2 * NET An implementation of the SOCKET network access protocol.
4 * Version: @(#)socket.c 1.1.93 18/02/95
6 * Authors: Orest Zborowski, <obz@Kodak.COM>
8 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
11 * Anonymous : NOTSOCK/BADF cleanup. Error fix in
13 * Alan Cox : verify_area() fixes
14 * Alan Cox : Removed DDI
15 * Jonathan Kamens : SOCK_DGRAM reconnect bug
16 * Alan Cox : Moved a load of checks to the very
18 * Alan Cox : Move address structures to/from user
19 * mode above the protocol layers.
20 * Rob Janssen : Allow 0 length sends.
21 * Alan Cox : Asynchronous I/O support (cribbed from the
23 * Niibe Yutaka : Asynchronous I/O for writes (4.4BSD style)
24 * Jeff Uphoff : Made max number of sockets command-line
26 * Matti Aarnio : Made the number of sockets dynamic,
27 * to be allocated when needed, and mr.
28 * Uphoff's max is used as max to be
29 * allowed to allocate.
30 * Linus : Argh. removed all the socket allocation
31 * altogether: it's in the inode now.
32 * Alan Cox : Made sock_alloc()/sock_release() public
33 * for NetROM and future kernel nfsd type
35 * Alan Cox : sendmsg/recvmsg basics.
36 * Tom Dyas : Export net symbols.
37 * Marcin Dalecki : Fixed problems with CONFIG_NET="n".
38 * Alan Cox : Added thread locking to sys_* calls
39 * for sockets. May have errors at the
41 * Kevin Buhr : Fixed the dumb errors in the above.
42 * Andi Kleen : Some small cleanups, optimizations,
43 * and fixed a copy_from_user() bug.
44 * Tigran Aivazian : sys_send(args) calls sys_sendto(args, NULL, 0)
45 * Tigran Aivazian : Made listen(2) backlog sanity checks
46 * protocol-independent
49 * This program is free software; you can redistribute it and/or
50 * modify it under the terms of the GNU General Public License
51 * as published by the Free Software Foundation; either version
52 * 2 of the License, or (at your option) any later version.
55 * This module is effectively the top level interface to the BSD socket
58 * Based upon Swansea University Computer Society NET3.039
61 #include <linux/config.h>
63 #include <linux/smp_lock.h>
64 #include <linux/socket.h>
65 #include <linux/file.h>
66 #include <linux/net.h>
67 #include <linux/interrupt.h>
68 #include <linux/netdevice.h>
69 #include <linux/proc_fs.h>
70 #include <linux/seq_file.h>
71 #include <linux/wanrouter.h>
72 #include <linux/if_bridge.h>
73 #include <linux/if_frad.h>
74 #include <linux/if_vlan.h>
75 #include <linux/init.h>
76 #include <linux/poll.h>
77 #include <linux/cache.h>
78 #include <linux/module.h>
79 #include <linux/highmem.h>
80 #include <linux/divert.h>
81 #include <linux/mount.h>
82 #include <linux/security.h>
83 #include <linux/syscalls.h>
84 #include <linux/compat.h>
85 #include <linux/kmod.h>
86 #include <linux/audit.h>
88 #ifdef CONFIG_NET_RADIO
89 #include <linux/wireless.h> /* Note : will define WIRELESS_EXT */
90 #endif /* CONFIG_NET_RADIO */
92 #include <asm/uaccess.h>
93 #include <asm/unistd.h>
95 #include <net/compat.h>
98 #include <linux/netfilter.h>
100 static int sock_no_open(struct inode
*irrelevant
, struct file
*dontcare
);
101 static ssize_t
sock_aio_read(struct kiocb
*iocb
, char __user
*buf
,
102 size_t size
, loff_t pos
);
103 static ssize_t
sock_aio_write(struct kiocb
*iocb
, const char __user
*buf
,
104 size_t size
, loff_t pos
);
105 static int sock_mmap(struct file
*file
, struct vm_area_struct
* vma
);
107 static int sock_close(struct inode
*inode
, struct file
*file
);
108 static unsigned int sock_poll(struct file
*file
,
109 struct poll_table_struct
*wait
);
110 static long sock_ioctl(struct file
*file
,
111 unsigned int cmd
, unsigned long arg
);
112 static int sock_fasync(int fd
, struct file
*filp
, int on
);
113 static ssize_t
sock_readv(struct file
*file
, const struct iovec
*vector
,
114 unsigned long count
, loff_t
*ppos
);
115 static ssize_t
sock_writev(struct file
*file
, const struct iovec
*vector
,
116 unsigned long count
, loff_t
*ppos
);
117 static ssize_t
sock_sendpage(struct file
*file
, struct page
*page
,
118 int offset
, size_t size
, loff_t
*ppos
, int more
);
122 * Socket files have a set of 'special' operations as well as the generic file ones. These don't appear
123 * in the operation structures but are done directly via the socketcall() multiplexor.
126 static struct file_operations socket_file_ops
= {
127 .owner
= THIS_MODULE
,
129 .aio_read
= sock_aio_read
,
130 .aio_write
= sock_aio_write
,
132 .unlocked_ioctl
= sock_ioctl
,
134 .open
= sock_no_open
, /* special open code to disallow open via /proc */
135 .release
= sock_close
,
136 .fasync
= sock_fasync
,
138 .writev
= sock_writev
,
139 .sendpage
= sock_sendpage
143 * The protocol list. Each protocol is registered in here.
146 static struct net_proto_family
*net_families
[NPROTO
];
148 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
149 static atomic_t net_family_lockct
= ATOMIC_INIT(0);
150 static DEFINE_SPINLOCK(net_family_lock
);
152 /* The strategy is: modifications net_family vector are short, do not
153 sleep and veeery rare, but read access should be free of any exclusive
157 static void net_family_write_lock(void)
159 spin_lock(&net_family_lock
);
160 while (atomic_read(&net_family_lockct
) != 0) {
161 spin_unlock(&net_family_lock
);
165 spin_lock(&net_family_lock
);
169 static __inline__
void net_family_write_unlock(void)
171 spin_unlock(&net_family_lock
);
174 static __inline__
void net_family_read_lock(void)
176 atomic_inc(&net_family_lockct
);
177 spin_unlock_wait(&net_family_lock
);
180 static __inline__
void net_family_read_unlock(void)
182 atomic_dec(&net_family_lockct
);
186 #define net_family_write_lock() do { } while(0)
187 #define net_family_write_unlock() do { } while(0)
188 #define net_family_read_lock() do { } while(0)
189 #define net_family_read_unlock() do { } while(0)
194 * Statistics counters of the socket lists
197 static DEFINE_PER_CPU(int, sockets_in_use
) = 0;
200 * Support routines. Move socket addresses back and forth across the kernel/user
201 * divide and look after the messy bits.
204 #define MAX_SOCK_ADDR 128 /* 108 for Unix domain -
205 16 for IP, 16 for IPX,
208 must be at least one bigger than
209 the AF_UNIX size (see net/unix/af_unix.c
214 * move_addr_to_kernel - copy a socket address into kernel space
215 * @uaddr: Address in user space
216 * @kaddr: Address in kernel space
217 * @ulen: Length in user space
219 * The address is copied into kernel space. If the provided address is
220 * too long an error code of -EINVAL is returned. If the copy gives
221 * invalid addresses -EFAULT is returned. On a success 0 is returned.
