
, cache
, size
);
5337 if (max_cost
< cost
) {
5343 * Calculate average fluctuation, we use this to prevent
5344 * noise from triggering an early break out of the loop:
5346 fluct
= abs(cost
- prev_cost
);
5347 avg_fluct
= (avg_fluct
+ fluct
)/2;
5349 if (migration_debug
)
5350 printk("-> [%d][%d][%7d] %3ld.%ld [%3ld.%ld] (%ld): (%8Ld %8Ld)\n",
5352 (long)cost
/ 1000000,
5353 ((long)cost
/ 100000) % 10,
5354 (long)max_cost
/ 1000000,
5355 ((long)max_cost
/ 100000) % 10,
5356 domain_distance(cpu1
, cpu2
),
5360 * If we iterated at least 20% past the previous maximum,
5361 * and the cost has dropped by more than 20% already,
5362 * (taking fluctuations into account) then we assume to
5363 * have found the maximum and break out of the loop early:
5365 if (size_found
&& (size
*100 > size_found
*SIZE_THRESH
))
5366 if (cost
+avg_fluct
<= 0 ||
5367 max_cost
*100 > (cost
+avg_fluct
)*COST_THRESH
) {
5369 if (migration_debug
)
5370 printk("-> found max.\n");
5374 * Increase the cachesize in 10% steps:
5376 size
= size
* 10 / 9;
5379 if (migration_debug
)
5380 printk("[%d][%d] working set size found: %d, cost: %Ld\n",
5381 cpu1
, cpu2
, size_found
, max_cost
);
5386 * A task is considered 'cache cold' if at least 2 times
5387 * the worst-case cost of migration has passed.
5389 * (this limit is only listened to if the load-balancing
5390 * situation is 'nice' - if there is a large imbalance we
5391 * ignore it for the sake of CPU utilization and
5392 * processing fairness.)
5394 return 2 * max_cost
* migration_factor
/ MIGRATION_FACTOR_SCALE
;
5397 static void calibrate_migration_costs(const cpumask_t
*cpu_map
)
5399 int cpu1
= -1, cpu2
= -1, cpu
, orig_cpu
= raw_smp_processor_id();
5400 unsigned long j0
, j1
, distance
, max_distance
= 0;
5401 struct sched_domain
*sd
;
5406 * First pass - calculate the cacheflush times:
5408 for_each_cpu_mask(cpu1
, *cpu_map
) {
5409 for_each_cpu_mask(cpu2
, *cpu_map
) {
5412 distance
= domain_distance(cpu1
, cpu2
);
5413 max_distance
= max(max_distance
, distance
);
5415 * No result cached yet?
5417 if (migration_cost
[distance
] == -1LL)
5418 migration_cost
[distance
] =
5419 measure_migration_cost(cpu1
, cpu2
);
5423 * Second pass - update the sched domain hierarchy with
5424 * the new cache-hot-time estimations:
5426 for_each_cpu_mask(cpu
, *cpu_map
) {
5428 for_each_domain(cpu
, sd
) {
5429 sd
->cache_hot_time
= migration_cost
[distance
];
5436 if (migration_debug
)
5437 printk("migration: max_cache_size: %d, cpu: %d MHz:\n",
5445 if (system_state
== SYSTEM_BOOTING
) {
5446 printk("migration_cost=");
5447 for (distance
= 0; distance
<= max_distance
; distance
++) {
5450 printk("%ld", (long)migration_cost
[distance
] / 1000);
5455 if (migration_debug
)
5456 printk("migration: %ld seconds\n", (j1
-j0
)/HZ
);
5459 * Move back to the original CPU. NUMA-Q gets confused
5460 * if we migrate to another quad during bootup.
5462 if (raw_smp_processor_id() != orig_cpu
) {
5463 cpumask_t mask
= cpumask_of_cpu(orig_cpu
),
5464 saved_mask
= current
->cpus_allowed
;
5466 set_cpus_allowed(current
, mask
);
5467 set_cpus_allowed(current
, saved_mask
);
5474 * find_next_best_node - find the next node to include in a sched_domain
5475 * @node: node whose sched_domain we're building
5476 * @used_nodes: nodes already in the sched_domain
5478 * Find the next node to include in a given scheduling domain. Simply
5479 * finds the closest node not already in the @used_nodes map.
5481 * Should use nodemask_t.
