init/do_mounts_md.c: remove duplicated #include
[linux-2.6/mini2440.git] / mm / hugetlb.c
blob421aee99b84a4da8120de8eaf1d9518fa57199c9
1 /*
2 * Generic hugetlb support.
3 * (C) William Irwin, April 2004
4 */
5 #include <linux/gfp.h>
6 #include <linux/list.h>
7 #include <linux/init.h>
8 #include <linux/module.h>
9 #include <linux/mm.h>
10 #include <linux/seq_file.h>
11 #include <linux/sysctl.h>
12 #include <linux/highmem.h>
13 #include <linux/mmu_notifier.h>
14 #include <linux/nodemask.h>
15 #include <linux/pagemap.h>
16 #include <linux/mempolicy.h>
17 #include <linux/cpuset.h>
18 #include <linux/mutex.h>
19 #include <linux/bootmem.h>
20 #include <linux/sysfs.h>
22 #include <asm/page.h>
23 #include <asm/pgtable.h>
24 #include <asm/io.h>
26 #include <linux/hugetlb.h>
27 #include "internal.h"
29 const unsigned long hugetlb_zero = 0, hugetlb_infinity = ~0UL;
30 static gfp_t htlb_alloc_mask = GFP_HIGHUSER;
31 unsigned long hugepages_treat_as_movable;
33 static int max_hstate;
34 unsigned int default_hstate_idx;
35 struct hstate hstates[HUGE_MAX_HSTATE];
37 __initdata LIST_HEAD(huge_boot_pages);
39 /* for command line parsing */
40 static struct hstate * __initdata parsed_hstate;
41 static unsigned long __initdata default_hstate_max_huge_pages;
42 static unsigned long __initdata default_hstate_size;
44 #define for_each_hstate(h) \
45 for ((h) = hstates; (h) < &hstates[max_hstate]; (h)++)
48 * Protects updates to hugepage_freelists, nr_huge_pages, and free_huge_pages
50 static DEFINE_SPINLOCK(hugetlb_lock);
53 * Region tracking -- allows tracking of reservations and instantiated pages
54 * across the pages in a mapping.
56 * The region data structures are protected by a combination of the mmap_sem
57 * and the hugetlb_instantion_mutex. To access or modify a region the caller
58 * must either hold the mmap_sem for write, or the mmap_sem for read and
59 * the hugetlb_instantiation mutex:
61 * down_write(&mm->mmap_sem);
62 * or
63 * down_read(&mm->mmap_sem);
64 * mutex_lock(&hugetlb_instantiation_mutex);
66 struct file_region {
67 struct list_head link;
68 long from;
69 long to;
72 static long region_add(struct list_head *head, long f, long t)
74 struct file_region *rg, *nrg, *trg;
76 /* Locate the region we are either in or before. */
77 list_for_each_entry(rg, head, link)
78 if (f <= rg->to)
79 break;
81 /* Round our left edge to the current segment if it encloses us. */
82 if (f > rg->from)
83 f = rg->from;
85 /* Check for and consume any regions we now overlap with. */
86 nrg = rg;
87 list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
88 if (&rg->link == head)
89 break;
90 if (rg->from > t)
91 break;
93 /* If this area reaches higher then extend our area to
94 * include it completely. If this is not the first area
95 * which we intend to reuse, free it. */
96 if (rg->to > t)
97 t = rg->to;
98 if (rg != nrg) {
99 list_del(&rg->link);
100 kfree(rg);
103 nrg->from = f;
104 nrg->to = t;
105 return 0;
108 static long region_chg(struct list_head *head, long f, long t)
110 struct file_region *rg, *nrg;
111 long chg = 0;
113 /* Locate the region we are before or in. */
114 list_for_each_entry(rg, head, link)
115 if (f <= rg->to)
116 break;
118 /* If we are below the current region then a new region is required.
119 * Subtle, allocate a new region at the position but make it zero
120 * size such that we can guarantee to record the reservation. */
121 if (&rg->link == head || t < rg->from) {
122 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
123 if (!nrg)
124 return -ENOMEM;
125 nrg->from = f;
126 nrg->to = f;
127 INIT_LIST_HEAD(&nrg->link);
128 list_add(&nrg->link, rg->link.prev);
130 return t - f;
133 /* Round our left edge to the current segment if it encloses us. */
134 if (f > rg->from)
135 f = rg->from;
136 chg = t - f;
138 /* Check for and consume any regions we now overlap with. */
139 list_for_each_entry(rg, rg->link.prev, link) {
140 if (&rg->link == head)
141 break;
142 if (rg->from > t)
143 return chg;
145 /* We overlap with this area, if it extends futher than
146 * us then we must extend ourselves. Account for its
147 * existing reservation. */
148 if (rg->to > t) {
149 chg += rg->to - t;
150 t = rg->to;
152 chg -= rg->to - rg->from;
154 return chg;
157 static long region_truncate(struct list_head *head, long end)
159 struct file_region *rg, *trg;
160 long chg = 0;
162 /* Locate the region we are either in or before. */
163 list_for_each_entry(rg, head, link)
164 if (end <= rg->to)
165 break;
166 if (&rg->link == head)
167 return 0;
169 /* If we are in the middle of a region then adjust it. */
170 if (end > rg->from) {
171 chg = rg->to - end;
172 rg->to = end;
173 rg = list_entry(rg->link.next, typeof(*rg), link);
176 /* Drop any remaining regions. */
177 list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
178 if (&rg->link == head)
179 break;
180 chg += rg->to - rg->from;
181 list_del(&rg->link);
182 kfree(rg);
184 return chg;
187 static long region_count(struct list_head *head, long f, long t)
189 struct file_region *rg;
190 long chg = 0;
192 /* Locate each segment we overlap with, and count that overlap. */
193 list_for_each_entry(rg, head, link) {
194 int seg_from;
195 int seg_to;
197 if (rg->to <= f)
198 continue;
199 if (rg->from >= t)
200 break;
202 seg_from = max(rg->from, f);
203 seg_to = min(rg->to, t);
205 chg += seg_to - seg_from;
208 return chg;
212 * Convert the address within this vma to the page offset within
213 * the mapping, in pagecache page units; huge pages here.
215 static pgoff_t vma_hugecache_offset(struct hstate *h,
216 struct vm_area_struct *vma, unsigned long address)
218 return ((address - vma->vm_start) >> huge_page_shift(h)) +
219 (vma->vm_pgoff >> huge_page_order(h));
223 * Flags for MAP_PRIVATE reservations. These are stored in the bottom
224 * bits of the reservation map pointer, which are always clear due to
225 * alignment.
227 #define HPAGE_RESV_OWNER (1UL << 0)
228 #define HPAGE_RESV_UNMAPPED (1UL << 1)
229 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
232 * These helpers are used to track how many pages are reserved for
233 * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
234 * is guaranteed to have their future faults succeed.
236 * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
237 * the reserve counters are updated with the hugetlb_lock held. It is safe
238 * to reset the VMA at fork() time as it is not in use yet and there is no
239 * chance of the global counters getting corrupted as a result of the values.
241 * The private mapping reservation is represented in a subtly different
242 * manner to a shared mapping. A shared mapping has a region map associated
243 * with the underlying file, this region map represents the backing file
244 * pages which have ever had a reservation assigned which this persists even
245 * after the page is instantiated. A private mapping has a region map
246 * associated with the original mmap which is attached to all VMAs which
247 * reference it, this region map represents those offsets which have consumed
248 * reservation ie. where pages have been instantiated.
250 static unsigned long get_vma_private_data(struct vm_area_struct *vma)
252 return (unsigned long)vma->vm_private_data;
255 static void set_vma_private_data(struct vm_area_struct *vma,
256 unsigned long value)
258 vma->vm_private_data = (void *)value;
261 struct resv_map {
262 struct kref refs;
263 struct list_head regions;
266 static struct resv_map *resv_map_alloc(void)
268 struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
269 if (!resv_map)
270 return NULL;
272 kref_init(&resv_map->refs);
273 INIT_LIST_HEAD(&resv_map->regions);
275 return resv_map;
278 static void resv_map_release(struct kref *ref)
280 struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
282 /* Clear out any active regions before we release the map. */
283 region_truncate(&resv_map->regions, 0);
284 kfree(resv_map);
287 static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
289 VM_BUG_ON(!is_vm_hugetlb_page(vma));
290 if (!(vma->vm_flags & VM_SHARED))
291 return (struct resv_map *)(get_vma_private_data(vma) &
292 ~HPAGE_RESV_MASK);
293 return NULL;
296 static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
298 VM_BUG_ON(!is_vm_hugetlb_page(vma));
299 VM_BUG_ON(vma->vm_flags & VM_SHARED);
301 set_vma_private_data(vma, (get_vma_private_data(vma) &
302 HPAGE_RESV_MASK) | (unsigned long)map);
305 static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
307 VM_BUG_ON(!is_vm_hugetlb_page(vma));
308 VM_BUG_ON(vma->vm_flags & VM_SHARED);
310 set_vma_private_data(vma, get_vma_private_data(vma) | flags);
313 static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
315 VM_BUG_ON(!is_vm_hugetlb_page(vma));
317 return (get_vma_private_data(vma) & flag) != 0;
320 /* Decrement the reserved pages in the hugepage pool by one */
321 static void decrement_hugepage_resv_vma(struct hstate *h,
322 struct vm_area_struct *vma)
324 if (vma->vm_flags & VM_NORESERVE)
325 return;
327 if (vma->vm_flags & VM_SHARED) {
328 /* Shared mappings always use reserves */
329 h->resv_huge_pages--;
330 } else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
332 * Only the process that called mmap() has reserves for
333 * private mappings.
