x86_64: Consolidate tsc calibration
[linux-2.6/mini2440.git] / drivers / cpufreq / cpufreq_conservative.c
blob26f440ccc3fb358e9525ecabee819ae52b7afa26
1 /*
2 * drivers/cpufreq/cpufreq_conservative.c
4 * Copyright (C) 2001 Russell King
5 * (C) 2003 Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>.
6 * Jun Nakajima <jun.nakajima@intel.com>
7 * (C) 2004 Alexander Clouter <alex-kernel@digriz.org.uk>
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License version 2 as
11 * published by the Free Software Foundation.
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/smp.h>
17 #include <linux/init.h>
18 #include <linux/interrupt.h>
19 #include <linux/ctype.h>
20 #include <linux/cpufreq.h>
21 #include <linux/sysctl.h>
22 #include <linux/types.h>
23 #include <linux/fs.h>
24 #include <linux/sysfs.h>
25 #include <linux/cpu.h>
26 #include <linux/kmod.h>
27 #include <linux/workqueue.h>
28 #include <linux/jiffies.h>
29 #include <linux/kernel_stat.h>
30 #include <linux/percpu.h>
31 #include <linux/mutex.h>
33 * dbs is used in this file as a shortform for demandbased switching
34 * It helps to keep variable names smaller, simpler
37 #define DEF_FREQUENCY_UP_THRESHOLD (80)
38 #define DEF_FREQUENCY_DOWN_THRESHOLD (20)
40 /*
41 * The polling frequency of this governor depends on the capability of
42 * the processor. Default polling frequency is 1000 times the transition
43 * latency of the processor. The governor will work on any processor with
44 * transition latency <= 10mS, using appropriate sampling
45 * rate.
46 * For CPUs with transition latency > 10mS (mostly drivers
47 * with CPUFREQ_ETERNAL), this governor will not work.
48 * All times here are in uS.
50 static unsigned int def_sampling_rate;
51 #define MIN_SAMPLING_RATE_RATIO (2)
52 /* for correct statistics, we need at least 10 ticks between each measure */
53 #define MIN_STAT_SAMPLING_RATE \
54 (MIN_SAMPLING_RATE_RATIO * jiffies_to_usecs(10))
55 #define MIN_SAMPLING_RATE \
56 (def_sampling_rate / MIN_SAMPLING_RATE_RATIO)
57 #define MAX_SAMPLING_RATE (500 * def_sampling_rate)
58 #define DEF_SAMPLING_RATE_LATENCY_MULTIPLIER (1000)
59 #define DEF_SAMPLING_DOWN_FACTOR (1)
60 #define MAX_SAMPLING_DOWN_FACTOR (10)
61 #define TRANSITION_LATENCY_LIMIT (10 * 1000)
63 static void do_dbs_timer(struct work_struct *work);
65 struct cpu_dbs_info_s {
66 struct cpufreq_policy *cur_policy;
67 unsigned int prev_cpu_idle_up;
68 unsigned int prev_cpu_idle_down;
69 unsigned int enable;
70 unsigned int down_skip;
71 unsigned int requested_freq;
73 static DEFINE_PER_CPU(struct cpu_dbs_info_s, cpu_dbs_info);
75 static unsigned int dbs_enable; /* number of CPUs using this policy */
78 * DEADLOCK ALERT! There is a ordering requirement between cpu_hotplug
79 * lock and dbs_mutex. cpu_hotplug lock should always be held before
80 * dbs_mutex. If any function that can potentially take cpu_hotplug lock
81 * (like __cpufreq_driver_target()) is being called with dbs_mutex taken, then
82 * cpu_hotplug lock should be taken before that. Note that cpu_hotplug lock
83 * is recursive for the same process. -Venki
85 static DEFINE_MUTEX (dbs_mutex);
86 static DECLARE_DELAYED_WORK(dbs_work, do_dbs_timer);
