memory cgroup enhancements: add memory.stat file
[linux-2.6/mini2440.git] / kernel / cgroup.c
blob4d67a39c58a825c59c8847a82cc214c1894a8aa7
1 /*
2 * Generic process-grouping system.
4 * Based originally on the cpuset system, extracted by Paul Menage
5 * Copyright (C) 2006 Google, Inc
7 * Copyright notices from the original cpuset code:
8 * --------------------------------------------------
9 * Copyright (C) 2003 BULL SA.
10 * Copyright (C) 2004-2006 Silicon Graphics, Inc.
12 * Portions derived from Patrick Mochel's sysfs code.
13 * sysfs is Copyright (c) 2001-3 Patrick Mochel
15 * 2003-10-10 Written by Simon Derr.
16 * 2003-10-22 Updates by Stephen Hemminger.
17 * 2004 May-July Rework by Paul Jackson.
18 * ---------------------------------------------------
20 * This file is subject to the terms and conditions of the GNU General Public
21 * License. See the file COPYING in the main directory of the Linux
22 * distribution for more details.
25 #include <linux/cgroup.h>
26 #include <linux/errno.h>
27 #include <linux/fs.h>
28 #include <linux/kernel.h>
29 #include <linux/list.h>
30 #include <linux/mm.h>
31 #include <linux/mutex.h>
32 #include <linux/mount.h>
33 #include <linux/pagemap.h>
34 #include <linux/proc_fs.h>
35 #include <linux/rcupdate.h>
36 #include <linux/sched.h>
37 #include <linux/backing-dev.h>
38 #include <linux/seq_file.h>
39 #include <linux/slab.h>
40 #include <linux/magic.h>
41 #include <linux/spinlock.h>
42 #include <linux/string.h>
43 #include <linux/sort.h>
44 #include <linux/kmod.h>
45 #include <linux/delayacct.h>
46 #include <linux/cgroupstats.h>
48 #include <asm/atomic.h>
50 static DEFINE_MUTEX(cgroup_mutex);
52 /* Generate an array of cgroup subsystem pointers */
53 #define SUBSYS(_x) &_x ## _subsys,
55 static struct cgroup_subsys *subsys[] = {
56 #include <linux/cgroup_subsys.h>
60 * A cgroupfs_root represents the root of a cgroup hierarchy,
61 * and may be associated with a superblock to form an active
62 * hierarchy
64 struct cgroupfs_root {
65 struct super_block *sb;
68 * The bitmask of subsystems intended to be attached to this
69 * hierarchy
71 unsigned long subsys_bits;
73 /* The bitmask of subsystems currently attached to this hierarchy */
74 unsigned long actual_subsys_bits;
76 /* A list running through the attached subsystems */
77 struct list_head subsys_list;
79 /* The root cgroup for this hierarchy */
80 struct cgroup top_cgroup;
82 /* Tracks how many cgroups are currently defined in hierarchy.*/
83 int number_of_cgroups;
85 /* A list running through the mounted hierarchies */
86 struct list_head root_list;
88 /* Hierarchy-specific flags */
89 unsigned long flags;
91 /* The path to use for release notifications. No locking
92 * between setting and use - so if userspace updates this
93 * while child cgroups exist, you could miss a
94 * notification. We ensure that it's always a valid
95 * NUL-terminated string */
96 char release_agent_path[PATH_MAX];
101 * The "rootnode" hierarchy is the "dummy hierarchy", reserved for the
102 * subsystems that are otherwise unattached - it never has more than a
103 * single cgroup, and all tasks are part of that cgroup.
105 static struct cgroupfs_root rootnode;
107 /* The list of hierarchy roots */
109 static LIST_HEAD(roots);
110 static int root_count;
112 /* dummytop is a shorthand for the dummy hierarchy's top cgroup */
113 #define dummytop (&rootnode.top_cgroup)
115 /* This flag indicates whether tasks in the fork and exit paths should
116 * take callback_mutex and check for fork/exit handlers to call. This
117 * avoids us having to do extra work in the fork/exit path if none of the
118 * subsystems need to be called.
120 static int need_forkexit_callback;
122 /* bits in struct cgroup flags field */
123 enum {
124 /* Control Group is dead */
125 CGRP_REMOVED,
126 /* Control Group has previously had a child cgroup or a task,
127 * but no longer (only if CGRP_NOTIFY_ON_RELEASE is set) */
128 CGRP_RELEASABLE,
129 /* Control Group requires release notifications to userspace */
130 CGRP_NOTIFY_ON_RELEASE,
133 /* convenient tests for these bits */
134 inline int cgroup_is_removed(const struct cgroup *cgrp)
136 return test_bit(CGRP_REMOVED, &cgrp->flags);
139 /* bits in struct cgroupfs_root flags field */
140 enum {
141 ROOT_NOPREFIX, /* mounted subsystems have no named prefix */
144 static int cgroup_is_releasable(const struct cgroup *cgrp)
146 const int bits =
147 (1 << CGRP_RELEASABLE) |
148 (1 << CGRP_NOTIFY_ON_RELEASE);
149 return (cgrp->flags & bits) == bits;
152 static int notify_on_release(const struct cgroup *cgrp)
154 return test_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
158 * for_each_subsys() allows you to iterate on each subsystem attached to
159 * an active hierarchy
161 #define for_each_subsys(_root, _ss) \
162 list_for_each_entry(_ss, &_root->subsys_list, sibling)
164 /* for_each_root() allows you to iterate across the active hierarchies */
165 #define for_each_root(_root) \
166 list_for_each_entry(_root, &roots, root_list)
168 /* the list of cgroups eligible for automatic release. Protected by
169 * release_list_lock */
170 static LIST_HEAD(release_list);
171 static DEFINE_SPINLOCK(release_list_lock);
172 static void cgroup_release_agent(struct work_struct *work);
173 static DECLARE_WORK(release_agent_work, cgroup_release_agent);
174 static void check_for_release(struct cgroup *cgrp);
176 /* Link structure for associating css_set objects with cgroups */
177 struct cg_cgroup_link {
179 * List running through cg_cgroup_links associated with a
180 * cgroup, anchored on cgroup->css_sets
182 struct list_head cgrp_link_list;
184 * List running through cg_cgroup_links pointing at a
185 * single css_set object, anchored on css_set->cg_links
187 struct list_head cg_link_list;
188 struct css_set *cg;
191 /* The default css_set - used by init and its children prior to any
192 * hierarchies being mounted. It contains a pointer to the root state
193 * for each subsystem. Also used to anchor the list of css_sets. Not
194 * reference-counted, to improve performance when child cgroups
195 * haven't been created.
198 static struct css_set init_css_set;
199 static struct cg_cgroup_link init_css_set_link;
201 /* css_set_lock protects the list of css_set objects, and the
202 * chain of tasks off each css_set. Nests outside task->alloc_lock
203 * due to cgroup_iter_start() */
204 static DEFINE_RWLOCK(css_set_lock);
205 static int css_set_count;
207 /* We don't maintain the lists running through each css_set to its
208 * task until after the first call to cgroup_iter_start(). This
209 * reduces the fork()/exit() overhead for people who have cgroups
210 * compiled into their kernel but not actually in use */
211 static int use_task_css_set_links;
213 /* When we create or destroy a css_set, the operation simply
214 * takes/releases a reference count on all the cgroups referenced
215 * by subsystems in this css_set. This can end up multiple-counting
216 * some cgroups, but that's OK - the ref-count is just a
217 * busy/not-busy indicator; ensuring that we only count each cgroup
218 * once would require taking a global lock to ensure that no
219 * subsystems moved between hierarchies while we were doing so.
221 * Possible TODO: decide at boot time based on the number of
222 * registered subsystems and the number of CPUs or NUMA nodes whether
223 * it's better for performance to ref-count every subsystem, or to
224 * take a global lock and only add one ref count to each hierarchy.
228 * unlink a css_set from the list and free it
230 static void unlink_css_set(struct css_set *cg)
232 write_lock(&css_set_lock);
233 list_del(&cg->list);
234 css_set_count--;
235 while (!list_empty(&cg->cg_links)) {
236 struct cg_cgroup_link *link;
237 link = list_entry(cg->cg_links.next,
238 struct cg_cgroup_link, cg_link_list);
239 list_del(&link->cg_link_list);
240 list_del(&link->cgrp_link_list);
241 kfree(link);
243 write_unlock(&css_set_lock);
246 static void __release_css_set(struct kref *k, int taskexit)
248 int i;
249 struct css_set *cg = container_of(k, struct css_set, ref);
251 unlink_css_set(cg);
253 rcu_read_lock();
254 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
255 struct cgroup *cgrp = cg->subsys[i]->cgroup;
256 if (atomic_dec_and_test(&cgrp->count) &&
257 notify_on_release(cgrp)) {
258 if (taskexit)
259 set_bit(CGRP_RELEASABLE, &cgrp->flags);
260 check_for_release(cgrp);
263 rcu_read_unlock();
264 kfree(cg);
267 static void release_css_set(struct kref *k)
269 __release_css_set(k, 0);
272 static void release_css_set_taskexit(struct kref *k)
274 __release_css_set(k, 1);
278 * refcounted get/put for css_set objects
280 static inline void get_css_set(struct css_set *cg)
282 kref_get(&cg->ref);
285 static inline void put_css_set(struct css_set *cg)
287 kref_put(&cg->ref, release_css_set);
290 static inline void put_css_set_taskexit(struct css_set *cg)
292 kref_put(&cg->ref, release_css_set_taskexit);
296 * find_existing_css_set() is a helper for
297 * find_css_set(), and checks to see whether an existing
298 * css_set is suitable. This currently walks a linked-list for
299 * simplicity; a later patch will use a hash table for better
300 * performance
302 * oldcg: the cgroup group that we're using before the cgroup
303 * transition
305 * cgrp: the cgroup that we're moving into
307 * template: location in which to build the desired set of subsystem
308 * state objects for the new cgroup group
311 static struct css_set *find_existing_css_set(