335 h->resv_huge_pages--;
339 /* Reset counters to 0 and clear all HPAGE_RESV_* flags */
340 void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
342 VM_BUG_ON(!is_vm_hugetlb_page(vma));
343 if (!(vma->vm_flags & VM_SHARED))
344 vma->vm_private_data = (void *)0;
347 /* Returns true if the VMA has associated reserve pages */
348 static int vma_has_reserves(struct vm_area_struct *vma)
350 if (vma->vm_flags & VM_SHARED)
351 return 1;
352 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER))
353 return 1;
354 return 0;
357 static void clear_huge_page(struct page *page,
358 unsigned long addr, unsigned long sz)
360 int i;
362 might_sleep();
363 for (i = 0; i < sz/PAGE_SIZE; i++) {
364 cond_resched();
365 clear_user_highpage(page + i, addr + i * PAGE_SIZE);
369 static void copy_huge_page(struct page *dst, struct page *src,
370 unsigned long addr, struct vm_area_struct *vma)
372 int i;
373 struct hstate *h = hstate_vma(vma);
375 might_sleep();
376 for (i = 0; i < pages_per_huge_page(h); i++) {
377 cond_resched();
378 copy_user_highpage(dst + i, src + i, addr + i*PAGE_SIZE, vma);
382 static void enqueue_huge_page(struct hstate *h, struct page *page)
384 int nid = page_to_nid(page);
385 list_add(&page->lru, &h->hugepage_freelists[nid]);
386 h->free_huge_pages++;
387 h->free_huge_pages_node[nid]++;
390 static struct page *dequeue_huge_page(struct hstate *h)
392 int nid;
393 struct page *page = NULL;
395 for (nid = 0; nid < MAX_NUMNODES; ++nid) {
396 if (!list_empty(&h->hugepage_freelists[nid])) {
397 page = list_entry(h->hugepage_freelists[nid].next,
398 struct page, lru);
399 list_del(&page->lru);
400 h->free_huge_pages--;
401 h->free_huge_pages_node[nid]--;
402 break;
405 return page;
408 static struct page *dequeue_huge_page_vma(struct hstate *h,
409 struct vm_area_struct *vma,
410 unsigned long address, int avoid_reserve)
412 int nid;
413 struct page *page = NULL;
414 struct mempolicy *mpol;
415 nodemask_t *nodemask;
416 struct zonelist *zonelist = huge_zonelist(vma, address,
417 htlb_alloc_mask, &mpol, &nodemask);
418 struct zone *zone;
419 struct zoneref *z;
422 * A child process with MAP_PRIVATE mappings created by their parent
423 * have no page reserves. This check ensures that reservations are
424 * not "stolen". The child may still get SIGKILLed
426 if (!vma_has_reserves(vma) &&
427 h->free_huge_pages - h->resv_huge_pages == 0)
428 return NULL;
430 /* If reserves cannot be used, ensure enough pages are in the pool */
431 if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
432 return NULL;
434 for_each_zone_zonelist_nodemask(zone, z, zonelist,
435 MAX_NR_ZONES - 1, nodemask) {
436 nid = zone_to_nid(zone);
437 if (cpuset_zone_allowed_softwall(zone, htlb_alloc_mask) &&
438 !list_empty(&h->hugepage_freelists[nid])) {
439 page = list_entry(h->hugepage_freelists[nid].next,
440 struct page, lru);
441 list_del(&page->lru);
442 h->free_huge_pages--;
443 h->free_huge_pages_node[nid]--;
445 if (!avoid_reserve)
446 decrement_hugepage_resv_vma(h, vma);
448 break;
451 mpol_cond_put(mpol);
452 return page;
455 static void update_and_free_page(struct hstate *h, struct page *page)
457 int i;
459 h->nr_huge_pages--;
460 h->nr_huge_pages_node[page_to_nid(page)]--;
461 for (i = 0; i < pages_per_huge_page(h); i++) {
462 page[i].flags &= ~(1 << PG_locked | 1 << PG_error | 1 << PG_referenced |
463 1 << PG_dirty | 1 << PG_active | 1 << PG_reserved |
464 1 << PG_private | 1<< PG_writeback);
466 set_compound_page_dtor(page, NULL);
467 set_page_refcounted(page);
468 arch_release_hugepage(page);
469 __free_pages(page, huge_page_order(h));
472 struct hstate *size_to_hstate(unsigned long size)
474 struct hstate *h;
476 for_each_hstate(h) {
477 if (huge_page_size(h) == size)
478 return h;
480 return NULL;
483 static void free_huge_page(struct page *page)
486 * Can't pass hstate in here because it is called from the
487 * compound page destructor.
489 struct hstate *h = page_hstate(page);
490 int nid = page_to_nid(page);
491 struct address_space *mapping;
493 mapping = (struct address_space *) page_private(page);
494 set_page_private(page, 0);
495 BUG_ON(page_count(page));
496 INIT_LIST_HEAD(&page->lru);
498 spin_lock(&hugetlb_lock);
499 if (h->surplus_huge_pages_node[nid] && huge_page_order(h) < MAX_ORDER) {
500 update_and_free_page(h, page);
501 h->surplus_huge_pages--;
502 h->surplus_huge_pages_node[nid]--;
503 } else {
504 enqueue_huge_page(h, page);
506 spin_unlock(&hugetlb_lock);
507 if (mapping)
508 hugetlb_put_quota(mapping, 1);
512 * Increment or decrement surplus_huge_pages. Keep node-specific counters
513 * balanced by operating on them in a round-robin fashion.
514 * Returns 1 if an adjustment was made.
516 static int adjust_pool_surplus(struct hstate *h, int delta)
518 static int prev_nid;
519 int nid = prev_nid;
520 int ret = 0;
522 VM_BUG_ON(delta != -1 && delta != 1);
523 do {
524 nid = next_node(nid, node_online_map);
525 if (nid == MAX_NUMNODES)
526 nid = first_node(node_online_map);
528 /* To shrink on this node, there must be a surplus page */
529 if (delta < 0 && !h->surplus_huge_pages_node[nid])
530 continue;
531 /* Surplus cannot exceed the total number of pages */
532 if (delta > 0 && h->surplus_huge_pages_node[nid] >=
533 h->nr_huge_pages_node[nid])
534 continue;
536 h->surplus_huge_pages += delta;
537 h->surplus_huge_pages_node[nid] += delta;
538 ret = 1;
539 break;
540 } while (nid != prev_nid);
542 prev_nid = nid;
543 return ret;
546 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
548 set_compound_page_dtor(page, free_huge_page);
549 spin_lock(&hugetlb_lock);
550 h->nr_huge_pages++;
551 h->nr_huge_pages_node[nid]++;
552 spin_unlock(&hugetlb_lock);
553 put_page(page); /* free it into the hugepage allocator */
556 static struct page *alloc_fresh_huge_page_node(struct hstate *h, int nid)
558 struct page *page;
560 if (h->order >= MAX_ORDER)
561 return NULL;
563 page = alloc_pages_node(nid,
564 htlb_alloc_mask|__GFP_COMP|__GFP_THISNODE|
565 __GFP_REPEAT|__GFP_NOWARN,
566 huge_page_order(h));
567 if (page) {
568 if (arch_prepare_hugepage(page)) {
569 __free_pages(page, huge_page_order(h));
570 return NULL;
572 prep_new_huge_page(h, page, nid);
575 return page;
579 * Use a helper variable to find the next node and then
580 * copy it back to hugetlb_next_nid afterwards:
581 * otherwise there's a window in which a racer might
582 * pass invalid nid MAX_NUMNODES to alloc_pages_node.
583 * But we don't need to use a spin_lock here: it really
584 * doesn't matter if occasionally a racer chooses the
585 * same nid as we do. Move nid forward in the mask even
586 * if we just successfully allocated a hugepage so that
587 * the next caller gets hugepages on the next node.
