mac89x0: convert to net_device_ops
[linux-2.6/mini2440.git] / kernel / sched.c
blob5724508c3b66b30d8182f32bc0cde560f790ba01
1 /*
2 * kernel/sched.c
4 * Kernel scheduler and related syscalls
6 * Copyright (C) 1991-2002 Linus Torvalds
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
29 #include <linux/mm.h>
30 #include <linux/module.h>
31 #include <linux/nmi.h>
32 #include <linux/init.h>
33 #include <linux/uaccess.h>
34 #include <linux/highmem.h>
35 #include <linux/smp_lock.h>
36 #include <asm/mmu_context.h>
37 #include <linux/interrupt.h>
38 #include <linux/capability.h>
39 #include <linux/completion.h>
40 #include <linux/kernel_stat.h>
41 #include <linux/debug_locks.h>
42 #include <linux/security.h>
43 #include <linux/notifier.h>
44 #include <linux/profile.h>
45 #include <linux/freezer.h>
46 #include <linux/vmalloc.h>
47 #include <linux/blkdev.h>
48 #include <linux/delay.h>
49 #include <linux/pid_namespace.h>
50 #include <linux/smp.h>
51 #include <linux/threads.h>
52 #include <linux/timer.h>
53 #include <linux/rcupdate.h>
54 #include <linux/cpu.h>
55 #include <linux/cpuset.h>
56 #include <linux/percpu.h>
57 #include <linux/kthread.h>
58 #include <linux/proc_fs.h>
59 #include <linux/seq_file.h>
60 #include <linux/sysctl.h>
61 #include <linux/syscalls.h>
62 #include <linux/times.h>
63 #include <linux/tsacct_kern.h>
64 #include <linux/kprobes.h>
65 #include <linux/delayacct.h>
66 #include <linux/reciprocal_div.h>
67 #include <linux/unistd.h>
68 #include <linux/pagemap.h>
69 #include <linux/hrtimer.h>
70 #include <linux/tick.h>
71 #include <linux/bootmem.h>
72 #include <linux/debugfs.h>
73 #include <linux/ctype.h>
74 #include <linux/ftrace.h>
75 #include <trace/sched.h>
77 #include <asm/tlb.h>
78 #include <asm/irq_regs.h>
80 #include "sched_cpupri.h"
83 * Convert user-nice values [ -20 ... 0 ... 19 ]
84 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
85 * and back.
87 #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
88 #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
89 #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
92 * 'User priority' is the nice value converted to something we
93 * can work with better when scaling various scheduler parameters,
94 * it's a [ 0 ... 39 ] range.
96 #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
97 #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
98 #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
101 * Helpers for converting nanosecond timing to jiffy resolution
103 #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
105 #define NICE_0_LOAD SCHED_LOAD_SCALE
106 #define NICE_0_SHIFT SCHED_LOAD_SHIFT
109 * These are the 'tuning knobs' of the scheduler:
111 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
112 * Timeslices get refilled after they expire.
114 #define DEF_TIMESLICE (100 * HZ / 1000)
117 * single value that denotes runtime == period, ie unlimited time.
119 #define RUNTIME_INF ((u64)~0ULL)
121 DEFINE_TRACE(sched_wait_task);
122 DEFINE_TRACE(sched_wakeup);
123 DEFINE_TRACE(sched_wakeup_new);
124 DEFINE_TRACE(sched_switch);
125 DEFINE_TRACE(sched_migrate_task);
127 #ifdef CONFIG_SMP
129 static void double_rq_lock(struct rq *rq1, struct rq *rq2);
132 * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
133 * Since cpu_power is a 'constant', we can use a reciprocal divide.