312 struct css_set *oldcg,
313 struct cgroup *cgrp,
314 struct cgroup_subsys_state *template[])
316 int i;
317 struct cgroupfs_root *root = cgrp->root;
318 struct list_head *l = &init_css_set.list;
320 /* Built the set of subsystem state objects that we want to
321 * see in the new css_set */
322 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
323 if (root->subsys_bits & (1ull << i)) {
324 /* Subsystem is in this hierarchy. So we want
325 * the subsystem state from the new
326 * cgroup */
327 template[i] = cgrp->subsys[i];
328 } else {
329 /* Subsystem is not in this hierarchy, so we
330 * don't want to change the subsystem state */
331 template[i] = oldcg->subsys[i];
335 /* Look through existing cgroup groups to find one to reuse */
336 do {
337 struct css_set *cg =
338 list_entry(l, struct css_set, list);
340 if (!memcmp(template, cg->subsys, sizeof(cg->subsys))) {
341 /* All subsystems matched */
342 return cg;
344 /* Try the next cgroup group */
345 l = l->next;
346 } while (l != &init_css_set.list);
348 /* No existing cgroup group matched */
349 return NULL;
353 * allocate_cg_links() allocates "count" cg_cgroup_link structures
354 * and chains them on tmp through their cgrp_link_list fields. Returns 0 on
355 * success or a negative error
358 static int allocate_cg_links(int count, struct list_head *tmp)
360 struct cg_cgroup_link *link;
361 int i;
362 INIT_LIST_HEAD(tmp);
363 for (i = 0; i < count; i++) {
364 link = kmalloc(sizeof(*link), GFP_KERNEL);
365 if (!link) {
366 while (!list_empty(tmp)) {
367 link = list_entry(tmp->next,
368 struct cg_cgroup_link,
369 cgrp_link_list);
370 list_del(&link->cgrp_link_list);
371 kfree(link);
373 return -ENOMEM;
375 list_add(&link->cgrp_link_list, tmp);
377 return 0;
380 static void free_cg_links(struct list_head *tmp)
382 while (!list_empty(tmp)) {
383 struct cg_cgroup_link *link;
384 link = list_entry(tmp->next,
385 struct cg_cgroup_link,
386 cgrp_link_list);
387 list_del(&link->cgrp_link_list);
388 kfree(link);
393 * find_css_set() takes an existing cgroup group and a
394 * cgroup object, and returns a css_set object that's
395 * equivalent to the old group, but with the given cgroup
396 * substituted into the appropriate hierarchy. Must be called with
397 * cgroup_mutex held
400 static struct css_set *find_css_set(
401 struct css_set *oldcg, struct cgroup *cgrp)
403 struct css_set *res;
404 struct cgroup_subsys_state *template[CGROUP_SUBSYS_COUNT];
405 int i;
407 struct list_head tmp_cg_links;
408 struct cg_cgroup_link *link;
410 /* First see if we already have a cgroup group that matches
411 * the desired set */
412 write_lock(&css_set_lock);
413 res = find_existing_css_set(oldcg, cgrp, template);
414 if (res)
415 get_css_set(res);
416 write_unlock(&css_set_lock);
418 if (res)
419 return res;
421 res = kmalloc(sizeof(*res), GFP_KERNEL);
422 if (!res)
423 return NULL;
425 /* Allocate all the cg_cgroup_link objects that we'll need */
426 if (allocate_cg_links(root_count, &tmp_cg_links) < 0) {
427 kfree(res);
428 return NULL;
431 kref_init(&res->ref);
432 INIT_LIST_HEAD(&res->cg_links);
433 INIT_LIST_HEAD(&res->tasks);
435 /* Copy the set of subsystem state objects generated in
436 * find_existing_css_set() */
437 memcpy(res->subsys, template, sizeof(res->subsys));
439 write_lock(&css_set_lock);
440 /* Add reference counts and links from the new css_set. */
441 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
442 struct cgroup *cgrp = res->subsys[i]->cgroup;
443 struct cgroup_subsys *ss = subsys[i];
444 atomic_inc(&cgrp->count);
446 * We want to add a link once per cgroup, so we
447 * only do it for the first subsystem in each
448 * hierarchy
450 if (ss->root->subsys_list.next == &ss->sibling) {
451 BUG_ON(list_empty(&tmp_cg_links));
452 link = list_entry(tmp_cg_links.next,
453 struct cg_cgroup_link,
454 cgrp_link_list);
455 list_del(&link->cgrp_link_list);
456 list_add(&link->cgrp_link_list, &cgrp->css_sets);
457 link->cg = res;
458 list_add(&link->cg_link_list, &res->cg_links);
461 if (list_empty(&rootnode.subsys_list)) {
462 link = list_entry(tmp_cg_links.next,
463 struct cg_cgroup_link,
464 cgrp_link_list);
465 list_del(&link->cgrp_link_list);
466 list_add(&link->cgrp_link_list, &dummytop->css_sets);
467 link->cg = res;
468 list_add(&link->cg_link_list, &res->cg_links);
471 BUG_ON(!list_empty(&tmp_cg_links));
473 /* Link this cgroup group into the list */
474 list_add(&res->list, &init_css_set.list);
475 css_set_count++;
476 INIT_LIST_HEAD(&res->tasks);
477 write_unlock(&css_set_lock);
479 return res;
483 * There is one global cgroup mutex. We also require taking
484 * task_lock() when dereferencing a task's cgroup subsys pointers.
485 * See "The task_lock() exception", at the end of this comment.
487 * A task must hold cgroup_mutex to modify cgroups.
489 * Any task can increment and decrement the count field without lock.
490 * So in general, code holding cgroup_mutex can't rely on the count
491 * field not changing. However, if the count goes to zero, then only
492 * attach_task() can increment it again. Because a count of zero
493 * means that no tasks are currently attached, therefore there is no
494 * way a task attached to that cgroup can fork (the other way to
495 * increment the count). So code holding cgroup_mutex can safely
496 * assume that if the count is zero, it will stay zero. Similarly, if
497 * a task holds cgroup_mutex on a cgroup with zero count, it
498 * knows that the cgroup won't be removed, as cgroup_rmdir()
499 * needs that mutex.
501 * The cgroup_common_file_write handler for operations that modify
502 * the cgroup hierarchy holds cgroup_mutex across the entire operation,
503 * single threading all such cgroup modifications across the system.
505 * The fork and exit callbacks cgroup_fork() and cgroup_exit(), don't
506 * (usually) take cgroup_mutex. These are the two most performance
507 * critical pieces of code here. The exception occurs on cgroup_exit(),
508 * when a task in a notify_on_release cgroup exits. Then cgroup_mutex
509 * is taken, and if the cgroup count is zero, a usermode call made
510 * to /sbin/cgroup_release_agent with the name of the cgroup (path
511 * relative to the root of cgroup file system) as the argument.
513 * A cgroup can only be deleted if both its 'count' of using tasks
514 * is zero, and its list of 'children' cgroups is empty. Since all
515 * tasks in the system use _some_ cgroup, and since there is always at
516 * least one task in the system (init, pid == 1), therefore, top_cgroup
517 * always has either children cgroups and/or using tasks. So we don't
518 * need a special hack to ensure that top_cgroup cannot be deleted.
520 * The task_lock() exception
522 * The need for this exception arises from the action of
523 * attach_task(), which overwrites one tasks cgroup pointer with
524 * another. It does so using cgroup_mutexe, however there are
525 * several performance critical places that need to reference
526 * task->cgroup without the expense of grabbing a system global
527 * mutex. Therefore except as noted below, when dereferencing or, as
528 * in attach_task(), modifying a task'ss cgroup pointer we use
529 * task_lock(), which acts on a spinlock (task->alloc_lock) already in
530 * the task_struct routinely used for such matters.
532 * P.S. One more locking exception. RCU is used to guard the
533 * update of a tasks cgroup pointer by attach_task()
537 * cgroup_lock - lock out any changes to cgroup structures
541 void cgroup_lock(void)
543 mutex_lock(&cgroup_mutex);
547 * cgroup_unlock - release lock on cgroup changes
549 * Undo the lock taken in a previous cgroup_lock() call.
552 void cgroup_unlock(void)
554 mutex_unlock(&cgroup_mutex);
558 * A couple of forward declarations required, due to cyclic reference loop:
559 * cgroup_mkdir -> cgroup_create -> cgroup_populate_dir ->
560 * cgroup_add_file -> cgroup_create_file -> cgroup_dir_inode_operations
561 * -> cgroup_mkdir.
564 static int cgroup_mkdir(struct inode *dir, struct dentry *dentry, int mode);
565 static int cgroup_rmdir(struct inode *unused_dir, struct dentry *dentry);
566 static int cgroup_populate_dir(struct cgroup *cgrp);
567 static struct inode_operations cgroup_dir_inode_operations;
568 static struct file_operations proc_cgroupstats_operations;
570 static struct backing_dev_info cgroup_backing_dev_info = {
571 .capabilities = BDI_CAP_NO_ACCT_DIRTY | BDI_CAP_NO_WRITEBACK,
574 static struct inode *cgroup_new_inode(mode_t mode, struct super_block *sb)
576 struct inode *inode = new_inode(sb);
578 if (inode) {
579 inode->i_mode = mode;
580 inode->i_uid = current->fsuid;
581 inode->i_gid = current->fsgid;
582 inode->i_blocks = 0;
583 inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
584 inode->i_mapping->backing_dev_info = &cgroup_backing_dev_info;
586 return inode;
589 static void cgroup_diput(struct dentry *dentry, struct inode *inode)
591 /* is dentry a directory ? if so, kfree() associated cgroup */
592 if (S_ISDIR(inode->i_mode)) {
593 struct cgroup *cgrp = dentry->d_fsdata;
594 struct cgroup_subsys *ss;
595 BUG_ON(!(cgroup_is_removed(cgrp)));
596 /* It's possible for external users to be holding css
597 * reference counts on a cgroup; css_put() needs to
598 * be able to access the cgroup after decrementing
599 * the reference count in order to know if it needs to
600 * queue the cgroup to be handled by the release
601 * agent */
602 synchronize_rcu();
604 mutex_lock(&cgroup_mutex);
606 * Release the subsystem state objects.
