x86_64: Consolidate tsc calibration
[linux-2.6/mini2440.git] / drivers / parisc / pdc_stable.c
blobfc4bde259dc7a68da93c89640aa36db34f5744e5
1 /*
2 * Interfaces to retrieve and set PDC Stable options (firmware)
4 * Copyright (C) 2005-2006 Thibaut VARENE <varenet@parisc-linux.org>
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License, version 2, as
8 * published by the Free Software Foundation.
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
20 * DEV NOTE: the PDC Procedures reference states that:
21 * "A minimum of 96 bytes of Stable Storage is required. Providing more than
22 * 96 bytes of Stable Storage is optional [...]. Failure to provide the
23 * optional locations from 96 to 192 results in the loss of certain
24 * functionality during boot."
26 * Since locations between 96 and 192 are the various paths, most (if not
27 * all) PA-RISC machines should have them. Anyway, for safety reasons, the
28 * following code can deal with just 96 bytes of Stable Storage, and all
29 * sizes between 96 and 192 bytes (provided they are multiple of struct
30 * device_path size, eg: 128, 160 and 192) to provide full information.
31 * One last word: there's one path we can always count on: the primary path.
32 * Anything above 224 bytes is used for 'osdep2' OS-dependent storage area.
34 * The first OS-dependent area should always be available. Obviously, this is
35 * not true for the other one. Also bear in mind that reading/writing from/to
36 * osdep2 is much more expensive than from/to osdep1.
37 * NOTE: We do not handle the 2 bytes OS-dep area at 0x5D, nor the first
38 * 2 bytes of storage available right after OSID. That's a total of 4 bytes
39 * sacrificed: -ETOOLAZY :P
41 * The current policy wrt file permissions is:
42 * - write: root only
43 * - read: (reading triggers PDC calls) ? root only : everyone
44 * The rationale is that PDC calls could hog (DoS) the machine.
46 * TODO:
47 * - timer/fastsize write calls
50 #undef PDCS_DEBUG
51 #ifdef PDCS_DEBUG
52 #define DPRINTK(fmt, args...) printk(KERN_DEBUG fmt, ## args)
53 #else
54 #define DPRINTK(fmt, args...)
55 #endif
57 #include <linux/module.h>
58 #include <linux/init.h>
59 #include <linux/kernel.h>
60 #include <linux/string.h>
61 #include <linux/capability.h>
62 #include <linux/ctype.h>
63 #include <linux/sysfs.h>
64 #include <linux/kobject.h>
65 #include <linux/device.h>
66 #include <linux/errno.h>
67 #include <linux/spinlock.h>
69 #include <asm/pdc.h>
70 #include <asm/page.h>
71 #include <asm/uaccess.h>
72 #include <asm/hardware.h>
74 #define PDCS_VERSION "0.30"
75 #define PDCS_PREFIX "PDC Stable Storage"
77 #define PDCS_ADDR_PPRI 0x00
78 #define PDCS_ADDR_OSID 0x40
79 #define PDCS_ADDR_OSD1 0x48
80 #define PDCS_ADDR_DIAG 0x58
81 #define PDCS_ADDR_FSIZ 0x5C
82 #define PDCS_ADDR_PCON 0x60
83 #define PDCS_ADDR_PALT 0x80
84 #define PDCS_ADDR_PKBD 0xA0
85 #define PDCS_ADDR_OSD2 0xE0
87 MODULE_AUTHOR("Thibaut VARENE <varenet@parisc-linux.org>");
88 MODULE_DESCRIPTION("sysfs interface to HP PDC Stable Storage data");
89 MODULE_LICENSE("GPL");
90 MODULE_VERSION(PDCS_VERSION);
92 /* holds Stable Storage size. Initialized once and for all, no lock needed */
93 static unsigned long pdcs_size __read_mostly;
95 /* holds OS ID. Initialized once and for all, hopefully to 0x0006 */
96 static u16 pdcs_osid __read_mostly;
98 /* This struct defines what we need to deal with a parisc pdc path entry */
99 struct pdcspath_entry {
100 rwlock_t rw_lock; /* to protect path entry access */
101 short ready; /* entry record is valid if != 0 */
102 unsigned long addr; /* entry address in stable storage */
103 char *name; /* entry name */
104 struct device_path devpath; /* device path in parisc representation */
105 struct device *dev; /* corresponding device */
106 struct kobject kobj;
109 struct pdcspath_attribute {
110 struct attribute attr;
111 ssize_t (*show)(struct pdcspath_entry *entry, char *buf);
112 ssize_t (*store)(struct pdcspath_entry *entry, const char *buf, size_t count);
115 #define PDCSPATH_ENTRY(_addr, _name) \
116 struct pdcspath_entry pdcspath_entry_##_name = { \
117 .ready = 0, \
118 .addr = _addr, \
119 .name = __stringify(_name), \
122 #define PDCS_ATTR(_name, _mode, _show, _store) \
123 struct subsys_attribute pdcs_attr_##_name = { \
124 .attr = {.name = __stringify(_name), .mode = _mode}, \
125 .show = _show, \
126 .store = _store, \
129 #define PATHS_ATTR(_name, _mode, _show, _store) \
130 struct pdcspath_attribute paths_attr_##_name = { \
131 .attr = {.name = __stringify(_name), .mode = _mode}, \
132 .show = _show, \
133 .store = _store, \
136 #define to_pdcspath_attribute(_attr) container_of(_attr, struct pdcspath_attribute, attr)
137 #define to_pdcspath_entry(obj) container_of(obj, struct pdcspath_entry, kobj)
140 * pdcspath_fetch - This function populates the path entry structs.
