2 * Fast Userspace Mutexes (which I call "Futexes!").
3 * (C) Rusty Russell, IBM 2002
5 * Generalized futexes, futex requeueing, misc fixes by Ingo Molnar
6 * (C) Copyright 2003 Red Hat Inc, All Rights Reserved
8 * Removed page pinning, fix privately mapped COW pages and other cleanups
9 * (C) Copyright 2003, 2004 Jamie Lokier
11 * Thanks to Ben LaHaise for yelling "hashed waitqueues" loudly
12 * enough at me, Linus for the original (flawed) idea, Matthew
13 * Kirkwood for proof-of-concept implementation.
15 * "The futexes are also cursed."
16 * "But they come in a choice of three flavours!"
18 * This program is free software; you can redistribute it and/or modify
19 * it under the terms of the GNU General Public License as published by
20 * the Free Software Foundation; either version 2 of the License, or
21 * (at your option) any later version.
23 * This program is distributed in the hope that it will be useful,
24 * but WITHOUT ANY WARRANTY; without even the implied warranty of
25 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
26 * GNU General Public License for more details.
28 * You should have received a copy of the GNU General Public License
29 * along with this program; if not, write to the Free Software
30 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
32 #include <linux/slab.h>
33 #include <linux/poll.h>
35 #include <linux/file.h>
36 #include <linux/jhash.h>
37 #include <linux/init.h>
38 #include <linux/futex.h>
39 #include <linux/mount.h>
40 #include <linux/pagemap.h>
41 #include <linux/syscalls.h>
42 #include <linux/signal.h>
43 #include <asm/futex.h>
45 #define FUTEX_HASHBITS (CONFIG_BASE_SMALL ? 4 : 8)
48 * Futexes are matched on equal values of this key.
49 * The key type depends on whether it's a shared or private mapping.
50 * Don't rearrange members without looking at hash_futex().
52 * offset is aligned to a multiple of sizeof(u32) (== 4) by definition.
53 * We set bit 0 to indicate if it's an inode-based key.
74 * We use this hashed waitqueue instead of a normal wait_queue_t, so
75 * we can wake only the relevant ones (hashed queues may be shared).
77 * A futex_q has a woken state, just like tasks have TASK_RUNNING.
78 * It is considered woken when list_empty(&q->list) || q->lock_ptr == 0.
79 * The order of wakup is always to make the first condition true, then
80 * wake up q->waiters, then make the second condition true.
83 struct list_head list
;
84 wait_queue_head_t waiters
;
86 /* Which hash list lock to use. */
89 /* Key which the futex is hashed on. */
92 /* For fd, sigio sent using these. */
98 * Split the global futex_lock into every hash list lock.
100 struct futex_hash_bucket
{
102 struct list_head chain
;
105 static struct futex_hash_bucket futex_queues
[1<<FUTEX_HASHBITS
];
107 /* Futex-fs vfsmount entry: */
108 static struct vfsmount
*futex_mnt
;
111 * We hash on the keys returned from get_futex_key (see below).
113 static struct futex_hash_bucket
*hash_futex(union futex_key
*key
)
115 u32 hash
= jhash2((u32
*)&key
->both
.word
,
116 (sizeof(key
->both
.word
)+sizeof(key
->both
.ptr
))/4,
118 return &futex_queues
[hash
& ((1 << FUTEX_HASHBITS
)-1)];
122 * Return 1 if two futex_keys are equal, 0 otherwise.
124 static inline int match_futex(union futex_key
*key1
, union futex_key
*key2
)
126 return (key1
->both
.word
== key2
->both
.word
127 && key1
->both
.ptr
== key2
->both
.ptr
128 && key1
->both
.offset
== key2
->both
.offset
);
132 * Get parameters which are the keys for a futex.
134 * For shared mappings, it's (page->index, vma->vm_file->f_dentry->d_inode,
135 * offset_within_page). For private mappings, it's (uaddr, current->mm).
136 * We can usually work out the index without swapping in the page.
138 * Returns: 0, or negative error code.