224 int move_addr_to_kernel(void __user
*uaddr
, int ulen
, void *kaddr
)
226 if(ulen
<0||ulen
>MAX_SOCK_ADDR
)
230 if(copy_from_user(kaddr
,uaddr
,ulen
))
232 return audit_sockaddr(ulen
, kaddr
);
236 * move_addr_to_user - copy an address to user space
237 * @kaddr: kernel space address
238 * @klen: length of address in kernel
239 * @uaddr: user space address
240 * @ulen: pointer to user length field
242 * The value pointed to by ulen on entry is the buffer length available.
243 * This is overwritten with the buffer space used. -EINVAL is returned
244 * if an overlong buffer is specified or a negative buffer size. -EFAULT
245 * is returned if either the buffer or the length field are not
247 * After copying the data up to the limit the user specifies, the true
248 * length of the data is written over the length limit the user
249 * specified. Zero is returned for a success.
252 int move_addr_to_user(void *kaddr
, int klen
, void __user
*uaddr
, int __user
*ulen
)
257 if((err
=get_user(len
, ulen
)))
261 if(len
<0 || len
> MAX_SOCK_ADDR
)
265 if(copy_to_user(uaddr
,kaddr
,len
))
269 * "fromlen shall refer to the value before truncation.."
272 return __put_user(klen
, ulen
);
275 #define SOCKFS_MAGIC 0x534F434B
277 static kmem_cache_t
* sock_inode_cachep __read_mostly
;
279 static struct inode
*sock_alloc_inode(struct super_block
*sb
)
281 struct socket_alloc
*ei
;
282 ei
= (struct socket_alloc
*)kmem_cache_alloc(sock_inode_cachep
, SLAB_KERNEL
);
285 init_waitqueue_head(&ei
->socket
.wait
);
287 ei
->socket
.fasync_list
= NULL
;
288 ei
->socket
.state
= SS_UNCONNECTED
;
289 ei
->socket
.flags
= 0;
290 ei
->socket
.ops
= NULL
;
291 ei
->socket
.sk
= NULL
;
292 ei
->socket
.file
= NULL
;
293 ei
->socket
.flags
= 0;
295 return &ei
->vfs_inode
;
298 static void sock_destroy_inode(struct inode
*inode
)
300 kmem_cache_free(sock_inode_cachep
,
301 container_of(inode
, struct socket_alloc
, vfs_inode
));
304 static void init_once(void * foo
, kmem_cache_t
* cachep
, unsigned long flags
)
306 struct socket_alloc
*ei
= (struct socket_alloc
*) foo
;
308 if ((flags
& (SLAB_CTOR_VERIFY
|SLAB_CTOR_CONSTRUCTOR
)) ==
309 SLAB_CTOR_CONSTRUCTOR
)
310 inode_init_once(&ei
->vfs_inode
);
313 static int init_inodecache(void)
315 sock_inode_cachep
= kmem_cache_create("sock_inode_cache",
316 sizeof(struct socket_alloc
),
317 0, SLAB_HWCACHE_ALIGN
|SLAB_RECLAIM_ACCOUNT
,
319 if (sock_inode_cachep
== NULL
)
324 static struct super_operations sockfs_ops
= {
325 .alloc_inode
= sock_alloc_inode
,
326 .destroy_inode
=sock_destroy_inode
,
327 .statfs
= simple_statfs
,
330 static struct super_block
*sockfs_get_sb(struct file_system_type
*fs_type
,
331 int flags
, const char *dev_name
, void *data
)
333 return get_sb_pseudo(fs_type
, "socket:", &sockfs_ops
, SOCKFS_MAGIC
);
336 static struct vfsmount
*sock_mnt __read_mostly
;
338 static struct file_system_type sock_fs_type
= {
340 .get_sb
= sockfs_get_sb
,
341 .kill_sb
= kill_anon_super
,
343 static int sockfs_delete_dentry(struct dentry
*dentry
)
347 static struct dentry_operations sockfs_dentry_operations
= {
348 .d_delete
= sockfs_delete_dentry
,
352 * Obtains the first available file descriptor and sets it up for use.
354 * This function creates file structure and maps it to fd space
355 * of current process. On success it returns file descriptor
356 * and file struct implicitly stored in sock->file.
357 * Note that another thread may close file descriptor before we return
358 * from this function. We use the fact that now we do not refer
359 * to socket after mapping. If one day we will need it, this
360 * function will increment ref. count on file by 1.
362 * In any case returned fd MAY BE not valid!
363 * This race condition is unavoidable
364 * with shared fd spaces, we cannot solve it inside kernel,
365 * but we take care of internal coherence yet.
368 int sock_map_fd(struct socket
*sock
)
375 * Find a file descriptor suitable for return to the user.
378 fd
= get_unused_fd();
380 struct file
*file
= get_empty_filp();
388 this.len
= sprintf(name
, "[%lu]", SOCK_INODE(sock
)->i_ino
);
390 this.hash
= SOCK_INODE(sock
)->i_ino
;
392 file
->f_dentry
= d_alloc(sock_mnt
->mnt_sb
->s_root
, &this);
393 if (!file
->f_dentry
) {
399 file
->f_dentry
->d_op
= &sockfs_dentry_operations
;
400 d_add(file
->f_dentry
, SOCK_INODE(sock
));
401 file
->f_vfsmnt
= mntget(sock_mnt
);
402 file
->f_mapping
= file
->f_dentry
->d_inode
->i_mapping
;
405 file
->f_op
= SOCK_INODE(sock
)->i_fop
= &socket_file_ops
;
406 file
->f_mode
= FMODE_READ
| FMODE_WRITE
;
407 file
->f_flags
= O_RDWR
;
409 file
->private_data
= sock
;
410 fd_install(fd
, file
);
418 * sockfd_lookup - Go from a file number to its socket slot
420 * @err: pointer to an error code return
422 * The file handle passed in is locked and the socket it is bound
423 * too is returned. If an error occurs the err pointer is overwritten
424 * with a negative errno code and NULL is returned. The function checks
425 * for both invalid handles and passing a handle which is not a socket.
427 * On a success the socket object pointer is returned.
430 struct socket
*sockfd_lookup(int fd
, int *err
)
436 if (!(file
= fget(fd
)))
442 if (file
->f_op
== &socket_file_ops
)
443 return file
->private_data
; /* set in sock_map_fd */
445 inode
= file
->f_dentry
->d_inode
;
446 if (!S_ISSOCK(inode
->i_mode
)) {
452 sock
= SOCKET_I(inode
);
453 if (sock
->file
!= file
) {
454 printk(KERN_ERR
"socki_lookup: socket file changed!\n");
461 * sock_alloc - allocate a socket
463 * Allocate a new inode and socket object. The two are bound together
464 * and initialised. The socket is then returned. If we are out of inodes
468 static struct socket
*sock_alloc(void)
470 struct inode
* inode
;
471 struct socket
* sock
;
473 inode
= new_inode(sock_mnt
->mnt_sb
);
477 sock
= SOCKET_I(inode
);
479 inode
->i_mode
= S_IFSOCK
|S_IRWXUGO
;
480 inode
->i_uid
= current
->fsuid
;
481 inode
->i_gid
= current
->fsgid
;
483 get_cpu_var(sockets_in_use
)++;
484 put_cpu_var(sockets_in_use
);
489 * In theory you can't get an open on this inode, but /proc provides
490 * a back door. Remember to keep it shut otherwise you'll let the
491 * creepy crawlies in.
