4 * Kernel scheduler and related syscalls
6 * Copyright (C) 1991-2002 Linus Torvalds
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
30 #include <linux/module.h>
31 #include <linux/nmi.h>
32 #include <linux/init.h>
33 #include <linux/uaccess.h>
34 #include <linux/highmem.h>
35 #include <linux/smp_lock.h>
36 #include <asm/mmu_context.h>
37 #include <linux/interrupt.h>
38 #include <linux/capability.h>
39 #include <linux/completion.h>
40 #include <linux/kernel_stat.h>
41 #include <linux/debug_locks.h>
42 #include <linux/security.h>
43 #include <linux/notifier.h>
44 #include <linux/profile.h>
45 #include <linux/freezer.h>
46 #include <linux/vmalloc.h>
47 #include <linux/blkdev.h>
48 #include <linux/delay.h>
49 #include <linux/pid_namespace.h>
50 #include <linux/smp.h>
51 #include <linux/threads.h>
52 #include <linux/timer.h>
53 #include <linux/rcupdate.h>
54 #include <linux/cpu.h>
55 #include <linux/cpuset.h>
56 #include <linux/percpu.h>
57 #include <linux/kthread.h>
58 #include <linux/proc_fs.h>
59 #include <linux/seq_file.h>
60 #include <linux/sysctl.h>
61 #include <linux/syscalls.h>
62 #include <linux/times.h>
63 #include <linux/tsacct_kern.h>
64 #include <linux/kprobes.h>
65 #include <linux/delayacct.h>
66 #include <linux/reciprocal_div.h>
67 #include <linux/unistd.h>
68 #include <linux/pagemap.h>
69 #include <linux/hrtimer.h>
70 #include <linux/tick.h>
71 #include <linux/bootmem.h>
72 #include <linux/debugfs.h>
73 #include <linux/ctype.h>
74 #include <linux/ftrace.h>
75 #include <trace/sched.h>
78 #include <asm/irq_regs.h>
80 #include "sched_cpupri.h"
83 * Convert user-nice values [ -20 ... 0 ... 19 ]
84 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
87 #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
88 #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
89 #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
92 * 'User priority' is the nice value converted to something we
93 * can work with better when scaling various scheduler parameters,
94 * it's a [ 0 ... 39 ] range.
96 #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
97 #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
98 #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
101 * Helpers for converting nanosecond timing to jiffy resolution
103 #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
105 #define NICE_0_LOAD SCHED_LOAD_SCALE
106 #define NICE_0_SHIFT SCHED_LOAD_SHIFT
109 * These are the 'tuning knobs' of the scheduler:
111 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
112 * Timeslices get refilled after they expire.
114 #define DEF_TIMESLICE (100 * HZ / 1000)
117 * single value that denotes runtime == period, ie unlimited time.
119 #define RUNTIME_INF ((u64)~0ULL)
121 DEFINE_TRACE(sched_wait_task
);
122 DEFINE_TRACE(sched_wakeup
);
123 DEFINE_TRACE(sched_wakeup_new
);
124 DEFINE_TRACE(sched_switch
);
125 DEFINE_TRACE(sched_migrate_task
);
129 * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
130 * Since cpu_power is a 'constant', we can use a reciprocal divide.
132 static inline u32
sg_div_cpu_power(const struct sched_group
*sg
, u32 load
)
134 return reciprocal_divide(load
, sg
->reciprocal_cpu_power
);
138 * Each time a sched group cpu_power is changed,
139 * we must compute its reciprocal value
141 static inline void sg_inc_cpu_power(struct sched_group
*sg
, u32 val
)
143 sg
->__cpu_power
+= val
;
144 sg
->reciprocal_cpu_power
= reciprocal_value(sg
->__cpu_power
);
148 static inline int rt_policy(int policy
)
150 if (unlikely(policy
== SCHED_FIFO
|| policy
== SCHED_RR
))
155 static inline int task_has_rt_policy(struct task_struct
*p
)
157 return rt_policy(p
->policy
);
161 * This is the priority-queue data structure of the RT scheduling class:
163 struct rt_prio_array
{
164 DECLARE_BITMAP(bitmap
, MAX_RT_PRIO
+1); /* include 1 bit for delimiter */
165 struct list_head queue
[MAX_RT_PRIO
];
168 struct rt_bandwidth
{
169 /* nests inside the rq lock: */
170 spinlock_t rt_runtime_lock
;
173 struct hrtimer rt_period_timer
;
176 static struct rt_bandwidth def_rt_bandwidth
;
178 static int do_sched_rt_period_timer(struct rt_bandwidth
*rt_b
, int overrun
);
180 static enum hrtimer_restart
sched_rt_period_timer(struct hrtimer
*timer
)
182 struct rt_bandwidth
*rt_b
=
183 container_of(timer
, struct rt_bandwidth
, rt_period_timer
);
189 now
= hrtimer_cb_get_time(timer
);
190 overrun
= hrtimer_forward(timer
, now
, rt_b
->rt_period
);
195 idle
= do_sched_rt_period_timer(rt_b
, overrun
);
198 return idle
? HRTIMER_NORESTART
: HRTIMER_RESTART
;
202 void init_rt_bandwidth(struct rt_bandwidth
*rt_b
, u64 period
, u64 runtime
)
204 rt_b
->rt_period
= ns_to_ktime(period
);
205 rt_b
->rt_runtime
= runtime
;
207 spin_lock_init(&rt_b
->rt_runtime_lock
);
209 hrtimer_init(&rt_b
->rt_period_timer
,
210 CLOCK_MONOTONIC
, HRTIMER_MODE_REL
);
211 rt_b
->rt_period_timer
.function
= sched_rt_period_timer
;
214 static inline int rt_bandwidth_enabled(void)
216 return sysctl_sched_rt_runtime
>= 0;
219 static void start_rt_bandwidth(struct rt_bandwidth
*rt_b
)
223 if (rt_bandwidth_enabled() && rt_b
->rt_runtime
== RUNTIME_INF
)
226 if (hrtimer_active(&rt_b
->rt_period_timer
))
229 spin_lock(&rt_b
->rt_runtime_lock
);
231 if (hrtimer_active(&rt_b
->rt_period_timer
))
234 now
= hrtimer_cb_get_time(&rt_b
->rt_period_timer
);
235 hrtimer_forward(&rt_b
->rt_period_timer
, now
, rt_b
->rt_period
);
236 hrtimer_start_expires(&rt_b
->rt_period_timer
,
239 spin_unlock(&rt_b
->rt_runtime_lock
);
242 #ifdef CONFIG_RT_GROUP_SCHED
243 static void destroy_rt_bandwidth(struct rt_bandwidth
*rt_b
)
245 hrtimer_cancel(&rt_b
->rt_period_timer
);
250 * sched_domains_mutex serializes calls to arch_init_sched_domains,
251 * detach_destroy_domains and partition_sched_domains.
253 static DEFINE_MUTEX(sched_domains_mutex
);
255 #ifdef CONFIG_GROUP_SCHED
257 #include <linux/cgroup.h>
261 static LIST_HEAD(task_groups
);
263 /* task group related information */
265 #ifdef CONFIG_CGROUP_SCHED
266 struct cgroup_subsys_state css
;
269 #ifdef CONFIG_USER_SCHED
273 #ifdef CONFIG_FAIR_GROUP_SCHED
274 /* schedulable entities of this group on each cpu */
275 struct sched_entity
**se
;
276 /* runqueue "owned" by this group on each cpu */
277 struct cfs_rq
**cfs_rq
;
278 unsigned long shares
;
281 #ifdef CONFIG_RT_GROUP_SCHED
282 struct sched_rt_entity
**rt_se
;
283 struct rt_rq
**rt_rq
;
285 struct rt_bandwidth rt_bandwidth
;
289 struct list_head list
;
291 struct task_group
*parent
;
292 struct list_head siblings
;
293 struct list_head children
;
296 #ifdef CONFIG_USER_SCHED
298 /* Helper function to pass uid information to create_sched_user() */
299 void set_tg_uid(struct user_struct
*user
)
301 user
->tg
->uid
= user
->uid
;
306 * Every UID task group (including init_task_group aka UID-0) will
307 * be a child to this group.
309 struct task_group root_task_group
;
311 #ifdef CONFIG_FAIR_GROUP_SCHED
312 /* Default task group's sched entity on each cpu */
313 static DEFINE_PER_CPU(struct sched_entity
, init_sched_entity
);
314 /* Default task group's cfs_rq on each cpu */
315 static DEFINE_PER_CPU(struct cfs_rq
, init_cfs_rq
) ____cacheline_aligned_in_smp
;
316 #endif /* CONFIG_FAIR_GROUP_SCHED */
318 #ifdef CONFIG_RT_GROUP_SCHED
319 static DEFINE_PER_CPU(struct sched_rt_entity
, init_sched_rt_entity
);
320 static DEFINE_PER_CPU(struct rt_rq
, init_rt_rq
) ____cacheline_aligned_in_smp
;
321 #endif /* CONFIG_RT_GROUP_SCHED */
322 #else /* !CONFIG_USER_SCHED */
323 #define root_task_group init_task_group
324 #endif /* CONFIG_USER_SCHED */
326 /* task_group_lock serializes add/remove of task groups and also changes to
327 * a task group's cpu shares.
329 static DEFINE_SPINLOCK(task_group_lock
);
331 #ifdef CONFIG_FAIR_GROUP_SCHED
332 #ifdef CONFIG_USER_SCHED
333 # define INIT_TASK_GROUP_LOAD (2*NICE_0_LOAD)
334 #else /* !CONFIG_USER_SCHED */
335 # define INIT_TASK_GROUP_LOAD NICE_0_LOAD
336 #endif /* CONFIG_USER_SCHED */
339 * A weight of 0 or 1 can cause arithmetics problems.
340 * A weight of a cfs_rq is the sum of weights of which entities
341 * are queued on this cfs_rq, so a weight of a entity should not be
342 * too large, so as the shares value of a task group.
343 * (The default weight is 1024 - so there's no practical
344 * limitation from this.)
347 #define MAX_SHARES (1UL << 18)
349 static int init_task_group_load
= INIT_TASK_GROUP_LOAD
;
352 /* Default task group.
353 * Every task in system belong to this group at bootup.
355 struct task_group init_task_group
;
357 /* return group to which a task belongs */
358 static inline struct task_group
*task_group(struct task_struct
*p
)
360 struct task_group
*tg
;
362 #ifdef CONFIG_USER_SCHED
364 tg
= __task_cred(p
)->user
->tg
;
366 #elif defined(CONFIG_CGROUP_SCHED)
367 tg
= container_of(task_subsys_state(p
, cpu_cgroup_subsys_id
),
368 struct task_group
, css
);
370 tg
= &init_task_group
;
375 /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
376 static inline void set_task_rq(struct task_struct
*p
, unsigned int cpu
)
378 #ifdef CONFIG_FAIR_GROUP_SCHED
379 p
->se
.cfs_rq
= task_group(p
)->cfs_rq
[cpu
];
380 p
->se
.parent
= task_group(p
)->se
[cpu
];
383 #ifdef CONFIG_RT_GROUP_SCHED
384 p
->rt
.rt_rq
= task_group(p
)->rt_rq
[cpu
];
385 p
->rt
.parent
= task_group(p
)->rt_se
[cpu
];
391 static inline void set_task_rq(struct task_struct
*p
, unsigned int cpu
) { }
392 static inline struct task_group
*task_group(struct task_struct
*p
)
397 #endif /* CONFIG_GROUP_SCHED */
399 /* CFS-related fields in a runqueue */
401 struct load_weight load
;
402 unsigned long nr_running
;
407 struct rb_root tasks_timeline
;
408 struct rb_node
*rb_leftmost
;
410 struct list_head tasks
;
411 struct list_head
*balance_iterator
;
414 * 'curr' points to currently running entity on this cfs_rq.
415 * It is set to NULL otherwise (i.e when none are currently running).
417 struct sched_entity
*curr
, *next
, *last
;
419 unsigned int nr_spread_over
;
421 #ifdef CONFIG_FAIR_GROUP_SCHED
422 struct rq
*rq
; /* cpu runqueue to which this cfs_rq is attached */
425 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
426 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
427 * (like users, containers etc.)
429 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
430 * list is used during load balance.
432 struct list_head leaf_cfs_rq_list
;
433 struct task_group
*tg
; /* group that "owns" this runqueue */
437 * the part of load.weight contributed by tasks
439 unsigned long task_weight
;
442 * h_load = weight * f(tg)
444 * Where f(tg) is the recursive weight fraction assigned to
447 unsigned long h_load
;
450 * this cpu's part of tg->shares
452 unsigned long shares
;
455 * load.weight at the time we set shares
457 unsigned long rq_weight
;
462 /* Real-Time classes' related field in a runqueue: */
464 struct rt_prio_array active
;
465 unsigned long rt_nr_running
;
466 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
467 int highest_prio
; /* highest queued rt task prio */
470 unsigned long rt_nr_migratory
;
476 /* Nests inside the rq lock: */
477 spinlock_t rt_runtime_lock
;
479 #ifdef CONFIG_RT_GROUP_SCHED
480 unsigned long rt_nr_boosted
;
483 struct list_head leaf_rt_rq_list
;
484 struct task_group
*tg
;
485 struct sched_rt_entity
*rt_se
;
492 * We add the notion of a root-domain which will be used to define per-domain
493 * variables. Each exclusive cpuset essentially defines an island domain by
494 * fully partitioning the member cpus from any other cpuset. Whenever a new
495 * exclusive cpuset is created, we also create and attach a new root-domain
505 * The "RT overload" flag: it gets set if a CPU has more than
506 * one runnable RT task.
511 struct cpupri cpupri
;
516 * By default the system creates a single root-domain with all cpus as
517 * members (mimicking the global state we have today).
519 static struct root_domain def_root_domain
;
524 * This is the main, per-CPU runqueue data structure.
526 * Locking rule: those places that want to lock multiple runqueues
527 * (such as the load balancing or the thread migration code), lock
528 * acquire operations must be ordered by ascending &runqueue.
535 * nr_running and cpu_load should be in the same cacheline because
536 * remote CPUs use both these fields when doing load calculation.
538 unsigned long nr_running
;
539 #define CPU_LOAD_IDX_MAX 5
540 unsigned long cpu_load
[CPU_LOAD_IDX_MAX
];
541 unsigned char idle_at_tick
;
543 unsigned long last_tick_seen
;
544 unsigned char in_nohz_recently
;
546 /* capture load from *all* tasks on this cpu: */
547 struct load_weight load
;
548 unsigned long nr_load_updates
;
554 #ifdef CONFIG_FAIR_GROUP_SCHED
555 /* list of leaf cfs_rq on this cpu: */
556 struct list_head leaf_cfs_rq_list
;
558 #ifdef CONFIG_RT_GROUP_SCHED
559 struct list_head leaf_rt_rq_list
;
563 * This is part of a global counter where only the total sum
564 * over all CPUs matters. A task can increase this counter on
565 * one CPU and if it got migrated afterwards it may decrease
566 * it on another CPU. Always updated under the runqueue lock:
568 unsigned long nr_uninterruptible
;
570 struct task_struct
*curr
, *idle
;
571 unsigned long next_balance
;
572 struct mm_struct
*prev_mm
;
579 struct root_domain
*rd
;
580 struct sched_domain
*sd
;
582 /* For active balancing */
585 /* cpu of this runqueue: */
589 unsigned long avg_load_per_task
;
591 struct task_struct
*migration_thread
;
592 struct list_head migration_queue
;
595 #ifdef CONFIG_SCHED_HRTICK
597 int hrtick_csd_pending
;
598 struct call_single_data hrtick_csd
;
600 struct hrtimer hrtick_timer
;
603 #ifdef CONFIG_SCHEDSTATS
605 struct sched_info rq_sched_info
;
606 unsigned long long rq_cpu_time
;
607 /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
609 /* sys_sched_yield() stats */
610 unsigned int yld_exp_empty
;
611 unsigned int yld_act_empty
;
612 unsigned int yld_both_empty
;
613 unsigned int yld_count
;
615 /* schedule() stats */
616 unsigned int sched_switch
;
617 unsigned int sched_count
;
618 unsigned int sched_goidle
;
620 /* try_to_wake_up() stats */
621 unsigned int ttwu_count
;
622 unsigned int ttwu_local
;
625 unsigned int bkl_count
;
629 static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq
, runqueues
);
631 static inline void check_preempt_curr(struct rq
*rq
, struct task_struct
*p
, int sync
)
633 rq
->curr
->sched_class
->check_preempt_curr(rq
, p
, sync
);
636 static inline int cpu_of(struct rq
*rq
)
646 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
647 * See detach_destroy_domains: synchronize_sched for details.
649 * The domain tree of any CPU may only be accessed from within
650 * preempt-disabled sections.
652 #define for_each_domain(cpu, __sd) \
653 for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
655 #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
656 #define this_rq() (&__get_cpu_var(runqueues))
657 #define task_rq(p) cpu_rq(task_cpu(p))
658 #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
660 static inline void update_rq_clock(struct rq
*rq
)
662 rq
->clock
= sched_clock_cpu(cpu_of(rq
));
666 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
668 #ifdef CONFIG_SCHED_DEBUG
669 # define const_debug __read_mostly
671 # define const_debug static const
677 * Returns true if the current cpu runqueue is locked.
678 * This interface allows printk to be called with the runqueue lock
679 * held and know whether or not it is OK to wake up the klogd.
681 int runqueue_is_locked(void)
684 struct rq
*rq
= cpu_rq(cpu
);
687 ret
= spin_is_locked(&rq
->lock
);
693 * Debugging: various feature bits
696 #define SCHED_FEAT(name, enabled) \
697 __SCHED_FEAT_##name ,
700 #include "sched_features.h"
705 #define SCHED_FEAT(name, enabled) \
706 (1UL << __SCHED_FEAT_##name) * enabled |
708 const_debug
unsigned int sysctl_sched_features
=
709 #include "sched_features.h"
714 #ifdef CONFIG_SCHED_DEBUG
715 #define SCHED_FEAT(name, enabled) \
718 static __read_mostly
char *sched_feat_names
[] = {
719 #include "sched_features.h"
725 static int sched_feat_show(struct seq_file
*m
, void *v
)
729 for (i
= 0; sched_feat_names
[i
]; i
++) {
730 if (!(sysctl_sched_features
& (1UL << i
)))
732 seq_printf(m
, "%s ", sched_feat_names
[i
]);
740 sched_feat_write(struct file
*filp
, const char __user
*ubuf
,
741 size_t cnt
, loff_t
*ppos
)
751 if (copy_from_user(&buf
, ubuf
, cnt
))
756 if (strncmp(buf
, "NO_", 3) == 0) {
761 for (i
= 0; sched_feat_names
[i
]; i
++) {
762 int len
= strlen(sched_feat_names
[i
]);
764 if (strncmp(cmp
, sched_feat_names
[i
], len
) == 0) {
766 sysctl_sched_features
&= ~(1UL << i
);
768 sysctl_sched_features
|= (1UL << i
);
773 if (!sched_feat_names
[i
])
781 static int sched_feat_open(struct inode
*inode
, struct file
*filp
)
783 return single_open(filp
, sched_feat_show
, NULL
);
786 static struct file_operations sched_feat_fops
= {
787 .open
= sched_feat_open
,
788 .write
= sched_feat_write
,
791 .release
= single_release
,
794 static __init
int sched_init_debug(void)
796 debugfs_create_file("sched_features", 0644, NULL
, NULL
,
801 late_initcall(sched_init_debug
);
805 #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
808 * Number of tasks to iterate in a single balance run.
809 * Limited because this is done with IRQs disabled.
811 const_debug
unsigned int sysctl_sched_nr_migrate
= 32;
814 * ratelimit for updating the group shares.
817 unsigned int sysctl_sched_shares_ratelimit
= 250000;
820 * Inject some fuzzyness into changing the per-cpu group shares
821 * this avoids remote rq-locks at the expense of fairness.
824 unsigned int sysctl_sched_shares_thresh
= 4;
827 * period over which we measure -rt task cpu usage in us.
830 unsigned int sysctl_sched_rt_period
= 1000000;
832 static __read_mostly
int scheduler_running
;
835 * part of the period that we allow rt tasks to run in us.
838 int sysctl_sched_rt_runtime
= 950000;
840 static inline u64
global_rt_period(void)
842 return (u64
)sysctl_sched_rt_period
* NSEC_PER_USEC
;
845 static inline u64
global_rt_runtime(void)
847 if (sysctl_sched_rt_runtime
< 0)
850 return (u64
)sysctl_sched_rt_runtime
* NSEC_PER_USEC
;
853 #ifndef prepare_arch_switch
854 # define prepare_arch_switch(next) do { } while (0)
856 #ifndef finish_arch_switch
857 # define finish_arch_switch(prev) do { } while (0)
860 static inline int task_current(struct rq
*rq
, struct task_struct
*p
)
862 return rq
->curr
== p
;
865 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
866 static inline int task_running(struct rq
*rq
, struct task_struct
*p
)
868 return task_current(rq
, p
);
871 static inline void prepare_lock_switch(struct rq
*rq
, struct task_struct
*next
)
875 static inline void finish_lock_switch(struct rq
*rq
, struct task_struct
*prev
)
877 #ifdef CONFIG_DEBUG_SPINLOCK
878 /* this is a valid case when another task releases the spinlock */
879 rq
->lock
.owner
= current
;
882 * If we are tracking spinlock dependencies then we have to
883 * fix up the runqueue lock - which gets 'carried over' from
886 spin_acquire(&rq
->lock
.dep_map
, 0, 0, _THIS_IP_
);
888 spin_unlock_irq(&rq
->lock
);
891 #else /* __ARCH_WANT_UNLOCKED_CTXSW */
892 static inline int task_running(struct rq
*rq
, struct task_struct
*p
)
897 return task_current(rq
, p
);
901 static inline void prepare_lock_switch(struct rq
*rq
, struct task_struct
*next
)
905 * We can optimise this out completely for !SMP, because the
906 * SMP rebalancing from interrupt is the only thing that cares
911 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
912 spin_unlock_irq(&rq
->lock
);
914 spin_unlock(&rq
->lock
);
918 static inline void finish_lock_switch(struct rq
*rq
, struct task_struct
*prev
)
922 * After ->oncpu is cleared, the task can be moved to a different CPU.
923 * We must ensure this doesn't happen until the switch is completely
929 #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
933 #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
936 * __task_rq_lock - lock the runqueue a given task resides on.
937 * Must be called interrupts disabled.
939 static inline struct rq
*__task_rq_lock(struct task_struct
*p
)
943 struct rq
*rq
= task_rq(p
);
944 spin_lock(&rq
->lock
);
945 if (likely(rq
== task_rq(p
)))
947 spin_unlock(&rq
->lock
);
952 * task_rq_lock - lock the runqueue a given task resides on and disable
953 * interrupts. Note the ordering: we can safely lookup the task_rq without
954 * explicitly disabling preemption.
956 static struct rq
*task_rq_lock(struct task_struct
*p
, unsigned long *flags
)
962 local_irq_save(*flags
);
964 spin_lock(&rq
->lock
);
965 if (likely(rq
== task_rq(p
)))
967 spin_unlock_irqrestore(&rq
->lock
, *flags
);
971 void task_rq_unlock_wait(struct task_struct
*p
)
973 struct rq
*rq
= task_rq(p
);
975 smp_mb(); /* spin-unlock-wait is not a full memory barrier */
976 spin_unlock_wait(&rq
->lock
);
979 static void __task_rq_unlock(struct rq
*rq
)
982 spin_unlock(&rq
->lock
);
985 static inline void task_rq_unlock(struct rq
*rq
, unsigned long *flags
)
988 spin_unlock_irqrestore(&rq
->lock
, *flags
);
992 * this_rq_lock - lock this runqueue and disable interrupts.
994 static struct rq
*this_rq_lock(void)
1001 spin_lock(&rq
->lock
);
1006 #ifdef CONFIG_SCHED_HRTICK
1008 * Use HR-timers to deliver accurate preemption points.
1010 * Its all a bit involved since we cannot program an hrt while holding the
1011 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
1014 * When we get rescheduled we reprogram the hrtick_timer outside of the
1020 * - enabled by features
1021 * - hrtimer is actually high res
1023 static inline int hrtick_enabled(struct rq
*rq
)
1025 if (!sched_feat(HRTICK
))
1027 if (!cpu_active(cpu_of(rq
)))
1029 return hrtimer_is_hres_active(&rq
->hrtick_timer
);
1032 static void hrtick_clear(struct rq
*rq
)
1034 if (hrtimer_active(&rq
->hrtick_timer
))
1035 hrtimer_cancel(&rq
->hrtick_timer
);
1039 * High-resolution timer tick.
1040 * Runs from hardirq context with interrupts disabled.
1042 static enum hrtimer_restart
hrtick(struct hrtimer
*timer
)
1044 struct rq
*rq
= container_of(timer
, struct rq
, hrtick_timer
);
1046 WARN_ON_ONCE(cpu_of(rq
) != smp_processor_id());
1048 spin_lock(&rq
->lock
);
1049 update_rq_clock(rq
);
1050 rq
->curr
->sched_class
->task_tick(rq
, rq
->curr
, 1);
1051 spin_unlock(&rq
->lock
);
1053 return HRTIMER_NORESTART
;
1058 * called from hardirq (IPI) context
1060 static void __hrtick_start(void *arg
)
1062 struct rq
*rq
= arg
;
1064 spin_lock(&rq
->lock
);
1065 hrtimer_restart(&rq
->hrtick_timer
);
1066 rq
->hrtick_csd_pending
= 0;
1067 spin_unlock(&rq
->lock
);
1071 * Called to set the hrtick timer state.
1073 * called with rq->lock held and irqs disabled
1075 static void hrtick_start(struct rq
*rq
, u64 delay
)
1077 struct hrtimer
*timer
= &rq
->hrtick_timer
;
1078 ktime_t time
= ktime_add_ns(timer
->base
->get_time(), delay
);
1080 hrtimer_set_expires(timer
, time
);
1082 if (rq
== this_rq()) {
1083 hrtimer_restart(timer
);
1084 } else if (!rq
->hrtick_csd_pending
) {
1085 __smp_call_function_single(cpu_of(rq
), &rq
->hrtick_csd
);
1086 rq
->hrtick_csd_pending
= 1;
1091 hotplug_hrtick(struct notifier_block
*nfb
, unsigned long action
, void *hcpu
)
1093 int cpu
= (int)(long)hcpu
;
1096 case CPU_UP_CANCELED
:
1097 case CPU_UP_CANCELED_FROZEN
:
1098 case CPU_DOWN_PREPARE
:
1099 case CPU_DOWN_PREPARE_FROZEN
:
1101 case CPU_DEAD_FROZEN
:
1102 hrtick_clear(cpu_rq(cpu
));
1109 static __init
void init_hrtick(void)
1111 hotcpu_notifier(hotplug_hrtick
, 0);
1115 * Called to set the hrtick timer state.
1117 * called with rq->lock held and irqs disabled
1119 static void hrtick_start(struct rq
*rq
, u64 delay
)
1121 hrtimer_start(&rq
->hrtick_timer
, ns_to_ktime(delay
), HRTIMER_MODE_REL
);
1124 static inline void init_hrtick(void)
1127 #endif /* CONFIG_SMP */
1129 static void init_rq_hrtick(struct rq
*rq
)
1132 rq
->hrtick_csd_pending
= 0;
1134 rq
->hrtick_csd
.flags
= 0;
1135 rq
->hrtick_csd
.func
= __hrtick_start
;
1136 rq
->hrtick_csd
.info
= rq
;
1139 hrtimer_init(&rq
->hrtick_timer
, CLOCK_MONOTONIC
, HRTIMER_MODE_REL
);
1140 rq
->hrtick_timer
.function
= hrtick
;
1142 #else /* CONFIG_SCHED_HRTICK */
1143 static inline void hrtick_clear(struct rq
*rq
)
1147 static inline void init_rq_hrtick(struct rq
*rq
)
1151 static inline void init_hrtick(void)
1154 #endif /* CONFIG_SCHED_HRTICK */
1157 * resched_task - mark a task 'to be rescheduled now'.
1159 * On UP this means the setting of the need_resched flag, on SMP it
1160 * might also involve a cross-CPU call to trigger the scheduler on
1165 #ifndef tsk_is_polling
1166 #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
1169 static void resched_task(struct task_struct
*p
)
1173 assert_spin_locked(&task_rq(p
)->lock
);
1175 if (unlikely(test_tsk_thread_flag(p
, TIF_NEED_RESCHED
)))
1178 set_tsk_thread_flag(p
, TIF_NEED_RESCHED
);
1181 if (cpu
== smp_processor_id())
1184 /* NEED_RESCHED must be visible before we test polling */
1186 if (!tsk_is_polling(p
))
1187 smp_send_reschedule(cpu
);
1190 static void resched_cpu(int cpu
)
1192 struct rq
*rq
= cpu_rq(cpu
);
1193 unsigned long flags
;
1195 if (!spin_trylock_irqsave(&rq
->lock
, flags
))
1197 resched_task(cpu_curr(cpu
));
1198 spin_unlock_irqrestore(&rq
->lock
, flags
);
1203 * When add_timer_on() enqueues a timer into the timer wheel of an
1204 * idle CPU then this timer might expire before the next timer event
1205 * which is scheduled to wake up that CPU. In case of a completely
1206 * idle system the next event might even be infinite time into the
1207 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
1208 * leaves the inner idle loop so the newly added timer is taken into
1209 * account when the CPU goes back to idle and evaluates the timer
1210 * wheel for the next timer event.
1212 void wake_up_idle_cpu(int cpu
)
1214 struct rq
*rq
= cpu_rq(cpu
);
1216 if (cpu
== smp_processor_id())
1220 * This is safe, as this function is called with the timer
1221 * wheel base lock of (cpu) held. When the CPU is on the way
1222 * to idle and has not yet set rq->curr to idle then it will
1223 * be serialized on the timer wheel base lock and take the new
1224 * timer into account automatically.
1226 if (rq
->curr
!= rq
->idle
)
1230 * We can set TIF_RESCHED on the idle task of the other CPU
1231 * lockless. The worst case is that the other CPU runs the
1232 * idle task through an additional NOOP schedule()
1234 set_tsk_thread_flag(rq
->idle
, TIF_NEED_RESCHED
);
1236 /* NEED_RESCHED must be visible before we test polling */
1238 if (!tsk_is_polling(rq
->idle
))
1239 smp_send_reschedule(cpu
);
1241 #endif /* CONFIG_NO_HZ */
1243 #else /* !CONFIG_SMP */
1244 static void resched_task(struct task_struct
*p
)
1246 assert_spin_locked(&task_rq(p
)->lock
);
1247 set_tsk_need_resched(p
);
1249 #endif /* CONFIG_SMP */
1251 #if BITS_PER_LONG == 32
1252 # define WMULT_CONST (~0UL)
1254 # define WMULT_CONST (1UL << 32)
1257 #define WMULT_SHIFT 32
1260 * Shift right and round:
1262 #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
1265 * delta *= weight / lw
1267 static unsigned long
1268 calc_delta_mine(unsigned long delta_exec
, unsigned long weight
,
1269 struct load_weight
*lw
)
1273 if (!lw
->inv_weight
) {
1274 if (BITS_PER_LONG
> 32 && unlikely(lw
->weight
>= WMULT_CONST
))
1277 lw
->inv_weight
= 1 + (WMULT_CONST
-lw
->weight
/2)
1281 tmp
= (u64
)delta_exec
* weight
;
1283 * Check whether we'd overflow the 64-bit multiplication:
1285 if (unlikely(tmp
> WMULT_CONST
))
1286 tmp
= SRR(SRR(tmp
, WMULT_SHIFT
/2) * lw
->inv_weight
,
1289 tmp
= SRR(tmp
* lw
->inv_weight
, WMULT_SHIFT
);
1291 return (unsigned long)min(tmp
, (u64
)(unsigned long)LONG_MAX
);
1294 static inline void update_load_add(struct load_weight
*lw
, unsigned long inc
)
1300 static inline void update_load_sub(struct load_weight
*lw
, unsigned long dec
)
1307 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1308 * of tasks with abnormal "nice" values across CPUs the contribution that
1309 * each task makes to its run queue's load is weighted according to its
1310 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
1311 * scaled version of the new time slice allocation that they receive on time
1315 #define WEIGHT_IDLEPRIO 2
1316 #define WMULT_IDLEPRIO (1 << 31)
1319 * Nice levels are multiplicative, with a gentle 10% change for every
1320 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
1321 * nice 1, it will get ~10% less CPU time than another CPU-bound task
1322 * that remained on nice 0.
1324 * The "10% effect" is relative and cumulative: from _any_ nice level,
1325 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
1326 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
1327 * If a task goes up by ~10% and another task goes down by ~10% then
1328 * the relative distance between them is ~25%.)