139 * The key words are stored in *key on success.
141 * Should be called with ¤t->mm->mmap_sem but NOT any spinlocks.
143 static int get_futex_key(unsigned long uaddr
, union futex_key
*key
)
145 struct mm_struct
*mm
= current
->mm
;
146 struct vm_area_struct
*vma
;
151 * The futex address must be "naturally" aligned.
153 key
->both
.offset
= uaddr
% PAGE_SIZE
;
154 if (unlikely((key
->both
.offset
% sizeof(u32
)) != 0))
156 uaddr
-= key
->both
.offset
;
159 * The futex is hashed differently depending on whether
160 * it's in a shared or private mapping. So check vma first.
162 vma
= find_extend_vma(mm
, uaddr
);
169 if (unlikely((vma
->vm_flags
& (VM_IO
|VM_READ
)) != VM_READ
))
170 return (vma
->vm_flags
& VM_IO
) ? -EPERM
: -EACCES
;
173 * Private mappings are handled in a simple way.
175 * NOTE: When userspace waits on a MAP_SHARED mapping, even if
176 * it's a read-only handle, it's expected that futexes attach to
177 * the object not the particular process. Therefore we use
178 * VM_MAYSHARE here, not VM_SHARED which is restricted to shared
179 * mappings of _writable_ handles.
181 if (likely(!(vma
->vm_flags
& VM_MAYSHARE
))) {
182 key
->private.mm
= mm
;
183 key
->private.uaddr
= uaddr
;
188 * Linear file mappings are also simple.
190 key
->shared
.inode
= vma
->vm_file
->f_dentry
->d_inode
;
191 key
->both
.offset
++; /* Bit 0 of offset indicates inode-based key. */
192 if (likely(!(vma
->vm_flags
& VM_NONLINEAR
))) {
193 key
->shared
.pgoff
= (((uaddr
- vma
->vm_start
) >> PAGE_SHIFT
)
199 * We could walk the page table to read the non-linear
200 * pte, and get the page index without fetching the page
201 * from swap. But that's a lot of code to duplicate here
202 * for a rare case, so we simply fetch the page.
206 * Do a quick atomic lookup first - this is the fastpath.
208 spin_lock(¤t
->mm
->page_table_lock
);
209 page
= follow_page(mm
, uaddr
, 0);
210 if (likely(page
!= NULL
)) {
212 page
->index
<< (PAGE_CACHE_SHIFT
- PAGE_SHIFT
);
213 spin_unlock(¤t
->mm
->page_table_lock
);
216 spin_unlock(¤t
->mm
->page_table_lock
);
219 * Do it the general way.
221 err
= get_user_pages(current
, mm
, uaddr
, 1, 0, 0, &page
, NULL
);
224 page
->index
<< (PAGE_CACHE_SHIFT
- PAGE_SHIFT
);
232 * Take a reference to the resource addressed by a key.
233 * Can be called while holding spinlocks.
235 * NOTE: mmap_sem MUST be held between get_futex_key() and calling this
236 * function, if it is called at all. mmap_sem keeps key->shared.inode valid.
238 static inline void get_key_refs(union futex_key
*key
)
240 if (key
->both
.ptr
!= 0) {
241 if (key
->both
.offset
& 1)
242 atomic_inc(&key
->shared
.inode
->i_count
);
244 atomic_inc(&key
->private.mm
->mm_count
);
249 * Drop a reference to the resource addressed by a key.
250 * The hash bucket spinlock must not be held.
252 static void drop_key_refs(union futex_key
*key
)
254 if (key
->both
.ptr
!= 0) {
255 if (key
->both
.offset
& 1)
256 iput(key
->shared
.inode
);
258 mmdrop(key
->private.mm
);
262 static inline int get_futex_value_locked(int *dest
, int __user
*from
)
267 ret
= __copy_from_user_inatomic(dest
, from
, sizeof(int));
270 return ret
? -EFAULT
: 0;
274 * The hash bucket lock must be held when this is called.
275 * Afterwards, the futex_q must not be accessed.
