2 * New driver for Marvell Yukon chipset and SysKonnect Gigabit
3 * Ethernet adapters. Based on earlier sk98lin, e100 and
4 * FreeBSD if_sk drivers.
6 * This driver intentionally does not support all the features
7 * of the original driver such as link fail-over and link management because
8 * those should be done at higher levels.
10 * Copyright (C) 2004, 2005 Stephen Hemminger <shemminger@osdl.org>
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2 of the License.
16 * This program is distributed in the hope that it will be useful,
17 * but WITHOUT ANY WARRANTY; without even the implied warranty of
18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 * GNU General Public License for more details.
21 * You should have received a copy of the GNU General Public License
22 * along with this program; if not, write to the Free Software
23 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
27 #include <linux/kernel.h>
28 #include <linux/module.h>
29 #include <linux/moduleparam.h>
30 #include <linux/netdevice.h>
31 #include <linux/etherdevice.h>
32 #include <linux/ethtool.h>
33 #include <linux/pci.h>
34 #include <linux/if_vlan.h>
36 #include <linux/delay.h>
37 #include <linux/crc32.h>
38 #include <linux/dma-mapping.h>
39 #include <linux/debugfs.h>
40 #include <linux/seq_file.h>
41 #include <linux/mii.h>
46 #define DRV_NAME "skge"
47 #define DRV_VERSION "1.12"
48 #define PFX DRV_NAME " "
50 #define DEFAULT_TX_RING_SIZE 128
51 #define DEFAULT_RX_RING_SIZE 512
52 #define MAX_TX_RING_SIZE 1024
53 #define TX_LOW_WATER (MAX_SKB_FRAGS + 1)
54 #define MAX_RX_RING_SIZE 4096
55 #define RX_COPY_THRESHOLD 128
56 #define RX_BUF_SIZE 1536
57 #define PHY_RETRIES 1000
58 #define ETH_JUMBO_MTU 9000
59 #define TX_WATCHDOG (5 * HZ)
60 #define NAPI_WEIGHT 64
64 #define SKGE_EEPROM_MAGIC 0x9933aabb
67 MODULE_DESCRIPTION("SysKonnect Gigabit Ethernet driver");
68 MODULE_AUTHOR("Stephen Hemminger <shemminger@linux-foundation.org>");
69 MODULE_LICENSE("GPL");
70 MODULE_VERSION(DRV_VERSION
);
72 static const u32 default_msg
73 = NETIF_MSG_DRV
| NETIF_MSG_PROBE
| NETIF_MSG_LINK
74 | NETIF_MSG_IFUP
| NETIF_MSG_IFDOWN
;
76 static int debug
= -1; /* defaults above */
77 module_param(debug
, int, 0);
78 MODULE_PARM_DESC(debug
, "Debug level (0=none,...,16=all)");
80 static const struct pci_device_id skge_id_table
[] = {
81 { PCI_DEVICE(PCI_VENDOR_ID_3COM
, PCI_DEVICE_ID_3COM_3C940
) },
82 { PCI_DEVICE(PCI_VENDOR_ID_3COM
, PCI_DEVICE_ID_3COM_3C940B
) },
83 { PCI_DEVICE(PCI_VENDOR_ID_SYSKONNECT
, PCI_DEVICE_ID_SYSKONNECT_GE
) },
84 { PCI_DEVICE(PCI_VENDOR_ID_SYSKONNECT
, PCI_DEVICE_ID_SYSKONNECT_YU
) },
85 { PCI_DEVICE(PCI_VENDOR_ID_DLINK
, PCI_DEVICE_ID_DLINK_DGE510T
) },
86 { PCI_DEVICE(PCI_VENDOR_ID_DLINK
, 0x4b01) }, /* DGE-530T */
87 { PCI_DEVICE(PCI_VENDOR_ID_MARVELL
, 0x4320) },
88 { PCI_DEVICE(PCI_VENDOR_ID_MARVELL
, 0x5005) }, /* Belkin */
89 { PCI_DEVICE(PCI_VENDOR_ID_CNET
, PCI_DEVICE_ID_CNET_GIGACARD
) },
90 { PCI_DEVICE(PCI_VENDOR_ID_LINKSYS
, PCI_DEVICE_ID_LINKSYS_EG1064
) },
91 { PCI_VENDOR_ID_LINKSYS
, 0x1032, PCI_ANY_ID
, 0x0015 },
94 MODULE_DEVICE_TABLE(pci
, skge_id_table
);
96 static int skge_up(struct net_device
*dev
);
97 static int skge_down(struct net_device
*dev
);
98 static void skge_phy_reset(struct skge_port
*skge
);
99 static void skge_tx_clean(struct net_device
*dev
);
100 static int xm_phy_write(struct skge_hw
*hw
, int port
, u16 reg
, u16 val
);
101 static int gm_phy_write(struct skge_hw
*hw
, int port
, u16 reg
, u16 val
);
102 static void genesis_get_stats(struct skge_port
*skge
, u64
*data
);
103 static void yukon_get_stats(struct skge_port
*skge
, u64
*data
);
104 static void yukon_init(struct skge_hw
*hw
, int port
);
105 static void genesis_mac_init(struct skge_hw
*hw
, int port
);
106 static void genesis_link_up(struct skge_port
*skge
);
108 /* Avoid conditionals by using array */
109 static const int txqaddr
[] = { Q_XA1
, Q_XA2
};
110 static const int rxqaddr
[] = { Q_R1
, Q_R2
};
111 static const u32 rxirqmask
[] = { IS_R1_F
, IS_R2_F
};
112 static const u32 txirqmask
[] = { IS_XA1_F
, IS_XA2_F
};
113 static const u32 napimask
[] = { IS_R1_F
|IS_XA1_F
, IS_R2_F
|IS_XA2_F
};
114 static const u32 portmask
[] = { IS_PORT_1
, IS_PORT_2
};
116 static int skge_get_regs_len(struct net_device
*dev
)
122 * Returns copy of whole control register region
123 * Note: skip RAM address register because accessing it will
126 static void skge_get_regs(struct net_device
*dev
, struct ethtool_regs
*regs
,
129 const struct skge_port
*skge
= netdev_priv(dev
);
130 const void __iomem
*io
= skge
->hw
->regs
;
133 memset(p
, 0, regs
->len
);
134 memcpy_fromio(p
, io
, B3_RAM_ADDR
);
136 memcpy_fromio(p
+ B3_RI_WTO_R1
, io
+ B3_RI_WTO_R1
,
137 regs
->len
- B3_RI_WTO_R1
);
140 /* Wake on Lan only supported on Yukon chips with rev 1 or above */
141 static u32
wol_supported(const struct skge_hw
*hw
)
143 if (hw
->chip_id
== CHIP_ID_GENESIS
)
146 if (hw
->chip_id
== CHIP_ID_YUKON
&& hw
->chip_rev
== 0)
149 return WAKE_MAGIC
| WAKE_PHY
;
152 static u32
pci_wake_enabled(struct pci_dev
*dev
)
154 int pm
= pci_find_capability(dev
, PCI_CAP_ID_PM
);
157 /* If device doesn't support PM Capabilities, but request is to disable
158 * wake events, it's a nop; otherwise fail */
162 pci_read_config_word(dev
, pm
+ PCI_PM_PMC
, &value
);
164 value
&= PCI_PM_CAP_PME_MASK
;
165 value
>>= ffs(PCI_PM_CAP_PME_MASK
) - 1; /* First bit of mask */
170 static void skge_wol_init(struct skge_port
*skge
)
172 struct skge_hw
*hw
= skge
->hw
;
173 int port
= skge
->port
;
176 skge_write16(hw
, B0_CTST
, CS_RST_CLR
);
177 skge_write16(hw
, SK_REG(port
, GMAC_LINK_CTRL
), GMLC_RST_CLR
);
180 skge_write8(hw
, B0_POWER_CTRL
,
181 PC_VAUX_ENA
| PC_VCC_ENA
| PC_VAUX_ON
| PC_VCC_OFF
);
183 /* WA code for COMA mode -- clear PHY reset */
184 if (hw
->chip_id
== CHIP_ID_YUKON_LITE
&&
185 hw
->chip_rev
>= CHIP_REV_YU_LITE_A3
) {
186 u32 reg
= skge_read32(hw
, B2_GP_IO
);
189 skge_write32(hw
, B2_GP_IO
, reg
);
192 skge_write32(hw
, SK_REG(port
, GPHY_CTRL
),
194 GPC_HWCFG_M_3
| GPC_HWCFG_M_2
| GPC_HWCFG_M_1
| GPC_HWCFG_M_0
|
195 GPC_ANEG_1
| GPC_RST_SET
);
197 skge_write32(hw
, SK_REG(port
, GPHY_CTRL
),
199 GPC_HWCFG_M_3
| GPC_HWCFG_M_2
| GPC_HWCFG_M_1
| GPC_HWCFG_M_0
|
200 GPC_ANEG_1
| GPC_RST_CLR
);
202 skge_write32(hw
, SK_REG(port
, GMAC_CTRL
), GMC_RST_CLR
);
204 /* Force to 10/100 skge_reset will re-enable on resume */
205 gm_phy_write(hw
, port
, PHY_MARV_AUNE_ADV
,
206 PHY_AN_100FULL
| PHY_AN_100HALF
|
207 PHY_AN_10FULL
| PHY_AN_10HALF
| PHY_AN_CSMA
);
209 gm_phy_write(hw
, port
, PHY_MARV_1000T_CTRL
, 0);
210 gm_phy_write(hw
, port
, PHY_MARV_CTRL
,
211 PHY_CT_RESET
| PHY_CT_SPS_LSB
| PHY_CT_ANE
|
212 PHY_CT_RE_CFG
| PHY_CT_DUP_MD
);
215 /* Set GMAC to no flow control and auto update for speed/duplex */
216 gma_write16(hw
, port
, GM_GP_CTRL
,
217 GM_GPCR_FC_TX_DIS
|GM_GPCR_TX_ENA
|GM_GPCR_RX_ENA
|
218 GM_GPCR_DUP_FULL
|GM_GPCR_FC_RX_DIS
|GM_GPCR_AU_FCT_DIS
);
220 /* Set WOL address */
221 memcpy_toio(hw
->regs
+ WOL_REGS(port
, WOL_MAC_ADDR
),
222 skge
->netdev
->dev_addr
, ETH_ALEN
);
224 /* Turn on appropriate WOL control bits */
225 skge_write16(hw
, WOL_REGS(port
, WOL_CTRL_STAT
), WOL_CTL_CLEAR_RESULT
);
227 if (skge
->wol
& WAKE_PHY
)
228 ctrl
|= WOL_CTL_ENA_PME_ON_LINK_CHG
|WOL_CTL_ENA_LINK_CHG_UNIT
;
230 ctrl
|= WOL_CTL_DIS_PME_ON_LINK_CHG
|WOL_CTL_DIS_LINK_CHG_UNIT
;
232 if (skge
->wol
& WAKE_MAGIC
)
233 ctrl
|= WOL_CTL_ENA_PME_ON_MAGIC_PKT
|WOL_CTL_ENA_MAGIC_PKT_UNIT
;
235 ctrl
|= WOL_CTL_DIS_PME_ON_MAGIC_PKT
|WOL_CTL_DIS_MAGIC_PKT_UNIT
;;
237 ctrl
|= WOL_CTL_DIS_PME_ON_PATTERN
|WOL_CTL_DIS_PATTERN_UNIT
;
238 skge_write16(hw
, WOL_REGS(port
, WOL_CTRL_STAT
), ctrl
);
241 skge_write8(hw
, SK_REG(port
, RX_GMF_CTRL_T
), GMF_RST_SET
);
244 static void skge_get_wol(struct net_device
*dev
, struct ethtool_wolinfo
*wol
)
246 struct skge_port
*skge
= netdev_priv(dev
);
248 wol
->supported
= wol_supported(skge
->hw
);
249 wol
->wolopts
= skge
->wol
;
252 static int skge_set_wol(struct net_device
*dev
, struct ethtool_wolinfo
*wol
)
254 struct skge_port
*skge
= netdev_priv(dev
);
255 struct skge_hw
*hw
= skge
->hw
;
257 if (wol
->wolopts
& ~wol_supported(hw
))
260 skge
->wol
= wol
->wolopts
;
264 /* Determine supported/advertised modes based on hardware.
265 * Note: ethtool ADVERTISED_xxx == SUPPORTED_xxx
267 static u32
skge_supported_modes(const struct skge_hw
*hw
)
272 supported
= SUPPORTED_10baseT_Half
273 | SUPPORTED_10baseT_Full
274 | SUPPORTED_100baseT_Half
275 | SUPPORTED_100baseT_Full
276 | SUPPORTED_1000baseT_Half
277 | SUPPORTED_1000baseT_Full
278 | SUPPORTED_Autoneg
| SUPPORTED_TP
;
280 if (hw
->chip_id
== CHIP_ID_GENESIS
)
281 supported
&= ~(SUPPORTED_10baseT_Half
282 | SUPPORTED_10baseT_Full
283 | SUPPORTED_100baseT_Half
284 | SUPPORTED_100baseT_Full
);
286 else if (hw
->chip_id
== CHIP_ID_YUKON
)
287 supported
&= ~SUPPORTED_1000baseT_Half
;
289 supported
= SUPPORTED_1000baseT_Full
| SUPPORTED_1000baseT_Half
290 | SUPPORTED_FIBRE
| SUPPORTED_Autoneg
;
295 static int skge_get_settings(struct net_device
*dev
,
296 struct ethtool_cmd
*ecmd
)
298 struct skge_port
*skge
= netdev_priv(dev
);
299 struct skge_hw
*hw
= skge
->hw
;
301 ecmd
->transceiver
= XCVR_INTERNAL
;
302 ecmd
->supported
= skge_supported_modes(hw
);
305 ecmd
->port
= PORT_TP
;
306 ecmd
->phy_address
= hw
->phy_addr
;
308 ecmd
->port
= PORT_FIBRE
;
310 ecmd
->advertising
= skge
->advertising
;
311 ecmd
->autoneg
= skge
->autoneg
;
312 ecmd
->speed
= skge
->speed
;
313 ecmd
->duplex
= skge
->duplex
;
317 static int skge_set_settings(struct net_device
*dev
, struct ethtool_cmd
*ecmd
)
319 struct skge_port
*skge
= netdev_priv(dev
);
320 const struct skge_hw
*hw
= skge
->hw
;
321 u32 supported
= skge_supported_modes(hw
);
323 if (ecmd
->autoneg
== AUTONEG_ENABLE
) {
324 ecmd
->advertising
= supported
;
330 switch (ecmd
->speed
) {
332 if (ecmd
->duplex
== DUPLEX_FULL
)
333 setting
= SUPPORTED_1000baseT_Full
;
334 else if (ecmd
->duplex
== DUPLEX_HALF
)
335 setting
= SUPPORTED_1000baseT_Half
;
340 if (ecmd
->duplex
== DUPLEX_FULL
)
341 setting
= SUPPORTED_100baseT_Full
;
342 else if (ecmd
->duplex
== DUPLEX_HALF
)
343 setting
= SUPPORTED_100baseT_Half
;
349 if (ecmd
->duplex
== DUPLEX_FULL
)
350 setting
= SUPPORTED_10baseT_Full
;
351 else if (ecmd
->duplex
== DUPLEX_HALF
)
352 setting
= SUPPORTED_10baseT_Half
;
360 if ((setting
& supported
) == 0)
363 skge
->speed
= ecmd
->speed
;
364 skge
->duplex
= ecmd
->duplex
;
367 skge
->autoneg
= ecmd
->autoneg
;
368 skge
->advertising
= ecmd
->advertising
;
370 if (netif_running(dev
))
371 skge_phy_reset(skge
);
376 static void skge_get_drvinfo(struct net_device
*dev
,
377 struct ethtool_drvinfo
*info
)
379 struct skge_port
*skge
= netdev_priv(dev
);
381 strcpy(info
->driver
, DRV_NAME
);
382 strcpy(info
->version
, DRV_VERSION
);
383 strcpy(info
->fw_version
, "N/A");
384 strcpy(info
->bus_info
, pci_name(skge
->hw
->pdev
));
387 static const struct skge_stat
{
388 char name
[ETH_GSTRING_LEN
];
392 { "tx_bytes", XM_TXO_OK_HI
, GM_TXO_OK_HI
},
393 { "rx_bytes", XM_RXO_OK_HI
, GM_RXO_OK_HI
},
395 { "tx_broadcast", XM_TXF_BC_OK
, GM_TXF_BC_OK
},
396 { "rx_broadcast", XM_RXF_BC_OK
, GM_RXF_BC_OK
},
397 { "tx_multicast", XM_TXF_MC_OK
, GM_TXF_MC_OK
},
398 { "rx_multicast", XM_RXF_MC_OK
, GM_RXF_MC_OK
},
399 { "tx_unicast", XM_TXF_UC_OK
, GM_TXF_UC_OK
},
400 { "rx_unicast", XM_RXF_UC_OK
, GM_RXF_UC_OK
},
401 { "tx_mac_pause", XM_TXF_MPAUSE
, GM_TXF_MPAUSE
},
402 { "rx_mac_pause", XM_RXF_MPAUSE
, GM_RXF_MPAUSE
},
404 { "collisions", XM_TXF_SNG_COL
, GM_TXF_SNG_COL
},
405 { "multi_collisions", XM_TXF_MUL_COL
, GM_TXF_MUL_COL
},
406 { "aborted", XM_TXF_ABO_COL
, GM_TXF_ABO_COL
},
407 { "late_collision", XM_TXF_LAT_COL
, GM_TXF_LAT_COL
},
408 { "fifo_underrun", XM_TXE_FIFO_UR
, GM_TXE_FIFO_UR
},
409 { "fifo_overflow", XM_RXE_FIFO_OV
, GM_RXE_FIFO_OV
},
411 { "rx_toolong", XM_RXF_LNG_ERR
, GM_RXF_LNG_ERR
},
412 { "rx_jabber", XM_RXF_JAB_PKT
, GM_RXF_JAB_PKT
},
413 { "rx_runt", XM_RXE_RUNT
, GM_RXE_FRAG
},
414 { "rx_too_long", XM_RXF_LNG_ERR
, GM_RXF_LNG_ERR
},
415 { "rx_fcs_error", XM_RXF_FCS_ERR
, GM_RXF_FCS_ERR
},
418 static int skge_get_sset_count(struct net_device
*dev
, int sset
)
422 return ARRAY_SIZE(skge_stats
);
428 static void skge_get_ethtool_stats(struct net_device
*dev
,
429 struct ethtool_stats
*stats
, u64
*data
)
431 struct skge_port
*skge
= netdev_priv(dev
);
433 if (skge
->hw
->chip_id
== CHIP_ID_GENESIS
)
434 genesis_get_stats(skge
, data
);
436 yukon_get_stats(skge
, data
);
439 /* Use hardware MIB variables for critical path statistics and
440 * transmit feedback not reported at interrupt.
441 * Other errors are accounted for in interrupt handler.