135 static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
137 return reciprocal_divide(load, sg->reciprocal_cpu_power);
141 * Each time a sched group cpu_power is changed,
142 * we must compute its reciprocal value
144 static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
146 sg->__cpu_power += val;
147 sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
149 #endif
151 static inline int rt_policy(int policy)
153 if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
154 return 1;
155 return 0;
158 static inline int task_has_rt_policy(struct task_struct *p)
160 return rt_policy(p->policy);
164 * This is the priority-queue data structure of the RT scheduling class:
166 struct rt_prio_array {
167 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
168 struct list_head queue[MAX_RT_PRIO];
171 struct rt_bandwidth {
172 /* nests inside the rq lock: */
173 spinlock_t rt_runtime_lock;
174 ktime_t rt_period;
175 u64 rt_runtime;
176 struct hrtimer rt_period_timer;
179 static struct rt_bandwidth def_rt_bandwidth;
181 static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
183 static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
185 struct rt_bandwidth *rt_b =
186 container_of(timer, struct rt_bandwidth, rt_period_timer);
187 ktime_t now;
188 int overrun;
189 int idle = 0;
191 for (;;) {
192 now = hrtimer_cb_get_time(timer);
193 overrun = hrtimer_forward(timer, now, rt_b->rt_period);
195 if (!overrun)
196 break;
198 idle = do_sched_rt_period_timer(rt_b, overrun);
201 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
204 static
205 void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
207 rt_b->rt_period = ns_to_ktime(period);
208 rt_b->rt_runtime = runtime;
210 spin_lock_init(&rt_b->rt_runtime_lock);
212 hrtimer_init(&rt_b->rt_period_timer,
213 CLOCK_MONOTONIC, HRTIMER_MODE_REL);
214 rt_b->rt_period_timer.function = sched_rt_period_timer;
217 static inline int rt_bandwidth_enabled(void)
219 return sysctl_sched_rt_runtime >= 0;
222 static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
224 ktime_t now;
226 if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
227 return;
229 if (hrtimer_active(&rt_b->rt_period_timer))
230 return;
232 spin_lock(&rt_b->rt_runtime_lock);
233 for (;;) {
234 unsigned long delta;
235 ktime_t soft, hard;
237 if (hrtimer_active(&rt_b->rt_period_timer))
238 break;
240 now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
241 hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
243 soft = hrtimer_get_softexpires(&rt_b->rt_period_timer);
244 hard = hrtimer_get_expires(&rt_b->rt_period_timer);
245 delta = ktime_to_ns(ktime_sub(hard, soft));
246 __hrtimer_start_range_ns(&rt_b->rt_period_timer, soft, delta,
247 HRTIMER_MODE_ABS, 0);
249 spin_unlock(&rt_b->rt_runtime_lock);
252 #ifdef CONFIG_RT_GROUP_SCHED
253 static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
255 hrtimer_cancel(&rt_b->rt_period_timer);
257 #endif
260 * sched_domains_mutex serializes calls to arch_init_sched_domains,
261 * detach_destroy_domains and partition_sched_domains.
263 static DEFINE_MUTEX(sched_domains_mutex);
265 #ifdef CONFIG_GROUP_SCHED
267 #include <linux/cgroup.h>
269 struct cfs_rq;
271 static LIST_HEAD(task_groups);
273 /* task group related information */
274 struct task_group {
275 #ifdef CONFIG_CGROUP_SCHED
276 struct cgroup_subsys_state css;
277 #endif
279 #ifdef CONFIG_USER_SCHED
280 uid_t uid;
281 #endif
283 #ifdef CONFIG_FAIR_GROUP_SCHED
284 /* schedulable entities of this group on each cpu */
285 struct sched_entity **se;
286 /* runqueue "owned" by this group on each cpu */
287 struct cfs_rq **cfs_rq;
288 unsigned long shares;
289 #endif
291 #ifdef CONFIG_RT_GROUP_SCHED
292 struct sched_rt_entity **rt_se;
293 struct rt_rq **rt_rq;
295 struct rt_bandwidth rt_bandwidth;
296 #endif
298 struct rcu_head rcu;
299 struct list_head list;
301 struct task_group *parent;
302 struct list_head siblings;
303 struct list_head children;
306 #ifdef CONFIG_USER_SCHED
308 /* Helper function to pass uid information to create_sched_user() */
309 void set_tg_uid(struct user_struct *user)
311 user->tg->uid = user->uid;
315 * Root task group.
316 * Every UID task group (including init_task_group aka UID-0) will
317 * be a child to this group.