5483 static int find_next_best_node(int node
, unsigned long *used_nodes
)
5485 int i
, n
, val
, min_val
, best_node
= 0;
5489 for (i
= 0; i
< MAX_NUMNODES
; i
++) {
5490 /* Start at @node */
5491 n
= (node
+ i
) % MAX_NUMNODES
;
5493 if (!nr_cpus_node(n
))
5496 /* Skip already used nodes */
5497 if (test_bit(n
, used_nodes
))
5500 /* Simple min distance search */
5501 val
= node_distance(node
, n
);
5503 if (val
< min_val
) {
5509 set_bit(best_node
, used_nodes
);
5514 * sched_domain_node_span - get a cpumask for a node's sched_domain
5515 * @node: node whose cpumask we're constructing
5516 * @size: number of nodes to include in this span
5518 * Given a node, construct a good cpumask for its sched_domain to span. It
5519 * should be one that prevents unnecessary balancing, but also spreads tasks
5522 static cpumask_t
sched_domain_node_span(int node
)
5525 cpumask_t span
, nodemask
;
5526 DECLARE_BITMAP(used_nodes
, MAX_NUMNODES
);
5529 bitmap_zero(used_nodes
, MAX_NUMNODES
);
5531 nodemask
= node_to_cpumask(node
);
5532 cpus_or(span
, span
, nodemask
);
5533 set_bit(node
, used_nodes
);
5535 for (i
= 1; i
< SD_NODES_PER_DOMAIN
; i
++) {
5536 int next_node
= find_next_best_node(node
, used_nodes
);
5537 nodemask
= node_to_cpumask(next_node
);
5538 cpus_or(span
, span
, nodemask
);
5546 * At the moment, CONFIG_SCHED_SMT is never defined, but leave it in so we
5547 * can switch it on easily if needed.
5549 #ifdef CONFIG_SCHED_SMT
5550 static DEFINE_PER_CPU(struct sched_domain
, cpu_domains
);
5551 static struct sched_group sched_group_cpus
[NR_CPUS
];
5552 static int cpu_to_cpu_group(int cpu
)
5558 #ifdef CONFIG_SCHED_MC
5559 static DEFINE_PER_CPU(struct sched_domain
, core_domains
);
5560 static struct sched_group sched_group_core
[NR_CPUS
];
5563 #if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
5564 static int cpu_to_core_group(int cpu
)
5566 return first_cpu(cpu_sibling_map
[cpu
]);
5568 #elif defined(CONFIG_SCHED_MC)
5569 static int cpu_to_core_group(int cpu
)
5575 static DEFINE_PER_CPU(struct sched_domain
, phys_domains
);
5576 static struct sched_group sched_group_phys
[NR_CPUS
];
5577 static int cpu_to_phys_group(int cpu
)
5579 #if defined(CONFIG_SCHED_MC)
5580 cpumask_t mask
= cpu_coregroup_map(cpu
);
5581 return first_cpu(mask
);
5582 #elif defined(CONFIG_SCHED_SMT)
5583 return first_cpu(cpu_sibling_map
[cpu
]);
5591 * The init_sched_build_groups can't handle what we want to do with node
5592 * groups, so roll our own. Now each node has its own list of groups which
5593 * gets dynamically allocated.
5595 static DEFINE_PER_CPU(struct sched_domain
, node_domains
);
5596 static struct sched_group
**sched_group_nodes_bycpu
[NR_CPUS
];
5598 static DEFINE_PER_CPU(struct sched_domain
, allnodes_domains
);
5599 static struct sched_group
*sched_group_allnodes_bycpu
[NR_CPUS
];
5601 static int cpu_to_allnodes_group(int cpu
)
5603 return cpu_to_node(cpu
);
5605 static void init_numa_sched_groups_power(struct sched_group
*group_head
)
5607 struct sched_group
*sg
= group_head
;
5613 for_each_cpu_mask(j
, sg
->cpumask
) {
5614 struct sched_domain
*sd
;
5616 sd
= &per_cpu(phys_domains
, j
);
5617 if (j
!= first_cpu(sd
->groups
->cpumask
)) {
5619 * Only add "power" once for each
5625 sg
->cpu_power
+= sd
->groups
->cpu_power
;
5628 if (sg
!= group_head
)
5634 * Build sched domains for a given set of cpus and attach the sched domains
5635 * to the individual cpus
5637 void build_sched_domains(const cpumask_t
*cpu_map
)
5641 struct sched_group
**sched_group_nodes
= NULL
;
5642 struct sched_group
*sched_group_allnodes
= NULL
;
5645 * Allocate the per-node list of sched groups
5647 sched_group_nodes
= kmalloc(sizeof(struct sched_group
*)*MAX_NUMNODES
,
5649 if (!sched_group_nodes
) {
5650 printk(KERN_WARNING
"Can not alloc sched group node list\n");
5653 sched_group_nodes_bycpu
[first_cpu(*cpu_map
)] = sched_group_nodes
;
5657 * Set up domains for cpus specified by the cpu_map.