1330 static const int prio_to_weight
[40] = {
1331 /* -20 */ 88761, 71755, 56483, 46273, 36291,
1332 /* -15 */ 29154, 23254, 18705, 14949, 11916,
1333 /* -10 */ 9548, 7620, 6100, 4904, 3906,
1334 /* -5 */ 3121, 2501, 1991, 1586, 1277,
1335 /* 0 */ 1024, 820, 655, 526, 423,
1336 /* 5 */ 335, 272, 215, 172, 137,
1337 /* 10 */ 110, 87, 70, 56, 45,
1338 /* 15 */ 36, 29, 23, 18, 15,
1342 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
1344 * In cases where the weight does not change often, we can use the
1345 * precalculated inverse to speed up arithmetics by turning divisions
1346 * into multiplications:
1348 static const u32 prio_to_wmult
[40] = {
1349 /* -20 */ 48388, 59856, 76040, 92818, 118348,
1350 /* -15 */ 147320, 184698, 229616, 287308, 360437,
1351 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
1352 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
1353 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
1354 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
1355 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
1356 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
1359 static void activate_task(struct rq
*rq
, struct task_struct
*p
, int wakeup
);
1362 * runqueue iterator, to support SMP load-balancing between different
1363 * scheduling classes, without having to expose their internal data
1364 * structures to the load-balancing proper:
1366 struct rq_iterator
{
1368 struct task_struct
*(*start
)(void *);
1369 struct task_struct
*(*next
)(void *);
1373 static unsigned long
1374 balance_tasks(struct rq
*this_rq
, int this_cpu
, struct rq
*busiest
,
1375 unsigned long max_load_move
, struct sched_domain
*sd
,
1376 enum cpu_idle_type idle
, int *all_pinned
,
1377 int *this_best_prio
, struct rq_iterator
*iterator
);
1380 iter_move_one_task(struct rq
*this_rq
, int this_cpu
, struct rq
*busiest
,
1381 struct sched_domain
*sd
, enum cpu_idle_type idle
,
1382 struct rq_iterator
*iterator
);
1385 #ifdef CONFIG_CGROUP_CPUACCT
1386 static void cpuacct_charge(struct task_struct
*tsk
, u64 cputime
);
1388 static inline void cpuacct_charge(struct task_struct
*tsk
, u64 cputime
) {}
1391 static inline void inc_cpu_load(struct rq
*rq
, unsigned long load
)
1393 update_load_add(&rq
->load
, load
);
1396 static inline void dec_cpu_load(struct rq
*rq
, unsigned long load
)
1398 update_load_sub(&rq
->load
, load
);
1401 #if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED)
1402 typedef int (*tg_visitor
)(struct task_group
*, void *);
1405 * Iterate the full tree, calling @down when first entering a node and @up when
1406 * leaving it for the final time.
1408 static int walk_tg_tree(tg_visitor down
, tg_visitor up
, void *data
)
1410 struct task_group
*parent
, *child
;
1414 parent
= &root_task_group
;
1416 ret
= (*down
)(parent
, data
);
1419 list_for_each_entry_rcu(child
, &parent
->children
, siblings
) {
1426 ret
= (*up
)(parent
, data
);
1431 parent
= parent
->parent
;
1440 static int tg_nop(struct task_group
*tg
, void *data
)
1447 static unsigned long source_load(int cpu
, int type
);
1448 static unsigned long target_load(int cpu
, int type
);
1449 static int task_hot(struct task_struct
*p
, u64 now
, struct sched_domain
*sd
);
1451 static unsigned long cpu_avg_load_per_task(int cpu
)
1453 struct rq
*rq
= cpu_rq(cpu
);
1454 unsigned long nr_running
= ACCESS_ONCE(rq
->nr_running
);
1457 rq
->avg_load_per_task
= rq
->load
.weight
/ nr_running
;
1459 rq
->avg_load_per_task
= 0;
1461 return rq
->avg_load_per_task
;
1464 #ifdef CONFIG_FAIR_GROUP_SCHED
1466 static void __set_se_shares(struct sched_entity
*se
, unsigned long shares
);
1469 * Calculate and set the cpu's group shares.
1472 update_group_shares_cpu(struct task_group
*tg
, int cpu
,
1473 unsigned long sd_shares
, unsigned long sd_rq_weight
)
1475 unsigned long shares
;
1476 unsigned long rq_weight
;
1481 rq_weight
= tg
->cfs_rq
[cpu
]->rq_weight
;
1484 * \Sum shares * rq_weight
1485 * shares = -----------------------
1489 shares
= (sd_shares
* rq_weight
) / sd_rq_weight
;
1490 shares
= clamp_t(unsigned long, shares
, MIN_SHARES
, MAX_SHARES
);
1492 if (abs(shares
- tg
->se
[cpu
]->load
.weight
) >
1493 sysctl_sched_shares_thresh
) {
1494 struct rq
*rq
= cpu_rq(cpu
);
1495 unsigned long flags
;
1497 spin_lock_irqsave(&rq
->lock
, flags
);
1498 tg
->cfs_rq
[cpu
]->shares
= shares
;
1500 __set_se_shares(tg
->se
[cpu
], shares
);
1501 spin_unlock_irqrestore(&rq
->lock
, flags
);
1506 * Re-compute the task group their per cpu shares over the given domain.
1507 * This needs to be done in a bottom-up fashion because the rq weight of a
1508 * parent group depends on the shares of its child groups.
1510 static int tg_shares_up(struct task_group
*tg
, void *data
)
1512 unsigned long weight
, rq_weight
= 0;
1513 unsigned long shares
= 0;
1514 struct sched_domain
*sd
= data
;
1517 for_each_cpu_mask(i
, sd
->span
) {
1519 * If there are currently no tasks on the cpu pretend there
1520 * is one of average load so that when a new task gets to
1521 * run here it will not get delayed by group starvation.
1523 weight
= tg
->cfs_rq
[i
]->load
.weight
;
1525 weight
= NICE_0_LOAD
;
1527 tg
->cfs_rq
[i
]->rq_weight
= weight
;
1528 rq_weight
+= weight
;
1529 shares
+= tg
->cfs_rq
[i
]->shares
;
1532 if ((!shares
&& rq_weight
) || shares
> tg
->shares
)
1533 shares
= tg
->shares
;
1535 if (!sd
->parent
|| !(sd
->parent
->flags
& SD_LOAD_BALANCE
))
1536 shares
= tg
->shares
;
1538 for_each_cpu_mask(i
, sd
->span
)
1539 update_group_shares_cpu(tg
, i
, shares
, rq_weight
);
1545 * Compute the cpu's hierarchical load factor for each task group.
1546 * This needs to be done in a top-down fashion because the load of a child
1547 * group is a fraction of its parents load.
1549 static int tg_load_down(struct task_group
*tg
, void *data
)
1552 long cpu
= (long)data
;
1555 load
= cpu_rq(cpu
)->load
.weight
;
1557 load
= tg
->parent
->cfs_rq
[cpu
]->h_load
;
1558 load
*= tg
->cfs_rq
[cpu
]->shares
;
1559 load
/= tg
->parent
->cfs_rq
[cpu
]->load
.weight
+ 1;
1562 tg
->cfs_rq
[cpu
]->h_load
= load
;
1567 static void update_shares(struct sched_domain
*sd
)
1569 u64 now
= cpu_clock(raw_smp_processor_id());
1570 s64 elapsed
= now
- sd
->last_update
;
1572 if (elapsed
>= (s64
)(u64
)sysctl_sched_shares_ratelimit
) {
1573 sd
->last_update
= now
;
1574 walk_tg_tree(tg_nop
, tg_shares_up
, sd
);
1578 static void update_shares_locked(struct rq
*rq
, struct sched_domain
*sd
)
1580 spin_unlock(&rq
->lock
);
1582 spin_lock(&rq
->lock
);
1585 static void update_h_load(long cpu
)
1587 walk_tg_tree(tg_load_down
, tg_nop
, (void *)cpu
);
1592 static inline void update_shares(struct sched_domain
*sd
)
1596 static inline void update_shares_locked(struct rq
*rq
, struct sched_domain
*sd
)
1603 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1605 static int double_lock_balance(struct rq
*this_rq
, struct rq
*busiest
)
1606 __releases(this_rq
->lock
)
1607 __acquires(busiest
->lock
)
1608 __acquires(this_rq
->lock
)
1612 if (unlikely(!irqs_disabled())) {
1613 /* printk() doesn't work good under rq->lock */
1614 spin_unlock(&this_rq
->lock
);
1617 if (unlikely(!spin_trylock(&busiest
->lock
))) {
1618 if (busiest
< this_rq
) {
1619 spin_unlock(&this_rq
->lock
);
1620 spin_lock(&busiest
->lock
);
1621 spin_lock_nested(&this_rq
->lock
, SINGLE_DEPTH_NESTING
);
1624 spin_lock_nested(&busiest
->lock
, SINGLE_DEPTH_NESTING
);
1629 static inline void double_unlock_balance(struct rq
*this_rq
, struct rq
*busiest
)
1630 __releases(busiest
->lock
)
1632 spin_unlock(&busiest
->lock
);
1633 lock_set_subclass(&this_rq
->lock
.dep_map
, 0, _RET_IP_
);
1637 #ifdef CONFIG_FAIR_GROUP_SCHED
1638 static void cfs_rq_set_shares(struct cfs_rq
*cfs_rq
, unsigned long shares
)
1641 cfs_rq
->shares
= shares
;
1646 #include "sched_stats.h"
1647 #include "sched_idletask.c"
1648 #include "sched_fair.c"
1649 #include "sched_rt.c"
1650 #ifdef CONFIG_SCHED_DEBUG
1651 # include "sched_debug.c"
1654 #define sched_class_highest (&rt_sched_class)
1655 #define for_each_class(class) \
1656 for (class = sched_class_highest; class; class = class->next)
1658 static void inc_nr_running(struct rq
*rq
)
1663 static void dec_nr_running(struct rq
*rq
)
1668 static void set_load_weight(struct task_struct
*p
)
1670 if (task_has_rt_policy(p
)) {
1671 p
->se
.load
.weight
= prio_to_weight
[0] * 2;
1672 p
->se
.load
.inv_weight
= prio_to_wmult
[0] >> 1;
1677 * SCHED_IDLE tasks get minimal weight:
1679 if (p
->policy
== SCHED_IDLE
) {
1680 p
->se
.load
.weight
= WEIGHT_IDLEPRIO
;
1681 p
->se
.load
.inv_weight
= WMULT_IDLEPRIO
;
1685 p
->se
.load
.weight
= prio_to_weight
[p
->static_prio
- MAX_RT_PRIO
];
1686 p
->se
.load
.inv_weight
= prio_to_wmult
[p
->static_prio
- MAX_RT_PRIO
];
1689 static void update_avg(u64
*avg
, u64 sample
)
1691 s64 diff
= sample
- *avg
;
1695 static void enqueue_task(struct rq
*rq
, struct task_struct
*p
, int wakeup
)
1697 sched_info_queued(p
);
1698 p
->sched_class
->enqueue_task(rq
, p
, wakeup
);
1702 static void dequeue_task(struct rq
*rq
, struct task_struct
*p
, int sleep
)
1704 if (sleep
&& p
->se
.last_wakeup
) {
1705 update_avg(&p
->se
.avg_overlap
,
1706 p
->se
.sum_exec_runtime
- p
->se
.last_wakeup
);
1707 p
->se
.last_wakeup
= 0;
1710 sched_info_dequeued(p
);
1711 p
->sched_class
->dequeue_task(rq
, p
, sleep
);
1716 * __normal_prio - return the priority that is based on the static prio
1718 static inline int __normal_prio(struct task_struct
*p
)
1720 return p
->static_prio
;
1724 * Calculate the expected normal priority: i.e. priority
1725 * without taking RT-inheritance into account. Might be
1726 * boosted by interactivity modifiers. Changes upon fork,
1727 * setprio syscalls, and whenever the interactivity
1728 * estimator recalculates.
1730 static inline int normal_prio(struct task_struct
*p
)
1734 if (task_has_rt_policy(p
))
1735 prio
= MAX_RT_PRIO
-1 - p
->rt_priority
;
1737 prio
= __normal_prio(p
);
1742 * Calculate the current priority, i.e. the priority
1743 * taken into account by the scheduler. This value might
1744 * be boosted by RT tasks, or might be boosted by
1745 * interactivity modifiers. Will be RT if the task got
1746 * RT-boosted. If not then it returns p->normal_prio.
1748 static int effective_prio(struct task_struct
*p
)
1750 p
->normal_prio
= normal_prio(p
);
1752 * If we are RT tasks or we were boosted to RT priority,
1753 * keep the priority unchanged. Otherwise, update priority
1754 * to the normal priority:
1756 if (!rt_prio(p
->prio
))
1757 return p
->normal_prio
;
1762 * activate_task - move a task to the runqueue.
1764 static void activate_task(struct rq
*rq
, struct task_struct
*p
, int wakeup
)
1766 if (task_contributes_to_load(p
))
1767 rq
->nr_uninterruptible
--;
1769 enqueue_task(rq
, p
, wakeup
);
1774 * deactivate_task - remove a task from the runqueue.
1776 static void deactivate_task(struct rq
*rq
, struct task_struct
*p
, int sleep
)
1778 if (task_contributes_to_load(p
))
1779 rq
->nr_uninterruptible
++;
1781 dequeue_task(rq
, p
, sleep
);
1786 * task_curr - is this task currently executing on a CPU?
1787 * @p: the task in question.
1789 inline int task_curr(const struct task_struct
*p
)
1791 return cpu_curr(task_cpu(p
)) == p
;
1794 static inline void __set_task_cpu(struct task_struct
*p
, unsigned int cpu
)
1796 set_task_rq(p
, cpu
);
1799 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1800 * successfuly executed on another CPU. We must ensure that updates of
1801 * per-task data have been completed by this moment.
1804 task_thread_info(p
)->cpu
= cpu
;
1808 static inline void check_class_changed(struct rq
*rq
, struct task_struct
*p
,
1809 const struct sched_class
*prev_class
,
1810 int oldprio
, int running
)
1812 if (prev_class
!= p
->sched_class
) {
1813 if (prev_class
->switched_from
)
1814 prev_class
->switched_from(rq
, p
, running
);
1815 p
->sched_class
->switched_to(rq
, p
, running
);
1817 p
->sched_class
->prio_changed(rq
, p
, oldprio
, running
);
1822 /* Used instead of source_load when we know the type == 0 */
1823 static unsigned long weighted_cpuload(const int cpu
)
1825 return cpu_rq(cpu
)->load
.weight
;
1829 * Is this task likely cache-hot:
1832 task_hot(struct task_struct
*p
, u64 now
, struct sched_domain
*sd
)
1837 * Buddy candidates are cache hot:
1839 if (sched_feat(CACHE_HOT_BUDDY
) &&
1840 (&p
->se
== cfs_rq_of(&p
->se
)->next
||
1841 &p
->se
== cfs_rq_of(&p
->se
)->last
))
1844 if (p
->sched_class
!= &fair_sched_class
)
1847 if (sysctl_sched_migration_cost
== -1)
1849 if (sysctl_sched_migration_cost
== 0)
1852 delta
= now
- p
->se
.exec_start
;
1854 return delta
< (s64
)sysctl_sched_migration_cost
;
1858 void set_task_cpu(struct task_struct
*p
, unsigned int new_cpu
)
1860 int old_cpu
= task_cpu(p
);
1861 struct rq
*old_rq
= cpu_rq(old_cpu
), *new_rq
= cpu_rq(new_cpu
);
1862 struct cfs_rq
*old_cfsrq
= task_cfs_rq(p
),
1863 *new_cfsrq
= cpu_cfs_rq(old_cfsrq
, new_cpu
);
1866 clock_offset
= old_rq
->clock
- new_rq
->clock
;
1868 trace_sched_migrate_task(p
, task_cpu(p
), new_cpu
);
1870 #ifdef CONFIG_SCHEDSTATS
1871 if (p
->se
.wait_start
)
1872 p
->se
.wait_start
-= clock_offset
;
1873 if (p
->se
.sleep_start
)
1874 p
->se
.sleep_start
-= clock_offset
;
1875 if (p
->se
.block_start
)
1876 p
->se
.block_start
-= clock_offset
;
1877 if (old_cpu
!= new_cpu
) {
1878 schedstat_inc(p
, se
.nr_migrations
);
1879 if (task_hot(p
, old_rq
->clock
, NULL
))
1880 schedstat_inc(p
, se
.nr_forced2_migrations
);
1883 p
->se
.vruntime
-= old_cfsrq
->min_vruntime
-
1884 new_cfsrq
->min_vruntime
;
1886 __set_task_cpu(p
, new_cpu
);
1889 struct migration_req
{
1890 struct list_head list
;
1892 struct task_struct
*task
;
1895 struct completion done
;
1899 * The task's runqueue lock must be held.
1900 * Returns true if you have to wait for migration thread.
1903 migrate_task(struct task_struct
*p
, int dest_cpu
, struct migration_req
*req
)
1905 struct rq
*rq
= task_rq(p
);
1908 * If the task is not on a runqueue (and not running), then
1909 * it is sufficient to simply update the task's cpu field.
1911 if (!p
->se
.on_rq
&& !task_running(rq
, p
)) {
1912 set_task_cpu(p
, dest_cpu
);
1916 init_completion(&req
->done
);
1918 req
->dest_cpu
= dest_cpu
;
1919 list_add(&req
->list
, &rq
->migration_queue
);
1925 * wait_task_inactive - wait for a thread to unschedule.
1927 * If @match_state is nonzero, it's the @p->state value just checked and
1928 * not expected to change. If it changes, i.e. @p might have woken up,
1929 * then return zero. When we succeed in waiting for @p to be off its CPU,
1930 * we return a positive number (its total switch count). If a second call
1931 * a short while later returns the same number, the caller can be sure that
1932 * @p has remained unscheduled the whole time.
1934 * The caller must ensure that the task *will* unschedule sometime soon,
1935 * else this function might spin for a *long* time. This function can't
1936 * be called with interrupts off, or it may introduce deadlock with
1937 * smp_call_function() if an IPI is sent by the same process we are
1938 * waiting to become inactive.
1940 unsigned long wait_task_inactive(struct task_struct
*p
, long match_state
)
1942 unsigned long flags
;
1949 * We do the initial early heuristics without holding
1950 * any task-queue locks at all. We'll only try to get
1951 * the runqueue lock when things look like they will
1957 * If the task is actively running on another CPU
1958 * still, just relax and busy-wait without holding
1961 * NOTE! Since we don't hold any locks, it's not
1962 * even sure that "rq" stays as the right runqueue!
1963 * But we don't care, since "task_running()" will
1964 * return false if the runqueue has changed and p
1965 * is actually now running somewhere else!
1967 while (task_running(rq
, p
)) {
1968 if (match_state
&& unlikely(p
->state
!= match_state
))
1974 * Ok, time to look more closely! We need the rq
1975 * lock now, to be *sure*. If we're wrong, we'll
1976 * just go back and repeat.
1978 rq
= task_rq_lock(p
, &flags
);
1979 trace_sched_wait_task(rq
, p
);
1980 running
= task_running(rq
, p
);
1981 on_rq
= p
->se
.on_rq
;
1983 if (!match_state
|| p
->state
== match_state
)
1984 ncsw
= p
->nvcsw
| LONG_MIN
; /* sets MSB */
1985 task_rq_unlock(rq
, &flags
);
1988 * If it changed from the expected state, bail out now.
1990 if (unlikely(!ncsw
))
1994 * Was it really running after all now that we
1995 * checked with the proper locks actually held?
1997 * Oops. Go back and try again..
1999 if (unlikely(running
)) {
2005 * It's not enough that it's not actively running,
2006 * it must be off the runqueue _entirely_, and not
2009 * So if it wa still runnable (but just not actively
2010 * running right now), it's preempted, and we should
2011 * yield - it could be a while.
2013 if (unlikely(on_rq
)) {
2014 schedule_timeout_uninterruptible(1);
2019 * Ahh, all good. It wasn't running, and it wasn't
2020 * runnable, which means that it will never become
2021 * running in the future either. We're all done!
2030 * kick_process - kick a running thread to enter/exit the kernel
2031 * @p: the to-be-kicked thread
2033 * Cause a process which is running on another CPU to enter
2034 * kernel-mode, without any delay. (to get signals handled.)
2036 * NOTE: this function doesnt have to take the runqueue lock,
2037 * because all it wants to ensure is that the remote task enters
2038 * the kernel. If the IPI races and the task has been migrated
2039 * to another CPU then no harm is done and the purpose has been
2042 void kick_process(struct task_struct
*p
)
2048 if ((cpu
!= smp_processor_id()) && task_curr(p
))
2049 smp_send_reschedule(cpu
);
2054 * Return a low guess at the load of a migration-source cpu weighted
2055 * according to the scheduling class and "nice" value.
2057 * We want to under-estimate the load of migration sources, to
2058 * balance conservatively.
2060 static unsigned long source_load(int cpu
, int type
)
2062 struct rq
*rq
= cpu_rq(cpu
);
2063 unsigned long total
= weighted_cpuload(cpu
);
2065 if (type
== 0 || !sched_feat(LB_BIAS
))
2068 return min(rq
->cpu_load
[type
-1], total
);
2072 * Return a high guess at the load of a migration-target cpu weighted
2073 * according to the scheduling class and "nice" value.
2075 static unsigned long target_load(int cpu
, int type
)
2077 struct rq
*rq
= cpu_rq(cpu
);
2078 unsigned long total
= weighted_cpuload(cpu
);
2080 if (type
== 0 || !sched_feat(LB_BIAS
))
2083 return max(rq
->cpu_load
[type
-1], total
);
2087 * find_idlest_group finds and returns the least busy CPU group within the
2090 static struct sched_group
*
2091 find_idlest_group(struct sched_domain
*sd
, struct task_struct
*p
, int this_cpu
)
2093 struct sched_group
*idlest
= NULL
, *this = NULL
, *group
= sd
->groups
;
2094 unsigned long min_load
= ULONG_MAX
, this_load
= 0;
2095 int load_idx
= sd
->forkexec_idx
;
2096 int imbalance
= 100 + (sd
->imbalance_pct
-100)/2;
2099 unsigned long load
, avg_load
;
2103 /* Skip over this group if it has no CPUs allowed */
2104 if (!cpus_intersects(group
->cpumask
, p
->cpus_allowed
))
2107 local_group
= cpu_isset(this_cpu
, group
->cpumask
);
2109 /* Tally up the load of all CPUs in the group */
2112 for_each_cpu_mask_nr(i
, group
->cpumask
) {
2113 /* Bias balancing toward cpus of our domain */
2115 load
= source_load(i
, load_idx
);
2117 load
= target_load(i
, load_idx
);
2122 /* Adjust by relative CPU power of the group */
2123 avg_load
= sg_div_cpu_power(group
,
2124 avg_load
* SCHED_LOAD_SCALE
);
2127 this_load
= avg_load
;
2129 } else if (avg_load
< min_load
) {
2130 min_load
= avg_load
;
2133 } while (group
= group
->next
, group
!= sd
->groups
);
2135 if (!idlest
|| 100*this_load
< imbalance
*min_load
)
2141 * find_idlest_cpu - find the idlest cpu among the cpus in group.
2144 find_idlest_cpu(struct sched_group
*group
, struct task_struct
*p
, int this_cpu
,
2147 unsigned long load
, min_load
= ULONG_MAX
;
2151 /* Traverse only the allowed CPUs */
2152 cpus_and(*tmp
, group
->cpumask
, p
->cpus_allowed
);
2154 for_each_cpu_mask_nr(i
, *tmp
) {
2155 load
= weighted_cpuload(i
);
2157 if (load
< min_load
|| (load
== min_load
&& i
== this_cpu
)) {
2167 * sched_balance_self: balance the current task (running on cpu) in domains
2168 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
2171 * Balance, ie. select the least loaded group.
2173 * Returns the target CPU number, or the same CPU if no balancing is needed.
2175 * preempt must be disabled.
2177 static int sched_balance_self(int cpu
, int flag
)
2179 struct task_struct
*t
= current
;
2180 struct sched_domain
*tmp
, *sd
= NULL
;
2182 for_each_domain(cpu
, tmp
) {
2184 * If power savings logic is enabled for a domain, stop there.
2186 if (tmp
->flags
& SD_POWERSAVINGS_BALANCE
)
2188 if (tmp
->flags
& flag
)
2196 cpumask_t span
, tmpmask
;
2197 struct sched_group
*group
;
2198 int new_cpu
, weight
;
2200 if (!(sd
->flags
& flag
)) {
2206 group
= find_idlest_group(sd
, t
, cpu
);
2212 new_cpu
= find_idlest_cpu(group
, t
, cpu
, &tmpmask
);
2213 if (new_cpu
== -1 || new_cpu
== cpu
) {
2214 /* Now try balancing at a lower domain level of cpu */
2219 /* Now try balancing at a lower domain level of new_cpu */
2222 weight
= cpus_weight(span
);
2223 for_each_domain(cpu
, tmp
) {
2224 if (weight
<= cpus_weight(tmp
->span
))
2226 if (tmp
->flags
& flag
)
2229 /* while loop will break here if sd == NULL */
2235 #endif /* CONFIG_SMP */
2238 * try_to_wake_up - wake up a thread
2239 * @p: the to-be-woken-up thread
2240 * @state: the mask of task states that can be woken
2241 * @sync: do a synchronous wakeup?
2243 * Put it on the run-queue if it's not already there. The "current"
2244 * thread is always on the run-queue (except when the actual
2245 * re-schedule is in progress), and as such you're allowed to do
2246 * the simpler "current->state = TASK_RUNNING" to mark yourself
2247 * runnable without the overhead of this.
2249 * returns failure only if the task is already active.
2251 static int try_to_wake_up(struct task_struct
*p
, unsigned int state
, int sync
)
2253 int cpu
, orig_cpu
, this_cpu
, success
= 0;
2254 unsigned long flags
;
2258 if (!sched_feat(SYNC_WAKEUPS
))
2262 if (sched_feat(LB_WAKEUP_UPDATE
)) {
2263 struct sched_domain
*sd
;
2265 this_cpu
= raw_smp_processor_id();
2268 for_each_domain(this_cpu
, sd
) {
2269 if (cpu_isset(cpu
, sd
->span
)) {
2278 rq
= task_rq_lock(p
, &flags
);
2279 update_rq_clock(rq
);
2280 old_state
= p
->state
;
2281 if (!(old_state
& state
))
2289 this_cpu
= smp_processor_id();
2292 if (unlikely(task_running(rq
, p
)))
2295 cpu
= p
->sched_class
->select_task_rq(p
, sync
);
2296 if (cpu
!= orig_cpu
) {
2297 set_task_cpu(p
, cpu
);
2298 task_rq_unlock(rq
, &flags
);
2299 /* might preempt at this point */
2300 rq
= task_rq_lock(p
, &flags
);
2301 old_state
= p
->state
;
2302 if (!(old_state
& state
))
2307 this_cpu
= smp_processor_id();
2311 #ifdef CONFIG_SCHEDSTATS
2312 schedstat_inc(rq
, ttwu_count
);
2313 if (cpu
== this_cpu
)
2314 schedstat_inc(rq
, ttwu_local
);
2316 struct sched_domain
*sd
;
2317 for_each_domain(this_cpu
, sd
) {
2318 if (cpu_isset(cpu
, sd
->span
)) {
2319 schedstat_inc(sd
, ttwu_wake_remote
);
2324 #endif /* CONFIG_SCHEDSTATS */
2327 #endif /* CONFIG_SMP */
2328 schedstat_inc(p
, se
.nr_wakeups
);
2330 schedstat_inc(p
, se
.nr_wakeups_sync
);
2331 if (orig_cpu
!= cpu
)
2332 schedstat_inc(p
, se
.nr_wakeups_migrate
);
2333 if (cpu
== this_cpu
)
2334 schedstat_inc(p
, se
.nr_wakeups_local
);
2336 schedstat_inc(p
, se
.nr_wakeups_remote
);
2337 activate_task(rq
, p
, 1);
2341 trace_sched_wakeup(rq
, p
, success
);
2342 check_preempt_curr(rq
, p
, sync
);
2344 p
->state
= TASK_RUNNING
;
2346 if (p
->sched_class
->task_wake_up
)
2347 p
->sched_class
->task_wake_up(rq
, p
);
2350 current
->se
.last_wakeup
= current
->se
.sum_exec_runtime
;
2352 task_rq_unlock(rq
, &flags
);
2357 int wake_up_process(struct task_struct
*p
)
2359 return try_to_wake_up(p
, TASK_ALL
, 0);
2361 EXPORT_SYMBOL(wake_up_process
);
2363 int wake_up_state(struct task_struct
*p
, unsigned int state
)
2365 return try_to_wake_up(p
, state
, 0);
2369 * Perform scheduler related setup for a newly forked process p.
2370 * p is forked by current.
2372 * __sched_fork() is basic setup used by init_idle() too:
2374 static void __sched_fork(struct task_struct
*p
)
2376 p
->se
.exec_start
= 0;
2377 p
->se
.sum_exec_runtime
= 0;
2378 p
->se
.prev_sum_exec_runtime
= 0;
2379 p
->se
.last_wakeup
= 0;
2380 p
->se
.avg_overlap
= 0;
2382 #ifdef CONFIG_SCHEDSTATS
2383 p
->se
.wait_start
= 0;
2384 p
->se
.sum_sleep_runtime
= 0;
2385 p
->se
.sleep_start
= 0;
2386 p
->se
.block_start
= 0;
2387 p
->se
.sleep_max
= 0;
2388 p
->se
.block_max
= 0;
2390 p
->se
.slice_max
= 0;
2394 INIT_LIST_HEAD(&p
->rt
.run_list
);
2396 INIT_LIST_HEAD(&p
->se
.group_node
);
2398 #ifdef CONFIG_PREEMPT_NOTIFIERS
2399 INIT_HLIST_HEAD(&p
->preempt_notifiers
);
2403 * We mark the process as running here, but have not actually
2404 * inserted it onto the runqueue yet. This guarantees that
2405 * nobody will actually run it, and a signal or other external
2406 * event cannot wake it up and insert it on the runqueue either.
2408 p
->state
= TASK_RUNNING
;
2412 * fork()/clone()-time setup:
2414 void sched_fork(struct task_struct
*p
, int clone_flags
)
2416 int cpu
= get_cpu();
2421 cpu
= sched_balance_self(cpu
, SD_BALANCE_FORK
);
2423 set_task_cpu(p
, cpu
);
2426 * Make sure we do not leak PI boosting priority to the child:
2428 p
->prio
= current
->normal_prio
;
2429 if (!rt_prio(p
->prio
))
2430 p
->sched_class
= &fair_sched_class
;
2432 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
2433 if (likely(sched_info_on()))
2434 memset(&p
->sched_info
, 0, sizeof(p
->sched_info
));
2436 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
2439 #ifdef CONFIG_PREEMPT
2440 /* Want to start with kernel preemption disabled. */
2441 task_thread_info(p
)->preempt_count
= 1;
2447 * wake_up_new_task - wake up a newly created task for the first time.
2449 * This function will do some initial scheduler statistics housekeeping
2450 * that must be done for every newly created context, then puts the task
2451 * on the runqueue and wakes it.
2453 void wake_up_new_task(struct task_struct
*p
, unsigned long clone_flags
)
2455 unsigned long flags
;
2458 rq
= task_rq_lock(p
, &flags
);
2459 BUG_ON(p
->state
!= TASK_RUNNING
);
2460 update_rq_clock(rq
);
2462 p
->prio
= effective_prio(p
);
2464 if (!p
->sched_class
->task_new
|| !current
->se
.on_rq
) {
2465 activate_task(rq
, p
, 0);
2468 * Let the scheduling class do new task startup
2469 * management (if any):
2471 p
->sched_class
->task_new(rq
, p
);
2474 trace_sched_wakeup_new(rq
, p
, 1);
2475 check_preempt_curr(rq
, p
, 0);
2477 if (p
->sched_class
->task_wake_up
)
2478 p
->sched_class
->task_wake_up(rq
, p
);
2480 task_rq_unlock(rq
, &flags
);
2483 #ifdef CONFIG_PREEMPT_NOTIFIERS
2486 * preempt_notifier_register - tell me when current is being being preempted & rescheduled
2487 * @notifier: notifier struct to register
2489 void preempt_notifier_register(struct preempt_notifier
*notifier
)
2491 hlist_add_head(¬ifier
->link
, ¤t
->preempt_notifiers
);
2493 EXPORT_SYMBOL_GPL(preempt_notifier_register
);
2496 * preempt_notifier_unregister - no longer interested in preemption notifications
2497 * @notifier: notifier struct to unregister
2499 * This is safe to call from within a preemption notifier.
2501 void preempt_notifier_unregister(struct preempt_notifier
*notifier
)
2503 hlist_del(¬ifier
->link
);
2505 EXPORT_SYMBOL_GPL(preempt_notifier_unregister
);
2507 static void fire_sched_in_preempt_notifiers(struct task_struct
*curr
)
2509 struct preempt_notifier
*notifier
;
2510 struct hlist_node
*node
;
2512 hlist_for_each_entry(notifier
, node
, &curr
->preempt_notifiers
, link
)
2513 notifier
->ops
->sched_in(notifier
, raw_smp_processor_id());
2517 fire_sched_out_preempt_notifiers(struct task_struct
*curr
,
2518 struct task_struct
*next
)
2520 struct preempt_notifier
*notifier
;
2521 struct hlist_node
*node
;
2523 hlist_for_each_entry(notifier
, node
, &curr
->preempt_notifiers
, link
)
2524 notifier
->ops
->sched_out(notifier
, next
);
2527 #else /* !CONFIG_PREEMPT_NOTIFIERS */
2529 static void fire_sched_in_preempt_notifiers(struct task_struct
*curr
)
2534 fire_sched_out_preempt_notifiers(struct task_struct
*curr
,
2535 struct task_struct
*next
)
2539 #endif /* CONFIG_PREEMPT_NOTIFIERS */
2542 * prepare_task_switch - prepare to switch tasks
2543 * @rq: the runqueue preparing to switch
2544 * @prev: the current task that is being switched out
2545 * @next: the task we are going to switch to.
2547 * This is called with the rq lock held and interrupts off. It must
2548 * be paired with a subsequent finish_task_switch after the context
2551 * prepare_task_switch sets up locking and calls architecture specific
2555 prepare_task_switch(struct rq
*rq
, struct task_struct
*prev
,
2556 struct task_struct
*next
)
2558 fire_sched_out_preempt_notifiers(prev
, next
);
2559 prepare_lock_switch(rq
, next
);
2560 prepare_arch_switch(next
);
2564 * finish_task_switch - clean up after a task-switch
2565 * @rq: runqueue associated with task-switch
2566 * @prev: the thread we just switched away from.