608 for_each_subsys(cgrp->root, ss) {
609 if (cgrp->subsys[ss->subsys_id])
610 ss->destroy(ss, cgrp);
613 cgrp->root->number_of_cgroups--;
614 mutex_unlock(&cgroup_mutex);
616 /* Drop the active superblock reference that we took when we
617 * created the cgroup */
618 deactivate_super(cgrp->root->sb);
620 kfree(cgrp);
622 iput(inode);
625 static void remove_dir(struct dentry *d)
627 struct dentry *parent = dget(d->d_parent);
629 d_delete(d);
630 simple_rmdir(parent->d_inode, d);
631 dput(parent);
634 static void cgroup_clear_directory(struct dentry *dentry)
636 struct list_head *node;
638 BUG_ON(!mutex_is_locked(&dentry->d_inode->i_mutex));
639 spin_lock(&dcache_lock);
640 node = dentry->d_subdirs.next;
641 while (node != &dentry->d_subdirs) {
642 struct dentry *d = list_entry(node, struct dentry, d_u.d_child);
643 list_del_init(node);
644 if (d->d_inode) {
645 /* This should never be called on a cgroup
646 * directory with child cgroups */
647 BUG_ON(d->d_inode->i_mode & S_IFDIR);
648 d = dget_locked(d);
649 spin_unlock(&dcache_lock);
650 d_delete(d);
651 simple_unlink(dentry->d_inode, d);
652 dput(d);
653 spin_lock(&dcache_lock);
655 node = dentry->d_subdirs.next;
657 spin_unlock(&dcache_lock);
661 * NOTE : the dentry must have been dget()'ed
663 static void cgroup_d_remove_dir(struct dentry *dentry)
665 cgroup_clear_directory(dentry);
667 spin_lock(&dcache_lock);
668 list_del_init(&dentry->d_u.d_child);
669 spin_unlock(&dcache_lock);
670 remove_dir(dentry);
673 static int rebind_subsystems(struct cgroupfs_root *root,
674 unsigned long final_bits)
676 unsigned long added_bits, removed_bits;
677 struct cgroup *cgrp = &root->top_cgroup;
678 int i;
680 removed_bits = root->actual_subsys_bits & ~final_bits;
681 added_bits = final_bits & ~root->actual_subsys_bits;
682 /* Check that any added subsystems are currently free */
683 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
684 unsigned long long bit = 1ull << i;
685 struct cgroup_subsys *ss = subsys[i];
686 if (!(bit & added_bits))
687 continue;
688 if (ss->root != &rootnode) {
689 /* Subsystem isn't free */
690 return -EBUSY;
694 /* Currently we don't handle adding/removing subsystems when
695 * any child cgroups exist. This is theoretically supportable
696 * but involves complex error handling, so it's being left until
697 * later */
698 if (!list_empty(&cgrp->children))
699 return -EBUSY;
701 /* Process each subsystem */
702 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
703 struct cgroup_subsys *ss = subsys[i];
704 unsigned long bit = 1UL << i;
705 if (bit & added_bits) {
706 /* We're binding this subsystem to this hierarchy */
707 BUG_ON(cgrp->subsys[i]);
708 BUG_ON(!dummytop->subsys[i]);
709 BUG_ON(dummytop->subsys[i]->cgroup != dummytop);
710 cgrp->subsys[i] = dummytop->subsys[i];
711 cgrp->subsys[i]->cgroup = cgrp;
712 list_add(&ss->sibling, &root->subsys_list);
713 rcu_assign_pointer(ss->root, root);
714 if (ss->bind)
715 ss->bind(ss, cgrp);
717 } else if (bit & removed_bits) {
718 /* We're removing this subsystem */
719 BUG_ON(cgrp->subsys[i] != dummytop->subsys[i]);
720 BUG_ON(cgrp->subsys[i]->cgroup != cgrp);
721 if (ss->bind)
722 ss->bind(ss, dummytop);
723 dummytop->subsys[i]->cgroup = dummytop;
724 cgrp->subsys[i] = NULL;
725 rcu_assign_pointer(subsys[i]->root, &rootnode);
726 list_del(&ss->sibling);
727 } else if (bit & final_bits) {
728 /* Subsystem state should already exist */
729 BUG_ON(!cgrp->subsys[i]);
730 } else {
731 /* Subsystem state shouldn't exist */
732 BUG_ON(cgrp->subsys[i]);
735 root->subsys_bits = root->actual_subsys_bits = final_bits;
736 synchronize_rcu();
738 return 0;
741 static int cgroup_show_options(struct seq_file *seq, struct vfsmount *vfs)
743 struct cgroupfs_root *root = vfs->mnt_sb->s_fs_info;
744 struct cgroup_subsys *ss;
746 mutex_lock(&cgroup_mutex);
747 for_each_subsys(root, ss)
748 seq_printf(seq, ",%s", ss->name);
749 if (test_bit(ROOT_NOPREFIX, &root->flags))
750 seq_puts(seq, ",noprefix");
751 if (strlen(root->release_agent_path))
752 seq_printf(seq, ",release_agent=%s", root->release_agent_path);
753 mutex_unlock(&cgroup_mutex);
754 return 0;
757 struct cgroup_sb_opts {
758 unsigned long subsys_bits;
759 unsigned long flags;
760 char *release_agent;
763 /* Convert a hierarchy specifier into a bitmask of subsystems and
764 * flags. */
765 static int parse_cgroupfs_options(char *data,
766 struct cgroup_sb_opts *opts)
768 char *token, *o = data ?: "all";
770 opts->subsys_bits = 0;
771 opts->flags = 0;
772 opts->release_agent = NULL;
774 while ((token = strsep(&o, ",")) != NULL) {
775 if (!*token)
776 return -EINVAL;
777 if (!strcmp(token, "all")) {
778 opts->subsys_bits = (1 << CGROUP_SUBSYS_COUNT) - 1;
779 } else if (!strcmp(token, "noprefix")) {
780 set_bit(ROOT_NOPREFIX, &opts->flags);
781 } else if (!strncmp(token, "release_agent=", 14)) {
782 /* Specifying two release agents is forbidden */
783 if (opts->release_agent)
784 return -EINVAL;
785 opts->release_agent = kzalloc(PATH_MAX, GFP_KERNEL);
786 if (!opts->release_agent)
787 return -ENOMEM;
788 strncpy(opts->release_agent, token + 14, PATH_MAX - 1);
789 opts->release_agent[PATH_MAX - 1] = 0;
790 } else {
791 struct cgroup_subsys *ss;
792 int i;
793 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
794 ss = subsys[i];
795 if (!strcmp(token, ss->name)) {
796 set_bit(i, &opts->subsys_bits);
797 break;
800 if (i == CGROUP_SUBSYS_COUNT)
801 return -ENOENT;
805 /* We can't have an empty hierarchy */
806 if (!opts->subsys_bits)
807 return -EINVAL;
809 return 0;
812 static int cgroup_remount(struct super_block *sb, int *flags, char *data)
814 int ret = 0;
815 struct cgroupfs_root *root = sb->s_fs_info;
816 struct cgroup *cgrp = &root->top_cgroup;
817 struct cgroup_sb_opts opts;
819 mutex_lock(&cgrp->dentry->d_inode->i_mutex);
820 mutex_lock(&cgroup_mutex);
822 /* See what subsystems are wanted */
823 ret = parse_cgroupfs_options(data, &opts);
824 if (ret)
825 goto out_unlock;
827 /* Don't allow flags to change at remount */
828 if (opts.flags != root->flags) {
829 ret = -EINVAL;
830 goto out_unlock;
833 ret = rebind_subsystems(root, opts.subsys_bits);
835 /* (re)populate subsystem files */
836 if (!ret)
837 cgroup_populate_dir(cgrp);
839 if (opts.release_agent)
840 strcpy(root->release_agent_path, opts.release_agent);
841 out_unlock:
842 if (opts.release_agent)
843 kfree(opts.release_agent);
844 mutex_unlock(&cgroup_mutex);
845 mutex_unlock(&cgrp->dentry->d_inode->i_mutex);
846 return ret;
849 static struct super_operations cgroup_ops = {
850 .statfs = simple_statfs,
851 .drop_inode = generic_delete_inode,
852 .show_options = cgroup_show_options,
853 .remount_fs = cgroup_remount,
856 static void init_cgroup_root(struct cgroupfs_root *root)
858 struct cgroup *cgrp = &root->top_cgroup;
859 INIT_LIST_HEAD(&root->subsys_list);
860 INIT_LIST_HEAD(&root->root_list);
861 root->number_of_cgroups = 1;
862 cgrp->root = root;
863 cgrp->top_cgroup = cgrp;
864 INIT_LIST_HEAD(&cgrp->sibling);
865 INIT_LIST_HEAD(&cgrp->children);
866 INIT_LIST_HEAD(&cgrp->css_sets);
867 INIT_LIST_HEAD(&cgrp->release_list);
870 static int cgroup_test_super(struct super_block *sb, void *data)
872 struct cgroupfs_root *new = data;
873 struct cgroupfs_root *root = sb->s_fs_info;
875 /* First check subsystems */
876 if (new->subsys_bits != root->subsys_bits)
877 return 0;
879 /* Next check flags */
880 if (new->flags != root->flags)
881 return 0;
883 return 1;
886 static int cgroup_set_super(struct super_block *sb, void *data)
888 int ret;
889 struct cgroupfs_root *root = data;
891 ret = set_anon_super(sb, NULL);
892 if (ret)
893 return ret;
895 sb->s_fs_info = root;
896 root->sb = sb;
898 sb->s_blocksize = PAGE_CACHE_SIZE;
899 sb->s_blocksize_bits = PAGE_CACHE_SHIFT;
900 sb->s_magic = CGROUP_SUPER_MAGIC;
901 sb->s_op = &cgroup_ops;
903 return 0;
906 static int cgroup_get_rootdir(struct super_block *sb)
908 struct inode *inode =
909 cgroup_new_inode(S_IFDIR | S_IRUGO | S_IXUGO | S_IWUSR, sb);
910 struct dentry *dentry;
912 if (!inode)
913 return -ENOMEM;
915 inode->i_op = &simple_dir_inode_operations;
916 inode->i_fop = &simple_dir_operations;
917 inode->i_op = &cgroup_dir_inode_operations;
918 /* directories start off with i_nlink == 2 (for "." entry) */
919 inc_nlink(inode);
920 dentry = d_alloc_root(inode);
921 if (!dentry) {
922 iput(inode);
923 return -ENOMEM;
925 sb->s_root = dentry;
926 return 0;
929 static int cgroup_get_sb(struct file_system_type *fs_type,
930 int flags, const char *unused_dev_name,
931 void *data, struct vfsmount *mnt)
933 struct cgroup_sb_opts opts;
934 int ret = 0;
935 struct super_block *sb;
936 struct cgroupfs_root *root;
937 struct list_head tmp_cg_links, *l;
938 INIT_LIST_HEAD(&tmp_cg_links);
940 /* First find the desired set of subsystems */
941 ret = parse_cgroupfs_options(data, &opts);
942 if (ret) {
943 if (opts.release_agent)
944 kfree(opts.release_agent);
945 return ret;
948 root = kzalloc(sizeof(*root), GFP_KERNEL);
949 if (!root)
950 return -ENOMEM;
952 init_cgroup_root(root);
953 root->subsys_bits = opts.subsys_bits;
954 root->flags = opts.flags;
955 if (opts.release_agent) {
956 strcpy(root->release_agent_path, opts.release_agent);
957 kfree(opts.release_agent);
960 sb = sget(fs_type, cgroup_test_super, cgroup_set_super, root);
962 if (IS_ERR(sb)) {
963 kfree(root);
964 return PTR_ERR(sb);
967 if (sb->s_fs_info != root) {
968 /* Reusing an existing superblock */
969 BUG_ON(sb->s_root == NULL);
970 kfree(root);
971 root = NULL;
972 } else {
973 /* New superblock */
974 struct cgroup *cgrp = &root->top_cgroup;
975 struct inode *inode;
977 BUG_ON(sb->s_root != NULL);
979 ret = cgroup_get_rootdir(sb);
980 if (ret)
981 goto drop_new_super;
982 inode = sb->s_root->d_inode;
984 mutex_lock(&inode->i_mutex);
985 mutex_lock(&cgroup_mutex);
988 * We're accessing css_set_count without locking
989 * css_set_lock here, but that's OK - it can only be
990 * increased by someone holding cgroup_lock, and
991 * that's us. The worst that can happen is that we
992 * have some link structures left over
994 ret = allocate_cg_links(css_set_count, &tmp_cg_links);
995 if (ret) {
996 mutex_unlock(&cgroup_mutex);
997 mutex_unlock(&inode->i_mutex);
998 goto drop_new_super;
1001 ret = rebind_subsystems(root, root->subsys_bits);
1002 if (ret == -EBUSY) {
1003 mutex_unlock(&cgroup_mutex);
1004 mutex_unlock(&inode->i_mutex);
1005 goto drop_new_super;
1008 /* EBUSY should be the only error here */
1009 BUG_ON(ret);
1011 list_add(&root->root_list, &roots);
1012 root_count++;
1014 sb->s_root->d_fsdata = &root->top_cgroup;
1015 root->top_cgroup.dentry = sb->s_root;
1017 /* Link the top cgroup in this hierarchy into all
1018 * the css_set objects */
1019 write_lock(&css_set_lock);
1020 l = &init_css_set.list;
1021 do {
1022 struct css_set *cg;
1023 struct cg_cgroup_link *link;
1024 cg = list_entry(l, struct css_set, list);
1025 BUG_ON(list_empty(&tmp_cg_links));
1026 link = list_entry(tmp_cg_links.next,
1027 struct cg_cgroup_link,
1028 cgrp_link_list);
1029 list_del(&link->cgrp_link_list);
1030 link->cg = cg;
1031 list_add(&link->cgrp_link_list,
1032 &root->top_cgroup.css_sets);
1033 list_add(&link->cg_link_list, &cg->cg_links);
1034 l = l->next;
1035 } while (l != &init_css_set.list);
1036 write_unlock(&css_set_lock);
1038 free_cg_links(&tmp_cg_links);
1040 BUG_ON(!list_empty(&cgrp->sibling));
1041 BUG_ON(!list_empty(&cgrp->children));
1042 BUG_ON(root->number_of_cgroups != 1);
1044 cgroup_populate_dir(cgrp);
1045 mutex_unlock(&inode->i_mutex);
1046 mutex_unlock(&cgroup_mutex);
1049 return simple_set_mnt(mnt, sb);
1051 drop_new_super:
1052 up_write(&sb->s_umount);
1053 deactivate_super(sb);
1054 free_cg_links(&tmp_cg_links);
1055 return ret;
1058 static void cgroup_kill_sb(struct super_block *sb) {
1059 struct cgroupfs_root *root = sb->s_fs_info;
1060 struct cgroup *cgrp = &root->top_cgroup;
1061 int ret;
1063 BUG_ON(!root);
1065 BUG_ON(root->number_of_cgroups != 1);
1066 BUG_ON(!list_empty(&cgrp->children));
1067 BUG_ON(!list_empty(&cgrp->sibling));
1069 mutex_lock(&cgroup_mutex);
1071 /* Rebind all subsystems back to the default hierarchy */
1072 ret = rebind_subsystems(root, 0);
1073 /* Shouldn't be able to fail ... */
1074 BUG_ON(ret);
1077 * Release all the links from css_sets to this hierarchy's
1078 * root cgroup
1080 write_lock(&css_set_lock);
1081 while (!list_empty(&cgrp->css_sets)) {
1082 struct cg_cgroup_link *link;
1083 link = list_entry(cgrp->css_sets.next,
1084 struct cg_cgroup_link, cgrp_link_list);
1085 list_del(&link->cg_link_list);
1086 list_del(&link->cgrp_link_list);
1087 kfree(link);
1089 write_unlock(&css_set_lock);
1091 if (!list_empty(&root->root_list)) {
1092 list_del(&root->root_list);
1093 root_count--;
1095 mutex_unlock(&cgroup_mutex);
1097 kfree(root);
1098 kill_litter_super(sb);
1101 static struct file_system_type cgroup_fs_type = {
1102 .name = "cgroup",
1103 .get_sb = cgroup_get_sb,
1104 .kill_sb = cgroup_kill_sb,
1107 static inline struct cgroup *__d_cgrp(struct dentry *dentry)
1109 return dentry->d_fsdata;
1112 static inline struct cftype *__d_cft(struct dentry *dentry)
1114 return dentry->d_fsdata;
1118 * Called with cgroup_mutex held. Writes path of cgroup into buf.