443 static struct net_device_stats
*skge_get_stats(struct net_device
*dev
)
445 struct skge_port
*skge
= netdev_priv(dev
);
446 u64 data
[ARRAY_SIZE(skge_stats
)];
448 if (skge
->hw
->chip_id
== CHIP_ID_GENESIS
)
449 genesis_get_stats(skge
, data
);
451 yukon_get_stats(skge
, data
);
453 dev
->stats
.tx_bytes
= data
[0];
454 dev
->stats
.rx_bytes
= data
[1];
455 dev
->stats
.tx_packets
= data
[2] + data
[4] + data
[6];
456 dev
->stats
.rx_packets
= data
[3] + data
[5] + data
[7];
457 dev
->stats
.multicast
= data
[3] + data
[5];
458 dev
->stats
.collisions
= data
[10];
459 dev
->stats
.tx_aborted_errors
= data
[12];
464 static void skge_get_strings(struct net_device
*dev
, u32 stringset
, u8
*data
)
470 for (i
= 0; i
< ARRAY_SIZE(skge_stats
); i
++)
471 memcpy(data
+ i
* ETH_GSTRING_LEN
,
472 skge_stats
[i
].name
, ETH_GSTRING_LEN
);
477 static void skge_get_ring_param(struct net_device
*dev
,
478 struct ethtool_ringparam
*p
)
480 struct skge_port
*skge
= netdev_priv(dev
);
482 p
->rx_max_pending
= MAX_RX_RING_SIZE
;
483 p
->tx_max_pending
= MAX_TX_RING_SIZE
;
484 p
->rx_mini_max_pending
= 0;
485 p
->rx_jumbo_max_pending
= 0;
487 p
->rx_pending
= skge
->rx_ring
.count
;
488 p
->tx_pending
= skge
->tx_ring
.count
;
489 p
->rx_mini_pending
= 0;
490 p
->rx_jumbo_pending
= 0;
493 static int skge_set_ring_param(struct net_device
*dev
,
494 struct ethtool_ringparam
*p
)
496 struct skge_port
*skge
= netdev_priv(dev
);
499 if (p
->rx_pending
== 0 || p
->rx_pending
> MAX_RX_RING_SIZE
||
500 p
->tx_pending
< TX_LOW_WATER
|| p
->tx_pending
> MAX_TX_RING_SIZE
)
503 skge
->rx_ring
.count
= p
->rx_pending
;
504 skge
->tx_ring
.count
= p
->tx_pending
;
506 if (netif_running(dev
)) {
516 static u32
skge_get_msglevel(struct net_device
*netdev
)
518 struct skge_port
*skge
= netdev_priv(netdev
);
519 return skge
->msg_enable
;
522 static void skge_set_msglevel(struct net_device
*netdev
, u32 value
)
524 struct skge_port
*skge
= netdev_priv(netdev
);
525 skge
->msg_enable
= value
;
528 static int skge_nway_reset(struct net_device
*dev
)
530 struct skge_port
*skge
= netdev_priv(dev
);
532 if (skge
->autoneg
!= AUTONEG_ENABLE
|| !netif_running(dev
))
535 skge_phy_reset(skge
);
539 static int skge_set_sg(struct net_device
*dev
, u32 data
)
541 struct skge_port
*skge
= netdev_priv(dev
);
542 struct skge_hw
*hw
= skge
->hw
;
544 if (hw
->chip_id
== CHIP_ID_GENESIS
&& data
)
546 return ethtool_op_set_sg(dev
, data
);
549 static int skge_set_tx_csum(struct net_device
*dev
, u32 data
)
551 struct skge_port
*skge
= netdev_priv(dev
);
552 struct skge_hw
*hw
= skge
->hw
;
554 if (hw
->chip_id
== CHIP_ID_GENESIS
&& data
)
557 return ethtool_op_set_tx_csum(dev
, data
);
560 static u32
skge_get_rx_csum(struct net_device
*dev
)
562 struct skge_port
*skge
= netdev_priv(dev
);
564 return skge
->rx_csum
;
567 /* Only Yukon supports checksum offload. */
568 static int skge_set_rx_csum(struct net_device
*dev
, u32 data
)
570 struct skge_port
*skge
= netdev_priv(dev
);
572 if (skge
->hw
->chip_id
== CHIP_ID_GENESIS
&& data
)
575 skge
->rx_csum
= data
;
579 static void skge_get_pauseparam(struct net_device
*dev
,
580 struct ethtool_pauseparam
*ecmd
)
582 struct skge_port
*skge
= netdev_priv(dev
);
584 ecmd
->rx_pause
= (skge
->flow_control
== FLOW_MODE_SYMMETRIC
)
585 || (skge
->flow_control
== FLOW_MODE_SYM_OR_REM
);
586 ecmd
->tx_pause
= ecmd
->rx_pause
|| (skge
->flow_control
== FLOW_MODE_LOC_SEND
);
588 ecmd
->autoneg
= ecmd
->rx_pause
|| ecmd
->tx_pause
;
591 static int skge_set_pauseparam(struct net_device
*dev
,
592 struct ethtool_pauseparam
*ecmd
)
594 struct skge_port
*skge
= netdev_priv(dev
);
595 struct ethtool_pauseparam old
;
597 skge_get_pauseparam(dev
, &old
);
599 if (ecmd
->autoneg
!= old
.autoneg
)
600 skge
->flow_control
= ecmd
->autoneg
? FLOW_MODE_NONE
: FLOW_MODE_SYMMETRIC
;
602 if (ecmd
->rx_pause
&& ecmd
->tx_pause
)
603 skge
->flow_control
= FLOW_MODE_SYMMETRIC
;
604 else if (ecmd
->rx_pause
&& !ecmd
->tx_pause
)
605 skge
->flow_control
= FLOW_MODE_SYM_OR_REM
;
606 else if (!ecmd
->rx_pause
&& ecmd
->tx_pause
)
607 skge
->flow_control
= FLOW_MODE_LOC_SEND
;
609 skge
->flow_control
= FLOW_MODE_NONE
;
612 if (netif_running(dev
))
613 skge_phy_reset(skge
);
618 /* Chip internal frequency for clock calculations */
619 static inline u32
hwkhz(const struct skge_hw
*hw
)
621 return (hw
->chip_id
== CHIP_ID_GENESIS
) ? 53125 : 78125;
624 /* Chip HZ to microseconds */
625 static inline u32
skge_clk2usec(const struct skge_hw
*hw
, u32 ticks
)
627 return (ticks
* 1000) / hwkhz(hw
);
630 /* Microseconds to chip HZ */
631 static inline u32
skge_usecs2clk(const struct skge_hw
*hw
, u32 usec
)
633 return hwkhz(hw
) * usec
/ 1000;
636 static int skge_get_coalesce(struct net_device
*dev
,
637 struct ethtool_coalesce
*ecmd
)
639 struct skge_port
*skge
= netdev_priv(dev
);
640 struct skge_hw
*hw
= skge
->hw
;
641 int port
= skge
->port
;
643 ecmd
->rx_coalesce_usecs
= 0;
644 ecmd
->tx_coalesce_usecs
= 0;
646 if (skge_read32(hw
, B2_IRQM_CTRL
) & TIM_START
) {
647 u32 delay
= skge_clk2usec(hw
, skge_read32(hw
, B2_IRQM_INI
));
648 u32 msk
= skge_read32(hw
, B2_IRQM_MSK
);
650 if (msk
& rxirqmask
[port
])
651 ecmd
->rx_coalesce_usecs
= delay
;
652 if (msk
& txirqmask
[port
])
653 ecmd
->tx_coalesce_usecs
= delay
;
659 /* Note: interrupt timer is per board, but can turn on/off per port */
660 static int skge_set_coalesce(struct net_device
*dev
,
661 struct ethtool_coalesce
*ecmd
)
663 struct skge_port
*skge
= netdev_priv(dev
);
664 struct skge_hw
*hw
= skge
->hw
;
665 int port
= skge
->port
;
666 u32 msk
= skge_read32(hw
, B2_IRQM_MSK
);
669 if (ecmd
->rx_coalesce_usecs
== 0)
670 msk
&= ~rxirqmask
[port
];
671 else if (ecmd
->rx_coalesce_usecs
< 25 ||
672 ecmd
->rx_coalesce_usecs
> 33333)
675 msk
|= rxirqmask
[port
];
676 delay
= ecmd
->rx_coalesce_usecs
;
679 if (ecmd
->tx_coalesce_usecs
== 0)
680 msk
&= ~txirqmask
[port
];
681 else if (ecmd
->tx_coalesce_usecs
< 25 ||
682 ecmd
->tx_coalesce_usecs
> 33333)
685 msk
|= txirqmask
[port
];
686 delay
= min(delay
, ecmd
->rx_coalesce_usecs
);
689 skge_write32(hw
, B2_IRQM_MSK
, msk
);
691 skge_write32(hw
, B2_IRQM_CTRL
, TIM_STOP
);
693 skge_write32(hw
, B2_IRQM_INI
, skge_usecs2clk(hw
, delay
));
694 skge_write32(hw
, B2_IRQM_CTRL
, TIM_START
);
699 enum led_mode
{ LED_MODE_OFF
, LED_MODE_ON
, LED_MODE_TST
};
700 static void skge_led(struct skge_port
*skge
, enum led_mode mode
)
702 struct skge_hw
*hw
= skge
->hw
;
703 int port
= skge
->port
;
705 spin_lock_bh(&hw
->phy_lock
);
706 if (hw
->chip_id
== CHIP_ID_GENESIS
) {
709 if (hw
->phy_type
== SK_PHY_BCOM
)
710 xm_phy_write(hw
, port
, PHY_BCOM_P_EXT_CTRL
, PHY_B_PEC_LED_OFF
);
712 skge_write32(hw
, SK_REG(port
, TX_LED_VAL
), 0);
713 skge_write8(hw
, SK_REG(port
, TX_LED_CTRL
), LED_T_OFF
);
715 skge_write8(hw
, SK_REG(port
, LNK_LED_REG
), LINKLED_OFF
);
716 skge_write32(hw
, SK_REG(port
, RX_LED_VAL
), 0);
717 skge_write8(hw
, SK_REG(port
, RX_LED_CTRL
), LED_T_OFF
);
721 skge_write8(hw
, SK_REG(port
, LNK_LED_REG
), LINKLED_ON
);
722 skge_write8(hw
, SK_REG(port
, LNK_LED_REG
), LINKLED_LINKSYNC_ON
);
724 skge_write8(hw
, SK_REG(port
, RX_LED_CTRL
), LED_START
);
725 skge_write8(hw
, SK_REG(port
, TX_LED_CTRL
), LED_START
);
730 skge_write8(hw
, SK_REG(port
, RX_LED_TST
), LED_T_ON
);
731 skge_write32(hw
, SK_REG(port
, RX_LED_VAL
), 100);
732 skge_write8(hw
, SK_REG(port
, RX_LED_CTRL
), LED_START
);
734 if (hw
->phy_type
== SK_PHY_BCOM
)
735 xm_phy_write(hw
, port
, PHY_BCOM_P_EXT_CTRL
, PHY_B_PEC_LED_ON
);
737 skge_write8(hw
, SK_REG(port
, TX_LED_TST
), LED_T_ON
);
738 skge_write32(hw
, SK_REG(port
, TX_LED_VAL
), 100);
739 skge_write8(hw
, SK_REG(port
, TX_LED_CTRL
), LED_START
);
746 gm_phy_write(hw
, port
, PHY_MARV_LED_CTRL
, 0);
747 gm_phy_write(hw
, port
, PHY_MARV_LED_OVER
,
748 PHY_M_LED_MO_DUP(MO_LED_OFF
) |
749 PHY_M_LED_MO_10(MO_LED_OFF
) |
750 PHY_M_LED_MO_100(MO_LED_OFF
) |
751 PHY_M_LED_MO_1000(MO_LED_OFF
) |
752 PHY_M_LED_MO_RX(MO_LED_OFF
));
755 gm_phy_write(hw
, port
, PHY_MARV_LED_CTRL
,
756 PHY_M_LED_PULS_DUR(PULS_170MS
) |
757 PHY_M_LED_BLINK_RT(BLINK_84MS
) |
761 gm_phy_write(hw
, port
, PHY_MARV_LED_OVER
,
762 PHY_M_LED_MO_RX(MO_LED_OFF
) |
763 (skge
->speed
== SPEED_100
?
764 PHY_M_LED_MO_100(MO_LED_ON
) : 0));
767 gm_phy_write(hw
, port
, PHY_MARV_LED_CTRL
, 0);
768 gm_phy_write(hw
, port
, PHY_MARV_LED_OVER
,
769 PHY_M_LED_MO_DUP(MO_LED_ON
) |
770 PHY_M_LED_MO_10(MO_LED_ON
) |
771 PHY_M_LED_MO_100(MO_LED_ON
) |
772 PHY_M_LED_MO_1000(MO_LED_ON
) |
773 PHY_M_LED_MO_RX(MO_LED_ON
));
776 spin_unlock_bh(&hw
->phy_lock
);
779 /* blink LED's for finding board */
780 static int skge_phys_id(struct net_device
*dev
, u32 data
)
782 struct skge_port
*skge
= netdev_priv(dev
);
784 enum led_mode mode
= LED_MODE_TST
;
786 if (!data
|| data
> (u32
)(MAX_SCHEDULE_TIMEOUT
/ HZ
))
787 ms
= jiffies_to_msecs(MAX_SCHEDULE_TIMEOUT
/ HZ
) * 1000;
792 skge_led(skge
, mode
);
793 mode
^= LED_MODE_TST
;
795 if (msleep_interruptible(BLINK_MS
))
800 /* back to regular LED state */
801 skge_led(skge
, netif_running(dev
) ? LED_MODE_ON
: LED_MODE_OFF
);
806 static int skge_get_eeprom_len(struct net_device
*dev
)
808 struct skge_port
*skge
= netdev_priv(dev
);
811 pci_read_config_dword(skge
->hw
->pdev
, PCI_DEV_REG2
, ®2
);
812 return 1 << ( ((reg2
& PCI_VPD_ROM_SZ
) >> 14) + 8);
815 static u32
skge_vpd_read(struct pci_dev
*pdev
, int cap
, u16 offset
)
819 pci_write_config_word(pdev
, cap
+ PCI_VPD_ADDR
, offset
);
822 pci_read_config_word(pdev
, cap
+ PCI_VPD_ADDR
, &offset
);
823 } while (!(offset
& PCI_VPD_ADDR_F
));
825 pci_read_config_dword(pdev
, cap
+ PCI_VPD_DATA
, &val
);
829 static void skge_vpd_write(struct pci_dev
*pdev
, int cap
, u16 offset
, u32 val
)
831 pci_write_config_dword(pdev
, cap
+ PCI_VPD_DATA
, val
);
832 pci_write_config_word(pdev
, cap
+ PCI_VPD_ADDR
,
833 offset
| PCI_VPD_ADDR_F
);
836 pci_read_config_word(pdev
, cap
+ PCI_VPD_ADDR
, &offset
);
837 } while (offset
& PCI_VPD_ADDR_F
);
840 static int skge_get_eeprom(struct net_device
*dev
, struct ethtool_eeprom
*eeprom
,
843 struct skge_port
*skge
= netdev_priv(dev
);
844 struct pci_dev
*pdev
= skge
->hw
->pdev
;
845 int cap
= pci_find_capability(pdev
, PCI_CAP_ID_VPD
);
846 int length
= eeprom
->len
;
847 u16 offset
= eeprom
->offset
;
852 eeprom
->magic
= SKGE_EEPROM_MAGIC
;
855 u32 val
= skge_vpd_read(pdev
, cap
, offset
);
856 int n
= min_t(int, length
, sizeof(val
));
858 memcpy(data
, &val
, n
);
866 static int skge_set_eeprom(struct net_device
*dev
, struct ethtool_eeprom
*eeprom
,
869 struct skge_port
*skge
= netdev_priv(dev
);
870 struct pci_dev
*pdev
= skge
->hw
->pdev
;
871 int cap
= pci_find_capability(pdev
, PCI_CAP_ID_VPD
);
872 int length
= eeprom
->len
;
873 u16 offset
= eeprom
->offset
;
878 if (eeprom
->magic
!= SKGE_EEPROM_MAGIC
)
883 int n
= min_t(int, length
, sizeof(val
));
886 val
= skge_vpd_read(pdev
, cap
, offset
);
887 memcpy(&val
, data
, n
);
889 skge_vpd_write(pdev
, cap
, offset
, val
);
898 static const struct ethtool_ops skge_ethtool_ops
= {
899 .get_settings
= skge_get_settings
,
900 .set_settings
= skge_set_settings
,
901 .get_drvinfo
= skge_get_drvinfo
,
902 .get_regs_len
= skge_get_regs_len
,
903 .get_regs
= skge_get_regs
,
904 .get_wol
= skge_get_wol
,
905 .set_wol
= skge_set_wol
,
906 .get_msglevel
= skge_get_msglevel
,
907 .set_msglevel
= skge_set_msglevel
,
908 .nway_reset
= skge_nway_reset
,
909 .get_link
= ethtool_op_get_link
,
910 .get_eeprom_len
= skge_get_eeprom_len
,
911 .get_eeprom
= skge_get_eeprom
,
912 .set_eeprom
= skge_set_eeprom
,
913 .get_ringparam
= skge_get_ring_param
,
914 .set_ringparam
= skge_set_ring_param
,
915 .get_pauseparam
= skge_get_pauseparam
,
916 .set_pauseparam
= skge_set_pauseparam
,
917 .get_coalesce
= skge_get_coalesce
,
918 .set_coalesce
= skge_set_coalesce
,
919 .set_sg
= skge_set_sg
,
920 .set_tx_csum
= skge_set_tx_csum
,
921 .get_rx_csum
= skge_get_rx_csum
,
922 .set_rx_csum
= skge_set_rx_csum
,
923 .get_strings
= skge_get_strings
,
924 .phys_id
= skge_phys_id
,
925 .get_sset_count
= skge_get_sset_count
,
926 .get_ethtool_stats
= skge_get_ethtool_stats
,
930 * Allocate ring elements and chain them together
931 * One-to-one association of board descriptors with ring elements
933 static int skge_ring_alloc(struct skge_ring
*ring
, void *vaddr
, u32 base
)
935 struct skge_tx_desc
*d
;
936 struct skge_element
*e
;
939 ring
->start
= kcalloc(ring
->count
, sizeof(*e
), GFP_KERNEL
);
943 for (i
= 0, e
= ring
->start
, d
= vaddr
; i
< ring
->count
; i
++, e
++, d
++) {
945 if (i
== ring
->count
- 1) {
946 e
->next
= ring
->start
;
947 d
->next_offset
= base
;
950 d
->next_offset
= base
+ (i
+1) * sizeof(*d
);
953 ring
->to_use
= ring
->to_clean
= ring
->start
;
958 /* Allocate and setup a new buffer for receiving */
959 static void skge_rx_setup(struct skge_port
*skge
, struct skge_element
*e
,
960 struct sk_buff
*skb
, unsigned int bufsize
)
962 struct skge_rx_desc
*rd
= e
->desc
;
965 map
= pci_map_single(skge
->hw
->pdev
, skb
->data
, bufsize
,
969 rd
->dma_hi
= map
>> 32;
971 rd
->csum1_start
= ETH_HLEN
;
972 rd
->csum2_start
= ETH_HLEN
;
978 rd
->control
= BMU_OWN
| BMU_STF
| BMU_IRQ_EOF
| BMU_TCP_CHECK
| bufsize
;
979 pci_unmap_addr_set(e
, mapaddr
, map
);
980 pci_unmap_len_set(e
, maplen
, bufsize
);
983 /* Resume receiving using existing skb,
984 * Note: DMA address is not changed by chip.
985 * MTU not changed while receiver active.
987 static inline void skge_rx_reuse(struct skge_element
*e
, unsigned int size
)
989 struct skge_rx_desc
*rd
= e
->desc
;
992 rd
->csum2_start
= ETH_HLEN
;
996 rd
->control
= BMU_OWN
| BMU_STF
| BMU_IRQ_EOF
| BMU_TCP_CHECK
| size
;
1000 /* Free all buffers in receive ring, assumes receiver stopped */
1001 static void skge_rx_clean(struct skge_port
*skge
)
1003 struct skge_hw
*hw
= skge
->hw
;
1004 struct skge_ring
*ring
= &skge
->rx_ring
;
1005 struct skge_element
*e
;
1009 struct skge_rx_desc
*rd
= e
->desc
;
1012 pci_unmap_single(hw
->pdev
,
1013 pci_unmap_addr(e
, mapaddr
),
1014 pci_unmap_len(e
, maplen
),
1015 PCI_DMA_FROMDEVICE
);
1016 dev_kfree_skb(e
->skb
);
1019 } while ((e
= e
->next
) != ring
->start
);
1023 /* Allocate buffers for receive ring
1024 * For receive: to_clean is next received frame.