2568 * finish_task_switch must be called after the context switch, paired
2569 * with a prepare_task_switch call before the context switch.
2570 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2571 * and do any other architecture-specific cleanup actions.
2573 * Note that we may have delayed dropping an mm in context_switch(). If
2574 * so, we finish that here outside of the runqueue lock. (Doing it
2575 * with the lock held can cause deadlocks; see schedule() for
2578 static void finish_task_switch(struct rq
*rq
, struct task_struct
*prev
)
2579 __releases(rq
->lock
)
2581 struct mm_struct
*mm
= rq
->prev_mm
;
2587 * A task struct has one reference for the use as "current".
2588 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
2589 * schedule one last time. The schedule call will never return, and
2590 * the scheduled task must drop that reference.
2591 * The test for TASK_DEAD must occur while the runqueue locks are
2592 * still held, otherwise prev could be scheduled on another cpu, die
2593 * there before we look at prev->state, and then the reference would
2595 * Manfred Spraul <manfred@colorfullife.com>
2597 prev_state
= prev
->state
;
2598 finish_arch_switch(prev
);
2599 finish_lock_switch(rq
, prev
);
2601 if (current
->sched_class
->post_schedule
)
2602 current
->sched_class
->post_schedule(rq
);
2605 fire_sched_in_preempt_notifiers(current
);
2608 if (unlikely(prev_state
== TASK_DEAD
)) {
2610 * Remove function-return probe instances associated with this
2611 * task and put them back on the free list.
2613 kprobe_flush_task(prev
);
2614 put_task_struct(prev
);
2619 * schedule_tail - first thing a freshly forked thread must call.
2620 * @prev: the thread we just switched away from.
2622 asmlinkage
void schedule_tail(struct task_struct
*prev
)
2623 __releases(rq
->lock
)
2625 struct rq
*rq
= this_rq();
2627 finish_task_switch(rq
, prev
);
2628 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
2629 /* In this case, finish_task_switch does not reenable preemption */
2632 if (current
->set_child_tid
)
2633 put_user(task_pid_vnr(current
), current
->set_child_tid
);
2637 * context_switch - switch to the new MM and the new
2638 * thread's register state.
2641 context_switch(struct rq
*rq
, struct task_struct
*prev
,
2642 struct task_struct
*next
)
2644 struct mm_struct
*mm
, *oldmm
;
2646 prepare_task_switch(rq
, prev
, next
);
2647 trace_sched_switch(rq
, prev
, next
);
2649 oldmm
= prev
->active_mm
;
2651 * For paravirt, this is coupled with an exit in switch_to to
2652 * combine the page table reload and the switch backend into
2655 arch_enter_lazy_cpu_mode();
2657 if (unlikely(!mm
)) {
2658 next
->active_mm
= oldmm
;
2659 atomic_inc(&oldmm
->mm_count
);
2660 enter_lazy_tlb(oldmm
, next
);
2662 switch_mm(oldmm
, mm
, next
);
2664 if (unlikely(!prev
->mm
)) {
2665 prev
->active_mm
= NULL
;
2666 rq
->prev_mm
= oldmm
;
2669 * Since the runqueue lock will be released by the next
2670 * task (which is an invalid locking op but in the case
2671 * of the scheduler it's an obvious special-case), so we
2672 * do an early lockdep release here:
2674 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
2675 spin_release(&rq
->lock
.dep_map
, 1, _THIS_IP_
);
2678 /* Here we just switch the register state and the stack. */
2679 switch_to(prev
, next
, prev
);
2683 * this_rq must be evaluated again because prev may have moved
2684 * CPUs since it called schedule(), thus the 'rq' on its stack
2685 * frame will be invalid.
2687 finish_task_switch(this_rq(), prev
);
2691 * nr_running, nr_uninterruptible and nr_context_switches:
2693 * externally visible scheduler statistics: current number of runnable
2694 * threads, current number of uninterruptible-sleeping threads, total
2695 * number of context switches performed since bootup.
2697 unsigned long nr_running(void)
2699 unsigned long i
, sum
= 0;
2701 for_each_online_cpu(i
)
2702 sum
+= cpu_rq(i
)->nr_running
;
2707 unsigned long nr_uninterruptible(void)
2709 unsigned long i
, sum
= 0;
2711 for_each_possible_cpu(i
)
2712 sum
+= cpu_rq(i
)->nr_uninterruptible
;
2715 * Since we read the counters lockless, it might be slightly
2716 * inaccurate. Do not allow it to go below zero though:
2718 if (unlikely((long)sum
< 0))
2724 unsigned long long nr_context_switches(void)
2727 unsigned long long sum
= 0;
2729 for_each_possible_cpu(i
)
2730 sum
+= cpu_rq(i
)->nr_switches
;
2735 unsigned long nr_iowait(void)
2737 unsigned long i
, sum
= 0;
2739 for_each_possible_cpu(i
)
2740 sum
+= atomic_read(&cpu_rq(i
)->nr_iowait
);
2745 unsigned long nr_active(void)
2747 unsigned long i
, running
= 0, uninterruptible
= 0;
2749 for_each_online_cpu(i
) {
2750 running
+= cpu_rq(i
)->nr_running
;
2751 uninterruptible
+= cpu_rq(i
)->nr_uninterruptible
;
2754 if (unlikely((long)uninterruptible
< 0))
2755 uninterruptible
= 0;
2757 return running
+ uninterruptible
;
2761 * Update rq->cpu_load[] statistics. This function is usually called every
2762 * scheduler tick (TICK_NSEC).
2764 static void update_cpu_load(struct rq
*this_rq
)
2766 unsigned long this_load
= this_rq
->load
.weight
;
2769 this_rq
->nr_load_updates
++;
2771 /* Update our load: */
2772 for (i
= 0, scale
= 1; i
< CPU_LOAD_IDX_MAX
; i
++, scale
+= scale
) {
2773 unsigned long old_load
, new_load
;
2775 /* scale is effectively 1 << i now, and >> i divides by scale */
2777 old_load
= this_rq
->cpu_load
[i
];
2778 new_load
= this_load
;
2780 * Round up the averaging division if load is increasing. This
2781 * prevents us from getting stuck on 9 if the load is 10, for
2784 if (new_load
> old_load
)
2785 new_load
+= scale
-1;
2786 this_rq
->cpu_load
[i
] = (old_load
*(scale
-1) + new_load
) >> i
;
2793 * double_rq_lock - safely lock two runqueues
2795 * Note this does not disable interrupts like task_rq_lock,
2796 * you need to do so manually before calling.
2798 static void double_rq_lock(struct rq
*rq1
, struct rq
*rq2
)
2799 __acquires(rq1
->lock
)
2800 __acquires(rq2
->lock
)
2802 BUG_ON(!irqs_disabled());
2804 spin_lock(&rq1
->lock
);
2805 __acquire(rq2
->lock
); /* Fake it out ;) */
2808 spin_lock(&rq1
->lock
);
2809 spin_lock_nested(&rq2
->lock
, SINGLE_DEPTH_NESTING
);
2811 spin_lock(&rq2
->lock
);
2812 spin_lock_nested(&rq1
->lock
, SINGLE_DEPTH_NESTING
);
2815 update_rq_clock(rq1
);
2816 update_rq_clock(rq2
);
2820 * double_rq_unlock - safely unlock two runqueues
2822 * Note this does not restore interrupts like task_rq_unlock,
2823 * you need to do so manually after calling.
2825 static void double_rq_unlock(struct rq
*rq1
, struct rq
*rq2
)
2826 __releases(rq1
->lock
)
2827 __releases(rq2
->lock
)
2829 spin_unlock(&rq1
->lock
);
2831 spin_unlock(&rq2
->lock
);
2833 __release(rq2
->lock
);
2837 * If dest_cpu is allowed for this process, migrate the task to it.
2838 * This is accomplished by forcing the cpu_allowed mask to only
2839 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
2840 * the cpu_allowed mask is restored.
2842 static void sched_migrate_task(struct task_struct
*p
, int dest_cpu
)
2844 struct migration_req req
;
2845 unsigned long flags
;
2848 rq
= task_rq_lock(p
, &flags
);
2849 if (!cpu_isset(dest_cpu
, p
->cpus_allowed
)
2850 || unlikely(!cpu_active(dest_cpu
)))
2853 /* force the process onto the specified CPU */
2854 if (migrate_task(p
, dest_cpu
, &req
)) {
2855 /* Need to wait for migration thread (might exit: take ref). */
2856 struct task_struct
*mt
= rq
->migration_thread
;
2858 get_task_struct(mt
);
2859 task_rq_unlock(rq
, &flags
);
2860 wake_up_process(mt
);
2861 put_task_struct(mt
);
2862 wait_for_completion(&req
.done
);
2867 task_rq_unlock(rq
, &flags
);
2871 * sched_exec - execve() is a valuable balancing opportunity, because at
2872 * this point the task has the smallest effective memory and cache footprint.
2874 void sched_exec(void)
2876 int new_cpu
, this_cpu
= get_cpu();
2877 new_cpu
= sched_balance_self(this_cpu
, SD_BALANCE_EXEC
);
2879 if (new_cpu
!= this_cpu
)
2880 sched_migrate_task(current
, new_cpu
);
2884 * pull_task - move a task from a remote runqueue to the local runqueue.
2885 * Both runqueues must be locked.
2887 static void pull_task(struct rq
*src_rq
, struct task_struct
*p
,
2888 struct rq
*this_rq
, int this_cpu
)
2890 deactivate_task(src_rq
, p
, 0);
2891 set_task_cpu(p
, this_cpu
);
2892 activate_task(this_rq
, p
, 0);
2894 * Note that idle threads have a prio of MAX_PRIO, for this test
2895 * to be always true for them.
2897 check_preempt_curr(this_rq
, p
, 0);
2901 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
2904 int can_migrate_task(struct task_struct
*p
, struct rq
*rq
, int this_cpu
,
2905 struct sched_domain
*sd
, enum cpu_idle_type idle
,
2909 * We do not migrate tasks that are:
2910 * 1) running (obviously), or
2911 * 2) cannot be migrated to this CPU due to cpus_allowed, or
2912 * 3) are cache-hot on their current CPU.
2914 if (!cpu_isset(this_cpu
, p
->cpus_allowed
)) {
2915 schedstat_inc(p
, se
.nr_failed_migrations_affine
);
2920 if (task_running(rq
, p
)) {
2921 schedstat_inc(p
, se
.nr_failed_migrations_running
);
2926 * Aggressive migration if:
2927 * 1) task is cache cold, or
2928 * 2) too many balance attempts have failed.
2931 if (!task_hot(p
, rq
->clock
, sd
) ||
2932 sd
->nr_balance_failed
> sd
->cache_nice_tries
) {
2933 #ifdef CONFIG_SCHEDSTATS
2934 if (task_hot(p
, rq
->clock
, sd
)) {
2935 schedstat_inc(sd
, lb_hot_gained
[idle
]);
2936 schedstat_inc(p
, se
.nr_forced_migrations
);
2942 if (task_hot(p
, rq
->clock
, sd
)) {
2943 schedstat_inc(p
, se
.nr_failed_migrations_hot
);
2949 static unsigned long
2950 balance_tasks(struct rq
*this_rq
, int this_cpu
, struct rq
*busiest
,
2951 unsigned long max_load_move
, struct sched_domain
*sd
,
2952 enum cpu_idle_type idle
, int *all_pinned
,
2953 int *this_best_prio
, struct rq_iterator
*iterator
)
2955 int loops
= 0, pulled
= 0, pinned
= 0;
2956 struct task_struct
*p
;
2957 long rem_load_move
= max_load_move
;
2959 if (max_load_move
== 0)
2965 * Start the load-balancing iterator:
2967 p
= iterator
->start(iterator
->arg
);
2969 if (!p
|| loops
++ > sysctl_sched_nr_migrate
)
2972 if ((p
->se
.load
.weight
>> 1) > rem_load_move
||
2973 !can_migrate_task(p
, busiest
, this_cpu
, sd
, idle
, &pinned
)) {
2974 p
= iterator
->next(iterator
->arg
);
2978 pull_task(busiest
, p
, this_rq
, this_cpu
);
2980 rem_load_move
-= p
->se
.load
.weight
;
2983 * We only want to steal up to the prescribed amount of weighted load.
2985 if (rem_load_move
> 0) {
2986 if (p
->prio
< *this_best_prio
)
2987 *this_best_prio
= p
->prio
;
2988 p
= iterator
->next(iterator
->arg
);
2993 * Right now, this is one of only two places pull_task() is called,
2994 * so we can safely collect pull_task() stats here rather than
2995 * inside pull_task().
2997 schedstat_add(sd
, lb_gained
[idle
], pulled
);
3000 *all_pinned
= pinned
;
3002 return max_load_move
- rem_load_move
;
3006 * move_tasks tries to move up to max_load_move weighted load from busiest to
3007 * this_rq, as part of a balancing operation within domain "sd".
3008 * Returns 1 if successful and 0 otherwise.
3010 * Called with both runqueues locked.
3012 static int move_tasks(struct rq
*this_rq
, int this_cpu
, struct rq
*busiest
,
3013 unsigned long max_load_move
,
3014 struct sched_domain
*sd
, enum cpu_idle_type idle
,
3017 const struct sched_class
*class = sched_class_highest
;
3018 unsigned long total_load_moved
= 0;
3019 int this_best_prio
= this_rq
->curr
->prio
;
3023 class->load_balance(this_rq
, this_cpu
, busiest
,
3024 max_load_move
- total_load_moved
,
3025 sd
, idle
, all_pinned
, &this_best_prio
);
3026 class = class->next
;
3028 if (idle
== CPU_NEWLY_IDLE
&& this_rq
->nr_running
)
3031 } while (class && max_load_move
> total_load_moved
);
3033 return total_load_moved
> 0;
3037 iter_move_one_task(struct rq
*this_rq
, int this_cpu
, struct rq
*busiest
,
3038 struct sched_domain
*sd
, enum cpu_idle_type idle
,
3039 struct rq_iterator
*iterator
)
3041 struct task_struct
*p
= iterator
->start(iterator
->arg
);
3045 if (can_migrate_task(p
, busiest
, this_cpu
, sd
, idle
, &pinned
)) {
3046 pull_task(busiest
, p
, this_rq
, this_cpu
);
3048 * Right now, this is only the second place pull_task()
3049 * is called, so we can safely collect pull_task()
3050 * stats here rather than inside pull_task().
3052 schedstat_inc(sd
, lb_gained
[idle
]);
3056 p
= iterator
->next(iterator
->arg
);
3063 * move_one_task tries to move exactly one task from busiest to this_rq, as
3064 * part of active balancing operations within "domain".
3065 * Returns 1 if successful and 0 otherwise.
3067 * Called with both runqueues locked.
3069 static int move_one_task(struct rq
*this_rq
, int this_cpu
, struct rq
*busiest
,
3070 struct sched_domain
*sd
, enum cpu_idle_type idle
)
3072 const struct sched_class
*class;
3074 for (class = sched_class_highest
; class; class = class->next
)
3075 if (class->move_one_task(this_rq
, this_cpu
, busiest
, sd
, idle
))
3082 * find_busiest_group finds and returns the busiest CPU group within the
3083 * domain. It calculates and returns the amount of weighted load which
3084 * should be moved to restore balance via the imbalance parameter.
3086 static struct sched_group
*
3087 find_busiest_group(struct sched_domain
*sd
, int this_cpu
,
3088 unsigned long *imbalance
, enum cpu_idle_type idle
,
3089 int *sd_idle
, const cpumask_t
*cpus
, int *balance
)
3091 struct sched_group
*busiest
= NULL
, *this = NULL
, *group
= sd
->groups
;
3092 unsigned long max_load
, avg_load
, total_load
, this_load
, total_pwr
;
3093 unsigned long max_pull
;
3094 unsigned long busiest_load_per_task
, busiest_nr_running
;
3095 unsigned long this_load_per_task
, this_nr_running
;
3096 int load_idx
, group_imb
= 0;
3097 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3098 int power_savings_balance
= 1;
3099 unsigned long leader_nr_running
= 0, min_load_per_task
= 0;
3100 unsigned long min_nr_running
= ULONG_MAX
;
3101 struct sched_group
*group_min
= NULL
, *group_leader
= NULL
;
3104 max_load
= this_load
= total_load
= total_pwr
= 0;
3105 busiest_load_per_task
= busiest_nr_running
= 0;
3106 this_load_per_task
= this_nr_running
= 0;
3108 if (idle
== CPU_NOT_IDLE
)
3109 load_idx
= sd
->busy_idx
;
3110 else if (idle
== CPU_NEWLY_IDLE
)
3111 load_idx
= sd
->newidle_idx
;
3113 load_idx
= sd
->idle_idx
;
3116 unsigned long load
, group_capacity
, max_cpu_load
, min_cpu_load
;
3119 int __group_imb
= 0;
3120 unsigned int balance_cpu
= -1, first_idle_cpu
= 0;
3121 unsigned long sum_nr_running
, sum_weighted_load
;
3122 unsigned long sum_avg_load_per_task
;
3123 unsigned long avg_load_per_task
;
3125 local_group
= cpu_isset(this_cpu
, group
->cpumask
);
3128 balance_cpu
= first_cpu(group
->cpumask
);
3130 /* Tally up the load of all CPUs in the group */
3131 sum_weighted_load
= sum_nr_running
= avg_load
= 0;
3132 sum_avg_load_per_task
= avg_load_per_task
= 0;
3135 min_cpu_load
= ~0UL;
3137 for_each_cpu_mask_nr(i
, group
->cpumask
) {
3140 if (!cpu_isset(i
, *cpus
))
3145 if (*sd_idle
&& rq
->nr_running
)
3148 /* Bias balancing toward cpus of our domain */
3150 if (idle_cpu(i
) && !first_idle_cpu
) {
3155 load
= target_load(i
, load_idx
);
3157 load
= source_load(i
, load_idx
);
3158 if (load
> max_cpu_load
)
3159 max_cpu_load
= load
;
3160 if (min_cpu_load
> load
)
3161 min_cpu_load
= load
;
3165 sum_nr_running
+= rq
->nr_running
;
3166 sum_weighted_load
+= weighted_cpuload(i
);
3168 sum_avg_load_per_task
+= cpu_avg_load_per_task(i
);
3172 * First idle cpu or the first cpu(busiest) in this sched group
3173 * is eligible for doing load balancing at this and above
3174 * domains. In the newly idle case, we will allow all the cpu's
3175 * to do the newly idle load balance.
3177 if (idle
!= CPU_NEWLY_IDLE
&& local_group
&&
3178 balance_cpu
!= this_cpu
&& balance
) {
3183 total_load
+= avg_load
;
3184 total_pwr
+= group
->__cpu_power
;
3186 /* Adjust by relative CPU power of the group */
3187 avg_load
= sg_div_cpu_power(group
,
3188 avg_load
* SCHED_LOAD_SCALE
);
3192 * Consider the group unbalanced when the imbalance is larger
3193 * than the average weight of two tasks.
3195 * APZ: with cgroup the avg task weight can vary wildly and
3196 * might not be a suitable number - should we keep a
3197 * normalized nr_running number somewhere that negates
3200 avg_load_per_task
= sg_div_cpu_power(group
,
3201 sum_avg_load_per_task
* SCHED_LOAD_SCALE
);
3203 if ((max_cpu_load
- min_cpu_load
) > 2*avg_load_per_task
)
3206 group_capacity
= group
->__cpu_power
/ SCHED_LOAD_SCALE
;
3209 this_load
= avg_load
;
3211 this_nr_running
= sum_nr_running
;
3212 this_load_per_task
= sum_weighted_load
;
3213 } else if (avg_load
> max_load
&&
3214 (sum_nr_running
> group_capacity
|| __group_imb
)) {
3215 max_load
= avg_load
;
3217 busiest_nr_running
= sum_nr_running
;
3218 busiest_load_per_task
= sum_weighted_load
;
3219 group_imb
= __group_imb
;
3222 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3224 * Busy processors will not participate in power savings
3227 if (idle
== CPU_NOT_IDLE
||
3228 !(sd
->flags
& SD_POWERSAVINGS_BALANCE
))
3232 * If the local group is idle or completely loaded
3233 * no need to do power savings balance at this domain
3235 if (local_group
&& (this_nr_running
>= group_capacity
||
3237 power_savings_balance
= 0;
3240 * If a group is already running at full capacity or idle,
3241 * don't include that group in power savings calculations
3243 if (!power_savings_balance
|| sum_nr_running
>= group_capacity
3248 * Calculate the group which has the least non-idle load.
3249 * This is the group from where we need to pick up the load
3252 if ((sum_nr_running
< min_nr_running
) ||
3253 (sum_nr_running
== min_nr_running
&&
3254 first_cpu(group
->cpumask
) <
3255 first_cpu(group_min
->cpumask
))) {
3257 min_nr_running
= sum_nr_running
;
3258 min_load_per_task
= sum_weighted_load
/
3263 * Calculate the group which is almost near its
3264 * capacity but still has some space to pick up some load
3265 * from other group and save more power
3267 if (sum_nr_running
<= group_capacity
- 1) {
3268 if (sum_nr_running
> leader_nr_running
||
3269 (sum_nr_running
== leader_nr_running
&&
3270 first_cpu(group
->cpumask
) >
3271 first_cpu(group_leader
->cpumask
))) {
3272 group_leader
= group
;
3273 leader_nr_running
= sum_nr_running
;
3278 group
= group
->next
;
3279 } while (group
!= sd
->groups
);
3281 if (!busiest
|| this_load
>= max_load
|| busiest_nr_running
== 0)
3284 avg_load
= (SCHED_LOAD_SCALE
* total_load
) / total_pwr
;
3286 if (this_load
>= avg_load
||
3287 100*max_load
<= sd
->imbalance_pct
*this_load
)
3290 busiest_load_per_task
/= busiest_nr_running
;
3292 busiest_load_per_task
= min(busiest_load_per_task
, avg_load
);
3295 * We're trying to get all the cpus to the average_load, so we don't
3296 * want to push ourselves above the average load, nor do we wish to
3297 * reduce the max loaded cpu below the average load, as either of these
3298 * actions would just result in more rebalancing later, and ping-pong
3299 * tasks around. Thus we look for the minimum possible imbalance.
3300 * Negative imbalances (*we* are more loaded than anyone else) will
3301 * be counted as no imbalance for these purposes -- we can't fix that
3302 * by pulling tasks to us. Be careful of negative numbers as they'll
3303 * appear as very large values with unsigned longs.
3305 if (max_load
<= busiest_load_per_task
)
3309 * In the presence of smp nice balancing, certain scenarios can have
3310 * max load less than avg load(as we skip the groups at or below
3311 * its cpu_power, while calculating max_load..)
3313 if (max_load
< avg_load
) {
3315 goto small_imbalance
;
3318 /* Don't want to pull so many tasks that a group would go idle */
3319 max_pull
= min(max_load
- avg_load
, max_load
- busiest_load_per_task
);
3321 /* How much load to actually move to equalise the imbalance */
3322 *imbalance
= min(max_pull
* busiest
->__cpu_power
,
3323 (avg_load
- this_load
) * this->__cpu_power
)
3327 * if *imbalance is less than the average load per runnable task
3328 * there is no gaurantee that any tasks will be moved so we'll have
3329 * a think about bumping its value to force at least one task to be
3332 if (*imbalance
< busiest_load_per_task
) {
3333 unsigned long tmp
, pwr_now
, pwr_move
;
3337 pwr_move
= pwr_now
= 0;
3339 if (this_nr_running
) {
3340 this_load_per_task
/= this_nr_running
;
3341 if (busiest_load_per_task
> this_load_per_task
)
3344 this_load_per_task
= cpu_avg_load_per_task(this_cpu
);
3346 if (max_load
- this_load
+ busiest_load_per_task
>=
3347 busiest_load_per_task
* imbn
) {
3348 *imbalance
= busiest_load_per_task
;
3353 * OK, we don't have enough imbalance to justify moving tasks,
3354 * however we may be able to increase total CPU power used by
3358 pwr_now
+= busiest
->__cpu_power
*
3359 min(busiest_load_per_task
, max_load
);
3360 pwr_now
+= this->__cpu_power
*
3361 min(this_load_per_task
, this_load
);
3362 pwr_now
/= SCHED_LOAD_SCALE
;
3364 /* Amount of load we'd subtract */
3365 tmp
= sg_div_cpu_power(busiest
,
3366 busiest_load_per_task
* SCHED_LOAD_SCALE
);
3368 pwr_move
+= busiest
->__cpu_power
*
3369 min(busiest_load_per_task
, max_load
- tmp
);
3371 /* Amount of load we'd add */
3372 if (max_load
* busiest
->__cpu_power
<
3373 busiest_load_per_task
* SCHED_LOAD_SCALE
)
3374 tmp
= sg_div_cpu_power(this,
3375 max_load
* busiest
->__cpu_power
);
3377 tmp
= sg_div_cpu_power(this,
3378 busiest_load_per_task
* SCHED_LOAD_SCALE
);
3379 pwr_move
+= this->__cpu_power
*
3380 min(this_load_per_task
, this_load
+ tmp
);
3381 pwr_move
/= SCHED_LOAD_SCALE
;
3383 /* Move if we gain throughput */
3384 if (pwr_move
> pwr_now
)
3385 *imbalance
= busiest_load_per_task
;
3391 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3392 if (idle
== CPU_NOT_IDLE
|| !(sd
->flags
& SD_POWERSAVINGS_BALANCE
))
3395 if (this == group_leader
&& group_leader
!= group_min
) {
3396 *imbalance
= min_load_per_task
;
3406 * find_busiest_queue - find the busiest runqueue among the cpus in group.
3409 find_busiest_queue(struct sched_group
*group
, enum cpu_idle_type idle
,
3410 unsigned long imbalance
, const cpumask_t
*cpus
)
3412 struct rq
*busiest
= NULL
, *rq
;
3413 unsigned long max_load
= 0;
3416 for_each_cpu_mask_nr(i
, group
->cpumask
) {
3419 if (!cpu_isset(i
, *cpus
))
3423 wl
= weighted_cpuload(i
);
3425 if (rq
->nr_running
== 1 && wl
> imbalance
)
3428 if (wl
> max_load
) {
3438 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
3439 * so long as it is large enough.
3441 #define MAX_PINNED_INTERVAL 512
3444 * Check this_cpu to ensure it is balanced within domain. Attempt to move
3445 * tasks if there is an imbalance.
3447 static int load_balance(int this_cpu
, struct rq
*this_rq
,
3448 struct sched_domain
*sd
, enum cpu_idle_type idle
,
3449 int *balance
, cpumask_t
*cpus
)
3451 int ld_moved
, all_pinned
= 0, active_balance
= 0, sd_idle
= 0;
3452 struct sched_group
*group
;
3453 unsigned long imbalance
;
3455 unsigned long flags
;
3460 * When power savings policy is enabled for the parent domain, idle
3461 * sibling can pick up load irrespective of busy siblings. In this case,
3462 * let the state of idle sibling percolate up as CPU_IDLE, instead of
3463 * portraying it as CPU_NOT_IDLE.
3465 if (idle
!= CPU_NOT_IDLE
&& sd
->flags
& SD_SHARE_CPUPOWER
&&
3466 !test_sd_parent(sd
, SD_POWERSAVINGS_BALANCE
))
3469 schedstat_inc(sd
, lb_count
[idle
]);
3473 group
= find_busiest_group(sd
, this_cpu
, &imbalance
, idle
, &sd_idle
,
3480 schedstat_inc(sd
, lb_nobusyg
[idle
]);
3484 busiest
= find_busiest_queue(group
, idle
, imbalance
, cpus
);
3486 schedstat_inc(sd
, lb_nobusyq
[idle
]);
3490 BUG_ON(busiest
== this_rq
);
3492 schedstat_add(sd
, lb_imbalance
[idle
], imbalance
);
3495 if (busiest
->nr_running
> 1) {
3497 * Attempt to move tasks. If find_busiest_group has found
3498 * an imbalance but busiest->nr_running <= 1, the group is
3499 * still unbalanced. ld_moved simply stays zero, so it is
3500 * correctly treated as an imbalance.
3502 local_irq_save(flags
);
3503 double_rq_lock(this_rq
, busiest
);
3504 ld_moved
= move_tasks(this_rq
, this_cpu
, busiest
,
3505 imbalance
, sd
, idle
, &all_pinned
);
3506 double_rq_unlock(this_rq
, busiest
);
3507 local_irq_restore(flags
);
3510 * some other cpu did the load balance for us.
3512 if (ld_moved
&& this_cpu
!= smp_processor_id())
3513 resched_cpu(this_cpu
);
3515 /* All tasks on this runqueue were pinned by CPU affinity */
3516 if (unlikely(all_pinned
)) {
3517 cpu_clear(cpu_of(busiest
), *cpus
);
3518 if (!cpus_empty(*cpus
))
3525 schedstat_inc(sd
, lb_failed
[idle
]);
3526 sd
->nr_balance_failed
++;
3528 if (unlikely(sd
->nr_balance_failed
> sd
->cache_nice_tries
+2)) {
3530 spin_lock_irqsave(&busiest
->lock
, flags
);
3532 /* don't kick the migration_thread, if the curr
3533 * task on busiest cpu can't be moved to this_cpu
3535 if (!cpu_isset(this_cpu
, busiest
->curr
->cpus_allowed
)) {
3536 spin_unlock_irqrestore(&busiest
->lock
, flags
);
3538 goto out_one_pinned
;
3541 if (!busiest
->active_balance
) {
3542 busiest
->active_balance
= 1;
3543 busiest
->push_cpu
= this_cpu
;
3546 spin_unlock_irqrestore(&busiest
->lock
, flags
);
3548 wake_up_process(busiest
->migration_thread
);
3551 * We've kicked active balancing, reset the failure
3554 sd
->nr_balance_failed
= sd
->cache_nice_tries
+1;
3557 sd
->nr_balance_failed
= 0;
3559 if (likely(!active_balance
)) {
3560 /* We were unbalanced, so reset the balancing interval */
3561 sd
->balance_interval
= sd
->min_interval
;
3564 * If we've begun active balancing, start to back off. This
3565 * case may not be covered by the all_pinned logic if there
3566 * is only 1 task on the busy runqueue (because we don't call
3569 if (sd
->balance_interval
< sd
->max_interval
)
3570 sd
->balance_interval
*= 2;
3573 if (!ld_moved
&& !sd_idle
&& sd
->flags
& SD_SHARE_CPUPOWER
&&
3574 !test_sd_parent(sd
, SD_POWERSAVINGS_BALANCE
))
3580 schedstat_inc(sd
, lb_balanced
[idle
]);
3582 sd
->nr_balance_failed
= 0;
3585 /* tune up the balancing interval */
3586 if ((all_pinned
&& sd
->balance_interval
< MAX_PINNED_INTERVAL
) ||
3587 (sd
->balance_interval
< sd
->max_interval
))
3588 sd
->balance_interval
*= 2;
3590 if (!sd_idle
&& sd
->flags
& SD_SHARE_CPUPOWER
&&
3591 !test_sd_parent(sd
, SD_POWERSAVINGS_BALANCE
))
3602 * Check this_cpu to ensure it is balanced within domain. Attempt to move
3603 * tasks if there is an imbalance.
3605 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
3606 * this_rq is locked.
3609 load_balance_newidle(int this_cpu
, struct rq
*this_rq
, struct sched_domain
*sd
,
3612 struct sched_group
*group
;
3613 struct rq
*busiest
= NULL
;
3614 unsigned long imbalance
;
3622 * When power savings policy is enabled for the parent domain, idle
3623 * sibling can pick up load irrespective of busy siblings. In this case,
3624 * let the state of idle sibling percolate up as IDLE, instead of
3625 * portraying it as CPU_NOT_IDLE.
3627 if (sd
->flags
& SD_SHARE_CPUPOWER
&&
3628 !test_sd_parent(sd
, SD_POWERSAVINGS_BALANCE
))
3631 schedstat_inc(sd
, lb_count
[CPU_NEWLY_IDLE
]);
3633 update_shares_locked(this_rq
, sd
);
3634 group
= find_busiest_group(sd
, this_cpu
, &imbalance
, CPU_NEWLY_IDLE
,
3635 &sd_idle
, cpus
, NULL
);
3637 schedstat_inc(sd
, lb_nobusyg
[CPU_NEWLY_IDLE
]);
3641 busiest
= find_busiest_queue(group
, CPU_NEWLY_IDLE
, imbalance
, cpus
);
3643 schedstat_inc(sd
, lb_nobusyq
[CPU_NEWLY_IDLE
]);
3647 BUG_ON(busiest
== this_rq
);
3649 schedstat_add(sd
, lb_imbalance
[CPU_NEWLY_IDLE
], imbalance
);
3652 if (busiest
->nr_running
> 1) {
3653 /* Attempt to move tasks */
3654 double_lock_balance(this_rq
, busiest
);
3655 /* this_rq->clock is already updated */
3656 update_rq_clock(busiest
);
3657 ld_moved
= move_tasks(this_rq
, this_cpu
, busiest
,
3658 imbalance
, sd
, CPU_NEWLY_IDLE
,
3660 double_unlock_balance(this_rq
, busiest
);
3662 if (unlikely(all_pinned
)) {
3663 cpu_clear(cpu_of(busiest
), *cpus
);
3664 if (!cpus_empty(*cpus
))
3670 schedstat_inc(sd
, lb_failed
[CPU_NEWLY_IDLE
]);
3671 if (!sd_idle
&& sd
->flags
& SD_SHARE_CPUPOWER
&&
3672 !test_sd_parent(sd
, SD_POWERSAVINGS_BALANCE
))
3675 sd
->nr_balance_failed
= 0;
3677 update_shares_locked(this_rq
, sd
);
3681 schedstat_inc(sd
, lb_balanced
[CPU_NEWLY_IDLE
]);
3682 if (!sd_idle
&& sd
->flags
& SD_SHARE_CPUPOWER
&&
3683 !test_sd_parent(sd
, SD_POWERSAVINGS_BALANCE
))
3685 sd
->nr_balance_failed
= 0;
3691 * idle_balance is called by schedule() if this_cpu is about to become
3692 * idle. Attempts to pull tasks from other CPUs.