1119 * Returns 0 on success, -errno on error.
1121 int cgroup_path(const struct cgroup *cgrp, char *buf, int buflen)
1123 char *start;
1125 if (cgrp == dummytop) {
1127 * Inactive subsystems have no dentry for their root
1128 * cgroup
1130 strcpy(buf, "/");
1131 return 0;
1134 start = buf + buflen;
1136 *--start = '\0';
1137 for (;;) {
1138 int len = cgrp->dentry->d_name.len;
1139 if ((start -= len) < buf)
1140 return -ENAMETOOLONG;
1141 memcpy(start, cgrp->dentry->d_name.name, len);
1142 cgrp = cgrp->parent;
1143 if (!cgrp)
1144 break;
1145 if (!cgrp->parent)
1146 continue;
1147 if (--start < buf)
1148 return -ENAMETOOLONG;
1149 *start = '/';
1151 memmove(buf, start, buf + buflen - start);
1152 return 0;
1156 * Return the first subsystem attached to a cgroup's hierarchy, and
1157 * its subsystem id.
1160 static void get_first_subsys(const struct cgroup *cgrp,
1161 struct cgroup_subsys_state **css, int *subsys_id)
1163 const struct cgroupfs_root *root = cgrp->root;
1164 const struct cgroup_subsys *test_ss;
1165 BUG_ON(list_empty(&root->subsys_list));
1166 test_ss = list_entry(root->subsys_list.next,
1167 struct cgroup_subsys, sibling);
1168 if (css) {
1169 *css = cgrp->subsys[test_ss->subsys_id];
1170 BUG_ON(!*css);
1172 if (subsys_id)
1173 *subsys_id = test_ss->subsys_id;
1177 * Attach task 'tsk' to cgroup 'cgrp'
1179 * Call holding cgroup_mutex. May take task_lock of
1180 * the task 'pid' during call.
1182 static int attach_task(struct cgroup *cgrp, struct task_struct *tsk)
1184 int retval = 0;
1185 struct cgroup_subsys *ss;
1186 struct cgroup *oldcgrp;
1187 struct css_set *cg = tsk->cgroups;
1188 struct css_set *newcg;
1189 struct cgroupfs_root *root = cgrp->root;
1190 int subsys_id;
1192 get_first_subsys(cgrp, NULL, &subsys_id);
1194 /* Nothing to do if the task is already in that cgroup */
1195 oldcgrp = task_cgroup(tsk, subsys_id);
1196 if (cgrp == oldcgrp)
1197 return 0;
1199 for_each_subsys(root, ss) {
1200 if (ss->can_attach) {
1201 retval = ss->can_attach(ss, cgrp, tsk);
1202 if (retval)
1203 return retval;
1208 * Locate or allocate a new css_set for this task,
1209 * based on its final set of cgroups
1211 newcg = find_css_set(cg, cgrp);
1212 if (!newcg)
1213 return -ENOMEM;
1215 task_lock(tsk);
1216 if (tsk->flags & PF_EXITING) {
1217 task_unlock(tsk);
1218 put_css_set(newcg);
1219 return -ESRCH;
1221 rcu_assign_pointer(tsk->cgroups, newcg);
1222 task_unlock(tsk);
1224 /* Update the css_set linked lists if we're using them */
1225 write_lock(&css_set_lock);
1226 if (!list_empty(&tsk->cg_list)) {
1227 list_del(&tsk->cg_list);
1228 list_add(&tsk->cg_list, &newcg->tasks);
1230 write_unlock(&css_set_lock);
1232 for_each_subsys(root, ss) {
1233 if (ss->attach)
1234 ss->attach(ss, cgrp, oldcgrp, tsk);
1236 set_bit(CGRP_RELEASABLE, &oldcgrp->flags);
1237 synchronize_rcu();
1238 put_css_set(cg);
1239 return 0;
1243 * Attach task with pid 'pid' to cgroup 'cgrp'. Call with
1244 * cgroup_mutex, may take task_lock of task
1246 static int attach_task_by_pid(struct cgroup *cgrp, char *pidbuf)
1248 pid_t pid;
1249 struct task_struct *tsk;
1250 int ret;
1252 if (sscanf(pidbuf, "%d", &pid) != 1)
1253 return -EIO;
1255 if (pid) {
1256 rcu_read_lock();
1257 tsk = find_task_by_pid(pid);
1258 if (!tsk || tsk->flags & PF_EXITING) {
1259 rcu_read_unlock();
1260 return -ESRCH;
1262 get_task_struct(tsk);
1263 rcu_read_unlock();
1265 if ((current->euid) && (current->euid != tsk->uid)
1266 && (current->euid != tsk->suid)) {
1267 put_task_struct(tsk);
1268 return -EACCES;
1270 } else {
1271 tsk = current;
1272 get_task_struct(tsk);
1275 ret = attach_task(cgrp, tsk);
1276 put_task_struct(tsk);
1277 return ret;
1280 /* The various types of files and directories in a cgroup file system */
1282 enum cgroup_filetype {
1283 FILE_ROOT,
1284 FILE_DIR,
1285 FILE_TASKLIST,
1286 FILE_NOTIFY_ON_RELEASE,
1287 FILE_RELEASABLE,
1288 FILE_RELEASE_AGENT,
1291 static ssize_t cgroup_write_uint(struct cgroup *cgrp, struct cftype *cft,
1292 struct file *file,
1293 const char __user *userbuf,
1294 size_t nbytes, loff_t *unused_ppos)
1296 char buffer[64];
1297 int retval = 0;
1298 u64 val;
1299 char *end;
1301 if (!nbytes)
1302 return -EINVAL;
1303 if (nbytes >= sizeof(buffer))
1304 return -E2BIG;
1305 if (copy_from_user(buffer, userbuf, nbytes))
1306 return -EFAULT;
1308 buffer[nbytes] = 0; /* nul-terminate */
1310 /* strip newline if necessary */
1311 if (nbytes && (buffer[nbytes-1] == '\n'))
1312 buffer[nbytes-1] = 0;
1313 val = simple_strtoull(buffer, &end, 0);
1314 if (*end)
1315 return -EINVAL;
1317 /* Pass to subsystem */
1318 retval = cft->write_uint(cgrp, cft, val);
1319 if (!retval)
1320 retval = nbytes;
1321 return retval;
1324 static ssize_t cgroup_common_file_write(struct cgroup *cgrp,
1325 struct cftype *cft,
1326 struct file *file,
1327 const char __user *userbuf,
1328 size_t nbytes, loff_t *unused_ppos)
1330 enum cgroup_filetype type = cft->private;
1331 char *buffer;
1332 int retval = 0;
1334 if (nbytes >= PATH_MAX)
1335 return -E2BIG;
1337 /* +1 for nul-terminator */
1338 buffer = kmalloc(nbytes + 1, GFP_KERNEL);
1339 if (buffer == NULL)
1340 return -ENOMEM;
1342 if (copy_from_user(buffer, userbuf, nbytes)) {
1343 retval = -EFAULT;
1344 goto out1;
1346 buffer[nbytes] = 0; /* nul-terminate */
1347 strstrip(buffer); /* strip -just- trailing whitespace */
1349 mutex_lock(&cgroup_mutex);
1352 * This was already checked for in cgroup_file_write(), but
1353 * check again now we're holding cgroup_mutex.