1026 static int skge_rx_fill(struct net_device
*dev
)
1028 struct skge_port
*skge
= netdev_priv(dev
);
1029 struct skge_ring
*ring
= &skge
->rx_ring
;
1030 struct skge_element
*e
;
1034 struct sk_buff
*skb
;
1036 skb
= __netdev_alloc_skb(dev
, skge
->rx_buf_size
+ NET_IP_ALIGN
,
1041 skb_reserve(skb
, NET_IP_ALIGN
);
1042 skge_rx_setup(skge
, e
, skb
, skge
->rx_buf_size
);
1043 } while ( (e
= e
->next
) != ring
->start
);
1045 ring
->to_clean
= ring
->start
;
1049 static const char *skge_pause(enum pause_status status
)
1052 case FLOW_STAT_NONE
:
1054 case FLOW_STAT_REM_SEND
:
1056 case FLOW_STAT_LOC_SEND
:
1058 case FLOW_STAT_SYMMETRIC
: /* Both station may send PAUSE */
1061 return "indeterminated";
1066 static void skge_link_up(struct skge_port
*skge
)
1068 skge_write8(skge
->hw
, SK_REG(skge
->port
, LNK_LED_REG
),
1069 LED_BLK_OFF
|LED_SYNC_OFF
|LED_ON
);
1071 netif_carrier_on(skge
->netdev
);
1072 netif_wake_queue(skge
->netdev
);
1074 if (netif_msg_link(skge
)) {
1075 printk(KERN_INFO PFX
1076 "%s: Link is up at %d Mbps, %s duplex, flow control %s\n",
1077 skge
->netdev
->name
, skge
->speed
,
1078 skge
->duplex
== DUPLEX_FULL
? "full" : "half",
1079 skge_pause(skge
->flow_status
));
1083 static void skge_link_down(struct skge_port
*skge
)
1085 skge_write8(skge
->hw
, SK_REG(skge
->port
, LNK_LED_REG
), LED_OFF
);
1086 netif_carrier_off(skge
->netdev
);
1087 netif_stop_queue(skge
->netdev
);
1089 if (netif_msg_link(skge
))
1090 printk(KERN_INFO PFX
"%s: Link is down.\n", skge
->netdev
->name
);
1094 static void xm_link_down(struct skge_hw
*hw
, int port
)
1096 struct net_device
*dev
= hw
->dev
[port
];
1097 struct skge_port
*skge
= netdev_priv(dev
);
1098 u16 cmd
= xm_read16(hw
, port
, XM_MMU_CMD
);
1100 xm_write16(hw
, port
, XM_IMSK
, XM_IMSK_DISABLE
);
1102 cmd
&= ~(XM_MMU_ENA_RX
| XM_MMU_ENA_TX
);
1103 xm_write16(hw
, port
, XM_MMU_CMD
, cmd
);
1105 /* dummy read to ensure writing */
1106 xm_read16(hw
, port
, XM_MMU_CMD
);
1108 if (netif_carrier_ok(dev
))
1109 skge_link_down(skge
);
1112 static int __xm_phy_read(struct skge_hw
*hw
, int port
, u16 reg
, u16
*val
)
1116 xm_write16(hw
, port
, XM_PHY_ADDR
, reg
| hw
->phy_addr
);
1117 *val
= xm_read16(hw
, port
, XM_PHY_DATA
);
1119 if (hw
->phy_type
== SK_PHY_XMAC
)
1122 for (i
= 0; i
< PHY_RETRIES
; i
++) {
1123 if (xm_read16(hw
, port
, XM_MMU_CMD
) & XM_MMU_PHY_RDY
)
1130 *val
= xm_read16(hw
, port
, XM_PHY_DATA
);
1135 static u16
xm_phy_read(struct skge_hw
*hw
, int port
, u16 reg
)
1138 if (__xm_phy_read(hw
, port
, reg
, &v
))
1139 printk(KERN_WARNING PFX
"%s: phy read timed out\n",
1140 hw
->dev
[port
]->name
);
1144 static int xm_phy_write(struct skge_hw
*hw
, int port
, u16 reg
, u16 val
)
1148 xm_write16(hw
, port
, XM_PHY_ADDR
, reg
| hw
->phy_addr
);
1149 for (i
= 0; i
< PHY_RETRIES
; i
++) {
1150 if (!(xm_read16(hw
, port
, XM_MMU_CMD
) & XM_MMU_PHY_BUSY
))
1157 xm_write16(hw
, port
, XM_PHY_DATA
, val
);
1158 for (i
= 0; i
< PHY_RETRIES
; i
++) {
1159 if (!(xm_read16(hw
, port
, XM_MMU_CMD
) & XM_MMU_PHY_BUSY
))
1166 static void genesis_init(struct skge_hw
*hw
)
1168 /* set blink source counter */
1169 skge_write32(hw
, B2_BSC_INI
, (SK_BLK_DUR
* SK_FACT_53
) / 100);
1170 skge_write8(hw
, B2_BSC_CTRL
, BSC_START
);
1172 /* configure mac arbiter */
1173 skge_write16(hw
, B3_MA_TO_CTRL
, MA_RST_CLR
);
1175 /* configure mac arbiter timeout values */
1176 skge_write8(hw
, B3_MA_TOINI_RX1
, SK_MAC_TO_53
);
1177 skge_write8(hw
, B3_MA_TOINI_RX2
, SK_MAC_TO_53
);
1178 skge_write8(hw
, B3_MA_TOINI_TX1
, SK_MAC_TO_53
);
1179 skge_write8(hw
, B3_MA_TOINI_TX2
, SK_MAC_TO_53
);
1181 skge_write8(hw
, B3_MA_RCINI_RX1
, 0);
1182 skge_write8(hw
, B3_MA_RCINI_RX2
, 0);
1183 skge_write8(hw
, B3_MA_RCINI_TX1
, 0);
1184 skge_write8(hw
, B3_MA_RCINI_TX2
, 0);
1186 /* configure packet arbiter timeout */
1187 skge_write16(hw
, B3_PA_CTRL
, PA_RST_CLR
);
1188 skge_write16(hw
, B3_PA_TOINI_RX1
, SK_PKT_TO_MAX
);
1189 skge_write16(hw
, B3_PA_TOINI_TX1
, SK_PKT_TO_MAX
);
1190 skge_write16(hw
, B3_PA_TOINI_RX2
, SK_PKT_TO_MAX
);
1191 skge_write16(hw
, B3_PA_TOINI_TX2
, SK_PKT_TO_MAX
);
1194 static void genesis_reset(struct skge_hw
*hw
, int port
)
1196 const u8 zero
[8] = { 0 };
1198 skge_write8(hw
, SK_REG(port
, GMAC_IRQ_MSK
), 0);
1200 /* reset the statistics module */
1201 xm_write32(hw
, port
, XM_GP_PORT
, XM_GP_RES_STAT
);
1202 xm_write16(hw
, port
, XM_IMSK
, XM_IMSK_DISABLE
);
1203 xm_write32(hw
, port
, XM_MODE
, 0); /* clear Mode Reg */
1204 xm_write16(hw
, port
, XM_TX_CMD
, 0); /* reset TX CMD Reg */
1205 xm_write16(hw
, port
, XM_RX_CMD
, 0); /* reset RX CMD Reg */
1207 /* disable Broadcom PHY IRQ */
1208 if (hw
->phy_type
== SK_PHY_BCOM
)
1209 xm_write16(hw
, port
, PHY_BCOM_INT_MASK
, 0xffff);
1211 xm_outhash(hw
, port
, XM_HSM
, zero
);
1215 /* Convert mode to MII values */
1216 static const u16 phy_pause_map
[] = {
1217 [FLOW_MODE_NONE
] = 0,
1218 [FLOW_MODE_LOC_SEND
] = PHY_AN_PAUSE_ASYM
,
1219 [FLOW_MODE_SYMMETRIC
] = PHY_AN_PAUSE_CAP
,
1220 [FLOW_MODE_SYM_OR_REM
] = PHY_AN_PAUSE_CAP
| PHY_AN_PAUSE_ASYM
,
1223 /* special defines for FIBER (88E1011S only) */
1224 static const u16 fiber_pause_map
[] = {
1225 [FLOW_MODE_NONE
] = PHY_X_P_NO_PAUSE
,
1226 [FLOW_MODE_LOC_SEND
] = PHY_X_P_ASYM_MD
,
1227 [FLOW_MODE_SYMMETRIC
] = PHY_X_P_SYM_MD
,
1228 [FLOW_MODE_SYM_OR_REM
] = PHY_X_P_BOTH_MD
,
1232 /* Check status of Broadcom phy link */
1233 static void bcom_check_link(struct skge_hw
*hw
, int port
)
1235 struct net_device
*dev
= hw
->dev
[port
];
1236 struct skge_port
*skge
= netdev_priv(dev
);
1239 /* read twice because of latch */
1240 xm_phy_read(hw
, port
, PHY_BCOM_STAT
);
1241 status
= xm_phy_read(hw
, port
, PHY_BCOM_STAT
);
1243 if ((status
& PHY_ST_LSYNC
) == 0) {
1244 xm_link_down(hw
, port
);
1248 if (skge
->autoneg
== AUTONEG_ENABLE
) {
1251 if (!(status
& PHY_ST_AN_OVER
))
1254 lpa
= xm_phy_read(hw
, port
, PHY_XMAC_AUNE_LP
);
1255 if (lpa
& PHY_B_AN_RF
) {
1256 printk(KERN_NOTICE PFX
"%s: remote fault\n",
1261 aux
= xm_phy_read(hw
, port
, PHY_BCOM_AUX_STAT
);
1263 /* Check Duplex mismatch */
1264 switch (aux
& PHY_B_AS_AN_RES_MSK
) {
1265 case PHY_B_RES_1000FD
:
1266 skge
->duplex
= DUPLEX_FULL
;
1268 case PHY_B_RES_1000HD
:
1269 skge
->duplex
= DUPLEX_HALF
;
1272 printk(KERN_NOTICE PFX
"%s: duplex mismatch\n",
1277 /* We are using IEEE 802.3z/D5.0 Table 37-4 */
1278 switch (aux
& PHY_B_AS_PAUSE_MSK
) {
1279 case PHY_B_AS_PAUSE_MSK
:
1280 skge
->flow_status
= FLOW_STAT_SYMMETRIC
;
1283 skge
->flow_status
= FLOW_STAT_REM_SEND
;
1286 skge
->flow_status
= FLOW_STAT_LOC_SEND
;
1289 skge
->flow_status
= FLOW_STAT_NONE
;
1291 skge
->speed
= SPEED_1000
;
1294 if (!netif_carrier_ok(dev
))
1295 genesis_link_up(skge
);
1298 /* Broadcom 5400 only supports giagabit! SysKonnect did not put an additional
1299 * Phy on for 100 or 10Mbit operation
1301 static void bcom_phy_init(struct skge_port
*skge
)
1303 struct skge_hw
*hw
= skge
->hw
;
1304 int port
= skge
->port
;
1306 u16 id1
, r
, ext
, ctl
;
1308 /* magic workaround patterns for Broadcom */
1309 static const struct {
1313 { 0x18, 0x0c20 }, { 0x17, 0x0012 }, { 0x15, 0x1104 },
1314 { 0x17, 0x0013 }, { 0x15, 0x0404 }, { 0x17, 0x8006 },
1315 { 0x15, 0x0132 }, { 0x17, 0x8006 }, { 0x15, 0x0232 },
1316 { 0x17, 0x800D }, { 0x15, 0x000F }, { 0x18, 0x0420 },
1318 { 0x18, 0x0c20 }, { 0x17, 0x0012 }, { 0x15, 0x1204 },
1319 { 0x17, 0x0013 }, { 0x15, 0x0A04 }, { 0x18, 0x0420 },
1322 /* read Id from external PHY (all have the same address) */
1323 id1
= xm_phy_read(hw
, port
, PHY_XMAC_ID1
);
1325 /* Optimize MDIO transfer by suppressing preamble. */
1326 r
= xm_read16(hw
, port
, XM_MMU_CMD
);
1328 xm_write16(hw
, port
, XM_MMU_CMD
,r
);
1331 case PHY_BCOM_ID1_C0
:
1333 * Workaround BCOM Errata for the C0 type.
1334 * Write magic patterns to reserved registers.
1336 for (i
= 0; i
< ARRAY_SIZE(C0hack
); i
++)
1337 xm_phy_write(hw
, port
,
1338 C0hack
[i
].reg
, C0hack
[i
].val
);
1341 case PHY_BCOM_ID1_A1
:
1343 * Workaround BCOM Errata for the A1 type.
1344 * Write magic patterns to reserved registers.
1346 for (i
= 0; i
< ARRAY_SIZE(A1hack
); i
++)
1347 xm_phy_write(hw
, port
,
1348 A1hack
[i
].reg
, A1hack
[i
].val
);
1353 * Workaround BCOM Errata (#10523) for all BCom PHYs.
1354 * Disable Power Management after reset.
1356 r
= xm_phy_read(hw
, port
, PHY_BCOM_AUX_CTRL
);
1357 r
|= PHY_B_AC_DIS_PM
;
1358 xm_phy_write(hw
, port
, PHY_BCOM_AUX_CTRL
, r
);
1361 xm_read16(hw
, port
, XM_ISRC
);
1363 ext
= PHY_B_PEC_EN_LTR
; /* enable tx led */
1364 ctl
= PHY_CT_SP1000
; /* always 1000mbit */
1366 if (skge
->autoneg
== AUTONEG_ENABLE
) {
1368 * Workaround BCOM Errata #1 for the C5 type.
1369 * 1000Base-T Link Acquisition Failure in Slave Mode
1370 * Set Repeater/DTE bit 10 of the 1000Base-T Control Register
1372 u16 adv
= PHY_B_1000C_RD
;
1373 if (skge
->advertising
& ADVERTISED_1000baseT_Half
)
1374 adv
|= PHY_B_1000C_AHD
;
1375 if (skge
->advertising
& ADVERTISED_1000baseT_Full
)
1376 adv
|= PHY_B_1000C_AFD
;
1377 xm_phy_write(hw
, port
, PHY_BCOM_1000T_CTRL
, adv
);
1379 ctl
|= PHY_CT_ANE
| PHY_CT_RE_CFG
;
1381 if (skge
->duplex
== DUPLEX_FULL
)
1382 ctl
|= PHY_CT_DUP_MD
;
1383 /* Force to slave */
1384 xm_phy_write(hw
, port
, PHY_BCOM_1000T_CTRL
, PHY_B_1000C_MSE
);
1387 /* Set autonegotiation pause parameters */
1388 xm_phy_write(hw
, port
, PHY_BCOM_AUNE_ADV
,
1389 phy_pause_map
[skge
->flow_control
] | PHY_AN_CSMA
);
1391 /* Handle Jumbo frames */
1392 if (hw
->dev
[port
]->mtu
> ETH_DATA_LEN
) {
1393 xm_phy_write(hw
, port
, PHY_BCOM_AUX_CTRL
,
1394 PHY_B_AC_TX_TST
| PHY_B_AC_LONG_PACK
);
1396 ext
|= PHY_B_PEC_HIGH_LA
;
1400 xm_phy_write(hw
, port
, PHY_BCOM_P_EXT_CTRL
, ext
);
1401 xm_phy_write(hw
, port
, PHY_BCOM_CTRL
, ctl
);
1403 /* Use link status change interrupt */
1404 xm_phy_write(hw
, port
, PHY_BCOM_INT_MASK
, PHY_B_DEF_MSK
);
1407 static void xm_phy_init(struct skge_port
*skge
)
1409 struct skge_hw
*hw
= skge
->hw
;
1410 int port
= skge
->port
;
1413 if (skge
->autoneg
== AUTONEG_ENABLE
) {
1414 if (skge
->advertising
& ADVERTISED_1000baseT_Half
)
1415 ctrl
|= PHY_X_AN_HD
;
1416 if (skge
->advertising
& ADVERTISED_1000baseT_Full
)
1417 ctrl
|= PHY_X_AN_FD
;
1419 ctrl
|= fiber_pause_map
[skge
->flow_control
];
1421 xm_phy_write(hw
, port
, PHY_XMAC_AUNE_ADV
, ctrl
);
1423 /* Restart Auto-negotiation */
1424 ctrl
= PHY_CT_ANE
| PHY_CT_RE_CFG
;
1426 /* Set DuplexMode in Config register */
1427 if (skge
->duplex
== DUPLEX_FULL
)
1428 ctrl
|= PHY_CT_DUP_MD
;
1430 * Do NOT enable Auto-negotiation here. This would hold
1431 * the link down because no IDLEs are transmitted
1435 xm_phy_write(hw
, port
, PHY_XMAC_CTRL
, ctrl
);
1437 /* Poll PHY for status changes */
1438 mod_timer(&skge
->link_timer
, jiffies
+ LINK_HZ
);
1441 static int xm_check_link(struct net_device
*dev
)
1443 struct skge_port
*skge
= netdev_priv(dev
);
1444 struct skge_hw
*hw
= skge
->hw
;
1445 int port
= skge
->port
;
1448 /* read twice because of latch */
1449 xm_phy_read(hw
, port
, PHY_XMAC_STAT
);
1450 status
= xm_phy_read(hw
, port
, PHY_XMAC_STAT
);
1452 if ((status
& PHY_ST_LSYNC
) == 0) {
1453 xm_link_down(hw
, port
);
1457 if (skge
->autoneg
== AUTONEG_ENABLE
) {
1460 if (!(status
& PHY_ST_AN_OVER
))
1463 lpa
= xm_phy_read(hw
, port
, PHY_XMAC_AUNE_LP
);
1464 if (lpa
& PHY_B_AN_RF
) {
1465 printk(KERN_NOTICE PFX
"%s: remote fault\n",
1470 res
= xm_phy_read(hw
, port
, PHY_XMAC_RES_ABI
);
1472 /* Check Duplex mismatch */
1473 switch (res
& (PHY_X_RS_HD
| PHY_X_RS_FD
)) {
1475 skge
->duplex
= DUPLEX_FULL
;
1478 skge
->duplex
= DUPLEX_HALF
;
1481 printk(KERN_NOTICE PFX
"%s: duplex mismatch\n",
1486 /* We are using IEEE 802.3z/D5.0 Table 37-4 */
1487 if ((skge
->flow_control
== FLOW_MODE_SYMMETRIC
||
1488 skge
->flow_control
== FLOW_MODE_SYM_OR_REM
) &&
1489 (lpa
& PHY_X_P_SYM_MD
))
1490 skge
->flow_status
= FLOW_STAT_SYMMETRIC
;
1491 else if (skge
->flow_control
== FLOW_MODE_SYM_OR_REM
&&
1492 (lpa
& PHY_X_RS_PAUSE
) == PHY_X_P_ASYM_MD
)
1493 /* Enable PAUSE receive, disable PAUSE transmit */
1494 skge
->flow_status
= FLOW_STAT_REM_SEND
;
1495 else if (skge
->flow_control
== FLOW_MODE_LOC_SEND
&&
1496 (lpa
& PHY_X_RS_PAUSE
) == PHY_X_P_BOTH_MD
)
1497 /* Disable PAUSE receive, enable PAUSE transmit */
1498 skge
->flow_status
= FLOW_STAT_LOC_SEND
;
1500 skge
->flow_status
= FLOW_STAT_NONE
;
1502 skge
->speed
= SPEED_1000
;
1505 if (!netif_carrier_ok(dev
))
1506 genesis_link_up(skge
);
1510 /* Poll to check for link coming up.
1512 * Since internal PHY is wired to a level triggered pin, can't
1513 * get an interrupt when carrier is detected, need to poll for
1516 static void xm_link_timer(unsigned long arg
)
1518 struct skge_port
*skge
= (struct skge_port
*) arg
;
1519 struct net_device
*dev
= skge
->netdev
;
1520 struct skge_hw
*hw
= skge
->hw
;
1521 int port
= skge
->port
;
1523 unsigned long flags
;
1525 if (!netif_running(dev
))
1528 spin_lock_irqsave(&hw
->phy_lock
, flags
);
1531 * Verify that the link by checking GPIO register three times.
1532 * This pin has the signal from the link_sync pin connected to it.
1534 for (i
= 0; i
< 3; i
++) {
1535 if (xm_read16(hw
, port
, XM_GP_PORT
) & XM_GP_INP_ASS
)
1539 /* Re-enable interrupt to detect link down */
1540 if (xm_check_link(dev
)) {
1541 u16 msk
= xm_read16(hw
, port
, XM_IMSK
);
1542 msk
&= ~XM_IS_INP_ASS
;
1543 xm_write16(hw
, port
, XM_IMSK
, msk
);
1544 xm_read16(hw
, port
, XM_ISRC
);
1547 mod_timer(&skge
->link_timer
,
1548 round_jiffies(jiffies
+ LINK_HZ
));
1550 spin_unlock_irqrestore(&hw
->phy_lock
, flags
);
1553 static void genesis_mac_init(struct skge_hw
*hw
, int port
)
1555 struct net_device
*dev
= hw
->dev
[port
];
1556 struct skge_port
*skge
= netdev_priv(dev
);
1557 int jumbo
= hw
->dev
[port
]->mtu
> ETH_DATA_LEN
;
1560 const u8 zero
[6] = { 0 };
1562 for (i
= 0; i
< 10; i
++) {
1563 skge_write16(hw
, SK_REG(port
, TX_MFF_CTRL1
),
1565 if (skge_read16(hw
, SK_REG(port
, TX_MFF_CTRL1
)) & MFF_SET_MAC_RST
)
1570 printk(KERN_WARNING PFX
"%s: genesis reset failed\n", dev
->name
);
1573 /* Unreset the XMAC. */
1574 skge_write16(hw
, SK_REG(port
, TX_MFF_CTRL1
), MFF_CLR_MAC_RST
);
1577 * Perform additional initialization for external PHYs,
1578 * namely for the 1000baseTX cards that use the XMAC's
1581 if (hw
->phy_type
!= SK_PHY_XMAC
) {
1582 /* Take external Phy out of reset */
1583 r
= skge_read32(hw
, B2_GP_IO
);
1585 r
|= GP_DIR_0
|GP_IO_0
;
1587 r
|= GP_DIR_2
|GP_IO_2
;
1589 skge_write32(hw
, B2_GP_IO
, r
);
1591 /* Enable GMII interface */
1592 xm_write16(hw
, port
, XM_HW_CFG
, XM_HW_GMII_MD
);
1596 switch(hw
->phy_type
) {
1601 bcom_phy_init(skge
);
1602 bcom_check_link(hw
, port
);
1605 /* Set Station Address */
1606 xm_outaddr(hw
, port
, XM_SA
, dev
->dev_addr
);
1608 /* We don't use match addresses so clear */
1609 for (i
= 1; i
< 16; i
++)
1610 xm_outaddr(hw
, port
, XM_EXM(i
), zero
);
1612 /* Clear MIB counters */
1613 xm_write16(hw
, port
, XM_STAT_CMD
,
1614 XM_SC_CLR_RXC
| XM_SC_CLR_TXC
);
1615 /* Clear two times according to Errata #3 */
1616 xm_write16(hw
, port
, XM_STAT_CMD
,
1617 XM_SC_CLR_RXC
| XM_SC_CLR_TXC
);
1619 /* configure Rx High Water Mark (XM_RX_HI_WM) */
1620 xm_write16(hw
, port
, XM_RX_HI_WM
, 1450);
1622 /* We don't need the FCS appended to the packet. */
1623 r
= XM_RX_LENERR_OK
| XM_RX_STRIP_FCS
;
1625 r
|= XM_RX_BIG_PK_OK
;
1627 if (skge
->duplex
== DUPLEX_HALF
) {
1629 * If in manual half duplex mode the other side might be in
1630 * full duplex mode, so ignore if a carrier extension is not seen
1631 * on frames received
1633 r
|= XM_RX_DIS_CEXT
;
1635 xm_write16(hw
, port
, XM_RX_CMD
, r
);
1638 /* We want short frames padded to 60 bytes. */
1639 xm_write16(hw
, port
, XM_TX_CMD
, XM_TX_AUTO_PAD
);
1642 * Bump up the transmit threshold. This helps hold off transmit
1643 * underruns when we're blasting traffic from both ports at once.