277 static void wake_futex(struct futex_q
*q
)
279 list_del_init(&q
->list
);
281 send_sigio(&q
->filp
->f_owner
, q
->fd
, POLL_IN
);
283 * The lock in wake_up_all() is a crucial memory barrier after the
284 * list_del_init() and also before assigning to q->lock_ptr.
286 wake_up_all(&q
->waiters
);
288 * The waiting task can free the futex_q as soon as this is written,
289 * without taking any locks. This must come last.
295 * Wake up all waiters hashed on the physical page that is mapped
296 * to this virtual address:
298 static int futex_wake(unsigned long uaddr
, int nr_wake
)
301 struct futex_hash_bucket
*bh
;
302 struct list_head
*head
;
303 struct futex_q
*this, *next
;
306 down_read(¤t
->mm
->mmap_sem
);
308 ret
= get_futex_key(uaddr
, &key
);
309 if (unlikely(ret
!= 0))
312 bh
= hash_futex(&key
);
313 spin_lock(&bh
->lock
);
316 list_for_each_entry_safe(this, next
, head
, list
) {
317 if (match_futex (&this->key
, &key
)) {
319 if (++ret
>= nr_wake
)
324 spin_unlock(&bh
->lock
);
326 up_read(¤t
->mm
->mmap_sem
);
331 * Wake up all waiters hashed on the physical page that is mapped
332 * to this virtual address:
334 static int futex_wake_op(unsigned long uaddr1
, unsigned long uaddr2
, int nr_wake
, int nr_wake2
, int op
)
336 union futex_key key1
, key2
;
337 struct futex_hash_bucket
*bh1
, *bh2
;
338 struct list_head
*head
;
339 struct futex_q
*this, *next
;
340 int ret
, op_ret
, attempt
= 0;
343 down_read(¤t
->mm
->mmap_sem
);
345 ret
= get_futex_key(uaddr1
, &key1
);
346 if (unlikely(ret
!= 0))
348 ret
= get_futex_key(uaddr2
, &key2
);
349 if (unlikely(ret
!= 0))
352 bh1
= hash_futex(&key1
);
353 bh2
= hash_futex(&key2
);
357 spin_lock(&bh1
->lock
);
358 spin_lock(&bh2
->lock
);
360 spin_lock(&bh1
->lock
);
362 op_ret
= futex_atomic_op_inuser(op
, (int __user
*)uaddr2
);
363 if (unlikely(op_ret
< 0)) {
366 spin_unlock(&bh1
->lock
);
368 spin_unlock(&bh2
->lock
);
370 /* futex_atomic_op_inuser needs to both read and write
371 * *(int __user *)uaddr2, but we can't modify it
372 * non-atomically. Therefore, if get_user below is not
373 * enough, we need to handle the fault ourselves, while
374 * still holding the mmap_sem. */
376 struct vm_area_struct
* vma
;
377 struct mm_struct
*mm
= current
->mm
;
381 !(vma
= find_vma(mm
, uaddr2
)) ||
382 vma
->vm_start
> uaddr2
||
383 !(vma
->vm_flags
& VM_WRITE
))
386 switch (handle_mm_fault(mm
, vma
, uaddr2
, 1)) {
399 /* If we would have faulted, release mmap_sem,
400 * fault it in and start all over again. */
401 up_read(¤t
->mm
->mmap_sem
);
403 ret
= get_user(dummy
, (int __user
*)uaddr2
);
412 list_for_each_entry_safe(this, next
, head
, list
) {
413 if (match_futex (&this->key
, &key1
)) {
415 if (++ret
>= nr_wake
)
424 list_for_each_entry_safe(this, next
, head
, list
) {
425 if (match_futex (&this->key
, &key2
)) {
427 if (++op_ret
>= nr_wake2
)
434 spin_unlock(&bh1
->lock
);
436 spin_unlock(&bh2
->lock
);
438 up_read(¤t
->mm
->mmap_sem
);