589 static int hstate_next_node(struct hstate *h)
591 int next_nid;
592 next_nid = next_node(h->hugetlb_next_nid, node_online_map);
593 if (next_nid == MAX_NUMNODES)
594 next_nid = first_node(node_online_map);
595 h->hugetlb_next_nid = next_nid;
596 return next_nid;
599 static int alloc_fresh_huge_page(struct hstate *h)
601 struct page *page;
602 int start_nid;
603 int next_nid;
604 int ret = 0;
606 start_nid = h->hugetlb_next_nid;
608 do {
609 page = alloc_fresh_huge_page_node(h, h->hugetlb_next_nid);
610 if (page)
611 ret = 1;
612 next_nid = hstate_next_node(h);
613 } while (!page && h->hugetlb_next_nid != start_nid);
615 if (ret)
616 count_vm_event(HTLB_BUDDY_PGALLOC);
617 else
618 count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
620 return ret;
623 static struct page *alloc_buddy_huge_page(struct hstate *h,
624 struct vm_area_struct *vma, unsigned long address)
626 struct page *page;
627 unsigned int nid;
629 if (h->order >= MAX_ORDER)
630 return NULL;
633 * Assume we will successfully allocate the surplus page to
634 * prevent racing processes from causing the surplus to exceed
635 * overcommit
637 * This however introduces a different race, where a process B
638 * tries to grow the static hugepage pool while alloc_pages() is
639 * called by process A. B will only examine the per-node
640 * counters in determining if surplus huge pages can be
641 * converted to normal huge pages in adjust_pool_surplus(). A
642 * won't be able to increment the per-node counter, until the
643 * lock is dropped by B, but B doesn't drop hugetlb_lock until
644 * no more huge pages can be converted from surplus to normal
645 * state (and doesn't try to convert again). Thus, we have a
646 * case where a surplus huge page exists, the pool is grown, and
647 * the surplus huge page still exists after, even though it
648 * should just have been converted to a normal huge page. This
649 * does not leak memory, though, as the hugepage will be freed
650 * once it is out of use. It also does not allow the counters to
651 * go out of whack in adjust_pool_surplus() as we don't modify
652 * the node values until we've gotten the hugepage and only the
653 * per-node value is checked there.
655 spin_lock(&hugetlb_lock);
656 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
657 spin_unlock(&hugetlb_lock);
658 return NULL;
659 } else {
660 h->nr_huge_pages++;
661 h->surplus_huge_pages++;
663 spin_unlock(&hugetlb_lock);
665 page = alloc_pages(htlb_alloc_mask|__GFP_COMP|
666 __GFP_REPEAT|__GFP_NOWARN,
667 huge_page_order(h));
669 if (page && arch_prepare_hugepage(page)) {
670 __free_pages(page, huge_page_order(h));
671 return NULL;
674 spin_lock(&hugetlb_lock);
675 if (page) {
677 * This page is now managed by the hugetlb allocator and has
678 * no users -- drop the buddy allocator's reference.
680 put_page_testzero(page);
681 VM_BUG_ON(page_count(page));
682 nid = page_to_nid(page);
683 set_compound_page_dtor(page, free_huge_page);
685 * We incremented the global counters already
687 h->nr_huge_pages_node[nid]++;
688 h->surplus_huge_pages_node[nid]++;
689 __count_vm_event(HTLB_BUDDY_PGALLOC);
690 } else {
691 h->nr_huge_pages--;
692 h->surplus_huge_pages--;
693 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
695 spin_unlock(&hugetlb_lock);
697 return page;
701 * Increase the hugetlb pool such that it can accomodate a reservation
702 * of size 'delta'.
704 static int gather_surplus_pages(struct hstate *h, int delta)
706 struct list_head surplus_list;
707 struct page *page, *tmp;
708 int ret, i;
709 int needed, allocated;
711 needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
712 if (needed <= 0) {
713 h->resv_huge_pages += delta;
714 return 0;
717 allocated = 0;
718 INIT_LIST_HEAD(&surplus_list);
720 ret = -ENOMEM;
721 retry:
722 spin_unlock(&hugetlb_lock);
723 for (i = 0; i < needed; i++) {
724 page = alloc_buddy_huge_page(h, NULL, 0);
725 if (!page) {
727 * We were not able to allocate enough pages to
728 * satisfy the entire reservation so we free what
729 * we've allocated so far.
731 spin_lock(&hugetlb_lock);
732 needed = 0;
733 goto free;
736 list_add(&page->lru, &surplus_list);
738 allocated += needed;
741 * After retaking hugetlb_lock, we need to recalculate 'needed'
742 * because either resv_huge_pages or free_huge_pages may have changed.
744 spin_lock(&hugetlb_lock);
745 needed = (h->resv_huge_pages + delta) -
746 (h->free_huge_pages + allocated);
747 if (needed > 0)
748 goto retry;
751 * The surplus_list now contains _at_least_ the number of extra pages
752 * needed to accomodate the reservation. Add the appropriate number
753 * of pages to the hugetlb pool and free the extras back to the buddy
754 * allocator. Commit the entire reservation here to prevent another
755 * process from stealing the pages as they are added to the pool but
756 * before they are reserved.
758 needed += allocated;
759 h->resv_huge_pages += delta;
760 ret = 0;
761 free:
762 /* Free the needed pages to the hugetlb pool */
763 list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
764 if ((--needed) < 0)
765 break;
766 list_del(&page->lru);
767 enqueue_huge_page(h, page);
770 /* Free unnecessary surplus pages to the buddy allocator */
771 if (!list_empty(&surplus_list)) {
772 spin_unlock(&hugetlb_lock);
773 list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
774 list_del(&page->lru);
776 * The page has a reference count of zero already, so
777 * call free_huge_page directly instead of using
778 * put_page. This must be done with hugetlb_lock
779 * unlocked which is safe because free_huge_page takes
780 * hugetlb_lock before deciding how to free the page.
782 free_huge_page(page);
784 spin_lock(&hugetlb_lock);
787 return ret;
791 * When releasing a hugetlb pool reservation, any surplus pages that were
792 * allocated to satisfy the reservation must be explicitly freed if they were
793 * never used.
795 static void return_unused_surplus_pages(struct hstate *h,
796 unsigned long unused_resv_pages)
798 static int nid = -1;
799 struct page *page;
800 unsigned long nr_pages;
803 * We want to release as many surplus pages as possible, spread
804 * evenly across all nodes. Iterate across all nodes until we
805 * can no longer free unreserved surplus pages. This occurs when
806 * the nodes with surplus pages have no free pages.
808 unsigned long remaining_iterations = num_online_nodes();
810 /* Uncommit the reservation */
811 h->resv_huge_pages -= unused_resv_pages;
813 /* Cannot return gigantic pages currently */
814 if (h->order >= MAX_ORDER)
815 return;
817 nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
819 while (remaining_iterations-- && nr_pages) {
820 nid = next_node(nid, node_online_map);
821 if (nid == MAX_NUMNODES)
822 nid = first_node(node_online_map);
824 if (!h->surplus_huge_pages_node[nid])
825 continue;
827 if (!list_empty(&h->hugepage_freelists[nid])) {
828 page = list_entry(h->hugepage_freelists[nid].next,
829 struct page, lru);
830 list_del(&page->lru);
831 update_and_free_page(h, page);
832 h->free_huge_pages--;
833 h->free_huge_pages_node[nid]--;
834 h->surplus_huge_pages--;
835 h->surplus_huge_pages_node[nid]--;
836 nr_pages--;
837 remaining_iterations = num_online_nodes();
843 * Determine if the huge page at addr within the vma has an associated
844 * reservation. Where it does not we will need to logically increase
845 * reservation and actually increase quota before an allocation can occur.
846 * Where any new reservation would be required the reservation change is
847 * prepared, but not committed. Once the page has been quota'd allocated
848 * an instantiated the change should be committed via vma_commit_reservation.
849 * No action is required on failure.