494 static int sock_no_open(struct inode
*irrelevant
, struct file
*dontcare
)
499 struct file_operations bad_sock_fops
= {
500 .owner
= THIS_MODULE
,
501 .open
= sock_no_open
,
505 * sock_release - close a socket
506 * @sock: socket to close
508 * The socket is released from the protocol stack if it has a release
509 * callback, and the inode is then released if the socket is bound to
510 * an inode not a file.
513 void sock_release(struct socket
*sock
)
516 struct module
*owner
= sock
->ops
->owner
;
518 sock
->ops
->release(sock
);
523 if (sock
->fasync_list
)
524 printk(KERN_ERR
"sock_release: fasync list not empty!\n");
526 get_cpu_var(sockets_in_use
)--;
527 put_cpu_var(sockets_in_use
);
529 iput(SOCK_INODE(sock
));
535 static inline int __sock_sendmsg(struct kiocb
*iocb
, struct socket
*sock
,
536 struct msghdr
*msg
, size_t size
)
538 struct sock_iocb
*si
= kiocb_to_siocb(iocb
);
546 err
= security_socket_sendmsg(sock
, msg
, size
);
550 return sock
->ops
->sendmsg(iocb
, sock
, msg
, size
);
553 int sock_sendmsg(struct socket
*sock
, struct msghdr
*msg
, size_t size
)
556 struct sock_iocb siocb
;
559 init_sync_kiocb(&iocb
, NULL
);
560 iocb
.private = &siocb
;
561 ret
= __sock_sendmsg(&iocb
, sock
, msg
, size
);
562 if (-EIOCBQUEUED
== ret
)
563 ret
= wait_on_sync_kiocb(&iocb
);
567 int kernel_sendmsg(struct socket
*sock
, struct msghdr
*msg
,
568 struct kvec
*vec
, size_t num
, size_t size
)
570 mm_segment_t oldfs
= get_fs();
575 * the following is safe, since for compiler definitions of kvec and
576 * iovec are identical, yielding the same in-core layout and alignment
578 msg
->msg_iov
= (struct iovec
*)vec
,
579 msg
->msg_iovlen
= num
;
580 result
= sock_sendmsg(sock
, msg
, size
);
585 static inline int __sock_recvmsg(struct kiocb
*iocb
, struct socket
*sock
,
586 struct msghdr
*msg
, size_t size
, int flags
)
589 struct sock_iocb
*si
= kiocb_to_siocb(iocb
);
597 err
= security_socket_recvmsg(sock
, msg
, size
, flags
);
601 return sock
->ops
->recvmsg(iocb
, sock
, msg
, size
, flags
);
604 int sock_recvmsg(struct socket
*sock
, struct msghdr
*msg
,
605 size_t size
, int flags
)
608 struct sock_iocb siocb
;
611 init_sync_kiocb(&iocb
, NULL
);
612 iocb
.private = &siocb
;
613 ret
= __sock_recvmsg(&iocb
, sock
, msg
, size
, flags
);
614 if (-EIOCBQUEUED
== ret
)
615 ret
= wait_on_sync_kiocb(&iocb
);
619 int kernel_recvmsg(struct socket
*sock
, struct msghdr
*msg
,
620 struct kvec
*vec
, size_t num
,
621 size_t size
, int flags
)
623 mm_segment_t oldfs
= get_fs();
628 * the following is safe, since for compiler definitions of kvec and
629 * iovec are identical, yielding the same in-core layout and alignment
631 msg
->msg_iov
= (struct iovec
*)vec
,
632 msg
->msg_iovlen
= num
;
633 result
= sock_recvmsg(sock
, msg
, size
, flags
);
638 static void sock_aio_dtor(struct kiocb
*iocb
)
640 kfree(iocb
->private);
644 * Read data from a socket. ubuf is a user mode pointer. We make sure the user
645 * area ubuf...ubuf+size-1 is writable before asking the protocol.
648 static ssize_t
sock_aio_read(struct kiocb
*iocb
, char __user
*ubuf
,
649 size_t size
, loff_t pos
)
651 struct sock_iocb
*x
, siocb
;
657 if (size
==0) /* Match SYS5 behaviour */
660 if (is_sync_kiocb(iocb
))
663 x
= kmalloc(sizeof(struct sock_iocb
), GFP_KERNEL
);
666 iocb
->ki_dtor
= sock_aio_dtor
;
670 sock
= SOCKET_I(iocb
->ki_filp
->f_dentry
->d_inode
);
672 x
->async_msg
.msg_name
= NULL
;
673 x
->async_msg
.msg_namelen
= 0;
674 x
->async_msg
.msg_iov
= &x
->async_iov
;
675 x
->async_msg
.msg_iovlen
= 1;
676 x
->async_msg
.msg_control
= NULL
;
677 x
->async_msg
.msg_controllen
= 0;
678 x
->async_iov
.iov_base
= ubuf
;
679 x
->async_iov
.iov_len
= size
;
680 flags
= !(iocb
->ki_filp
->f_flags
& O_NONBLOCK
) ? 0 : MSG_DONTWAIT
;
682 return __sock_recvmsg(iocb
, sock
, &x
->async_msg
, size
, flags
);
687 * Write data to a socket. We verify that the user area ubuf..ubuf+size-1
688 * is readable by the user process.