319 struct task_group root_task_group;
321 #ifdef CONFIG_FAIR_GROUP_SCHED
322 /* Default task group's sched entity on each cpu */
323 static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
324 /* Default task group's cfs_rq on each cpu */
325 static DEFINE_PER_CPU(struct cfs_rq, init_cfs_rq) ____cacheline_aligned_in_smp;
326 #endif /* CONFIG_FAIR_GROUP_SCHED */
328 #ifdef CONFIG_RT_GROUP_SCHED
329 static DEFINE_PER_CPU(struct sched_rt_entity, init_sched_rt_entity);
330 static DEFINE_PER_CPU(struct rt_rq, init_rt_rq) ____cacheline_aligned_in_smp;
331 #endif /* CONFIG_RT_GROUP_SCHED */
332 #else /* !CONFIG_USER_SCHED */
333 #define root_task_group init_task_group
334 #endif /* CONFIG_USER_SCHED */
336 /* task_group_lock serializes add/remove of task groups and also changes to
337 * a task group's cpu shares.
339 static DEFINE_SPINLOCK(task_group_lock);
341 #ifdef CONFIG_SMP
342 static int root_task_group_empty(void)
344 return list_empty(&root_task_group.children);
346 #endif
348 #ifdef CONFIG_FAIR_GROUP_SCHED
349 #ifdef CONFIG_USER_SCHED
350 # define INIT_TASK_GROUP_LOAD (2*NICE_0_LOAD)
351 #else /* !CONFIG_USER_SCHED */
352 # define INIT_TASK_GROUP_LOAD NICE_0_LOAD
353 #endif /* CONFIG_USER_SCHED */
356 * A weight of 0 or 1 can cause arithmetics problems.
357 * A weight of a cfs_rq is the sum of weights of which entities
358 * are queued on this cfs_rq, so a weight of a entity should not be
359 * too large, so as the shares value of a task group.
360 * (The default weight is 1024 - so there's no practical
361 * limitation from this.)
363 #define MIN_SHARES 2
364 #define MAX_SHARES (1UL << 18)
366 static int init_task_group_load = INIT_TASK_GROUP_LOAD;
367 #endif
369 /* Default task group.
370 * Every task in system belong to this group at bootup.
372 struct task_group init_task_group;
374 /* return group to which a task belongs */
375 static inline struct task_group *task_group(struct task_struct *p)
377 struct task_group *tg;
379 #ifdef CONFIG_USER_SCHED
380 rcu_read_lock();
381 tg = __task_cred(p)->user->tg;
382 rcu_read_unlock();
383 #elif defined(CONFIG_CGROUP_SCHED)
384 tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
385 struct task_group, css);
386 #else
387 tg = &init_task_group;
388 #endif
389 return tg;
392 /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
393 static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
395 #ifdef CONFIG_FAIR_GROUP_SCHED
396 p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
397 p->se.parent = task_group(p)->se[cpu];
398 #endif
400 #ifdef CONFIG_RT_GROUP_SCHED
401 p->rt.rt_rq = task_group(p)->rt_rq[cpu];
402 p->rt.parent = task_group(p)->rt_se[cpu];
403 #endif
406 #else
408 #ifdef CONFIG_SMP
409 static int root_task_group_empty(void)
411 return 1;
413 #endif
415 static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
416 static inline struct task_group *task_group(struct task_struct *p)
418 return NULL;
421 #endif /* CONFIG_GROUP_SCHED */
423 /* CFS-related fields in a runqueue */
424 struct cfs_rq {
425 struct load_weight load;
426 unsigned long nr_running;
428 u64 exec_clock;
429 u64 min_vruntime;
431 struct rb_root tasks_timeline;
432 struct rb_node *rb_leftmost;
434 struct list_head tasks;
435 struct list_head *balance_iterator;
438 * 'curr' points to currently running entity on this cfs_rq.
439 * It is set to NULL otherwise (i.e when none are currently running).
441 struct sched_entity *curr, *next, *last;
443 unsigned int nr_spread_over;
445 #ifdef CONFIG_FAIR_GROUP_SCHED
446 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
449 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
450 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
451 * (like users, containers etc.)
453 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
454 * list is used during load balance.
456 struct list_head leaf_cfs_rq_list;
457 struct task_group *tg; /* group that "owns" this runqueue */
459 #ifdef CONFIG_SMP
461 * the part of load.weight contributed by tasks
463 unsigned long task_weight;
466 * h_load = weight * f(tg)
468 * Where f(tg) is the recursive weight fraction assigned to
469 * this group.