5659 for_each_cpu_mask(i
, *cpu_map
) {
5661 struct sched_domain
*sd
= NULL
, *p
;
5662 cpumask_t nodemask
= node_to_cpumask(cpu_to_node(i
));
5664 cpus_and(nodemask
, nodemask
, *cpu_map
);
5667 if (cpus_weight(*cpu_map
)
5668 > SD_NODES_PER_DOMAIN
*cpus_weight(nodemask
)) {
5669 if (!sched_group_allnodes
) {
5670 sched_group_allnodes
5671 = kmalloc(sizeof(struct sched_group
)
5674 if (!sched_group_allnodes
) {
5676 "Can not alloc allnodes sched group\n");
5679 sched_group_allnodes_bycpu
[i
]
5680 = sched_group_allnodes
;
5682 sd
= &per_cpu(allnodes_domains
, i
);
5683 *sd
= SD_ALLNODES_INIT
;
5684 sd
->span
= *cpu_map
;
5685 group
= cpu_to_allnodes_group(i
);
5686 sd
->groups
= &sched_group_allnodes
[group
];
5691 sd
= &per_cpu(node_domains
, i
);
5693 sd
->span
= sched_domain_node_span(cpu_to_node(i
));
5695 cpus_and(sd
->span
, sd
->span
, *cpu_map
);
5699 sd
= &per_cpu(phys_domains
, i
);
5700 group
= cpu_to_phys_group(i
);
5702 sd
->span
= nodemask
;
5704 sd
->groups
= &sched_group_phys
[group
];
5706 #ifdef CONFIG_SCHED_MC
5708 sd
= &per_cpu(core_domains
, i
);
5709 group
= cpu_to_core_group(i
);
5711 sd
->span
= cpu_coregroup_map(i
);
5712 cpus_and(sd
->span
, sd
->span
, *cpu_map
);
5714 sd
->groups
= &sched_group_core
[group
];
5717 #ifdef CONFIG_SCHED_SMT
5719 sd
= &per_cpu(cpu_domains
, i
);
5720 group
= cpu_to_cpu_group(i
);
5721 *sd
= SD_SIBLING_INIT
;
5722 sd
->span
= cpu_sibling_map
[i
];
5723 cpus_and(sd
->span
, sd
->span
, *cpu_map
);
5725 sd
->groups
= &sched_group_cpus
[group
];
5729 #ifdef CONFIG_SCHED_SMT
5730 /* Set up CPU (sibling) groups */
5731 for_each_cpu_mask(i
, *cpu_map
) {
5732 cpumask_t this_sibling_map
= cpu_sibling_map
[i
];
5733 cpus_and(this_sibling_map
, this_sibling_map
, *cpu_map
);
5734 if (i
!= first_cpu(this_sibling_map
))
5737 init_sched_build_groups(sched_group_cpus
, this_sibling_map
,
5742 #ifdef CONFIG_SCHED_MC
5743 /* Set up multi-core groups */
5744 for_each_cpu_mask(i
, *cpu_map
) {
5745 cpumask_t this_core_map
= cpu_coregroup_map(i
);
5746 cpus_and(this_core_map
, this_core_map
, *cpu_map
);
5747 if (i
!= first_cpu(this_core_map
))
5749 init_sched_build_groups(sched_group_core
, this_core_map
,
5750 &cpu_to_core_group
);
5755 /* Set up physical groups */
5756 for (i
= 0; i
< MAX_NUMNODES
; i
++) {
5757 cpumask_t nodemask
= node_to_cpumask(i
);
5759 cpus_and(nodemask
, nodemask
, *cpu_map
);
5760 if (cpus_empty(nodemask
))
5763 init_sched_build_groups(sched_group_phys
, nodemask
,
5764 &cpu_to_phys_group
);
5768 /* Set up node groups */
5769 if (sched_group_allnodes
)
5770 init_sched_build_groups(sched_group_allnodes
, *cpu_map
,
5771 &cpu_to_allnodes_group
);
5773 for (i
= 0; i
< MAX_NUMNODES
; i
++) {
5774 /* Set up node groups */
5775 struct sched_group
*sg
, *prev
;
5776 cpumask_t nodemask
= node_to_cpumask(i
);
5777 cpumask_t domainspan
;
5778 cpumask_t covered
= CPU_MASK_NONE
;
5781 cpus_and(nodemask
, nodemask
, *cpu_map
);