443 * Requeue all waiters hashed on one physical page to another
446 static int futex_requeue(unsigned long uaddr1
, unsigned long uaddr2
,
447 int nr_wake
, int nr_requeue
, int *valp
)
449 union futex_key key1
, key2
;
450 struct futex_hash_bucket
*bh1
, *bh2
;
451 struct list_head
*head1
;
452 struct futex_q
*this, *next
;
453 int ret
, drop_count
= 0;
456 down_read(¤t
->mm
->mmap_sem
);
458 ret
= get_futex_key(uaddr1
, &key1
);
459 if (unlikely(ret
!= 0))
461 ret
= get_futex_key(uaddr2
, &key2
);
462 if (unlikely(ret
!= 0))
465 bh1
= hash_futex(&key1
);
466 bh2
= hash_futex(&key2
);
469 spin_lock(&bh1
->lock
);
470 spin_lock(&bh2
->lock
);
472 spin_lock(&bh1
->lock
);
474 if (likely(valp
!= NULL
)) {
477 ret
= get_futex_value_locked(&curval
, (int __user
*)uaddr1
);
480 spin_unlock(&bh1
->lock
);
482 spin_unlock(&bh2
->lock
);
484 /* If we would have faulted, release mmap_sem, fault
485 * it in and start all over again.
487 up_read(¤t
->mm
->mmap_sem
);
489 ret
= get_user(curval
, (int __user
*)uaddr1
);
496 if (curval
!= *valp
) {
503 list_for_each_entry_safe(this, next
, head1
, list
) {
504 if (!match_futex (&this->key
, &key1
))
506 if (++ret
<= nr_wake
) {
509 list_move_tail(&this->list
, &bh2
->chain
);
510 this->lock_ptr
= &bh2
->lock
;
515 if (ret
- nr_wake
>= nr_requeue
)
517 /* Make sure to stop if key1 == key2 */
518 if (head1
== &bh2
->chain
&& head1
!= &next
->list
)
524 spin_unlock(&bh1
->lock
);
526 spin_unlock(&bh2
->lock
);
528 /* drop_key_refs() must be called outside the spinlocks. */
529 while (--drop_count
>= 0)
530 drop_key_refs(&key1
);
533 up_read(¤t
->mm
->mmap_sem
);
537 /* The key must be already stored in q->key. */
538 static inline struct futex_hash_bucket
*
539 queue_lock(struct futex_q
*q
, int fd
, struct file
*filp
)
541 struct futex_hash_bucket
*bh
;
546 init_waitqueue_head(&q
->waiters
);
548 get_key_refs(&q
->key
);
549 bh
= hash_futex(&q
->key
);
550 q
->lock_ptr
= &bh
->lock
;
552 spin_lock(&bh
->lock
);
556 static inline void __queue_me(struct futex_q
*q
, struct futex_hash_bucket
*bh
)
558 list_add_tail(&q
->list
, &bh
->chain
);
559 spin_unlock(&bh
->lock
);
563 queue_unlock(struct futex_q
*q
, struct futex_hash_bucket
*bh
)
565 spin_unlock(&bh
->lock
);
566 drop_key_refs(&q
->key
);
570 * queue_me and unqueue_me must be called as a pair, each
571 * exactly once. They are called with the hashed spinlock held.
574 /* The key must be already stored in q->key. */
575 static void queue_me(struct futex_q
*q
, int fd
, struct file
*filp
)
577 struct futex_hash_bucket
*bh
;
578 bh
= queue_lock(q
, fd
, filp
);
582 /* Return 1 if we were still queued (ie. 0 means we were woken) */
583 static int unqueue_me(struct futex_q
*q
)
586 spinlock_t
*lock_ptr
;
588 /* In the common case we don't take the spinlock, which is nice. */
590 lock_ptr
= q
->lock_ptr
;
594 * q->lock_ptr can change between reading it and
595 * spin_lock(), causing us to take the wrong lock. This
596 * corrects the race condition.