3694 static void idle_balance(int this_cpu
, struct rq
*this_rq
)
3696 struct sched_domain
*sd
;
3697 int pulled_task
= 0;
3698 unsigned long next_balance
= jiffies
+ HZ
;
3701 for_each_domain(this_cpu
, sd
) {
3702 unsigned long interval
;
3704 if (!(sd
->flags
& SD_LOAD_BALANCE
))
3707 if (sd
->flags
& SD_BALANCE_NEWIDLE
)
3708 /* If we've pulled tasks over stop searching: */
3709 pulled_task
= load_balance_newidle(this_cpu
, this_rq
,
3712 interval
= msecs_to_jiffies(sd
->balance_interval
);
3713 if (time_after(next_balance
, sd
->last_balance
+ interval
))
3714 next_balance
= sd
->last_balance
+ interval
;
3718 if (pulled_task
|| time_after(jiffies
, this_rq
->next_balance
)) {
3720 * We are going idle. next_balance may be set based on
3721 * a busy processor. So reset next_balance.
3723 this_rq
->next_balance
= next_balance
;
3728 * active_load_balance is run by migration threads. It pushes running tasks
3729 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
3730 * running on each physical CPU where possible, and avoids physical /
3731 * logical imbalances.
3733 * Called with busiest_rq locked.
3735 static void active_load_balance(struct rq
*busiest_rq
, int busiest_cpu
)
3737 int target_cpu
= busiest_rq
->push_cpu
;
3738 struct sched_domain
*sd
;
3739 struct rq
*target_rq
;
3741 /* Is there any task to move? */
3742 if (busiest_rq
->nr_running
<= 1)
3745 target_rq
= cpu_rq(target_cpu
);
3748 * This condition is "impossible", if it occurs
3749 * we need to fix it. Originally reported by
3750 * Bjorn Helgaas on a 128-cpu setup.
3752 BUG_ON(busiest_rq
== target_rq
);
3754 /* move a task from busiest_rq to target_rq */
3755 double_lock_balance(busiest_rq
, target_rq
);
3756 update_rq_clock(busiest_rq
);
3757 update_rq_clock(target_rq
);
3759 /* Search for an sd spanning us and the target CPU. */
3760 for_each_domain(target_cpu
, sd
) {
3761 if ((sd
->flags
& SD_LOAD_BALANCE
) &&
3762 cpu_isset(busiest_cpu
, sd
->span
))
3767 schedstat_inc(sd
, alb_count
);
3769 if (move_one_task(target_rq
, target_cpu
, busiest_rq
,
3771 schedstat_inc(sd
, alb_pushed
);
3773 schedstat_inc(sd
, alb_failed
);
3775 double_unlock_balance(busiest_rq
, target_rq
);
3780 atomic_t load_balancer
;
3782 } nohz ____cacheline_aligned
= {
3783 .load_balancer
= ATOMIC_INIT(-1),
3784 .cpu_mask
= CPU_MASK_NONE
,
3788 * This routine will try to nominate the ilb (idle load balancing)
3789 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
3790 * load balancing on behalf of all those cpus. If all the cpus in the system
3791 * go into this tickless mode, then there will be no ilb owner (as there is
3792 * no need for one) and all the cpus will sleep till the next wakeup event
3795 * For the ilb owner, tick is not stopped. And this tick will be used
3796 * for idle load balancing. ilb owner will still be part of
3799 * While stopping the tick, this cpu will become the ilb owner if there
3800 * is no other owner. And will be the owner till that cpu becomes busy
3801 * or if all cpus in the system stop their ticks at which point
3802 * there is no need for ilb owner.
3804 * When the ilb owner becomes busy, it nominates another owner, during the
3805 * next busy scheduler_tick()
3807 int select_nohz_load_balancer(int stop_tick
)
3809 int cpu
= smp_processor_id();
3812 cpu_set(cpu
, nohz
.cpu_mask
);
3813 cpu_rq(cpu
)->in_nohz_recently
= 1;
3816 * If we are going offline and still the leader, give up!
3818 if (!cpu_active(cpu
) &&
3819 atomic_read(&nohz
.load_balancer
) == cpu
) {
3820 if (atomic_cmpxchg(&nohz
.load_balancer
, cpu
, -1) != cpu
)
3825 /* time for ilb owner also to sleep */
3826 if (cpus_weight(nohz
.cpu_mask
) == num_online_cpus()) {
3827 if (atomic_read(&nohz
.load_balancer
) == cpu
)
3828 atomic_set(&nohz
.load_balancer
, -1);
3832 if (atomic_read(&nohz
.load_balancer
) == -1) {
3833 /* make me the ilb owner */
3834 if (atomic_cmpxchg(&nohz
.load_balancer
, -1, cpu
) == -1)
3836 } else if (atomic_read(&nohz
.load_balancer
) == cpu
)
3839 if (!cpu_isset(cpu
, nohz
.cpu_mask
))
3842 cpu_clear(cpu
, nohz
.cpu_mask
);
3844 if (atomic_read(&nohz
.load_balancer
) == cpu
)
3845 if (atomic_cmpxchg(&nohz
.load_balancer
, cpu
, -1) != cpu
)
3852 static DEFINE_SPINLOCK(balancing
);
3855 * It checks each scheduling domain to see if it is due to be balanced,
3856 * and initiates a balancing operation if so.
3858 * Balancing parameters are set up in arch_init_sched_domains.
3860 static void rebalance_domains(int cpu
, enum cpu_idle_type idle
)
3863 struct rq
*rq
= cpu_rq(cpu
);
3864 unsigned long interval
;
3865 struct sched_domain
*sd
;
3866 /* Earliest time when we have to do rebalance again */
3867 unsigned long next_balance
= jiffies
+ 60*HZ
;
3868 int update_next_balance
= 0;
3872 for_each_domain(cpu
, sd
) {
3873 if (!(sd
->flags
& SD_LOAD_BALANCE
))
3876 interval
= sd
->balance_interval
;
3877 if (idle
!= CPU_IDLE
)
3878 interval
*= sd
->busy_factor
;
3880 /* scale ms to jiffies */
3881 interval
= msecs_to_jiffies(interval
);
3882 if (unlikely(!interval
))
3884 if (interval
> HZ
*NR_CPUS
/10)
3885 interval
= HZ
*NR_CPUS
/10;
3887 need_serialize
= sd
->flags
& SD_SERIALIZE
;
3889 if (need_serialize
) {
3890 if (!spin_trylock(&balancing
))
3894 if (time_after_eq(jiffies
, sd
->last_balance
+ interval
)) {
3895 if (load_balance(cpu
, rq
, sd
, idle
, &balance
, &tmp
)) {
3897 * We've pulled tasks over so either we're no
3898 * longer idle, or one of our SMT siblings is
3901 idle
= CPU_NOT_IDLE
;
3903 sd
->last_balance
= jiffies
;
3906 spin_unlock(&balancing
);
3908 if (time_after(next_balance
, sd
->last_balance
+ interval
)) {
3909 next_balance
= sd
->last_balance
+ interval
;
3910 update_next_balance
= 1;
3914 * Stop the load balance at this level. There is another
3915 * CPU in our sched group which is doing load balancing more
3923 * next_balance will be updated only when there is a need.
3924 * When the cpu is attached to null domain for ex, it will not be
3927 if (likely(update_next_balance
))
3928 rq
->next_balance
= next_balance
;
3932 * run_rebalance_domains is triggered when needed from the scheduler tick.
3933 * In CONFIG_NO_HZ case, the idle load balance owner will do the
3934 * rebalancing for all the cpus for whom scheduler ticks are stopped.
3936 static void run_rebalance_domains(struct softirq_action
*h
)
3938 int this_cpu
= smp_processor_id();
3939 struct rq
*this_rq
= cpu_rq(this_cpu
);
3940 enum cpu_idle_type idle
= this_rq
->idle_at_tick
?
3941 CPU_IDLE
: CPU_NOT_IDLE
;
3943 rebalance_domains(this_cpu
, idle
);
3947 * If this cpu is the owner for idle load balancing, then do the
3948 * balancing on behalf of the other idle cpus whose ticks are
3951 if (this_rq
->idle_at_tick
&&
3952 atomic_read(&nohz
.load_balancer
) == this_cpu
) {
3953 cpumask_t cpus
= nohz
.cpu_mask
;
3957 cpu_clear(this_cpu
, cpus
);
3958 for_each_cpu_mask_nr(balance_cpu
, cpus
) {
3960 * If this cpu gets work to do, stop the load balancing
3961 * work being done for other cpus. Next load
3962 * balancing owner will pick it up.
3967 rebalance_domains(balance_cpu
, CPU_IDLE
);
3969 rq
= cpu_rq(balance_cpu
);
3970 if (time_after(this_rq
->next_balance
, rq
->next_balance
))
3971 this_rq
->next_balance
= rq
->next_balance
;
3978 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
3980 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
3981 * idle load balancing owner or decide to stop the periodic load balancing,
3982 * if the whole system is idle.
3984 static inline void trigger_load_balance(struct rq
*rq
, int cpu
)
3988 * If we were in the nohz mode recently and busy at the current
3989 * scheduler tick, then check if we need to nominate new idle
3992 if (rq
->in_nohz_recently
&& !rq
->idle_at_tick
) {
3993 rq
->in_nohz_recently
= 0;
3995 if (atomic_read(&nohz
.load_balancer
) == cpu
) {
3996 cpu_clear(cpu
, nohz
.cpu_mask
);
3997 atomic_set(&nohz
.load_balancer
, -1);
4000 if (atomic_read(&nohz
.load_balancer
) == -1) {
4002 * simple selection for now: Nominate the
4003 * first cpu in the nohz list to be the next
4006 * TBD: Traverse the sched domains and nominate
4007 * the nearest cpu in the nohz.cpu_mask.
4009 int ilb
= first_cpu(nohz
.cpu_mask
);
4011 if (ilb
< nr_cpu_ids
)
4017 * If this cpu is idle and doing idle load balancing for all the
4018 * cpus with ticks stopped, is it time for that to stop?
4020 if (rq
->idle_at_tick
&& atomic_read(&nohz
.load_balancer
) == cpu
&&
4021 cpus_weight(nohz
.cpu_mask
) == num_online_cpus()) {
4027 * If this cpu is idle and the idle load balancing is done by
4028 * someone else, then no need raise the SCHED_SOFTIRQ
4030 if (rq
->idle_at_tick
&& atomic_read(&nohz
.load_balancer
) != cpu
&&
4031 cpu_isset(cpu
, nohz
.cpu_mask
))
4034 if (time_after_eq(jiffies
, rq
->next_balance
))
4035 raise_softirq(SCHED_SOFTIRQ
);
4038 #else /* CONFIG_SMP */
4041 * on UP we do not need to balance between CPUs:
4043 static inline void idle_balance(int cpu
, struct rq
*rq
)
4049 DEFINE_PER_CPU(struct kernel_stat
, kstat
);
4051 EXPORT_PER_CPU_SYMBOL(kstat
);
4054 * Return any ns on the sched_clock that have not yet been banked in
4055 * @p in case that task is currently running.
4057 unsigned long long task_delta_exec(struct task_struct
*p
)
4059 unsigned long flags
;
4063 rq
= task_rq_lock(p
, &flags
);
4065 if (task_current(rq
, p
)) {
4068 update_rq_clock(rq
);
4069 delta_exec
= rq
->clock
- p
->se
.exec_start
;
4070 if ((s64
)delta_exec
> 0)
4074 task_rq_unlock(rq
, &flags
);
4080 * Account user cpu time to a process.
4081 * @p: the process that the cpu time gets accounted to
4082 * @cputime: the cpu time spent in user space since the last update
4084 void account_user_time(struct task_struct
*p
, cputime_t cputime
)
4086 struct cpu_usage_stat
*cpustat
= &kstat_this_cpu
.cpustat
;
4089 p
->utime
= cputime_add(p
->utime
, cputime
);
4090 account_group_user_time(p
, cputime
);
4092 /* Add user time to cpustat. */
4093 tmp
= cputime_to_cputime64(cputime
);
4094 if (TASK_NICE(p
) > 0)
4095 cpustat
->nice
= cputime64_add(cpustat
->nice
, tmp
);
4097 cpustat
->user
= cputime64_add(cpustat
->user
, tmp
);
4098 /* Account for user time used */
4099 acct_update_integrals(p
);
4103 * Account guest cpu time to a process.
4104 * @p: the process that the cpu time gets accounted to
4105 * @cputime: the cpu time spent in virtual machine since the last update
4107 static void account_guest_time(struct task_struct
*p
, cputime_t cputime
)
4110 struct cpu_usage_stat
*cpustat
= &kstat_this_cpu
.cpustat
;
4112 tmp
= cputime_to_cputime64(cputime
);
4114 p
->utime
= cputime_add(p
->utime
, cputime
);
4115 account_group_user_time(p
, cputime
);
4116 p
->gtime
= cputime_add(p
->gtime
, cputime
);
4118 cpustat
->user
= cputime64_add(cpustat
->user
, tmp
);
4119 cpustat
->guest
= cputime64_add(cpustat
->guest
, tmp
);
4123 * Account scaled user cpu time to a process.
4124 * @p: the process that the cpu time gets accounted to
4125 * @cputime: the cpu time spent in user space since the last update
4127 void account_user_time_scaled(struct task_struct
*p
, cputime_t cputime
)
4129 p
->utimescaled
= cputime_add(p
->utimescaled
, cputime
);
4133 * Account system cpu time to a process.
4134 * @p: the process that the cpu time gets accounted to
4135 * @hardirq_offset: the offset to subtract from hardirq_count()
4136 * @cputime: the cpu time spent in kernel space since the last update
4138 void account_system_time(struct task_struct
*p
, int hardirq_offset
,
4141 struct cpu_usage_stat
*cpustat
= &kstat_this_cpu
.cpustat
;
4142 struct rq
*rq
= this_rq();
4145 if ((p
->flags
& PF_VCPU
) && (irq_count() - hardirq_offset
== 0)) {
4146 account_guest_time(p
, cputime
);
4150 p
->stime
= cputime_add(p
->stime
, cputime
);
4151 account_group_system_time(p
, cputime
);
4153 /* Add system time to cpustat. */
4154 tmp
= cputime_to_cputime64(cputime
);
4155 if (hardirq_count() - hardirq_offset
)
4156 cpustat
->irq
= cputime64_add(cpustat
->irq
, tmp
);
4157 else if (softirq_count())
4158 cpustat
->softirq
= cputime64_add(cpustat
->softirq
, tmp
);
4159 else if (p
!= rq
->idle
)
4160 cpustat
->system
= cputime64_add(cpustat
->system
, tmp
);
4161 else if (atomic_read(&rq
->nr_iowait
) > 0)
4162 cpustat
->iowait
= cputime64_add(cpustat
->iowait
, tmp
);
4164 cpustat
->idle
= cputime64_add(cpustat
->idle
, tmp
);
4165 /* Account for system time used */
4166 acct_update_integrals(p
);
4170 * Account scaled system cpu time to a process.
4171 * @p: the process that the cpu time gets accounted to
4172 * @hardirq_offset: the offset to subtract from hardirq_count()
4173 * @cputime: the cpu time spent in kernel space since the last update
4175 void account_system_time_scaled(struct task_struct
*p
, cputime_t cputime
)
4177 p
->stimescaled
= cputime_add(p
->stimescaled
, cputime
);
4181 * Account for involuntary wait time.
4182 * @p: the process from which the cpu time has been stolen
4183 * @steal: the cpu time spent in involuntary wait
4185 void account_steal_time(struct task_struct
*p
, cputime_t steal
)
4187 struct cpu_usage_stat
*cpustat
= &kstat_this_cpu
.cpustat
;
4188 cputime64_t tmp
= cputime_to_cputime64(steal
);
4189 struct rq
*rq
= this_rq();
4191 if (p
== rq
->idle
) {
4192 p
->stime
= cputime_add(p
->stime
, steal
);
4193 if (atomic_read(&rq
->nr_iowait
) > 0)
4194 cpustat
->iowait
= cputime64_add(cpustat
->iowait
, tmp
);
4196 cpustat
->idle
= cputime64_add(cpustat
->idle
, tmp
);
4198 cpustat
->steal
= cputime64_add(cpustat
->steal
, tmp
);
4202 * Use precise platform statistics if available:
4204 #ifdef CONFIG_VIRT_CPU_ACCOUNTING
4205 cputime_t
task_utime(struct task_struct
*p
)
4210 cputime_t
task_stime(struct task_struct
*p
)
4215 cputime_t
task_utime(struct task_struct
*p
)
4217 clock_t utime
= cputime_to_clock_t(p
->utime
),
4218 total
= utime
+ cputime_to_clock_t(p
->stime
);
4222 * Use CFS's precise accounting:
4224 temp
= (u64
)nsec_to_clock_t(p
->se
.sum_exec_runtime
);
4228 do_div(temp
, total
);
4230 utime
= (clock_t)temp
;
4232 p
->prev_utime
= max(p
->prev_utime
, clock_t_to_cputime(utime
));
4233 return p
->prev_utime
;
4236 cputime_t
task_stime(struct task_struct
*p
)
4241 * Use CFS's precise accounting. (we subtract utime from
4242 * the total, to make sure the total observed by userspace
4243 * grows monotonically - apps rely on that):
4245 stime
= nsec_to_clock_t(p
->se
.sum_exec_runtime
) -
4246 cputime_to_clock_t(task_utime(p
));
4249 p
->prev_stime
= max(p
->prev_stime
, clock_t_to_cputime(stime
));
4251 return p
->prev_stime
;
4255 inline cputime_t
task_gtime(struct task_struct
*p
)
4261 * This function gets called by the timer code, with HZ frequency.
4262 * We call it with interrupts disabled.
4264 * It also gets called by the fork code, when changing the parent's
4267 void scheduler_tick(void)
4269 int cpu
= smp_processor_id();
4270 struct rq
*rq
= cpu_rq(cpu
);
4271 struct task_struct
*curr
= rq
->curr
;
4275 spin_lock(&rq
->lock
);
4276 update_rq_clock(rq
);
4277 update_cpu_load(rq
);
4278 curr
->sched_class
->task_tick(rq
, curr
, 0);
4279 spin_unlock(&rq
->lock
);
4282 rq
->idle_at_tick
= idle_cpu(cpu
);
4283 trigger_load_balance(rq
, cpu
);
4287 #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
4288 defined(CONFIG_PREEMPT_TRACER))
4290 static inline unsigned long get_parent_ip(unsigned long addr
)
4292 if (in_lock_functions(addr
)) {
4293 addr
= CALLER_ADDR2
;
4294 if (in_lock_functions(addr
))
4295 addr
= CALLER_ADDR3
;
4300 void __kprobes
add_preempt_count(int val
)
4302 #ifdef CONFIG_DEBUG_PREEMPT
4306 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
4309 preempt_count() += val
;
4310 #ifdef CONFIG_DEBUG_PREEMPT
4312 * Spinlock count overflowing soon?
4314 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK
) >=
4317 if (preempt_count() == val
)
4318 trace_preempt_off(CALLER_ADDR0
, get_parent_ip(CALLER_ADDR1
));
4320 EXPORT_SYMBOL(add_preempt_count
);
4322 void __kprobes
sub_preempt_count(int val
)
4324 #ifdef CONFIG_DEBUG_PREEMPT
4328 if (DEBUG_LOCKS_WARN_ON(val
> preempt_count() - (!!kernel_locked())))
4331 * Is the spinlock portion underflowing?
4333 if (DEBUG_LOCKS_WARN_ON((val
< PREEMPT_MASK
) &&
4334 !(preempt_count() & PREEMPT_MASK
)))
4338 if (preempt_count() == val
)
4339 trace_preempt_on(CALLER_ADDR0
, get_parent_ip(CALLER_ADDR1
));
4340 preempt_count() -= val
;
4342 EXPORT_SYMBOL(sub_preempt_count
);
4347 * Print scheduling while atomic bug:
4349 static noinline
void __schedule_bug(struct task_struct
*prev
)
4351 struct pt_regs
*regs
= get_irq_regs();
4353 printk(KERN_ERR
"BUG: scheduling while atomic: %s/%d/0x%08x\n",
4354 prev
->comm
, prev
->pid
, preempt_count());
4356 debug_show_held_locks(prev
);
4358 if (irqs_disabled())
4359 print_irqtrace_events(prev
);
4368 * Various schedule()-time debugging checks and statistics:
4370 static inline void schedule_debug(struct task_struct
*prev
)
4373 * Test if we are atomic. Since do_exit() needs to call into
4374 * schedule() atomically, we ignore that path for now.
4375 * Otherwise, whine if we are scheduling when we should not be.
4377 if (unlikely(in_atomic_preempt_off() && !prev
->exit_state
))
4378 __schedule_bug(prev
);
4380 profile_hit(SCHED_PROFILING
, __builtin_return_address(0));
4382 schedstat_inc(this_rq(), sched_count
);
4383 #ifdef CONFIG_SCHEDSTATS
4384 if (unlikely(prev
->lock_depth
>= 0)) {
4385 schedstat_inc(this_rq(), bkl_count
);
4386 schedstat_inc(prev
, sched_info
.bkl_count
);
4392 * Pick up the highest-prio task:
4394 static inline struct task_struct
*
4395 pick_next_task(struct rq
*rq
, struct task_struct
*prev
)
4397 const struct sched_class
*class;
4398 struct task_struct
*p
;
4401 * Optimization: we know that if all tasks are in
4402 * the fair class we can call that function directly:
4404 if (likely(rq
->nr_running
== rq
->cfs
.nr_running
)) {
4405 p
= fair_sched_class
.pick_next_task(rq
);
4410 class = sched_class_highest
;
4412 p
= class->pick_next_task(rq
);
4416 * Will never be NULL as the idle class always
4417 * returns a non-NULL p:
4419 class = class->next
;
4424 * schedule() is the main scheduler function.
4426 asmlinkage
void __sched
schedule(void)
4428 struct task_struct
*prev
, *next
;
4429 unsigned long *switch_count
;
4435 cpu
= smp_processor_id();
4439 switch_count
= &prev
->nivcsw
;
4441 release_kernel_lock(prev
);
4442 need_resched_nonpreemptible
:
4444 schedule_debug(prev
);
4446 if (sched_feat(HRTICK
))
4449 spin_lock_irq(&rq
->lock
);
4450 update_rq_clock(rq
);
4451 clear_tsk_need_resched(prev
);
4453 if (prev
->state
&& !(preempt_count() & PREEMPT_ACTIVE
)) {
4454 if (unlikely(signal_pending_state(prev
->state
, prev
)))
4455 prev
->state
= TASK_RUNNING
;
4457 deactivate_task(rq
, prev
, 1);
4458 switch_count
= &prev
->nvcsw
;
4462 if (prev
->sched_class
->pre_schedule
)
4463 prev
->sched_class
->pre_schedule(rq
, prev
);
4466 if (unlikely(!rq
->nr_running
))
4467 idle_balance(cpu
, rq
);
4469 prev
->sched_class
->put_prev_task(rq
, prev
);
4470 next
= pick_next_task(rq
, prev
);
4472 if (likely(prev
!= next
)) {
4473 sched_info_switch(prev
, next
);
4479 context_switch(rq
, prev
, next
); /* unlocks the rq */
4481 * the context switch might have flipped the stack from under
4482 * us, hence refresh the local variables.
4484 cpu
= smp_processor_id();
4487 spin_unlock_irq(&rq
->lock
);
4489 if (unlikely(reacquire_kernel_lock(current
) < 0))
4490 goto need_resched_nonpreemptible
;
4492 preempt_enable_no_resched();
4493 if (unlikely(test_thread_flag(TIF_NEED_RESCHED
)))
4496 EXPORT_SYMBOL(schedule
);
4498 #ifdef CONFIG_PREEMPT
4500 * this is the entry point to schedule() from in-kernel preemption
4501 * off of preempt_enable. Kernel preemptions off return from interrupt
4502 * occur there and call schedule directly.
4504 asmlinkage
void __sched
preempt_schedule(void)
4506 struct thread_info
*ti
= current_thread_info();
4509 * If there is a non-zero preempt_count or interrupts are disabled,
4510 * we do not want to preempt the current task. Just return..
4512 if (likely(ti
->preempt_count
|| irqs_disabled()))
4516 add_preempt_count(PREEMPT_ACTIVE
);
4518 sub_preempt_count(PREEMPT_ACTIVE
);
4521 * Check again in case we missed a preemption opportunity
4522 * between schedule and now.
4525 } while (unlikely(test_thread_flag(TIF_NEED_RESCHED
)));
4527 EXPORT_SYMBOL(preempt_schedule
);
4530 * this is the entry point to schedule() from kernel preemption
4531 * off of irq context.
4532 * Note, that this is called and return with irqs disabled. This will
4533 * protect us against recursive calling from irq.
4535 asmlinkage
void __sched
preempt_schedule_irq(void)
4537 struct thread_info
*ti
= current_thread_info();
4539 /* Catch callers which need to be fixed */
4540 BUG_ON(ti
->preempt_count
|| !irqs_disabled());
4543 add_preempt_count(PREEMPT_ACTIVE
);
4546 local_irq_disable();
4547 sub_preempt_count(PREEMPT_ACTIVE
);
4550 * Check again in case we missed a preemption opportunity
4551 * between schedule and now.
4554 } while (unlikely(test_thread_flag(TIF_NEED_RESCHED
)));
4557 #endif /* CONFIG_PREEMPT */
4559 int default_wake_function(wait_queue_t
*curr
, unsigned mode
, int sync
,
4562 return try_to_wake_up(curr
->private, mode
, sync
);
4564 EXPORT_SYMBOL(default_wake_function
);
4567 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
4568 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
4569 * number) then we wake all the non-exclusive tasks and one exclusive task.
4571 * There are circumstances in which we can try to wake a task which has already
4572 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
4573 * zero in this (rare) case, and we handle it by continuing to scan the queue.
4575 static void __wake_up_common(wait_queue_head_t
*q
, unsigned int mode
,
4576 int nr_exclusive
, int sync
, void *key
)
4578 wait_queue_t
*curr
, *next
;
4580 list_for_each_entry_safe(curr
, next
, &q
->task_list
, task_list
) {
4581 unsigned flags
= curr
->flags
;
4583 if (curr
->func(curr
, mode
, sync
, key
) &&
4584 (flags
& WQ_FLAG_EXCLUSIVE
) && !--nr_exclusive
)
4590 * __wake_up - wake up threads blocked on a waitqueue.
4592 * @mode: which threads
4593 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4594 * @key: is directly passed to the wakeup function
4596 void __wake_up(wait_queue_head_t
*q
, unsigned int mode
,
4597 int nr_exclusive
, void *key
)
4599 unsigned long flags
;
4601 spin_lock_irqsave(&q
->lock
, flags
);
4602 __wake_up_common(q
, mode
, nr_exclusive
, 0, key
);
4603 spin_unlock_irqrestore(&q
->lock
, flags
);
4605 EXPORT_SYMBOL(__wake_up
);
4608 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
4610 void __wake_up_locked(wait_queue_head_t
*q
, unsigned int mode
)
4612 __wake_up_common(q
, mode
, 1, 0, NULL
);
4616 * __wake_up_sync - wake up threads blocked on a waitqueue.
4618 * @mode: which threads
4619 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4621 * The sync wakeup differs that the waker knows that it will schedule
4622 * away soon, so while the target thread will be woken up, it will not
4623 * be migrated to another CPU - ie. the two threads are 'synchronized'
4624 * with each other. This can prevent needless bouncing between CPUs.
4626 * On UP it can prevent extra preemption.
4629 __wake_up_sync(wait_queue_head_t
*q
, unsigned int mode
, int nr_exclusive
)
4631 unsigned long flags
;
4637 if (unlikely(!nr_exclusive
))
4640 spin_lock_irqsave(&q
->lock
, flags
);
4641 __wake_up_common(q
, mode
, nr_exclusive
, sync
, NULL
);
4642 spin_unlock_irqrestore(&q
->lock
, flags
);
4644 EXPORT_SYMBOL_GPL(__wake_up_sync
); /* For internal use only */
4647 * complete: - signals a single thread waiting on this completion
4648 * @x: holds the state of this particular completion
4650 * This will wake up a single thread waiting on this completion. Threads will be
4651 * awakened in the same order in which they were queued.
4653 * See also complete_all(), wait_for_completion() and related routines.
4655 void complete(struct completion
*x
)
4657 unsigned long flags
;
4659 spin_lock_irqsave(&x
->wait
.lock
, flags
);
4661 __wake_up_common(&x
->wait
, TASK_NORMAL
, 1, 0, NULL
);
4662 spin_unlock_irqrestore(&x
->wait
.lock
, flags
);
4664 EXPORT_SYMBOL(complete
);
4667 * complete_all: - signals all threads waiting on this completion
4668 * @x: holds the state of this particular completion
4670 * This will wake up all threads waiting on this particular completion event.
4672 void complete_all(struct completion
*x
)
4674 unsigned long flags
;
4676 spin_lock_irqsave(&x
->wait
.lock
, flags
);
4677 x
->done
+= UINT_MAX
/2;
4678 __wake_up_common(&x
->wait
, TASK_NORMAL
, 0, 0, NULL
);
4679 spin_unlock_irqrestore(&x
->wait
.lock
, flags
);
4681 EXPORT_SYMBOL(complete_all
);
4683 static inline long __sched
4684 do_wait_for_common(struct completion
*x
, long timeout
, int state
)
4687 DECLARE_WAITQUEUE(wait
, current
);
4689 wait
.flags
|= WQ_FLAG_EXCLUSIVE
;
4690 __add_wait_queue_tail(&x
->wait
, &wait
);
4692 if (signal_pending_state(state
, current
)) {
4693 timeout
= -ERESTARTSYS
;
4696 __set_current_state(state
);
4697 spin_unlock_irq(&x
->wait
.lock
);
4698 timeout
= schedule_timeout(timeout
);
4699 spin_lock_irq(&x
->wait
.lock
);
4700 } while (!x
->done
&& timeout
);
4701 __remove_wait_queue(&x
->wait
, &wait
);
4706 return timeout
?: 1;
4710 wait_for_common(struct completion
*x
, long timeout
, int state
)
4714 spin_lock_irq(&x
->wait
.lock
);
4715 timeout
= do_wait_for_common(x
, timeout
, state
);
4716 spin_unlock_irq(&x
->wait
.lock
);
4721 * wait_for_completion: - waits for completion of a task
4722 * @x: holds the state of this particular completion
4724 * This waits to be signaled for completion of a specific task. It is NOT
4725 * interruptible and there is no timeout.
4727 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
4728 * and interrupt capability. Also see complete().
4730 void __sched
wait_for_completion(struct completion
*x
)
4732 wait_for_common(x
, MAX_SCHEDULE_TIMEOUT
, TASK_UNINTERRUPTIBLE
);
4734 EXPORT_SYMBOL(wait_for_completion
);
4737 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
4738 * @x: holds the state of this particular completion
4739 * @timeout: timeout value in jiffies
4741 * This waits for either a completion of a specific task to be signaled or for a
4742 * specified timeout to expire. The timeout is in jiffies. It is not
4745 unsigned long __sched
4746 wait_for_completion_timeout(struct completion
*x
, unsigned long timeout
)
4748 return wait_for_common(x
, timeout
, TASK_UNINTERRUPTIBLE
);
4750 EXPORT_SYMBOL(wait_for_completion_timeout
);
4753 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
4754 * @x: holds the state of this particular completion
4756 * This waits for completion of a specific task to be signaled. It is
4759 int __sched
wait_for_completion_interruptible(struct completion
*x
)
4761 long t
= wait_for_common(x
, MAX_SCHEDULE_TIMEOUT
, TASK_INTERRUPTIBLE
);
4762 if (t
== -ERESTARTSYS
)
4766 EXPORT_SYMBOL(wait_for_completion_interruptible
);
4769 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
4770 * @x: holds the state of this particular completion
4771 * @timeout: timeout value in jiffies
4773 * This waits for either a completion of a specific task to be signaled or for a
4774 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
4776 unsigned long __sched
4777 wait_for_completion_interruptible_timeout(struct completion
*x
,
4778 unsigned long timeout
)
4780 return wait_for_common(x
, timeout
, TASK_INTERRUPTIBLE
);
4782 EXPORT_SYMBOL(wait_for_completion_interruptible_timeout
);
4785 * wait_for_completion_killable: - waits for completion of a task (killable)
4786 * @x: holds the state of this particular completion
4788 * This waits to be signaled for completion of a specific task. It can be
4789 * interrupted by a kill signal.
4791 int __sched
wait_for_completion_killable(struct completion
*x
)
4793 long t
= wait_for_common(x
, MAX_SCHEDULE_TIMEOUT
, TASK_KILLABLE
);
4794 if (t
== -ERESTARTSYS
)
4798 EXPORT_SYMBOL(wait_for_completion_killable
);
4801 * try_wait_for_completion - try to decrement a completion without blocking
4802 * @x: completion structure
4804 * Returns: 0 if a decrement cannot be done without blocking
4805 * 1 if a decrement succeeded.
4807 * If a completion is being used as a counting completion,
4808 * attempt to decrement the counter without blocking. This
4809 * enables us to avoid waiting if the resource the completion
4810 * is protecting is not available.