88 struct dbs_tuners {
89 unsigned int sampling_rate;
90 unsigned int sampling_down_factor;
91 unsigned int up_threshold;
92 unsigned int down_threshold;
93 unsigned int ignore_nice;
94 unsigned int freq_step;
97 static struct dbs_tuners dbs_tuners_ins = {
98 .up_threshold = DEF_FREQUENCY_UP_THRESHOLD,
99 .down_threshold = DEF_FREQUENCY_DOWN_THRESHOLD,
100 .sampling_down_factor = DEF_SAMPLING_DOWN_FACTOR,
101 .ignore_nice = 0,
102 .freq_step = 5,
105 static inline unsigned int get_cpu_idle_time(unsigned int cpu)
107 unsigned int add_nice = 0, ret;
109 if (dbs_tuners_ins.ignore_nice)
110 add_nice = kstat_cpu(cpu).cpustat.nice;
112 ret = kstat_cpu(cpu).cpustat.idle +
113 kstat_cpu(cpu).cpustat.iowait +
114 add_nice;
116 return ret;
119 /************************** sysfs interface ************************/
120 static ssize_t show_sampling_rate_max(struct cpufreq_policy *policy, char *buf)
122 return sprintf (buf, "%u\n", MAX_SAMPLING_RATE);
125 static ssize_t show_sampling_rate_min(struct cpufreq_policy *policy, char *buf)
127 return sprintf (buf, "%u\n", MIN_SAMPLING_RATE);
130 #define define_one_ro(_name) \
131 static struct freq_attr _name = \
132 __ATTR(_name, 0444, show_##_name, NULL)
134 define_one_ro(sampling_rate_max);
135 define_one_ro(sampling_rate_min);
137 /* cpufreq_conservative Governor Tunables */
138 #define show_one(file_name, object) \
139 static ssize_t show_##file_name \
140 (struct cpufreq_policy *unused, char *buf) \
142 return sprintf(buf, "%u\n", dbs_tuners_ins.object); \
144 show_one(sampling_rate, sampling_rate);
145 show_one(sampling_down_factor, sampling_down_factor);
146 show_one(up_threshold, up_threshold);
147 show_one(down_threshold, down_threshold);
148 show_one(ignore_nice_load, ignore_nice);
149 show_one(freq_step, freq_step);
151 static ssize_t store_sampling_down_factor(struct cpufreq_policy *unused,
152 const char *buf, size_t count)
154 unsigned int input;
155 int ret;
156 ret = sscanf (buf, "%u", &input);
157 if (ret != 1 || input > MAX_SAMPLING_DOWN_FACTOR || input < 1)
158 return -EINVAL;
160 mutex_lock(&dbs_mutex);
161 dbs_tuners_ins.sampling_down_factor = input;
162 mutex_unlock(&dbs_mutex);
164 return count;
167 static ssize_t store_sampling_rate(struct cpufreq_policy *unused,
168 const char *buf, size_t count)
170 unsigned int input;
171 int ret;
172 ret = sscanf (buf, "%u", &input);
174 mutex_lock(&dbs_mutex);
175 if (ret != 1 || input > MAX_SAMPLING_RATE || input < MIN_SAMPLING_RATE) {
176 mutex_unlock(&dbs_mutex);
177 return -EINVAL;
180 dbs_tuners_ins.sampling_rate = input;
181 mutex_unlock(&dbs_mutex);
183 return count;
186 static ssize_t store_up_threshold(struct cpufreq_policy *unused,
187 const char *buf, size_t count)
189 unsigned int input;
190 int ret;
191 ret = sscanf (buf, "%u", &input);
193 mutex_lock(&dbs_mutex);
194 if (ret != 1 || input > 100 || input <= dbs_tuners_ins.down_threshold) {
195 mutex_unlock(&dbs_mutex);
196 return -EINVAL;
199 dbs_tuners_ins.up_threshold = input;
200 mutex_unlock(&dbs_mutex);
202 return count;
205 static ssize_t store_down_threshold(struct cpufreq_policy *unused,
206 const char *buf, size_t count)
208 unsigned int input;
209 int ret;