471 unsigned long h_load;
474 * this cpu's part of tg->shares
476 unsigned long shares;
479 * load.weight at the time we set shares
481 unsigned long rq_weight;
482 #endif
483 #endif
486 /* Real-Time classes' related field in a runqueue: */
487 struct rt_rq {
488 struct rt_prio_array active;
489 unsigned long rt_nr_running;
490 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
491 struct {
492 int curr; /* highest queued rt task prio */
493 #ifdef CONFIG_SMP
494 int next; /* next highest */
495 #endif
496 } highest_prio;
497 #endif
498 #ifdef CONFIG_SMP
499 unsigned long rt_nr_migratory;
500 int overloaded;
501 struct plist_head pushable_tasks;
502 #endif
503 int rt_throttled;
504 u64 rt_time;
505 u64 rt_runtime;
506 /* Nests inside the rq lock: */
507 spinlock_t rt_runtime_lock;
509 #ifdef CONFIG_RT_GROUP_SCHED
510 unsigned long rt_nr_boosted;
512 struct rq *rq;
513 struct list_head leaf_rt_rq_list;
514 struct task_group *tg;
515 struct sched_rt_entity *rt_se;
516 #endif
519 #ifdef CONFIG_SMP
522 * We add the notion of a root-domain which will be used to define per-domain
523 * variables. Each exclusive cpuset essentially defines an island domain by
524 * fully partitioning the member cpus from any other cpuset. Whenever a new
525 * exclusive cpuset is created, we also create and attach a new root-domain
526 * object.
529 struct root_domain {
530 atomic_t refcount;
531 cpumask_var_t span;
532 cpumask_var_t online;
535 * The "RT overload" flag: it gets set if a CPU has more than
536 * one runnable RT task.
538 cpumask_var_t rto_mask;
539 atomic_t rto_count;
540 #ifdef CONFIG_SMP
541 struct cpupri cpupri;
542 #endif
543 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
545 * Preferred wake up cpu nominated by sched_mc balance that will be
546 * used when most cpus are idle in the system indicating overall very
547 * low system utilisation. Triggered at POWERSAVINGS_BALANCE_WAKEUP(2)
549 unsigned int sched_mc_preferred_wakeup_cpu;
550 #endif
554 * By default the system creates a single root-domain with all cpus as
555 * members (mimicking the global state we have today).
557 static struct root_domain def_root_domain;
559 #endif
562 * This is the main, per-CPU runqueue data structure.
564 * Locking rule: those places that want to lock multiple runqueues
565 * (such as the load balancing or the thread migration code), lock
566 * acquire operations must be ordered by ascending &runqueue.
568 struct rq {
569 /* runqueue lock: */
570 spinlock_t lock;
573 * nr_running and cpu_load should be in the same cacheline because
574 * remote CPUs use both these fields when doing load calculation.
576 unsigned long nr_running;
577 #define CPU_LOAD_IDX_MAX 5
578 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
579 #ifdef CONFIG_NO_HZ
580 unsigned long last_tick_seen;
581 unsigned char in_nohz_recently;
582 #endif
583 /* capture load from *all* tasks on this cpu: */
584 struct load_weight load;
585 unsigned long nr_load_updates;
586 u64 nr_switches;
588 struct cfs_rq cfs;
589 struct rt_rq rt;
591 #ifdef CONFIG_FAIR_GROUP_SCHED
592 /* list of leaf cfs_rq on this cpu: */
593 struct list_head leaf_cfs_rq_list;
594 #endif
595 #ifdef CONFIG_RT_GROUP_SCHED
596 struct list_head leaf_rt_rq_list;
597 #endif
600 * This is part of a global counter where only the total sum
601 * over all CPUs matters. A task can increase this counter on
602 * one CPU and if it got migrated afterwards it may decrease
603 * it on another CPU. Always updated under the runqueue lock:
605 unsigned long nr_uninterruptible;
607 struct task_struct *curr, *idle;
608 unsigned long next_balance;
609 struct mm_struct *prev_mm;
611 u64 clock;
613 atomic_t nr_iowait;
615 #ifdef CONFIG_SMP
616 struct root_domain *rd;
617 struct sched_domain *sd;
619 unsigned char idle_at_tick;
620 /* For active balancing */
621 int active_balance;
622 int push_cpu;
623 /* cpu of this runqueue: */
624 int cpu;
625 int online;
627 unsigned long avg_load_per_task;
629 struct task_struct *migration_thread;
630 struct list_head migration_queue;
631 #endif
633 #ifdef CONFIG_SCHED_HRTICK
634 #ifdef CONFIG_SMP
635 int hrtick_csd_pending;
636 struct call_single_data hrtick_csd;
637 #endif
638 struct hrtimer hrtick_timer;