4812 bool try_wait_for_completion(struct completion
*x
)
4816 spin_lock_irq(&x
->wait
.lock
);
4821 spin_unlock_irq(&x
->wait
.lock
);
4824 EXPORT_SYMBOL(try_wait_for_completion
);
4827 * completion_done - Test to see if a completion has any waiters
4828 * @x: completion structure
4830 * Returns: 0 if there are waiters (wait_for_completion() in progress)
4831 * 1 if there are no waiters.
4834 bool completion_done(struct completion
*x
)
4838 spin_lock_irq(&x
->wait
.lock
);
4841 spin_unlock_irq(&x
->wait
.lock
);
4844 EXPORT_SYMBOL(completion_done
);
4847 sleep_on_common(wait_queue_head_t
*q
, int state
, long timeout
)
4849 unsigned long flags
;
4852 init_waitqueue_entry(&wait
, current
);
4854 __set_current_state(state
);
4856 spin_lock_irqsave(&q
->lock
, flags
);
4857 __add_wait_queue(q
, &wait
);
4858 spin_unlock(&q
->lock
);
4859 timeout
= schedule_timeout(timeout
);
4860 spin_lock_irq(&q
->lock
);
4861 __remove_wait_queue(q
, &wait
);
4862 spin_unlock_irqrestore(&q
->lock
, flags
);
4867 void __sched
interruptible_sleep_on(wait_queue_head_t
*q
)
4869 sleep_on_common(q
, TASK_INTERRUPTIBLE
, MAX_SCHEDULE_TIMEOUT
);
4871 EXPORT_SYMBOL(interruptible_sleep_on
);
4874 interruptible_sleep_on_timeout(wait_queue_head_t
*q
, long timeout
)
4876 return sleep_on_common(q
, TASK_INTERRUPTIBLE
, timeout
);
4878 EXPORT_SYMBOL(interruptible_sleep_on_timeout
);
4880 void __sched
sleep_on(wait_queue_head_t
*q
)
4882 sleep_on_common(q
, TASK_UNINTERRUPTIBLE
, MAX_SCHEDULE_TIMEOUT
);
4884 EXPORT_SYMBOL(sleep_on
);
4886 long __sched
sleep_on_timeout(wait_queue_head_t
*q
, long timeout
)
4888 return sleep_on_common(q
, TASK_UNINTERRUPTIBLE
, timeout
);
4890 EXPORT_SYMBOL(sleep_on_timeout
);
4892 #ifdef CONFIG_RT_MUTEXES
4895 * rt_mutex_setprio - set the current priority of a task
4897 * @prio: prio value (kernel-internal form)
4899 * This function changes the 'effective' priority of a task. It does
4900 * not touch ->normal_prio like __setscheduler().
4902 * Used by the rt_mutex code to implement priority inheritance logic.
4904 void rt_mutex_setprio(struct task_struct
*p
, int prio
)
4906 unsigned long flags
;
4907 int oldprio
, on_rq
, running
;
4909 const struct sched_class
*prev_class
= p
->sched_class
;
4911 BUG_ON(prio
< 0 || prio
> MAX_PRIO
);
4913 rq
= task_rq_lock(p
, &flags
);
4914 update_rq_clock(rq
);
4917 on_rq
= p
->se
.on_rq
;
4918 running
= task_current(rq
, p
);
4920 dequeue_task(rq
, p
, 0);
4922 p
->sched_class
->put_prev_task(rq
, p
);
4925 p
->sched_class
= &rt_sched_class
;
4927 p
->sched_class
= &fair_sched_class
;
4932 p
->sched_class
->set_curr_task(rq
);
4934 enqueue_task(rq
, p
, 0);
4936 check_class_changed(rq
, p
, prev_class
, oldprio
, running
);
4938 task_rq_unlock(rq
, &flags
);
4943 void set_user_nice(struct task_struct
*p
, long nice
)
4945 int old_prio
, delta
, on_rq
;
4946 unsigned long flags
;
4949 if (TASK_NICE(p
) == nice
|| nice
< -20 || nice
> 19)
4952 * We have to be careful, if called from sys_setpriority(),
4953 * the task might be in the middle of scheduling on another CPU.
4955 rq
= task_rq_lock(p
, &flags
);
4956 update_rq_clock(rq
);
4958 * The RT priorities are set via sched_setscheduler(), but we still
4959 * allow the 'normal' nice value to be set - but as expected
4960 * it wont have any effect on scheduling until the task is
4961 * SCHED_FIFO/SCHED_RR:
4963 if (task_has_rt_policy(p
)) {
4964 p
->static_prio
= NICE_TO_PRIO(nice
);
4967 on_rq
= p
->se
.on_rq
;
4969 dequeue_task(rq
, p
, 0);
4971 p
->static_prio
= NICE_TO_PRIO(nice
);
4974 p
->prio
= effective_prio(p
);
4975 delta
= p
->prio
- old_prio
;
4978 enqueue_task(rq
, p
, 0);
4980 * If the task increased its priority or is running and
4981 * lowered its priority, then reschedule its CPU:
4983 if (delta
< 0 || (delta
> 0 && task_running(rq
, p
)))
4984 resched_task(rq
->curr
);
4987 task_rq_unlock(rq
, &flags
);
4989 EXPORT_SYMBOL(set_user_nice
);
4992 * can_nice - check if a task can reduce its nice value
4996 int can_nice(const struct task_struct
*p
, const int nice
)
4998 /* convert nice value [19,-20] to rlimit style value [1,40] */
4999 int nice_rlim
= 20 - nice
;
5001 return (nice_rlim
<= p
->signal
->rlim
[RLIMIT_NICE
].rlim_cur
||
5002 capable(CAP_SYS_NICE
));
5005 #ifdef __ARCH_WANT_SYS_NICE
5008 * sys_nice - change the priority of the current process.
5009 * @increment: priority increment
5011 * sys_setpriority is a more generic, but much slower function that
5012 * does similar things.
5014 asmlinkage
long sys_nice(int increment
)
5019 * Setpriority might change our priority at the same moment.
5020 * We don't have to worry. Conceptually one call occurs first
5021 * and we have a single winner.
5023 if (increment
< -40)
5028 nice
= PRIO_TO_NICE(current
->static_prio
) + increment
;
5034 if (increment
< 0 && !can_nice(current
, nice
))
5037 retval
= security_task_setnice(current
, nice
);
5041 set_user_nice(current
, nice
);
5048 * task_prio - return the priority value of a given task.
5049 * @p: the task in question.
5051 * This is the priority value as seen by users in /proc.
5052 * RT tasks are offset by -200. Normal tasks are centered
5053 * around 0, value goes from -16 to +15.
5055 int task_prio(const struct task_struct
*p
)
5057 return p
->prio
- MAX_RT_PRIO
;
5061 * task_nice - return the nice value of a given task.
5062 * @p: the task in question.
5064 int task_nice(const struct task_struct
*p
)
5066 return TASK_NICE(p
);
5068 EXPORT_SYMBOL(task_nice
);
5071 * idle_cpu - is a given cpu idle currently?
5072 * @cpu: the processor in question.
5074 int idle_cpu(int cpu
)
5076 return cpu_curr(cpu
) == cpu_rq(cpu
)->idle
;
5080 * idle_task - return the idle task for a given cpu.
5081 * @cpu: the processor in question.
5083 struct task_struct
*idle_task(int cpu
)
5085 return cpu_rq(cpu
)->idle
;
5089 * find_process_by_pid - find a process with a matching PID value.
5090 * @pid: the pid in question.
5092 static struct task_struct
*find_process_by_pid(pid_t pid
)
5094 return pid
? find_task_by_vpid(pid
) : current
;
5097 /* Actually do priority change: must hold rq lock. */
5099 __setscheduler(struct rq
*rq
, struct task_struct
*p
, int policy
, int prio
)
5101 BUG_ON(p
->se
.on_rq
);
5104 switch (p
->policy
) {
5108 p
->sched_class
= &fair_sched_class
;
5112 p
->sched_class
= &rt_sched_class
;
5116 p
->rt_priority
= prio
;
5117 p
->normal_prio
= normal_prio(p
);
5118 /* we are holding p->pi_lock already */
5119 p
->prio
= rt_mutex_getprio(p
);
5124 * check the target process has a UID that matches the current process's
5126 static bool check_same_owner(struct task_struct
*p
)
5128 const struct cred
*cred
= current_cred(), *pcred
;
5132 pcred
= __task_cred(p
);
5133 match
= (cred
->euid
== pcred
->euid
||
5134 cred
->euid
== pcred
->uid
);
5139 static int __sched_setscheduler(struct task_struct
*p
, int policy
,
5140 struct sched_param
*param
, bool user
)
5142 int retval
, oldprio
, oldpolicy
= -1, on_rq
, running
;
5143 unsigned long flags
;
5144 const struct sched_class
*prev_class
= p
->sched_class
;
5147 /* may grab non-irq protected spin_locks */
5148 BUG_ON(in_interrupt());
5150 /* double check policy once rq lock held */
5152 policy
= oldpolicy
= p
->policy
;
5153 else if (policy
!= SCHED_FIFO
&& policy
!= SCHED_RR
&&
5154 policy
!= SCHED_NORMAL
&& policy
!= SCHED_BATCH
&&
5155 policy
!= SCHED_IDLE
)
5158 * Valid priorities for SCHED_FIFO and SCHED_RR are
5159 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
5160 * SCHED_BATCH and SCHED_IDLE is 0.
5162 if (param
->sched_priority
< 0 ||
5163 (p
->mm
&& param
->sched_priority
> MAX_USER_RT_PRIO
-1) ||
5164 (!p
->mm
&& param
->sched_priority
> MAX_RT_PRIO
-1))
5166 if (rt_policy(policy
) != (param
->sched_priority
!= 0))
5170 * Allow unprivileged RT tasks to decrease priority:
5172 if (user
&& !capable(CAP_SYS_NICE
)) {
5173 if (rt_policy(policy
)) {
5174 unsigned long rlim_rtprio
;
5176 if (!lock_task_sighand(p
, &flags
))
5178 rlim_rtprio
= p
->signal
->rlim
[RLIMIT_RTPRIO
].rlim_cur
;
5179 unlock_task_sighand(p
, &flags
);
5181 /* can't set/change the rt policy */
5182 if (policy
!= p
->policy
&& !rlim_rtprio
)
5185 /* can't increase priority */
5186 if (param
->sched_priority
> p
->rt_priority
&&
5187 param
->sched_priority
> rlim_rtprio
)
5191 * Like positive nice levels, dont allow tasks to
5192 * move out of SCHED_IDLE either:
5194 if (p
->policy
== SCHED_IDLE
&& policy
!= SCHED_IDLE
)
5197 /* can't change other user's priorities */
5198 if (!check_same_owner(p
))
5203 #ifdef CONFIG_RT_GROUP_SCHED
5205 * Do not allow realtime tasks into groups that have no runtime
5208 if (rt_bandwidth_enabled() && rt_policy(policy
) &&
5209 task_group(p
)->rt_bandwidth
.rt_runtime
== 0)
5213 retval
= security_task_setscheduler(p
, policy
, param
);
5219 * make sure no PI-waiters arrive (or leave) while we are
5220 * changing the priority of the task:
5222 spin_lock_irqsave(&p
->pi_lock
, flags
);
5224 * To be able to change p->policy safely, the apropriate
5225 * runqueue lock must be held.
5227 rq
= __task_rq_lock(p
);
5228 /* recheck policy now with rq lock held */
5229 if (unlikely(oldpolicy
!= -1 && oldpolicy
!= p
->policy
)) {
5230 policy
= oldpolicy
= -1;
5231 __task_rq_unlock(rq
);
5232 spin_unlock_irqrestore(&p
->pi_lock
, flags
);
5235 update_rq_clock(rq
);
5236 on_rq
= p
->se
.on_rq
;
5237 running
= task_current(rq
, p
);
5239 deactivate_task(rq
, p
, 0);
5241 p
->sched_class
->put_prev_task(rq
, p
);
5244 __setscheduler(rq
, p
, policy
, param
->sched_priority
);
5247 p
->sched_class
->set_curr_task(rq
);
5249 activate_task(rq
, p
, 0);
5251 check_class_changed(rq
, p
, prev_class
, oldprio
, running
);
5253 __task_rq_unlock(rq
);
5254 spin_unlock_irqrestore(&p
->pi_lock
, flags
);
5256 rt_mutex_adjust_pi(p
);
5262 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
5263 * @p: the task in question.
5264 * @policy: new policy.
5265 * @param: structure containing the new RT priority.
5267 * NOTE that the task may be already dead.
5269 int sched_setscheduler(struct task_struct
*p
, int policy
,
5270 struct sched_param
*param
)
5272 return __sched_setscheduler(p
, policy
, param
, true);
5274 EXPORT_SYMBOL_GPL(sched_setscheduler
);
5277 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
5278 * @p: the task in question.
5279 * @policy: new policy.
5280 * @param: structure containing the new RT priority.
5282 * Just like sched_setscheduler, only don't bother checking if the
5283 * current context has permission. For example, this is needed in
5284 * stop_machine(): we create temporary high priority worker threads,
5285 * but our caller might not have that capability.
5287 int sched_setscheduler_nocheck(struct task_struct
*p
, int policy
,
5288 struct sched_param
*param
)
5290 return __sched_setscheduler(p
, policy
, param
, false);
5294 do_sched_setscheduler(pid_t pid
, int policy
, struct sched_param __user
*param
)
5296 struct sched_param lparam
;
5297 struct task_struct
*p
;
5300 if (!param
|| pid
< 0)
5302 if (copy_from_user(&lparam
, param
, sizeof(struct sched_param
)))
5307 p
= find_process_by_pid(pid
);
5309 retval
= sched_setscheduler(p
, policy
, &lparam
);
5316 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
5317 * @pid: the pid in question.
5318 * @policy: new policy.
5319 * @param: structure containing the new RT priority.
5322 sys_sched_setscheduler(pid_t pid
, int policy
, struct sched_param __user
*param
)
5324 /* negative values for policy are not valid */
5328 return do_sched_setscheduler(pid
, policy
, param
);
5332 * sys_sched_setparam - set/change the RT priority of a thread
5333 * @pid: the pid in question.
5334 * @param: structure containing the new RT priority.
5336 asmlinkage
long sys_sched_setparam(pid_t pid
, struct sched_param __user
*param
)
5338 return do_sched_setscheduler(pid
, -1, param
);
5342 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
5343 * @pid: the pid in question.
5345 asmlinkage
long sys_sched_getscheduler(pid_t pid
)
5347 struct task_struct
*p
;
5354 read_lock(&tasklist_lock
);
5355 p
= find_process_by_pid(pid
);
5357 retval
= security_task_getscheduler(p
);
5361 read_unlock(&tasklist_lock
);
5366 * sys_sched_getscheduler - get the RT priority of a thread
5367 * @pid: the pid in question.
5368 * @param: structure containing the RT priority.
5370 asmlinkage
long sys_sched_getparam(pid_t pid
, struct sched_param __user
*param
)
5372 struct sched_param lp
;
5373 struct task_struct
*p
;
5376 if (!param
|| pid
< 0)
5379 read_lock(&tasklist_lock
);
5380 p
= find_process_by_pid(pid
);
5385 retval
= security_task_getscheduler(p
);
5389 lp
.sched_priority
= p
->rt_priority
;
5390 read_unlock(&tasklist_lock
);
5393 * This one might sleep, we cannot do it with a spinlock held ...
5395 retval
= copy_to_user(param
, &lp
, sizeof(*param
)) ? -EFAULT
: 0;
5400 read_unlock(&tasklist_lock
);
5404 long sched_setaffinity(pid_t pid
, const cpumask_t
*in_mask
)
5406 cpumask_t cpus_allowed
;
5407 cpumask_t new_mask
= *in_mask
;
5408 struct task_struct
*p
;
5412 read_lock(&tasklist_lock
);
5414 p
= find_process_by_pid(pid
);
5416 read_unlock(&tasklist_lock
);
5422 * It is not safe to call set_cpus_allowed with the
5423 * tasklist_lock held. We will bump the task_struct's
5424 * usage count and then drop tasklist_lock.
5427 read_unlock(&tasklist_lock
);
5430 if (!check_same_owner(p
) && !capable(CAP_SYS_NICE
))
5433 retval
= security_task_setscheduler(p
, 0, NULL
);
5437 cpuset_cpus_allowed(p
, &cpus_allowed
);
5438 cpus_and(new_mask
, new_mask
, cpus_allowed
);
5440 retval
= set_cpus_allowed_ptr(p
, &new_mask
);
5443 cpuset_cpus_allowed(p
, &cpus_allowed
);
5444 if (!cpus_subset(new_mask
, cpus_allowed
)) {
5446 * We must have raced with a concurrent cpuset
5447 * update. Just reset the cpus_allowed to the
5448 * cpuset's cpus_allowed
5450 new_mask
= cpus_allowed
;
5460 static int get_user_cpu_mask(unsigned long __user
*user_mask_ptr
, unsigned len
,
5461 cpumask_t
*new_mask
)
5463 if (len
< sizeof(cpumask_t
)) {
5464 memset(new_mask
, 0, sizeof(cpumask_t
));
5465 } else if (len
> sizeof(cpumask_t
)) {
5466 len
= sizeof(cpumask_t
);
5468 return copy_from_user(new_mask
, user_mask_ptr
, len
) ? -EFAULT
: 0;
5472 * sys_sched_setaffinity - set the cpu affinity of a process
5473 * @pid: pid of the process
5474 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
5475 * @user_mask_ptr: user-space pointer to the new cpu mask
5477 asmlinkage
long sys_sched_setaffinity(pid_t pid
, unsigned int len
,
5478 unsigned long __user
*user_mask_ptr
)
5483 retval
= get_user_cpu_mask(user_mask_ptr
, len
, &new_mask
);
5487 return sched_setaffinity(pid
, &new_mask
);
5490 long sched_getaffinity(pid_t pid
, cpumask_t
*mask
)
5492 struct task_struct
*p
;
5496 read_lock(&tasklist_lock
);
5499 p
= find_process_by_pid(pid
);
5503 retval
= security_task_getscheduler(p
);
5507 cpus_and(*mask
, p
->cpus_allowed
, cpu_online_map
);
5510 read_unlock(&tasklist_lock
);
5517 * sys_sched_getaffinity - get the cpu affinity of a process
5518 * @pid: pid of the process
5519 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
5520 * @user_mask_ptr: user-space pointer to hold the current cpu mask
5522 asmlinkage
long sys_sched_getaffinity(pid_t pid
, unsigned int len
,
5523 unsigned long __user
*user_mask_ptr
)
5528 if (len
< sizeof(cpumask_t
))
5531 ret
= sched_getaffinity(pid
, &mask
);
5535 if (copy_to_user(user_mask_ptr
, &mask
, sizeof(cpumask_t
)))
5538 return sizeof(cpumask_t
);
5542 * sys_sched_yield - yield the current processor to other threads.
5544 * This function yields the current CPU to other tasks. If there are no
5545 * other threads running on this CPU then this function will return.
5547 asmlinkage
long sys_sched_yield(void)
5549 struct rq
*rq
= this_rq_lock();
5551 schedstat_inc(rq
, yld_count
);
5552 current
->sched_class
->yield_task(rq
);
5555 * Since we are going to call schedule() anyway, there's
5556 * no need to preempt or enable interrupts:
5558 __release(rq
->lock
);
5559 spin_release(&rq
->lock
.dep_map
, 1, _THIS_IP_
);
5560 _raw_spin_unlock(&rq
->lock
);
5561 preempt_enable_no_resched();
5568 static void __cond_resched(void)
5570 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
5571 __might_sleep(__FILE__
, __LINE__
);
5574 * The BKS might be reacquired before we have dropped
5575 * PREEMPT_ACTIVE, which could trigger a second
5576 * cond_resched() call.
5579 add_preempt_count(PREEMPT_ACTIVE
);
5581 sub_preempt_count(PREEMPT_ACTIVE
);
5582 } while (need_resched());
5585 int __sched
_cond_resched(void)
5587 if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE
) &&
5588 system_state
== SYSTEM_RUNNING
) {
5594 EXPORT_SYMBOL(_cond_resched
);
5597 * cond_resched_lock() - if a reschedule is pending, drop the given lock,
5598 * call schedule, and on return reacquire the lock.
5600 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
5601 * operations here to prevent schedule() from being called twice (once via
5602 * spin_unlock(), once by hand).
5604 int cond_resched_lock(spinlock_t
*lock
)
5606 int resched
= need_resched() && system_state
== SYSTEM_RUNNING
;
5609 if (spin_needbreak(lock
) || resched
) {
5611 if (resched
&& need_resched())
5620 EXPORT_SYMBOL(cond_resched_lock
);
5622 int __sched
cond_resched_softirq(void)
5624 BUG_ON(!in_softirq());
5626 if (need_resched() && system_state
== SYSTEM_RUNNING
) {
5634 EXPORT_SYMBOL(cond_resched_softirq
);
5637 * yield - yield the current processor to other threads.
5639 * This is a shortcut for kernel-space yielding - it marks the
5640 * thread runnable and calls sys_sched_yield().
5642 void __sched
yield(void)
5644 set_current_state(TASK_RUNNING
);
5647 EXPORT_SYMBOL(yield
);
5650 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
5651 * that process accounting knows that this is a task in IO wait state.
5653 * But don't do that if it is a deliberate, throttling IO wait (this task
5654 * has set its backing_dev_info: the queue against which it should throttle)
5656 void __sched
io_schedule(void)
5658 struct rq
*rq
= &__raw_get_cpu_var(runqueues
);
5660 delayacct_blkio_start();
5661 atomic_inc(&rq
->nr_iowait
);
5663 atomic_dec(&rq
->nr_iowait
);
5664 delayacct_blkio_end();
5666 EXPORT_SYMBOL(io_schedule
);
5668 long __sched
io_schedule_timeout(long timeout
)
5670 struct rq
*rq
= &__raw_get_cpu_var(runqueues
);
5673 delayacct_blkio_start();
5674 atomic_inc(&rq
->nr_iowait
);
5675 ret
= schedule_timeout(timeout
);
5676 atomic_dec(&rq
->nr_iowait
);
5677 delayacct_blkio_end();
5682 * sys_sched_get_priority_max - return maximum RT priority.
5683 * @policy: scheduling class.
5685 * this syscall returns the maximum rt_priority that can be used
5686 * by a given scheduling class.
5688 asmlinkage
long sys_sched_get_priority_max(int policy
)
5695 ret
= MAX_USER_RT_PRIO
-1;
5707 * sys_sched_get_priority_min - return minimum RT priority.
5708 * @policy: scheduling class.
5710 * this syscall returns the minimum rt_priority that can be used
5711 * by a given scheduling class.
5713 asmlinkage
long sys_sched_get_priority_min(int policy
)
5731 * sys_sched_rr_get_interval - return the default timeslice of a process.
5732 * @pid: pid of the process.
5733 * @interval: userspace pointer to the timeslice value.
5735 * this syscall writes the default timeslice value of a given process
5736 * into the user-space timespec buffer. A value of '0' means infinity.
5739 long sys_sched_rr_get_interval(pid_t pid
, struct timespec __user
*interval
)
5741 struct task_struct
*p
;
5742 unsigned int time_slice
;
5750 read_lock(&tasklist_lock
);
5751 p
= find_process_by_pid(pid
);
5755 retval
= security_task_getscheduler(p
);
5760 * Time slice is 0 for SCHED_FIFO tasks and for SCHED_OTHER
5761 * tasks that are on an otherwise idle runqueue:
5764 if (p
->policy
== SCHED_RR
) {
5765 time_slice
= DEF_TIMESLICE
;
5766 } else if (p
->policy
!= SCHED_FIFO
) {
5767 struct sched_entity
*se
= &p
->se
;
5768 unsigned long flags
;
5771 rq
= task_rq_lock(p
, &flags
);
5772 if (rq
->cfs
.load
.weight
)
5773 time_slice
= NS_TO_JIFFIES(sched_slice(&rq
->cfs
, se
));
5774 task_rq_unlock(rq
, &flags
);
5776 read_unlock(&tasklist_lock
);
5777 jiffies_to_timespec(time_slice
, &t
);
5778 retval
= copy_to_user(interval
, &t
, sizeof(t
)) ? -EFAULT
: 0;
5782 read_unlock(&tasklist_lock
);
5786 static const char stat_nam
[] = TASK_STATE_TO_CHAR_STR
;
5788 void sched_show_task(struct task_struct
*p
)
5790 unsigned long free
= 0;
5793 state
= p
->state
? __ffs(p
->state
) + 1 : 0;
5794 printk(KERN_INFO
"%-13.13s %c", p
->comm
,
5795 state
< sizeof(stat_nam
) - 1 ? stat_nam
[state
] : '?');
5796 #if BITS_PER_LONG == 32
5797 if (state
== TASK_RUNNING
)
5798 printk(KERN_CONT
" running ");
5800 printk(KERN_CONT
" %08lx ", thread_saved_pc(p
));
5802 if (state
== TASK_RUNNING
)
5803 printk(KERN_CONT
" running task ");
5805 printk(KERN_CONT
" %016lx ", thread_saved_pc(p
));
5807 #ifdef CONFIG_DEBUG_STACK_USAGE
5809 unsigned long *n
= end_of_stack(p
);
5812 free
= (unsigned long)n
- (unsigned long)end_of_stack(p
);
5815 printk(KERN_CONT
"%5lu %5d %6d\n", free
,
5816 task_pid_nr(p
), task_pid_nr(p
->real_parent
));
5818 show_stack(p
, NULL
);
5821 void show_state_filter(unsigned long state_filter
)
5823 struct task_struct
*g
, *p
;
5825 #if BITS_PER_LONG == 32
5827 " task PC stack pid father\n");
5830 " task PC stack pid father\n");
5832 read_lock(&tasklist_lock
);
5833 do_each_thread(g
, p
) {
5835 * reset the NMI-timeout, listing all files on a slow
5836 * console might take alot of time:
5838 touch_nmi_watchdog();
5839 if (!state_filter
|| (p
->state
& state_filter
))
5841 } while_each_thread(g
, p
);
5843 touch_all_softlockup_watchdogs();
5845 #ifdef CONFIG_SCHED_DEBUG
5846 sysrq_sched_debug_show();
5848 read_unlock(&tasklist_lock
);
5850 * Only show locks if all tasks are dumped:
5852 if (state_filter
== -1)
5853 debug_show_all_locks();
5856 void __cpuinit
init_idle_bootup_task(struct task_struct
*idle
)
5858 idle
->sched_class
= &idle_sched_class
;
5862 * init_idle - set up an idle thread for a given CPU
5863 * @idle: task in question
5864 * @cpu: cpu the idle task belongs to
5866 * NOTE: this function does not set the idle thread's NEED_RESCHED
5867 * flag, to make booting more robust.
5869 void __cpuinit
init_idle(struct task_struct
*idle
, int cpu
)
5871 struct rq
*rq
= cpu_rq(cpu
);
5872 unsigned long flags
;
5874 spin_lock_irqsave(&rq
->lock
, flags
);
5877 idle
->se
.exec_start
= sched_clock();
5879 idle
->prio
= idle
->normal_prio
= MAX_PRIO
;
5880 idle
->cpus_allowed
= cpumask_of_cpu(cpu
);
5881 __set_task_cpu(idle
, cpu
);
5883 rq
->curr
= rq
->idle
= idle
;
5884 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
5887 spin_unlock_irqrestore(&rq
->lock
, flags
);
5889 /* Set the preempt count _outside_ the spinlocks! */
5890 #if defined(CONFIG_PREEMPT)
5891 task_thread_info(idle
)->preempt_count
= (idle
->lock_depth
>= 0);
5893 task_thread_info(idle
)->preempt_count
= 0;
5896 * The idle tasks have their own, simple scheduling class:
5898 idle
->sched_class
= &idle_sched_class
;
5899 ftrace_graph_init_task(idle
);
5903 * In a system that switches off the HZ timer nohz_cpu_mask
5904 * indicates which cpus entered this state. This is used
5905 * in the rcu update to wait only for active cpus. For system
5906 * which do not switch off the HZ timer nohz_cpu_mask should
5907 * always be CPU_MASK_NONE.
5909 cpumask_t nohz_cpu_mask
= CPU_MASK_NONE
;
5912 * Increase the granularity value when there are more CPUs,
5913 * because with more CPUs the 'effective latency' as visible
5914 * to users decreases. But the relationship is not linear,
5915 * so pick a second-best guess by going with the log2 of the
5918 * This idea comes from the SD scheduler of Con Kolivas:
5920 static inline void sched_init_granularity(void)
5922 unsigned int factor
= 1 + ilog2(num_online_cpus());
5923 const unsigned long limit
= 200000000;
5925 sysctl_sched_min_granularity
*= factor
;
5926 if (sysctl_sched_min_granularity
> limit
)
5927 sysctl_sched_min_granularity
= limit
;
5929 sysctl_sched_latency
*= factor
;
5930 if (sysctl_sched_latency
> limit
)
5931 sysctl_sched_latency
= limit
;
5933 sysctl_sched_wakeup_granularity
*= factor
;
5935 sysctl_sched_shares_ratelimit
*= factor
;
5940 * This is how migration works:
5942 * 1) we queue a struct migration_req structure in the source CPU's
5943 * runqueue and wake up that CPU's migration thread.
5944 * 2) we down() the locked semaphore => thread blocks.
5945 * 3) migration thread wakes up (implicitly it forces the migrated
5946 * thread off the CPU)
5947 * 4) it gets the migration request and checks whether the migrated
5948 * task is still in the wrong runqueue.
5949 * 5) if it's in the wrong runqueue then the migration thread removes
5950 * it and puts it into the right queue.
5951 * 6) migration thread up()s the semaphore.
5952 * 7) we wake up and the migration is done.
5956 * Change a given task's CPU affinity. Migrate the thread to a
5957 * proper CPU and schedule it away if the CPU it's executing on
5958 * is removed from the allowed bitmask.
5960 * NOTE: the caller must have a valid reference to the task, the
5961 * task must not exit() & deallocate itself prematurely. The
5962 * call is not atomic; no spinlocks may be held.
5964 int set_cpus_allowed_ptr(struct task_struct
*p
, const cpumask_t
*new_mask
)
5966 struct migration_req req
;
5967 unsigned long flags
;
5971 rq
= task_rq_lock(p
, &flags
);
5972 if (!cpus_intersects(*new_mask
, cpu_online_map
)) {
5977 if (unlikely((p
->flags
& PF_THREAD_BOUND
) && p
!= current
&&
5978 !cpus_equal(p
->cpus_allowed
, *new_mask
))) {
5983 if (p
->sched_class
->set_cpus_allowed
)
5984 p
->sched_class
->set_cpus_allowed(p
, new_mask
);
5986 p
->cpus_allowed
= *new_mask
;
5987 p
->rt
.nr_cpus_allowed
= cpus_weight(*new_mask
);
5990 /* Can the task run on the task's current CPU? If so, we're done */
5991 if (cpu_isset(task_cpu(p
), *new_mask
))
5994 if (migrate_task(p
, any_online_cpu(*new_mask
), &req
)) {
5995 /* Need help from migration thread: drop lock and wait. */
5996 task_rq_unlock(rq
, &flags
);
5997 wake_up_process(rq
->migration_thread
);
5998 wait_for_completion(&req
.done
);
5999 tlb_migrate_finish(p
->mm
);
6003 task_rq_unlock(rq
, &flags
);
6007 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr
);
6010 * Move (not current) task off this cpu, onto dest cpu. We're doing
6011 * this because either it can't run here any more (set_cpus_allowed()
6012 * away from this CPU, or CPU going down), or because we're
6013 * attempting to rebalance this task on exec (sched_exec).
6015 * So we race with normal scheduler movements, but that's OK, as long
6016 * as the task is no longer on this CPU.
6018 * Returns non-zero if task was successfully migrated.
6020 static int __migrate_task(struct task_struct
*p
, int src_cpu
, int dest_cpu
)
6022 struct rq
*rq_dest
, *rq_src
;
6025 if (unlikely(!cpu_active(dest_cpu
)))
6028 rq_src
= cpu_rq(src_cpu
);
6029 rq_dest
= cpu_rq(dest_cpu
);
6031 double_rq_lock(rq_src
, rq_dest
);
6032 /* Already moved. */
6033 if (task_cpu(p
) != src_cpu
)
6035 /* Affinity changed (again). */
6036 if (!cpu_isset(dest_cpu
, p
->cpus_allowed
))
6039 on_rq
= p
->se
.on_rq
;
6041 deactivate_task(rq_src
, p
, 0);
6043 set_task_cpu(p
, dest_cpu
);
6045 activate_task(rq_dest
, p
, 0);
6046 check_preempt_curr(rq_dest
, p
, 0);
6051 double_rq_unlock(rq_src
, rq_dest
);
6056 * migration_thread - this is a highprio system thread that performs
6057 * thread migration by bumping thread off CPU then 'pushing' onto
6060 static int migration_thread(void *data
)
6062 int cpu
= (long)data
;
6066 BUG_ON(rq
->migration_thread
!= current
);
6068 set_current_state(TASK_INTERRUPTIBLE
);
6069 while (!kthread_should_stop()) {
6070 struct migration_req
*req
;
6071 struct list_head
*head
;
6073 spin_lock_irq(&rq
->lock
);
6075 if (cpu_is_offline(cpu
)) {
6076 spin_unlock_irq(&rq
->lock
);
6080 if (rq
->active_balance
) {
6081 active_load_balance(rq
, cpu
);
6082 rq
->active_balance
= 0;
6085 head
= &rq
->migration_queue
;
6087 if (list_empty(head
)) {
6088 spin_unlock_irq(&rq
->lock
);
6090 set_current_state(TASK_INTERRUPTIBLE
);
6093 req
= list_entry(head
->next
, struct migration_req
, list
);
6094 list_del_init(head
->next
);
6096 spin_unlock(&rq
->lock
);
6097 __migrate_task(req
->task
, cpu
, req
->dest_cpu
);
6100 complete(&req
->done
);
6102 __set_current_state(TASK_RUNNING
);
6106 /* Wait for kthread_stop */
6107 set_current_state(TASK_INTERRUPTIBLE
);
6108 while (!kthread_should_stop()) {
6110 set_current_state(TASK_INTERRUPTIBLE
);
6112 __set_current_state(TASK_RUNNING
);
6116 #ifdef CONFIG_HOTPLUG_CPU
6118 static int __migrate_task_irq(struct task_struct
*p
, int src_cpu
, int dest_cpu
)
6122 local_irq_disable();
6123 ret
= __migrate_task(p
, src_cpu
, dest_cpu
);
6129 * Figure out where task on dead CPU should go, use force if necessary.