691 static ssize_t
sock_aio_write(struct kiocb
*iocb
, const char __user
*ubuf
,
692 size_t size
, loff_t pos
)
694 struct sock_iocb
*x
, siocb
;
699 if(size
==0) /* Match SYS5 behaviour */
702 if (is_sync_kiocb(iocb
))
705 x
= kmalloc(sizeof(struct sock_iocb
), GFP_KERNEL
);
708 iocb
->ki_dtor
= sock_aio_dtor
;
712 sock
= SOCKET_I(iocb
->ki_filp
->f_dentry
->d_inode
);
714 x
->async_msg
.msg_name
= NULL
;
715 x
->async_msg
.msg_namelen
= 0;
716 x
->async_msg
.msg_iov
= &x
->async_iov
;
717 x
->async_msg
.msg_iovlen
= 1;
718 x
->async_msg
.msg_control
= NULL
;
719 x
->async_msg
.msg_controllen
= 0;
720 x
->async_msg
.msg_flags
= !(iocb
->ki_filp
->f_flags
& O_NONBLOCK
) ? 0 : MSG_DONTWAIT
;
721 if (sock
->type
== SOCK_SEQPACKET
)
722 x
->async_msg
.msg_flags
|= MSG_EOR
;
723 x
->async_iov
.iov_base
= (void __user
*)ubuf
;
724 x
->async_iov
.iov_len
= size
;
726 return __sock_sendmsg(iocb
, sock
, &x
->async_msg
, size
);
729 static ssize_t
sock_sendpage(struct file
*file
, struct page
*page
,
730 int offset
, size_t size
, loff_t
*ppos
, int more
)
735 sock
= SOCKET_I(file
->f_dentry
->d_inode
);
737 flags
= !(file
->f_flags
& O_NONBLOCK
) ? 0 : MSG_DONTWAIT
;
741 return sock
->ops
->sendpage(sock
, page
, offset
, size
, flags
);
744 static int sock_readv_writev(int type
, struct inode
* inode
,
745 struct file
* file
, const struct iovec
* iov
,
746 long count
, size_t size
)
751 sock
= SOCKET_I(inode
);
755 msg
.msg_control
= NULL
;
756 msg
.msg_controllen
= 0;
757 msg
.msg_iov
= (struct iovec
*) iov
;
758 msg
.msg_iovlen
= count
;
759 msg
.msg_flags
= (file
->f_flags
& O_NONBLOCK
) ? MSG_DONTWAIT
: 0;
761 /* read() does a VERIFY_WRITE */
762 if (type
== VERIFY_WRITE
)
763 return sock_recvmsg(sock
, &msg
, size
, msg
.msg_flags
);
765 if (sock
->type
== SOCK_SEQPACKET
)
766 msg
.msg_flags
|= MSG_EOR
;
768 return sock_sendmsg(sock
, &msg
, size
);
771 static ssize_t
sock_readv(struct file
*file
, const struct iovec
*vector
,
772 unsigned long count
, loff_t
*ppos
)
776 for (i
= 0 ; i
< count
; i
++)
777 tot_len
+= vector
[i
].iov_len
;
778 return sock_readv_writev(VERIFY_WRITE
, file
->f_dentry
->d_inode
,
779 file
, vector
, count
, tot_len
);
782 static ssize_t
sock_writev(struct file
*file
, const struct iovec
*vector
,
783 unsigned long count
, loff_t
*ppos
)
787 for (i
= 0 ; i
< count
; i
++)
788 tot_len
+= vector
[i
].iov_len
;
789 return sock_readv_writev(VERIFY_READ
, file
->f_dentry
->d_inode
,
790 file
, vector
, count
, tot_len
);
795 * Atomic setting of ioctl hooks to avoid race
796 * with module unload.
799 static DECLARE_MUTEX(br_ioctl_mutex
);
800 static int (*br_ioctl_hook
)(unsigned int cmd
, void __user
*arg
) = NULL
;
802 void brioctl_set(int (*hook
)(unsigned int, void __user
*))
804 down(&br_ioctl_mutex
);
805 br_ioctl_hook
= hook
;
808 EXPORT_SYMBOL(brioctl_set
);
810 static DECLARE_MUTEX(vlan_ioctl_mutex
);
811 static int (*vlan_ioctl_hook
)(void __user
*arg
);
813 void vlan_ioctl_set(int (*hook
)(void __user
*))
815 down(&vlan_ioctl_mutex
);
816 vlan_ioctl_hook
= hook
;
817 up(&vlan_ioctl_mutex
);
819 EXPORT_SYMBOL(vlan_ioctl_set
);
821 static DECLARE_MUTEX(dlci_ioctl_mutex
);
822 static int (*dlci_ioctl_hook
)(unsigned int, void __user
*);
824 void dlci_ioctl_set(int (*hook
)(unsigned int, void __user
*))
826 down(&dlci_ioctl_mutex
);
827 dlci_ioctl_hook
= hook
;
828 up(&dlci_ioctl_mutex
);
830 EXPORT_SYMBOL(dlci_ioctl_set
);
833 * With an ioctl, arg may well be a user mode pointer, but we don't know
834 * what to do with it - that's up to the protocol still.
837 static long sock_ioctl(struct file
*file
, unsigned cmd
, unsigned long arg
)
840 void __user
*argp
= (void __user
*)arg
;
843 sock
= SOCKET_I(file
->f_dentry
->d_inode
);
844 if (cmd
>= SIOCDEVPRIVATE
&& cmd
<= (SIOCDEVPRIVATE
+ 15)) {
845 err
= dev_ioctl(cmd
, argp
);
848 if (cmd
>= SIOCIWFIRST
&& cmd
<= SIOCIWLAST
) {
849 err
= dev_ioctl(cmd
, argp
);
851 #endif /* WIRELESS_EXT */
856 if (get_user(pid
, (int __user
*)argp
))
858 err
= f_setown(sock
->file
, pid
, 1);
862 err
= put_user(sock
->file
->f_owner
.pid
, (int __user
*)argp
);
870 request_module("bridge");
872 down(&br_ioctl_mutex
);
874 err
= br_ioctl_hook(cmd
, argp
);
880 if (!vlan_ioctl_hook
)
881 request_module("8021q");
883 down(&vlan_ioctl_mutex
);
885 err
= vlan_ioctl_hook(argp
);
886 up(&vlan_ioctl_mutex
);
890 /* Convert this to call through a hook */
891 err
= divert_ioctl(cmd
, argp
);
896 if (!dlci_ioctl_hook
)
897 request_module("dlci");
899 if (dlci_ioctl_hook
) {
900 down(&dlci_ioctl_mutex
);
901 err
= dlci_ioctl_hook(cmd
, argp
);
902 up(&dlci_ioctl_mutex
);
906 err
= sock
->ops
->ioctl(sock
, cmd
, arg
);
912 int sock_create_lite(int family
, int type
, int protocol
, struct socket
**res
)
915 struct socket
*sock
= NULL
;
917 err
= security_socket_create(family
, type
, protocol
, 1);
927 security_socket_post_create(sock
, family
, type
, protocol
, 1);
934 /* No kernel lock held - perfect */
935 static unsigned int sock_poll(struct file
*file
, poll_table
* wait
)
940 * We can't return errors to poll, so it's either yes or no.
942 sock
= SOCKET_I(file
->f_dentry
->d_inode
);
943 return sock
->ops
->poll(file
, sock
, wait
);
946 static int sock_mmap(struct file
* file
, struct vm_area_struct
* vma
)
948 struct socket
*sock
= SOCKET_I(file
->f_dentry
->d_inode
);
950 return sock
->ops
->mmap(file
, sock
, vma
);
953 static int sock_close(struct inode
*inode
, struct file
*filp
)
956 * It was possible the inode is NULL we were
957 * closing an unfinished socket.
962 printk(KERN_DEBUG
"sock_close: NULL inode\n");
965 sock_fasync(-1, filp
, 0);
966 sock_release(SOCKET_I(inode
));
971 * Update the socket async list
973 * Fasync_list locking strategy.
975 * 1. fasync_list is modified only under process context socket lock
976 * i.e. under semaphore.
977 * 2. fasync_list is used under read_lock(&sk->sk_callback_lock)
978 * or under socket lock.
979 * 3. fasync_list can be used from softirq context, so that
980 * modification under socket lock have to be enhanced with
981 * write_lock_bh(&sk->sk_callback_lock).