598 * Reasoning goes like this: if we have the wrong lock,
599 * q->lock_ptr must have changed (maybe several times)
600 * between reading it and the spin_lock(). It can
601 * change again after the spin_lock() but only if it was
602 * already changed before the spin_lock(). It cannot,
603 * however, change back to the original value. Therefore
604 * we can detect whether we acquired the correct lock.
606 if (unlikely(lock_ptr
!= q
->lock_ptr
)) {
607 spin_unlock(lock_ptr
);
610 WARN_ON(list_empty(&q
->list
));
612 spin_unlock(lock_ptr
);
616 drop_key_refs(&q
->key
);
620 static int futex_wait(unsigned long uaddr
, int val
, unsigned long time
)
622 DECLARE_WAITQUEUE(wait
, current
);
625 struct futex_hash_bucket
*bh
;
628 down_read(¤t
->mm
->mmap_sem
);
630 ret
= get_futex_key(uaddr
, &q
.key
);
631 if (unlikely(ret
!= 0))
632 goto out_release_sem
;
634 bh
= queue_lock(&q
, -1, NULL
);
637 * Access the page AFTER the futex is queued.
638 * Order is important:
640 * Userspace waiter: val = var; if (cond(val)) futex_wait(&var, val);
641 * Userspace waker: if (cond(var)) { var = new; futex_wake(&var); }
643 * The basic logical guarantee of a futex is that it blocks ONLY
644 * if cond(var) is known to be true at the time of blocking, for
645 * any cond. If we queued after testing *uaddr, that would open
646 * a race condition where we could block indefinitely with
647 * cond(var) false, which would violate the guarantee.
649 * A consequence is that futex_wait() can return zero and absorb
650 * a wakeup when *uaddr != val on entry to the syscall. This is
653 * We hold the mmap semaphore, so the mapping cannot have changed
654 * since we looked it up in get_futex_key.
657 ret
= get_futex_value_locked(&curval
, (int __user
*)uaddr
);
660 queue_unlock(&q
, bh
);
662 /* If we would have faulted, release mmap_sem, fault it in and
663 * start all over again.
665 up_read(¤t
->mm
->mmap_sem
);
667 ret
= get_user(curval
, (int __user
*)uaddr
);
675 queue_unlock(&q
, bh
);
676 goto out_release_sem
;
679 /* Only actually queue if *uaddr contained val. */
683 * Now the futex is queued and we have checked the data, we
684 * don't want to hold mmap_sem while we sleep.
686 up_read(¤t
->mm
->mmap_sem
);
689 * There might have been scheduling since the queue_me(), as we
690 * cannot hold a spinlock across the get_user() in case it
691 * faults, and we cannot just set TASK_INTERRUPTIBLE state when
692 * queueing ourselves into the futex hash. This code thus has to
693 * rely on the futex_wake() code removing us from hash when it
697 /* add_wait_queue is the barrier after __set_current_state. */
698 __set_current_state(TASK_INTERRUPTIBLE
);
699 add_wait_queue(&q
.waiters
, &wait
);
701 * !list_empty() is safe here without any lock.
702 * q.lock_ptr != 0 is not safe, because of ordering against wakeup.
704 if (likely(!list_empty(&q
.list
)))
705 time
= schedule_timeout(time
);
706 __set_current_state(TASK_RUNNING
);
709 * NOTE: we don't remove ourselves from the waitqueue because
710 * we are the only user of it.
713 /* If we were woken (and unqueued), we succeeded, whatever. */
718 /* We expect signal_pending(current), but another thread may
719 * have handled it for us already. */
723 up_read(¤t
->mm
->mmap_sem
);
727 static int futex_close(struct inode
*inode
, struct file
*filp
)
729 struct futex_q
*q
= filp
->private_data
;
736 /* This is one-shot: once it's gone off you need a new fd */
737 static unsigned int futex_poll(struct file
*filp
,
738 struct poll_table_struct
*wait
)
740 struct futex_q
*q
= filp
->private_data
;
743 poll_wait(filp
, &q
->waiters
, wait
);
746 * list_empty() is safe here without any lock.