5782 if (cpus_empty(nodemask
)) {
5783 sched_group_nodes
[i
] = NULL
;
5787 domainspan
= sched_domain_node_span(i
);
5788 cpus_and(domainspan
, domainspan
, *cpu_map
);
5790 sg
= kmalloc(sizeof(struct sched_group
), GFP_KERNEL
);
5791 sched_group_nodes
[i
] = sg
;
5792 for_each_cpu_mask(j
, nodemask
) {
5793 struct sched_domain
*sd
;
5794 sd
= &per_cpu(node_domains
, j
);
5796 if (sd
->groups
== NULL
) {
5797 /* Turn off balancing if we have no groups */
5803 "Can not alloc domain group for node %d\n", i
);
5807 sg
->cpumask
= nodemask
;
5808 cpus_or(covered
, covered
, nodemask
);
5811 for (j
= 0; j
< MAX_NUMNODES
; j
++) {
5812 cpumask_t tmp
, notcovered
;
5813 int n
= (i
+ j
) % MAX_NUMNODES
;
5815 cpus_complement(notcovered
, covered
);
5816 cpus_and(tmp
, notcovered
, *cpu_map
);
5817 cpus_and(tmp
, tmp
, domainspan
);
5818 if (cpus_empty(tmp
))
5821 nodemask
= node_to_cpumask(n
);
5822 cpus_and(tmp
, tmp
, nodemask
);
5823 if (cpus_empty(tmp
))
5826 sg
= kmalloc(sizeof(struct sched_group
), GFP_KERNEL
);
5829 "Can not alloc domain group for node %d\n", j
);
5834 cpus_or(covered
, covered
, tmp
);
5838 prev
->next
= sched_group_nodes
[i
];
5842 /* Calculate CPU power for physical packages and nodes */
5843 for_each_cpu_mask(i
, *cpu_map
) {
5845 struct sched_domain
*sd
;
5846 #ifdef CONFIG_SCHED_SMT
5847 sd
= &per_cpu(cpu_domains
, i
);
5848 power
= SCHED_LOAD_SCALE
;
5849 sd
->groups
->cpu_power
= power
;
5851 #ifdef CONFIG_SCHED_MC
5852 sd
= &per_cpu(core_domains
, i
);
5853 power
= SCHED_LOAD_SCALE
+ (cpus_weight(sd
->groups
->cpumask
)-1)
5854 * SCHED_LOAD_SCALE
/ 10;
5855 sd
->groups
->cpu_power
= power
;
5857 sd
= &per_cpu(phys_domains
, i
);
5860 * This has to be < 2 * SCHED_LOAD_SCALE
5861 * Lets keep it SCHED_LOAD_SCALE, so that
5862 * while calculating NUMA group's cpu_power
5864 * numa_group->cpu_power += phys_group->cpu_power;
5866 * See "only add power once for each physical pkg"
5869 sd
->groups
->cpu_power
= SCHED_LOAD_SCALE
;
5871 sd
= &per_cpu(phys_domains
, i
);
5872 power
= SCHED_LOAD_SCALE
+ SCHED_LOAD_SCALE
*
5873 (cpus_weight(sd
->groups
->cpumask
)-1) / 10;
5874 sd
->groups
->cpu_power
= power
;
5879 for (i
= 0; i
< MAX_NUMNODES
; i
++)
5880 init_numa_sched_groups_power(sched_group_nodes
[i
]);
5882 init_numa_sched_groups_power(sched_group_allnodes
);
5885 /* Attach the domains */
5886 for_each_cpu_mask(i
, *cpu_map
) {
5887 struct sched_domain
*sd
;
5888 #ifdef CONFIG_SCHED_SMT
5889 sd
= &per_cpu(cpu_domains
, i
);
5890 #elif defined(CONFIG_SCHED_MC)
5891 sd
= &per_cpu(core_domains
, i
);
5893 sd
= &per_cpu(phys_domains
, i
);
5895 cpu_attach_domain(sd
, i
);
5898 * Tune cache-hot values:
5900 calibrate_migration_costs(cpu_map
);
5903 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
5905 static void arch_init_sched_domains(const cpumask_t
*cpu_map
)
5907 cpumask_t cpu_default_map
;
5910 * Setup mask for cpus without special case scheduling requirements.