1355 if (cgroup_is_removed(cgrp)) {
1356 retval = -ENODEV;
1357 goto out2;
1360 switch (type) {
1361 case FILE_TASKLIST:
1362 retval = attach_task_by_pid(cgrp, buffer);
1363 break;
1364 case FILE_NOTIFY_ON_RELEASE:
1365 clear_bit(CGRP_RELEASABLE, &cgrp->flags);
1366 if (simple_strtoul(buffer, NULL, 10) != 0)
1367 set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
1368 else
1369 clear_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
1370 break;
1371 case FILE_RELEASE_AGENT:
1372 BUILD_BUG_ON(sizeof(cgrp->root->release_agent_path) < PATH_MAX);
1373 strcpy(cgrp->root->release_agent_path, buffer);
1374 break;
1375 default:
1376 retval = -EINVAL;
1377 goto out2;
1380 if (retval == 0)
1381 retval = nbytes;
1382 out2:
1383 mutex_unlock(&cgroup_mutex);
1384 out1:
1385 kfree(buffer);
1386 return retval;
1389 static ssize_t cgroup_file_write(struct file *file, const char __user *buf,
1390 size_t nbytes, loff_t *ppos)
1392 struct cftype *cft = __d_cft(file->f_dentry);
1393 struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent);
1395 if (!cft || cgroup_is_removed(cgrp))
1396 return -ENODEV;
1397 if (cft->write)
1398 return cft->write(cgrp, cft, file, buf, nbytes, ppos);
1399 if (cft->write_uint)
1400 return cgroup_write_uint(cgrp, cft, file, buf, nbytes, ppos);
1401 return -EINVAL;
1404 static ssize_t cgroup_read_uint(struct cgroup *cgrp, struct cftype *cft,
1405 struct file *file,
1406 char __user *buf, size_t nbytes,
1407 loff_t *ppos)
1409 char tmp[64];
1410 u64 val = cft->read_uint(cgrp, cft);
1411 int len = sprintf(tmp, "%llu\n", (unsigned long long) val);
1413 return simple_read_from_buffer(buf, nbytes, ppos, tmp, len);
1416 static ssize_t cgroup_common_file_read(struct cgroup *cgrp,
1417 struct cftype *cft,
1418 struct file *file,
1419 char __user *buf,
1420 size_t nbytes, loff_t *ppos)
1422 enum cgroup_filetype type = cft->private;
1423 char *page;
1424 ssize_t retval = 0;
1425 char *s;
1427 if (!(page = (char *)__get_free_page(GFP_KERNEL)))
1428 return -ENOMEM;
1430 s = page;
1432 switch (type) {
1433 case FILE_RELEASE_AGENT:
1435 struct cgroupfs_root *root;
1436 size_t n;
1437 mutex_lock(&cgroup_mutex);
1438 root = cgrp->root;
1439 n = strnlen(root->release_agent_path,
1440 sizeof(root->release_agent_path));
1441 n = min(n, (size_t) PAGE_SIZE);
1442 strncpy(s, root->release_agent_path, n);
1443 mutex_unlock(&cgroup_mutex);
1444 s += n;
1445 break;
1447 default:
1448 retval = -EINVAL;
1449 goto out;
1451 *s++ = '\n';
1453 retval = simple_read_from_buffer(buf, nbytes, ppos, page, s - page);
1454 out:
1455 free_page((unsigned long)page);
1456 return retval;
1459 static ssize_t cgroup_file_read(struct file *file, char __user *buf,
1460 size_t nbytes, loff_t *ppos)
1462 struct cftype *cft = __d_cft(file->f_dentry);
1463 struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent);
1465 if (!cft || cgroup_is_removed(cgrp))
1466 return -ENODEV;
1468 if (cft->read)
1469 return cft->read(cgrp, cft, file, buf, nbytes, ppos);
1470 if (cft->read_uint)
1471 return cgroup_read_uint(cgrp, cft, file, buf, nbytes, ppos);
1472 return -EINVAL;
1475 static int cgroup_file_open(struct inode *inode, struct file *file)
1477 int err;
1478 struct cftype *cft;
1480 err = generic_file_open(inode, file);
1481 if (err)
1482 return err;
1484 cft = __d_cft(file->f_dentry);
1485 if (!cft)
1486 return -ENODEV;
1487 if (cft->open)
1488 err = cft->open(inode, file);
1489 else
1490 err = 0;
1492 return err;
1495 static int cgroup_file_release(struct inode *inode, struct file *file)
1497 struct cftype *cft = __d_cft(file->f_dentry);
1498 if (cft->release)
1499 return cft->release(inode, file);
1500 return 0;
1504 * cgroup_rename - Only allow simple rename of directories in place.
1506 static int cgroup_rename(struct inode *old_dir, struct dentry *old_dentry,
1507 struct inode *new_dir, struct dentry *new_dentry)
1509 if (!S_ISDIR(old_dentry->d_inode->i_mode))
1510 return -ENOTDIR;
1511 if (new_dentry->d_inode)
1512 return -EEXIST;
1513 if (old_dir != new_dir)
1514 return -EIO;
1515 return simple_rename(old_dir, old_dentry, new_dir, new_dentry);
1518 static struct file_operations cgroup_file_operations = {
1519 .read = cgroup_file_read,
1520 .write = cgroup_file_write,
1521 .llseek = generic_file_llseek,
1522 .open = cgroup_file_open,
1523 .release = cgroup_file_release,
1526 static struct inode_operations cgroup_dir_inode_operations = {
1527 .lookup = simple_lookup,
1528 .mkdir = cgroup_mkdir,
1529 .rmdir = cgroup_rmdir,
1530 .rename = cgroup_rename,
1533 static int cgroup_create_file(struct dentry *dentry, int mode,
1534 struct super_block *sb)
1536 static struct dentry_operations cgroup_dops = {
1537 .d_iput = cgroup_diput,
1540 struct inode *inode;
1542 if (!dentry)
1543 return -ENOENT;
1544 if (dentry->d_inode)
1545 return -EEXIST;
1547 inode = cgroup_new_inode(mode, sb);
1548 if (!inode)
1549 return -ENOMEM;
1551 if (S_ISDIR(mode)) {
1552 inode->i_op = &cgroup_dir_inode_operations;
1553 inode->i_fop = &simple_dir_operations;
1555 /* start off with i_nlink == 2 (for "." entry) */
1556 inc_nlink(inode);
1558 /* start with the directory inode held, so that we can
1559 * populate it without racing with another mkdir */
1560 mutex_lock_nested(&inode->i_mutex, I_MUTEX_CHILD);
1561 } else if (S_ISREG(mode)) {
1562 inode->i_size = 0;
1563 inode->i_fop = &cgroup_file_operations;
1565 dentry->d_op = &cgroup_dops;
1566 d_instantiate(dentry, inode);
1567 dget(dentry); /* Extra count - pin the dentry in core */
1568 return 0;
1572 * cgroup_create_dir - create a directory for an object.
1573 * cgrp: the cgroup we create the directory for.
1574 * It must have a valid ->parent field
1575 * And we are going to fill its ->dentry field.
1576 * dentry: dentry of the new cgroup
1577 * mode: mode to set on new directory.
1579 static int cgroup_create_dir(struct cgroup *cgrp, struct dentry *dentry,
1580 int mode)
1582 struct dentry *parent;
1583 int error = 0;
1585 parent = cgrp->parent->dentry;
1586 error = cgroup_create_file(dentry, S_IFDIR | mode, cgrp->root->sb);
1587 if (!error) {
1588 dentry->d_fsdata = cgrp;
1589 inc_nlink(parent->d_inode);
1590 cgrp->dentry = dentry;
1591 dget(dentry);
1593 dput(dentry);
1595 return error;
1598 int cgroup_add_file(struct cgroup *cgrp,
1599 struct cgroup_subsys *subsys,
1600 const struct cftype *cft)
1602 struct dentry *dir = cgrp->dentry;
1603 struct dentry *dentry;
1604 int error;
1606 char name[MAX_CGROUP_TYPE_NAMELEN + MAX_CFTYPE_NAME + 2] = { 0 };
1607 if (subsys && !test_bit(ROOT_NOPREFIX, &cgrp->root->flags)) {
1608 strcpy(name, subsys->name);
1609 strcat(name, ".");
1611 strcat(name, cft->name);
1612 BUG_ON(!mutex_is_locked(&dir->d_inode->i_mutex));
1613 dentry = lookup_one_len(name, dir, strlen(name));
1614 if (!IS_ERR(dentry)) {
1615 error = cgroup_create_file(dentry, 0644 | S_IFREG,
1616 cgrp->root->sb);
1617 if (!error)
1618 dentry->d_fsdata = (void *)cft;
1619 dput(dentry);
1620 } else
1621 error = PTR_ERR(dentry);
1622 return error;
1625 int cgroup_add_files(struct cgroup *cgrp,
1626 struct cgroup_subsys *subsys,
1627 const struct cftype cft[],
1628 int count)
1630 int i, err;
1631 for (i = 0; i < count; i++) {
1632 err = cgroup_add_file(cgrp, subsys, &cft[i]);
1633 if (err)
1634 return err;
1636 return 0;
1639 /* Count the number of tasks in a cgroup. */
1641 int cgroup_task_count(const struct cgroup *cgrp)
1643 int count = 0;
1644 struct list_head *l;
1646 read_lock(&css_set_lock);
1647 l = cgrp->css_sets.next;
1648 while (l != &cgrp->css_sets) {
1649 struct cg_cgroup_link *link =
1650 list_entry(l, struct cg_cgroup_link, cgrp_link_list);
1651 count += atomic_read(&link->cg->ref.refcount);
1652 l = l->next;
1654 read_unlock(&css_set_lock);
1655 return count;
1659 * Advance a list_head iterator. The iterator should be positioned at
1660 * the start of a css_set
1662 static void cgroup_advance_iter(struct cgroup *cgrp,
1663 struct cgroup_iter *it)
1665 struct list_head *l = it->cg_link;
1666 struct cg_cgroup_link *link;
1667 struct css_set *cg;
1669 /* Advance to the next non-empty css_set */
1670 do {
1671 l = l->next;
1672 if (l == &cgrp->css_sets) {
1673 it->cg_link = NULL;
1674 return;
1676 link = list_entry(l, struct cg_cgroup_link, cgrp_link_list);
1677 cg = link->cg;
1678 } while (list_empty(&cg->tasks));
1679 it->cg_link = l;
1680 it->task = cg->tasks.next;
1683 void cgroup_iter_start(struct cgroup *cgrp, struct cgroup_iter *it)
1686 * The first time anyone tries to iterate across a cgroup,
1687 * we need to enable the list linking each css_set to its
1688 * tasks, and fix up all existing tasks.
1690 if (!use_task_css_set_links) {
1691 struct task_struct *p, *g;
1692 write_lock(&css_set_lock);
1693 use_task_css_set_links = 1;
1694 do_each_thread(g, p) {
1695 task_lock(p);
1696 if (list_empty(&p->cg_list))
1697 list_add(&p->cg_list, &p->cgroups->tasks);
1698 task_unlock(p);
1699 } while_each_thread(g, p);
1700 write_unlock(&css_set_lock);
1702 read_lock(&css_set_lock);
1703 it->cg_link = &cgrp->css_sets;
1704 cgroup_advance_iter(cgrp, it);
1707 struct task_struct *cgroup_iter_next(struct cgroup *cgrp,
1708 struct cgroup_iter *it)
1710 struct task_struct *res;
1711 struct list_head *l = it->task;
1713 /* If the iterator cg is NULL, we have no tasks */
1714 if (!it->cg_link)
1715 return NULL;
1716 res = list_entry(l, struct task_struct, cg_list);
1717 /* Advance iterator to find next entry */
1718 l = l->next;
1719 if (l == &res->cgroups->tasks) {
1720 /* We reached the end of this task list - move on to
1721 * the next cg_cgroup_link */
1722 cgroup_advance_iter(cgrp, it);
1723 } else {
1724 it->task = l;
1726 return res;
1729 void cgroup_iter_end(struct cgroup *cgrp, struct cgroup_iter *it)
1731 read_unlock(&css_set_lock);
1735 * Stuff for reading the 'tasks' file.
1737 * Reading this file can return large amounts of data if a cgroup has
1738 * *lots* of attached tasks. So it may need several calls to read(),
1739 * but we cannot guarantee that the information we produce is correct
1740 * unless we produce it entirely atomically.
1742 * Upon tasks file open(), a struct ctr_struct is allocated, that
1743 * will have a pointer to an array (also allocated here). The struct
1744 * ctr_struct * is stored in file->private_data. Its resources will
1745 * be freed by release() when the file is closed. The array is used
1746 * to sprintf the PIDs and then used by read().
1748 struct ctr_struct {
1749 char *buf;
1750 int bufsz;
1754 * Load into 'pidarray' up to 'npids' of the tasks using cgroup
1755 * 'cgrp'. Return actual number of pids loaded. No need to
1756 * task_lock(p) when reading out p->cgroup, since we're in an RCU
1757 * read section, so the css_set can't go away, and is
1758 * immutable after creation.
1760 static int pid_array_load(pid_t *pidarray, int npids, struct cgroup *cgrp)
1762 int n = 0;
1763 struct cgroup_iter it;
1764 struct task_struct *tsk;
1765 cgroup_iter_start(cgrp, &it);
1766 while ((tsk = cgroup_iter_next(cgrp, &it))) {
1767 if (unlikely(n == npids))
1768 break;
1769 pidarray[n++] = task_pid_nr(tsk);
1771 cgroup_iter_end(cgrp, &it);
1772 return n;
1776 * Build and fill cgroupstats so that taskstats can export it to user
1777 * space.