985 static int sock_fasync(int fd
, struct file
*filp
, int on
)
987 struct fasync_struct
*fa
, *fna
=NULL
, **prev
;
993 fna
=(struct fasync_struct
*)kmalloc(sizeof(struct fasync_struct
), GFP_KERNEL
);
998 sock
= SOCKET_I(filp
->f_dentry
->d_inode
);
1000 if ((sk
=sock
->sk
) == NULL
) {
1007 prev
=&(sock
->fasync_list
);
1009 for (fa
=*prev
; fa
!=NULL
; prev
=&fa
->fa_next
,fa
=*prev
)
1010 if (fa
->fa_file
==filp
)
1017 write_lock_bh(&sk
->sk_callback_lock
);
1019 write_unlock_bh(&sk
->sk_callback_lock
);
1026 fna
->magic
=FASYNC_MAGIC
;
1027 fna
->fa_next
=sock
->fasync_list
;
1028 write_lock_bh(&sk
->sk_callback_lock
);
1029 sock
->fasync_list
=fna
;
1030 write_unlock_bh(&sk
->sk_callback_lock
);
1036 write_lock_bh(&sk
->sk_callback_lock
);
1038 write_unlock_bh(&sk
->sk_callback_lock
);
1044 release_sock(sock
->sk
);
1048 /* This function may be called only under socket lock or callback_lock */
1050 int sock_wake_async(struct socket
*sock
, int how
, int band
)
1052 if (!sock
|| !sock
->fasync_list
)
1058 if (test_bit(SOCK_ASYNC_WAITDATA
, &sock
->flags
))
1062 if (!test_and_clear_bit(SOCK_ASYNC_NOSPACE
, &sock
->flags
))
1067 __kill_fasync(sock
->fasync_list
, SIGIO
, band
);
1070 __kill_fasync(sock
->fasync_list
, SIGURG
, band
);
1075 static int __sock_create(int family
, int type
, int protocol
, struct socket
**res
, int kern
)
1078 struct socket
*sock
;
1081 * Check protocol is in range
1083 if (family
< 0 || family
>= NPROTO
)
1084 return -EAFNOSUPPORT
;
1085 if (type
< 0 || type
>= SOCK_MAX
)
1090 This uglymoron is moved from INET layer to here to avoid
1091 deadlock in module load.
1093 if (family
== PF_INET
&& type
== SOCK_PACKET
) {
1097 printk(KERN_INFO
"%s uses obsolete (PF_INET,SOCK_PACKET)\n", current
->comm
);
1102 err
= security_socket_create(family
, type
, protocol
, kern
);
1106 #if defined(CONFIG_KMOD)
1107 /* Attempt to load a protocol module if the find failed.
1109 * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user
1110 * requested real, full-featured networking support upon configuration.
1111 * Otherwise module support will break!
1113 if (net_families
[family
]==NULL
)
1115 request_module("net-pf-%d",family
);
1119 net_family_read_lock();
1120 if (net_families
[family
] == NULL
) {
1121 err
= -EAFNOSUPPORT
;
1126 * Allocate the socket and allow the family to set things up. if
1127 * the protocol is 0, the family is instructed to select an appropriate
1131 if (!(sock
= sock_alloc())) {
1132 printk(KERN_WARNING
"socket: no more sockets\n");
1133 err
= -ENFILE
; /* Not exactly a match, but its the
1134 closest posix thing */
1141 * We will call the ->create function, that possibly is in a loadable
1142 * module, so we have to bump that loadable module refcnt first.
1144 err
= -EAFNOSUPPORT
;
1145 if (!try_module_get(net_families
[family
]->owner
))
1148 if ((err
= net_families
[family
]->create(sock
, protocol
)) < 0)
1149 goto out_module_put
;
1151 * Now to bump the refcnt of the [loadable] module that owns this
1152 * socket at sock_release time we decrement its refcnt.
1154 if (!try_module_get(sock
->ops
->owner
)) {
1156 goto out_module_put
;
1159 * Now that we're done with the ->create function, the [loadable]
1160 * module can have its refcnt decremented
1162 module_put(net_families
[family
]->owner
);
1164 security_socket_post_create(sock
, family
, type
, protocol
, kern
);
1167 net_family_read_unlock();
1170 module_put(net_families
[family
]->owner
);
1176 int sock_create(int family
, int type
, int protocol
, struct socket
**res
)
1178 return __sock_create(family
, type
, protocol
, res
, 0);
1181 int sock_create_kern(int family
, int type
, int protocol
, struct socket
**res
)
1183 return __sock_create(family
, type
, protocol
, res
, 1);
1186 asmlinkage
long sys_socket(int family
, int type
, int protocol
)
1189 struct socket
*sock
;
1191 retval
= sock_create(family
, type
, protocol
, &sock
);
1195 retval
= sock_map_fd(sock
);
1200 /* It may be already another descriptor 8) Not kernel problem. */
1209 * Create a pair of connected sockets.
1212 asmlinkage
long sys_socketpair(int family
, int type
, int protocol
, int __user
*usockvec
)
1214 struct socket
*sock1
, *sock2
;
1218 * Obtain the first socket and check if the underlying protocol
1219 * supports the socketpair call.
1222 err
= sock_create(family
, type
, protocol
, &sock1
);
1226 err
= sock_create(family
, type
, protocol
, &sock2
);
1230 err
= sock1
->ops
->socketpair(sock1
, sock2
);
1232 goto out_release_both
;
1236 err
= sock_map_fd(sock1
);
1238 goto out_release_both
;
1241 err
= sock_map_fd(sock2
);
1246 /* fd1 and fd2 may be already another descriptors.
1247 * Not kernel problem.
1250 err
= put_user(fd1
, &usockvec
[0]);
1252 err
= put_user(fd2
, &usockvec
[1]);
1261 sock_release(sock2
);
1266 sock_release(sock2
);
1268 sock_release(sock1
);
1275 * Bind a name to a socket. Nothing much to do here since it's
1276 * the protocol's responsibility to handle the local address.
1278 * We move the socket address to kernel space before we call
1279 * the protocol layer (having also checked the address is ok).
1282 asmlinkage
long sys_bind(int fd
, struct sockaddr __user
*umyaddr
, int addrlen
)
1284 struct socket
*sock
;
1285 char address
[MAX_SOCK_ADDR
];
1288 if((sock
= sockfd_lookup(fd
,&err
))!=NULL
)
1290 if((err
=move_addr_to_kernel(umyaddr
,addrlen
,address
))>=0) {
1291 err
= security_socket_bind(sock
, (struct sockaddr
*)address
, addrlen
);
1296 err
= sock
->ops
->bind(sock
, (struct sockaddr
*)address
, addrlen
);
1305 * Perform a listen. Basically, we allow the protocol to do anything
1306 * necessary for a listen, and if that works, we mark the socket as
1307 * ready for listening.
1310 int sysctl_somaxconn
= SOMAXCONN
;
1312 asmlinkage
long sys_listen(int fd
, int backlog
)
1314 struct socket
*sock
;
1317 if ((sock
= sockfd_lookup(fd
, &err
)) != NULL
) {
1318 if ((unsigned) backlog
> sysctl_somaxconn
)
1319 backlog
= sysctl_somaxconn
;
1321 err
= security_socket_listen(sock
, backlog
);
1327 err
=sock
->ops
->listen(sock
, backlog
);
1335 * For accept, we attempt to create a new socket, set up the link
1336 * with the client, wake up the client, then return the new
1337 * connected fd. We collect the address of the connector in kernel
1338 * space and move it to user at the very end. This is unclean because
1339 * we open the socket then return an error.