639 #endif
641 #ifdef CONFIG_SCHEDSTATS
642 /* latency stats */
643 struct sched_info rq_sched_info;
644 unsigned long long rq_cpu_time;
645 /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
647 /* sys_sched_yield() stats */
648 unsigned int yld_count;
650 /* schedule() stats */
651 unsigned int sched_switch;
652 unsigned int sched_count;
653 unsigned int sched_goidle;
655 /* try_to_wake_up() stats */
656 unsigned int ttwu_count;
657 unsigned int ttwu_local;
659 /* BKL stats */
660 unsigned int bkl_count;
661 #endif
664 static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
666 static inline void check_preempt_curr(struct rq *rq, struct task_struct *p, int sync)
668 rq->curr->sched_class->check_preempt_curr(rq, p, sync);
671 static inline int cpu_of(struct rq *rq)
673 #ifdef CONFIG_SMP
674 return rq->cpu;
675 #else
676 return 0;
677 #endif
681 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
682 * See detach_destroy_domains: synchronize_sched for details.
684 * The domain tree of any CPU may only be accessed from within
685 * preempt-disabled sections.
687 #define for_each_domain(cpu, __sd) \
688 for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
690 #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
691 #define this_rq() (&__get_cpu_var(runqueues))
692 #define task_rq(p) cpu_rq(task_cpu(p))
693 #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
695 static inline void update_rq_clock(struct rq *rq)
697 rq->clock = sched_clock_cpu(cpu_of(rq));
701 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
703 #ifdef CONFIG_SCHED_DEBUG
704 # define const_debug __read_mostly
705 #else
706 # define const_debug static const
707 #endif
710 * runqueue_is_locked
712 * Returns true if the current cpu runqueue is locked.
713 * This interface allows printk to be called with the runqueue lock
714 * held and know whether or not it is OK to wake up the klogd.
716 int runqueue_is_locked(void)
718 int cpu = get_cpu();
719 struct rq *rq = cpu_rq(cpu);
720 int ret;
722 ret = spin_is_locked(&rq->lock);
723 put_cpu();
724 return ret;
728 * Debugging: various feature bits
731 #define SCHED_FEAT(name, enabled) \
732 __SCHED_FEAT_##name ,
734 enum {
735 #include "sched_features.h"
738 #undef SCHED_FEAT
740 #define SCHED_FEAT(name, enabled) \
741 (1UL << __SCHED_FEAT_##name) * enabled |
743 const_debug unsigned int sysctl_sched_features =
744 #include "sched_features.h"
747 #undef SCHED_FEAT
749 #ifdef CONFIG_SCHED_DEBUG
750 #define SCHED_FEAT(name, enabled) \
751 #name ,
753 static __read_mostly char *sched_feat_names[] = {
754 #include "sched_features.h"
755 NULL
758 #undef SCHED_FEAT
760 static int sched_feat_show(struct seq_file *m, void *v)
762 int i;
764 for (i = 0; sched_feat_names[i]; i++) {
765 if (!(sysctl_sched_features & (1UL << i)))
766 seq_puts(m, "NO_");
767 seq_printf(m, "%s ", sched_feat_names[i]);
769 seq_puts(m, "\n");
771 return 0;
774 static ssize_t
775 sched_feat_write(struct file *filp, const char __user *ubuf,
776 size_t cnt, loff_t *ppos)
778 char buf[64];
779 char *cmp = buf;
780 int neg = 0;
781 int i;
783 if (cnt > 63)
784 cnt = 63;
786 if (copy_from_user(&buf, ubuf, cnt))
787 return -EFAULT;
789 buf[cnt] = 0;
791 if (strncmp(buf, "NO_", 3) == 0) {
792 neg = 1;
793 cmp += 3;
796 for (i = 0; sched_feat_names[i]; i++) {
797 int len = strlen(sched_feat_names[i]);
799 if (strncmp(cmp, sched_feat_names[i], len) == 0) {
800 if (neg)
801 sysctl_sched_features &= ~(1UL << i);
802 else
803 sysctl_sched_features |= (1UL << i);
804 break;
808 if (!sched_feat_names[i])
809 return -EINVAL;
811 filp->f_pos += cnt;
813 return cnt;
816 static int sched_feat_open(struct inode *inode, struct file *filp)
818 return single_open(filp, sched_feat_show, NULL);
821 static struct file_operations sched_feat_fops = {
822 .open = sched_feat_open,
823 .write = sched_feat_write,
824 .read = seq_read,
825 .llseek = seq_lseek,
826 .release = single_release,
829 static __init int sched_init_debug(void)
831 debugfs_create_file("sched_features", 0644, NULL, NULL,
832 &sched_feat_fops);
834 return 0;
836 late_initcall(sched_init_debug);
838 #endif
840 #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
843 * Number of tasks to iterate in a single balance run.