141 * @entry: A pointer to an allocated pdcspath_entry.
143 * The general idea is that you don't read from the Stable Storage every time
144 * you access the files provided by the facilites. We store a copy of the
145 * content of the stable storage WRT various paths in these structs. We read
146 * these structs when reading the files, and we will write to these structs when
147 * writing to the files, and only then write them back to the Stable Storage.
149 * This function expects to be called with @entry->rw_lock write-hold.
151 static int
152 pdcspath_fetch(struct pdcspath_entry *entry)
154 struct device_path *devpath;
156 if (!entry)
157 return -EINVAL;
159 devpath = &entry->devpath;
161 DPRINTK("%s: fetch: 0x%p, 0x%p, addr: 0x%lx\n", __func__,
162 entry, devpath, entry->addr);
164 /* addr, devpath and count must be word aligned */
165 if (pdc_stable_read(entry->addr, devpath, sizeof(*devpath)) != PDC_OK)
166 return -EIO;
168 /* Find the matching device.
169 NOTE: hardware_path overlays with device_path, so the nice cast can
170 be used */
171 entry->dev = hwpath_to_device((struct hardware_path *)devpath);
173 entry->ready = 1;
175 DPRINTK("%s: device: 0x%p\n", __func__, entry->dev);
177 return 0;
181 * pdcspath_store - This function writes a path to stable storage.
182 * @entry: A pointer to an allocated pdcspath_entry.
184 * It can be used in two ways: either by passing it a preset devpath struct
185 * containing an already computed hardware path, or by passing it a device
186 * pointer, from which it'll find out the corresponding hardware path.
187 * For now we do not handle the case where there's an error in writing to the
188 * Stable Storage area, so you'd better not mess up the data :P
190 * This function expects to be called with @entry->rw_lock write-hold.
192 static void
193 pdcspath_store(struct pdcspath_entry *entry)
195 struct device_path *devpath;
197 BUG_ON(!entry);
199 devpath = &entry->devpath;
201 /* We expect the caller to set the ready flag to 0 if the hardware
202 path struct provided is invalid, so that we know we have to fill it.
203 First case, we don't have a preset hwpath... */
204 if (!entry->ready) {
205 /* ...but we have a device, map it */
206 BUG_ON(!entry->dev);
207 device_to_hwpath(entry->dev, (struct hardware_path *)devpath);
209 /* else, we expect the provided hwpath to be valid. */
211 DPRINTK("%s: store: 0x%p, 0x%p, addr: 0x%lx\n", __func__,
212 entry, devpath, entry->addr);
214 /* addr, devpath and count must be word aligned */
215 if (pdc_stable_write(entry->addr, devpath, sizeof(*devpath)) != PDC_OK) {
216 printk(KERN_ERR "%s: an error occured when writing to PDC.\n"
217 "It is likely that the Stable Storage data has been corrupted.\n"
218 "Please check it carefully upon next reboot.\n", __func__);
219 WARN_ON(1);
222 /* kobject is already registered */
223 entry->ready = 2;
225 DPRINTK("%s: device: 0x%p\n", __func__, entry->dev);
229 * pdcspath_hwpath_read - This function handles hardware path pretty printing.
230 * @entry: An allocated and populated pdscpath_entry struct.
231 * @buf: The output buffer to write to.
233 * We will call this function to format the output of the hwpath attribute file.
235 static ssize_t
236 pdcspath_hwpath_read(struct pdcspath_entry *entry, char *buf)
238 char *out = buf;
239 struct device_path *devpath;
240 short i;
242 if (!entry || !buf)
243 return -EINVAL;
245 read_lock(&entry->rw_lock);
246 devpath = &entry->devpath;
247 i = entry->ready;
248 read_unlock(&entry->rw_lock);
250 if (!i) /* entry is not ready */
251 return -ENODATA;
253 for (i = 0; i < 6; i++) {
254 if (devpath->bc[i] >= 128)
255 continue;
256 out += sprintf(out, "%u/", (unsigned char)devpath->bc[i]);
258 out += sprintf(out, "%u\n", (unsigned char)devpath->mod);
260 return out - buf;
264 * pdcspath_hwpath_write - This function handles hardware path modifying.