1341 * 1003.1g adds the ability to recvmsg() to query connection pending
1342 * status to recvmsg. We need to add that support in a way thats
1343 * clean when we restucture accept also.
1346 asmlinkage
long sys_accept(int fd
, struct sockaddr __user
*upeer_sockaddr
, int __user
*upeer_addrlen
)
1348 struct socket
*sock
, *newsock
;
1350 char address
[MAX_SOCK_ADDR
];
1352 sock
= sockfd_lookup(fd
, &err
);
1357 if (!(newsock
= sock_alloc()))
1360 newsock
->type
= sock
->type
;
1361 newsock
->ops
= sock
->ops
;
1363 err
= security_socket_accept(sock
, newsock
);
1368 * We don't need try_module_get here, as the listening socket (sock)
1369 * has the protocol module (sock->ops->owner) held.
1371 __module_get(newsock
->ops
->owner
);
1373 err
= sock
->ops
->accept(sock
, newsock
, sock
->file
->f_flags
);
1377 if (upeer_sockaddr
) {
1378 if(newsock
->ops
->getname(newsock
, (struct sockaddr
*)address
, &len
, 2)<0) {
1379 err
= -ECONNABORTED
;
1382 err
= move_addr_to_user(address
, len
, upeer_sockaddr
, upeer_addrlen
);
1387 /* File flags are not inherited via accept() unlike another OSes. */
1389 if ((err
= sock_map_fd(newsock
)) < 0)
1392 security_socket_post_accept(sock
, newsock
);
1399 sock_release(newsock
);
1405 * Attempt to connect to a socket with the server address. The address
1406 * is in user space so we verify it is OK and move it to kernel space.
1408 * For 1003.1g we need to add clean support for a bind to AF_UNSPEC to
1411 * NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and
1412 * other SEQPACKET protocols that take time to connect() as it doesn't
1413 * include the -EINPROGRESS status for such sockets.
1416 asmlinkage
long sys_connect(int fd
, struct sockaddr __user
*uservaddr
, int addrlen
)
1418 struct socket
*sock
;
1419 char address
[MAX_SOCK_ADDR
];
1422 sock
= sockfd_lookup(fd
, &err
);
1425 err
= move_addr_to_kernel(uservaddr
, addrlen
, address
);
1429 err
= security_socket_connect(sock
, (struct sockaddr
*)address
, addrlen
);
1433 err
= sock
->ops
->connect(sock
, (struct sockaddr
*) address
, addrlen
,
1434 sock
->file
->f_flags
);
1442 * Get the local address ('name') of a socket object. Move the obtained
1443 * name to user space.
1446 asmlinkage
long sys_getsockname(int fd
, struct sockaddr __user
*usockaddr
, int __user
*usockaddr_len
)
1448 struct socket
*sock
;
1449 char address
[MAX_SOCK_ADDR
];
1452 sock
= sockfd_lookup(fd
, &err
);
1456 err
= security_socket_getsockname(sock
);
1460 err
= sock
->ops
->getname(sock
, (struct sockaddr
*)address
, &len
, 0);
1463 err
= move_addr_to_user(address
, len
, usockaddr
, usockaddr_len
);
1472 * Get the remote address ('name') of a socket object. Move the obtained
1473 * name to user space.
1476 asmlinkage
long sys_getpeername(int fd
, struct sockaddr __user
*usockaddr
, int __user
*usockaddr_len
)
1478 struct socket
*sock
;
1479 char address
[MAX_SOCK_ADDR
];
1482 if ((sock
= sockfd_lookup(fd
, &err
))!=NULL
)
1484 err
= security_socket_getpeername(sock
);
1490 err
= sock
->ops
->getname(sock
, (struct sockaddr
*)address
, &len
, 1);
1492 err
=move_addr_to_user(address
,len
, usockaddr
, usockaddr_len
);
1499 * Send a datagram to a given address. We move the address into kernel
1500 * space and check the user space data area is readable before invoking
1504 asmlinkage
long sys_sendto(int fd
, void __user
* buff
, size_t len
, unsigned flags
,
1505 struct sockaddr __user
*addr
, int addr_len
)
1507 struct socket
*sock
;
1508 char address
[MAX_SOCK_ADDR
];
1513 sock
= sockfd_lookup(fd
, &err
);
1521 msg
.msg_control
=NULL
;
1522 msg
.msg_controllen
=0;
1526 err
= move_addr_to_kernel(addr
, addr_len
, address
);
1529 msg
.msg_name
=address
;
1530 msg
.msg_namelen
=addr_len
;
1532 if (sock
->file
->f_flags
& O_NONBLOCK
)
1533 flags
|= MSG_DONTWAIT
;
1534 msg
.msg_flags
= flags
;
1535 err
= sock_sendmsg(sock
, &msg
, len
);
1544 * Send a datagram down a socket.
1547 asmlinkage
long sys_send(int fd
, void __user
* buff
, size_t len
, unsigned flags
)
1549 return sys_sendto(fd
, buff
, len
, flags
, NULL
, 0);
1553 * Receive a frame from the socket and optionally record the address of the
1554 * sender. We verify the buffers are writable and if needed move the
1555 * sender address from kernel to user space.
1558 asmlinkage
long sys_recvfrom(int fd
, void __user
* ubuf
, size_t size
, unsigned flags
,
1559 struct sockaddr __user
*addr
, int __user
*addr_len
)
1561 struct socket
*sock
;
1564 char address
[MAX_SOCK_ADDR
];
1567 sock
= sockfd_lookup(fd
, &err
);
1571 msg
.msg_control
=NULL
;
1572 msg
.msg_controllen
=0;
1577 msg
.msg_name
=address
;
1578 msg
.msg_namelen
=MAX_SOCK_ADDR
;
1579 if (sock
->file
->f_flags
& O_NONBLOCK
)
1580 flags
|= MSG_DONTWAIT
;
1581 err
=sock_recvmsg(sock
, &msg
, size
, flags
);
1583 if(err
>= 0 && addr
!= NULL
)
1585 err2
=move_addr_to_user(address
, msg
.msg_namelen
, addr
, addr_len
);
1595 * Receive a datagram from a socket.
1598 asmlinkage
long sys_recv(int fd
, void __user
* ubuf
, size_t size
, unsigned flags
)
1600 return sys_recvfrom(fd
, ubuf
, size
, flags
, NULL
, NULL
);
1604 * Set a socket option. Because we don't know the option lengths we have
1605 * to pass the user mode parameter for the protocols to sort out.
1608 asmlinkage
long sys_setsockopt(int fd
, int level
, int optname
, char __user
*optval
, int optlen
)
1611 struct socket
*sock
;
1616 if ((sock
= sockfd_lookup(fd
, &err
))!=NULL
)
1618 err
= security_socket_setsockopt(sock
,level
,optname
);
1624 if (level
== SOL_SOCKET
)
1625 err
=sock_setsockopt(sock
,level
,optname
,optval
,optlen
);
1627 err
=sock
->ops
->setsockopt(sock
, level
, optname
, optval
, optlen
);
1634 * Get a socket option. Because we don't know the option lengths we have
1635 * to pass a user mode parameter for the protocols to sort out.