851 static int vma_needs_reservation(struct hstate *h,
852 struct vm_area_struct *vma, unsigned long addr)
854 struct address_space *mapping = vma->vm_file->f_mapping;
855 struct inode *inode = mapping->host;
857 if (vma->vm_flags & VM_SHARED) {
858 pgoff_t idx = vma_hugecache_offset(h, vma, addr);
859 return region_chg(&inode->i_mapping->private_list,
860 idx, idx + 1);
862 } else if (!is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
863 return 1;
865 } else {
866 int err;
867 pgoff_t idx = vma_hugecache_offset(h, vma, addr);
868 struct resv_map *reservations = vma_resv_map(vma);
870 err = region_chg(&reservations->regions, idx, idx + 1);
871 if (err < 0)
872 return err;
873 return 0;
876 static void vma_commit_reservation(struct hstate *h,
877 struct vm_area_struct *vma, unsigned long addr)
879 struct address_space *mapping = vma->vm_file->f_mapping;
880 struct inode *inode = mapping->host;
882 if (vma->vm_flags & VM_SHARED) {
883 pgoff_t idx = vma_hugecache_offset(h, vma, addr);
884 region_add(&inode->i_mapping->private_list, idx, idx + 1);
886 } else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
887 pgoff_t idx = vma_hugecache_offset(h, vma, addr);
888 struct resv_map *reservations = vma_resv_map(vma);
890 /* Mark this page used in the map. */
891 region_add(&reservations->regions, idx, idx + 1);
895 static struct page *alloc_huge_page(struct vm_area_struct *vma,
896 unsigned long addr, int avoid_reserve)
898 struct hstate *h = hstate_vma(vma);
899 struct page *page;
900 struct address_space *mapping = vma->vm_file->f_mapping;
901 struct inode *inode = mapping->host;
902 unsigned int chg;
905 * Processes that did not create the mapping will have no reserves and
906 * will not have accounted against quota. Check that the quota can be
907 * made before satisfying the allocation
908 * MAP_NORESERVE mappings may also need pages and quota allocated
909 * if no reserve mapping overlaps.
911 chg = vma_needs_reservation(h, vma, addr);
912 if (chg < 0)
913 return ERR_PTR(chg);
914 if (chg)
915 if (hugetlb_get_quota(inode->i_mapping, chg))
916 return ERR_PTR(-ENOSPC);
918 spin_lock(&hugetlb_lock);
919 page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve);
920 spin_unlock(&hugetlb_lock);
922 if (!page) {
923 page = alloc_buddy_huge_page(h, vma, addr);
924 if (!page) {
925 hugetlb_put_quota(inode->i_mapping, chg);
926 return ERR_PTR(-VM_FAULT_OOM);
930 set_page_refcounted(page);
931 set_page_private(page, (unsigned long) mapping);
933 vma_commit_reservation(h, vma, addr);
935 return page;
938 __attribute__((weak)) int alloc_bootmem_huge_page(struct hstate *h)
940 struct huge_bootmem_page *m;
941 int nr_nodes = nodes_weight(node_online_map);
943 while (nr_nodes) {
944 void *addr;
946 addr = __alloc_bootmem_node_nopanic(
947 NODE_DATA(h->hugetlb_next_nid),
948 huge_page_size(h), huge_page_size(h), 0);
950 if (addr) {
952 * Use the beginning of the huge page to store the
953 * huge_bootmem_page struct (until gather_bootmem
954 * puts them into the mem_map).
956 m = addr;
957 if (m)
958 goto found;
960 hstate_next_node(h);
961 nr_nodes--;
963 return 0;
965 found:
966 BUG_ON((unsigned long)virt_to_phys(m) & (huge_page_size(h) - 1));
967 /* Put them into a private list first because mem_map is not up yet */
968 list_add(&m->list, &huge_boot_pages);
969 m->hstate = h;
970 return 1;
973 /* Put bootmem huge pages into the standard lists after mem_map is up */
974 static void __init gather_bootmem_prealloc(void)
976 struct huge_bootmem_page *m;
978 list_for_each_entry(m, &huge_boot_pages, list) {
979 struct page *page = virt_to_page(m);
980 struct hstate *h = m->hstate;
981 __ClearPageReserved(page);
982 WARN_ON(page_count(page) != 1);
983 prep_compound_page(page, h->order);
984 prep_new_huge_page(h, page, page_to_nid(page));
988 static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
990 unsigned long i;
992 for (i = 0; i < h->max_huge_pages; ++i) {
993 if (h->order >= MAX_ORDER) {
994 if (!alloc_bootmem_huge_page(h))
995 break;
996 } else if (!alloc_fresh_huge_page(h))
997 break;
999 h->max_huge_pages = i;
1002 static void __init hugetlb_init_hstates(void)
1004 struct hstate *h;
1006 for_each_hstate(h) {
1007 /* oversize hugepages were init'ed in early boot */
1008 if (h->order < MAX_ORDER)
1009 hugetlb_hstate_alloc_pages(h);
1013 static char * __init memfmt(char *buf, unsigned long n)
1015 if (n >= (1UL << 30))
1016 sprintf(buf, "%lu GB", n >> 30);
1017 else if (n >= (1UL << 20))
1018 sprintf(buf, "%lu MB", n >> 20);
1019 else
1020 sprintf(buf, "%lu KB", n >> 10);
1021 return buf;
1024 static void __init report_hugepages(void)
1026 struct hstate *h;
1028 for_each_hstate(h) {
1029 char buf[32];
1030 printk(KERN_INFO "HugeTLB registered %s page size, "
1031 "pre-allocated %ld pages\n",
1032 memfmt(buf, huge_page_size(h)),
1033 h->free_huge_pages);
1037 #ifdef CONFIG_HIGHMEM
1038 static void try_to_free_low(struct hstate *h, unsigned long count)
1040 int i;
1042 if (h->order >= MAX_ORDER)
1043 return;
1045 for (i = 0; i < MAX_NUMNODES; ++i) {
1046 struct page *page, *next;
1047 struct list_head *freel = &h->hugepage_freelists[i];
1048 list_for_each_entry_safe(page, next, freel, lru) {
1049 if (count >= h->nr_huge_pages)
1050 return;
1051 if (PageHighMem(page))
1052 continue;
1053 list_del(&page->lru);
1054 update_and_free_page(h, page);
1055 h->free_huge_pages--;
1056 h->free_huge_pages_node[page_to_nid(page)]--;
1060 #else
1061 static inline void try_to_free_low(struct hstate *h, unsigned long count)
1064 #endif
1066 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
1067 static unsigned long set_max_huge_pages(struct hstate *h, unsigned long count)
1069 unsigned long min_count, ret;
1071 if (h->order >= MAX_ORDER)
1072 return h->max_huge_pages;
1075 * Increase the pool size
1076 * First take pages out of surplus state. Then make up the
1077 * remaining difference by allocating fresh huge pages.
1079 * We might race with alloc_buddy_huge_page() here and be unable
1080 * to convert a surplus huge page to a normal huge page. That is
1081 * not critical, though, it just means the overall size of the
1082 * pool might be one hugepage larger than it needs to be, but
1083 * within all the constraints specified by the sysctls.
1085 spin_lock(&hugetlb_lock);
1086 while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
1087 if (!adjust_pool_surplus(h, -1))
1088 break;
1091 while (count > persistent_huge_pages(h)) {
1093 * If this allocation races such that we no longer need the
1094 * page, free_huge_page will handle it by freeing the page
1095 * and reducing the surplus.
1097 spin_unlock(&hugetlb_lock);
1098 ret = alloc_fresh_huge_page(h);
1099 spin_lock(&hugetlb_lock);
1100 if (!ret)
1101 goto out;
1106 * Decrease the pool size
1107 * First return free pages to the buddy allocator (being careful
1108 * to keep enough around to satisfy reservations). Then place
1109 * pages into surplus state as needed so the pool will shrink
1110 * to the desired size as pages become free.
1112 * By placing pages into the surplus state independent of the
1113 * overcommit value, we are allowing the surplus pool size to
1114 * exceed overcommit. There are few sane options here. Since
1115 * alloc_buddy_huge_page() is checking the global counter,
1116 * though, we'll note that we're not allowed to exceed surplus
1117 * and won't grow the pool anywhere else. Not until one of the
1118 * sysctls are changed, or the surplus pages go out of use.