6131 static void move_task_off_dead_cpu(int dead_cpu
, struct task_struct
*p
)
6133 unsigned long flags
;
6140 mask
= node_to_cpumask(cpu_to_node(dead_cpu
));
6141 cpus_and(mask
, mask
, p
->cpus_allowed
);
6142 dest_cpu
= any_online_cpu(mask
);
6144 /* On any allowed CPU? */
6145 if (dest_cpu
>= nr_cpu_ids
)
6146 dest_cpu
= any_online_cpu(p
->cpus_allowed
);
6148 /* No more Mr. Nice Guy. */
6149 if (dest_cpu
>= nr_cpu_ids
) {
6150 cpumask_t cpus_allowed
;
6152 cpuset_cpus_allowed_locked(p
, &cpus_allowed
);
6154 * Try to stay on the same cpuset, where the
6155 * current cpuset may be a subset of all cpus.
6156 * The cpuset_cpus_allowed_locked() variant of
6157 * cpuset_cpus_allowed() will not block. It must be
6158 * called within calls to cpuset_lock/cpuset_unlock.
6160 rq
= task_rq_lock(p
, &flags
);
6161 p
->cpus_allowed
= cpus_allowed
;
6162 dest_cpu
= any_online_cpu(p
->cpus_allowed
);
6163 task_rq_unlock(rq
, &flags
);
6166 * Don't tell them about moving exiting tasks or
6167 * kernel threads (both mm NULL), since they never
6170 if (p
->mm
&& printk_ratelimit()) {
6171 printk(KERN_INFO
"process %d (%s) no "
6172 "longer affine to cpu%d\n",
6173 task_pid_nr(p
), p
->comm
, dead_cpu
);
6176 } while (!__migrate_task_irq(p
, dead_cpu
, dest_cpu
));
6180 * While a dead CPU has no uninterruptible tasks queued at this point,
6181 * it might still have a nonzero ->nr_uninterruptible counter, because
6182 * for performance reasons the counter is not stricly tracking tasks to
6183 * their home CPUs. So we just add the counter to another CPU's counter,
6184 * to keep the global sum constant after CPU-down:
6186 static void migrate_nr_uninterruptible(struct rq
*rq_src
)
6188 struct rq
*rq_dest
= cpu_rq(any_online_cpu(*CPU_MASK_ALL_PTR
));
6189 unsigned long flags
;
6191 local_irq_save(flags
);
6192 double_rq_lock(rq_src
, rq_dest
);
6193 rq_dest
->nr_uninterruptible
+= rq_src
->nr_uninterruptible
;
6194 rq_src
->nr_uninterruptible
= 0;
6195 double_rq_unlock(rq_src
, rq_dest
);
6196 local_irq_restore(flags
);
6199 /* Run through task list and migrate tasks from the dead cpu. */
6200 static void migrate_live_tasks(int src_cpu
)
6202 struct task_struct
*p
, *t
;
6204 read_lock(&tasklist_lock
);
6206 do_each_thread(t
, p
) {
6210 if (task_cpu(p
) == src_cpu
)
6211 move_task_off_dead_cpu(src_cpu
, p
);
6212 } while_each_thread(t
, p
);
6214 read_unlock(&tasklist_lock
);
6218 * Schedules idle task to be the next runnable task on current CPU.
6219 * It does so by boosting its priority to highest possible.
6220 * Used by CPU offline code.
6222 void sched_idle_next(void)
6224 int this_cpu
= smp_processor_id();
6225 struct rq
*rq
= cpu_rq(this_cpu
);
6226 struct task_struct
*p
= rq
->idle
;
6227 unsigned long flags
;
6229 /* cpu has to be offline */
6230 BUG_ON(cpu_online(this_cpu
));
6233 * Strictly not necessary since rest of the CPUs are stopped by now
6234 * and interrupts disabled on the current cpu.
6236 spin_lock_irqsave(&rq
->lock
, flags
);
6238 __setscheduler(rq
, p
, SCHED_FIFO
, MAX_RT_PRIO
-1);
6240 update_rq_clock(rq
);
6241 activate_task(rq
, p
, 0);
6243 spin_unlock_irqrestore(&rq
->lock
, flags
);
6247 * Ensures that the idle task is using init_mm right before its cpu goes
6250 void idle_task_exit(void)
6252 struct mm_struct
*mm
= current
->active_mm
;
6254 BUG_ON(cpu_online(smp_processor_id()));
6257 switch_mm(mm
, &init_mm
, current
);
6261 /* called under rq->lock with disabled interrupts */
6262 static void migrate_dead(unsigned int dead_cpu
, struct task_struct
*p
)
6264 struct rq
*rq
= cpu_rq(dead_cpu
);
6266 /* Must be exiting, otherwise would be on tasklist. */
6267 BUG_ON(!p
->exit_state
);
6269 /* Cannot have done final schedule yet: would have vanished. */
6270 BUG_ON(p
->state
== TASK_DEAD
);
6275 * Drop lock around migration; if someone else moves it,
6276 * that's OK. No task can be added to this CPU, so iteration is
6279 spin_unlock_irq(&rq
->lock
);
6280 move_task_off_dead_cpu(dead_cpu
, p
);
6281 spin_lock_irq(&rq
->lock
);
6286 /* release_task() removes task from tasklist, so we won't find dead tasks. */
6287 static void migrate_dead_tasks(unsigned int dead_cpu
)
6289 struct rq
*rq
= cpu_rq(dead_cpu
);
6290 struct task_struct
*next
;
6293 if (!rq
->nr_running
)
6295 update_rq_clock(rq
);
6296 next
= pick_next_task(rq
, rq
->curr
);
6299 next
->sched_class
->put_prev_task(rq
, next
);
6300 migrate_dead(dead_cpu
, next
);
6304 #endif /* CONFIG_HOTPLUG_CPU */
6306 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
6308 static struct ctl_table sd_ctl_dir
[] = {
6310 .procname
= "sched_domain",
6316 static struct ctl_table sd_ctl_root
[] = {
6318 .ctl_name
= CTL_KERN
,
6319 .procname
= "kernel",
6321 .child
= sd_ctl_dir
,
6326 static struct ctl_table
*sd_alloc_ctl_entry(int n
)
6328 struct ctl_table
*entry
=
6329 kcalloc(n
, sizeof(struct ctl_table
), GFP_KERNEL
);
6334 static void sd_free_ctl_entry(struct ctl_table
**tablep
)
6336 struct ctl_table
*entry
;
6339 * In the intermediate directories, both the child directory and
6340 * procname are dynamically allocated and could fail but the mode
6341 * will always be set. In the lowest directory the names are
6342 * static strings and all have proc handlers.
6344 for (entry
= *tablep
; entry
->mode
; entry
++) {
6346 sd_free_ctl_entry(&entry
->child
);
6347 if (entry
->proc_handler
== NULL
)
6348 kfree(entry
->procname
);
6356 set_table_entry(struct ctl_table
*entry
,
6357 const char *procname
, void *data
, int maxlen
,
6358 mode_t mode
, proc_handler
*proc_handler
)
6360 entry
->procname
= procname
;
6362 entry
->maxlen
= maxlen
;
6364 entry
->proc_handler
= proc_handler
;
6367 static struct ctl_table
*
6368 sd_alloc_ctl_domain_table(struct sched_domain
*sd
)
6370 struct ctl_table
*table
= sd_alloc_ctl_entry(13);
6375 set_table_entry(&table
[0], "min_interval", &sd
->min_interval
,
6376 sizeof(long), 0644, proc_doulongvec_minmax
);
6377 set_table_entry(&table
[1], "max_interval", &sd
->max_interval
,
6378 sizeof(long), 0644, proc_doulongvec_minmax
);
6379 set_table_entry(&table
[2], "busy_idx", &sd
->busy_idx
,
6380 sizeof(int), 0644, proc_dointvec_minmax
);
6381 set_table_entry(&table
[3], "idle_idx", &sd
->idle_idx
,
6382 sizeof(int), 0644, proc_dointvec_minmax
);
6383 set_table_entry(&table
[4], "newidle_idx", &sd
->newidle_idx
,
6384 sizeof(int), 0644, proc_dointvec_minmax
);
6385 set_table_entry(&table
[5], "wake_idx", &sd
->wake_idx
,
6386 sizeof(int), 0644, proc_dointvec_minmax
);
6387 set_table_entry(&table
[6], "forkexec_idx", &sd
->forkexec_idx
,
6388 sizeof(int), 0644, proc_dointvec_minmax
);
6389 set_table_entry(&table
[7], "busy_factor", &sd
->busy_factor
,
6390 sizeof(int), 0644, proc_dointvec_minmax
);
6391 set_table_entry(&table
[8], "imbalance_pct", &sd
->imbalance_pct
,
6392 sizeof(int), 0644, proc_dointvec_minmax
);
6393 set_table_entry(&table
[9], "cache_nice_tries",
6394 &sd
->cache_nice_tries
,
6395 sizeof(int), 0644, proc_dointvec_minmax
);
6396 set_table_entry(&table
[10], "flags", &sd
->flags
,
6397 sizeof(int), 0644, proc_dointvec_minmax
);
6398 set_table_entry(&table
[11], "name", sd
->name
,
6399 CORENAME_MAX_SIZE
, 0444, proc_dostring
);
6400 /* &table[12] is terminator */
6405 static ctl_table
*sd_alloc_ctl_cpu_table(int cpu
)
6407 struct ctl_table
*entry
, *table
;
6408 struct sched_domain
*sd
;
6409 int domain_num
= 0, i
;
6412 for_each_domain(cpu
, sd
)
6414 entry
= table
= sd_alloc_ctl_entry(domain_num
+ 1);
6419 for_each_domain(cpu
, sd
) {
6420 snprintf(buf
, 32, "domain%d", i
);
6421 entry
->procname
= kstrdup(buf
, GFP_KERNEL
);
6423 entry
->child
= sd_alloc_ctl_domain_table(sd
);
6430 static struct ctl_table_header
*sd_sysctl_header
;
6431 static void register_sched_domain_sysctl(void)
6433 int i
, cpu_num
= num_online_cpus();
6434 struct ctl_table
*entry
= sd_alloc_ctl_entry(cpu_num
+ 1);
6437 WARN_ON(sd_ctl_dir
[0].child
);
6438 sd_ctl_dir
[0].child
= entry
;
6443 for_each_online_cpu(i
) {
6444 snprintf(buf
, 32, "cpu%d", i
);
6445 entry
->procname
= kstrdup(buf
, GFP_KERNEL
);
6447 entry
->child
= sd_alloc_ctl_cpu_table(i
);
6451 WARN_ON(sd_sysctl_header
);
6452 sd_sysctl_header
= register_sysctl_table(sd_ctl_root
);
6455 /* may be called multiple times per register */
6456 static void unregister_sched_domain_sysctl(void)
6458 if (sd_sysctl_header
)
6459 unregister_sysctl_table(sd_sysctl_header
);
6460 sd_sysctl_header
= NULL
;
6461 if (sd_ctl_dir
[0].child
)
6462 sd_free_ctl_entry(&sd_ctl_dir
[0].child
);
6465 static void register_sched_domain_sysctl(void)
6468 static void unregister_sched_domain_sysctl(void)
6473 static void set_rq_online(struct rq
*rq
)
6476 const struct sched_class
*class;
6478 cpu_set(rq
->cpu
, rq
->rd
->online
);
6481 for_each_class(class) {
6482 if (class->rq_online
)
6483 class->rq_online(rq
);
6488 static void set_rq_offline(struct rq
*rq
)
6491 const struct sched_class
*class;
6493 for_each_class(class) {
6494 if (class->rq_offline
)
6495 class->rq_offline(rq
);
6498 cpu_clear(rq
->cpu
, rq
->rd
->online
);
6504 * migration_call - callback that gets triggered when a CPU is added.
6505 * Here we can start up the necessary migration thread for the new CPU.
6507 static int __cpuinit
6508 migration_call(struct notifier_block
*nfb
, unsigned long action
, void *hcpu
)
6510 struct task_struct
*p
;
6511 int cpu
= (long)hcpu
;
6512 unsigned long flags
;
6517 case CPU_UP_PREPARE
:
6518 case CPU_UP_PREPARE_FROZEN
:
6519 p
= kthread_create(migration_thread
, hcpu
, "migration/%d", cpu
);
6522 kthread_bind(p
, cpu
);
6523 /* Must be high prio: stop_machine expects to yield to it. */
6524 rq
= task_rq_lock(p
, &flags
);
6525 __setscheduler(rq
, p
, SCHED_FIFO
, MAX_RT_PRIO
-1);
6526 task_rq_unlock(rq
, &flags
);
6527 cpu_rq(cpu
)->migration_thread
= p
;
6531 case CPU_ONLINE_FROZEN
:
6532 /* Strictly unnecessary, as first user will wake it. */
6533 wake_up_process(cpu_rq(cpu
)->migration_thread
);
6535 /* Update our root-domain */
6537 spin_lock_irqsave(&rq
->lock
, flags
);
6539 BUG_ON(!cpu_isset(cpu
, rq
->rd
->span
));
6543 spin_unlock_irqrestore(&rq
->lock
, flags
);
6546 #ifdef CONFIG_HOTPLUG_CPU
6547 case CPU_UP_CANCELED
:
6548 case CPU_UP_CANCELED_FROZEN
:
6549 if (!cpu_rq(cpu
)->migration_thread
)
6551 /* Unbind it from offline cpu so it can run. Fall thru. */
6552 kthread_bind(cpu_rq(cpu
)->migration_thread
,
6553 any_online_cpu(cpu_online_map
));
6554 kthread_stop(cpu_rq(cpu
)->migration_thread
);
6555 cpu_rq(cpu
)->migration_thread
= NULL
;
6559 case CPU_DEAD_FROZEN
:
6560 cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
6561 migrate_live_tasks(cpu
);
6563 kthread_stop(rq
->migration_thread
);
6564 rq
->migration_thread
= NULL
;
6565 /* Idle task back to normal (off runqueue, low prio) */
6566 spin_lock_irq(&rq
->lock
);
6567 update_rq_clock(rq
);
6568 deactivate_task(rq
, rq
->idle
, 0);
6569 rq
->idle
->static_prio
= MAX_PRIO
;
6570 __setscheduler(rq
, rq
->idle
, SCHED_NORMAL
, 0);
6571 rq
->idle
->sched_class
= &idle_sched_class
;
6572 migrate_dead_tasks(cpu
);
6573 spin_unlock_irq(&rq
->lock
);
6575 migrate_nr_uninterruptible(rq
);
6576 BUG_ON(rq
->nr_running
!= 0);
6579 * No need to migrate the tasks: it was best-effort if
6580 * they didn't take sched_hotcpu_mutex. Just wake up
6583 spin_lock_irq(&rq
->lock
);
6584 while (!list_empty(&rq
->migration_queue
)) {
6585 struct migration_req
*req
;
6587 req
= list_entry(rq
->migration_queue
.next
,
6588 struct migration_req
, list
);
6589 list_del_init(&req
->list
);
6590 spin_unlock_irq(&rq
->lock
);
6591 complete(&req
->done
);
6592 spin_lock_irq(&rq
->lock
);
6594 spin_unlock_irq(&rq
->lock
);
6598 case CPU_DYING_FROZEN
:
6599 /* Update our root-domain */
6601 spin_lock_irqsave(&rq
->lock
, flags
);
6603 BUG_ON(!cpu_isset(cpu
, rq
->rd
->span
));
6606 spin_unlock_irqrestore(&rq
->lock
, flags
);
6613 /* Register at highest priority so that task migration (migrate_all_tasks)
6614 * happens before everything else.
6616 static struct notifier_block __cpuinitdata migration_notifier
= {
6617 .notifier_call
= migration_call
,
6621 static int __init
migration_init(void)
6623 void *cpu
= (void *)(long)smp_processor_id();
6626 /* Start one for the boot CPU: */
6627 err
= migration_call(&migration_notifier
, CPU_UP_PREPARE
, cpu
);
6628 BUG_ON(err
== NOTIFY_BAD
);
6629 migration_call(&migration_notifier
, CPU_ONLINE
, cpu
);
6630 register_cpu_notifier(&migration_notifier
);
6634 early_initcall(migration_init
);
6639 #ifdef CONFIG_SCHED_DEBUG
6641 static int sched_domain_debug_one(struct sched_domain
*sd
, int cpu
, int level
,
6642 cpumask_t
*groupmask
)
6644 struct sched_group
*group
= sd
->groups
;
6647 cpulist_scnprintf(str
, sizeof(str
), sd
->span
);
6648 cpus_clear(*groupmask
);
6650 printk(KERN_DEBUG
"%*s domain %d: ", level
, "", level
);
6652 if (!(sd
->flags
& SD_LOAD_BALANCE
)) {
6653 printk("does not load-balance\n");
6655 printk(KERN_ERR
"ERROR: !SD_LOAD_BALANCE domain"
6660 printk(KERN_CONT
"span %s level %s\n", str
, sd
->name
);
6662 if (!cpu_isset(cpu
, sd
->span
)) {
6663 printk(KERN_ERR
"ERROR: domain->span does not contain "
6666 if (!cpu_isset(cpu
, group
->cpumask
)) {
6667 printk(KERN_ERR
"ERROR: domain->groups does not contain"
6671 printk(KERN_DEBUG
"%*s groups:", level
+ 1, "");
6675 printk(KERN_ERR
"ERROR: group is NULL\n");
6679 if (!group
->__cpu_power
) {
6680 printk(KERN_CONT
"\n");
6681 printk(KERN_ERR
"ERROR: domain->cpu_power not "
6686 if (!cpus_weight(group
->cpumask
)) {
6687 printk(KERN_CONT
"\n");
6688 printk(KERN_ERR
"ERROR: empty group\n");
6692 if (cpus_intersects(*groupmask
, group
->cpumask
)) {
6693 printk(KERN_CONT
"\n");
6694 printk(KERN_ERR
"ERROR: repeated CPUs\n");
6698 cpus_or(*groupmask
, *groupmask
, group
->cpumask
);
6700 cpulist_scnprintf(str
, sizeof(str
), group
->cpumask
);
6701 printk(KERN_CONT
" %s", str
);
6703 group
= group
->next
;
6704 } while (group
!= sd
->groups
);
6705 printk(KERN_CONT
"\n");
6707 if (!cpus_equal(sd
->span
, *groupmask
))
6708 printk(KERN_ERR
"ERROR: groups don't span domain->span\n");
6710 if (sd
->parent
&& !cpus_subset(*groupmask
, sd
->parent
->span
))
6711 printk(KERN_ERR
"ERROR: parent span is not a superset "
6712 "of domain->span\n");
6716 static void sched_domain_debug(struct sched_domain
*sd
, int cpu
)
6718 cpumask_t
*groupmask
;
6722 printk(KERN_DEBUG
"CPU%d attaching NULL sched-domain.\n", cpu
);
6726 printk(KERN_DEBUG
"CPU%d attaching sched-domain:\n", cpu
);
6728 groupmask
= kmalloc(sizeof(cpumask_t
), GFP_KERNEL
);
6730 printk(KERN_DEBUG
"Cannot load-balance (out of memory)\n");
6735 if (sched_domain_debug_one(sd
, cpu
, level
, groupmask
))
6744 #else /* !CONFIG_SCHED_DEBUG */
6745 # define sched_domain_debug(sd, cpu) do { } while (0)
6746 #endif /* CONFIG_SCHED_DEBUG */
6748 static int sd_degenerate(struct sched_domain
*sd
)
6750 if (cpus_weight(sd
->span
) == 1)
6753 /* Following flags need at least 2 groups */
6754 if (sd
->flags
& (SD_LOAD_BALANCE
|
6755 SD_BALANCE_NEWIDLE
|
6759 SD_SHARE_PKG_RESOURCES
)) {
6760 if (sd
->groups
!= sd
->groups
->next
)
6764 /* Following flags don't use groups */
6765 if (sd
->flags
& (SD_WAKE_IDLE
|
6774 sd_parent_degenerate(struct sched_domain
*sd
, struct sched_domain
*parent
)
6776 unsigned long cflags
= sd
->flags
, pflags
= parent
->flags
;
6778 if (sd_degenerate(parent
))
6781 if (!cpus_equal(sd
->span
, parent
->span
))
6784 /* Does parent contain flags not in child? */
6785 /* WAKE_BALANCE is a subset of WAKE_AFFINE */
6786 if (cflags
& SD_WAKE_AFFINE
)
6787 pflags
&= ~SD_WAKE_BALANCE
;
6788 /* Flags needing groups don't count if only 1 group in parent */
6789 if (parent
->groups
== parent
->groups
->next
) {
6790 pflags
&= ~(SD_LOAD_BALANCE
|
6791 SD_BALANCE_NEWIDLE
|
6795 SD_SHARE_PKG_RESOURCES
);
6796 if (nr_node_ids
== 1)
6797 pflags
&= ~SD_SERIALIZE
;
6799 if (~cflags
& pflags
)
6805 static void rq_attach_root(struct rq
*rq
, struct root_domain
*rd
)
6807 unsigned long flags
;
6809 spin_lock_irqsave(&rq
->lock
, flags
);
6812 struct root_domain
*old_rd
= rq
->rd
;
6814 if (cpu_isset(rq
->cpu
, old_rd
->online
))
6817 cpu_clear(rq
->cpu
, old_rd
->span
);
6819 if (atomic_dec_and_test(&old_rd
->refcount
))
6823 atomic_inc(&rd
->refcount
);
6826 cpu_set(rq
->cpu
, rd
->span
);
6827 if (cpu_isset(rq
->cpu
, cpu_online_map
))
6830 spin_unlock_irqrestore(&rq
->lock
, flags
);
6833 static void init_rootdomain(struct root_domain
*rd
)
6835 memset(rd
, 0, sizeof(*rd
));
6837 cpus_clear(rd
->span
);
6838 cpus_clear(rd
->online
);
6840 cpupri_init(&rd
->cpupri
);
6843 static void init_defrootdomain(void)
6845 init_rootdomain(&def_root_domain
);
6846 atomic_set(&def_root_domain
.refcount
, 1);
6849 static struct root_domain
*alloc_rootdomain(void)
6851 struct root_domain
*rd
;
6853 rd
= kmalloc(sizeof(*rd
), GFP_KERNEL
);
6857 init_rootdomain(rd
);
6863 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
6864 * hold the hotplug lock.
6867 cpu_attach_domain(struct sched_domain
*sd
, struct root_domain
*rd
, int cpu
)
6869 struct rq
*rq
= cpu_rq(cpu
);
6870 struct sched_domain
*tmp
;
6872 /* Remove the sched domains which do not contribute to scheduling. */
6873 for (tmp
= sd
; tmp
; ) {
6874 struct sched_domain
*parent
= tmp
->parent
;
6878 if (sd_parent_degenerate(tmp
, parent
)) {
6879 tmp
->parent
= parent
->parent
;
6881 parent
->parent
->child
= tmp
;
6886 if (sd
&& sd_degenerate(sd
)) {
6892 sched_domain_debug(sd
, cpu
);
6894 rq_attach_root(rq
, rd
);
6895 rcu_assign_pointer(rq
->sd
, sd
);
6898 /* cpus with isolated domains */
6899 static cpumask_t cpu_isolated_map
= CPU_MASK_NONE
;
6901 /* Setup the mask of cpus configured for isolated domains */
6902 static int __init
isolated_cpu_setup(char *str
)
6904 static int __initdata ints
[NR_CPUS
];
6907 str
= get_options(str
, ARRAY_SIZE(ints
), ints
);
6908 cpus_clear(cpu_isolated_map
);
6909 for (i
= 1; i
<= ints
[0]; i
++)
6910 if (ints
[i
] < NR_CPUS
)
6911 cpu_set(ints
[i
], cpu_isolated_map
);
6915 __setup("isolcpus=", isolated_cpu_setup
);
6918 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
6919 * to a function which identifies what group(along with sched group) a CPU
6920 * belongs to. The return value of group_fn must be a >= 0 and < NR_CPUS
6921 * (due to the fact that we keep track of groups covered with a cpumask_t).
6923 * init_sched_build_groups will build a circular linked list of the groups
6924 * covered by the given span, and will set each group's ->cpumask correctly,
6925 * and ->cpu_power to 0.
6928 init_sched_build_groups(const cpumask_t
*span
, const cpumask_t
*cpu_map
,
6929 int (*group_fn
)(int cpu
, const cpumask_t
*cpu_map
,
6930 struct sched_group
**sg
,
6931 cpumask_t
*tmpmask
),
6932 cpumask_t
*covered
, cpumask_t
*tmpmask
)
6934 struct sched_group
*first
= NULL
, *last
= NULL
;
6937 cpus_clear(*covered
);
6939 for_each_cpu_mask_nr(i
, *span
) {
6940 struct sched_group
*sg
;
6941 int group
= group_fn(i
, cpu_map
, &sg
, tmpmask
);
6944 if (cpu_isset(i
, *covered
))
6947 cpus_clear(sg
->cpumask
);
6948 sg
->__cpu_power
= 0;
6950 for_each_cpu_mask_nr(j
, *span
) {
6951 if (group_fn(j
, cpu_map
, NULL
, tmpmask
) != group
)
6954 cpu_set(j
, *covered
);
6955 cpu_set(j
, sg
->cpumask
);
6966 #define SD_NODES_PER_DOMAIN 16
6971 * find_next_best_node - find the next node to include in a sched_domain
6972 * @node: node whose sched_domain we're building
6973 * @used_nodes: nodes already in the sched_domain
6975 * Find the next node to include in a given scheduling domain. Simply
6976 * finds the closest node not already in the @used_nodes map.
6978 * Should use nodemask_t.
6980 static int find_next_best_node(int node
, nodemask_t
*used_nodes
)
6982 int i
, n
, val
, min_val
, best_node
= 0;
6986 for (i
= 0; i
< nr_node_ids
; i
++) {
6987 /* Start at @node */
6988 n
= (node
+ i
) % nr_node_ids
;
6990 if (!nr_cpus_node(n
))
6993 /* Skip already used nodes */
6994 if (node_isset(n
, *used_nodes
))
6997 /* Simple min distance search */
6998 val
= node_distance(node
, n
);
7000 if (val
< min_val
) {
7006 node_set(best_node
, *used_nodes
);
7011 * sched_domain_node_span - get a cpumask for a node's sched_domain
7012 * @node: node whose cpumask we're constructing
7013 * @span: resulting cpumask
7015 * Given a node, construct a good cpumask for its sched_domain to span. It
7016 * should be one that prevents unnecessary balancing, but also spreads tasks
7019 static void sched_domain_node_span(int node
, cpumask_t
*span
)
7021 nodemask_t used_nodes
;
7022 node_to_cpumask_ptr(nodemask
, node
);
7026 nodes_clear(used_nodes
);
7028 cpus_or(*span
, *span
, *nodemask
);
7029 node_set(node
, used_nodes
);
7031 for (i
= 1; i
< SD_NODES_PER_DOMAIN
; i
++) {
7032 int next_node
= find_next_best_node(node
, &used_nodes
);
7034 node_to_cpumask_ptr_next(nodemask
, next_node
);
7035 cpus_or(*span
, *span
, *nodemask
);
7038 #endif /* CONFIG_NUMA */
7040 int sched_smt_power_savings
= 0, sched_mc_power_savings
= 0;
7043 * SMT sched-domains:
7045 #ifdef CONFIG_SCHED_SMT
7046 static DEFINE_PER_CPU(struct sched_domain
, cpu_domains
);
7047 static DEFINE_PER_CPU(struct sched_group
, sched_group_cpus
);
7050 cpu_to_cpu_group(int cpu
, const cpumask_t
*cpu_map
, struct sched_group
**sg
,
7054 *sg
= &per_cpu(sched_group_cpus
, cpu
);
7057 #endif /* CONFIG_SCHED_SMT */
7060 * multi-core sched-domains:
7062 #ifdef CONFIG_SCHED_MC
7063 static DEFINE_PER_CPU(struct sched_domain
, core_domains
);
7064 static DEFINE_PER_CPU(struct sched_group
, sched_group_core
);
7065 #endif /* CONFIG_SCHED_MC */
7067 #if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
7069 cpu_to_core_group(int cpu
, const cpumask_t
*cpu_map
, struct sched_group
**sg
,
7074 *mask
= per_cpu(cpu_sibling_map
, cpu
);
7075 cpus_and(*mask
, *mask
, *cpu_map
);
7076 group
= first_cpu(*mask
);
7078 *sg
= &per_cpu(sched_group_core
, group
);
7081 #elif defined(CONFIG_SCHED_MC)
7083 cpu_to_core_group(int cpu
, const cpumask_t
*cpu_map
, struct sched_group
**sg
,
7087 *sg
= &per_cpu(sched_group_core
, cpu
);
7092 static DEFINE_PER_CPU(struct sched_domain
, phys_domains
);
7093 static DEFINE_PER_CPU(struct sched_group
, sched_group_phys
);
7096 cpu_to_phys_group(int cpu
, const cpumask_t
*cpu_map
, struct sched_group
**sg
,
7100 #ifdef CONFIG_SCHED_MC
7101 *mask
= cpu_coregroup_map(cpu
);
7102 cpus_and(*mask
, *mask
, *cpu_map
);
7103 group
= first_cpu(*mask
);
7104 #elif defined(CONFIG_SCHED_SMT)
7105 *mask
= per_cpu(cpu_sibling_map
, cpu
);
7106 cpus_and(*mask
, *mask
, *cpu_map
);
7107 group
= first_cpu(*mask
);
7112 *sg
= &per_cpu(sched_group_phys
, group
);
7118 * The init_sched_build_groups can't handle what we want to do with node
7119 * groups, so roll our own. Now each node has its own list of groups which
7120 * gets dynamically allocated.
7122 static DEFINE_PER_CPU(struct sched_domain
, node_domains
);
7123 static struct sched_group
***sched_group_nodes_bycpu
;
7125 static DEFINE_PER_CPU(struct sched_domain
, allnodes_domains
);
7126 static DEFINE_PER_CPU(struct sched_group
, sched_group_allnodes
);
7128 static int cpu_to_allnodes_group(int cpu
, const cpumask_t
*cpu_map
,
7129 struct sched_group
**sg
, cpumask_t
*nodemask
)
7133 *nodemask
= node_to_cpumask(cpu_to_node(cpu
));
7134 cpus_and(*nodemask
, *nodemask
, *cpu_map
);
7135 group
= first_cpu(*nodemask
);
7138 *sg
= &per_cpu(sched_group_allnodes
, group
);
7142 static void init_numa_sched_groups_power(struct sched_group
*group_head
)
7144 struct sched_group
*sg
= group_head
;
7150 for_each_cpu_mask_nr(j
, sg
->cpumask
) {
7151 struct sched_domain
*sd
;
7153 sd
= &per_cpu(phys_domains
, j
);
7154 if (j
!= first_cpu(sd
->groups
->cpumask
)) {
7156 * Only add "power" once for each
7162 sg_inc_cpu_power(sg
, sd
->groups
->__cpu_power
);
7165 } while (sg
!= group_head
);
7167 #endif /* CONFIG_NUMA */
7170 /* Free memory allocated for various sched_group structures */
7171 static void free_sched_groups(const cpumask_t
*cpu_map
, cpumask_t
*nodemask
)
7175 for_each_cpu_mask_nr(cpu
, *cpu_map
) {
7176 struct sched_group
**sched_group_nodes
7177 = sched_group_nodes_bycpu
[cpu
];
7179 if (!sched_group_nodes
)
7182 for (i
= 0; i
< nr_node_ids
; i
++) {
7183 struct sched_group
*oldsg
, *sg
= sched_group_nodes
[i
];
7185 *nodemask
= node_to_cpumask(i
);
7186 cpus_and(*nodemask
, *nodemask
, *cpu_map
);
7187 if (cpus_empty(*nodemask
))
7197 if (oldsg
!= sched_group_nodes
[i
])
7200 kfree(sched_group_nodes
);
7201 sched_group_nodes_bycpu
[cpu
] = NULL
;
7204 #else /* !CONFIG_NUMA */
7205 static void free_sched_groups(const cpumask_t
*cpu_map
, cpumask_t
*nodemask
)
7208 #endif /* CONFIG_NUMA */
7211 * Initialize sched groups cpu_power.
7213 * cpu_power indicates the capacity of sched group, which is used while
7214 * distributing the load between different sched groups in a sched domain.
7215 * Typically cpu_power for all the groups in a sched domain will be same unless
7216 * there are asymmetries in the topology. If there are asymmetries, group
7217 * having more cpu_power will pickup more load compared to the group having
7220 * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
7221 * the maximum number of tasks a group can handle in the presence of other idle
7222 * or lightly loaded groups in the same sched domain.
7224 static void init_sched_groups_power(int cpu
, struct sched_domain
*sd
)
7226 struct sched_domain
*child
;
7227 struct sched_group
*group
;
7229 WARN_ON(!sd
|| !sd
->groups
);
7231 if (cpu
!= first_cpu(sd
->groups
->cpumask
))
7236 sd
->groups
->__cpu_power
= 0;
7239 * For perf policy, if the groups in child domain share resources
7240 * (for example cores sharing some portions of the cache hierarchy
7241 * or SMT), then set this domain groups cpu_power such that each group
7242 * can handle only one task, when there are other idle groups in the
7243 * same sched domain.