265 * @entry: An allocated and populated pdscpath_entry struct.
266 * @buf: The input buffer to read from.
267 * @count: The number of bytes to be read.
269 * We will call this function to change the current hardware path.
270 * Hardware paths are to be given '/'-delimited, without brackets.
271 * We make sure that the provided path actually maps to an existing
272 * device, BUT nothing would prevent some foolish user to set the path to some
273 * PCI bridge or even a CPU...
274 * A better work around would be to make sure we are at the end of a device tree
275 * for instance, but it would be IMHO beyond the simple scope of that driver.
276 * The aim is to provide a facility. Data correctness is left to userland.
278 static ssize_t
279 pdcspath_hwpath_write(struct pdcspath_entry *entry, const char *buf, size_t count)
281 struct hardware_path hwpath;
282 unsigned short i;
283 char in[count+1], *temp;
284 struct device *dev;
286 if (!entry || !buf || !count)
287 return -EINVAL;
289 /* We'll use a local copy of buf */
290 memset(in, 0, count+1);
291 strncpy(in, buf, count);
293 /* Let's clean up the target. 0xff is a blank pattern */
294 memset(&hwpath, 0xff, sizeof(hwpath));
296 /* First, pick the mod field (the last one of the input string) */
297 if (!(temp = strrchr(in, '/')))
298 return -EINVAL;
300 hwpath.mod = simple_strtoul(temp+1, NULL, 10);
301 in[temp-in] = '\0'; /* truncate the remaining string. just precaution */
302 DPRINTK("%s: mod: %d\n", __func__, hwpath.mod);
304 /* Then, loop for each delimiter, making sure we don't have too many.
305 we write the bc fields in a down-top way. No matter what, we stop
306 before writing the last field. If there are too many fields anyway,
307 then the user is a moron and it'll be caught up later when we'll
308 check the consistency of the given hwpath. */
309 for (i=5; ((temp = strrchr(in, '/'))) && (temp-in > 0) && (likely(i)); i--) {
310 hwpath.bc[i] = simple_strtoul(temp+1, NULL, 10);
311 in[temp-in] = '\0';
312 DPRINTK("%s: bc[%d]: %d\n", __func__, i, hwpath.bc[i]);
315 /* Store the final field */
316 hwpath.bc[i] = simple_strtoul(in, NULL, 10);
317 DPRINTK("%s: bc[%d]: %d\n", __func__, i, hwpath.bc[i]);
319 /* Now we check that the user isn't trying to lure us */
320 if (!(dev = hwpath_to_device((struct hardware_path *)&hwpath))) {
321 printk(KERN_WARNING "%s: attempt to set invalid \"%s\" "
322 "hardware path: %s\n", __func__, entry->name, buf);
323 return -EINVAL;
326 /* So far so good, let's get in deep */
327 write_lock(&entry->rw_lock);
328 entry->ready = 0;
329 entry->dev = dev;
331 /* Now, dive in. Write back to the hardware */
332 pdcspath_store(entry);
334 /* Update the symlink to the real device */
335 sysfs_remove_link(&entry->kobj, "device");
336 sysfs_create_link(&entry->kobj, &entry->dev->kobj, "device");
337 write_unlock(&entry->rw_lock);
339 printk(KERN_INFO PDCS_PREFIX ": changed \"%s\" path to \"%s\"\n",
340 entry->name, buf);
342 return count;
346 * pdcspath_layer_read - Extended layer (eg. SCSI ids) pretty printing.
347 * @entry: An allocated and populated pdscpath_entry struct.
348 * @buf: The output buffer to write to.
350 * We will call this function to format the output of the layer attribute file.
352 static ssize_t
353 pdcspath_layer_read(struct pdcspath_entry *entry, char *buf)
355 char *out = buf;
356 struct device_path *devpath;
357 short i;
359 if (!entry || !buf)
360 return -EINVAL;
362 read_lock(&entry->rw_lock);
363 devpath = &entry->devpath;
364 i = entry->ready;
365 read_unlock(&entry->rw_lock);
367 if (!i) /* entry is not ready */
368 return -ENODATA;
370 for (i = 0; devpath->layers[i] && (likely(i < 6)); i++)
371 out += sprintf(out, "%u ", devpath->layers[i]);
373 out += sprintf(out, "\n");
375 return out - buf;
379 * pdcspath_layer_write - This function handles extended layer modifying.
380 * @entry: An allocated and populated pdscpath_entry struct.
381 * @buf: The input buffer to read from.
382 * @count: The number of bytes to be read.
384 * We will call this function to change the current layer value.
385 * Layers are to be given '.'-delimited, without brackets.