1645 xm_write16(hw
, port
, XM_TX_THR
, 512);
1648 * Enable the reception of all error frames. This is is
1649 * a necessary evil due to the design of the XMAC. The
1650 * XMAC's receive FIFO is only 8K in size, however jumbo
1651 * frames can be up to 9000 bytes in length. When bad
1652 * frame filtering is enabled, the XMAC's RX FIFO operates
1653 * in 'store and forward' mode. For this to work, the
1654 * entire frame has to fit into the FIFO, but that means
1655 * that jumbo frames larger than 8192 bytes will be
1656 * truncated. Disabling all bad frame filtering causes
1657 * the RX FIFO to operate in streaming mode, in which
1658 * case the XMAC will start transferring frames out of the
1659 * RX FIFO as soon as the FIFO threshold is reached.
1661 xm_write32(hw
, port
, XM_MODE
, XM_DEF_MODE
);
1665 * Initialize the Receive Counter Event Mask (XM_RX_EV_MSK)
1666 * - Enable all bits excepting 'Octets Rx OK Low CntOv'
1667 * and 'Octets Rx OK Hi Cnt Ov'.
1669 xm_write32(hw
, port
, XM_RX_EV_MSK
, XMR_DEF_MSK
);
1672 * Initialize the Transmit Counter Event Mask (XM_TX_EV_MSK)
1673 * - Enable all bits excepting 'Octets Tx OK Low CntOv'
1674 * and 'Octets Tx OK Hi Cnt Ov'.
1676 xm_write32(hw
, port
, XM_TX_EV_MSK
, XMT_DEF_MSK
);
1678 /* Configure MAC arbiter */
1679 skge_write16(hw
, B3_MA_TO_CTRL
, MA_RST_CLR
);
1681 /* configure timeout values */
1682 skge_write8(hw
, B3_MA_TOINI_RX1
, 72);
1683 skge_write8(hw
, B3_MA_TOINI_RX2
, 72);
1684 skge_write8(hw
, B3_MA_TOINI_TX1
, 72);
1685 skge_write8(hw
, B3_MA_TOINI_TX2
, 72);
1687 skge_write8(hw
, B3_MA_RCINI_RX1
, 0);
1688 skge_write8(hw
, B3_MA_RCINI_RX2
, 0);
1689 skge_write8(hw
, B3_MA_RCINI_TX1
, 0);
1690 skge_write8(hw
, B3_MA_RCINI_TX2
, 0);
1692 /* Configure Rx MAC FIFO */
1693 skge_write8(hw
, SK_REG(port
, RX_MFF_CTRL2
), MFF_RST_CLR
);
1694 skge_write16(hw
, SK_REG(port
, RX_MFF_CTRL1
), MFF_ENA_TIM_PAT
);
1695 skge_write8(hw
, SK_REG(port
, RX_MFF_CTRL2
), MFF_ENA_OP_MD
);
1697 /* Configure Tx MAC FIFO */
1698 skge_write8(hw
, SK_REG(port
, TX_MFF_CTRL2
), MFF_RST_CLR
);
1699 skge_write16(hw
, SK_REG(port
, TX_MFF_CTRL1
), MFF_TX_CTRL_DEF
);
1700 skge_write8(hw
, SK_REG(port
, TX_MFF_CTRL2
), MFF_ENA_OP_MD
);
1703 /* Enable frame flushing if jumbo frames used */
1704 skge_write16(hw
, SK_REG(port
,RX_MFF_CTRL1
), MFF_ENA_FLUSH
);
1706 /* enable timeout timers if normal frames */
1707 skge_write16(hw
, B3_PA_CTRL
,
1708 (port
== 0) ? PA_ENA_TO_TX1
: PA_ENA_TO_TX2
);
1712 static void genesis_stop(struct skge_port
*skge
)
1714 struct skge_hw
*hw
= skge
->hw
;
1715 int port
= skge
->port
;
1718 genesis_reset(hw
, port
);
1720 /* Clear Tx packet arbiter timeout IRQ */
1721 skge_write16(hw
, B3_PA_CTRL
,
1722 port
== 0 ? PA_CLR_TO_TX1
: PA_CLR_TO_TX2
);
1725 * If the transfer sticks at the MAC the STOP command will not
1726 * terminate if we don't flush the XMAC's transmit FIFO !
1728 xm_write32(hw
, port
, XM_MODE
,
1729 xm_read32(hw
, port
, XM_MODE
)|XM_MD_FTF
);
1733 skge_write16(hw
, SK_REG(port
, TX_MFF_CTRL1
), MFF_SET_MAC_RST
);
1735 /* For external PHYs there must be special handling */
1736 if (hw
->phy_type
!= SK_PHY_XMAC
) {
1737 reg
= skge_read32(hw
, B2_GP_IO
);
1745 skge_write32(hw
, B2_GP_IO
, reg
);
1746 skge_read32(hw
, B2_GP_IO
);
1749 xm_write16(hw
, port
, XM_MMU_CMD
,
1750 xm_read16(hw
, port
, XM_MMU_CMD
)
1751 & ~(XM_MMU_ENA_RX
| XM_MMU_ENA_TX
));
1753 xm_read16(hw
, port
, XM_MMU_CMD
);
1757 static void genesis_get_stats(struct skge_port
*skge
, u64
*data
)
1759 struct skge_hw
*hw
= skge
->hw
;
1760 int port
= skge
->port
;
1762 unsigned long timeout
= jiffies
+ HZ
;
1764 xm_write16(hw
, port
,
1765 XM_STAT_CMD
, XM_SC_SNP_TXC
| XM_SC_SNP_RXC
);
1767 /* wait for update to complete */
1768 while (xm_read16(hw
, port
, XM_STAT_CMD
)
1769 & (XM_SC_SNP_TXC
| XM_SC_SNP_RXC
)) {
1770 if (time_after(jiffies
, timeout
))
1775 /* special case for 64 bit octet counter */
1776 data
[0] = (u64
) xm_read32(hw
, port
, XM_TXO_OK_HI
) << 32
1777 | xm_read32(hw
, port
, XM_TXO_OK_LO
);
1778 data
[1] = (u64
) xm_read32(hw
, port
, XM_RXO_OK_HI
) << 32
1779 | xm_read32(hw
, port
, XM_RXO_OK_LO
);
1781 for (i
= 2; i
< ARRAY_SIZE(skge_stats
); i
++)
1782 data
[i
] = xm_read32(hw
, port
, skge_stats
[i
].xmac_offset
);
1785 static void genesis_mac_intr(struct skge_hw
*hw
, int port
)
1787 struct net_device
*dev
= hw
->dev
[port
];
1788 struct skge_port
*skge
= netdev_priv(dev
);
1789 u16 status
= xm_read16(hw
, port
, XM_ISRC
);
1791 if (netif_msg_intr(skge
))
1792 printk(KERN_DEBUG PFX
"%s: mac interrupt status 0x%x\n",
1795 if (hw
->phy_type
== SK_PHY_XMAC
&& (status
& XM_IS_INP_ASS
)) {
1796 xm_link_down(hw
, port
);
1797 mod_timer(&skge
->link_timer
, jiffies
+ 1);
1800 if (status
& XM_IS_TXF_UR
) {
1801 xm_write32(hw
, port
, XM_MODE
, XM_MD_FTF
);
1802 ++dev
->stats
.tx_fifo_errors
;
1806 static void genesis_link_up(struct skge_port
*skge
)
1808 struct skge_hw
*hw
= skge
->hw
;
1809 int port
= skge
->port
;
1813 cmd
= xm_read16(hw
, port
, XM_MMU_CMD
);
1816 * enabling pause frame reception is required for 1000BT
1817 * because the XMAC is not reset if the link is going down
1819 if (skge
->flow_status
== FLOW_STAT_NONE
||
1820 skge
->flow_status
== FLOW_STAT_LOC_SEND
)
1821 /* Disable Pause Frame Reception */
1822 cmd
|= XM_MMU_IGN_PF
;
1824 /* Enable Pause Frame Reception */
1825 cmd
&= ~XM_MMU_IGN_PF
;
1827 xm_write16(hw
, port
, XM_MMU_CMD
, cmd
);
1829 mode
= xm_read32(hw
, port
, XM_MODE
);
1830 if (skge
->flow_status
== FLOW_STAT_SYMMETRIC
||
1831 skge
->flow_status
== FLOW_STAT_LOC_SEND
) {
1833 * Configure Pause Frame Generation
1834 * Use internal and external Pause Frame Generation.
1835 * Sending pause frames is edge triggered.
1836 * Send a Pause frame with the maximum pause time if
1837 * internal oder external FIFO full condition occurs.
1838 * Send a zero pause time frame to re-start transmission.
1840 /* XM_PAUSE_DA = '010000C28001' (default) */
1841 /* XM_MAC_PTIME = 0xffff (maximum) */
1842 /* remember this value is defined in big endian (!) */
1843 xm_write16(hw
, port
, XM_MAC_PTIME
, 0xffff);
1845 mode
|= XM_PAUSE_MODE
;
1846 skge_write16(hw
, SK_REG(port
, RX_MFF_CTRL1
), MFF_ENA_PAUSE
);
1849 * disable pause frame generation is required for 1000BT
1850 * because the XMAC is not reset if the link is going down
1852 /* Disable Pause Mode in Mode Register */
1853 mode
&= ~XM_PAUSE_MODE
;
1855 skge_write16(hw
, SK_REG(port
, RX_MFF_CTRL1
), MFF_DIS_PAUSE
);
1858 xm_write32(hw
, port
, XM_MODE
, mode
);
1860 /* Turn on detection of Tx underrun */
1861 msk
= xm_read16(hw
, port
, XM_IMSK
);
1862 msk
&= ~XM_IS_TXF_UR
;
1863 xm_write16(hw
, port
, XM_IMSK
, msk
);
1865 xm_read16(hw
, port
, XM_ISRC
);
1867 /* get MMU Command Reg. */
1868 cmd
= xm_read16(hw
, port
, XM_MMU_CMD
);
1869 if (hw
->phy_type
!= SK_PHY_XMAC
&& skge
->duplex
== DUPLEX_FULL
)
1870 cmd
|= XM_MMU_GMII_FD
;
1873 * Workaround BCOM Errata (#10523) for all BCom Phys
1874 * Enable Power Management after link up
1876 if (hw
->phy_type
== SK_PHY_BCOM
) {
1877 xm_phy_write(hw
, port
, PHY_BCOM_AUX_CTRL
,
1878 xm_phy_read(hw
, port
, PHY_BCOM_AUX_CTRL
)
1879 & ~PHY_B_AC_DIS_PM
);
1880 xm_phy_write(hw
, port
, PHY_BCOM_INT_MASK
, PHY_B_DEF_MSK
);
1884 xm_write16(hw
, port
, XM_MMU_CMD
,
1885 cmd
| XM_MMU_ENA_RX
| XM_MMU_ENA_TX
);
1890 static inline void bcom_phy_intr(struct skge_port
*skge
)
1892 struct skge_hw
*hw
= skge
->hw
;
1893 int port
= skge
->port
;
1896 isrc
= xm_phy_read(hw
, port
, PHY_BCOM_INT_STAT
);
1897 if (netif_msg_intr(skge
))
1898 printk(KERN_DEBUG PFX
"%s: phy interrupt status 0x%x\n",
1899 skge
->netdev
->name
, isrc
);
1901 if (isrc
& PHY_B_IS_PSE
)
1902 printk(KERN_ERR PFX
"%s: uncorrectable pair swap error\n",
1903 hw
->dev
[port
]->name
);
1905 /* Workaround BCom Errata:
1906 * enable and disable loopback mode if "NO HCD" occurs.
1908 if (isrc
& PHY_B_IS_NO_HDCL
) {
1909 u16 ctrl
= xm_phy_read(hw
, port
, PHY_BCOM_CTRL
);
1910 xm_phy_write(hw
, port
, PHY_BCOM_CTRL
,
1911 ctrl
| PHY_CT_LOOP
);
1912 xm_phy_write(hw
, port
, PHY_BCOM_CTRL
,
1913 ctrl
& ~PHY_CT_LOOP
);
1916 if (isrc
& (PHY_B_IS_AN_PR
| PHY_B_IS_LST_CHANGE
))
1917 bcom_check_link(hw
, port
);
1921 static int gm_phy_write(struct skge_hw
*hw
, int port
, u16 reg
, u16 val
)
1925 gma_write16(hw
, port
, GM_SMI_DATA
, val
);
1926 gma_write16(hw
, port
, GM_SMI_CTRL
,
1927 GM_SMI_CT_PHY_AD(hw
->phy_addr
) | GM_SMI_CT_REG_AD(reg
));
1928 for (i
= 0; i
< PHY_RETRIES
; i
++) {
1931 if (!(gma_read16(hw
, port
, GM_SMI_CTRL
) & GM_SMI_CT_BUSY
))
1935 printk(KERN_WARNING PFX
"%s: phy write timeout\n",
1936 hw
->dev
[port
]->name
);
1940 static int __gm_phy_read(struct skge_hw
*hw
, int port
, u16 reg
, u16
*val
)
1944 gma_write16(hw
, port
, GM_SMI_CTRL
,
1945 GM_SMI_CT_PHY_AD(hw
->phy_addr
)
1946 | GM_SMI_CT_REG_AD(reg
) | GM_SMI_CT_OP_RD
);
1948 for (i
= 0; i
< PHY_RETRIES
; i
++) {
1950 if (gma_read16(hw
, port
, GM_SMI_CTRL
) & GM_SMI_CT_RD_VAL
)
1956 *val
= gma_read16(hw
, port
, GM_SMI_DATA
);
1960 static u16
gm_phy_read(struct skge_hw
*hw
, int port
, u16 reg
)
1963 if (__gm_phy_read(hw
, port
, reg
, &v
))
1964 printk(KERN_WARNING PFX
"%s: phy read timeout\n",
1965 hw
->dev
[port
]->name
);
1969 /* Marvell Phy Initialization */
1970 static void yukon_init(struct skge_hw
*hw
, int port
)
1972 struct skge_port
*skge
= netdev_priv(hw
->dev
[port
]);
1973 u16 ctrl
, ct1000
, adv
;
1975 if (skge
->autoneg
== AUTONEG_ENABLE
) {
1976 u16 ectrl
= gm_phy_read(hw
, port
, PHY_MARV_EXT_CTRL
);
1978 ectrl
&= ~(PHY_M_EC_M_DSC_MSK
| PHY_M_EC_S_DSC_MSK
|
1979 PHY_M_EC_MAC_S_MSK
);
1980 ectrl
|= PHY_M_EC_MAC_S(MAC_TX_CLK_25_MHZ
);
1982 ectrl
|= PHY_M_EC_M_DSC(0) | PHY_M_EC_S_DSC(1);
1984 gm_phy_write(hw
, port
, PHY_MARV_EXT_CTRL
, ectrl
);
1987 ctrl
= gm_phy_read(hw
, port
, PHY_MARV_CTRL
);
1988 if (skge
->autoneg
== AUTONEG_DISABLE
)
1989 ctrl
&= ~PHY_CT_ANE
;
1991 ctrl
|= PHY_CT_RESET
;
1992 gm_phy_write(hw
, port
, PHY_MARV_CTRL
, ctrl
);
1998 if (skge
->autoneg
== AUTONEG_ENABLE
) {
2000 if (skge
->advertising
& ADVERTISED_1000baseT_Full
)
2001 ct1000
|= PHY_M_1000C_AFD
;
2002 if (skge
->advertising
& ADVERTISED_1000baseT_Half
)
2003 ct1000
|= PHY_M_1000C_AHD
;
2004 if (skge
->advertising
& ADVERTISED_100baseT_Full
)
2005 adv
|= PHY_M_AN_100_FD
;
2006 if (skge
->advertising
& ADVERTISED_100baseT_Half
)
2007 adv
|= PHY_M_AN_100_HD
;
2008 if (skge
->advertising
& ADVERTISED_10baseT_Full
)
2009 adv
|= PHY_M_AN_10_FD
;
2010 if (skge
->advertising
& ADVERTISED_10baseT_Half
)
2011 adv
|= PHY_M_AN_10_HD
;
2013 /* Set Flow-control capabilities */
2014 adv
|= phy_pause_map
[skge
->flow_control
];
2016 if (skge
->advertising
& ADVERTISED_1000baseT_Full
)
2017 adv
|= PHY_M_AN_1000X_AFD
;
2018 if (skge
->advertising
& ADVERTISED_1000baseT_Half
)
2019 adv
|= PHY_M_AN_1000X_AHD
;
2021 adv
|= fiber_pause_map
[skge
->flow_control
];
2024 /* Restart Auto-negotiation */
2025 ctrl
|= PHY_CT_ANE
| PHY_CT_RE_CFG
;
2027 /* forced speed/duplex settings */
2028 ct1000
= PHY_M_1000C_MSE
;
2030 if (skge
->duplex
== DUPLEX_FULL
)
2031 ctrl
|= PHY_CT_DUP_MD
;
2033 switch (skge
->speed
) {
2035 ctrl
|= PHY_CT_SP1000
;
2038 ctrl
|= PHY_CT_SP100
;
2042 ctrl
|= PHY_CT_RESET
;
2045 gm_phy_write(hw
, port
, PHY_MARV_1000T_CTRL
, ct1000
);
2047 gm_phy_write(hw
, port
, PHY_MARV_AUNE_ADV
, adv
);
2048 gm_phy_write(hw
, port
, PHY_MARV_CTRL
, ctrl
);
2050 /* Enable phy interrupt on autonegotiation complete (or link up) */
2051 if (skge
->autoneg
== AUTONEG_ENABLE
)
2052 gm_phy_write(hw
, port
, PHY_MARV_INT_MASK
, PHY_M_IS_AN_MSK
);
2054 gm_phy_write(hw
, port
, PHY_MARV_INT_MASK
, PHY_M_IS_DEF_MSK
);
2057 static void yukon_reset(struct skge_hw
*hw
, int port
)
2059 gm_phy_write(hw
, port
, PHY_MARV_INT_MASK
, 0);/* disable PHY IRQs */
2060 gma_write16(hw
, port
, GM_MC_ADDR_H1
, 0); /* clear MC hash */
2061 gma_write16(hw
, port
, GM_MC_ADDR_H2
, 0);
2062 gma_write16(hw
, port
, GM_MC_ADDR_H3
, 0);
2063 gma_write16(hw
, port
, GM_MC_ADDR_H4
, 0);
2065 gma_write16(hw
, port
, GM_RX_CTRL
,
2066 gma_read16(hw
, port
, GM_RX_CTRL
)
2067 | GM_RXCR_UCF_ENA
| GM_RXCR_MCF_ENA
);
2070 /* Apparently, early versions of Yukon-Lite had wrong chip_id? */
2071 static int is_yukon_lite_a0(struct skge_hw
*hw
)
2076 if (hw
->chip_id
!= CHIP_ID_YUKON
)
2079 reg
= skge_read32(hw
, B2_FAR
);
2080 skge_write8(hw
, B2_FAR
+ 3, 0xff);
2081 ret
= (skge_read8(hw
, B2_FAR
+ 3) != 0);
2082 skge_write32(hw
, B2_FAR
, reg
);
2086 static void yukon_mac_init(struct skge_hw
*hw
, int port
)
2088 struct skge_port
*skge
= netdev_priv(hw
->dev
[port
]);
2091 const u8
*addr
= hw
->dev
[port
]->dev_addr
;
2093 /* WA code for COMA mode -- set PHY reset */
2094 if (hw
->chip_id
== CHIP_ID_YUKON_LITE
&&
2095 hw
->chip_rev
>= CHIP_REV_YU_LITE_A3
) {
2096 reg
= skge_read32(hw
, B2_GP_IO
);
2097 reg
|= GP_DIR_9
| GP_IO_9
;
2098 skge_write32(hw
, B2_GP_IO
, reg
);
2102 skge_write32(hw
, SK_REG(port
, GPHY_CTRL
), GPC_RST_SET
);
2103 skge_write32(hw