1120 min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
1121 min_count = max(count, min_count);
1122 try_to_free_low(h, min_count);
1123 while (min_count < persistent_huge_pages(h)) {
1124 struct page *page = dequeue_huge_page(h);
1125 if (!page)
1126 break;
1127 update_and_free_page(h, page);
1129 while (count < persistent_huge_pages(h)) {
1130 if (!adjust_pool_surplus(h, 1))
1131 break;
1133 out:
1134 ret = persistent_huge_pages(h);
1135 spin_unlock(&hugetlb_lock);
1136 return ret;
1139 #define HSTATE_ATTR_RO(_name) \
1140 static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
1142 #define HSTATE_ATTR(_name) \
1143 static struct kobj_attribute _name##_attr = \
1144 __ATTR(_name, 0644, _name##_show, _name##_store)
1146 static struct kobject *hugepages_kobj;
1147 static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
1149 static struct hstate *kobj_to_hstate(struct kobject *kobj)
1151 int i;
1152 for (i = 0; i < HUGE_MAX_HSTATE; i++)
1153 if (hstate_kobjs[i] == kobj)
1154 return &hstates[i];
1155 BUG();
1156 return NULL;
1159 static ssize_t nr_hugepages_show(struct kobject *kobj,
1160 struct kobj_attribute *attr, char *buf)
1162 struct hstate *h = kobj_to_hstate(kobj);
1163 return sprintf(buf, "%lu\n", h->nr_huge_pages);
1165 static ssize_t nr_hugepages_store(struct kobject *kobj,
1166 struct kobj_attribute *attr, const char *buf, size_t count)
1168 int err;
1169 unsigned long input;
1170 struct hstate *h = kobj_to_hstate(kobj);
1172 err = strict_strtoul(buf, 10, &input);
1173 if (err)
1174 return 0;
1176 h->max_huge_pages = set_max_huge_pages(h, input);
1178 return count;
1180 HSTATE_ATTR(nr_hugepages);
1182 static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
1183 struct kobj_attribute *attr, char *buf)
1185 struct hstate *h = kobj_to_hstate(kobj);
1186 return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages);
1188 static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
1189 struct kobj_attribute *attr, const char *buf, size_t count)
1191 int err;
1192 unsigned long input;
1193 struct hstate *h = kobj_to_hstate(kobj);
1195 err = strict_strtoul(buf, 10, &input);
1196 if (err)
1197 return 0;
1199 spin_lock(&hugetlb_lock);
1200 h->nr_overcommit_huge_pages = input;
1201 spin_unlock(&hugetlb_lock);
1203 return count;
1205 HSTATE_ATTR(nr_overcommit_hugepages);
1207 static ssize_t free_hugepages_show(struct kobject *kobj,
1208 struct kobj_attribute *attr, char *buf)
1210 struct hstate *h = kobj_to_hstate(kobj);
1211 return sprintf(buf, "%lu\n", h->free_huge_pages);
1213 HSTATE_ATTR_RO(free_hugepages);
1215 static ssize_t resv_hugepages_show(struct kobject *kobj,
1216 struct kobj_attribute *attr, char *buf)
1218 struct hstate *h = kobj_to_hstate(kobj);
1219 return sprintf(buf, "%lu\n", h->resv_huge_pages);
1221 HSTATE_ATTR_RO(resv_hugepages);
1223 static ssize_t surplus_hugepages_show(struct kobject *kobj,
1224 struct kobj_attribute *attr, char *buf)
1226 struct hstate *h = kobj_to_hstate(kobj);
1227 return sprintf(buf, "%lu\n", h->surplus_huge_pages);
1229 HSTATE_ATTR_RO(surplus_hugepages);
1231 static struct attribute *hstate_attrs[] = {
1232 &nr_hugepages_attr.attr,
1233 &nr_overcommit_hugepages_attr.attr,
1234 &free_hugepages_attr.attr,
1235 &resv_hugepages_attr.attr,
1236 &surplus_hugepages_attr.attr,
1237 NULL,
1240 static struct attribute_group hstate_attr_group = {
1241 .attrs = hstate_attrs,
1244 static int __init hugetlb_sysfs_add_hstate(struct hstate *h)
1246 int retval;
1248 hstate_kobjs[h - hstates] = kobject_create_and_add(h->name,
1249 hugepages_kobj);
1250 if (!hstate_kobjs[h - hstates])
1251 return -ENOMEM;
1253 retval = sysfs_create_group(hstate_kobjs[h - hstates],
1254 &hstate_attr_group);
1255 if (retval)
1256 kobject_put(hstate_kobjs[h - hstates]);
1258 return retval;
1261 static void __init hugetlb_sysfs_init(void)
1263 struct hstate *h;
1264 int err;
1266 hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
1267 if (!hugepages_kobj)
1268 return;
1270 for_each_hstate(h) {
1271 err = hugetlb_sysfs_add_hstate(h);
1272 if (err)
1273 printk(KERN_ERR "Hugetlb: Unable to add hstate %s",
1274 h->name);
1278 static void __exit hugetlb_exit(void)
1280 struct hstate *h;
1282 for_each_hstate(h) {
1283 kobject_put(hstate_kobjs[h - hstates]);
1286 kobject_put(hugepages_kobj);
1288 module_exit(hugetlb_exit);
1290 static int __init hugetlb_init(void)
1292 /* Some platform decide whether they support huge pages at boot
1293 * time. On these, such as powerpc, HPAGE_SHIFT is set to 0 when
1294 * there is no such support
1296 if (HPAGE_SHIFT == 0)
1297 return 0;
1299 if (!size_to_hstate(default_hstate_size)) {
1300 default_hstate_size = HPAGE_SIZE;
1301 if (!size_to_hstate(default_hstate_size))
1302 hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
1304 default_hstate_idx = size_to_hstate(default_hstate_size) - hstates;
1305 if (default_hstate_max_huge_pages)
1306 default_hstate.max_huge_pages = default_hstate_max_huge_pages;
1308 hugetlb_init_hstates();
1310 gather_bootmem_prealloc();
1312 report_hugepages();
1314 hugetlb_sysfs_init();
1316 return 0;
1318 module_init(hugetlb_init);
1320 /* Should be called on processing a hugepagesz=... option */
1321 void __init hugetlb_add_hstate(unsigned order)
1323 struct hstate *h;
1324 unsigned long i;
1326 if (size_to_hstate(PAGE_SIZE << order)) {
1327 printk(KERN_WARNING "hugepagesz= specified twice, ignoring\n");
1328 return;
1330 BUG_ON(max_hstate >= HUGE_MAX_HSTATE);
1331 BUG_ON(order == 0);
1332 h = &hstates[max_hstate++];
1333 h->order = order;
1334 h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1);
1335 h->nr_huge_pages = 0;
1336 h->free_huge_pages = 0;
1337 for (i = 0; i < MAX_NUMNODES; ++i)
1338 INIT_LIST_HEAD(&h->hugepage_freelists[i]);
1339 h->hugetlb_next_nid = first_node(node_online_map);
1340 snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
1341 huge_page_size(h)/1024);
1343 parsed_hstate = h;
1346 static int __init hugetlb_nrpages_setup(char *s)
1348 unsigned long *mhp;
1349 static unsigned long *last_mhp;
1352 * !max_hstate means we haven't parsed a hugepagesz= parameter yet,
1353 * so this hugepages= parameter goes to the "default hstate".
1355 if (!max_hstate)
1356 mhp = &default_hstate_max_huge_pages;
1357 else
1358 mhp = &parsed_hstate->max_huge_pages;
1360 if (mhp == last_mhp) {
1361 printk(KERN_WARNING "hugepages= specified twice without "
1362 "interleaving hugepagesz=, ignoring\n");
1363 return 1;
1366 if (sscanf(s, "%lu", mhp) <= 0)
1367 *mhp = 0;
1370 * Global state is always initialized later in hugetlb_init.
1371 * But we need to allocate >= MAX_ORDER hstates here early to still
1372 * use the bootmem allocator.