7245 if (!child
|| (!(sd
->flags
& SD_POWERSAVINGS_BALANCE
) &&
7247 (SD_SHARE_CPUPOWER
| SD_SHARE_PKG_RESOURCES
)))) {
7248 sg_inc_cpu_power(sd
->groups
, SCHED_LOAD_SCALE
);
7253 * add cpu_power of each child group to this groups cpu_power
7255 group
= child
->groups
;
7257 sg_inc_cpu_power(sd
->groups
, group
->__cpu_power
);
7258 group
= group
->next
;
7259 } while (group
!= child
->groups
);
7263 * Initializers for schedule domains
7264 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
7267 #ifdef CONFIG_SCHED_DEBUG
7268 # define SD_INIT_NAME(sd, type) sd->name = #type
7270 # define SD_INIT_NAME(sd, type) do { } while (0)
7273 #define SD_INIT(sd, type) sd_init_##type(sd)
7275 #define SD_INIT_FUNC(type) \
7276 static noinline void sd_init_##type(struct sched_domain *sd) \
7278 memset(sd, 0, sizeof(*sd)); \
7279 *sd = SD_##type##_INIT; \
7280 sd->level = SD_LV_##type; \
7281 SD_INIT_NAME(sd, type); \
7286 SD_INIT_FUNC(ALLNODES
)
7289 #ifdef CONFIG_SCHED_SMT
7290 SD_INIT_FUNC(SIBLING
)
7292 #ifdef CONFIG_SCHED_MC
7297 * To minimize stack usage kmalloc room for cpumasks and share the
7298 * space as the usage in build_sched_domains() dictates. Used only
7299 * if the amount of space is significant.
7302 cpumask_t tmpmask
; /* make this one first */
7305 cpumask_t this_sibling_map
;
7306 cpumask_t this_core_map
;
7308 cpumask_t send_covered
;
7311 cpumask_t domainspan
;
7313 cpumask_t notcovered
;
7318 #define SCHED_CPUMASK_DECLARE(v) struct allmasks *v
7319 static inline void sched_cpumask_alloc(struct allmasks
**masks
)
7321 *masks
= kmalloc(sizeof(**masks
), GFP_KERNEL
);
7323 static inline void sched_cpumask_free(struct allmasks
*masks
)
7328 #define SCHED_CPUMASK_DECLARE(v) struct allmasks _v, *v = &_v
7329 static inline void sched_cpumask_alloc(struct allmasks
**masks
)
7331 static inline void sched_cpumask_free(struct allmasks
*masks
)
7335 #define SCHED_CPUMASK_VAR(v, a) cpumask_t *v = (cpumask_t *) \
7336 ((unsigned long)(a) + offsetof(struct allmasks, v))
7338 static int default_relax_domain_level
= -1;
7340 static int __init
setup_relax_domain_level(char *str
)
7344 val
= simple_strtoul(str
, NULL
, 0);
7345 if (val
< SD_LV_MAX
)
7346 default_relax_domain_level
= val
;
7350 __setup("relax_domain_level=", setup_relax_domain_level
);
7352 static void set_domain_attribute(struct sched_domain
*sd
,
7353 struct sched_domain_attr
*attr
)
7357 if (!attr
|| attr
->relax_domain_level
< 0) {
7358 if (default_relax_domain_level
< 0)
7361 request
= default_relax_domain_level
;
7363 request
= attr
->relax_domain_level
;
7364 if (request
< sd
->level
) {
7365 /* turn off idle balance on this domain */
7366 sd
->flags
&= ~(SD_WAKE_IDLE
|SD_BALANCE_NEWIDLE
);
7368 /* turn on idle balance on this domain */
7369 sd
->flags
|= (SD_WAKE_IDLE_FAR
|SD_BALANCE_NEWIDLE
);
7374 * Build sched domains for a given set of cpus and attach the sched domains
7375 * to the individual cpus
7377 static int __build_sched_domains(const cpumask_t
*cpu_map
,
7378 struct sched_domain_attr
*attr
)
7381 struct root_domain
*rd
;
7382 SCHED_CPUMASK_DECLARE(allmasks
);
7385 struct sched_group
**sched_group_nodes
= NULL
;
7386 int sd_allnodes
= 0;
7389 * Allocate the per-node list of sched groups
7391 sched_group_nodes
= kcalloc(nr_node_ids
, sizeof(struct sched_group
*),
7393 if (!sched_group_nodes
) {
7394 printk(KERN_WARNING
"Can not alloc sched group node list\n");
7399 rd
= alloc_rootdomain();
7401 printk(KERN_WARNING
"Cannot alloc root domain\n");
7403 kfree(sched_group_nodes
);
7408 /* get space for all scratch cpumask variables */
7409 sched_cpumask_alloc(&allmasks
);
7411 printk(KERN_WARNING
"Cannot alloc cpumask array\n");
7414 kfree(sched_group_nodes
);
7419 tmpmask
= (cpumask_t
*)allmasks
;
7423 sched_group_nodes_bycpu
[first_cpu(*cpu_map
)] = sched_group_nodes
;
7427 * Set up domains for cpus specified by the cpu_map.
7429 for_each_cpu_mask_nr(i
, *cpu_map
) {
7430 struct sched_domain
*sd
= NULL
, *p
;
7431 SCHED_CPUMASK_VAR(nodemask
, allmasks
);
7433 *nodemask
= node_to_cpumask(cpu_to_node(i
));
7434 cpus_and(*nodemask
, *nodemask
, *cpu_map
);
7437 if (cpus_weight(*cpu_map
) >
7438 SD_NODES_PER_DOMAIN
*cpus_weight(*nodemask
)) {
7439 sd
= &per_cpu(allnodes_domains
, i
);
7440 SD_INIT(sd
, ALLNODES
);
7441 set_domain_attribute(sd
, attr
);
7442 sd
->span
= *cpu_map
;
7443 cpu_to_allnodes_group(i
, cpu_map
, &sd
->groups
, tmpmask
);
7449 sd
= &per_cpu(node_domains
, i
);
7451 set_domain_attribute(sd
, attr
);
7452 sched_domain_node_span(cpu_to_node(i
), &sd
->span
);
7456 cpus_and(sd
->span
, sd
->span
, *cpu_map
);
7460 sd
= &per_cpu(phys_domains
, i
);
7462 set_domain_attribute(sd
, attr
);
7463 sd
->span
= *nodemask
;
7467 cpu_to_phys_group(i
, cpu_map
, &sd
->groups
, tmpmask
);
7469 #ifdef CONFIG_SCHED_MC
7471 sd
= &per_cpu(core_domains
, i
);
7473 set_domain_attribute(sd
, attr
);
7474 sd
->span
= cpu_coregroup_map(i
);
7475 cpus_and(sd
->span
, sd
->span
, *cpu_map
);
7478 cpu_to_core_group(i
, cpu_map
, &sd
->groups
, tmpmask
);
7481 #ifdef CONFIG_SCHED_SMT
7483 sd
= &per_cpu(cpu_domains
, i
);
7484 SD_INIT(sd
, SIBLING
);
7485 set_domain_attribute(sd
, attr
);
7486 sd
->span
= per_cpu(cpu_sibling_map
, i
);
7487 cpus_and(sd
->span
, sd
->span
, *cpu_map
);
7490 cpu_to_cpu_group(i
, cpu_map
, &sd
->groups
, tmpmask
);
7494 #ifdef CONFIG_SCHED_SMT
7495 /* Set up CPU (sibling) groups */
7496 for_each_cpu_mask_nr(i
, *cpu_map
) {
7497 SCHED_CPUMASK_VAR(this_sibling_map
, allmasks
);
7498 SCHED_CPUMASK_VAR(send_covered
, allmasks
);
7500 *this_sibling_map
= per_cpu(cpu_sibling_map
, i
);
7501 cpus_and(*this_sibling_map
, *this_sibling_map
, *cpu_map
);
7502 if (i
!= first_cpu(*this_sibling_map
))
7505 init_sched_build_groups(this_sibling_map
, cpu_map
,
7507 send_covered
, tmpmask
);
7511 #ifdef CONFIG_SCHED_MC
7512 /* Set up multi-core groups */
7513 for_each_cpu_mask_nr(i
, *cpu_map
) {
7514 SCHED_CPUMASK_VAR(this_core_map
, allmasks
);
7515 SCHED_CPUMASK_VAR(send_covered
, allmasks
);
7517 *this_core_map
= cpu_coregroup_map(i
);
7518 cpus_and(*this_core_map
, *this_core_map
, *cpu_map
);
7519 if (i
!= first_cpu(*this_core_map
))
7522 init_sched_build_groups(this_core_map
, cpu_map
,
7524 send_covered
, tmpmask
);
7528 /* Set up physical groups */
7529 for (i
= 0; i
< nr_node_ids
; i
++) {
7530 SCHED_CPUMASK_VAR(nodemask
, allmasks
);
7531 SCHED_CPUMASK_VAR(send_covered
, allmasks
);
7533 *nodemask
= node_to_cpumask(i
);
7534 cpus_and(*nodemask
, *nodemask
, *cpu_map
);
7535 if (cpus_empty(*nodemask
))
7538 init_sched_build_groups(nodemask
, cpu_map
,
7540 send_covered
, tmpmask
);
7544 /* Set up node groups */
7546 SCHED_CPUMASK_VAR(send_covered
, allmasks
);
7548 init_sched_build_groups(cpu_map
, cpu_map
,
7549 &cpu_to_allnodes_group
,
7550 send_covered
, tmpmask
);
7553 for (i
= 0; i
< nr_node_ids
; i
++) {
7554 /* Set up node groups */
7555 struct sched_group
*sg
, *prev
;
7556 SCHED_CPUMASK_VAR(nodemask
, allmasks
);
7557 SCHED_CPUMASK_VAR(domainspan
, allmasks
);
7558 SCHED_CPUMASK_VAR(covered
, allmasks
);
7561 *nodemask
= node_to_cpumask(i
);
7562 cpus_clear(*covered
);
7564 cpus_and(*nodemask
, *nodemask
, *cpu_map
);
7565 if (cpus_empty(*nodemask
)) {
7566 sched_group_nodes
[i
] = NULL
;
7570 sched_domain_node_span(i
, domainspan
);
7571 cpus_and(*domainspan
, *domainspan
, *cpu_map
);
7573 sg
= kmalloc_node(sizeof(struct sched_group
), GFP_KERNEL
, i
);
7575 printk(KERN_WARNING
"Can not alloc domain group for "
7579 sched_group_nodes
[i
] = sg
;
7580 for_each_cpu_mask_nr(j
, *nodemask
) {
7581 struct sched_domain
*sd
;
7583 sd
= &per_cpu(node_domains
, j
);
7586 sg
->__cpu_power
= 0;
7587 sg
->cpumask
= *nodemask
;
7589 cpus_or(*covered
, *covered
, *nodemask
);
7592 for (j
= 0; j
< nr_node_ids
; j
++) {
7593 SCHED_CPUMASK_VAR(notcovered
, allmasks
);
7594 int n
= (i
+ j
) % nr_node_ids
;
7595 node_to_cpumask_ptr(pnodemask
, n
);
7597 cpus_complement(*notcovered
, *covered
);
7598 cpus_and(*tmpmask
, *notcovered
, *cpu_map
);
7599 cpus_and(*tmpmask
, *tmpmask
, *domainspan
);
7600 if (cpus_empty(*tmpmask
))
7603 cpus_and(*tmpmask
, *tmpmask
, *pnodemask
);
7604 if (cpus_empty(*tmpmask
))
7607 sg
= kmalloc_node(sizeof(struct sched_group
),
7611 "Can not alloc domain group for node %d\n", j
);
7614 sg
->__cpu_power
= 0;
7615 sg
->cpumask
= *tmpmask
;
7616 sg
->next
= prev
->next
;
7617 cpus_or(*covered
, *covered
, *tmpmask
);
7624 /* Calculate CPU power for physical packages and nodes */
7625 #ifdef CONFIG_SCHED_SMT
7626 for_each_cpu_mask_nr(i
, *cpu_map
) {
7627 struct sched_domain
*sd
= &per_cpu(cpu_domains
, i
);
7629 init_sched_groups_power(i
, sd
);
7632 #ifdef CONFIG_SCHED_MC
7633 for_each_cpu_mask_nr(i
, *cpu_map
) {
7634 struct sched_domain
*sd
= &per_cpu(core_domains
, i
);
7636 init_sched_groups_power(i
, sd
);
7640 for_each_cpu_mask_nr(i
, *cpu_map
) {
7641 struct sched_domain
*sd
= &per_cpu(phys_domains
, i
);
7643 init_sched_groups_power(i
, sd
);
7647 for (i
= 0; i
< nr_node_ids
; i
++)
7648 init_numa_sched_groups_power(sched_group_nodes
[i
]);
7651 struct sched_group
*sg
;
7653 cpu_to_allnodes_group(first_cpu(*cpu_map
), cpu_map
, &sg
,
7655 init_numa_sched_groups_power(sg
);
7659 /* Attach the domains */
7660 for_each_cpu_mask_nr(i
, *cpu_map
) {
7661 struct sched_domain
*sd
;
7662 #ifdef CONFIG_SCHED_SMT
7663 sd
= &per_cpu(cpu_domains
, i
);
7664 #elif defined(CONFIG_SCHED_MC)
7665 sd
= &per_cpu(core_domains
, i
);
7667 sd
= &per_cpu(phys_domains
, i
);
7669 cpu_attach_domain(sd
, rd
, i
);
7672 sched_cpumask_free(allmasks
);
7677 free_sched_groups(cpu_map
, tmpmask
);
7678 sched_cpumask_free(allmasks
);
7684 static int build_sched_domains(const cpumask_t
*cpu_map
)
7686 return __build_sched_domains(cpu_map
, NULL
);
7689 static cpumask_t
*doms_cur
; /* current sched domains */
7690 static int ndoms_cur
; /* number of sched domains in 'doms_cur' */
7691 static struct sched_domain_attr
*dattr_cur
;
7692 /* attribues of custom domains in 'doms_cur' */
7695 * Special case: If a kmalloc of a doms_cur partition (array of
7696 * cpumask_t) fails, then fallback to a single sched domain,
7697 * as determined by the single cpumask_t fallback_doms.
7699 static cpumask_t fallback_doms
;
7702 * arch_update_cpu_topology lets virtualized architectures update the
7703 * cpu core maps. It is supposed to return 1 if the topology changed
7704 * or 0 if it stayed the same.
7706 int __attribute__((weak
)) arch_update_cpu_topology(void)
7712 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
7713 * For now this just excludes isolated cpus, but could be used to
7714 * exclude other special cases in the future.
7716 static int arch_init_sched_domains(const cpumask_t
*cpu_map
)
7720 arch_update_cpu_topology();
7722 doms_cur
= kmalloc(sizeof(cpumask_t
), GFP_KERNEL
);
7724 doms_cur
= &fallback_doms
;
7725 cpus_andnot(*doms_cur
, *cpu_map
, cpu_isolated_map
);
7727 err
= build_sched_domains(doms_cur
);
7728 register_sched_domain_sysctl();
7733 static void arch_destroy_sched_domains(const cpumask_t
*cpu_map
,
7736 free_sched_groups(cpu_map
, tmpmask
);
7740 * Detach sched domains from a group of cpus specified in cpu_map
7741 * These cpus will now be attached to the NULL domain
7743 static void detach_destroy_domains(const cpumask_t
*cpu_map
)
7748 for_each_cpu_mask_nr(i
, *cpu_map
)
7749 cpu_attach_domain(NULL
, &def_root_domain
, i
);
7750 synchronize_sched();
7751 arch_destroy_sched_domains(cpu_map
, &tmpmask
);
7754 /* handle null as "default" */
7755 static int dattrs_equal(struct sched_domain_attr
*cur
, int idx_cur
,
7756 struct sched_domain_attr
*new, int idx_new
)
7758 struct sched_domain_attr tmp
;
7765 return !memcmp(cur
? (cur
+ idx_cur
) : &tmp
,
7766 new ? (new + idx_new
) : &tmp
,
7767 sizeof(struct sched_domain_attr
));
7771 * Partition sched domains as specified by the 'ndoms_new'
7772 * cpumasks in the array doms_new[] of cpumasks. This compares
7773 * doms_new[] to the current sched domain partitioning, doms_cur[].
7774 * It destroys each deleted domain and builds each new domain.
7776 * 'doms_new' is an array of cpumask_t's of length 'ndoms_new'.
7777 * The masks don't intersect (don't overlap.) We should setup one
7778 * sched domain for each mask. CPUs not in any of the cpumasks will
7779 * not be load balanced. If the same cpumask appears both in the
7780 * current 'doms_cur' domains and in the new 'doms_new', we can leave
7783 * The passed in 'doms_new' should be kmalloc'd. This routine takes
7784 * ownership of it and will kfree it when done with it. If the caller
7785 * failed the kmalloc call, then it can pass in doms_new == NULL &&
7786 * ndoms_new == 1, and partition_sched_domains() will fallback to
7787 * the single partition 'fallback_doms', it also forces the domains
7790 * If doms_new == NULL it will be replaced with cpu_online_map.
7791 * ndoms_new == 0 is a special case for destroying existing domains,
7792 * and it will not create the default domain.
7794 * Call with hotplug lock held
7796 void partition_sched_domains(int ndoms_new
, cpumask_t
*doms_new
,
7797 struct sched_domain_attr
*dattr_new
)
7802 mutex_lock(&sched_domains_mutex
);
7804 /* always unregister in case we don't destroy any domains */
7805 unregister_sched_domain_sysctl();
7807 /* Let architecture update cpu core mappings. */
7808 new_topology
= arch_update_cpu_topology();
7810 n
= doms_new
? ndoms_new
: 0;
7812 /* Destroy deleted domains */
7813 for (i
= 0; i
< ndoms_cur
; i
++) {
7814 for (j
= 0; j
< n
&& !new_topology
; j
++) {
7815 if (cpus_equal(doms_cur
[i
], doms_new
[j
])
7816 && dattrs_equal(dattr_cur
, i
, dattr_new
, j
))
7819 /* no match - a current sched domain not in new doms_new[] */
7820 detach_destroy_domains(doms_cur
+ i
);
7825 if (doms_new
== NULL
) {
7827 doms_new
= &fallback_doms
;
7828 cpus_andnot(doms_new
[0], cpu_online_map
, cpu_isolated_map
);
7829 WARN_ON_ONCE(dattr_new
);
7832 /* Build new domains */
7833 for (i
= 0; i
< ndoms_new
; i
++) {
7834 for (j
= 0; j
< ndoms_cur
&& !new_topology
; j
++) {
7835 if (cpus_equal(doms_new
[i
], doms_cur
[j
])
7836 && dattrs_equal(dattr_new
, i
, dattr_cur
, j
))
7839 /* no match - add a new doms_new */
7840 __build_sched_domains(doms_new
+ i
,
7841 dattr_new
? dattr_new
+ i
: NULL
);
7846 /* Remember the new sched domains */
7847 if (doms_cur
!= &fallback_doms
)
7849 kfree(dattr_cur
); /* kfree(NULL) is safe */
7850 doms_cur
= doms_new
;
7851 dattr_cur
= dattr_new
;
7852 ndoms_cur
= ndoms_new
;
7854 register_sched_domain_sysctl();
7856 mutex_unlock(&sched_domains_mutex
);
7859 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
7860 int arch_reinit_sched_domains(void)
7864 /* Destroy domains first to force the rebuild */
7865 partition_sched_domains(0, NULL
, NULL
);
7867 rebuild_sched_domains();
7873 static ssize_t
sched_power_savings_store(const char *buf
, size_t count
, int smt
)
7877 if (buf
[0] != '0' && buf
[0] != '1')
7881 sched_smt_power_savings
= (buf
[0] == '1');
7883 sched_mc_power_savings
= (buf
[0] == '1');
7885 ret
= arch_reinit_sched_domains();
7887 return ret
? ret
: count
;
7890 #ifdef CONFIG_SCHED_MC
7891 static ssize_t
sched_mc_power_savings_show(struct sysdev_class
*class,
7894 return sprintf(page
, "%u\n", sched_mc_power_savings
);
7896 static ssize_t
sched_mc_power_savings_store(struct sysdev_class
*class,
7897 const char *buf
, size_t count
)
7899 return sched_power_savings_store(buf
, count
, 0);
7901 static SYSDEV_CLASS_ATTR(sched_mc_power_savings
, 0644,
7902 sched_mc_power_savings_show
,
7903 sched_mc_power_savings_store
);
7906 #ifdef CONFIG_SCHED_SMT
7907 static ssize_t
sched_smt_power_savings_show(struct sysdev_class
*dev
,
7910 return sprintf(page
, "%u\n", sched_smt_power_savings
);
7912 static ssize_t
sched_smt_power_savings_store(struct sysdev_class
*dev
,
7913 const char *buf
, size_t count
)
7915 return sched_power_savings_store(buf
, count
, 1);
7917 static SYSDEV_CLASS_ATTR(sched_smt_power_savings
, 0644,
7918 sched_smt_power_savings_show
,
7919 sched_smt_power_savings_store
);
7922 int sched_create_sysfs_power_savings_entries(struct sysdev_class
*cls
)
7926 #ifdef CONFIG_SCHED_SMT
7928 err
= sysfs_create_file(&cls
->kset
.kobj
,
7929 &attr_sched_smt_power_savings
.attr
);
7931 #ifdef CONFIG_SCHED_MC
7932 if (!err
&& mc_capable())
7933 err
= sysfs_create_file(&cls
->kset
.kobj
,
7934 &attr_sched_mc_power_savings
.attr
);
7938 #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
7940 #ifndef CONFIG_CPUSETS
7942 * Add online and remove offline CPUs from the scheduler domains.
7943 * When cpusets are enabled they take over this function.
7945 static int update_sched_domains(struct notifier_block
*nfb
,
7946 unsigned long action
, void *hcpu
)
7950 case CPU_ONLINE_FROZEN
:
7952 case CPU_DEAD_FROZEN
:
7953 partition_sched_domains(1, NULL
, NULL
);
7962 static int update_runtime(struct notifier_block
*nfb
,
7963 unsigned long action
, void *hcpu
)
7965 int cpu
= (int)(long)hcpu
;
7968 case CPU_DOWN_PREPARE
:
7969 case CPU_DOWN_PREPARE_FROZEN
:
7970 disable_runtime(cpu_rq(cpu
));
7973 case CPU_DOWN_FAILED
:
7974 case CPU_DOWN_FAILED_FROZEN
:
7976 case CPU_ONLINE_FROZEN
:
7977 enable_runtime(cpu_rq(cpu
));
7985 void __init
sched_init_smp(void)
7987 cpumask_t non_isolated_cpus
;
7989 #if defined(CONFIG_NUMA)
7990 sched_group_nodes_bycpu
= kzalloc(nr_cpu_ids
* sizeof(void **),
7992 BUG_ON(sched_group_nodes_bycpu
== NULL
);
7995 mutex_lock(&sched_domains_mutex
);
7996 arch_init_sched_domains(&cpu_online_map
);
7997 cpus_andnot(non_isolated_cpus
, cpu_possible_map
, cpu_isolated_map
);
7998 if (cpus_empty(non_isolated_cpus
))
7999 cpu_set(smp_processor_id(), non_isolated_cpus
);
8000 mutex_unlock(&sched_domains_mutex
);
8003 #ifndef CONFIG_CPUSETS
8004 /* XXX: Theoretical race here - CPU may be hotplugged now */
8005 hotcpu_notifier(update_sched_domains
, 0);
8008 /* RT runtime code needs to handle some hotplug events */
8009 hotcpu_notifier(update_runtime
, 0);
8013 /* Move init over to a non-isolated CPU */
8014 if (set_cpus_allowed_ptr(current
, &non_isolated_cpus
) < 0)
8016 sched_init_granularity();
8019 void __init
sched_init_smp(void)
8021 sched_init_granularity();
8023 #endif /* CONFIG_SMP */
8025 int in_sched_functions(unsigned long addr
)
8027 return in_lock_functions(addr
) ||
8028 (addr
>= (unsigned long)__sched_text_start
8029 && addr
< (unsigned long)__sched_text_end
);
8032 static void init_cfs_rq(struct cfs_rq
*cfs_rq
, struct rq
*rq
)
8034 cfs_rq
->tasks_timeline
= RB_ROOT
;
8035 INIT_LIST_HEAD(&cfs_rq
->tasks
);
8036 #ifdef CONFIG_FAIR_GROUP_SCHED
8039 cfs_rq
->min_vruntime
= (u64
)(-(1LL << 20));
8042 static void init_rt_rq(struct rt_rq
*rt_rq
, struct rq
*rq
)
8044 struct rt_prio_array
*array
;
8047 array
= &rt_rq
->active
;
8048 for (i
= 0; i
< MAX_RT_PRIO
; i
++) {
8049 INIT_LIST_HEAD(array
->queue
+ i
);
8050 __clear_bit(i
, array
->bitmap
);
8052 /* delimiter for bitsearch: */
8053 __set_bit(MAX_RT_PRIO
, array
->bitmap
);
8055 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
8056 rt_rq
->highest_prio
= MAX_RT_PRIO
;
8059 rt_rq
->rt_nr_migratory
= 0;
8060 rt_rq
->overloaded
= 0;
8064 rt_rq
->rt_throttled
= 0;
8065 rt_rq
->rt_runtime
= 0;
8066 spin_lock_init(&rt_rq
->rt_runtime_lock
);
8068 #ifdef CONFIG_RT_GROUP_SCHED
8069 rt_rq
->rt_nr_boosted
= 0;
8074 #ifdef CONFIG_FAIR_GROUP_SCHED
8075 static void init_tg_cfs_entry(struct task_group
*tg
, struct cfs_rq
*cfs_rq
,
8076 struct sched_entity
*se
, int cpu
, int add
,
8077 struct sched_entity
*parent
)
8079 struct rq
*rq
= cpu_rq(cpu
);
8080 tg
->cfs_rq
[cpu
] = cfs_rq
;
8081 init_cfs_rq(cfs_rq
, rq
);
8084 list_add(&cfs_rq
->leaf_cfs_rq_list
, &rq
->leaf_cfs_rq_list
);
8087 /* se could be NULL for init_task_group */
8092 se
->cfs_rq
= &rq
->cfs
;
8094 se
->cfs_rq
= parent
->my_q
;
8097 se
->load
.weight
= tg
->shares
;
8098 se
->load
.inv_weight
= 0;
8099 se
->parent
= parent
;
8103 #ifdef CONFIG_RT_GROUP_SCHED
8104 static void init_tg_rt_entry(struct task_group
*tg
, struct rt_rq
*rt_rq
,
8105 struct sched_rt_entity
*rt_se
, int cpu
, int add
,
8106 struct sched_rt_entity
*parent
)
8108 struct rq
*rq
= cpu_rq(cpu
);
8110 tg
->rt_rq
[cpu
] = rt_rq
;
8111 init_rt_rq(rt_rq
, rq
);
8113 rt_rq
->rt_se
= rt_se
;
8114 rt_rq
->rt_runtime
= tg
->rt_bandwidth
.rt_runtime
;
8116 list_add(&rt_rq
->leaf_rt_rq_list
, &rq
->leaf_rt_rq_list
);
8118 tg
->rt_se
[cpu
] = rt_se
;
8123 rt_se
->rt_rq
= &rq
->rt
;
8125 rt_se
->rt_rq
= parent
->my_q
;
8127 rt_se
->my_q
= rt_rq
;
8128 rt_se
->parent
= parent
;
8129 INIT_LIST_HEAD(&rt_se
->run_list
);
8133 void __init
sched_init(void)
8136 unsigned long alloc_size
= 0, ptr
;
8138 #ifdef CONFIG_FAIR_GROUP_SCHED
8139 alloc_size
+= 2 * nr_cpu_ids
* sizeof(void **);
8141 #ifdef CONFIG_RT_GROUP_SCHED
8142 alloc_size
+= 2 * nr_cpu_ids
* sizeof(void **);
8144 #ifdef CONFIG_USER_SCHED
8148 * As sched_init() is called before page_alloc is setup,
8149 * we use alloc_bootmem().
8152 ptr
= (unsigned long)alloc_bootmem(alloc_size
);
8154 #ifdef CONFIG_FAIR_GROUP_SCHED
8155 init_task_group
.se
= (struct sched_entity
**)ptr
;
8156 ptr
+= nr_cpu_ids
* sizeof(void **);
8158 init_task_group
.cfs_rq
= (struct cfs_rq
**)ptr
;
8159 ptr
+= nr_cpu_ids
* sizeof(void **);
8161 #ifdef CONFIG_USER_SCHED
8162 root_task_group
.se
= (struct sched_entity
**)ptr
;
8163 ptr
+= nr_cpu_ids
* sizeof(void **);
8165 root_task_group
.cfs_rq
= (struct cfs_rq
**)ptr
;
8166 ptr
+= nr_cpu_ids
* sizeof(void **);
8167 #endif /* CONFIG_USER_SCHED */
8168 #endif /* CONFIG_FAIR_GROUP_SCHED */
8169 #ifdef CONFIG_RT_GROUP_SCHED
8170 init_task_group
.rt_se
= (struct sched_rt_entity
**)ptr
;
8171 ptr
+= nr_cpu_ids
* sizeof(void **);
8173 init_task_group
.rt_rq
= (struct rt_rq
**)ptr
;
8174 ptr
+= nr_cpu_ids
* sizeof(void **);
8176 #ifdef CONFIG_USER_SCHED
8177 root_task_group
.rt_se
= (struct sched_rt_entity
**)ptr
;
8178 ptr
+= nr_cpu_ids
* sizeof(void **);
8180 root_task_group
.rt_rq
= (struct rt_rq
**)ptr
;
8181 ptr
+= nr_cpu_ids
* sizeof(void **);
8182 #endif /* CONFIG_USER_SCHED */
8183 #endif /* CONFIG_RT_GROUP_SCHED */
8187 init_defrootdomain();
8190 init_rt_bandwidth(&def_rt_bandwidth
,
8191 global_rt_period(), global_rt_runtime());
8193 #ifdef CONFIG_RT_GROUP_SCHED
8194 init_rt_bandwidth(&init_task_group
.rt_bandwidth
,
8195 global_rt_period(), global_rt_runtime());
8196 #ifdef CONFIG_USER_SCHED
8197 init_rt_bandwidth(&root_task_group
.rt_bandwidth
,
8198 global_rt_period(), RUNTIME_INF
);
8199 #endif /* CONFIG_USER_SCHED */
8200 #endif /* CONFIG_RT_GROUP_SCHED */
8202 #ifdef CONFIG_GROUP_SCHED
8203 list_add(&init_task_group
.list
, &task_groups
);
8204 INIT_LIST_HEAD(&init_task_group
.children
);
8206 #ifdef CONFIG_USER_SCHED
8207 INIT_LIST_HEAD(&root_task_group
.children
);
8208 init_task_group
.parent
= &root_task_group
;
8209 list_add(&init_task_group
.siblings
, &root_task_group
.children
);
8210 #endif /* CONFIG_USER_SCHED */
8211 #endif /* CONFIG_GROUP_SCHED */
8213 for_each_possible_cpu(i
) {
8217 spin_lock_init(&rq
->lock
);
8219 init_cfs_rq(&rq
->cfs
, rq
);
8220 init_rt_rq(&rq
->rt
, rq
);
8221 #ifdef CONFIG_FAIR_GROUP_SCHED
8222 init_task_group
.shares
= init_task_group_load
;
8223 INIT_LIST_HEAD(&rq
->leaf_cfs_rq_list
);
8224 #ifdef CONFIG_CGROUP_SCHED
8226 * How much cpu bandwidth does init_task_group get?
8228 * In case of task-groups formed thr' the cgroup filesystem, it
8229 * gets 100% of the cpu resources in the system. This overall
8230 * system cpu resource is divided among the tasks of
8231 * init_task_group and its child task-groups in a fair manner,
8232 * based on each entity's (task or task-group's) weight
8233 * (se->load.weight).
8235 * In other words, if init_task_group has 10 tasks of weight
8236 * 1024) and two child groups A0 and A1 (of weight 1024 each),
8237 * then A0's share of the cpu resource is:
8239 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
8241 * We achieve this by letting init_task_group's tasks sit
8242 * directly in rq->cfs (i.e init_task_group->se[] = NULL).
8244 init_tg_cfs_entry(&init_task_group
, &rq
->cfs
, NULL
, i
, 1, NULL
);
8245 #elif defined CONFIG_USER_SCHED
8246 root_task_group
.shares
= NICE_0_LOAD
;
8247 init_tg_cfs_entry(&root_task_group
, &rq
->cfs
, NULL
, i
, 0, NULL
);
8249 * In case of task-groups formed thr' the user id of tasks,
8250 * init_task_group represents tasks belonging to root user.
8251 * Hence it forms a sibling of all subsequent groups formed.
8252 * In this case, init_task_group gets only a fraction of overall
8253 * system cpu resource, based on the weight assigned to root
8254 * user's cpu share (INIT_TASK_GROUP_LOAD). This is accomplished
8255 * by letting tasks of init_task_group sit in a separate cfs_rq
8256 * (init_cfs_rq) and having one entity represent this group of
8257 * tasks in rq->cfs (i.e init_task_group->se[] != NULL).