386 * XXX beware we are far less checky WRT input data provided than for hwpath.
387 * Potential harm can be done, since there's no way to check the validity of
388 * the layer fields.
390 static ssize_t
391 pdcspath_layer_write(struct pdcspath_entry *entry, const char *buf, size_t count)
393 unsigned int layers[6]; /* device-specific info (ctlr#, unit#, ...) */
394 unsigned short i;
395 char in[count+1], *temp;
397 if (!entry || !buf || !count)
398 return -EINVAL;
400 /* We'll use a local copy of buf */
401 memset(in, 0, count+1);
402 strncpy(in, buf, count);
404 /* Let's clean up the target. 0 is a blank pattern */
405 memset(&layers, 0, sizeof(layers));
407 /* First, pick the first layer */
408 if (unlikely(!isdigit(*in)))
409 return -EINVAL;
410 layers[0] = simple_strtoul(in, NULL, 10);
411 DPRINTK("%s: layer[0]: %d\n", __func__, layers[0]);
413 temp = in;
414 for (i=1; ((temp = strchr(temp, '.'))) && (likely(i<6)); i++) {
415 if (unlikely(!isdigit(*(++temp))))
416 return -EINVAL;
417 layers[i] = simple_strtoul(temp, NULL, 10);
418 DPRINTK("%s: layer[%d]: %d\n", __func__, i, layers[i]);
421 /* So far so good, let's get in deep */
422 write_lock(&entry->rw_lock);
424 /* First, overwrite the current layers with the new ones, not touching
425 the hardware path. */
426 memcpy(&entry->devpath.layers, &layers, sizeof(layers));
428 /* Now, dive in. Write back to the hardware */
429 pdcspath_store(entry);
430 write_unlock(&entry->rw_lock);
432 printk(KERN_INFO PDCS_PREFIX ": changed \"%s\" layers to \"%s\"\n",
433 entry->name, buf);
435 return count;
439 * pdcspath_attr_show - Generic read function call wrapper.
440 * @kobj: The kobject to get info from.
441 * @attr: The attribute looked upon.
442 * @buf: The output buffer.
444 static ssize_t
445 pdcspath_attr_show(struct kobject *kobj, struct attribute *attr, char *buf)
447 struct pdcspath_entry *entry = to_pdcspath_entry(kobj);
448 struct pdcspath_attribute *pdcs_attr = to_pdcspath_attribute(attr);
449 ssize_t ret = 0;
451 if (pdcs_attr->show)
452 ret = pdcs_attr->show(entry, buf);
454 return ret;
458 * pdcspath_attr_store - Generic write function call wrapper.
459 * @kobj: The kobject to write info to.
460 * @attr: The attribute to be modified.
461 * @buf: The input buffer.
462 * @count: The size of the buffer.
464 static ssize_t
465 pdcspath_attr_store(struct kobject *kobj, struct attribute *attr,
466 const char *buf, size_t count)
468 struct pdcspath_entry *entry = to_pdcspath_entry(kobj);
469 struct pdcspath_attribute *pdcs_attr = to_pdcspath_attribute(attr);
470 ssize_t ret = 0;
472 if (!capable(CAP_SYS_ADMIN))
473 return -EACCES;
475 if (pdcs_attr->store)
476 ret = pdcs_attr->store(entry, buf, count);
478 return ret;
481 static struct sysfs_ops pdcspath_attr_ops = {
482 .show = pdcspath_attr_show,
483 .store = pdcspath_attr_store,
486 /* These are the two attributes of any PDC path. */
487 static PATHS_ATTR(hwpath, 0644, pdcspath_hwpath_read, pdcspath_hwpath_write);
488 static PATHS_ATTR(layer, 0644, pdcspath_layer_read, pdcspath_layer_write);
490 static struct attribute *paths_subsys_attrs[] = {
491 &paths_attr_hwpath.attr,
492 &paths_attr_layer.attr,
493 NULL,
496 /* Specific kobject type for our PDC paths */
497 static struct kobj_type ktype_pdcspath = {
498 .sysfs_ops = &pdcspath_attr_ops,
499 .default_attrs = paths_subsys_attrs,
502 /* We hard define the 4 types of path we expect to find */
503 static PDCSPATH_ENTRY(PDCS_ADDR_PPRI, primary);
504 static PDCSPATH_ENTRY(PDCS_ADDR_PCON, console);
505 static PDCSPATH_ENTRY(PDCS_ADDR_PALT, alternative);
506 static PDCSPATH_ENTRY(PDCS_ADDR_PKBD, keyboard);
508 /* An array containing all PDC paths we will deal with */
509 static struct pdcspath_entry *pdcspath_entries[] = {
510 &pdcspath_entry_primary,
511 &pdcspath_entry_alternative,
512 &pdcspath_entry_console,
513 &pdcspath_entry_keyboard,
514 NULL,
518 /* For more insight of what's going on here, refer to PDC Procedures doc,
519 * Section PDC_STABLE */
522 * pdcs_size_read - Stable Storage size output.