210 ret = sscanf (buf, "%u", &input);
212 mutex_lock(&dbs_mutex);
213 if (ret != 1 || input > 100 || input >= dbs_tuners_ins.up_threshold) {
214 mutex_unlock(&dbs_mutex);
215 return -EINVAL;
218 dbs_tuners_ins.down_threshold = input;
219 mutex_unlock(&dbs_mutex);
221 return count;
224 static ssize_t store_ignore_nice_load(struct cpufreq_policy *policy,
225 const char *buf, size_t count)
227 unsigned int input;
228 int ret;
230 unsigned int j;
232 ret = sscanf (buf, "%u", &input);
233 if ( ret != 1 )
234 return -EINVAL;
236 if ( input > 1 )
237 input = 1;
239 mutex_lock(&dbs_mutex);
240 if ( input == dbs_tuners_ins.ignore_nice ) { /* nothing to do */
241 mutex_unlock(&dbs_mutex);
242 return count;
244 dbs_tuners_ins.ignore_nice = input;
246 /* we need to re-evaluate prev_cpu_idle_up and prev_cpu_idle_down */
247 for_each_online_cpu(j) {
248 struct cpu_dbs_info_s *j_dbs_info;
249 j_dbs_info = &per_cpu(cpu_dbs_info, j);
250 j_dbs_info->prev_cpu_idle_up = get_cpu_idle_time(j);
251 j_dbs_info->prev_cpu_idle_down = j_dbs_info->prev_cpu_idle_up;
253 mutex_unlock(&dbs_mutex);
255 return count;
258 static ssize_t store_freq_step(struct cpufreq_policy *policy,
259 const char *buf, size_t count)
261 unsigned int input;
262 int ret;
264 ret = sscanf (buf, "%u", &input);
266 if ( ret != 1 )
267 return -EINVAL;
269 if ( input > 100 )
270 input = 100;
272 /* no need to test here if freq_step is zero as the user might actually
273 * want this, they would be crazy though :) */
274 mutex_lock(&dbs_mutex);
275 dbs_tuners_ins.freq_step = input;
276 mutex_unlock(&dbs_mutex);
278 return count;
281 #define define_one_rw(_name) \
282 static struct freq_attr _name = \
283 __ATTR(_name, 0644, show_##_name, store_##_name)
285 define_one_rw(sampling_rate);
286 define_one_rw(sampling_down_factor);
287 define_one_rw(up_threshold);
288 define_one_rw(down_threshold);
289 define_one_rw(ignore_nice_load);
290 define_one_rw(freq_step);
292 static struct attribute * dbs_attributes[] = {
293 &sampling_rate_max.attr,
294 &sampling_rate_min.attr,
295 &sampling_rate.attr,
296 &sampling_down_factor.attr,
297 &up_threshold.attr,
298 &down_threshold.attr,
299 &ignore_nice_load.attr,
300 &freq_step.attr,
301 NULL
304 static struct attribute_group dbs_attr_group = {
305 .attrs = dbs_attributes,
306 .name = "conservative",
309 /************************** sysfs end ************************/
311 static void dbs_check_cpu(int cpu)
313 unsigned int idle_ticks, up_idle_ticks, down_idle_ticks;
314 unsigned int tmp_idle_ticks, total_idle_ticks;
315 unsigned int freq_step;
316 unsigned int freq_down_sampling_rate;
317 struct cpu_dbs_info_s *this_dbs_info = &per_cpu(cpu_dbs_info, cpu);
318 struct cpufreq_policy *policy;
320 if (!this_dbs_info->enable)
321 return;
323 policy = this_dbs_info->cur_policy;
326 * The default safe range is 20% to 80%
327 * Every sampling_rate, we check
328 * - If current idle time is less than 20%, then we try to
329 * increase frequency
330 * Every sampling_rate*sampling_down_factor, we check
331 * - If current idle time is more than 80%, then we try to
332 * decrease frequency
334 * Any frequency increase takes it to the maximum frequency.