, SK_REG(port
, GMAC_CTRL
), GMC_RST_SET
);
2105 /* WA code for COMA mode -- clear PHY reset */
2106 if (hw
->chip_id
== CHIP_ID_YUKON_LITE
&&
2107 hw
->chip_rev
>= CHIP_REV_YU_LITE_A3
) {
2108 reg
= skge_read32(hw
, B2_GP_IO
);
2111 skge_write32(hw
, B2_GP_IO
, reg
);
2114 /* Set hardware config mode */
2115 reg
= GPC_INT_POL_HI
| GPC_DIS_FC
| GPC_DIS_SLEEP
|
2116 GPC_ENA_XC
| GPC_ANEG_ADV_ALL_M
| GPC_ENA_PAUSE
;
2117 reg
|= hw
->copper
? GPC_HWCFG_GMII_COP
: GPC_HWCFG_GMII_FIB
;
2119 /* Clear GMC reset */
2120 skge_write32(hw
, SK_REG(port
, GPHY_CTRL
), reg
| GPC_RST_SET
);
2121 skge_write32(hw
, SK_REG(port
, GPHY_CTRL
), reg
| GPC_RST_CLR
);
2122 skge_write32(hw
, SK_REG(port
, GMAC_CTRL
), GMC_PAUSE_ON
| GMC_RST_CLR
);
2124 if (skge
->autoneg
== AUTONEG_DISABLE
) {
2125 reg
= GM_GPCR_AU_ALL_DIS
;
2126 gma_write16(hw
, port
, GM_GP_CTRL
,
2127 gma_read16(hw
, port
, GM_GP_CTRL
) | reg
);
2129 switch (skge
->speed
) {
2131 reg
&= ~GM_GPCR_SPEED_100
;
2132 reg
|= GM_GPCR_SPEED_1000
;
2135 reg
&= ~GM_GPCR_SPEED_1000
;
2136 reg
|= GM_GPCR_SPEED_100
;
2139 reg
&= ~(GM_GPCR_SPEED_1000
| GM_GPCR_SPEED_100
);
2143 if (skge
->duplex
== DUPLEX_FULL
)
2144 reg
|= GM_GPCR_DUP_FULL
;
2146 reg
= GM_GPCR_SPEED_1000
| GM_GPCR_SPEED_100
| GM_GPCR_DUP_FULL
;
2148 switch (skge
->flow_control
) {
2149 case FLOW_MODE_NONE
:
2150 skge_write32(hw
, SK_REG(port
, GMAC_CTRL
), GMC_PAUSE_OFF
);
2151 reg
|= GM_GPCR_FC_TX_DIS
| GM_GPCR_FC_RX_DIS
| GM_GPCR_AU_FCT_DIS
;
2153 case FLOW_MODE_LOC_SEND
:
2154 /* disable Rx flow-control */
2155 reg
|= GM_GPCR_FC_RX_DIS
| GM_GPCR_AU_FCT_DIS
;
2157 case FLOW_MODE_SYMMETRIC
:
2158 case FLOW_MODE_SYM_OR_REM
:
2159 /* enable Tx & Rx flow-control */
2163 gma_write16(hw
, port
, GM_GP_CTRL
, reg
);
2164 skge_read16(hw
, SK_REG(port
, GMAC_IRQ_SRC
));
2166 yukon_init(hw
, port
);
2169 reg
= gma_read16(hw
, port
, GM_PHY_ADDR
);
2170 gma_write16(hw
, port
, GM_PHY_ADDR
, reg
| GM_PAR_MIB_CLR
);
2172 for (i
= 0; i
< GM_MIB_CNT_SIZE
; i
++)
2173 gma_read16(hw
, port
, GM_MIB_CNT_BASE
+ 8*i
);
2174 gma_write16(hw
, port
, GM_PHY_ADDR
, reg
);
2176 /* transmit control */
2177 gma_write16(hw
, port
, GM_TX_CTRL
, TX_COL_THR(TX_COL_DEF
));
2179 /* receive control reg: unicast + multicast + no FCS */
2180 gma_write16(hw
, port
, GM_RX_CTRL
,
2181 GM_RXCR_UCF_ENA
| GM_RXCR_CRC_DIS
| GM_RXCR_MCF_ENA
);
2183 /* transmit flow control */
2184 gma_write16(hw
, port
, GM_TX_FLOW_CTRL
, 0xffff);
2186 /* transmit parameter */
2187 gma_write16(hw
, port
, GM_TX_PARAM
,
2188 TX_JAM_LEN_VAL(TX_JAM_LEN_DEF
) |
2189 TX_JAM_IPG_VAL(TX_JAM_IPG_DEF
) |
2190 TX_IPG_JAM_DATA(TX_IPG_JAM_DEF
));
2192 /* serial mode register */
2193 reg
= GM_SMOD_VLAN_ENA
| IPG_DATA_VAL(IPG_DATA_DEF
);
2194 if (hw
->dev
[port
]->mtu
> 1500)
2195 reg
|= GM_SMOD_JUMBO_ENA
;
2197 gma_write16(hw
, port
, GM_SERIAL_MODE
, reg
);
2199 /* physical address: used for pause frames */
2200 gma_set_addr(hw
, port
, GM_SRC_ADDR_1L
, addr
);
2201 /* virtual address for data */
2202 gma_set_addr(hw
, port
, GM_SRC_ADDR_2L
, addr
);
2204 /* enable interrupt mask for counter overflows */
2205 gma_write16(hw
, port
, GM_TX_IRQ_MSK
, 0);
2206 gma_write16(hw
, port
, GM_RX_IRQ_MSK
, 0);
2207 gma_write16(hw
, port
, GM_TR_IRQ_MSK
, 0);
2209 /* Initialize Mac Fifo */
2211 /* Configure Rx MAC FIFO */
2212 skge_write16(hw
, SK_REG(port
, RX_GMF_FL_MSK
), RX_FF_FL_DEF_MSK
);
2213 reg
= GMF_OPER_ON
| GMF_RX_F_FL_ON
;
2215 /* disable Rx GMAC FIFO Flush for YUKON-Lite Rev. A0 only */
2216 if (is_yukon_lite_a0(hw
))
2217 reg
&= ~GMF_RX_F_FL_ON
;
2219 skge_write8(hw
, SK_REG(port
, RX_GMF_CTRL_T
), GMF_RST_CLR
);
2220 skge_write16(hw
, SK_REG(port
, RX_GMF_CTRL_T
), reg
);
2222 * because Pause Packet Truncation in GMAC is not working
2223 * we have to increase the Flush Threshold to 64 bytes
2224 * in order to flush pause packets in Rx FIFO on Yukon-1
2226 skge_write16(hw
, SK_REG(port
, RX_GMF_FL_THR
), RX_GMF_FL_THR_DEF
+1);
2228 /* Configure Tx MAC FIFO */
2229 skge_write8(hw
, SK_REG(port
, TX_GMF_CTRL_T
), GMF_RST_CLR
);
2230 skge_write16(hw
, SK_REG(port
, TX_GMF_CTRL_T
), GMF_OPER_ON
);
2233 /* Go into power down mode */
2234 static void yukon_suspend(struct skge_hw
*hw
, int port
)
2238 ctrl
= gm_phy_read(hw
, port
, PHY_MARV_PHY_CTRL
);
2239 ctrl
|= PHY_M_PC_POL_R_DIS
;
2240 gm_phy_write(hw
, port
, PHY_MARV_PHY_CTRL
, ctrl
);
2242 ctrl
= gm_phy_read(hw
, port
, PHY_MARV_CTRL
);
2243 ctrl
|= PHY_CT_RESET
;
2244 gm_phy_write(hw
, port
, PHY_MARV_CTRL
, ctrl
);
2246 /* switch IEEE compatible power down mode on */
2247 ctrl
= gm_phy_read(hw
, port
, PHY_MARV_CTRL
);
2248 ctrl
|= PHY_CT_PDOWN
;
2249 gm_phy_write(hw
, port
, PHY_MARV_CTRL
, ctrl
);
2252 static void yukon_stop(struct skge_port
*skge
)
2254 struct skge_hw
*hw
= skge
->hw
;
2255 int port
= skge
->port
;
2257 skge_write8(hw
, SK_REG(port
, GMAC_IRQ_MSK
), 0);
2258 yukon_reset(hw
, port
);
2260 gma_write16(hw
, port
, GM_GP_CTRL
,
2261 gma_read16(hw
, port
, GM_GP_CTRL
)
2262 & ~(GM_GPCR_TX_ENA
|GM_GPCR_RX_ENA
));
2263 gma_read16(hw
, port
, GM_GP_CTRL
);
2265 yukon_suspend(hw
, port
);
2267 /* set GPHY Control reset */
2268 skge_write8(hw
, SK_REG(port
, GPHY_CTRL
), GPC_RST_SET
);
2269 skge_write8(hw
, SK_REG(port
, GMAC_CTRL
), GMC_RST_SET
);
2272 static void yukon_get_stats(struct skge_port
*skge
, u64
*data
)
2274 struct skge_hw
*hw
= skge
->hw
;
2275 int port
= skge
->port
;
2278 data
[0] = (u64
) gma_read32(hw
, port
, GM_TXO_OK_HI
) << 32
2279 | gma_read32(hw
, port
, GM_TXO_OK_LO
);
2280 data
[1] = (u64
) gma_read32(hw
, port
, GM_RXO_OK_HI
) << 32
2281 | gma_read32(hw
, port
, GM_RXO_OK_LO
);
2283 for (i
= 2; i
< ARRAY_SIZE(skge_stats
); i
++)
2284 data
[i
] = gma_read32(hw
, port
,
2285 skge_stats
[i
].gma_offset
);
2288 static void yukon_mac_intr(struct skge_hw
*hw
, int port
)
2290 struct net_device
*dev
= hw
->dev
[port
];
2291 struct skge_port
*skge
= netdev_priv(dev
);
2292 u8 status
= skge_read8(hw
, SK_REG(port
, GMAC_IRQ_SRC
));
2294 if (netif_msg_intr(skge
))
2295 printk(KERN_DEBUG PFX
"%s: mac interrupt status 0x%x\n",
2298 if (status
& GM_IS_RX_FF_OR
) {
2299 ++dev
->stats
.rx_fifo_errors
;
2300 skge_write8(hw
, SK_REG(port
, RX_GMF_CTRL_T
), GMF_CLI_RX_FO
);
2303 if (status
& GM_IS_TX_FF_UR
) {
2304 ++dev
->stats
.tx_fifo_errors
;
2305 skge_write8(hw
, SK_REG(port
, TX_GMF_CTRL_T
), GMF_CLI_TX_FU
);
2310 static u16
yukon_speed(const struct skge_hw
*hw
, u16 aux
)
2312 switch (aux
& PHY_M_PS_SPEED_MSK
) {
2313 case PHY_M_PS_SPEED_1000
:
2315 case PHY_M_PS_SPEED_100
:
2322 static void yukon_link_up(struct skge_port
*skge
)
2324 struct skge_hw
*hw
= skge
->hw
;
2325 int port
= skge
->port
;
2328 /* Enable Transmit FIFO Underrun */
2329 skge_write8(hw
, SK_REG(port
, GMAC_IRQ_MSK
), GMAC_DEF_MSK
);
2331 reg
= gma_read16(hw
, port
, GM_GP_CTRL
);
2332 if (skge
->duplex
== DUPLEX_FULL
|| skge
->autoneg
== AUTONEG_ENABLE
)
2333 reg
|= GM_GPCR_DUP_FULL
;
2336 reg
|= GM_GPCR_RX_ENA
| GM_GPCR_TX_ENA
;
2337 gma_write16(hw
, port
, GM_GP_CTRL
, reg
);
2339 gm_phy_write(hw
, port
, PHY_MARV_INT_MASK
, PHY_M_IS_DEF_MSK
);
2343 static void yukon_link_down(struct skge_port
*skge
)
2345 struct skge_hw
*hw
= skge
->hw
;
2346 int port
= skge
->port
;
2349 ctrl
= gma_read16(hw
, port
, GM_GP_CTRL
);
2350 ctrl
&= ~(GM_GPCR_RX_ENA
| GM_GPCR_TX_ENA
);
2351 gma_write16(hw
, port
, GM_GP_CTRL
, ctrl
);
2353 if (skge
->flow_status
== FLOW_STAT_REM_SEND
) {
2354 ctrl
= gm_phy_read(hw
, port
, PHY_MARV_AUNE_ADV
);
2355 ctrl
|= PHY_M_AN_ASP
;
2356 /* restore Asymmetric Pause bit */
2357 gm_phy_write(hw
, port
, PHY_MARV_AUNE_ADV
, ctrl
);
2360 skge_link_down(skge
);
2362 yukon_init(hw
, port
);
2365 static void yukon_phy_intr(struct skge_port
*skge
)
2367 struct skge_hw
*hw
= skge
->hw
;
2368 int port
= skge
->port
;
2369 const char *reason
= NULL
;
2370 u16 istatus
, phystat
;
2372 istatus
= gm_phy_read(hw
, port
, PHY_MARV_INT_STAT
);
2373 phystat
= gm_phy_read(hw
, port
, PHY_MARV_PHY_STAT
);
2375 if (netif_msg_intr(skge
))
2376 printk(KERN_DEBUG PFX
"%s: phy interrupt status 0x%x 0x%x\n",
2377 skge
->netdev
->name
, istatus
, phystat
);
2379 if (istatus
& PHY_M_IS_AN_COMPL
) {
2380 if (gm_phy_read(hw
, port
, PHY_MARV_AUNE_LP
)
2382 reason
= "remote fault";
2386 if (gm_phy_read(hw
, port
, PHY_MARV_1000T_STAT
) & PHY_B_1000S_MSF
) {
2387 reason
= "master/slave fault";
2391 if (!(phystat
& PHY_M_PS_SPDUP_RES
)) {
2392 reason
= "speed/duplex";
2396 skge
->duplex
= (phystat
& PHY_M_PS_FULL_DUP
)
2397 ? DUPLEX_FULL
: DUPLEX_HALF
;
2398 skge
->speed
= yukon_speed(hw
, phystat
);
2400 /* We are using IEEE 802.3z/D5.0 Table 37-4 */
2401 switch (phystat
& PHY_M_PS_PAUSE_MSK
) {
2402 case PHY_M_PS_PAUSE_MSK
:
2403 skge
->flow_status
= FLOW_STAT_SYMMETRIC
;
2405 case PHY_M_PS_RX_P_EN
:
2406 skge
->flow_status
= FLOW_STAT_REM_SEND
;
2408 case PHY_M_PS_TX_P_EN
:
2409 skge
->flow_status
= FLOW_STAT_LOC_SEND
;
2412 skge
->flow_status
= FLOW_STAT_NONE
;
2415 if (skge
->flow_status
== FLOW_STAT_NONE
||
2416 (skge
->speed
< SPEED_1000
&& skge
->duplex
== DUPLEX_HALF
))
2417 skge_write8(hw
, SK_REG(port
, GMAC_CTRL
), GMC_PAUSE_OFF
);
2419 skge_write8(hw
, SK_REG(port
, GMAC_CTRL
), GMC_PAUSE_ON
);
2420 yukon_link_up(skge
);
2424 if (istatus
& PHY_M_IS_LSP_CHANGE
)
2425 skge
->speed
= yukon_speed(hw
, phystat
);
2427 if (istatus
& PHY_M_IS_DUP_CHANGE
)
2428 skge
->duplex
= (phystat
& PHY_M_PS_FULL_DUP
) ? DUPLEX_FULL
: DUPLEX_HALF
;
2429 if (istatus
& PHY_M_IS_LST_CHANGE
) {
2430 if (phystat
& PHY_M_PS_LINK_UP
)
2431 yukon_link_up(skge
);
2433 yukon_link_down(skge
);
2437 printk(KERN_ERR PFX
"%s: autonegotiation failed (%s)\n",
2438 skge
->netdev
->name
, reason
);
2440 /* XXX restart autonegotiation? */
2443 static void skge_phy_reset(struct skge_port
*skge
)
2445 struct skge_hw
*hw
= skge
->hw
;
2446 int port
= skge
->port
;
2447 struct net_device
*dev
= hw
->dev
[port
];
2449 netif_stop_queue(skge
->netdev
);
2450 netif_carrier_off(skge
->netdev
);
2452 spin_lock_bh(&hw
->phy_lock
);
2453 if (hw
->chip_id
== CHIP_ID_GENESIS
) {
2454 genesis_reset(hw
, port
);
2455 genesis_mac_init(hw
, port
);
2457 yukon_reset(hw
, port
);
2458 yukon_init(hw
, port
);
2460 spin_unlock_bh(&hw
->phy_lock
);
2462 dev
->set_multicast_list(dev
);
2465 /* Basic MII support */
2466 static int skge_ioctl(struct net_device
*dev
, struct ifreq
*ifr
, int cmd
)
2468 struct mii_ioctl_data
*data
= if_mii(ifr
);
2469 struct skge_port
*skge
= netdev_priv(dev
);
2470 struct skge_hw
*hw
= skge
->hw
;
2471 int err
= -EOPNOTSUPP
;
2473 if (!netif_running(dev
))
2474 return -ENODEV
; /* Phy still in reset */
2478 data
->phy_id
= hw
->phy_addr
;
2483 spin_lock_bh(&hw
->phy_lock
);
2484 if (hw
->chip_id
== CHIP_ID_GENESIS
)
2485 err
= __xm_phy_read(hw
, skge
->port
, data
->reg_num
& 0x1f, &val
);
2487 err
= __gm_phy_read(hw
, skge
->port
, data
->reg_num
& 0x1f, &val
);
2488 spin_unlock_bh(&hw
->phy_lock
);
2489 data
->val_out
= val
;
2494 if (!capable(CAP_NET_ADMIN
))
2497 spin_lock_bh(&hw
->phy_lock
);
2498 if (hw
->chip_id
== CHIP_ID_GENESIS
)
2499 err
= xm_phy_write(hw
, skge
->port
, data
->reg_num
& 0x1f,
2502 err
= gm_phy_write(hw
, skge
->port
, data
->reg_num
& 0x1f,
2504 spin_unlock_bh(&hw
->phy_lock
);
2510 static void skge_ramset(struct skge_hw
*hw
, u16 q
, u32 start
, size_t len
)
2516 end
= start
+ len
- 1;
2518 skge_write8(hw
, RB_ADDR(q
, RB_CTRL
), RB_RST_CLR
);
2519 skge_write32(hw
, RB_ADDR(q
, RB_START
), start
);
2520 skge_write32(hw
, RB_ADDR(q
, RB_WP
), start
);
2521 skge_write32(hw
, RB_ADDR(q
, RB_RP
), start
);
2522 skge_write32(hw
, RB_ADDR(q
, RB_END
), end
);
2524 if (q
== Q_R1
|| q
== Q_R2
) {
2525 /* Set thresholds on receive queue's */
2526 skge_write32(hw
, RB_ADDR(q
, RB_RX_UTPP
),
2528 skge_write32(hw
, RB_ADDR(q
, RB_RX_LTPP
),
2531 /* Enable store & forward on Tx queue's because
2532 * Tx FIFO is only 4K on Genesis and 1K on Yukon
2534 skge_write8(hw
, RB_ADDR(q
, RB_CTRL
), RB_ENA_STFWD
);
2537 skge_write8(hw
, RB_ADDR(q
, RB_CTRL
), RB_ENA_OP_MD
);
2540 /* Setup Bus Memory Interface */
2541 static void skge_qset(struct skge_port
*skge
, u16 q
,
2542 const struct skge_element
*e
)
2544 struct skge_hw
*hw
= skge
->hw
;
2545 u32 watermark
= 0x600;
2546 u64 base
= skge
->dma
+ (e
->desc
- skge
->mem
);
2548 /* optimization to reduce window on 32bit/33mhz */
2549 if ((skge_read16(hw
, B0_CTST
) & (CS_BUS_CLOCK
| CS_BUS_SLOT_SZ
)) == 0)
2552 skge_write32(hw
, Q_ADDR(q
, Q_CSR
), CSR_CLR_RESET
);
2553 skge_write32(hw
, Q_ADDR(q
, Q_F
), watermark
);
2554 skge_write32(hw
, Q_ADDR(q
, Q_DA_H
), (u32
)(base
>> 32));
2555 skge_write32(hw
, Q_ADDR(q
, Q_DA_L
), (u32
)base
);
2558 static int skge_up(struct net_device
*dev
)
2560 struct skge_port
*skge
= netdev_priv(dev
);
2561 struct skge_hw
*hw
= skge
->hw
;
2562 int port
= skge
->port
;
2563 u32 chunk
, ram_addr
;
2564 size_t rx_size
, tx_size
;
2567 if (!is_valid_ether_addr(dev
->dev_addr
))
2570 if (netif_msg_ifup(skge
))
2571 printk(KERN_INFO PFX
"%s: enabling interface\n", dev