1374 if (max_hstate && parsed_hstate->order >= MAX_ORDER)
1375 hugetlb_hstate_alloc_pages(parsed_hstate);
1377 last_mhp = mhp;
1379 return 1;
1381 __setup("hugepages=", hugetlb_nrpages_setup);
1383 static int __init hugetlb_default_setup(char *s)
1385 default_hstate_size = memparse(s, &s);
1386 return 1;
1388 __setup("default_hugepagesz=", hugetlb_default_setup);
1390 static unsigned int cpuset_mems_nr(unsigned int *array)
1392 int node;
1393 unsigned int nr = 0;
1395 for_each_node_mask(node, cpuset_current_mems_allowed)
1396 nr += array[node];
1398 return nr;
1401 #ifdef CONFIG_SYSCTL
1402 int hugetlb_sysctl_handler(struct ctl_table *table, int write,
1403 struct file *file, void __user *buffer,
1404 size_t *length, loff_t *ppos)
1406 struct hstate *h = &default_hstate;
1407 unsigned long tmp;
1409 if (!write)
1410 tmp = h->max_huge_pages;
1412 table->data = &tmp;
1413 table->maxlen = sizeof(unsigned long);
1414 proc_doulongvec_minmax(table, write, file, buffer, length, ppos);
1416 if (write)
1417 h->max_huge_pages = set_max_huge_pages(h, tmp);
1419 return 0;
1422 int hugetlb_treat_movable_handler(struct ctl_table *table, int write,
1423 struct file *file, void __user *buffer,
1424 size_t *length, loff_t *ppos)
1426 proc_dointvec(table, write, file, buffer, length, ppos);
1427 if (hugepages_treat_as_movable)
1428 htlb_alloc_mask = GFP_HIGHUSER_MOVABLE;
1429 else
1430 htlb_alloc_mask = GFP_HIGHUSER;
1431 return 0;
1434 int hugetlb_overcommit_handler(struct ctl_table *table, int write,
1435 struct file *file, void __user *buffer,
1436 size_t *length, loff_t *ppos)
1438 struct hstate *h = &default_hstate;
1439 unsigned long tmp;
1441 if (!write)
1442 tmp = h->nr_overcommit_huge_pages;
1444 table->data = &tmp;
1445 table->maxlen = sizeof(unsigned long);
1446 proc_doulongvec_minmax(table, write, file, buffer, length, ppos);
1448 if (write) {
1449 spin_lock(&hugetlb_lock);
1450 h->nr_overcommit_huge_pages = tmp;
1451 spin_unlock(&hugetlb_lock);
1454 return 0;
1457 #endif /* CONFIG_SYSCTL */
1459 void hugetlb_report_meminfo(struct seq_file *m)
1461 struct hstate *h = &default_hstate;
1462 seq_printf(m,
1463 "HugePages_Total: %5lu\n"
1464 "HugePages_Free: %5lu\n"
1465 "HugePages_Rsvd: %5lu\n"
1466 "HugePages_Surp: %5lu\n"
1467 "Hugepagesize: %8lu kB\n",
1468 h->nr_huge_pages,
1469 h->free_huge_pages,
1470 h->resv_huge_pages,
1471 h->surplus_huge_pages,
1472 1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
1475 int hugetlb_report_node_meminfo(int nid, char *buf)
1477 struct hstate *h = &default_hstate;
1478 return sprintf(buf,
1479 "Node %d HugePages_Total: %5u\n"
1480 "Node %d HugePages_Free: %5u\n"
1481 "Node %d HugePages_Surp: %5u\n",
1482 nid, h->nr_huge_pages_node[nid],
1483 nid, h->free_huge_pages_node[nid],
1484 nid, h->surplus_huge_pages_node[nid]);
1487 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
1488 unsigned long hugetlb_total_pages(void)
1490 struct hstate *h = &default_hstate;
1491 return h->nr_huge_pages * pages_per_huge_page(h);
1494 static int hugetlb_acct_memory(struct hstate *h, long delta)
1496 int ret = -ENOMEM;
1498 spin_lock(&hugetlb_lock);
1500 * When cpuset is configured, it breaks the strict hugetlb page
1501 * reservation as the accounting is done on a global variable. Such
1502 * reservation is completely rubbish in the presence of cpuset because
1503 * the reservation is not checked against page availability for the
1504 * current cpuset. Application can still potentially OOM'ed by kernel
1505 * with lack of free htlb page in cpuset that the task is in.
1506 * Attempt to enforce strict accounting with cpuset is almost
1507 * impossible (or too ugly) because cpuset is too fluid that
1508 * task or memory node can be dynamically moved between cpusets.
1510 * The change of semantics for shared hugetlb mapping with cpuset is
1511 * undesirable. However, in order to preserve some of the semantics,
1512 * we fall back to check against current free page availability as
1513 * a best attempt and hopefully to minimize the impact of changing
1514 * semantics that cpuset has.
1516 if (delta > 0) {
1517 if (gather_surplus_pages(h, delta) < 0)
1518 goto out;
1520 if (delta > cpuset_mems_nr(h->free_huge_pages_node)) {
1521 return_unused_surplus_pages(h, delta);
1522 goto out;
1526 ret = 0;
1527 if (delta < 0)
1528 return_unused_surplus_pages(h, (unsigned long) -delta);
1530 out:
1531 spin_unlock(&hugetlb_lock);
1532 return ret;
1535 static void hugetlb_vm_op_open(struct vm_area_struct *vma)
1537 struct resv_map *reservations = vma_resv_map(vma);
1540 * This new VMA should share its siblings reservation map if present.
1541 * The VMA will only ever have a valid reservation map pointer where
1542 * it is being copied for another still existing VMA. As that VMA
1543 * has a reference to the reservation map it cannot dissappear until
1544 * after this open call completes. It is therefore safe to take a
1545 * new reference here without additional locking.
1547 if (reservations)
1548 kref_get(&reservations->refs);
1551 static void hugetlb_vm_op_close(struct vm_area_struct *vma)
1553 struct hstate *h = hstate_vma(vma);
1554 struct resv_map *reservations = vma_resv_map(vma);
1555 unsigned long reserve;
1556 unsigned long start;
1557 unsigned long end;
1559 if (reservations) {
1560 start = vma_hugecache_offset(h, vma, vma->vm_start);
1561 end = vma_hugecache_offset(h, vma, vma->vm_end);
1563 reserve = (end - start) -
1564 region_count(&reservations->regions, start, end);
1566 kref_put(&reservations->refs, resv_map_release);
1568 if (reserve) {
1569 hugetlb_acct_memory(h, -reserve);
1570 hugetlb_put_quota(vma->vm_file->f_mapping, reserve);
1576 * We cannot handle pagefaults against hugetlb pages at all. They cause
1577 * handle_mm_fault() to try to instantiate regular-sized pages in the
1578 * hugegpage VMA. do_page_fault() is supposed to trap this, so BUG is we get
1579 * this far.
1581 static int hugetlb_vm_op_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1583 BUG();
1584 return 0;
1587 struct vm_operations_struct hugetlb_vm_ops = {
1588 .fault = hugetlb_vm_op_fault,
1589 .open = hugetlb_vm_op_open,
1590 .close = hugetlb_vm_op_close,
1593 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
1594 int writable)
1596 pte_t entry;
1598 if (writable) {
1599 entry =
1600 pte_mkwrite(pte_mkdirty(mk_pte(page, vma->vm_page_prot)));
1601 } else {
1602 entry = huge_pte_wrprotect(mk_pte(page, vma->vm_page_prot));
1604 entry = pte_mkyoung(entry);
1605 entry = pte_mkhuge(entry);
1607 return entry;
1610 static void set_huge_ptep_writable(struct vm_area_struct *vma,
1611 unsigned long address, pte_t *ptep)
1613 pte_t entry;
1615 entry = pte_mkwrite(pte_mkdirty(huge_ptep_get(ptep)));
1616 if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1)) {
1617 update_mmu_cache(vma, address, entry);
1622 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
1623 struct vm_area_struct *vma)
1625 pte_t *src_pte, *dst_pte, entry;
1626 struct page *ptepage;
1627 unsigned long addr;
1628 int cow;
1629 struct hstate *h = hstate_vma(vma);
1630 unsigned long sz = huge_page_size(h);
1632 cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
1634 for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
1635 src_pte = huge_pte_offset(src, addr);
1636 if (!src_pte)
1637 continue;
1638 dst_pte = huge_pte_alloc(dst, addr, sz);
1639 if (!dst_pte)
1640 goto nomem;
1642 /* If the pagetables are shared don't copy or take references */
1643 if (dst_pte == src_pte)
1644 continue;
1646 spin_lock(&dst->page_table_lock);
1647 spin_lock_nested(&src->page_table_lock, SINGLE_DEPTH_NESTING);
1648 if (!huge_pte_none(huge_ptep_get(src_pte))) {
1649 if (cow)
1650 huge_ptep_set_wrprotect(src, addr, src_pte);
1651 entry = huge_ptep_get(src_pte);
1652 ptepage = pte_page(entry);
1653 get_page(ptepage);
1654 set_huge_pte_at(dst, addr, dst_pte, entry);
1656 spin_unlock(&src->page_table_lock);
1657 spin_unlock(&dst->page_table_lock);
1659 return 0;
1661 nomem:
1662 return -ENOMEM;
1665 void __unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
1666 unsigned long end, struct page *ref_page)
1668 struct mm_struct *mm = vma->vm_mm;
1669 unsigned long address;
1670 pte_t *ptep;
1671 pte_t pte;
1672 struct page *page;
1673 struct page *tmp;
1674 struct hstate *h = hstate_vma(vma);
1675 unsigned long sz = huge_page_size(h);
1678 * A page gathering list, protected by per file i_mmap_lock. The
1679 * lock is used to avoid list corruption from multiple unmapping
1680 * of the same page since we are using page->lru.
1682 LIST_HEAD(page_list);
1684 WARN_ON(!is_vm_hugetlb_page(vma));
1685 BUG_ON(start & ~huge_page_mask(h));
1686 BUG_ON(end & ~huge_page_mask(h));
1688 mmu_notifier_invalidate_range_start(mm, start, end);
1689 spin_lock(&mm->page_table_lock);
1690 for (address = start; address < end; address += sz) {
1691 ptep = huge_pte_offset(mm, address);
1692 if (!ptep)
1693 continue;
1695 if (huge_pmd_unshare(mm, &address, ptep))
1696 continue;
1699 * If a reference page is supplied, it is because a specific
1700 * page is being unmapped, not a range. Ensure the page we
1701 * are about to unmap is the actual page of interest.