1779 * @stats: cgroupstats to fill information into
1780 * @dentry: A dentry entry belonging to the cgroup for which stats have
1781 * been requested.
1783 int cgroupstats_build(struct cgroupstats *stats, struct dentry *dentry)
1785 int ret = -EINVAL;
1786 struct cgroup *cgrp;
1787 struct cgroup_iter it;
1788 struct task_struct *tsk;
1790 * Validate dentry by checking the superblock operations
1792 if (dentry->d_sb->s_op != &cgroup_ops)
1793 goto err;
1795 ret = 0;
1796 cgrp = dentry->d_fsdata;
1797 rcu_read_lock();
1799 cgroup_iter_start(cgrp, &it);
1800 while ((tsk = cgroup_iter_next(cgrp, &it))) {
1801 switch (tsk->state) {
1802 case TASK_RUNNING:
1803 stats->nr_running++;
1804 break;
1805 case TASK_INTERRUPTIBLE:
1806 stats->nr_sleeping++;
1807 break;
1808 case TASK_UNINTERRUPTIBLE:
1809 stats->nr_uninterruptible++;
1810 break;
1811 case TASK_STOPPED:
1812 stats->nr_stopped++;
1813 break;
1814 default:
1815 if (delayacct_is_task_waiting_on_io(tsk))
1816 stats->nr_io_wait++;
1817 break;
1820 cgroup_iter_end(cgrp, &it);
1822 rcu_read_unlock();
1823 err:
1824 return ret;
1827 static int cmppid(const void *a, const void *b)
1829 return *(pid_t *)a - *(pid_t *)b;
1833 * Convert array 'a' of 'npids' pid_t's to a string of newline separated
1834 * decimal pids in 'buf'. Don't write more than 'sz' chars, but return
1835 * count 'cnt' of how many chars would be written if buf were large enough.
1837 static int pid_array_to_buf(char *buf, int sz, pid_t *a, int npids)
1839 int cnt = 0;
1840 int i;
1842 for (i = 0; i < npids; i++)
1843 cnt += snprintf(buf + cnt, max(sz - cnt, 0), "%d\n", a[i]);
1844 return cnt;
1848 * Handle an open on 'tasks' file. Prepare a buffer listing the
1849 * process id's of tasks currently attached to the cgroup being opened.
1851 * Does not require any specific cgroup mutexes, and does not take any.
1853 static int cgroup_tasks_open(struct inode *unused, struct file *file)
1855 struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent);
1856 struct ctr_struct *ctr;
1857 pid_t *pidarray;
1858 int npids;
1859 char c;
1861 if (!(file->f_mode & FMODE_READ))
1862 return 0;
1864 ctr = kmalloc(sizeof(*ctr), GFP_KERNEL);
1865 if (!ctr)
1866 goto err0;
1869 * If cgroup gets more users after we read count, we won't have
1870 * enough space - tough. This race is indistinguishable to the
1871 * caller from the case that the additional cgroup users didn't
1872 * show up until sometime later on.
1874 npids = cgroup_task_count(cgrp);
1875 if (npids) {
1876 pidarray = kmalloc(npids * sizeof(pid_t), GFP_KERNEL);
1877 if (!pidarray)
1878 goto err1;
1880 npids = pid_array_load(pidarray, npids, cgrp);
1881 sort(pidarray, npids, sizeof(pid_t), cmppid, NULL);
1883 /* Call pid_array_to_buf() twice, first just to get bufsz */
1884 ctr->bufsz = pid_array_to_buf(&c, sizeof(c), pidarray, npids) + 1;
1885 ctr->buf = kmalloc(ctr->bufsz, GFP_KERNEL);
1886 if (!ctr->buf)
1887 goto err2;
1888 ctr->bufsz = pid_array_to_buf(ctr->buf, ctr->bufsz, pidarray, npids);
1890 kfree(pidarray);
1891 } else {
1892 ctr->buf = 0;
1893 ctr->bufsz = 0;
1895 file->private_data = ctr;
1896 return 0;
1898 err2:
1899 kfree(pidarray);
1900 err1:
1901 kfree(ctr);
1902 err0:
1903 return -ENOMEM;
1906 static ssize_t cgroup_tasks_read(struct cgroup *cgrp,
1907 struct cftype *cft,
1908 struct file *file, char __user *buf,
1909 size_t nbytes, loff_t *ppos)
1911 struct ctr_struct *ctr = file->private_data;
1913 return simple_read_from_buffer(buf, nbytes, ppos, ctr->buf, ctr->bufsz);
1916 static int cgroup_tasks_release(struct inode *unused_inode,
1917 struct file *file)
1919 struct ctr_struct *ctr;
1921 if (file->f_mode & FMODE_READ) {
1922 ctr = file->private_data;
1923 kfree(ctr->buf);
1924 kfree(ctr);
1926 return 0;
1929 static u64 cgroup_read_notify_on_release(struct cgroup *cgrp,
1930 struct cftype *cft)
1932 return notify_on_release(cgrp);
1935 static u64 cgroup_read_releasable(struct cgroup *cgrp, struct cftype *cft)
1937 return test_bit(CGRP_RELEASABLE, &cgrp->flags);
1941 * for the common functions, 'private' gives the type of file
1943 static struct cftype files[] = {
1945 .name = "tasks",
1946 .open = cgroup_tasks_open,
1947 .read = cgroup_tasks_read,
1948 .write = cgroup_common_file_write,
1949 .release = cgroup_tasks_release,
1950 .private = FILE_TASKLIST,
1954 .name = "notify_on_release",
1955 .read_uint = cgroup_read_notify_on_release,
1956 .write = cgroup_common_file_write,
1957 .private = FILE_NOTIFY_ON_RELEASE,
1961 .name = "releasable",
1962 .read_uint = cgroup_read_releasable,
1963 .private = FILE_RELEASABLE,
1967 static struct cftype cft_release_agent = {
1968 .name = "release_agent",
1969 .read = cgroup_common_file_read,
1970 .write = cgroup_common_file_write,
1971 .private = FILE_RELEASE_AGENT,
1974 static int cgroup_populate_dir(struct cgroup *cgrp)
1976 int err;
1977 struct cgroup_subsys *ss;
1979 /* First clear out any existing files */
1980 cgroup_clear_directory(cgrp->dentry);
1982 err = cgroup_add_files(cgrp, NULL, files, ARRAY_SIZE(files));
1983 if (err < 0)
1984 return err;
1986 if (cgrp == cgrp->top_cgroup) {
1987 if ((err = cgroup_add_file(cgrp, NULL, &cft_release_agent)) < 0)
1988 return err;
1991 for_each_subsys(cgrp->root, ss) {
1992 if (ss->populate && (err = ss->populate(ss, cgrp)) < 0)
1993 return err;
1996 return 0;
1999 static void init_cgroup_css(struct cgroup_subsys_state *css,
2000 struct cgroup_subsys *ss,
2001 struct cgroup *cgrp)
2003 css->cgroup = cgrp;
2004 atomic_set(&css->refcnt, 0);
2005 css->flags = 0;
2006 if (cgrp == dummytop)
2007 set_bit(CSS_ROOT, &css->flags);
2008 BUG_ON(cgrp->subsys[ss->subsys_id]);
2009 cgrp->subsys[ss->subsys_id] = css;
2013 * cgroup_create - create a cgroup
2014 * parent: cgroup that will be parent of the new cgroup.
2015 * name: name of the new cgroup. Will be strcpy'ed.
2016 * mode: mode to set on new inode
2018 * Must be called with the mutex on the parent inode held
2021 static long cgroup_create(struct cgroup *parent, struct dentry *dentry,
2022 int mode)
2024 struct cgroup *cgrp;
2025 struct cgroupfs_root *root = parent->root;
2026 int err = 0;
2027 struct cgroup_subsys *ss;
2028 struct super_block *sb = root->sb;
2030 cgrp = kzalloc(sizeof(*cgrp), GFP_KERNEL);
2031 if (!cgrp)
2032 return -ENOMEM;
2034 /* Grab a reference on the superblock so the hierarchy doesn't
2035 * get deleted on unmount if there are child cgroups. This
2036 * can be done outside cgroup_mutex, since the sb can't
2037 * disappear while someone has an open control file on the
2038 * fs */
2039 atomic_inc(&sb->s_active);
2041 mutex_lock(&cgroup_mutex);
2043 cgrp->flags = 0;
2044 INIT_LIST_HEAD(&cgrp->sibling);
2045 INIT_LIST_HEAD(&cgrp->children);
2046 INIT_LIST_HEAD(&cgrp->css_sets);
2047 INIT_LIST_HEAD(&cgrp->release_list);
2049 cgrp->parent = parent;
2050 cgrp->root = parent->root;
2051 cgrp->top_cgroup = parent->top_cgroup;
2053 for_each_subsys(root, ss) {
2054 struct cgroup_subsys_state *css = ss->create(ss, cgrp);
2055 if (IS_ERR(css)) {
2056 err = PTR_ERR(css);
2057 goto err_destroy;
2059 init_cgroup_css(css, ss, cgrp);
2062 list_add(&cgrp->sibling, &cgrp->parent->children);
2063 root->number_of_cgroups++;
2065 err = cgroup_create_dir(cgrp, dentry, mode);
2066 if (err < 0)
2067 goto err_remove;
2069 /* The cgroup directory was pre-locked for us */
2070 BUG_ON(!mutex_is_locked(&cgrp->dentry->d_inode->i_mutex));
2072 err = cgroup_populate_dir(cgrp);
2073 /* If err < 0, we have a half-filled directory - oh well ;) */
2075 mutex_unlock(&cgroup_mutex);
2076 mutex_unlock(&cgrp->dentry->d_inode->i_mutex);
2078 return 0;
2080 err_remove:
2082 list_del(&cgrp->sibling);
2083 root->number_of_cgroups--;
2085 err_destroy:
2087 for_each_subsys(root, ss) {
2088 if (cgrp->subsys[ss->subsys_id])
2089 ss->destroy(ss, cgrp);
2092 mutex_unlock(&cgroup_mutex);
2094 /* Release the reference count that we took on the superblock */
2095 deactivate_super(sb);
2097 kfree(cgrp);
2098 return err;
2101 static int cgroup_mkdir(struct inode *dir, struct dentry *dentry, int mode)
2103 struct cgroup *c_parent = dentry->d_parent->d_fsdata;
2105 /* the vfs holds inode->i_mutex already */
2106 return cgroup_create(c_parent, dentry, mode | S_IFDIR);
2109 static inline int cgroup_has_css_refs(struct cgroup *cgrp)
2111 /* Check the reference count on each subsystem. Since we
2112 * already established that there are no tasks in the
2113 * cgroup, if the css refcount is also 0, then there should
2114 * be no outstanding references, so the subsystem is safe to
2115 * destroy. We scan across all subsystems rather than using
2116 * the per-hierarchy linked list of mounted subsystems since
2117 * we can be called via check_for_release() with no
2118 * synchronization other than RCU, and the subsystem linked
2119 * list isn't RCU-safe */
2120 int i;
2121 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
2122 struct cgroup_subsys *ss = subsys[i];
2123 struct cgroup_subsys_state *css;
2124 /* Skip subsystems not in this hierarchy */
2125 if (ss->root != cgrp->root)
2126 continue;
2127 css = cgrp->subsys[ss->subsys_id];
2128 /* When called from check_for_release() it's possible
2129 * that by this point the cgroup has been removed
2130 * and the css deleted. But a false-positive doesn't
2131 * matter, since it can only happen if the cgroup
2132 * has been deleted and hence no longer needs the
2133 * release agent to be called anyway. */
2134 if (css && atomic_read(&css->refcnt))
2135 return 1;
2137 return 0;
2140 static int cgroup_rmdir(struct inode *unused_dir, struct dentry *dentry)