335 * Frequency reduction happens at minimum steps of
336 * 5% (default) of max_frequency
339 /* Check for frequency increase */
340 idle_ticks = UINT_MAX;
342 /* Check for frequency increase */
343 total_idle_ticks = get_cpu_idle_time(cpu);
344 tmp_idle_ticks = total_idle_ticks -
345 this_dbs_info->prev_cpu_idle_up;
346 this_dbs_info->prev_cpu_idle_up = total_idle_ticks;
348 if (tmp_idle_ticks < idle_ticks)
349 idle_ticks = tmp_idle_ticks;
351 /* Scale idle ticks by 100 and compare with up and down ticks */
352 idle_ticks *= 100;
353 up_idle_ticks = (100 - dbs_tuners_ins.up_threshold) *
354 usecs_to_jiffies(dbs_tuners_ins.sampling_rate);
356 if (idle_ticks < up_idle_ticks) {
357 this_dbs_info->down_skip = 0;
358 this_dbs_info->prev_cpu_idle_down =
359 this_dbs_info->prev_cpu_idle_up;
361 /* if we are already at full speed then break out early */
362 if (this_dbs_info->requested_freq == policy->max)
363 return;
365 freq_step = (dbs_tuners_ins.freq_step * policy->max) / 100;
367 /* max freq cannot be less than 100. But who knows.... */
368 if (unlikely(freq_step == 0))
369 freq_step = 5;
371 this_dbs_info->requested_freq += freq_step;
372 if (this_dbs_info->requested_freq > policy->max)
373 this_dbs_info->requested_freq = policy->max;
375 __cpufreq_driver_target(policy, this_dbs_info->requested_freq,
376 CPUFREQ_RELATION_H);
377 return;
380 /* Check for frequency decrease */
381 this_dbs_info->down_skip++;
382 if (this_dbs_info->down_skip < dbs_tuners_ins.sampling_down_factor)
383 return;
385 /* Check for frequency decrease */
386 total_idle_ticks = this_dbs_info->prev_cpu_idle_up;
387 tmp_idle_ticks = total_idle_ticks -
388 this_dbs_info->prev_cpu_idle_down;
389 this_dbs_info->prev_cpu_idle_down = total_idle_ticks;
391 if (tmp_idle_ticks < idle_ticks)
392 idle_ticks = tmp_idle_ticks;
394 /* Scale idle ticks by 100 and compare with up and down ticks */
395 idle_ticks *= 100;
396 this_dbs_info->down_skip = 0;
398 freq_down_sampling_rate = dbs_tuners_ins.sampling_rate *
399 dbs_tuners_ins.sampling_down_factor;
400 down_idle_ticks = (100 - dbs_tuners_ins.down_threshold) *
401 usecs_to_jiffies(freq_down_sampling_rate);
403 if (idle_ticks > down_idle_ticks) {
405 * if we are already at the lowest speed then break out early
406 * or if we 'cannot' reduce the speed as the user might want
407 * freq_step to be zero
409 if (this_dbs_info->requested_freq == policy->min
410 || dbs_tuners_ins.freq_step == 0)
411 return;
413 freq_step = (dbs_tuners_ins.freq_step * policy->max) / 100;
415 /* max freq cannot be less than 100. But who knows.... */
416 if (unlikely(freq_step == 0))
417 freq_step = 5;
419 this_dbs_info->requested_freq -= freq_step;
420 if (this_dbs_info->requested_freq < policy->min)
421 this_dbs_info->requested_freq = policy->min;
423 __cpufreq_driver_target(policy, this_dbs_info->requested_freq,
424 CPUFREQ_RELATION_H);
425 return;
429 static void do_dbs_timer(struct work_struct *work)
431 int i;
432 mutex_lock(&dbs_mutex);
433 for_each_online_cpu(i)
434 dbs_check_cpu(i);
435 schedule_delayed_work(&dbs_work,
436 usecs_to_jiffies(dbs_tuners_ins.sampling_rate));
437 mutex_unlock(&dbs_mutex);
440 static inline void dbs_timer_init(void)
442 schedule_delayed_work(&dbs_work,
443 usecs_to_jiffies(dbs_tuners_ins.sampling_rate));
444 return;
447 static inline void dbs_timer_exit(void)