1703 if (ref_page) {
1704 pte = huge_ptep_get(ptep);
1705 if (huge_pte_none(pte))
1706 continue;
1707 page = pte_page(pte);
1708 if (page != ref_page)
1709 continue;
1712 * Mark the VMA as having unmapped its page so that
1713 * future faults in this VMA will fail rather than
1714 * looking like data was lost
1716 set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
1719 pte = huge_ptep_get_and_clear(mm, address, ptep);
1720 if (huge_pte_none(pte))
1721 continue;
1723 page = pte_page(pte);
1724 if (pte_dirty(pte))
1725 set_page_dirty(page);
1726 list_add(&page->lru, &page_list);
1728 spin_unlock(&mm->page_table_lock);
1729 flush_tlb_range(vma, start, end);
1730 mmu_notifier_invalidate_range_end(mm, start, end);
1731 list_for_each_entry_safe(page, tmp, &page_list, lru) {
1732 list_del(&page->lru);
1733 put_page(page);
1737 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
1738 unsigned long end, struct page *ref_page)
1740 spin_lock(&vma->vm_file->f_mapping->i_mmap_lock);
1741 __unmap_hugepage_range(vma, start, end, ref_page);
1742 spin_unlock(&vma->vm_file->f_mapping->i_mmap_lock);
1746 * This is called when the original mapper is failing to COW a MAP_PRIVATE
1747 * mappping it owns the reserve page for. The intention is to unmap the page
1748 * from other VMAs and let the children be SIGKILLed if they are faulting the
1749 * same region.
1751 static int unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
1752 struct page *page, unsigned long address)
1754 struct vm_area_struct *iter_vma;
1755 struct address_space *mapping;
1756 struct prio_tree_iter iter;
1757 pgoff_t pgoff;
1760 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
1761 * from page cache lookup which is in HPAGE_SIZE units.
1763 address = address & huge_page_mask(hstate_vma(vma));
1764 pgoff = ((address - vma->vm_start) >> PAGE_SHIFT)
1765 + (vma->vm_pgoff >> PAGE_SHIFT);
1766 mapping = (struct address_space *)page_private(page);
1768 vma_prio_tree_foreach(iter_vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
1769 /* Do not unmap the current VMA */
1770 if (iter_vma == vma)
1771 continue;
1774 * Unmap the page from other VMAs without their own reserves.
1775 * They get marked to be SIGKILLed if they fault in these
1776 * areas. This is because a future no-page fault on this VMA
1777 * could insert a zeroed page instead of the data existing
1778 * from the time of fork. This would look like data corruption
1780 if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
1781 unmap_hugepage_range(iter_vma,
1782 address, address + HPAGE_SIZE,
1783 page);
1786 return 1;
1789 static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
1790 unsigned long address, pte_t *ptep, pte_t pte,
1791 struct page *pagecache_page)
1793 struct hstate *h = hstate_vma(vma);
1794 struct page *old_page, *new_page;
1795 int avoidcopy;
1796 int outside_reserve = 0;
1798 old_page = pte_page(pte);
1800 retry_avoidcopy:
1801 /* If no-one else is actually using this page, avoid the copy
1802 * and just make the page writable */
1803 avoidcopy = (page_count(old_page) == 1);
1804 if (avoidcopy) {
1805 set_huge_ptep_writable(vma, address, ptep);
1806 return 0;
1810 * If the process that created a MAP_PRIVATE mapping is about to
1811 * perform a COW due to a shared page count, attempt to satisfy
1812 * the allocation without using the existing reserves. The pagecache
1813 * page is used to determine if the reserve at this address was
1814 * consumed or not. If reserves were used, a partial faulted mapping
1815 * at the time of fork() could consume its reserves on COW instead
1816 * of the full address range.
1818 if (!(vma->vm_flags & VM_SHARED) &&
1819 is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
1820 old_page != pagecache_page)
1821 outside_reserve = 1;
1823 page_cache_get(old_page);
1824 new_page = alloc_huge_page(vma, address, outside_reserve);
1826 if (IS_ERR(new_page)) {
1827 page_cache_release(old_page);
1830 * If a process owning a MAP_PRIVATE mapping fails to COW,
1831 * it is due to references held by a child and an insufficient
1832 * huge page pool. To guarantee the original mappers
1833 * reliability, unmap the page from child processes. The child
1834 * may get SIGKILLed if it later faults.
1836 if (outside_reserve) {
1837 BUG_ON(huge_pte_none(pte));
1838 if (unmap_ref_private(mm, vma, old_page, address)) {
1839 BUG_ON(page_count(old_page) != 1);
1840 BUG_ON(huge_pte_none(pte));
1841 goto retry_avoidcopy;
1843 WARN_ON_ONCE(1);
1846 return -PTR_ERR(new_page);
1849 spin_unlock(&mm->page_table_lock);
1850 copy_huge_page(new_page, old_page, address, vma);
1851 __SetPageUptodate(new_page);
1852 spin_lock(&mm->page_table_lock);
1854 ptep = huge_pte_offset(mm, address & huge_page_mask(h));
1855 if (likely(pte_same(huge_ptep_get(ptep), pte))) {
1856 /* Break COW */
1857 huge_ptep_clear_flush(vma, address, ptep);
1858 set_huge_pte_at(mm, address, ptep,
1859 make_huge_pte(vma, new_page, 1));
1860 /* Make the old page be freed below */
1861 new_page = old_page;
1863 page_cache_release(new_page);
1864 page_cache_release(old_page);
1865 return 0;
1868 /* Return the pagecache page at a given address within a VMA */
1869 static struct page *hugetlbfs_pagecache_page(struct hstate *h,
1870 struct vm_area_struct *vma, unsigned long address)
1872 struct address_space *mapping;
1873 pgoff_t idx;
1875 mapping = vma->vm_file->f_mapping;
1876 idx = vma_hugecache_offset(h, vma, address);
1878 return find_lock_page(mapping, idx);
1881 static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
1882 unsigned long address, pte_t *ptep, int write_access)
1884 struct hstate *h = hstate_vma(vma);
1885 int ret = VM_FAULT_SIGBUS;
1886 pgoff_t idx;
1887 unsigned long size;
1888 struct page *page;
1889 struct address_space *mapping;
1890 pte_t new_pte;
1893 * Currently, we are forced to kill the process in the event the
1894 * original mapper has unmapped pages from the child due to a failed
1895 * COW. Warn that such a situation has occured as it may not be obvious
1897 if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
1898 printk(KERN_WARNING
1899 "PID %d killed due to inadequate hugepage pool\n",
1900 current->pid);
1901 return ret;
1904 mapping = vma->vm_file->f_mapping;
1905 idx = vma_hugecache_offset(h, vma, address);
1908 * Use page lock to guard against racing truncation
1909 * before we get page_table_lock.
1911 retry:
1912 page = find_lock_page(mapping, idx);
1913 if (!page) {
1914 size = i_size_read(mapping->host) >> huge_page_shift(h);
1915 if (idx >= size)
1916 goto out;
1917 page = alloc_huge_page(vma, address, 0);
1918 if (IS_ERR(page)) {
1919 ret = -PTR_ERR(page);
1920 goto out;
1922 clear_huge_page(page, address, huge_page_size(h));
1923 __SetPageUptodate(page);
1925 if (vma->vm_flags & VM_SHARED) {
1926 int err;
1927 struct inode *inode = mapping->host;
1929 err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
1930 if (err) {
1931 put_page(page);
1932 if (err == -EEXIST)
1933 goto retry;
1934 goto out;
1937 spin_lock(&inode->i_lock);
1938 inode->i_blocks += blocks_per_huge_page(h);
1939 spin_unlock(&inode->i_lock);
1940 } else
1941 lock_page(page);
1945 * If we are going to COW a private mapping later, we examine the
1946 * pending reservations for this page now. This will ensure that
1947 * any allocations necessary to record that reservation occur outside
1948 * the spinlock.
1950 if (write_access && !(vma->vm_flags & VM_SHARED))
1951 if (vma_needs_reservation(h, vma, address) < 0) {
1952 ret = VM_FAULT_OOM;
1953 goto backout_unlocked;
1956 spin_lock(&mm->page_table_lock);
1957 size = i_size_read(mapping->host) >> huge_page_shift(h);
1958 if (idx >= size)
1959 goto backout;
1961 ret = 0;
1962 if (!huge_pte_none(huge_ptep_get(ptep)))
1963 goto backout;
1965 new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
1966 && (vma->vm_flags & VM_SHARED)));
1967 set_huge_pte_at(mm, address, ptep, new_pte);
1969 if (write_access && !(vma->vm_flags & VM_SHARED)) {
1970 /* Optimization, do the COW without a second fault */
1971 ret = hugetlb_cow(mm, vma, address, ptep, new_pte, page);
1974 spin_unlock(&mm->page_table_lock);
1975 unlock_page(page);
1976 out:
1977 return ret;
1979 backout:
1980 spin_unlock(&mm->page_table_lock);
1981 backout_unlocked:
1982 unlock_page(page);
1983 put_page(page);
1984 goto out;
1987 int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
1988 unsigned long address, int write_access)
1990 pte_t *ptep;
1991 pte_t entry;
1992 int ret;
1993 struct page *pagecache_page = NULL;
1994 static DEFINE_MUTEX(hugetlb_instantiation_mutex);
1995 struct hstate *h = hstate_vma(vma);
1997 ptep = huge_pte_alloc(mm, address, huge_page_size(h));
1998 if (!ptep)
1999 return VM_FAULT_OOM;
2002 * Serialize hugepage allocation and instantiation, so that we don't
2003 * get spurious allocation failures if two CPUs race to instantiate
2004 * the same page in the page cache.