5911 * For now this just excludes isolated cpus, but could be used to
5912 * exclude other special cases in the future.
5914 cpus_andnot(cpu_default_map
, *cpu_map
, cpu_isolated_map
);
5916 build_sched_domains(&cpu_default_map
);
5919 static void arch_destroy_sched_domains(const cpumask_t
*cpu_map
)
5925 for_each_cpu_mask(cpu
, *cpu_map
) {
5926 struct sched_group
*sched_group_allnodes
5927 = sched_group_allnodes_bycpu
[cpu
];
5928 struct sched_group
**sched_group_nodes
5929 = sched_group_nodes_bycpu
[cpu
];
5931 if (sched_group_allnodes
) {
5932 kfree(sched_group_allnodes
);
5933 sched_group_allnodes_bycpu
[cpu
] = NULL
;
5936 if (!sched_group_nodes
)
5939 for (i
= 0; i
< MAX_NUMNODES
; i
++) {
5940 cpumask_t nodemask
= node_to_cpumask(i
);
5941 struct sched_group
*oldsg
, *sg
= sched_group_nodes
[i
];
5943 cpus_and(nodemask
, nodemask
, *cpu_map
);
5944 if (cpus_empty(nodemask
))
5954 if (oldsg
!= sched_group_nodes
[i
])
5957 kfree(sched_group_nodes
);
5958 sched_group_nodes_bycpu
[cpu
] = NULL
;
5964 * Detach sched domains from a group of cpus specified in cpu_map
5965 * These cpus will now be attached to the NULL domain
5967 static void detach_destroy_domains(const cpumask_t
*cpu_map
)
5971 for_each_cpu_mask(i
, *cpu_map
)
5972 cpu_attach_domain(NULL
, i
);
5973 synchronize_sched();
5974 arch_destroy_sched_domains(cpu_map
);
5978 * Partition sched domains as specified by the cpumasks below.
5979 * This attaches all cpus from the cpumasks to the NULL domain,
5980 * waits for a RCU quiescent period, recalculates sched
5981 * domain information and then attaches them back to the
5982 * correct sched domains
5983 * Call with hotplug lock held
5985 void partition_sched_domains(cpumask_t
*partition1
, cpumask_t
*partition2
)
5987 cpumask_t change_map
;
5989 cpus_and(*partition1
, *partition1
, cpu_online_map
);
5990 cpus_and(*partition2
, *partition2
, cpu_online_map
);
5991 cpus_or(change_map
, *partition1
, *partition2
);
5993 /* Detach sched domains from all of the affected cpus */
5994 detach_destroy_domains(&change_map
);
5995 if (!cpus_empty(*partition1
))
5996 build_sched_domains(partition1
);
5997 if (!cpus_empty(*partition2
))
5998 build_sched_domains(partition2
);
6001 #ifdef CONFIG_HOTPLUG_CPU
6003 * Force a reinitialization of the sched domains hierarchy. The domains
6004 * and groups cannot be updated in place without racing with the balancing
6005 * code, so we temporarily attach all running cpus to the NULL domain
6006 * which will prevent rebalancing while the sched domains are recalculated.
6008 static int update_sched_domains(struct notifier_block
*nfb
,
6009 unsigned long action
, void *hcpu
)
6012 case CPU_UP_PREPARE
:
6013 case CPU_DOWN_PREPARE
:
6014 detach_destroy_domains(&cpu_online_map
);
6017 case CPU_UP_CANCELED
:
6018 case CPU_DOWN_FAILED
:
6022 * Fall through and re-initialise the domains.