1638 asmlinkage
long sys_getsockopt(int fd
, int level
, int optname
, char __user
*optval
, int __user
*optlen
)
1641 struct socket
*sock
;
1643 if ((sock
= sockfd_lookup(fd
, &err
))!=NULL
)
1645 err
= security_socket_getsockopt(sock
, level
,
1652 if (level
== SOL_SOCKET
)
1653 err
=sock_getsockopt(sock
,level
,optname
,optval
,optlen
);
1655 err
=sock
->ops
->getsockopt(sock
, level
, optname
, optval
, optlen
);
1663 * Shutdown a socket.
1666 asmlinkage
long sys_shutdown(int fd
, int how
)
1669 struct socket
*sock
;
1671 if ((sock
= sockfd_lookup(fd
, &err
))!=NULL
)
1673 err
= security_socket_shutdown(sock
, how
);
1679 err
=sock
->ops
->shutdown(sock
, how
);
1685 /* A couple of helpful macros for getting the address of the 32/64 bit
1686 * fields which are the same type (int / unsigned) on our platforms.
1688 #define COMPAT_MSG(msg, member) ((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member)
1689 #define COMPAT_NAMELEN(msg) COMPAT_MSG(msg, msg_namelen)
1690 #define COMPAT_FLAGS(msg) COMPAT_MSG(msg, msg_flags)
1694 * BSD sendmsg interface
1697 asmlinkage
long sys_sendmsg(int fd
, struct msghdr __user
*msg
, unsigned flags
)
1699 struct compat_msghdr __user
*msg_compat
= (struct compat_msghdr __user
*)msg
;
1700 struct socket
*sock
;
1701 char address
[MAX_SOCK_ADDR
];
1702 struct iovec iovstack
[UIO_FASTIOV
], *iov
= iovstack
;
1703 unsigned char ctl
[sizeof(struct cmsghdr
) + 20]; /* 20 is size of ipv6_pktinfo */
1704 unsigned char *ctl_buf
= ctl
;
1705 struct msghdr msg_sys
;
1706 int err
, ctl_len
, iov_size
, total_len
;
1709 if (MSG_CMSG_COMPAT
& flags
) {
1710 if (get_compat_msghdr(&msg_sys
, msg_compat
))
1712 } else if (copy_from_user(&msg_sys
, msg
, sizeof(struct msghdr
)))
1715 sock
= sockfd_lookup(fd
, &err
);
1719 /* do not move before msg_sys is valid */
1721 if (msg_sys
.msg_iovlen
> UIO_MAXIOV
)
1724 /* Check whether to allocate the iovec area*/
1726 iov_size
= msg_sys
.msg_iovlen
* sizeof(struct iovec
);
1727 if (msg_sys
.msg_iovlen
> UIO_FASTIOV
) {
1728 iov
= sock_kmalloc(sock
->sk
, iov_size
, GFP_KERNEL
);
1733 /* This will also move the address data into kernel space */
1734 if (MSG_CMSG_COMPAT
& flags
) {
1735 err
= verify_compat_iovec(&msg_sys
, iov
, address
, VERIFY_READ
);
1737 err
= verify_iovec(&msg_sys
, iov
, address
, VERIFY_READ
);
1744 if (msg_sys
.msg_controllen
> INT_MAX
)
1746 ctl_len
= msg_sys
.msg_controllen
;
1747 if ((MSG_CMSG_COMPAT
& flags
) && ctl_len
) {
1748 err
= cmsghdr_from_user_compat_to_kern(&msg_sys
, ctl
, sizeof(ctl
));
1751 ctl_buf
= msg_sys
.msg_control
;
1752 } else if (ctl_len
) {
1753 if (ctl_len
> sizeof(ctl
))
1755 ctl_buf
= sock_kmalloc(sock
->sk
, ctl_len
, GFP_KERNEL
);
1756 if (ctl_buf
== NULL
)
1761 * Careful! Before this, msg_sys.msg_control contains a user pointer.
1762 * Afterwards, it will be a kernel pointer. Thus the compiler-assisted
1763 * checking falls down on this.
1765 if (copy_from_user(ctl_buf
, (void __user
*) msg_sys
.msg_control
, ctl_len
))
1767 msg_sys
.msg_control
= ctl_buf
;
1769 msg_sys
.msg_flags
= flags
;
1771 if (sock
->file
->f_flags
& O_NONBLOCK
)
1772 msg_sys
.msg_flags
|= MSG_DONTWAIT
;
1773 err
= sock_sendmsg(sock
, &msg_sys
, total_len
);
1777 sock_kfree_s(sock
->sk
, ctl_buf
, ctl_len
);
1779 if (iov
!= iovstack
)
1780 sock_kfree_s(sock
->sk
, iov
, iov_size
);
1788 * BSD recvmsg interface
1791 asmlinkage
long sys_recvmsg(int fd
, struct msghdr __user
*msg
, unsigned int flags
)
1793 struct compat_msghdr __user
*msg_compat
= (struct compat_msghdr __user
*)msg
;
1794 struct socket
*sock
;
1795 struct iovec iovstack
[UIO_FASTIOV
];
1796 struct iovec
*iov
=iovstack
;
1797 struct msghdr msg_sys
;
1798 unsigned long cmsg_ptr
;
1799 int err
, iov_size
, total_len
, len
;
1801 /* kernel mode address */
1802 char addr
[MAX_SOCK_ADDR
];
1804 /* user mode address pointers */
1805 struct sockaddr __user
*uaddr
;
1806 int __user
*uaddr_len
;
1808 if (MSG_CMSG_COMPAT
& flags
) {
1809 if (get_compat_msghdr(&msg_sys
, msg_compat
))
1812 if (copy_from_user(&msg_sys
,msg
,sizeof(struct msghdr
)))
1815 sock
= sockfd_lookup(fd
, &err
);
1820 if (msg_sys
.msg_iovlen
> UIO_MAXIOV
)
1823 /* Check whether to allocate the iovec area*/
1825 iov_size
= msg_sys
.msg_iovlen
* sizeof(struct iovec
);
1826 if (msg_sys
.msg_iovlen
> UIO_FASTIOV
) {
1827 iov
= sock_kmalloc(sock
->sk
, iov_size
, GFP_KERNEL
);
1833 * Save the user-mode address (verify_iovec will change the
1834 * kernel msghdr to use the kernel address space)
1837 uaddr
= (void __user
*) msg_sys
.msg_name
;
1838 uaddr_len
= COMPAT_NAMELEN(msg
);
1839 if (MSG_CMSG_COMPAT
& flags
) {
1840 err
= verify_compat_iovec(&msg_sys
, iov
, addr
, VERIFY_WRITE
);
1842 err
= verify_iovec(&msg_sys
, iov
, addr
, VERIFY_WRITE
);
1847 cmsg_ptr
= (unsigned long)msg_sys
.msg_control
;
1848 msg_sys
.msg_flags
= 0;
1849 if (MSG_CMSG_COMPAT
& flags
)
1850 msg_sys
.msg_flags
= MSG_CMSG_COMPAT
;
1852 if (sock
->file
->f_flags
& O_NONBLOCK
)
1853 flags
|= MSG_DONTWAIT
;
1854 err
= sock_recvmsg(sock
, &msg_sys
, total_len
, flags
);
1859 if (uaddr
!= NULL
) {
1860 err
= move_addr_to_user(addr
, msg_sys
.msg_namelen
, uaddr
, uaddr_len
);
1864 err
= __put_user(msg_sys
.msg_flags
, COMPAT_FLAGS(msg
));
1867 if (MSG_CMSG_COMPAT
& flags
)
1868 err
= __put_user((unsigned long)msg_sys
.msg_control
-cmsg_ptr
,
1869 &msg_compat
->msg_controllen
);
1871 err
= __put_user((unsigned long)msg_sys
.msg_control
-cmsg_ptr
,
1872 &msg
->msg_controllen
);
1878 if (iov
!= iovstack
)
1879 sock_kfree_s(sock
->sk
, iov
, iov_size
);
1886 #ifdef __ARCH_WANT_SYS_SOCKETCALL
1888 /* Argument list sizes for sys_socketcall */
1889 #define AL(x) ((x) * sizeof(unsigned long))
1890 static unsigned char nargs
[18]={AL(0),AL(3),AL(3),AL(3),AL(2),AL(3),
1891 AL(3),AL(3),AL(4),AL(4),AL(4),AL(6),
1892 AL(6),AL(2),AL(5),AL(5),AL(3),AL(3)};
1896 * System call vectors.