523 * @kset: An allocated and populated struct kset. We don't use it tho.
524 * @buf: The output buffer to write to.
526 static ssize_t
527 pdcs_size_read(struct kset *kset, char *buf)
529 char *out = buf;
531 if (!kset || !buf)
532 return -EINVAL;
534 /* show the size of the stable storage */
535 out += sprintf(out, "%ld\n", pdcs_size);
537 return out - buf;
541 * pdcs_auto_read - Stable Storage autoboot/search flag output.
542 * @kset: An allocated and populated struct kset. We don't use it tho.
543 * @buf: The output buffer to write to.
544 * @knob: The PF_AUTOBOOT or PF_AUTOSEARCH flag
546 static ssize_t
547 pdcs_auto_read(struct kset *kset, char *buf, int knob)
549 char *out = buf;
550 struct pdcspath_entry *pathentry;
552 if (!kset || !buf)
553 return -EINVAL;
555 /* Current flags are stored in primary boot path entry */
556 pathentry = &pdcspath_entry_primary;
558 read_lock(&pathentry->rw_lock);
559 out += sprintf(out, "%s\n", (pathentry->devpath.flags & knob) ?
560 "On" : "Off");
561 read_unlock(&pathentry->rw_lock);
563 return out - buf;
567 * pdcs_autoboot_read - Stable Storage autoboot flag output.
568 * @kset: An allocated and populated struct kset. We don't use it tho.
569 * @buf: The output buffer to write to.
571 static inline ssize_t
572 pdcs_autoboot_read(struct kset *kset, char *buf)
574 return pdcs_auto_read(kset, buf, PF_AUTOBOOT);
578 * pdcs_autosearch_read - Stable Storage autoboot flag output.
579 * @kset: An allocated and populated struct kset. We don't use it tho.
580 * @buf: The output buffer to write to.
582 static inline ssize_t
583 pdcs_autosearch_read(struct kset *kset, char *buf)
585 return pdcs_auto_read(kset, buf, PF_AUTOSEARCH);
589 * pdcs_timer_read - Stable Storage timer count output (in seconds).
590 * @kset: An allocated and populated struct kset. We don't use it tho.
591 * @buf: The output buffer to write to.
593 * The value of the timer field correponds to a number of seconds in powers of 2.
595 static ssize_t
596 pdcs_timer_read(struct kset *kset, char *buf)
598 char *out = buf;
599 struct pdcspath_entry *pathentry;
601 if (!kset || !buf)
602 return -EINVAL;
604 /* Current flags are stored in primary boot path entry */
605 pathentry = &pdcspath_entry_primary;
607 /* print the timer value in seconds */
608 read_lock(&pathentry->rw_lock);
609 out += sprintf(out, "%u\n", (pathentry->devpath.flags & PF_TIMER) ?
610 (1 << (pathentry->devpath.flags & PF_TIMER)) : 0);
611 read_unlock(&pathentry->rw_lock);
613 return out - buf;
617 * pdcs_osid_read - Stable Storage OS ID register output.
618 * @kset: An allocated and populated struct kset. We don't use it tho.
619 * @buf: The output buffer to write to.
621 static ssize_t
622 pdcs_osid_read(struct kset *kset, char *buf)
624 char *out = buf;
626 if (!kset || !buf)
627 return -EINVAL;
629 out += sprintf(out, "%s dependent data (0x%.4x)\n",
630 os_id_to_string(pdcs_osid), pdcs_osid);
632 return out - buf;
636 * pdcs_osdep1_read - Stable Storage OS-Dependent data area 1 output.
637 * @kset: An allocated and populated struct kset. We don't use it tho.
638 * @buf: The output buffer to write to.
640 * This can hold 16 bytes of OS-Dependent data.
642 static ssize_t
643 pdcs_osdep1_read(struct kset *kset, char *buf)
645 char *out = buf;
646 u32 result[4];
648 if (!kset || !buf)
649 return -EINVAL;
651 if (pdc_stable_read(PDCS_ADDR_OSD1, &result, sizeof(result)) != PDC_OK)
652 return -EIO;
654 out += sprintf(out, "0x%.8x\n", result[0]);
655 out += sprintf(out, "0x%.8x\n", result[1]);
656 out += sprintf(out, "0x%.8x\n", result[2]);
657 out += sprintf(out, "0x%.8x\n", result[3]);
659 return out - buf;
663 * pdcs_diagnostic_read - Stable Storage Diagnostic register output.
664 * @kset: An allocated and populated struct kset. We don't use it tho.
665 * @buf: The output buffer to write to.
667 * I have NFC how to interpret the content of that register ;-).