8259 init_tg_cfs_entry(&init_task_group
,
8260 &per_cpu(init_cfs_rq
, i
),
8261 &per_cpu(init_sched_entity
, i
), i
, 1,
8262 root_task_group
.se
[i
]);
8265 #endif /* CONFIG_FAIR_GROUP_SCHED */
8267 rq
->rt
.rt_runtime
= def_rt_bandwidth
.rt_runtime
;
8268 #ifdef CONFIG_RT_GROUP_SCHED
8269 INIT_LIST_HEAD(&rq
->leaf_rt_rq_list
);
8270 #ifdef CONFIG_CGROUP_SCHED
8271 init_tg_rt_entry(&init_task_group
, &rq
->rt
, NULL
, i
, 1, NULL
);
8272 #elif defined CONFIG_USER_SCHED
8273 init_tg_rt_entry(&root_task_group
, &rq
->rt
, NULL
, i
, 0, NULL
);
8274 init_tg_rt_entry(&init_task_group
,
8275 &per_cpu(init_rt_rq
, i
),
8276 &per_cpu(init_sched_rt_entity
, i
), i
, 1,
8277 root_task_group
.rt_se
[i
]);
8281 for (j
= 0; j
< CPU_LOAD_IDX_MAX
; j
++)
8282 rq
->cpu_load
[j
] = 0;
8286 rq
->active_balance
= 0;
8287 rq
->next_balance
= jiffies
;
8291 rq
->migration_thread
= NULL
;
8292 INIT_LIST_HEAD(&rq
->migration_queue
);
8293 rq_attach_root(rq
, &def_root_domain
);
8296 atomic_set(&rq
->nr_iowait
, 0);
8299 set_load_weight(&init_task
);
8301 #ifdef CONFIG_PREEMPT_NOTIFIERS
8302 INIT_HLIST_HEAD(&init_task
.preempt_notifiers
);
8306 open_softirq(SCHED_SOFTIRQ
, run_rebalance_domains
);
8309 #ifdef CONFIG_RT_MUTEXES
8310 plist_head_init(&init_task
.pi_waiters
, &init_task
.pi_lock
);
8314 * The boot idle thread does lazy MMU switching as well:
8316 atomic_inc(&init_mm
.mm_count
);
8317 enter_lazy_tlb(&init_mm
, current
);
8320 * Make us the idle thread. Technically, schedule() should not be
8321 * called from this thread, however somewhere below it might be,
8322 * but because we are the idle thread, we just pick up running again
8323 * when this runqueue becomes "idle".
8325 init_idle(current
, smp_processor_id());
8327 * During early bootup we pretend to be a normal task:
8329 current
->sched_class
= &fair_sched_class
;
8331 scheduler_running
= 1;
8334 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
8335 void __might_sleep(char *file
, int line
)
8338 static unsigned long prev_jiffy
; /* ratelimiting */
8340 if ((!in_atomic() && !irqs_disabled()) ||
8341 system_state
!= SYSTEM_RUNNING
|| oops_in_progress
)
8343 if (time_before(jiffies
, prev_jiffy
+ HZ
) && prev_jiffy
)
8345 prev_jiffy
= jiffies
;
8348 "BUG: sleeping function called from invalid context at %s:%d\n",
8351 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
8352 in_atomic(), irqs_disabled(),
8353 current
->pid
, current
->comm
);
8355 debug_show_held_locks(current
);
8356 if (irqs_disabled())
8357 print_irqtrace_events(current
);
8361 EXPORT_SYMBOL(__might_sleep
);
8364 #ifdef CONFIG_MAGIC_SYSRQ
8365 static void normalize_task(struct rq
*rq
, struct task_struct
*p
)
8369 update_rq_clock(rq
);
8370 on_rq
= p
->se
.on_rq
;
8372 deactivate_task(rq
, p
, 0);
8373 __setscheduler(rq
, p
, SCHED_NORMAL
, 0);
8375 activate_task(rq
, p
, 0);
8376 resched_task(rq
->curr
);
8380 void normalize_rt_tasks(void)
8382 struct task_struct
*g
, *p
;
8383 unsigned long flags
;
8386 read_lock_irqsave(&tasklist_lock
, flags
);
8387 do_each_thread(g
, p
) {
8389 * Only normalize user tasks:
8394 p
->se
.exec_start
= 0;
8395 #ifdef CONFIG_SCHEDSTATS
8396 p
->se
.wait_start
= 0;
8397 p
->se
.sleep_start
= 0;
8398 p
->se
.block_start
= 0;
8403 * Renice negative nice level userspace
8406 if (TASK_NICE(p
) < 0 && p
->mm
)
8407 set_user_nice(p
, 0);
8411 spin_lock(&p
->pi_lock
);
8412 rq
= __task_rq_lock(p
);
8414 normalize_task(rq
, p
);
8416 __task_rq_unlock(rq
);
8417 spin_unlock(&p
->pi_lock
);
8418 } while_each_thread(g
, p
);
8420 read_unlock_irqrestore(&tasklist_lock
, flags
);
8423 #endif /* CONFIG_MAGIC_SYSRQ */
8427 * These functions are only useful for the IA64 MCA handling.
8429 * They can only be called when the whole system has been
8430 * stopped - every CPU needs to be quiescent, and no scheduling
8431 * activity can take place. Using them for anything else would
8432 * be a serious bug, and as a result, they aren't even visible
8433 * under any other configuration.
8437 * curr_task - return the current task for a given cpu.
8438 * @cpu: the processor in question.
8440 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
8442 struct task_struct
*curr_task(int cpu
)
8444 return cpu_curr(cpu
);
8448 * set_curr_task - set the current task for a given cpu.
8449 * @cpu: the processor in question.
8450 * @p: the task pointer to set.
8452 * Description: This function must only be used when non-maskable interrupts
8453 * are serviced on a separate stack. It allows the architecture to switch the
8454 * notion of the current task on a cpu in a non-blocking manner. This function
8455 * must be called with all CPU's synchronized, and interrupts disabled, the
8456 * and caller must save the original value of the current task (see
8457 * curr_task() above) and restore that value before reenabling interrupts and
8458 * re-starting the system.
8460 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
8462 void set_curr_task(int cpu
, struct task_struct
*p
)
8469 #ifdef CONFIG_FAIR_GROUP_SCHED
8470 static void free_fair_sched_group(struct task_group
*tg
)
8474 for_each_possible_cpu(i
) {
8476 kfree(tg
->cfs_rq
[i
]);
8486 int alloc_fair_sched_group(struct task_group
*tg
, struct task_group
*parent
)
8488 struct cfs_rq
*cfs_rq
;
8489 struct sched_entity
*se
;
8493 tg
->cfs_rq
= kzalloc(sizeof(cfs_rq
) * nr_cpu_ids
, GFP_KERNEL
);
8496 tg
->se
= kzalloc(sizeof(se
) * nr_cpu_ids
, GFP_KERNEL
);
8500 tg
->shares
= NICE_0_LOAD
;
8502 for_each_possible_cpu(i
) {
8505 cfs_rq
= kzalloc_node(sizeof(struct cfs_rq
),
8506 GFP_KERNEL
, cpu_to_node(i
));
8510 se
= kzalloc_node(sizeof(struct sched_entity
),
8511 GFP_KERNEL
, cpu_to_node(i
));
8515 init_tg_cfs_entry(tg
, cfs_rq
, se
, i
, 0, parent
->se
[i
]);
8524 static inline void register_fair_sched_group(struct task_group
*tg
, int cpu
)
8526 list_add_rcu(&tg
->cfs_rq
[cpu
]->leaf_cfs_rq_list
,
8527 &cpu_rq(cpu
)->leaf_cfs_rq_list
);
8530 static inline void unregister_fair_sched_group(struct task_group
*tg
, int cpu
)
8532 list_del_rcu(&tg
->cfs_rq
[cpu
]->leaf_cfs_rq_list
);
8534 #else /* !CONFG_FAIR_GROUP_SCHED */
8535 static inline void free_fair_sched_group(struct task_group
*tg
)
8540 int alloc_fair_sched_group(struct task_group
*tg
, struct task_group
*parent
)
8545 static inline void register_fair_sched_group(struct task_group
*tg
, int cpu
)
8549 static inline void unregister_fair_sched_group(struct task_group
*tg
, int cpu
)
8552 #endif /* CONFIG_FAIR_GROUP_SCHED */
8554 #ifdef CONFIG_RT_GROUP_SCHED
8555 static void free_rt_sched_group(struct task_group
*tg
)
8559 destroy_rt_bandwidth(&tg
->rt_bandwidth
);
8561 for_each_possible_cpu(i
) {
8563 kfree(tg
->rt_rq
[i
]);
8565 kfree(tg
->rt_se
[i
]);
8573 int alloc_rt_sched_group(struct task_group
*tg
, struct task_group
*parent
)
8575 struct rt_rq
*rt_rq
;
8576 struct sched_rt_entity
*rt_se
;
8580 tg
->rt_rq
= kzalloc(sizeof(rt_rq
) * nr_cpu_ids
, GFP_KERNEL
);
8583 tg
->rt_se
= kzalloc(sizeof(rt_se
) * nr_cpu_ids
, GFP_KERNEL
);
8587 init_rt_bandwidth(&tg
->rt_bandwidth
,
8588 ktime_to_ns(def_rt_bandwidth
.rt_period
), 0);
8590 for_each_possible_cpu(i
) {
8593 rt_rq
= kzalloc_node(sizeof(struct rt_rq
),
8594 GFP_KERNEL
, cpu_to_node(i
));
8598 rt_se
= kzalloc_node(sizeof(struct sched_rt_entity
),
8599 GFP_KERNEL
, cpu_to_node(i
));
8603 init_tg_rt_entry(tg
, rt_rq
, rt_se
, i
, 0, parent
->rt_se
[i
]);
8612 static inline void register_rt_sched_group(struct task_group
*tg
, int cpu
)
8614 list_add_rcu(&tg
->rt_rq
[cpu
]->leaf_rt_rq_list
,
8615 &cpu_rq(cpu
)->leaf_rt_rq_list
);
8618 static inline void unregister_rt_sched_group(struct task_group
*tg
, int cpu
)
8620 list_del_rcu(&tg
->rt_rq
[cpu
]->leaf_rt_rq_list
);
8622 #else /* !CONFIG_RT_GROUP_SCHED */
8623 static inline void free_rt_sched_group(struct task_group
*tg
)
8628 int alloc_rt_sched_group(struct task_group
*tg
, struct task_group
*parent
)
8633 static inline void register_rt_sched_group(struct task_group
*tg
, int cpu
)
8637 static inline void unregister_rt_sched_group(struct task_group
*tg
, int cpu
)
8640 #endif /* CONFIG_RT_GROUP_SCHED */
8642 #ifdef CONFIG_GROUP_SCHED
8643 static void free_sched_group(struct task_group
*tg
)
8645 free_fair_sched_group(tg
);
8646 free_rt_sched_group(tg
);
8650 /* allocate runqueue etc for a new task group */
8651 struct task_group
*sched_create_group(struct task_group
*parent
)
8653 struct task_group
*tg
;
8654 unsigned long flags
;
8657 tg
= kzalloc(sizeof(*tg
), GFP_KERNEL
);
8659 return ERR_PTR(-ENOMEM
);
8661 if (!alloc_fair_sched_group(tg
, parent
))
8664 if (!alloc_rt_sched_group(tg
, parent
))
8667 spin_lock_irqsave(&task_group_lock
, flags
);
8668 for_each_possible_cpu(i
) {
8669 register_fair_sched_group(tg
, i
);
8670 register_rt_sched_group(tg
, i
);
8672 list_add_rcu(&tg
->list
, &task_groups
);
8674 WARN_ON(!parent
); /* root should already exist */
8676 tg
->parent
= parent
;
8677 INIT_LIST_HEAD(&tg
->children
);
8678 list_add_rcu(&tg
->siblings
, &parent
->children
);
8679 spin_unlock_irqrestore(&task_group_lock
, flags
);
8684 free_sched_group(tg
);
8685 return ERR_PTR(-ENOMEM
);
8688 /* rcu callback to free various structures associated with a task group */
8689 static void free_sched_group_rcu(struct rcu_head
*rhp
)
8691 /* now it should be safe to free those cfs_rqs */
8692 free_sched_group(container_of(rhp
, struct task_group
, rcu
));
8695 /* Destroy runqueue etc associated with a task group */
8696 void sched_destroy_group(struct task_group
*tg
)
8698 unsigned long flags
;
8701 spin_lock_irqsave(&task_group_lock
, flags
);
8702 for_each_possible_cpu(i
) {
8703 unregister_fair_sched_group(tg
, i
);
8704 unregister_rt_sched_group(tg
, i
);
8706 list_del_rcu(&tg
->list
);
8707 list_del_rcu(&tg
->siblings
);
8708 spin_unlock_irqrestore(&task_group_lock
, flags
);
8710 /* wait for possible concurrent references to cfs_rqs complete */
8711 call_rcu(&tg
->rcu
, free_sched_group_rcu
);
8714 /* change task's runqueue when it moves between groups.
8715 * The caller of this function should have put the task in its new group
8716 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
8717 * reflect its new group.
8719 void sched_move_task(struct task_struct
*tsk
)
8722 unsigned long flags
;
8725 rq
= task_rq_lock(tsk
, &flags
);
8727 update_rq_clock(rq
);
8729 running
= task_current(rq
, tsk
);
8730 on_rq
= tsk
->se
.on_rq
;
8733 dequeue_task(rq
, tsk
, 0);
8734 if (unlikely(running
))
8735 tsk
->sched_class
->put_prev_task(rq
, tsk
);
8737 set_task_rq(tsk
, task_cpu(tsk
));
8739 #ifdef CONFIG_FAIR_GROUP_SCHED
8740 if (tsk
->sched_class
->moved_group
)
8741 tsk
->sched_class
->moved_group(tsk
);
8744 if (unlikely(running
))
8745 tsk
->sched_class
->set_curr_task(rq
);
8747 enqueue_task(rq
, tsk
, 0);
8749 task_rq_unlock(rq
, &flags
);
8751 #endif /* CONFIG_GROUP_SCHED */
8753 #ifdef CONFIG_FAIR_GROUP_SCHED
8754 static void __set_se_shares(struct sched_entity
*se
, unsigned long shares
)
8756 struct cfs_rq
*cfs_rq
= se
->cfs_rq
;
8761 dequeue_entity(cfs_rq
, se
, 0);
8763 se
->load
.weight
= shares
;
8764 se
->load
.inv_weight
= 0;
8767 enqueue_entity(cfs_rq
, se
, 0);
8770 static void set_se_shares(struct sched_entity
*se
, unsigned long shares
)
8772 struct cfs_rq
*cfs_rq
= se
->cfs_rq
;
8773 struct rq
*rq
= cfs_rq
->rq
;
8774 unsigned long flags
;
8776 spin_lock_irqsave(&rq
->lock
, flags
);
8777 __set_se_shares(se
, shares
);
8778 spin_unlock_irqrestore(&rq
->lock
, flags
);
8781 static DEFINE_MUTEX(shares_mutex
);
8783 int sched_group_set_shares(struct task_group
*tg
, unsigned long shares
)
8786 unsigned long flags
;
8789 * We can't change the weight of the root cgroup.
8794 if (shares
< MIN_SHARES
)
8795 shares
= MIN_SHARES
;
8796 else if (shares
> MAX_SHARES
)
8797 shares
= MAX_SHARES
;
8799 mutex_lock(&shares_mutex
);
8800 if (tg
->shares
== shares
)
8803 spin_lock_irqsave(&task_group_lock
, flags
);
8804 for_each_possible_cpu(i
)
8805 unregister_fair_sched_group(tg
, i
);
8806 list_del_rcu(&tg
->siblings
);
8807 spin_unlock_irqrestore(&task_group_lock
, flags
);
8809 /* wait for any ongoing reference to this group to finish */
8810 synchronize_sched();
8813 * Now we are free to modify the group's share on each cpu
8814 * w/o tripping rebalance_share or load_balance_fair.
8816 tg
->shares
= shares
;
8817 for_each_possible_cpu(i
) {
8821 cfs_rq_set_shares(tg
->cfs_rq
[i
], 0);
8822 set_se_shares(tg
->se
[i
], shares
);
8826 * Enable load balance activity on this group, by inserting it back on
8827 * each cpu's rq->leaf_cfs_rq_list.
8829 spin_lock_irqsave(&task_group_lock
, flags
);
8830 for_each_possible_cpu(i
)
8831 register_fair_sched_group(tg
, i
);
8832 list_add_rcu(&tg
->siblings
, &tg
->parent
->children
);
8833 spin_unlock_irqrestore(&task_group_lock
, flags
);
8835 mutex_unlock(&shares_mutex
);
8839 unsigned long sched_group_shares(struct task_group
*tg
)
8845 #ifdef CONFIG_RT_GROUP_SCHED
8847 * Ensure that the real time constraints are schedulable.
8849 static DEFINE_MUTEX(rt_constraints_mutex
);
8851 static unsigned long to_ratio(u64 period
, u64 runtime
)
8853 if (runtime
== RUNTIME_INF
)
8856 return div64_u64(runtime
<< 20, period
);
8859 /* Must be called with tasklist_lock held */
8860 static inline int tg_has_rt_tasks(struct task_group
*tg
)
8862 struct task_struct
*g
, *p
;
8864 do_each_thread(g
, p
) {
8865 if (rt_task(p
) && rt_rq_of_se(&p
->rt
)->tg
== tg
)
8867 } while_each_thread(g
, p
);
8872 struct rt_schedulable_data
{
8873 struct task_group
*tg
;
8878 static int tg_schedulable(struct task_group
*tg
, void *data
)
8880 struct rt_schedulable_data
*d
= data
;
8881 struct task_group
*child
;
8882 unsigned long total
, sum
= 0;
8883 u64 period
, runtime
;
8885 period
= ktime_to_ns(tg
->rt_bandwidth
.rt_period
);
8886 runtime
= tg
->rt_bandwidth
.rt_runtime
;
8889 period
= d
->rt_period
;
8890 runtime
= d
->rt_runtime
;
8894 * Cannot have more runtime than the period.
8896 if (runtime
> period
&& runtime
!= RUNTIME_INF
)
8900 * Ensure we don't starve existing RT tasks.
8902 if (rt_bandwidth_enabled() && !runtime
&& tg_has_rt_tasks(tg
))
8905 total
= to_ratio(period
, runtime
);
8908 * Nobody can have more than the global setting allows.
8910 if (total
> to_ratio(global_rt_period(), global_rt_runtime()))
8914 * The sum of our children's runtime should not exceed our own.
8916 list_for_each_entry_rcu(child
, &tg
->children
, siblings
) {
8917 period
= ktime_to_ns(child
->rt_bandwidth
.rt_period
);
8918 runtime
= child
->rt_bandwidth
.rt_runtime
;
8920 if (child
== d
->tg
) {
8921 period
= d
->rt_period
;
8922 runtime
= d
->rt_runtime
;
8925 sum
+= to_ratio(period
, runtime
);
8934 static int __rt_schedulable(struct task_group
*tg
, u64 period
, u64 runtime
)
8936 struct rt_schedulable_data data
= {
8938 .rt_period
= period
,
8939 .rt_runtime
= runtime
,
8942 return walk_tg_tree(tg_schedulable
, tg_nop
, &data
);
8945 static int tg_set_bandwidth(struct task_group
*tg
,
8946 u64 rt_period
, u64 rt_runtime
)
8950 mutex_lock(&rt_constraints_mutex
);
8951 read_lock(&tasklist_lock
);
8952 err
= __rt_schedulable(tg
, rt_period
, rt_runtime
);
8956 spin_lock_irq(&tg
->rt_bandwidth
.rt_runtime_lock
);
8957 tg
->rt_bandwidth
.rt_period
= ns_to_ktime(rt_period
);
8958 tg
->rt_bandwidth
.rt_runtime
= rt_runtime
;
8960 for_each_possible_cpu(i
) {
8961 struct rt_rq
*rt_rq
= tg
->rt_rq
[i
];
8963 spin_lock(&rt_rq
->rt_runtime_lock
);
8964 rt_rq
->rt_runtime
= rt_runtime
;
8965 spin_unlock(&rt_rq
->rt_runtime_lock
);
8967 spin_unlock_irq(&tg
->rt_bandwidth
.rt_runtime_lock
);
8969 read_unlock(&tasklist_lock
);
8970 mutex_unlock(&rt_constraints_mutex
);
8975 int sched_group_set_rt_runtime(struct task_group
*tg
, long rt_runtime_us
)
8977 u64 rt_runtime
, rt_period
;
8979 rt_period
= ktime_to_ns(tg
->rt_bandwidth
.rt_period
);
8980 rt_runtime
= (u64
)rt_runtime_us
* NSEC_PER_USEC
;
8981 if (rt_runtime_us
< 0)
8982 rt_runtime
= RUNTIME_INF
;
8984 return tg_set_bandwidth(tg
, rt_period
, rt_runtime
);
8987 long sched_group_rt_runtime(struct task_group
*tg
)
8991 if (tg
->rt_bandwidth
.rt_runtime
== RUNTIME_INF
)
8994 rt_runtime_us
= tg
->rt_bandwidth
.rt_runtime
;
8995 do_div(rt_runtime_us
, NSEC_PER_USEC
);
8996 return rt_runtime_us
;
8999 int sched_group_set_rt_period(struct task_group
*tg
, long rt_period_us
)
9001 u64 rt_runtime
, rt_period
;
9003 rt_period
= (u64
)rt_period_us
* NSEC_PER_USEC
;
9004 rt_runtime
= tg
->rt_bandwidth
.rt_runtime
;
9009 return tg_set_bandwidth(tg
, rt_period
, rt_runtime
);
9012 long sched_group_rt_period(struct task_group
*tg
)
9016 rt_period_us
= ktime_to_ns(tg
->rt_bandwidth
.rt_period
);
9017 do_div(rt_period_us
, NSEC_PER_USEC
);
9018 return rt_period_us
;
9021 static int sched_rt_global_constraints(void)
9023 u64 runtime
, period
;
9026 if (sysctl_sched_rt_period
<= 0)
9029 runtime
= global_rt_runtime();
9030 period
= global_rt_period();
9033 * Sanity check on the sysctl variables.
9035 if (runtime
> period
&& runtime
!= RUNTIME_INF
)
9038 mutex_lock(&rt_constraints_mutex
);
9039 read_lock(&tasklist_lock
);
9040 ret
= __rt_schedulable(NULL
, 0, 0);
9041 read_unlock(&tasklist_lock
);
9042 mutex_unlock(&rt_constraints_mutex
);
9046 #else /* !CONFIG_RT_GROUP_SCHED */
9047 static int sched_rt_global_constraints(void)
9049 unsigned long flags
;
9052 if (sysctl_sched_rt_period
<= 0)
9055 spin_lock_irqsave(&def_rt_bandwidth
.rt_runtime_lock
, flags
);
9056 for_each_possible_cpu(i
) {
9057 struct rt_rq
*rt_rq
= &cpu_rq(i
)->rt
;
9059 spin_lock(&rt_rq
->rt_runtime_lock
);
9060 rt_rq
->rt_runtime
= global_rt_runtime();
9061 spin_unlock(&rt_rq
->rt_runtime_lock
);
9063 spin_unlock_irqrestore(&def_rt_bandwidth
.rt_runtime_lock
, flags
);
9067 #endif /* CONFIG_RT_GROUP_SCHED */
9069 int sched_rt_handler(struct ctl_table
*table
, int write
,
9070 struct file
*filp
, void __user
*buffer
, size_t *lenp
,
9074 int old_period
, old_runtime
;
9075 static DEFINE_MUTEX(mutex
);
9078 old_period
= sysctl_sched_rt_period
;
9079 old_runtime
= sysctl_sched_rt_runtime
;
9081 ret
= proc_dointvec(table
, write
, filp
, buffer
, lenp
, ppos
);
9083 if (!ret
&& write
) {
9084 ret
= sched_rt_global_constraints();
9086 sysctl_sched_rt_period
= old_period
;
9087 sysctl_sched_rt_runtime
= old_runtime
;
9089 def_rt_bandwidth
.rt_runtime
= global_rt_runtime();
9090 def_rt_bandwidth
.rt_period
=
9091 ns_to_ktime(global_rt_period());
9094 mutex_unlock(&mutex
);
9099 #ifdef CONFIG_CGROUP_SCHED
9101 /* return corresponding task_group object of a cgroup */
9102 static inline struct task_group
*cgroup_tg(struct cgroup
*cgrp
)
9104 return container_of(cgroup_subsys_state(cgrp
, cpu_cgroup_subsys_id
),
9105 struct task_group
, css
);
9108 static struct cgroup_subsys_state
*
9109 cpu_cgroup_create(struct cgroup_subsys
*ss
, struct cgroup
*cgrp
)
9111 struct task_group
*tg
, *parent
;
9113 if (!cgrp
->parent
) {
9114 /* This is early initialization for the top cgroup */
9115 return &init_task_group
.css
;
9118 parent
= cgroup_tg(cgrp
->parent
);
9119 tg
= sched_create_group(parent
);
9121 return ERR_PTR(-ENOMEM
);
9127 cpu_cgroup_destroy(struct cgroup_subsys
*ss
, struct cgroup
*cgrp
)
9129 struct task_group
*tg
= cgroup_tg(cgrp
);
9131 sched_destroy_group(tg
);
9135 cpu_cgroup_can_attach(struct cgroup_subsys
*ss
, struct cgroup
*cgrp
,
9136 struct task_struct
*tsk
)
9138 #ifdef CONFIG_RT_GROUP_SCHED
9139 /* Don't accept realtime tasks when there is no way for them to run */
9140 if (rt_task(tsk
) && cgroup_tg(cgrp
)->rt_bandwidth
.rt_runtime
== 0)
9143 /* We don't support RT-tasks being in separate groups */
9144 if (tsk
->sched_class
!= &fair_sched_class
)
9152 cpu_cgroup_attach(struct cgroup_subsys
*ss
, struct cgroup
*cgrp
,
9153 struct cgroup
*old_cont
, struct task_struct
*tsk
)
9155 sched_move_task(tsk
);
9158 #ifdef CONFIG_FAIR_GROUP_SCHED
9159 static int cpu_shares_write_u64(struct cgroup
*cgrp
, struct cftype
*cftype
,
9162 return sched_group_set_shares(cgroup_tg(cgrp
), shareval
);
9165 static u64
cpu_shares_read_u64(struct cgroup
*cgrp
, struct cftype
*cft
)
9167 struct task_group
*tg
= cgroup_tg(cgrp
);
9169 return (u64
) tg
->shares
;
9171 #endif /* CONFIG_FAIR_GROUP_SCHED */
9173 #ifdef CONFIG_RT_GROUP_SCHED
9174 static int cpu_rt_runtime_write(struct cgroup
*cgrp
, struct cftype
*cft
,
9177 return sched_group_set_rt_runtime(cgroup_tg(cgrp
), val
);
9180 static s64
cpu_rt_runtime_read(struct cgroup
*cgrp
, struct cftype
*cft
)
9182 return sched_group_rt_runtime(cgroup_tg(cgrp
));
9185 static int cpu_rt_period_write_uint(struct cgroup
*cgrp
, struct cftype
*cftype
,
9188 return sched_group_set_rt_period(cgroup_tg(cgrp
), rt_period_us
);
9191 static u64
cpu_rt_period_read_uint(struct cgroup
*cgrp
, struct cftype
*cft
)
9193 return sched_group_rt_period(cgroup_tg(cgrp
));
9195 #endif /* CONFIG_RT_GROUP_SCHED */
9197 static struct cftype cpu_files
[] = {
9198 #ifdef CONFIG_FAIR_GROUP_SCHED
9201 .read_u64
= cpu_shares_read_u64
,
9202 .write_u64
= cpu_shares_write_u64
,
9205 #ifdef CONFIG_RT_GROUP_SCHED
9207 .name
= "rt_runtime_us",
9208 .read_s64
= cpu_rt_runtime_read
,
9209 .write_s64
= cpu_rt_runtime_write
,
9212 .name
= "rt_period_us",
9213 .read_u64
= cpu_rt_period_read_uint
,
9214 .write_u64
= cpu_rt_period_write_uint
,
9219 static int cpu_cgroup_populate(struct cgroup_subsys
*ss
, struct cgroup
*cont
)
9221 return cgroup_add_files(cont
, ss
, cpu_files
, ARRAY_SIZE(cpu_files
));
9224 struct cgroup_subsys cpu_cgroup_subsys
= {
9226 .create
= cpu_cgroup_create
,
9227 .destroy
= cpu_cgroup_destroy
,
9228 .can_attach
= cpu_cgroup_can_attach
,
9229 .attach
= cpu_cgroup_attach
,
9230 .populate
= cpu_cgroup_populate
,
9231 .subsys_id
= cpu_cgroup_subsys_id
,
9235 #endif /* CONFIG_CGROUP_SCHED */
9237 #ifdef CONFIG_CGROUP_CPUACCT
9240 * CPU accounting code for task groups.
9242 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
9243 * (balbir@in.ibm.com).
9246 /* track cpu usage of a group of tasks and its child groups */
9248 struct cgroup_subsys_state css
;
9249 /* cpuusage holds pointer to a u64-type object on every cpu */
9251 struct cpuacct
*parent
;
9254 struct cgroup_subsys cpuacct_subsys
;
9256 /* return cpu accounting group corresponding to this container */
9257 static inline struct cpuacct
*cgroup_ca(struct cgroup
*cgrp
)
9259 return container_of(cgroup_subsys_state(cgrp
, cpuacct_subsys_id
),
9260 struct cpuacct
, css
);
9263 /* return cpu accounting group to which this task belongs */
9264 static inline struct cpuacct
*task_ca(struct task_struct
*tsk
)
9266 return container_of(task_subsys_state(tsk
, cpuacct_subsys_id
),
9267 struct cpuacct
, css
);
9270 /* create a new cpu accounting group */
9271 static struct cgroup_subsys_state
*cpuacct_create(
9272 struct cgroup_subsys
*ss
, struct cgroup
*cgrp
)
9274 struct cpuacct
*ca
= kzalloc(sizeof(*ca
), GFP_KERNEL
);
9277 return ERR_PTR(-ENOMEM
);
9279 ca
->cpuusage
= alloc_percpu(u64
);
9280 if (!ca
->cpuusage
) {
9282 return ERR_PTR(-ENOMEM
);
9286 ca
->parent
= cgroup_ca(cgrp
->parent
);
9291 /* destroy an existing cpu accounting group */
9293 cpuacct_destroy(struct cgroup_subsys
*ss
, struct cgroup
*cgrp
)
9295 struct cpuacct
*ca
= cgroup_ca(cgrp
);
9297 free_percpu(ca
->cpuusage
);
9301 static u64
cpuacct_cpuusage_read(struct cpuacct
*ca
, int cpu
)
9303 u64
*cpuusage
= percpu_ptr(ca
->cpuusage
, cpu
);
9306 #ifndef CONFIG_64BIT
9308 * Take rq->lock to make 64-bit read safe on 32-bit platforms.
9310 spin_lock_irq(&cpu_rq(cpu
)->lock
);
9312 spin_unlock_irq(&cpu_rq(cpu
)->lock
);
9320 static void cpuacct_cpuusage_write(struct cpuacct
*ca
, int cpu
, u64 val
)
9322 u64
*cpuusage
= percpu_ptr(ca
->cpuusage
, cpu
);
9324 #ifndef CONFIG_64BIT
9326 * Take rq->lock to make 64-bit write safe on 32-bit platforms.
9328 spin_lock_irq(&cpu_rq(cpu
)->lock
);
9330 spin_unlock_irq(&cpu_rq(cpu
)->lock
);
9336 /* return total cpu usage (in nanoseconds) of a group */
9337 static u64
cpuusage_read(struct cgroup
*cgrp
, struct cftype
*cft
)
9339 struct cpuacct
*ca
= cgroup_ca(cgrp
);
9340 u64 totalcpuusage
= 0;
9343 for_each_present_cpu(i
)
9344 totalcpuusage
+= cpuacct_cpuusage_read(ca
, i
);
9346 return totalcpuusage
;
9349 static int cpuusage_write(struct cgroup
*cgrp
, struct cftype
*cftype
,
9352 struct cpuacct
*ca
= cgroup_ca(cgrp
);
9361 for_each_present_cpu(i
)
9362 cpuacct_cpuusage_write(ca
, i
, 0);
9368 static int cpuacct_percpu_seq_read(struct cgroup
*cgroup
, struct cftype
*cft
,
9371 struct cpuacct
*ca
= cgroup_ca(cgroup
);
9375 for_each_present_cpu(i
) {
9376 percpu
= cpuacct_cpuusage_read(ca
, i
);
9377 seq_printf(m
, "%llu ", (unsigned long long) percpu
);
9379 seq_printf(m
, "\n");
9383 static struct cftype files
[] = {
9386 .read_u64
= cpuusage_read
,
9387 .write_u64
= cpuusage_write
,
9390 .name
= "usage_percpu",
9391 .read_seq_string
= cpuacct_percpu_seq_read
,
9396 static int cpuacct_populate(struct cgroup_subsys
*ss
, struct cgroup
*cgrp
)
9398 return cgroup_add_files(cgrp
, ss
, files
, ARRAY_SIZE(files
));
9402 * charge this task's execution time to its accounting group.
9404 * called with rq->lock held.
9406 static void cpuacct_charge(struct task_struct
*tsk
, u64 cputime
)
9411 if (!cpuacct_subsys
.active
)
9414 cpu
= task_cpu(tsk
);
9417 for (; ca
; ca
= ca
->parent
) {
9418 u64
*cpuusage
= percpu_ptr(ca
->cpuusage
, cpu
);
9419 *cpuusage
+= cputime
;
9423 struct cgroup_subsys cpuacct_subsys
= {
9425 .create
= cpuacct_create
,
9426 .destroy
= cpuacct_destroy
,
9427 .populate
= cpuacct_populate
,
9428 .subsys_id
= cpuacct_subsys_id
,
9430 #endif /* CONFIG_CGROUP_CPUACCT */