1898 * Argument checking cleaned up. Saved 20% in size.
1899 * This function doesn't need to set the kernel lock because
1900 * it is set by the callees.
1903 asmlinkage
long sys_socketcall(int call
, unsigned long __user
*args
)
1906 unsigned long a0
,a1
;
1909 if(call
<1||call
>SYS_RECVMSG
)
1912 /* copy_from_user should be SMP safe. */
1913 if (copy_from_user(a
, args
, nargs
[call
]))
1916 err
= audit_socketcall(nargs
[call
]/sizeof(unsigned long), a
);
1926 err
= sys_socket(a0
,a1
,a
[2]);
1929 err
= sys_bind(a0
,(struct sockaddr __user
*)a1
, a
[2]);
1932 err
= sys_connect(a0
, (struct sockaddr __user
*)a1
, a
[2]);
1935 err
= sys_listen(a0
,a1
);
1938 err
= sys_accept(a0
,(struct sockaddr __user
*)a1
, (int __user
*)a
[2]);
1940 case SYS_GETSOCKNAME
:
1941 err
= sys_getsockname(a0
,(struct sockaddr __user
*)a1
, (int __user
*)a
[2]);
1943 case SYS_GETPEERNAME
:
1944 err
= sys_getpeername(a0
, (struct sockaddr __user
*)a1
, (int __user
*)a
[2]);
1946 case SYS_SOCKETPAIR
:
1947 err
= sys_socketpair(a0
,a1
, a
[2], (int __user
*)a
[3]);
1950 err
= sys_send(a0
, (void __user
*)a1
, a
[2], a
[3]);
1953 err
= sys_sendto(a0
,(void __user
*)a1
, a
[2], a
[3],
1954 (struct sockaddr __user
*)a
[4], a
[5]);
1957 err
= sys_recv(a0
, (void __user
*)a1
, a
[2], a
[3]);
1960 err
= sys_recvfrom(a0
, (void __user
*)a1
, a
[2], a
[3],
1961 (struct sockaddr __user
*)a
[4], (int __user
*)a
[5]);
1964 err
= sys_shutdown(a0
,a1
);
1966 case SYS_SETSOCKOPT
:
1967 err
= sys_setsockopt(a0
, a1
, a
[2], (char __user
*)a
[3], a
[4]);
1969 case SYS_GETSOCKOPT
:
1970 err
= sys_getsockopt(a0
, a1
, a
[2], (char __user
*)a
[3], (int __user
*)a
[4]);
1973 err
= sys_sendmsg(a0
, (struct msghdr __user
*) a1
, a
[2]);
1976 err
= sys_recvmsg(a0
, (struct msghdr __user
*) a1
, a
[2]);
1985 #endif /* __ARCH_WANT_SYS_SOCKETCALL */
1988 * This function is called by a protocol handler that wants to
1989 * advertise its address family, and have it linked into the
1993 int sock_register(struct net_proto_family
*ops
)
1997 if (ops
->family
>= NPROTO
) {
1998 printk(KERN_CRIT
"protocol %d >= NPROTO(%d)\n", ops
->family
, NPROTO
);
2001 net_family_write_lock();
2003 if (net_families
[ops
->family
] == NULL
) {
2004 net_families
[ops
->family
]=ops
;
2007 net_family_write_unlock();
2008 printk(KERN_INFO
"NET: Registered protocol family %d\n",
2014 * This function is called by a protocol handler that wants to
2015 * remove its address family, and have it unlinked from the
2019 int sock_unregister(int family
)
2021 if (family
< 0 || family
>= NPROTO
)
2024 net_family_write_lock();
2025 net_families
[family
]=NULL
;
2026 net_family_write_unlock();
2027 printk(KERN_INFO
"NET: Unregistered protocol family %d\n",
2032 void __init
sock_init(void)
2035 * Initialize sock SLAB cache.
2042 * Initialize skbuff SLAB cache
2048 * Initialize the protocols module.
2052 register_filesystem(&sock_fs_type
);
2053 sock_mnt
= kern_mount(&sock_fs_type
);
2054 /* The real protocol initialization is performed when
2055 * do_initcalls is run.
2058 #ifdef CONFIG_NETFILTER
2063 #ifdef CONFIG_PROC_FS
2064 void socket_seq_show(struct seq_file
*seq
)
2069 for (cpu
= 0; cpu
< NR_CPUS
; cpu
++)
2070 counter
+= per_cpu(sockets_in_use
, cpu
);
2072 /* It can be negative, by the way. 8) */
2076 seq_printf(seq
, "sockets: used %d\n", counter
);
2078 #endif /* CONFIG_PROC_FS */
2080 /* ABI emulation layers need these two */
2081 EXPORT_SYMBOL(move_addr_to_kernel
);
2082 EXPORT_SYMBOL(move_addr_to_user
);
2083 EXPORT_SYMBOL(sock_create
);
2084 EXPORT_SYMBOL(sock_create_kern
);
2085 EXPORT_SYMBOL(sock_create_lite
);
2086 EXPORT_SYMBOL(sock_map_fd
);
2087 EXPORT_SYMBOL(sock_recvmsg
);
2088 EXPORT_SYMBOL(sock_register
);
2089 EXPORT_SYMBOL(sock_release
);
2090 EXPORT_SYMBOL(sock_sendmsg
);
2091 EXPORT_SYMBOL(sock_unregister
);
2092 EXPORT_SYMBOL(sock_wake_async
);
2093 EXPORT_SYMBOL(sockfd_lookup
);
2094 EXPORT_SYMBOL(kernel_sendmsg
);
2095 EXPORT_SYMBOL(kernel_recvmsg
);