669 static ssize_t
670 pdcs_diagnostic_read(struct kset *kset, char *buf)
672 char *out = buf;
673 u32 result;
675 if (!kset || !buf)
676 return -EINVAL;
678 /* get diagnostic */
679 if (pdc_stable_read(PDCS_ADDR_DIAG, &result, sizeof(result)) != PDC_OK)
680 return -EIO;
682 out += sprintf(out, "0x%.4x\n", (result >> 16));
684 return out - buf;
688 * pdcs_fastsize_read - Stable Storage FastSize register output.
689 * @kset: An allocated and populated struct kset. We don't use it tho.
690 * @buf: The output buffer to write to.
692 * This register holds the amount of system RAM to be tested during boot sequence.
694 static ssize_t
695 pdcs_fastsize_read(struct kset *kset, char *buf)
697 char *out = buf;
698 u32 result;
700 if (!kset || !buf)
701 return -EINVAL;
703 /* get fast-size */
704 if (pdc_stable_read(PDCS_ADDR_FSIZ, &result, sizeof(result)) != PDC_OK)
705 return -EIO;
707 if ((result & 0x0F) < 0x0E)
708 out += sprintf(out, "%d kB", (1<<(result & 0x0F))*256);
709 else
710 out += sprintf(out, "All");
711 out += sprintf(out, "\n");
713 return out - buf;
717 * pdcs_osdep2_read - Stable Storage OS-Dependent data area 2 output.
718 * @kset: An allocated and populated struct kset. We don't use it tho.
719 * @buf: The output buffer to write to.
721 * This can hold pdcs_size - 224 bytes of OS-Dependent data, when available.
723 static ssize_t
724 pdcs_osdep2_read(struct kset *kset, char *buf)
726 char *out = buf;
727 unsigned long size;
728 unsigned short i;
729 u32 result;
731 if (unlikely(pdcs_size <= 224))
732 return -ENODATA;
734 size = pdcs_size - 224;
736 if (!kset || !buf)
737 return -EINVAL;
739 for (i=0; i<size; i+=4) {
740 if (unlikely(pdc_stable_read(PDCS_ADDR_OSD2 + i, &result,
741 sizeof(result)) != PDC_OK))
742 return -EIO;
743 out += sprintf(out, "0x%.8x\n", result);
746 return out - buf;
750 * pdcs_auto_write - This function handles autoboot/search flag modifying.
751 * @kset: An allocated and populated struct kset. We don't use it tho.
752 * @buf: The input buffer to read from.
753 * @count: The number of bytes to be read.
754 * @knob: The PF_AUTOBOOT or PF_AUTOSEARCH flag
756 * We will call this function to change the current autoboot flag.
757 * We expect a precise syntax:
758 * \"n\" (n == 0 or 1) to toggle AutoBoot Off or On
760 static ssize_t
761 pdcs_auto_write(struct kset *kset, const char *buf, size_t count, int knob)
763 struct pdcspath_entry *pathentry;
764 unsigned char flags;
765 char in[count+1], *temp;
766 char c;
768 if (!capable(CAP_SYS_ADMIN))
769 return -EACCES;
771 if (!kset || !buf || !count)
772 return -EINVAL;
774 /* We'll use a local copy of buf */
775 memset(in, 0, count+1);
776 strncpy(in, buf, count);
778 /* Current flags are stored in primary boot path entry */
779 pathentry = &pdcspath_entry_primary;
781 /* Be nice to the existing flag record */
782 read_lock(&pathentry->rw_lock);
783 flags = pathentry->devpath.flags;
784 read_unlock(&pathentry->rw_lock);
786 DPRINTK("%s: flags before: 0x%X\n", __func__, flags);
788 temp = in;
790 while (*temp && isspace(*temp))
791 temp++;
793 c = *temp++ - '0';
794 if ((c != 0) && (c != 1))
795 goto parse_error;
796 if (c == 0)
797 flags &= ~knob;
798 else
799 flags |= knob;
801 DPRINTK("%s: flags after: 0x%X\n", __func__, flags);
803 /* So far so good, let's get in deep */
804 write_lock(&pathentry->rw_lock);
806 /* Change the path entry flags first */
807 pathentry->devpath.flags = flags;
809 /* Now, dive in. Write back to the hardware */
810 pdcspath_store(pathentry);
811 write_unlock(&pathentry->rw_lock);
813 printk(KERN_INFO PDCS_PREFIX ": changed \"%s\" to \"%s\"\n",
814 (knob & PF_AUTOBOOT) ? "autoboot" : "autosearch",
815 (flags & knob) ? "On" : "Off");
817 return count;
819 parse_error:
820 printk(KERN_WARNING "%s: Parse error: expect \"n\" (n == 0 or 1)\n", __func__);
821 return -EINVAL;
825 * pdcs_autoboot_write - This function handles autoboot flag modifying.