->name
);
2573 if (dev
->mtu
> RX_BUF_SIZE
)
2574 skge
->rx_buf_size
= dev
->mtu
+ ETH_HLEN
;
2576 skge
->rx_buf_size
= RX_BUF_SIZE
;
2579 rx_size
= skge
->rx_ring
.count
* sizeof(struct skge_rx_desc
);
2580 tx_size
= skge
->tx_ring
.count
* sizeof(struct skge_tx_desc
);
2581 skge
->mem_size
= tx_size
+ rx_size
;
2582 skge
->mem
= pci_alloc_consistent(hw
->pdev
, skge
->mem_size
, &skge
->dma
);
2586 BUG_ON(skge
->dma
& 7);
2588 if ((u64
)skge
->dma
>> 32 != ((u64
) skge
->dma
+ skge
->mem_size
) >> 32) {
2589 dev_err(&hw
->pdev
->dev
, "pci_alloc_consistent region crosses 4G boundary\n");
2594 memset(skge
->mem
, 0, skge
->mem_size
);
2596 err
= skge_ring_alloc(&skge
->rx_ring
, skge
->mem
, skge
->dma
);
2600 err
= skge_rx_fill(dev
);
2604 err
= skge_ring_alloc(&skge
->tx_ring
, skge
->mem
+ rx_size
,
2605 skge
->dma
+ rx_size
);
2609 /* Initialize MAC */
2610 spin_lock_bh(&hw
->phy_lock
);
2611 if (hw
->chip_id
== CHIP_ID_GENESIS
)
2612 genesis_mac_init(hw
, port
);
2614 yukon_mac_init(hw
, port
);
2615 spin_unlock_bh(&hw
->phy_lock
);
2617 /* Configure RAMbuffers - equally between ports and tx/rx */
2618 chunk
= (hw
->ram_size
- hw
->ram_offset
) / (hw
->ports
* 2);
2619 ram_addr
= hw
->ram_offset
+ 2 * chunk
* port
;
2621 skge_ramset(hw
, rxqaddr
[port
], ram_addr
, chunk
);
2622 skge_qset(skge
, rxqaddr
[port
], skge
->rx_ring
.to_clean
);
2624 BUG_ON(skge
->tx_ring
.to_use
!= skge
->tx_ring
.to_clean
);
2625 skge_ramset(hw
, txqaddr
[port
], ram_addr
+chunk
, chunk
);
2626 skge_qset(skge
, txqaddr
[port
], skge
->tx_ring
.to_use
);
2628 /* Start receiver BMU */
2630 skge_write8(hw
, Q_ADDR(rxqaddr
[port
], Q_CSR
), CSR_START
| CSR_IRQ_CL_F
);
2631 skge_led(skge
, LED_MODE_ON
);
2633 spin_lock_irq(&hw
->hw_lock
);
2634 hw
->intr_mask
|= portmask
[port
];
2635 skge_write32(hw
, B0_IMSK
, hw
->intr_mask
);
2636 spin_unlock_irq(&hw
->hw_lock
);
2638 napi_enable(&skge
->napi
);
2642 skge_rx_clean(skge
);
2643 kfree(skge
->rx_ring
.start
);
2645 pci_free_consistent(hw
->pdev
, skge
->mem_size
, skge
->mem
, skge
->dma
);
2652 static void skge_rx_stop(struct skge_hw
*hw
, int port
)
2654 skge_write8(hw
, Q_ADDR(rxqaddr
[port
], Q_CSR
), CSR_STOP
);
2655 skge_write32(hw
, RB_ADDR(port
? Q_R2
: Q_R1
, RB_CTRL
),
2656 RB_RST_SET
|RB_DIS_OP_MD
);
2657 skge_write32(hw
, Q_ADDR(rxqaddr
[port
], Q_CSR
), CSR_SET_RESET
);
2660 static int skge_down(struct net_device
*dev
)
2662 struct skge_port
*skge
= netdev_priv(dev
);
2663 struct skge_hw
*hw
= skge
->hw
;
2664 int port
= skge
->port
;
2666 if (skge
->mem
== NULL
)
2669 if (netif_msg_ifdown(skge
))
2670 printk(KERN_INFO PFX
"%s: disabling interface\n", dev
->name
);
2672 netif_stop_queue(dev
);
2674 if (hw
->chip_id
== CHIP_ID_GENESIS
&& hw
->phy_type
== SK_PHY_XMAC
)
2675 del_timer_sync(&skge
->link_timer
);
2677 napi_disable(&skge
->napi
);
2678 netif_carrier_off(dev
);
2680 spin_lock_irq(&hw
->hw_lock
);
2681 hw
->intr_mask
&= ~portmask
[port
];
2682 skge_write32(hw
, B0_IMSK
, hw
->intr_mask
);
2683 spin_unlock_irq(&hw
->hw_lock
);
2685 skge_write8(skge
->hw
, SK_REG(skge
->port
, LNK_LED_REG
), LED_OFF
);
2686 if (hw
->chip_id
== CHIP_ID_GENESIS
)
2691 /* Stop transmitter */
2692 skge_write8(hw
, Q_ADDR(txqaddr
[port
], Q_CSR
), CSR_STOP
);
2693 skge_write32(hw
, RB_ADDR(txqaddr
[port
], RB_CTRL
),
2694 RB_RST_SET
|RB_DIS_OP_MD
);
2697 /* Disable Force Sync bit and Enable Alloc bit */
2698 skge_write8(hw
, SK_REG(port
, TXA_CTRL
),
2699 TXA_DIS_FSYNC
| TXA_DIS_ALLOC
| TXA_STOP_RC
);
2701 /* Stop Interval Timer and Limit Counter of Tx Arbiter */
2702 skge_write32(hw
, SK_REG(port
, TXA_ITI_INI
), 0L);
2703 skge_write32(hw
, SK_REG(port
, TXA_LIM_INI
), 0L);
2705 /* Reset PCI FIFO */
2706 skge_write32(hw
, Q_ADDR(txqaddr
[port
], Q_CSR
), CSR_SET_RESET
);
2707 skge_write32(hw
, RB_ADDR(txqaddr
[port
], RB_CTRL
), RB_RST_SET
);
2709 /* Reset the RAM Buffer async Tx queue */
2710 skge_write8(hw
, RB_ADDR(port
== 0 ? Q_XA1
: Q_XA2
, RB_CTRL
), RB_RST_SET
);
2712 skge_rx_stop(hw
, port
);
2714 if (hw
->chip_id
== CHIP_ID_GENESIS
) {
2715 skge_write8(hw
, SK_REG(port
, TX_MFF_CTRL2
), MFF_RST_SET
);
2716 skge_write8(hw
, SK_REG(port
, RX_MFF_CTRL2
), MFF_RST_SET
);
2718 skge_write8(hw
, SK_REG(port
, RX_GMF_CTRL_T
), GMF_RST_SET
);
2719 skge_write8(hw
, SK_REG(port
, TX_GMF_CTRL_T
), GMF_RST_SET
);
2722 skge_led(skge
, LED_MODE_OFF
);
2724 netif_tx_lock_bh(dev
);
2726 netif_tx_unlock_bh(dev
);
2728 skge_rx_clean(skge
);
2730 kfree(skge
->rx_ring
.start
);
2731 kfree(skge
->tx_ring
.start
);
2732 pci_free_consistent(hw
->pdev
, skge
->mem_size
, skge
->mem
, skge
->dma
);
2737 static inline int skge_avail(const struct skge_ring
*ring
)
2740 return ((ring
->to_clean
> ring
->to_use
) ? 0 : ring
->count
)
2741 + (ring
->to_clean
- ring
->to_use
) - 1;
2744 static int skge_xmit_frame(struct sk_buff
*skb
, struct net_device
*dev
)
2746 struct skge_port
*skge
= netdev_priv(dev
);
2747 struct skge_hw
*hw
= skge
->hw
;
2748 struct skge_element
*e
;
2749 struct skge_tx_desc
*td
;
2754 if (skb_padto(skb
, ETH_ZLEN
))
2755 return NETDEV_TX_OK
;
2757 if (unlikely(skge_avail(&skge
->tx_ring
) < skb_shinfo(skb
)->nr_frags
+ 1))
2758 return NETDEV_TX_BUSY
;
2760 e
= skge
->tx_ring
.to_use
;
2762 BUG_ON(td
->control
& BMU_OWN
);
2764 len
= skb_headlen(skb
);
2765 map
= pci_map_single(hw
->pdev
, skb
->data
, len
, PCI_DMA_TODEVICE
);
2766 pci_unmap_addr_set(e
, mapaddr
, map
);
2767 pci_unmap_len_set(e
, maplen
, len
);
2770 td
->dma_hi
= map
>> 32;
2772 if (skb
->ip_summed
== CHECKSUM_PARTIAL
) {
2773 const int offset
= skb_transport_offset(skb
);
2775 /* This seems backwards, but it is what the sk98lin
2776 * does. Looks like hardware is wrong?
2778 if (ipip_hdr(skb
)->protocol
== IPPROTO_UDP
2779 && hw
->chip_rev
== 0 && hw
->chip_id
== CHIP_ID_YUKON
)
2780 control
= BMU_TCP_CHECK
;
2782 control
= BMU_UDP_CHECK
;
2785 td
->csum_start
= offset
;
2786 td
->csum_write
= offset
+ skb
->csum_offset
;
2788 control
= BMU_CHECK
;
2790 if (!skb_shinfo(skb
)->nr_frags
) /* single buffer i.e. no fragments */
2791 control
|= BMU_EOF
| BMU_IRQ_EOF
;
2793 struct skge_tx_desc
*tf
= td
;
2795 control
|= BMU_STFWD
;
2796 for (i
= 0; i
< skb_shinfo(skb
)->nr_frags
; i
++) {
2797 skb_frag_t
*frag
= &skb_shinfo(skb
)->frags
[i
];
2799 map
= pci_map_page(hw
->pdev
, frag
->page
, frag
->page_offset
,
2800 frag
->size
, PCI_DMA_TODEVICE
);
2805 BUG_ON(tf
->control
& BMU_OWN
);
2808 tf
->dma_hi
= (u64
) map
>> 32;
2809 pci_unmap_addr_set(e
, mapaddr
, map
);
2810 pci_unmap_len_set(e
, maplen
, frag
->size
);
2812 tf
->control
= BMU_OWN
| BMU_SW
| control
| frag
->size
;
2814 tf
->control
|= BMU_EOF
| BMU_IRQ_EOF
;
2816 /* Make sure all the descriptors written */
2818 td
->control
= BMU_OWN
| BMU_SW
| BMU_STF
| control
| len
;
2821 skge_write8(hw
, Q_ADDR(txqaddr
[skge
->port
], Q_CSR
), CSR_START
);
2823 if (unlikely(netif_msg_tx_queued(skge
)))
2824 printk(KERN_DEBUG
"%s: tx queued, slot %td, len %d\n",
2825 dev
->name
, e
- skge
->tx_ring
.start
, skb
->len
);
2827 skge
->tx_ring
.to_use
= e
->next
;
2830 if (skge_avail(&skge
->tx_ring
) <= TX_LOW_WATER
) {
2831 pr_debug("%s: transmit queue full\n", dev
->name
);
2832 netif_stop_queue(dev
);
2835 dev
->trans_start
= jiffies
;
2837 return NETDEV_TX_OK
;
2841 /* Free resources associated with this reing element */
2842 static void skge_tx_free(struct skge_port
*skge
, struct skge_element
*e
,
2845 struct pci_dev
*pdev
= skge
->hw
->pdev
;
2847 /* skb header vs. fragment */
2848 if (control
& BMU_STF
)
2849 pci_unmap_single(pdev
, pci_unmap_addr(e
, mapaddr
),
2850 pci_unmap_len(e
, maplen
),
2853 pci_unmap_page(pdev
, pci_unmap_addr(e
, mapaddr
),
2854 pci_unmap_len(e
, maplen
),
2857 if (control
& BMU_EOF
) {
2858 if (unlikely(netif_msg_tx_done(skge
)))
2859 printk(KERN_DEBUG PFX
"%s: tx done slot %td\n",
2860 skge
->netdev
->name
, e
- skge
->tx_ring
.start
);
2862 dev_kfree_skb(e
->skb
);
2866 /* Free all buffers in transmit ring */
2867 static void skge_tx_clean(struct net_device
*dev
)
2869 struct skge_port
*skge
= netdev_priv(dev
);
2870 struct skge_element
*e
;
2872 for (e
= skge
->tx_ring
.to_clean
; e
!= skge
->tx_ring
.to_use
; e
= e
->next
) {
2873 struct skge_tx_desc
*td
= e
->desc
;
2874 skge_tx_free(skge
, e
, td
->control
);
2878 skge
->tx_ring
.to_clean
= e
;
2879 netif_wake_queue(dev
);
2882 static void skge_tx_timeout(struct net_device
*dev
)
2884 struct skge_port
*skge
= netdev_priv(dev
);
2886 if (netif_msg_timer(skge
))
2887 printk(KERN_DEBUG PFX
"%s: tx timeout\n", dev
->name
);
2889 skge_write8(skge
->hw
, Q_ADDR(txqaddr
[skge
->port
], Q_CSR
), CSR_STOP
);
2893 static int skge_change_mtu(struct net_device
*dev
, int new_mtu
)
2895 struct skge_port
*skge
= netdev_priv(dev
);
2896 struct skge_hw
*hw
= skge
->hw
;
2897 int port
= skge
->port
;
2901 if (new_mtu
< ETH_ZLEN
|| new_mtu
> ETH_JUMBO_MTU
)
2904 if (!netif_running(dev
)) {
2909 skge_write32(hw
, B0_IMSK
, 0);
2910 dev
->trans_start
= jiffies
; /* prevent tx timeout */
2911 netif_stop_queue(dev
);
2912 napi_disable(&skge
->napi
);
2914 ctl
= gma_read16(hw
, port
, GM_GP_CTRL
);
2915 gma_write16(hw
, port
, GM_GP_CTRL
, ctl
& ~GM_GPCR_RX_ENA
);
2917 skge_rx_clean(skge
);
2918 skge_rx_stop(hw
, port
);
2922 reg
= GM_SMOD_VLAN_ENA
| IPG_DATA_VAL(IPG_DATA_DEF
);
2924 reg
|= GM_SMOD_JUMBO_ENA
;
2925 gma_write16(hw
, port
, GM_SERIAL_MODE
, reg
);
2927 skge_write8(hw
, RB_ADDR(rxqaddr
[port
], RB_CTRL
), RB_ENA_OP_MD
);
2929 err
= skge_rx_fill(dev
);
2932 skge_write8(hw
, Q_ADDR(rxqaddr
[port
], Q_CSR
), CSR_START
| CSR_IRQ_CL_F
);
2933 skge_write32(hw
, B0_IMSK
, hw
->intr_mask
);
2938 gma_write16(hw
, port
, GM_GP_CTRL
, ctl
);
2940 napi_enable(&skge
->napi
);
2941 netif_wake_queue(dev
);
2947 static const u8 pause_mc_addr
[ETH_ALEN
] = { 0x1, 0x80, 0xc2, 0x0, 0x0, 0x1 };
2949 static void genesis_add_filter(u8 filter
[8], const u8
*addr
)
2953 crc
= ether_crc_le(ETH_ALEN
, addr
);
2955 filter
[bit
/8] |= 1 << (bit
%8);
2958 static void genesis_set_multicast(struct net_device
*dev
)
2960 struct skge_port
*skge
= netdev_priv(dev
);
2961 struct skge_hw
*hw
= skge
->hw
;
2962 int port
= skge
->port
;
2963 int i
, count
= dev
->mc_count
;
2964 struct dev_mc_list
*list
= dev
->mc_list
;
2968 mode
= xm_read32(hw
, port
, XM_MODE
);
2969 mode
|= XM_MD_ENA_HASH
;
2970 if (dev
->flags
& IFF_PROMISC
)
2971 mode
|= XM_MD_ENA_PROM
;
2973 mode
&= ~XM_MD_ENA_PROM
;
2975 if (dev
->flags
& IFF_ALLMULTI
)
2976 memset(filter
, 0xff, sizeof(filter
));
2978 memset(filter
, 0, sizeof(filter
));
2980 if (skge
->flow_status
== FLOW_STAT_REM_SEND
2981 || skge
->flow_status
== FLOW_STAT_SYMMETRIC
)
2982 genesis_add_filter(filter
, pause_mc_addr
);
2984 for (i
= 0; list
&& i
< count
; i
++, list
= list
->next
)
2985 genesis_add_filter(filter
, list
->dmi_addr
);
2988 xm_write32(hw
, port
, XM_MODE
, mode
);
2989 xm_outhash(hw
, port
, XM_HSM
, filter
);
2992 static void yukon_add_filter(u8 filter
[8], const u8
*addr
)
2994 u32 bit
= ether_crc(ETH_ALEN
, addr
) & 0x3f;
2995 filter
[bit
/8] |= 1 << (bit
%8);
2998 static void yukon_set_multicast(struct net_device
*dev
)
3000 struct skge_port
*skge
= netdev_priv(dev
);
3001 struct skge_hw
*hw
= skge
->hw
;
3002 int port
= skge
->port
;
3003 struct dev_mc_list
*list
= dev
->mc_list
;
3004 int rx_pause
= (skge
->flow_status
== FLOW_STAT_REM_SEND
3005 || skge
->flow_status
== FLOW_STAT_SYMMETRIC
);
3009 memset(filter
, 0, sizeof(filter
));
3011 reg
= gma_read16(hw
, port
, GM_RX_CTRL
);
3012 reg
|= GM_RXCR_UCF_ENA
;
3014 if (dev
->flags
& IFF_PROMISC
) /* promiscuous */
3015 reg
&= ~(GM_RXCR_UCF_ENA
| GM_RXCR_MCF_ENA
);
3016 else if (dev
->flags
& IFF_ALLMULTI
) /* all multicast */
3017 memset(filter
, 0xff, sizeof(filter
));
3018 else if (dev
->mc_count
== 0 && !rx_pause
)/* no multicast */
3019 reg
&= ~GM_RXCR_MCF_ENA
;
3022 reg
|= GM_RXCR_MCF_ENA
;
3025 yukon_add_filter(filter
, pause_mc_addr
);
3027 for (i
= 0; list
&& i
< dev
->mc_count
; i
++, list
= list
->next
)
3028 yukon_add_filter(filter
, list
->dmi_addr
);
3032 gma_write16(hw
, port
, GM_MC_ADDR_H1
,
3033 (u16
)filter
[0] | ((u16
)filter
[1] << 8));
3034 gma_write16(hw
, port
, GM_MC_ADDR_H2
,
3035 (u16
)filter
[2] | ((u16
)filter
[3] << 8));
3036 gma_write16(hw
, port
, GM_MC_ADDR_H3
,
3037 (u16
)filter
[4] | ((u16
)filter
[5] << 8));
3038 gma_write16(hw
, port
, GM_MC_ADDR_H4
,
3039 (u16
)filter
[6] | ((u16
)filter
[7] << 8));
3041 gma_write16(hw
, port
, GM_RX_CTRL
, reg
);
3044 static inline u16
phy_length(const struct skge_hw
*hw
, u32 status
)
3046 if (hw
->chip_id
== CHIP_ID_GENESIS
)
3047 return status
>> XMR_FS_LEN_SHIFT
;
3049 return status
>> GMR_FS_LEN_SHIFT
;
3052 static inline int bad_phy_status(const struct skge_hw
*hw
, u32 status
)
3054 if (hw
->chip_id
== CHIP_ID_GENESIS
)
3055 return (status
& (XMR_FS_ERR
| XMR_FS_2L_VLAN
)) != 0;
3057 return (status
& GMR_FS_ANY_ERR
) ||
3058 (status
& GMR_FS_RX_OK
) == 0;
3062 /* Get receive buffer from descriptor.