6029 /* The hotplug lock is already held by cpu_up/cpu_down */
6030 arch_init_sched_domains(&cpu_online_map
);
6036 void __init
sched_init_smp(void)
6039 arch_init_sched_domains(&cpu_online_map
);
6040 unlock_cpu_hotplug();
6041 /* XXX: Theoretical race here - CPU may be hotplugged now */
6042 hotcpu_notifier(update_sched_domains
, 0);
6045 void __init
sched_init_smp(void)
6048 #endif /* CONFIG_SMP */
6050 int in_sched_functions(unsigned long addr
)
6052 /* Linker adds these: start and end of __sched functions */
6053 extern char __sched_text_start
[], __sched_text_end
[];
6054 return in_lock_functions(addr
) ||
6055 (addr
>= (unsigned long)__sched_text_start
6056 && addr
< (unsigned long)__sched_text_end
);
6059 void __init
sched_init(void)
6064 for_each_possible_cpu(i
) {
6065 prio_array_t
*array
;
6068 spin_lock_init(&rq
->lock
);
6070 rq
->active
= rq
->arrays
;
6071 rq
->expired
= rq
->arrays
+ 1;
6072 rq
->best_expired_prio
= MAX_PRIO
;
6076 for (j
= 1; j
< 3; j
++)
6077 rq
->cpu_load
[j
] = 0;
6078 rq
->active_balance
= 0;
6080 rq
->migration_thread
= NULL
;
6081 INIT_LIST_HEAD(&rq
->migration_queue
);
6083 atomic_set(&rq
->nr_iowait
, 0);
6085 for (j
= 0; j
< 2; j
++) {
6086 array
= rq
->arrays
+ j
;
6087 for (k
= 0; k
< MAX_PRIO
; k
++) {
6088 INIT_LIST_HEAD(array
->queue
+ k
);
6089 __clear_bit(k
, array
->bitmap
);
6091 // delimiter for bitsearch
6092 __set_bit(MAX_PRIO
, array
->bitmap
);
6097 * The boot idle thread does lazy MMU switching as well:
6099 atomic_inc(&init_mm
.mm_count
);
6100 enter_lazy_tlb(&init_mm
, current
);
6103 * Make us the idle thread. Technically, schedule() should not be
6104 * called from this thread, however somewhere below it might be,
6105 * but because we are the idle thread, we just pick up running again
6106 * when this runqueue becomes "idle".
6108 init_idle(current
, smp_processor_id());
6111 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
6112 void __might_sleep(char *file
, int line
)
6114 #if defined(in_atomic)
6115 static unsigned long prev_jiffy
; /* ratelimiting */
6117 if ((in_atomic() || irqs_disabled()) &&
6118 system_state
== SYSTEM_RUNNING
&& !oops_in_progress
) {
6119 if (time_before(jiffies
, prev_jiffy
+ HZ
) && prev_jiffy
)
6121 prev_jiffy
= jiffies
;
6122 printk(KERN_ERR
"BUG: sleeping function called from invalid"
6123 " context at %s:%d\n", file
, line
);
6124 printk("in_atomic():%d, irqs_disabled():%d\n",
6125 in_atomic(), irqs_disabled());
6130 EXPORT_SYMBOL(__might_sleep
);
6133 #ifdef CONFIG_MAGIC_SYSRQ
6134 void normalize_rt_tasks(void)
6136 struct task_struct
*p
;
6137 prio_array_t
*array
;
6138 unsigned long flags
;
6141 read_lock_irq(&tasklist_lock
);
6142 for_each_process(p
) {
6146 rq
= task_rq_lock(p
, &flags
);
6150 deactivate_task(p
, task_rq(p
));
6151 __setscheduler(p
, SCHED_NORMAL
, 0);
6153 __activate_task(p
, task_rq(p
));
6154 resched_task(rq
->curr
);
6157 task_rq_unlock(rq
, &flags
);
6159 read_unlock_irq(&tasklist_lock
);
6162 #endif /* CONFIG_MAGIC_SYSRQ */
6166 * These functions are only useful for the IA64 MCA handling.
6168 * They can only be called when the whole system has been
6169 * stopped - every CPU needs to be quiescent, and no scheduling
6170 * activity can take place. Using them for anything else would
6171 * be a serious bug, and as a result, they aren't even visible
6172 * under any other configuration.
6176 * curr_task - return the current task for a given cpu.
6177 * @cpu: the processor in question.
6179 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6181 task_t
*curr_task(int cpu
)
6183 return cpu_curr(cpu
);
6187 * set_curr_task - set the current task for a given cpu.
6188 * @cpu: the processor in question.
6189 * @p: the task pointer to set.
6191 * Description: This function must only be used when non-maskable interrupts
6192 * are serviced on a separate stack. It allows the architecture to switch the
6193 * notion of the current task on a cpu in a non-blocking manner. This function
6194 * must be called with all CPU's synchronized, and interrupts disabled, the
6195 * and caller must save the original value of the current task (see
6196 * curr_task() above) and restore that value before reenabling interrupts and
6197 * re-starting the system.
6199 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6201 void set_curr_task(int cpu
, task_t
*p
)