826 * @kset: An allocated and populated struct kset. We don't use it tho.
827 * @buf: The input buffer to read from.
828 * @count: The number of bytes to be read.
830 * We will call this function to change the current boot flags.
831 * We expect a precise syntax:
832 * \"n\" (n == 0 or 1) to toggle AutoSearch Off or On
834 static inline ssize_t
835 pdcs_autoboot_write(struct kset *kset, const char *buf, size_t count)
837 return pdcs_auto_write(kset, buf, count, PF_AUTOBOOT);
841 * pdcs_autosearch_write - This function handles autosearch flag modifying.
842 * @kset: An allocated and populated struct kset. We don't use it tho.
843 * @buf: The input buffer to read from.
844 * @count: The number of bytes to be read.
846 * We will call this function to change the current boot flags.
847 * We expect a precise syntax:
848 * \"n\" (n == 0 or 1) to toggle AutoSearch Off or On
850 static inline ssize_t
851 pdcs_autosearch_write(struct kset *kset, const char *buf, size_t count)
853 return pdcs_auto_write(kset, buf, count, PF_AUTOSEARCH);
857 * pdcs_osdep1_write - Stable Storage OS-Dependent data area 1 input.
858 * @kset: An allocated and populated struct kset. We don't use it tho.
859 * @buf: The input buffer to read from.
860 * @count: The number of bytes to be read.
862 * This can store 16 bytes of OS-Dependent data. We use a byte-by-byte
863 * write approach. It's up to userspace to deal with it when constructing
864 * its input buffer.
866 static ssize_t
867 pdcs_osdep1_write(struct kset *kset, const char *buf, size_t count)
869 u8 in[16];
871 if (!capable(CAP_SYS_ADMIN))
872 return -EACCES;
874 if (!kset || !buf || !count)
875 return -EINVAL;
877 if (unlikely(pdcs_osid != OS_ID_LINUX))
878 return -EPERM;
880 if (count > 16)
881 return -EMSGSIZE;
883 /* We'll use a local copy of buf */
884 memset(in, 0, 16);
885 memcpy(in, buf, count);
887 if (pdc_stable_write(PDCS_ADDR_OSD1, &in, sizeof(in)) != PDC_OK)
888 return -EIO;
890 return count;
894 * pdcs_osdep2_write - Stable Storage OS-Dependent data area 2 input.
895 * @kset: An allocated and populated struct kset. We don't use it tho.
896 * @buf: The input buffer to read from.
897 * @count: The number of bytes to be read.
899 * This can store pdcs_size - 224 bytes of OS-Dependent data. We use a
900 * byte-by-byte write approach. It's up to userspace to deal with it when
901 * constructing its input buffer.
903 static ssize_t
904 pdcs_osdep2_write(struct kset *kset, const char *buf, size_t count)
906 unsigned long size;
907 unsigned short i;
908 u8 in[4];
910 if (!capable(CAP_SYS_ADMIN))
911 return -EACCES;
913 if (!kset || !buf || !count)
914 return -EINVAL;
916 if (unlikely(pdcs_size <= 224))
917 return -ENOSYS;
919 if (unlikely(pdcs_osid != OS_ID_LINUX))
920 return -EPERM;
922 size = pdcs_size - 224;
924 if (count > size)
925 return -EMSGSIZE;
927 /* We'll use a local copy of buf */
929 for (i=0; i<count; i+=4) {
930 memset(in, 0, 4);
931 memcpy(in, buf+i, (count-i < 4) ? count-i : 4);
932 if (unlikely(pdc_stable_write(PDCS_ADDR_OSD2 + i, &in,
933 sizeof(in)) != PDC_OK))
934 return -EIO;
937 return count;
940 /* The remaining attributes. */
941 static PDCS_ATTR(size, 0444, pdcs_size_read, NULL);
942 static PDCS_ATTR(autoboot, 0644, pdcs_autoboot_read, pdcs_autoboot_write);
943 static PDCS_ATTR(autosearch, 0644, pdcs_autosearch_read, pdcs_autosearch_write);
944 static PDCS_ATTR(timer, 0444, pdcs_timer_read, NULL);
945 static PDCS_ATTR(osid, 0444, pdcs_osid_read, NULL);
946 static PDCS_ATTR(osdep1, 0600, pdcs_osdep1_read, pdcs_osdep1_write);
947 static PDCS_ATTR(diagnostic, 0400, pdcs_diagnostic_read, NULL);
948 static PDCS_ATTR(fastsize, 0400, pdcs_fastsize_read, NULL);
949 static PDCS_ATTR(osdep2, 0600, pdcs_osdep2_read, pdcs_osdep2_write);
951 static struct subsys_attribute *pdcs_subsys_attrs[] = {
952 &pdcs_attr_size,
953 &pdcs_attr_autoboot,
954 &pdcs_attr_autosearch,
955 &pdcs_attr_timer,
956 &pdcs_attr_osid,
957 &pdcs_attr_osdep1,
958 &pdcs_attr_diagnostic,
959 &pdcs_attr_fastsize,
960 &pdcs_attr_osdep2,
961 NULL,
964 static decl_subsys(paths, &ktype_pdcspath, NULL);
965 static decl_subsys(stable, NULL, NULL);
968 * pdcs_register_pathentries - Prepares path entries kobjects for sysfs usage.