2142 struct cgroup *cgrp = dentry->d_fsdata;
2143 struct dentry *d;
2144 struct cgroup *parent;
2145 struct super_block *sb;
2146 struct cgroupfs_root *root;
2148 /* the vfs holds both inode->i_mutex already */
2150 mutex_lock(&cgroup_mutex);
2151 if (atomic_read(&cgrp->count) != 0) {
2152 mutex_unlock(&cgroup_mutex);
2153 return -EBUSY;
2155 if (!list_empty(&cgrp->children)) {
2156 mutex_unlock(&cgroup_mutex);
2157 return -EBUSY;
2160 parent = cgrp->parent;
2161 root = cgrp->root;
2162 sb = root->sb;
2164 if (cgroup_has_css_refs(cgrp)) {
2165 mutex_unlock(&cgroup_mutex);
2166 return -EBUSY;
2169 spin_lock(&release_list_lock);
2170 set_bit(CGRP_REMOVED, &cgrp->flags);
2171 if (!list_empty(&cgrp->release_list))
2172 list_del(&cgrp->release_list);
2173 spin_unlock(&release_list_lock);
2174 /* delete my sibling from parent->children */
2175 list_del(&cgrp->sibling);
2176 spin_lock(&cgrp->dentry->d_lock);
2177 d = dget(cgrp->dentry);
2178 cgrp->dentry = NULL;
2179 spin_unlock(&d->d_lock);
2181 cgroup_d_remove_dir(d);
2182 dput(d);
2184 set_bit(CGRP_RELEASABLE, &parent->flags);
2185 check_for_release(parent);
2187 mutex_unlock(&cgroup_mutex);
2188 return 0;
2191 static void cgroup_init_subsys(struct cgroup_subsys *ss)
2193 struct cgroup_subsys_state *css;
2194 struct list_head *l;
2196 printk(KERN_INFO "Initializing cgroup subsys %s\n", ss->name);
2198 /* Create the top cgroup state for this subsystem */
2199 ss->root = &rootnode;
2200 css = ss->create(ss, dummytop);
2201 /* We don't handle early failures gracefully */
2202 BUG_ON(IS_ERR(css));
2203 init_cgroup_css(css, ss, dummytop);
2205 /* Update all cgroup groups to contain a subsys
2206 * pointer to this state - since the subsystem is
2207 * newly registered, all tasks and hence all cgroup
2208 * groups are in the subsystem's top cgroup. */
2209 write_lock(&css_set_lock);
2210 l = &init_css_set.list;
2211 do {
2212 struct css_set *cg =
2213 list_entry(l, struct css_set, list);
2214 cg->subsys[ss->subsys_id] = dummytop->subsys[ss->subsys_id];
2215 l = l->next;
2216 } while (l != &init_css_set.list);
2217 write_unlock(&css_set_lock);
2219 /* If this subsystem requested that it be notified with fork
2220 * events, we should send it one now for every process in the
2221 * system */
2222 if (ss->fork) {
2223 struct task_struct *g, *p;
2225 read_lock(&tasklist_lock);
2226 do_each_thread(g, p) {
2227 ss->fork(ss, p);
2228 } while_each_thread(g, p);
2229 read_unlock(&tasklist_lock);
2232 need_forkexit_callback |= ss->fork || ss->exit;
2234 ss->active = 1;
2238 * cgroup_init_early - initialize cgroups at system boot, and
2239 * initialize any subsystems that request early init.
2241 int __init cgroup_init_early(void)
2243 int i;
2244 kref_init(&init_css_set.ref);
2245 kref_get(&init_css_set.ref);
2246 INIT_LIST_HEAD(&init_css_set.list);
2247 INIT_LIST_HEAD(&init_css_set.cg_links);
2248 INIT_LIST_HEAD(&init_css_set.tasks);
2249 css_set_count = 1;
2250 init_cgroup_root(&rootnode);
2251 list_add(&rootnode.root_list, &roots);
2252 root_count = 1;
2253 init_task.cgroups = &init_css_set;
2255 init_css_set_link.cg = &init_css_set;
2256 list_add(&init_css_set_link.cgrp_link_list,
2257 &rootnode.top_cgroup.css_sets);
2258 list_add(&init_css_set_link.cg_link_list,
2259 &init_css_set.cg_links);
2261 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
2262 struct cgroup_subsys *ss = subsys[i];
2264 BUG_ON(!ss->name);
2265 BUG_ON(strlen(ss->name) > MAX_CGROUP_TYPE_NAMELEN);
2266 BUG_ON(!ss->create);
2267 BUG_ON(!ss->destroy);
2268 if (ss->subsys_id != i) {
2269 printk(KERN_ERR "cgroup: Subsys %s id == %d\n",
2270 ss->name, ss->subsys_id);
2271 BUG();
2274 if (ss->early_init)
2275 cgroup_init_subsys(ss);
2277 return 0;
2281 * cgroup_init - register cgroup filesystem and /proc file, and
2282 * initialize any subsystems that didn't request early init.
2284 int __init cgroup_init(void)
2286 int err;
2287 int i;
2288 struct proc_dir_entry *entry;
2290 err = bdi_init(&cgroup_backing_dev_info);
2291 if (err)
2292 return err;
2294 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
2295 struct cgroup_subsys *ss = subsys[i];
2296 if (!ss->early_init)
2297 cgroup_init_subsys(ss);
2300 err = register_filesystem(&cgroup_fs_type);
2301 if (err < 0)
2302 goto out;
2304 entry = create_proc_entry("cgroups", 0, NULL);
2305 if (entry)
2306 entry->proc_fops = &proc_cgroupstats_operations;
2308 out:
2309 if (err)
2310 bdi_destroy(&cgroup_backing_dev_info);
2312 return err;
2316 * proc_cgroup_show()
2317 * - Print task's cgroup paths into seq_file, one line for each hierarchy
2318 * - Used for /proc/<pid>/cgroup.
2319 * - No need to task_lock(tsk) on this tsk->cgroup reference, as it
2320 * doesn't really matter if tsk->cgroup changes after we read it,
2321 * and we take cgroup_mutex, keeping attach_task() from changing it
2322 * anyway. No need to check that tsk->cgroup != NULL, thanks to
2323 * the_top_cgroup_hack in cgroup_exit(), which sets an exiting tasks
2324 * cgroup to top_cgroup.
2327 /* TODO: Use a proper seq_file iterator */
2328 static int proc_cgroup_show(struct seq_file *m, void *v)
2330 struct pid *pid;
2331 struct task_struct *tsk;
2332 char *buf;
2333 int retval;
2334 struct cgroupfs_root *root;
2336 retval = -ENOMEM;
2337 buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
2338 if (!buf)
2339 goto out;
2341 retval = -ESRCH;
2342 pid = m->private;
2343 tsk = get_pid_task(pid, PIDTYPE_PID);
2344 if (!tsk)
2345 goto out_free;
2347 retval = 0;
2349 mutex_lock(&cgroup_mutex);
2351 for_each_root(root) {
2352 struct cgroup_subsys *ss;
2353 struct cgroup *cgrp;
2354 int subsys_id;
2355 int count = 0;
2357 /* Skip this hierarchy if it has no active subsystems */
2358 if (!root->actual_subsys_bits)
2359 continue;
2360 for_each_subsys(root, ss)
2361 seq_printf(m, "%s%s", count++ ? "," : "", ss->name);
2362 seq_putc(m, ':');
2363 get_first_subsys(&root->top_cgroup, NULL, &subsys_id);
2364 cgrp = task_cgroup(tsk, subsys_id);
2365 retval = cgroup_path(cgrp, buf, PAGE_SIZE);
2366 if (retval < 0)
2367 goto out_unlock;
2368 seq_puts(m, buf);
2369 seq_putc(m, '\n');
2372 out_unlock:
2373 mutex_unlock(&cgroup_mutex);
2374 put_task_struct(tsk);
2375 out_free:
2376 kfree(buf);
2377 out:
2378 return retval;
2381 static int cgroup_open(struct inode *inode, struct file *file)
2383 struct pid *pid = PROC_I(inode)->pid;
2384 return single_open(file, proc_cgroup_show, pid);
2387 struct file_operations proc_cgroup_operations = {
2388 .open = cgroup_open,
2389 .read = seq_read,
2390 .llseek = seq_lseek,
2391 .release = single_release,
2394 /* Display information about each subsystem and each hierarchy */
2395 static int proc_cgroupstats_show(struct seq_file *m, void *v)
2397 int i;
2399 seq_puts(m, "#subsys_name\thierarchy\tnum_cgroups\n");
2400 mutex_lock(&cgroup_mutex);
2401 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
2402 struct cgroup_subsys *ss = subsys[i];
2403 seq_printf(m, "%s\t%lu\t%d\n",
2404 ss->name, ss->root->subsys_bits,
2405 ss->root->number_of_cgroups);
2407 mutex_unlock(&cgroup_mutex);
2408 return 0;
2411 static int cgroupstats_open(struct inode *inode, struct file *file)
2413 return single_open(file, proc_cgroupstats_show, 0);
2416 static struct file_operations proc_cgroupstats_operations = {
2417 .open = cgroupstats_open,
2418 .read = seq_read,
2419 .llseek = seq_lseek,
2420 .release = single_release,
2424 * cgroup_fork - attach newly forked task to its parents cgroup.
2425 * @tsk: pointer to task_struct of forking parent process.
2427 * Description: A task inherits its parent's cgroup at fork().
2429 * A pointer to the shared css_set was automatically copied in
2430 * fork.c by dup_task_struct(). However, we ignore that copy, since
2431 * it was not made under the protection of RCU or cgroup_mutex, so
2432 * might no longer be a valid cgroup pointer. attach_task() might
2433 * have already changed current->cgroups, allowing the previously
2434 * referenced cgroup group to be removed and freed.
2436 * At the point that cgroup_fork() is called, 'current' is the parent
2437 * task, and the passed argument 'child' points to the child task.
2439 void cgroup_fork(struct task_struct *child)
2441 task_lock(current);
2442 child->cgroups = current->cgroups;
2443 get_css_set(child->cgroups);
2444 task_unlock(current);
2445 INIT_LIST_HEAD(&child->cg_list);
2449 * cgroup_fork_callbacks - called on a new task very soon before
2450 * adding it to the tasklist. No need to take any locks since no-one
2451 * can be operating on this task
2453 void cgroup_fork_callbacks(struct task_struct *child)
2455 if (need_forkexit_callback) {
2456 int i;
2457 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
2458 struct cgroup_subsys *ss = subsys[i];
2459 if (ss->fork)
2460 ss->fork(ss, child);
2466 * cgroup_post_fork - called on a new task after adding it to the
2467 * task list. Adds the task to the list running through its css_set
2468 * if necessary. Has to be after the task is visible on the task list
2469 * in case we race with the first call to cgroup_iter_start() - to
2470 * guarantee that the new task ends up on its list. */
2471 void cgroup_post_fork(struct task_struct *child)
2473 if (use_task_css_set_links) {
2474 write_lock(&css_set_lock);
2475 if (list_empty(&child->cg_list))
2476 list_add(&child->cg_list, &child->cgroups->tasks);
2477 write_unlock(&css_set_lock);
2481 * cgroup_exit - detach cgroup from exiting task
2482 * @tsk: pointer to task_struct of exiting process
2484 * Description: Detach cgroup from @tsk and release it.