2006 mutex_lock(&hugetlb_instantiation_mutex);
2007 entry = huge_ptep_get(ptep);
2008 if (huge_pte_none(entry)) {
2009 ret = hugetlb_no_page(mm, vma, address, ptep, write_access);
2010 goto out_mutex;
2013 ret = 0;
2016 * If we are going to COW the mapping later, we examine the pending
2017 * reservations for this page now. This will ensure that any
2018 * allocations necessary to record that reservation occur outside the
2019 * spinlock. For private mappings, we also lookup the pagecache
2020 * page now as it is used to determine if a reservation has been
2021 * consumed.
2023 if (write_access && !pte_write(entry)) {
2024 if (vma_needs_reservation(h, vma, address) < 0) {
2025 ret = VM_FAULT_OOM;
2026 goto out_mutex;
2029 if (!(vma->vm_flags & VM_SHARED))
2030 pagecache_page = hugetlbfs_pagecache_page(h,
2031 vma, address);
2034 spin_lock(&mm->page_table_lock);
2035 /* Check for a racing update before calling hugetlb_cow */
2036 if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
2037 goto out_page_table_lock;
2040 if (write_access) {
2041 if (!pte_write(entry)) {
2042 ret = hugetlb_cow(mm, vma, address, ptep, entry,
2043 pagecache_page);
2044 goto out_page_table_lock;
2046 entry = pte_mkdirty(entry);
2048 entry = pte_mkyoung(entry);
2049 if (huge_ptep_set_access_flags(vma, address, ptep, entry, write_access))
2050 update_mmu_cache(vma, address, entry);
2052 out_page_table_lock:
2053 spin_unlock(&mm->page_table_lock);
2055 if (pagecache_page) {
2056 unlock_page(pagecache_page);
2057 put_page(pagecache_page);
2060 out_mutex:
2061 mutex_unlock(&hugetlb_instantiation_mutex);
2063 return ret;
2066 /* Can be overriden by architectures */
2067 __attribute__((weak)) struct page *
2068 follow_huge_pud(struct mm_struct *mm, unsigned long address,
2069 pud_t *pud, int write)
2071 BUG();
2072 return NULL;
2075 static int huge_zeropage_ok(pte_t *ptep, int write, int shared)
2077 if (!ptep || write || shared)
2078 return 0;
2079 else
2080 return huge_pte_none(huge_ptep_get(ptep));
2083 int follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
2084 struct page **pages, struct vm_area_struct **vmas,
2085 unsigned long *position, int *length, int i,
2086 int write)
2088 unsigned long pfn_offset;
2089 unsigned long vaddr = *position;
2090 int remainder = *length;
2091 struct hstate *h = hstate_vma(vma);
2092 int zeropage_ok = 0;
2093 int shared = vma->vm_flags & VM_SHARED;
2095 spin_lock(&mm->page_table_lock);
2096 while (vaddr < vma->vm_end && remainder) {
2097 pte_t *pte;
2098 struct page *page;
2101 * Some archs (sparc64, sh*) have multiple pte_ts to
2102 * each hugepage. We have to make * sure we get the
2103 * first, for the page indexing below to work.
2105 pte = huge_pte_offset(mm, vaddr & huge_page_mask(h));
2106 if (huge_zeropage_ok(pte, write, shared))
2107 zeropage_ok = 1;
2109 if (!pte ||
2110 (huge_pte_none(huge_ptep_get(pte)) && !zeropage_ok) ||
2111 (write && !pte_write(huge_ptep_get(pte)))) {
2112 int ret;
2114 spin_unlock(&mm->page_table_lock);
2115 ret = hugetlb_fault(mm, vma, vaddr, write);
2116 spin_lock(&mm->page_table_lock);
2117 if (!(ret & VM_FAULT_ERROR))
2118 continue;
2120 remainder = 0;
2121 if (!i)
2122 i = -EFAULT;
2123 break;
2126 pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
2127 page = pte_page(huge_ptep_get(pte));
2128 same_page:
2129 if (pages) {
2130 if (zeropage_ok)
2131 pages[i] = ZERO_PAGE(0);
2132 else
2133 pages[i] = page + pfn_offset;
2134 get_page(pages[i]);
2137 if (vmas)
2138 vmas[i] = vma;
2140 vaddr += PAGE_SIZE;
2141 ++pfn_offset;
2142 --remainder;
2143 ++i;
2144 if (vaddr < vma->vm_end && remainder &&
2145 pfn_offset < pages_per_huge_page(h)) {
2147 * We use pfn_offset to avoid touching the pageframes
2148 * of this compound page.
2150 goto same_page;
2153 spin_unlock(&mm->page_table_lock);
2154 *length = remainder;
2155 *position = vaddr;
2157 return i;
2160 void hugetlb_change_protection(struct vm_area_struct *vma,
2161 unsigned long address, unsigned long end, pgprot_t newprot)
2163 struct mm_struct *mm = vma->vm_mm;
2164 unsigned long start = address;
2165 pte_t *ptep;
2166 pte_t pte;
2167 struct hstate *h = hstate_vma(vma);
2169 BUG_ON(address >= end);
2170 flush_cache_range(vma, address, end);
2172 spin_lock(&vma->vm_file->f_mapping->i_mmap_lock);
2173 spin_lock(&mm->page_table_lock);
2174 for (; address < end; address += huge_page_size(h)) {
2175 ptep = huge_pte_offset(mm, address);
2176 if (!ptep)
2177 continue;
2178 if (huge_pmd_unshare(mm, &address, ptep))
2179 continue;
2180 if (!huge_pte_none(huge_ptep_get(ptep))) {
2181 pte = huge_ptep_get_and_clear(mm, address, ptep);
2182 pte = pte_mkhuge(pte_modify(pte, newprot));
2183 set_huge_pte_at(mm, address, ptep, pte);
2186 spin_unlock(&mm->page_table_lock);
2187 spin_unlock(&vma->vm_file->f_mapping->i_mmap_lock);
2189 flush_tlb_range(vma, start, end);
2192 int hugetlb_reserve_pages(struct inode *inode,
2193 long from, long to,
2194 struct vm_area_struct *vma)
2196 long ret, chg;
2197 struct hstate *h = hstate_inode(inode);
2199 if (vma && vma->vm_flags & VM_NORESERVE)
2200 return 0;
2203 * Shared mappings base their reservation on the number of pages that
2204 * are already allocated on behalf of the file. Private mappings need
2205 * to reserve the full area even if read-only as mprotect() may be
2206 * called to make the mapping read-write. Assume !vma is a shm mapping
2208 if (!vma || vma->vm_flags & VM_SHARED)
2209 chg = region_chg(&inode->i_mapping->private_list, from, to);
2210 else {
2211 struct resv_map *resv_map = resv_map_alloc();
2212 if (!resv_map)
2213 return -ENOMEM;
2215 chg = to - from;
2217 set_vma_resv_map(vma, resv_map);
2218 set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
2221 if (chg < 0)
2222 return chg;
2224 if (hugetlb_get_quota(inode->i_mapping, chg))
2225 return -ENOSPC;
2226 ret = hugetlb_acct_memory(h, chg);
2227 if (ret < 0) {
2228 hugetlb_put_quota(inode->i_mapping, chg);
2229 return ret;
2231 if (!vma || vma->vm_flags & VM_SHARED)
2232 region_add(&inode->i_mapping->private_list, from, to);
2233 return 0;
2236 void hugetlb_unreserve_pages(struct inode *inode, long offset, long freed)
2238 struct hstate *h = hstate_inode(inode);
2239 long chg = region_truncate(&inode->i_mapping->private_list, offset);
2241 spin_lock(&inode->i_lock);
2242 inode->i_blocks -= blocks_per_huge_page(h);
2243 spin_unlock(&inode->i_lock);
2245 hugetlb_put_quota(inode->i_mapping, (chg - freed));
2246 hugetlb_acct_memory(h, -(chg - freed));