970 * It creates kobjects corresponding to each path entry with nice sysfs
971 * links to the real device. This is where the magic takes place: when
972 * registering the subsystem attributes during module init, each kobject hereby
973 * created will show in the sysfs tree as a folder containing files as defined
974 * by path_subsys_attr[].
976 static inline int __init
977 pdcs_register_pathentries(void)
979 unsigned short i;
980 struct pdcspath_entry *entry;
981 int err;
983 /* Initialize the entries rw_lock before anything else */
984 for (i = 0; (entry = pdcspath_entries[i]); i++)
985 rwlock_init(&entry->rw_lock);
987 for (i = 0; (entry = pdcspath_entries[i]); i++) {
988 write_lock(&entry->rw_lock);
989 err = pdcspath_fetch(entry);
990 write_unlock(&entry->rw_lock);
992 if (err < 0)
993 continue;
995 if ((err = kobject_set_name(&entry->kobj, "%s", entry->name)))
996 return err;
997 kobj_set_kset_s(entry, paths_subsys);
998 if ((err = kobject_register(&entry->kobj)))
999 return err;
1001 /* kobject is now registered */
1002 write_lock(&entry->rw_lock);
1003 entry->ready = 2;
1005 /* Add a nice symlink to the real device */
1006 if (entry->dev)
1007 sysfs_create_link(&entry->kobj, &entry->dev->kobj, "device");
1009 write_unlock(&entry->rw_lock);
1012 return 0;
1016 * pdcs_unregister_pathentries - Routine called when unregistering the module.
1018 static inline void
1019 pdcs_unregister_pathentries(void)
1021 unsigned short i;
1022 struct pdcspath_entry *entry;
1024 for (i = 0; (entry = pdcspath_entries[i]); i++) {
1025 read_lock(&entry->rw_lock);
1026 if (entry->ready >= 2)
1027 kobject_unregister(&entry->kobj);
1028 read_unlock(&entry->rw_lock);
1033 * For now we register the stable subsystem with the firmware subsystem
1034 * and the paths subsystem with the stable subsystem
1036 static int __init
1037 pdc_stable_init(void)
1039 struct subsys_attribute *attr;
1040 int i, rc = 0, error = 0;
1041 u32 result;
1043 /* find the size of the stable storage */
1044 if (pdc_stable_get_size(&pdcs_size) != PDC_OK)
1045 return -ENODEV;
1047 /* make sure we have enough data */
1048 if (pdcs_size < 96)
1049 return -ENODATA;
1051 printk(KERN_INFO PDCS_PREFIX " facility v%s\n", PDCS_VERSION);
1053 /* get OSID */
1054 if (pdc_stable_read(PDCS_ADDR_OSID, &result, sizeof(result)) != PDC_OK)
1055 return -EIO;
1057 /* the actual result is 16 bits away */
1058 pdcs_osid = (u16)(result >> 16);
1060 /* For now we'll register the stable subsys within this driver */
1061 if ((rc = firmware_register(&stable_subsys)))
1062 goto fail_firmreg;
1064 /* Don't forget the root entries */
1065 for (i = 0; (attr = pdcs_subsys_attrs[i]) && !error; i++)
1066 if (attr->show)
1067 error = subsys_create_file(&stable_subsys, attr);
1069 /* register the paths subsys as a subsystem of stable subsys */
1070 kobj_set_kset_s(&paths_subsys, stable_subsys);
1071 if ((rc = subsystem_register(&paths_subsys)))
1072 goto fail_subsysreg;
1074 /* now we create all "files" for the paths subsys */
1075 if ((rc = pdcs_register_pathentries()))
1076 goto fail_pdcsreg;
1078 return rc;
1080 fail_pdcsreg:
1081 pdcs_unregister_pathentries();
1082 subsystem_unregister(&paths_subsys);
1084 fail_subsysreg:
1085 firmware_unregister(&stable_subsys);
1087 fail_firmreg:
1088 printk(KERN_INFO PDCS_PREFIX " bailing out\n");
1089 return rc;
1092 static void __exit
1093 pdc_stable_exit(void)
1095 pdcs_unregister_pathentries();
1096 subsystem_unregister(&paths_subsys);
1098 firmware_unregister(&stable_subsys);
1102 module_init(pdc_stable_init);
1103 module_exit(pdc_stable_exit);