3063 * Handles copy of small buffers and reallocation failures
3065 static struct sk_buff
*skge_rx_get(struct net_device
*dev
,
3066 struct skge_element
*e
,
3067 u32 control
, u32 status
, u16 csum
)
3069 struct skge_port
*skge
= netdev_priv(dev
);
3070 struct sk_buff
*skb
;
3071 u16 len
= control
& BMU_BBC
;
3073 if (unlikely(netif_msg_rx_status(skge
)))
3074 printk(KERN_DEBUG PFX
"%s: rx slot %td status 0x%x len %d\n",
3075 dev
->name
, e
- skge
->rx_ring
.start
,
3078 if (len
> skge
->rx_buf_size
)
3081 if ((control
& (BMU_EOF
|BMU_STF
)) != (BMU_STF
|BMU_EOF
))
3084 if (bad_phy_status(skge
->hw
, status
))
3087 if (phy_length(skge
->hw
, status
) != len
)
3090 if (len
< RX_COPY_THRESHOLD
) {
3091 skb
= netdev_alloc_skb(dev
, len
+ 2);
3095 skb_reserve(skb
, 2);
3096 pci_dma_sync_single_for_cpu(skge
->hw
->pdev
,
3097 pci_unmap_addr(e
, mapaddr
),
3098 len
, PCI_DMA_FROMDEVICE
);
3099 skb_copy_from_linear_data(e
->skb
, skb
->data
, len
);
3100 pci_dma_sync_single_for_device(skge
->hw
->pdev
,
3101 pci_unmap_addr(e
, mapaddr
),
3102 len
, PCI_DMA_FROMDEVICE
);
3103 skge_rx_reuse(e
, skge
->rx_buf_size
);
3105 struct sk_buff
*nskb
;
3106 nskb
= netdev_alloc_skb(dev
, skge
->rx_buf_size
+ NET_IP_ALIGN
);
3110 skb_reserve(nskb
, NET_IP_ALIGN
);
3111 pci_unmap_single(skge
->hw
->pdev
,
3112 pci_unmap_addr(e
, mapaddr
),
3113 pci_unmap_len(e
, maplen
),
3114 PCI_DMA_FROMDEVICE
);
3116 prefetch(skb
->data
);
3117 skge_rx_setup(skge
, e
, nskb
, skge
->rx_buf_size
);
3121 if (skge
->rx_csum
) {
3123 skb
->ip_summed
= CHECKSUM_COMPLETE
;
3126 skb
->protocol
= eth_type_trans(skb
, dev
);
3131 if (netif_msg_rx_err(skge
))
3132 printk(KERN_DEBUG PFX
"%s: rx err, slot %td control 0x%x status 0x%x\n",
3133 dev
->name
, e
- skge
->rx_ring
.start
,
3136 if (skge
->hw
->chip_id
== CHIP_ID_GENESIS
) {
3137 if (status
& (XMR_FS_RUNT
|XMR_FS_LNG_ERR
))
3138 dev
->stats
.rx_length_errors
++;
3139 if (status
& XMR_FS_FRA_ERR
)
3140 dev
->stats
.rx_frame_errors
++;
3141 if (status
& XMR_FS_FCS_ERR
)
3142 dev
->stats
.rx_crc_errors
++;
3144 if (status
& (GMR_FS_LONG_ERR
|GMR_FS_UN_SIZE
))
3145 dev
->stats
.rx_length_errors
++;
3146 if (status
& GMR_FS_FRAGMENT
)
3147 dev
->stats
.rx_frame_errors
++;
3148 if (status
& GMR_FS_CRC_ERR
)
3149 dev
->stats
.rx_crc_errors
++;
3153 skge_rx_reuse(e
, skge
->rx_buf_size
);
3157 /* Free all buffers in Tx ring which are no longer owned by device */
3158 static void skge_tx_done(struct net_device
*dev
)
3160 struct skge_port
*skge
= netdev_priv(dev
);
3161 struct skge_ring
*ring
= &skge
->tx_ring
;
3162 struct skge_element
*e
;
3164 skge_write8(skge
->hw
, Q_ADDR(txqaddr
[skge
->port
], Q_CSR
), CSR_IRQ_CL_F
);
3166 for (e
= ring
->to_clean
; e
!= ring
->to_use
; e
= e
->next
) {
3167 u32 control
= ((const struct skge_tx_desc
*) e
->desc
)->control
;
3169 if (control
& BMU_OWN
)
3172 skge_tx_free(skge
, e
, control
);
3174 skge
->tx_ring
.to_clean
= e
;
3176 /* Can run lockless until we need to synchronize to restart queue. */
3179 if (unlikely(netif_queue_stopped(dev
) &&
3180 skge_avail(&skge
->tx_ring
) > TX_LOW_WATER
)) {
3182 if (unlikely(netif_queue_stopped(dev
) &&
3183 skge_avail(&skge
->tx_ring
) > TX_LOW_WATER
)) {
3184 netif_wake_queue(dev
);
3187 netif_tx_unlock(dev
);
3191 static int skge_poll(struct napi_struct
*napi
, int to_do
)
3193 struct skge_port
*skge
= container_of(napi
, struct skge_port
, napi
);
3194 struct net_device
*dev
= skge
->netdev
;
3195 struct skge_hw
*hw
= skge
->hw
;
3196 struct skge_ring
*ring
= &skge
->rx_ring
;
3197 struct skge_element
*e
;
3202 skge_write8(hw
, Q_ADDR(rxqaddr
[skge
->port
], Q_CSR
), CSR_IRQ_CL_F
);
3204 for (e
= ring
->to_clean
; prefetch(e
->next
), work_done
< to_do
; e
= e
->next
) {
3205 struct skge_rx_desc
*rd
= e
->desc
;
3206 struct sk_buff
*skb
;
3210 control
= rd
->control
;
3211 if (control
& BMU_OWN
)
3214 skb
= skge_rx_get(dev
, e
, control
, rd
->status
, rd
->csum2
);
3216 dev
->last_rx
= jiffies
;
3217 netif_receive_skb(skb
);
3224 /* restart receiver */
3226 skge_write8(hw
, Q_ADDR(rxqaddr
[skge
->port
], Q_CSR
), CSR_START
);
3228 if (work_done
< to_do
) {
3229 spin_lock_irq(&hw
->hw_lock
);
3230 __netif_rx_complete(dev
, napi
);
3231 hw
->intr_mask
|= napimask
[skge
->port
];
3232 skge_write32(hw
, B0_IMSK
, hw
->intr_mask
);
3233 skge_read32(hw
, B0_IMSK
);
3234 spin_unlock_irq(&hw
->hw_lock
);
3240 /* Parity errors seem to happen when Genesis is connected to a switch
3241 * with no other ports present. Heartbeat error??
3243 static void skge_mac_parity(struct skge_hw
*hw
, int port
)
3245 struct net_device
*dev
= hw
->dev
[port
];
3247 ++dev
->stats
.tx_heartbeat_errors
;
3249 if (hw
->chip_id
== CHIP_ID_GENESIS
)
3250 skge_write16(hw
, SK_REG(port
, TX_MFF_CTRL1
),
3253 /* HW-Bug #8: cleared by GMF_CLI_TX_FC instead of GMF_CLI_TX_PE */
3254 skge_write8(hw
, SK_REG(port
, TX_GMF_CTRL_T
),
3255 (hw
->chip_id
== CHIP_ID_YUKON
&& hw
->chip_rev
== 0)
3256 ? GMF_CLI_TX_FC
: GMF_CLI_TX_PE
);
3259 static void skge_mac_intr(struct skge_hw
*hw
, int port
)
3261 if (hw
->chip_id
== CHIP_ID_GENESIS
)
3262 genesis_mac_intr(hw
, port
);
3264 yukon_mac_intr(hw
, port
);
3267 /* Handle device specific framing and timeout interrupts */
3268 static void skge_error_irq(struct skge_hw
*hw
)
3270 struct pci_dev
*pdev
= hw
->pdev
;
3271 u32 hwstatus
= skge_read32(hw
, B0_HWE_ISRC
);
3273 if (hw
->chip_id
== CHIP_ID_GENESIS
) {
3274 /* clear xmac errors */
3275 if (hwstatus
& (IS_NO_STAT_M1
|IS_NO_TIST_M1
))
3276 skge_write16(hw
, RX_MFF_CTRL1
, MFF_CLR_INSTAT
);
3277 if (hwstatus
& (IS_NO_STAT_M2
|IS_NO_TIST_M2
))
3278 skge_write16(hw
, RX_MFF_CTRL2
, MFF_CLR_INSTAT
);
3280 /* Timestamp (unused) overflow */
3281 if (hwstatus
& IS_IRQ_TIST_OV
)
3282 skge_write8(hw
, GMAC_TI_ST_CTRL
, GMT_ST_CLR_IRQ
);
3285 if (hwstatus
& IS_RAM_RD_PAR
) {
3286 dev_err(&pdev
->dev
, "Ram read data parity error\n");
3287 skge_write16(hw
, B3_RI_CTRL
, RI_CLR_RD_PERR
);
3290 if (hwstatus
& IS_RAM_WR_PAR
) {
3291 dev_err(&pdev
->dev
, "Ram write data parity error\n");
3292 skge_write16(hw
, B3_RI_CTRL
, RI_CLR_WR_PERR
);
3295 if (hwstatus
& IS_M1_PAR_ERR
)
3296 skge_mac_parity(hw
, 0);
3298 if (hwstatus
& IS_M2_PAR_ERR
)
3299 skge_mac_parity(hw
, 1);
3301 if (hwstatus
& IS_R1_PAR_ERR
) {
3302 dev_err(&pdev
->dev
, "%s: receive queue parity error\n",
3304 skge_write32(hw
, B0_R1_CSR
, CSR_IRQ_CL_P
);
3307 if (hwstatus
& IS_R2_PAR_ERR
) {
3308 dev_err(&pdev
->dev
, "%s: receive queue parity error\n",
3310 skge_write32(hw
, B0_R2_CSR
, CSR_IRQ_CL_P
);
3313 if (hwstatus
& (IS_IRQ_MST_ERR
|IS_IRQ_STAT
)) {
3314 u16 pci_status
, pci_cmd
;
3316 pci_read_config_word(pdev
, PCI_COMMAND
, &pci_cmd
);
3317 pci_read_config_word(pdev
, PCI_STATUS
, &pci_status
);
3319 dev_err(&pdev
->dev
, "PCI error cmd=%#x status=%#x\n",
3320 pci_cmd
, pci_status
);
3322 /* Write the error bits back to clear them. */
3323 pci_status
&= PCI_STATUS_ERROR_BITS
;
3324 skge_write8(hw
, B2_TST_CTRL1
, TST_CFG_WRITE_ON
);
3325 pci_write_config_word(pdev
, PCI_COMMAND
,
3326 pci_cmd
| PCI_COMMAND_SERR
| PCI_COMMAND_PARITY
);
3327 pci_write_config_word(pdev
, PCI_STATUS
, pci_status
);
3328 skge_write8(hw
, B2_TST_CTRL1
, TST_CFG_WRITE_OFF
);
3330 /* if error still set then just ignore it */
3331 hwstatus
= skge_read32(hw
, B0_HWE_ISRC
);
3332 if (hwstatus
& IS_IRQ_STAT
) {
3333 dev_warn(&hw
->pdev
->dev
, "unable to clear error (so ignoring them)\n");
3334 hw
->intr_mask
&= ~IS_HW_ERR
;
3340 * Interrupt from PHY are handled in tasklet (softirq)
3341 * because accessing phy registers requires spin wait which might
3342 * cause excess interrupt latency.
3344 static void skge_extirq(unsigned long arg
)
3346 struct skge_hw
*hw
= (struct skge_hw
*) arg
;
3349 for (port
= 0; port
< hw
->ports
; port
++) {
3350 struct net_device
*dev
= hw
->dev
[port
];
3352 if (netif_running(dev
)) {
3353 struct skge_port
*skge
= netdev_priv(dev
);
3355 spin_lock(&hw
->phy_lock
);
3356 if (hw
->chip_id
!= CHIP_ID_GENESIS
)
3357 yukon_phy_intr(skge
);
3358 else if (hw
->phy_type
== SK_PHY_BCOM
)
3359 bcom_phy_intr(skge
);
3360 spin_unlock(&hw
->phy_lock
);
3364 spin_lock_irq(&hw
->hw_lock
);
3365 hw
->intr_mask
|= IS_EXT_REG
;
3366 skge_write32(hw
, B0_IMSK
, hw
->intr_mask
);
3367 skge_read32(hw
, B0_IMSK
);
3368 spin_unlock_irq(&hw
->hw_lock
);
3371 static irqreturn_t
skge_intr(int irq
, void *dev_id
)
3373 struct skge_hw
*hw
= dev_id
;
3377 spin_lock(&hw
->hw_lock
);
3378 /* Reading this register masks IRQ */
3379 status
= skge_read32(hw
, B0_SP_ISRC
);
3380 if (status
== 0 || status
== ~0)
3384 status
&= hw
->intr_mask
;
3385 if (status
& IS_EXT_REG
) {
3386 hw
->intr_mask
&= ~IS_EXT_REG
;
3387 tasklet_schedule(&hw
->phy_task
);
3390 if (status
& (IS_XA1_F
|IS_R1_F
)) {
3391 struct skge_port
*skge
= netdev_priv(hw
->dev
[0]);
3392 hw
->intr_mask
&= ~(IS_XA1_F
|IS_R1_F
);
3393 netif_rx_schedule(hw
->dev
[0], &skge
->napi
);
3396 if (status
& IS_PA_TO_TX1
)
3397 skge_write16(hw
, B3_PA_CTRL
, PA_CLR_TO_TX1
);
3399 if (status
& IS_PA_TO_RX1
) {
3400 ++hw
->dev
[0]->stats
.rx_over_errors
;
3401 skge_write16(hw
, B3_PA_CTRL
, PA_CLR_TO_RX1
);
3405 if (status
& IS_MAC1
)
3406 skge_mac_intr(hw
, 0);
3409 struct skge_port
*skge
= netdev_priv(hw
->dev
[1]);
3411 if (status
& (IS_XA2_F
|IS_R2_F
)) {
3412 hw
->intr_mask
&= ~(IS_XA2_F
|IS_R2_F
);
3413 netif_rx_schedule(hw
->dev
[1], &skge
->napi
);
3416 if (status
& IS_PA_TO_RX2
) {
3417 ++hw
->dev
[1]->stats
.rx_over_errors
;
3418 skge_write16(hw
, B3_PA_CTRL
, PA_CLR_TO_RX2
);
3421 if (status
& IS_PA_TO_TX2
)
3422 skge_write16(hw
, B3_PA_CTRL
, PA_CLR_TO_TX2
);
3424 if (status
& IS_MAC2
)
3425 skge_mac_intr(hw
, 1);
3428 if (status
& IS_HW_ERR
)
3431 skge_write32(hw
, B0_IMSK
, hw
->intr_mask
);
3432 skge_read32(hw
, B0_IMSK
);
3434 spin_unlock(&hw
->hw_lock
);
3436 return IRQ_RETVAL(handled
);
3439 #ifdef CONFIG_NET_POLL_CONTROLLER
3440 static void skge_netpoll(struct net_device
*dev
)
3442 struct skge_port
*skge
= netdev_priv(dev
);
3444 disable_irq(dev
->irq
);
3445 skge_intr(dev
->irq
, skge
->hw
);
3446 enable_irq(dev
->irq
);
3450 static int skge_set_mac_address(struct net_device
*dev
, void *p
)
3452 struct skge_port
*skge
= netdev_priv(dev
);
3453 struct skge_hw
*hw
= skge
->hw
;
3454 unsigned port
= skge
->port
;
3455 const struct sockaddr
*addr
= p
;
3458 if (!is_valid_ether_addr(addr
->sa_data
))
3459 return -EADDRNOTAVAIL
;
3461 memcpy(dev
->dev_addr
, addr
->sa_data
, ETH_ALEN
);
3463 if (!netif_running(dev
)) {
3464 memcpy_toio(hw
->regs
+ B2_MAC_1
+ port
*8, dev
->dev_addr
, ETH_ALEN
);
3465 memcpy_toio(hw
->regs
+ B2_MAC_2
+ port
*8, dev
->dev_addr
, ETH_ALEN
);
3468 spin_lock_bh(&hw
->phy_lock
);
3469 ctrl
= gma_read16(hw
, port
, GM_GP_CTRL
);
3470 gma_write16(hw
, port
, GM_GP_CTRL
, ctrl
& ~GM_GPCR_RX_ENA
);
3472 memcpy_toio(hw
->regs
+ B2_MAC_1
+ port
*8, dev
->dev_addr
, ETH_ALEN
);
3473 memcpy_toio(hw
->regs
+ B2_MAC_2
+ port
*8, dev
->dev_addr
, ETH_ALEN
);
3475 if (hw
->chip_id
== CHIP_ID_GENESIS
)
3476 xm_outaddr(hw
, port
, XM_SA
, dev
->dev_addr
);
3478 gma_set_addr(hw
, port
, GM_SRC_ADDR_1L
, dev
->dev_addr
);
3479 gma_set_addr(hw
, port
, GM_SRC_ADDR_2L
, dev
->dev_addr
);
3482 gma_write16(hw
, port
, GM_GP_CTRL
, ctrl
);
3483 spin_unlock_bh(&hw
->phy_lock
);
3489 static const struct {
3493 { CHIP_ID_GENESIS
, "Genesis" },
3494 { CHIP_ID_YUKON
, "Yukon" },
3495 { CHIP_ID_YUKON_LITE
, "Yukon-Lite"},
3496 { CHIP_ID_YUKON_LP
, "Yukon-LP"},
3499 static const char *skge_board_name(const struct skge_hw
*hw
)
3502 static char buf
[16];
3504 for (i
= 0; i
< ARRAY_SIZE(skge_chips
); i
++)
3505 if (skge_chips
[i
].id
== hw
->chip_id
)
3506 return skge_chips
[i
].name
;
3508 snprintf(buf
, sizeof buf
, "chipid 0x%x", hw
->chip_id
);
3514 * Setup the board data structure, but don't bring up
3517 static int skge_reset(struct skge_hw
*hw
)
3520 u16 ctst
, pci_status
;
3521 u8 t8
, mac_cfg
, pmd_type
;
3524 ctst
= skge_read16(hw
, B0_CTST
);
3527 skge_write8(hw
, B0_CTST
, CS_RST_SET
);
3528 skge_write8(hw
, B0_CTST
, CS_RST_CLR
);
3530 /* clear PCI errors, if any */
3531 skge_write8(hw
, B2_TST_CTRL1
, TST_CFG_WRITE_ON
);
3532 skge_write8(hw
, B2_TST_CTRL2
, 0);
3534 pci_read_config_word(hw
->pdev
, PCI_STATUS
, &pci_status
);
3535 pci_write_config_word(hw
->pdev
, PCI_STATUS
,
3536 pci_status
| PCI_STATUS_ERROR_BITS
);
3537 skge_write8(hw
, B2_TST_CTRL1
, TST_CFG_WRITE_OFF
);
3538 skge_write8(hw
, B0_CTST
, CS_MRST_CLR
);
3540 /* restore CLK_RUN bits (for Yukon-Lite) */
3541 skge_write16(hw
, B0_CTST
,
3542 ctst
& (CS_CLK_RUN_HOT
|CS_CLK_RUN_RST
|CS_CLK_RUN_ENA
));
3544 hw
->chip_id
= skge_read8(hw
, B2_CHIP_ID
);
3545 hw
->phy_type
= skge_read8(hw
, B2_E_1
) & 0xf;
3546 pmd_type
= skge_read8(hw
, B2_PMD_TYP
);
3547 hw
->copper
= (pmd_type
== 'T' || pmd_type
== '1');
3549 switch (hw
->chip_id
) {
3550 case CHIP_ID_GENESIS
:
3551 switch (hw
->phy_type
) {
3553 hw
->phy_addr
= PHY_ADDR_XMAC
;
3556 hw
->phy_addr
= PHY_ADDR_BCOM
;
3559 dev_err(&hw
->pdev
->dev
, "unsupported phy type 0x%x\n",
3566 case CHIP_ID_YUKON_LITE
:
3567 case CHIP_ID_YUKON_LP
:
3568 if (hw
->phy_type
< SK_PHY_MARV_COPPER
&& pmd_type
!= 'S')
3571 hw
->phy_addr
= PHY_ADDR_MARV
;
3575 dev_err(&hw
->pdev
->dev
, "unsupported chip type 0x%x\n",
3580 mac_cfg
= skge_read8(hw
, B2_MAC_CFG
);
3581 hw
->ports
= (mac_cfg
& CFG_SNG_MAC
) ? 1 : 2;
3582 hw
->chip_rev
= (mac_cfg
& CFG_CHIP_R_MSK
) >> 4;
3584 /* read the adapters RAM size */
3585 t8
= skge_read8(hw
, B2_E_0
);
3586 if (hw
->chip_id
== CHIP_ID_GENESIS
) {
3588 /* special case: 4 x 64k x 36, offset = 0x80000 */