747 * q->lock_ptr != 0 is not safe, because of ordering against wakeup.
749 if (list_empty(&q
->list
))
750 ret
= POLLIN
| POLLRDNORM
;
755 static struct file_operations futex_fops
= {
756 .release
= futex_close
,
761 * Signal allows caller to avoid the race which would occur if they
762 * set the sigio stuff up afterwards.
764 static int futex_fd(unsigned long uaddr
, int signal
)
771 if (!valid_signal(signal
))
774 ret
= get_unused_fd();
777 filp
= get_empty_filp();
783 filp
->f_op
= &futex_fops
;
784 filp
->f_vfsmnt
= mntget(futex_mnt
);
785 filp
->f_dentry
= dget(futex_mnt
->mnt_root
);
786 filp
->f_mapping
= filp
->f_dentry
->d_inode
->i_mapping
;
789 err
= f_setown(filp
, current
->pid
, 1);
793 filp
->f_owner
.signum
= signal
;
796 q
= kmalloc(sizeof(*q
), GFP_KERNEL
);
802 down_read(¤t
->mm
->mmap_sem
);
803 err
= get_futex_key(uaddr
, &q
->key
);
805 if (unlikely(err
!= 0)) {
806 up_read(¤t
->mm
->mmap_sem
);
812 * queue_me() must be called before releasing mmap_sem, because
813 * key->shared.inode needs to be referenced while holding it.
815 filp
->private_data
= q
;
817 queue_me(q
, ret
, filp
);
818 up_read(¤t
->mm
->mmap_sem
);
820 /* Now we map fd to filp, so userspace can access it */
821 fd_install(ret
, filp
);
831 long do_futex(unsigned long uaddr
, int op
, int val
, unsigned long timeout
,
832 unsigned long uaddr2
, int val2
, int val3
)
838 ret
= futex_wait(uaddr
, val
, timeout
);
841 ret
= futex_wake(uaddr
, val
);
844 /* non-zero val means F_SETOWN(getpid()) & F_SETSIG(val) */
845 ret
= futex_fd(uaddr
, val
);
848 ret
= futex_requeue(uaddr
, uaddr2
, val
, val2
, NULL
);
850 case FUTEX_CMP_REQUEUE
:
851 ret
= futex_requeue(uaddr
, uaddr2
, val
, val2
, &val3
);
854 ret
= futex_wake_op(uaddr
, uaddr2
, val
, val2
, val3
);
863 asmlinkage
long sys_futex(u32 __user
*uaddr
, int op
, int val
,
864 struct timespec __user
*utime
, u32 __user
*uaddr2
,
868 unsigned long timeout
= MAX_SCHEDULE_TIMEOUT
;
871 if ((op
== FUTEX_WAIT
) && utime
) {
872 if (copy_from_user(&t
, utime
, sizeof(t
)) != 0)
874 timeout
= timespec_to_jiffies(&t
) + 1;
877 * requeue parameter in 'utime' if op == FUTEX_REQUEUE.
879 if (op
>= FUTEX_REQUEUE
)
880 val2
= (int) (unsigned long) utime
;
882 return do_futex((unsigned long)uaddr
, op
, val
, timeout
,
883 (unsigned long)uaddr2
, val2
, val3
);
886 static struct super_block
*
887 futexfs_get_sb(struct file_system_type
*fs_type
,
888 int flags
, const char *dev_name
, void *data
)
890 return get_sb_pseudo(fs_type
, "futex", NULL
, 0xBAD1DEA);
893 static struct file_system_type futex_fs_type
= {
895 .get_sb
= futexfs_get_sb
,
896 .kill_sb
= kill_anon_super
,
899 static int __init
init(void)
903 register_filesystem(&futex_fs_type
);
904 futex_mnt
= kern_mount(&futex_fs_type
);
906 for (i
= 0; i
< ARRAY_SIZE(futex_queues
); i
++) {
907 INIT_LIST_HEAD(&futex_queues
[i
].chain
);
908 spin_lock_init(&futex_queues
[i
].lock
);