2486 * Note that cgroups marked notify_on_release force every task in
2487 * them to take the global cgroup_mutex mutex when exiting.
2488 * This could impact scaling on very large systems. Be reluctant to
2489 * use notify_on_release cgroups where very high task exit scaling
2490 * is required on large systems.
2492 * the_top_cgroup_hack:
2494 * Set the exiting tasks cgroup to the root cgroup (top_cgroup).
2496 * We call cgroup_exit() while the task is still competent to
2497 * handle notify_on_release(), then leave the task attached to the
2498 * root cgroup in each hierarchy for the remainder of its exit.
2500 * To do this properly, we would increment the reference count on
2501 * top_cgroup, and near the very end of the kernel/exit.c do_exit()
2502 * code we would add a second cgroup function call, to drop that
2503 * reference. This would just create an unnecessary hot spot on
2504 * the top_cgroup reference count, to no avail.
2506 * Normally, holding a reference to a cgroup without bumping its
2507 * count is unsafe. The cgroup could go away, or someone could
2508 * attach us to a different cgroup, decrementing the count on
2509 * the first cgroup that we never incremented. But in this case,
2510 * top_cgroup isn't going away, and either task has PF_EXITING set,
2511 * which wards off any attach_task() attempts, or task is a failed
2512 * fork, never visible to attach_task.
2515 void cgroup_exit(struct task_struct *tsk, int run_callbacks)
2517 int i;
2518 struct css_set *cg;
2520 if (run_callbacks && need_forkexit_callback) {
2521 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
2522 struct cgroup_subsys *ss = subsys[i];
2523 if (ss->exit)
2524 ss->exit(ss, tsk);
2529 * Unlink from the css_set task list if necessary.
2530 * Optimistically check cg_list before taking
2531 * css_set_lock
2533 if (!list_empty(&tsk->cg_list)) {
2534 write_lock(&css_set_lock);
2535 if (!list_empty(&tsk->cg_list))
2536 list_del(&tsk->cg_list);
2537 write_unlock(&css_set_lock);
2540 /* Reassign the task to the init_css_set. */
2541 task_lock(tsk);
2542 cg = tsk->cgroups;
2543 tsk->cgroups = &init_css_set;
2544 task_unlock(tsk);
2545 if (cg)
2546 put_css_set_taskexit(cg);
2550 * cgroup_clone - duplicate the current cgroup in the hierarchy
2551 * that the given subsystem is attached to, and move this task into
2552 * the new child
2554 int cgroup_clone(struct task_struct *tsk, struct cgroup_subsys *subsys)
2556 struct dentry *dentry;
2557 int ret = 0;
2558 char nodename[MAX_CGROUP_TYPE_NAMELEN];
2559 struct cgroup *parent, *child;
2560 struct inode *inode;
2561 struct css_set *cg;
2562 struct cgroupfs_root *root;
2563 struct cgroup_subsys *ss;
2565 /* We shouldn't be called by an unregistered subsystem */
2566 BUG_ON(!subsys->active);
2568 /* First figure out what hierarchy and cgroup we're dealing
2569 * with, and pin them so we can drop cgroup_mutex */
2570 mutex_lock(&cgroup_mutex);
2571 again:
2572 root = subsys->root;
2573 if (root == &rootnode) {
2574 printk(KERN_INFO
2575 "Not cloning cgroup for unused subsystem %s\n",
2576 subsys->name);
2577 mutex_unlock(&cgroup_mutex);
2578 return 0;
2580 cg = tsk->cgroups;
2581 parent = task_cgroup(tsk, subsys->subsys_id);
2583 snprintf(nodename, MAX_CGROUP_TYPE_NAMELEN, "node_%d", tsk->pid);
2585 /* Pin the hierarchy */
2586 atomic_inc(&parent->root->sb->s_active);
2588 /* Keep the cgroup alive */
2589 get_css_set(cg);
2590 mutex_unlock(&cgroup_mutex);
2592 /* Now do the VFS work to create a cgroup */
2593 inode = parent->dentry->d_inode;
2595 /* Hold the parent directory mutex across this operation to
2596 * stop anyone else deleting the new cgroup */
2597 mutex_lock(&inode->i_mutex);
2598 dentry = lookup_one_len(nodename, parent->dentry, strlen(nodename));
2599 if (IS_ERR(dentry)) {
2600 printk(KERN_INFO
2601 "cgroup: Couldn't allocate dentry for %s: %ld\n", nodename,
2602 PTR_ERR(dentry));
2603 ret = PTR_ERR(dentry);
2604 goto out_release;
2607 /* Create the cgroup directory, which also creates the cgroup */
2608 ret = vfs_mkdir(inode, dentry, S_IFDIR | 0755);
2609 child = __d_cgrp(dentry);
2610 dput(dentry);
2611 if (ret) {
2612 printk(KERN_INFO
2613 "Failed to create cgroup %s: %d\n", nodename,
2614 ret);
2615 goto out_release;
2618 if (!child) {
2619 printk(KERN_INFO
2620 "Couldn't find new cgroup %s\n", nodename);
2621 ret = -ENOMEM;
2622 goto out_release;
2625 /* The cgroup now exists. Retake cgroup_mutex and check
2626 * that we're still in the same state that we thought we
2627 * were. */
2628 mutex_lock(&cgroup_mutex);
2629 if ((root != subsys->root) ||
2630 (parent != task_cgroup(tsk, subsys->subsys_id))) {
2631 /* Aargh, we raced ... */
2632 mutex_unlock(&inode->i_mutex);
2633 put_css_set(cg);
2635 deactivate_super(parent->root->sb);
2636 /* The cgroup is still accessible in the VFS, but
2637 * we're not going to try to rmdir() it at this
2638 * point. */
2639 printk(KERN_INFO
2640 "Race in cgroup_clone() - leaking cgroup %s\n",
2641 nodename);
2642 goto again;
2645 /* do any required auto-setup */
2646 for_each_subsys(root, ss) {
2647 if (ss->post_clone)
2648 ss->post_clone(ss, child);
2651 /* All seems fine. Finish by moving the task into the new cgroup */
2652 ret = attach_task(child, tsk);
2653 mutex_unlock(&cgroup_mutex);
2655 out_release:
2656 mutex_unlock(&inode->i_mutex);
2658 mutex_lock(&cgroup_mutex);
2659 put_css_set(cg);
2660 mutex_unlock(&cgroup_mutex);
2661 deactivate_super(parent->root->sb);
2662 return ret;
2666 * See if "cgrp" is a descendant of the current task's cgroup in
2667 * the appropriate hierarchy
2669 * If we are sending in dummytop, then presumably we are creating
2670 * the top cgroup in the subsystem.
2672 * Called only by the ns (nsproxy) cgroup.
2674 int cgroup_is_descendant(const struct cgroup *cgrp)
2676 int ret;
2677 struct cgroup *target;
2678 int subsys_id;
2680 if (cgrp == dummytop)
2681 return 1;
2683 get_first_subsys(cgrp, NULL, &subsys_id);
2684 target = task_cgroup(current, subsys_id);
2685 while (cgrp != target && cgrp!= cgrp->top_cgroup)
2686 cgrp = cgrp->parent;
2687 ret = (cgrp == target);
2688 return ret;
2691 static void check_for_release(struct cgroup *cgrp)
2693 /* All of these checks rely on RCU to keep the cgroup
2694 * structure alive */
2695 if (cgroup_is_releasable(cgrp) && !atomic_read(&cgrp->count)
2696 && list_empty(&cgrp->children) && !cgroup_has_css_refs(cgrp)) {
2697 /* Control Group is currently removeable. If it's not
2698 * already queued for a userspace notification, queue
2699 * it now */
2700 int need_schedule_work = 0;
2701 spin_lock(&release_list_lock);
2702 if (!cgroup_is_removed(cgrp) &&
2703 list_empty(&cgrp->release_list)) {
2704 list_add(&cgrp->release_list, &release_list);
2705 need_schedule_work = 1;
2707 spin_unlock(&release_list_lock);
2708 if (need_schedule_work)
2709 schedule_work(&release_agent_work);
2713 void __css_put(struct cgroup_subsys_state *css)
2715 struct cgroup *cgrp = css->cgroup;
2716 rcu_read_lock();
2717 if (atomic_dec_and_test(&css->refcnt) && notify_on_release(cgrp)) {
2718 set_bit(CGRP_RELEASABLE, &cgrp->flags);
2719 check_for_release(cgrp);
2721 rcu_read_unlock();
2725 * Notify userspace when a cgroup is released, by running the
2726 * configured release agent with the name of the cgroup (path
2727 * relative to the root of cgroup file system) as the argument.
2729 * Most likely, this user command will try to rmdir this cgroup.
2731 * This races with the possibility that some other task will be
2732 * attached to this cgroup before it is removed, or that some other
2733 * user task will 'mkdir' a child cgroup of this cgroup. That's ok.
2734 * The presumed 'rmdir' will fail quietly if this cgroup is no longer
2735 * unused, and this cgroup will be reprieved from its death sentence,
2736 * to continue to serve a useful existence. Next time it's released,
2737 * we will get notified again, if it still has 'notify_on_release' set.
2739 * The final arg to call_usermodehelper() is UMH_WAIT_EXEC, which
2740 * means only wait until the task is successfully execve()'d. The
2741 * separate release agent task is forked by call_usermodehelper(),
2742 * then control in this thread returns here, without waiting for the
2743 * release agent task. We don't bother to wait because the caller of
2744 * this routine has no use for the exit status of the release agent
2745 * task, so no sense holding our caller up for that.
2749 static void cgroup_release_agent(struct work_struct *work)
2751 BUG_ON(work != &release_agent_work);
2752 mutex_lock(&cgroup_mutex);
2753 spin_lock(&release_list_lock);
2754 while (!list_empty(&release_list)) {
2755 char *argv[3], *envp[3];
2756 int i;
2757 char *pathbuf;
2758 struct cgroup *cgrp = list_entry(release_list.next,
2759 struct cgroup,
2760 release_list);
2761 list_del_init(&cgrp->release_list);
2762 spin_unlock(&release_list_lock);
2763 pathbuf = kmalloc(PAGE_SIZE, GFP_KERNEL);
2764 if (!pathbuf) {
2765 spin_lock(&release_list_lock);
2766 continue;
2769 if (cgroup_path(cgrp, pathbuf, PAGE_SIZE) < 0) {
2770 kfree(pathbuf);
2771 spin_lock(&release_list_lock);
2772 continue;
2775 i = 0;
2776 argv[i++] = cgrp->root->release_agent_path;
2777 argv[i++] = (char *)pathbuf;
2778 argv[i] = NULL;
2780 i = 0;
2781 /* minimal command environment */
2782 envp[i++] = "HOME=/";
2783 envp[i++] = "PATH=/sbin:/bin:/usr/sbin:/usr/bin";
2784 envp[i] = NULL;
2786 /* Drop the lock while we invoke the usermode helper,
2787 * since the exec could involve hitting disk and hence
2788 * be a slow process */
2789 mutex_unlock(&cgroup_mutex);
2790 call_usermodehelper(argv[0], argv, envp, UMH_WAIT_EXEC);
2791 kfree(pathbuf);
2792 mutex_lock(&cgroup_mutex);
2793 spin_lock(&release_list_lock);
2795 spin_unlock(&release_list_lock);
2796 mutex_unlock(&cgroup_mutex);