3589 hw
->ram_size
= 0x100000;
3590 hw
->ram_offset
= 0x80000;
3592 hw
->ram_size
= t8
* 512;
3595 hw
->ram_size
= 0x20000;
3597 hw
->ram_size
= t8
* 4096;
3599 hw
->intr_mask
= IS_HW_ERR
;
3601 /* Use PHY IRQ for all but fiber based Genesis board */
3602 if (!(hw
->chip_id
== CHIP_ID_GENESIS
&& hw
->phy_type
== SK_PHY_XMAC
))
3603 hw
->intr_mask
|= IS_EXT_REG
;
3605 if (hw
->chip_id
== CHIP_ID_GENESIS
)
3608 /* switch power to VCC (WA for VAUX problem) */
3609 skge_write8(hw
, B0_POWER_CTRL
,
3610 PC_VAUX_ENA
| PC_VCC_ENA
| PC_VAUX_OFF
| PC_VCC_ON
);
3612 /* avoid boards with stuck Hardware error bits */
3613 if ((skge_read32(hw
, B0_ISRC
) & IS_HW_ERR
) &&
3614 (skge_read32(hw
, B0_HWE_ISRC
) & IS_IRQ_SENSOR
)) {
3615 dev_warn(&hw
->pdev
->dev
, "stuck hardware sensor bit\n");
3616 hw
->intr_mask
&= ~IS_HW_ERR
;
3619 /* Clear PHY COMA */
3620 skge_write8(hw
, B2_TST_CTRL1
, TST_CFG_WRITE_ON
);
3621 pci_read_config_dword(hw
->pdev
, PCI_DEV_REG1
, ®
);
3622 reg
&= ~PCI_PHY_COMA
;
3623 pci_write_config_dword(hw
->pdev
, PCI_DEV_REG1
, reg
);
3624 skge_write8(hw
, B2_TST_CTRL1
, TST_CFG_WRITE_OFF
);
3627 for (i
= 0; i
< hw
->ports
; i
++) {
3628 skge_write16(hw
, SK_REG(i
, GMAC_LINK_CTRL
), GMLC_RST_SET
);
3629 skge_write16(hw
, SK_REG(i
, GMAC_LINK_CTRL
), GMLC_RST_CLR
);
3633 /* turn off hardware timer (unused) */
3634 skge_write8(hw
, B2_TI_CTRL
, TIM_STOP
);
3635 skge_write8(hw
, B2_TI_CTRL
, TIM_CLR_IRQ
);
3636 skge_write8(hw
, B0_LED
, LED_STAT_ON
);
3638 /* enable the Tx Arbiters */
3639 for (i
= 0; i
< hw
->ports
; i
++)
3640 skge_write8(hw
, SK_REG(i
, TXA_CTRL
), TXA_ENA_ARB
);
3642 /* Initialize ram interface */
3643 skge_write16(hw
, B3_RI_CTRL
, RI_RST_CLR
);
3645 skge_write8(hw
, B3_RI_WTO_R1
, SK_RI_TO_53
);
3646 skge_write8(hw
, B3_RI_WTO_XA1
, SK_RI_TO_53
);
3647 skge_write8(hw
, B3_RI_WTO_XS1
, SK_RI_TO_53
);
3648 skge_write8(hw
, B3_RI_RTO_R1
, SK_RI_TO_53
);
3649 skge_write8(hw
, B3_RI_RTO_XA1
, SK_RI_TO_53
);
3650 skge_write8(hw
, B3_RI_RTO_XS1
, SK_RI_TO_53
);
3651 skge_write8(hw
, B3_RI_WTO_R2
, SK_RI_TO_53
);
3652 skge_write8(hw
, B3_RI_WTO_XA2
, SK_RI_TO_53
);
3653 skge_write8(hw
, B3_RI_WTO_XS2
, SK_RI_TO_53
);
3654 skge_write8(hw
, B3_RI_RTO_R2
, SK_RI_TO_53
);
3655 skge_write8(hw
, B3_RI_RTO_XA2
, SK_RI_TO_53
);
3656 skge_write8(hw
, B3_RI_RTO_XS2
, SK_RI_TO_53
);
3658 skge_write32(hw
, B0_HWE_IMSK
, IS_ERR_MSK
);
3660 /* Set interrupt moderation for Transmit only
3661 * Receive interrupts avoided by NAPI
3663 skge_write32(hw
, B2_IRQM_MSK
, IS_XA1_F
|IS_XA2_F
);
3664 skge_write32(hw
, B2_IRQM_INI
, skge_usecs2clk(hw
, 100));
3665 skge_write32(hw
, B2_IRQM_CTRL
, TIM_START
);
3667 skge_write32(hw
, B0_IMSK
, hw
->intr_mask
);
3669 for (i
= 0; i
< hw
->ports
; i
++) {
3670 if (hw
->chip_id
== CHIP_ID_GENESIS
)
3671 genesis_reset(hw
, i
);
3680 #ifdef CONFIG_SKGE_DEBUG
3682 static struct dentry
*skge_debug
;
3684 static int skge_debug_show(struct seq_file
*seq
, void *v
)
3686 struct net_device
*dev
= seq
->private;
3687 const struct skge_port
*skge
= netdev_priv(dev
);
3688 const struct skge_hw
*hw
= skge
->hw
;
3689 const struct skge_element
*e
;
3691 if (!netif_running(dev
))
3694 seq_printf(seq
, "IRQ src=%x mask=%x\n", skge_read32(hw
, B0_ISRC
),
3695 skge_read32(hw
, B0_IMSK
));
3697 seq_printf(seq
, "Tx Ring: (%d)\n", skge_avail(&skge
->tx_ring
));
3698 for (e
= skge
->tx_ring
.to_clean
; e
!= skge
->tx_ring
.to_use
; e
= e
->next
) {
3699 const struct skge_tx_desc
*t
= e
->desc
;
3700 seq_printf(seq
, "%#x dma=%#x%08x %#x csum=%#x/%x/%x\n",
3701 t
->control
, t
->dma_hi
, t
->dma_lo
, t
->status
,
3702 t
->csum_offs
, t
->csum_write
, t
->csum_start
);
3705 seq_printf(seq
, "\nRx Ring: \n");
3706 for (e
= skge
->rx_ring
.to_clean
; ; e
= e
->next
) {
3707 const struct skge_rx_desc
*r
= e
->desc
;
3709 if (r
->control
& BMU_OWN
)
3712 seq_printf(seq
, "%#x dma=%#x%08x %#x %#x csum=%#x/%x\n",
3713 r
->control
, r
->dma_hi
, r
->dma_lo
, r
->status
,
3714 r
->timestamp
, r
->csum1
, r
->csum1_start
);
3720 static int skge_debug_open(struct inode
*inode
, struct file
*file
)
3722 return single_open(file
, skge_debug_show
, inode
->i_private
);
3725 static const struct file_operations skge_debug_fops
= {
3726 .owner
= THIS_MODULE
,
3727 .open
= skge_debug_open
,
3729 .llseek
= seq_lseek
,
3730 .release
= single_release
,
3734 * Use network device events to create/remove/rename
3735 * debugfs file entries
3737 static int skge_device_event(struct notifier_block
*unused
,
3738 unsigned long event
, void *ptr
)
3740 struct net_device
*dev
= ptr
;
3741 struct skge_port
*skge
;
3744 if (dev
->open
!= &skge_up
|| !skge_debug
)
3747 skge
= netdev_priv(dev
);
3749 case NETDEV_CHANGENAME
:
3750 if (skge
->debugfs
) {
3751 d
= debugfs_rename(skge_debug
, skge
->debugfs
,
3752 skge_debug
, dev
->name
);
3756 pr_info(PFX
"%s: rename failed\n", dev
->name
);
3757 debugfs_remove(skge
->debugfs
);
3762 case NETDEV_GOING_DOWN
:
3763 if (skge
->debugfs
) {
3764 debugfs_remove(skge
->debugfs
);
3765 skge
->debugfs
= NULL
;
3770 d
= debugfs_create_file(dev
->name
, S_IRUGO
,
3773 if (!d
|| IS_ERR(d
))
3774 pr_info(PFX
"%s: debugfs create failed\n",
3785 static struct notifier_block skge_notifier
= {
3786 .notifier_call
= skge_device_event
,
3790 static __init
void skge_debug_init(void)
3794 ent
= debugfs_create_dir("skge", NULL
);
3795 if (!ent
|| IS_ERR(ent
)) {
3796 pr_info(PFX
"debugfs create directory failed\n");
3801 register_netdevice_notifier(&skge_notifier
);
3804 static __exit
void skge_debug_cleanup(void)
3807 unregister_netdevice_notifier(&skge_notifier
);
3808 debugfs_remove(skge_debug
);
3814 #define skge_debug_init()
3815 #define skge_debug_cleanup()
3818 /* Initialize network device */
3819 static struct net_device
*skge_devinit(struct skge_hw
*hw
, int port
,
3822 struct skge_port
*skge
;
3823 struct net_device
*dev
= alloc_etherdev(sizeof(*skge
));
3826 dev_err(&hw
->pdev
->dev
, "etherdev alloc failed\n");
3830 SET_NETDEV_DEV(dev
, &hw
->pdev
->dev
);
3831 dev
->open
= skge_up
;
3832 dev
->stop
= skge_down
;
3833 dev
->do_ioctl
= skge_ioctl
;
3834 dev
->hard_start_xmit
= skge_xmit_frame
;
3835 dev
->get_stats
= skge_get_stats
;
3836 if (hw
->chip_id
== CHIP_ID_GENESIS
)
3837 dev
->set_multicast_list
= genesis_set_multicast
;
3839 dev
->set_multicast_list
= yukon_set_multicast
;
3841 dev
->set_mac_address
= skge_set_mac_address
;
3842 dev
->change_mtu
= skge_change_mtu
;
3843 SET_ETHTOOL_OPS(dev
, &skge_ethtool_ops
);
3844 dev
->tx_timeout
= skge_tx_timeout
;
3845 dev
->watchdog_timeo
= TX_WATCHDOG
;
3846 #ifdef CONFIG_NET_POLL_CONTROLLER
3847 dev
->poll_controller
= skge_netpoll
;
3849 dev
->irq
= hw
->pdev
->irq
;
3852 dev
->features
|= NETIF_F_HIGHDMA
;
3854 skge
= netdev_priv(dev
);
3855 netif_napi_add(dev
, &skge
->napi
, skge_poll
, NAPI_WEIGHT
);
3858 skge
->msg_enable
= netif_msg_init(debug
, default_msg
);
3860 skge
->tx_ring
.count
= DEFAULT_TX_RING_SIZE
;
3861 skge
->rx_ring
.count
= DEFAULT_RX_RING_SIZE
;
3863 /* Auto speed and flow control */
3864 skge
->autoneg
= AUTONEG_ENABLE
;
3865 skge
->flow_control
= FLOW_MODE_SYM_OR_REM
;
3868 skge
->advertising
= skge_supported_modes(hw
);
3870 if (pci_wake_enabled(hw
->pdev
))
3871 skge
->wol
= wol_supported(hw
) & WAKE_MAGIC
;
3873 hw
->dev
[port
] = dev
;
3877 /* Only used for Genesis XMAC */
3878 setup_timer(&skge
->link_timer
, xm_link_timer
, (unsigned long) skge
);
3880 if (hw
->chip_id
!= CHIP_ID_GENESIS
) {
3881 dev
->features
|= NETIF_F_IP_CSUM
| NETIF_F_SG
;
3885 /* read the mac address */
3886 memcpy_fromio(dev
->dev_addr
, hw
->regs
+ B2_MAC_1
+ port
*8, ETH_ALEN
);
3887 memcpy(dev
->perm_addr
, dev
->dev_addr
, dev
->addr_len
);
3889 /* device is off until link detection */
3890 netif_carrier_off(dev
);
3891 netif_stop_queue(dev
);
3896 static void __devinit
skge_show_addr(struct net_device
*dev
)
3898 const struct skge_port
*skge
= netdev_priv(dev
);
3899 DECLARE_MAC_BUF(mac
);
3901 if (netif_msg_probe(skge
))
3902 printk(KERN_INFO PFX
"%s: addr %s\n",
3903 dev
->name
, print_mac(mac
, dev
->dev_addr
));
3906 static int __devinit
skge_probe(struct pci_dev
*pdev
,
3907 const struct pci_device_id
*ent
)
3909 struct net_device
*dev
, *dev1
;
3911 int err
, using_dac
= 0;
3913 err
= pci_enable_device(pdev
);
3915 dev_err(&pdev
->dev
, "cannot enable PCI device\n");
3919 err
= pci_request_regions(pdev
, DRV_NAME
);
3921 dev_err(&pdev
->dev
, "cannot obtain PCI resources\n");
3922 goto err_out_disable_pdev
;
3925 pci_set_master(pdev
);
3927 if (!pci_set_dma_mask(pdev
, DMA_64BIT_MASK
)) {
3929 err
= pci_set_consistent_dma_mask(pdev
, DMA_64BIT_MASK
);
3930 } else if (!(err
= pci_set_dma_mask(pdev
, DMA_32BIT_MASK
))) {
3932 err
= pci_set_consistent_dma_mask(pdev
, DMA_32BIT_MASK
);
3936 dev_err(&pdev
->dev
, "no usable DMA configuration\n");
3937 goto err_out_free_regions
;
3941 /* byte swap descriptors in hardware */
3945 pci_read_config_dword(pdev
, PCI_DEV_REG2
, ®
);
3946 reg
|= PCI_REV_DESC
;
3947 pci_write_config_dword(pdev
, PCI_DEV_REG2
, reg
);
3952 hw
= kzalloc(sizeof(*hw
), GFP_KERNEL
);
3954 dev_err(&pdev
->dev
, "cannot allocate hardware struct\n");
3955 goto err_out_free_regions
;
3959 spin_lock_init(&hw
->hw_lock
);
3960 spin_lock_init(&hw
->phy_lock
);
3961 tasklet_init(&hw
->phy_task
, &skge_extirq
, (unsigned long) hw
);
3963 hw
->regs
= ioremap_nocache(pci_resource_start(pdev
, 0), 0x4000);
3965 dev_err(&pdev
->dev
, "cannot map device registers\n");
3966 goto err_out_free_hw
;
3969 err
= skge_reset(hw
);
3971 goto err_out_iounmap
;
3973 printk(KERN_INFO PFX DRV_VERSION
" addr 0x%llx irq %d chip %s rev %d\n",
3974 (unsigned long long)pci_resource_start(pdev
, 0), pdev
->irq
,
3975 skge_board_name(hw
), hw
->chip_rev
);
3977 dev
= skge_devinit(hw
, 0, using_dac
);
3979 goto err_out_led_off
;
3981 /* Some motherboards are broken and has zero in ROM. */
3982 if (!is_valid_ether_addr(dev
->dev_addr
))
3983 dev_warn(&pdev
->dev
, "bad (zero?) ethernet address in rom\n");
3985 err
= register_netdev(dev
);
3987 dev_err(&pdev
->dev
, "cannot register net device\n");
3988 goto err_out_free_netdev
;
3991 err
= request_irq(pdev
->irq
, skge_intr
, IRQF_SHARED
, dev
->name
, hw
);
3993 dev_err(&pdev
->dev
, "%s: cannot assign irq %d\n",
3994 dev
->name
, pdev
->irq
);
3995 goto err_out_unregister
;
3997 skge_show_addr(dev
);
3999 if (hw
->ports
> 1 && (dev1
= skge_devinit(hw
, 1, using_dac
))) {
4000 if (register_netdev(dev1
) == 0)
4001 skge_show_addr(dev1
);
4003 /* Failure to register second port need not be fatal */
4004 dev_warn(&pdev
->dev
, "register of second port failed\n");
4009 pci_set_drvdata(pdev
, hw
);
4014 unregister_netdev(dev
);
4015 err_out_free_netdev
:
4018 skge_write16(hw
, B0_LED
, LED_STAT_OFF
);
4023 err_out_free_regions
:
4024 pci_release_regions(pdev
);
4025 err_out_disable_pdev
:
4026 pci_disable_device(pdev
);
4027 pci_set_drvdata(pdev
, NULL
);
4032 static void __devexit
skge_remove(struct pci_dev
*pdev
)
4034 struct skge_hw
*hw
= pci_get_drvdata(pdev
);
4035 struct net_device
*dev0
, *dev1
;
4040 flush_scheduled_work();
4042 if ((dev1
= hw
->dev
[1]))
4043 unregister_netdev(dev1
);
4045 unregister_netdev(dev0
);
4047 tasklet_disable(&hw
->phy_task
);
4049 spin_lock_irq(&hw
->hw_lock
);
4051 skge_write32(hw
, B0_IMSK
, 0);
4052 skge_read32(hw
, B0_IMSK
);
4053 spin_unlock_irq(&hw
->hw_lock
);
4055 skge_write16(hw
, B0_LED
, LED_STAT_OFF
);
4056 skge_write8(hw
, B0_CTST
, CS_RST_SET
);
4058 free_irq(pdev
->irq
, hw
);
4059 pci_release_regions(pdev
);
4060 pci_disable_device(pdev
);
4067 pci_set_drvdata(pdev
, NULL
);
4071 static int skge_suspend(struct pci_dev
*pdev
, pm_message_t state
)
4073 struct skge_hw
*hw
= pci_get_drvdata(pdev
);
4074 int i
, err
, wol
= 0;
4079 err
= pci_save_state(pdev
);
4083 for (i
= 0; i
< hw
->ports
; i
++) {
4084 struct net_device
*dev
= hw
->dev
[i
];
4085 struct skge_port
*skge
= netdev_priv(dev
);
4087 if (netif_running(dev
))
4090 skge_wol_init(skge
);
4095 skge_write32(hw
, B0_IMSK
, 0);
4096 pci_enable_wake(pdev
, pci_choose_state(pdev
, state
), wol
);
4097 pci_set_power_state(pdev
, pci_choose_state(pdev
, state
));
4102 static int skge_resume(struct pci_dev
*pdev
)
4104 struct skge_hw
*hw
= pci_get_drvdata(pdev
);
4110 err
= pci_set_power_state(pdev
, PCI_D0
);
4114 err
= pci_restore_state(pdev
);
4118 pci_enable_wake(pdev
, PCI_D0
, 0);
4120 err
= skge_reset(hw
);
4124 for (i
= 0; i
< hw
->ports
; i
++) {
4125 struct net_device
*dev
= hw
->dev
[i
];
4127 if (netif_running(dev
)) {
4131 printk(KERN_ERR PFX
"%s: could not up: %d\n",
4143 static void skge_shutdown(struct pci_dev
*pdev
)
4145 struct skge_hw
*hw
= pci_get_drvdata(pdev
);
4151 for (i
= 0; i
< hw
->ports
; i
++) {
4152 struct net_device
*dev
= hw
->dev
[i
];
4153 struct skge_port
*skge
= netdev_priv(dev
);
4156 skge_wol_init(skge
);
4160 pci_enable_wake(pdev
, PCI_D3hot
, wol
);
4161 pci_enable_wake(pdev
, PCI_D3cold
, wol
);
4163 pci_disable_device(pdev
);
4164 pci_set_power_state(pdev
, PCI_D3hot
);
4168 static struct pci_driver skge_driver
= {
4170 .id_table
= skge_id_table
,
4171 .probe
= skge_probe
,
4172 .remove
= __devexit_p(skge_remove
),
4174 .suspend
= skge_suspend
,
4175 .resume
= skge_resume
,
4177 .shutdown
= skge_shutdown
,
4180 static int __init
skge_init_module(void)
4183 return pci_register_driver(&skge_driver
);
4186 static void __exit
skge_cleanup_module(void)
4188 pci_unregister_driver(&skge_driver
);
4189 skge_debug_cleanup();
4192 module_init(skge_init_module
);
4193 module_exit(skge_cleanup_module
);