449 cancel_delayed_work(&dbs_work);
450 return;
453 static int cpufreq_governor_dbs(struct cpufreq_policy *policy,
454 unsigned int event)
456 unsigned int cpu = policy->cpu;
457 struct cpu_dbs_info_s *this_dbs_info;
458 unsigned int j;
459 int rc;
461 this_dbs_info = &per_cpu(cpu_dbs_info, cpu);
463 switch (event) {
464 case CPUFREQ_GOV_START:
465 if ((!cpu_online(cpu)) ||
466 (!policy->cur))
467 return -EINVAL;
469 if (policy->cpuinfo.transition_latency >
470 (TRANSITION_LATENCY_LIMIT * 1000))
471 return -EINVAL;
472 if (this_dbs_info->enable) /* Already enabled */
473 break;
475 mutex_lock(&dbs_mutex);
477 rc = sysfs_create_group(&policy->kobj, &dbs_attr_group);
478 if (rc) {
479 mutex_unlock(&dbs_mutex);
480 return rc;
483 for_each_cpu_mask(j, policy->cpus) {
484 struct cpu_dbs_info_s *j_dbs_info;
485 j_dbs_info = &per_cpu(cpu_dbs_info, j);
486 j_dbs_info->cur_policy = policy;
488 j_dbs_info->prev_cpu_idle_up = get_cpu_idle_time(cpu);
489 j_dbs_info->prev_cpu_idle_down
490 = j_dbs_info->prev_cpu_idle_up;
492 this_dbs_info->enable = 1;
493 this_dbs_info->down_skip = 0;
494 this_dbs_info->requested_freq = policy->cur;
496 dbs_enable++;
498 * Start the timerschedule work, when this governor
499 * is used for first time
501 if (dbs_enable == 1) {
502 unsigned int latency;
503 /* policy latency is in nS. Convert it to uS first */
504 latency = policy->cpuinfo.transition_latency / 1000;
505 if (latency == 0)
506 latency = 1;
508 def_sampling_rate = 10 * latency *
509 DEF_SAMPLING_RATE_LATENCY_MULTIPLIER;
511 if (def_sampling_rate < MIN_STAT_SAMPLING_RATE)
512 def_sampling_rate = MIN_STAT_SAMPLING_RATE;
514 dbs_tuners_ins.sampling_rate = def_sampling_rate;
516 dbs_timer_init();
519 mutex_unlock(&dbs_mutex);
520 break;
522 case CPUFREQ_GOV_STOP:
523 mutex_lock(&dbs_mutex);
524 this_dbs_info->enable = 0;
525 sysfs_remove_group(&policy->kobj, &dbs_attr_group);
526 dbs_enable--;
528 * Stop the timerschedule work, when this governor
529 * is used for first time
531 if (dbs_enable == 0)
532 dbs_timer_exit();
534 mutex_unlock(&dbs_mutex);
536 break;
538 case CPUFREQ_GOV_LIMITS:
539 mutex_lock(&dbs_mutex);
540 if (policy->max < this_dbs_info->cur_policy->cur)
541 __cpufreq_driver_target(
542 this_dbs_info->cur_policy,
543 policy->max, CPUFREQ_RELATION_H);
544 else if (policy->min > this_dbs_info->cur_policy->cur)
545 __cpufreq_driver_target(
546 this_dbs_info->cur_policy,
547 policy->min, CPUFREQ_RELATION_L);
548 mutex_unlock(&dbs_mutex);
549 break;
551 return 0;
554 static struct cpufreq_governor cpufreq_gov_dbs = {
555 .name = "conservative",
556 .governor = cpufreq_governor_dbs,
557 .owner = THIS_MODULE,
560 static int __init cpufreq_gov_dbs_init(void)
562 return cpufreq_register_governor(&cpufreq_gov_dbs);
565 static void __exit cpufreq_gov_dbs_exit(void)
567 /* Make sure that the scheduled work is indeed not running */
568 flush_scheduled_work();
570 cpufreq_unregister_governor(&cpufreq_gov_dbs);
574 MODULE_AUTHOR ("Alexander Clouter <alex-kernel@digriz.org.uk>");
575 MODULE_DESCRIPTION ("'cpufreq_conservative' - A dynamic cpufreq governor for "
576 "Low Latency Frequency Transition capable processors "
577 "optimised for use in a battery environment");
578 MODULE_LICENSE ("GPL");
580 module_init(cpufreq_gov_dbs_init);
581 module_exit(cpufreq_gov_dbs_exit);