844 * Limited because this is done with IRQs disabled.
846 const_debug unsigned int sysctl_sched_nr_migrate = 32;
849 * ratelimit for updating the group shares.
850 * default: 0.25ms
852 unsigned int sysctl_sched_shares_ratelimit = 250000;
855 * Inject some fuzzyness into changing the per-cpu group shares
856 * this avoids remote rq-locks at the expense of fairness.
857 * default: 4
859 unsigned int sysctl_sched_shares_thresh = 4;
862 * period over which we measure -rt task cpu usage in us.
863 * default: 1s
865 unsigned int sysctl_sched_rt_period = 1000000;
867 static __read_mostly int scheduler_running;
870 * part of the period that we allow rt tasks to run in us.
871 * default: 0.95s
873 int sysctl_sched_rt_runtime = 950000;
875 static inline u64 global_rt_period(void)
877 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
880 static inline u64 global_rt_runtime(void)
882 if (sysctl_sched_rt_runtime < 0)
883 return RUNTIME_INF;
885 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
888 #ifndef prepare_arch_switch
889 # define prepare_arch_switch(next) do { } while (0)
890 #endif
891 #ifndef finish_arch_switch
892 # define finish_arch_switch(prev) do { } while (0)
893 #endif
895 static inline int task_current(struct rq *rq, struct task_struct *p)
897 return rq->curr == p;
900 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
901 static inline int task_running(struct rq *rq, struct task_struct *p)
903 return task_current(rq, p);
906 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
910 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
912 #ifdef CONFIG_DEBUG_SPINLOCK
913 /* this is a valid case when another task releases the spinlock */
914 rq->lock.owner = current;
915 #endif
917 * If we are tracking spinlock dependencies then we have to
918 * fix up the runqueue lock - which gets 'carried over' from
919 * prev into current:
921 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
923 spin_unlock_irq(&rq->lock);
926 #else /* __ARCH_WANT_UNLOCKED_CTXSW */
927 static inline int task_running(struct rq *rq, struct task_struct *p)
929 #ifdef CONFIG_SMP
930 return p->oncpu;
931 #else
932 return task_current(rq, p);
933 #endif
936 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
938 #ifdef CONFIG_SMP
940 * We can optimise this out completely for !SMP, because the
941 * SMP rebalancing from interrupt is the only thing that cares
942 * here.
944 next->oncpu = 1;
945 #endif
946 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
947 spin_unlock_irq(&rq->lock);
948 #else
949 spin_unlock(&rq->lock);
950 #endif
953 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
955 #ifdef CONFIG_SMP
957 * After ->oncpu is cleared, the task can be moved to a different CPU.
958 * We must ensure this doesn't happen until the switch is completely
959 * finished.
961 smp_wmb();
962 prev->oncpu = 0;
963 #endif
964 #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
965 local_irq_enable();
966 #endif
968 #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
971 * __task_rq_lock - lock the runqueue a given task resides on.
972 * Must be called interrupts disabled.
974 static inline struct rq *__task_rq_lock(struct task_struct *p)
975 __acquires(rq->lock)
977 for (;;) {
978 struct rq *rq = task_rq(p);
979 spin_lock(&rq->lock);
980 if (likely(rq == task_rq(p)))
981 return rq;
982 spin_unlock(&rq->lock);
987 * task_rq_lock - lock the runqueue a given task resides on and disable
988 * interrupts. Note the ordering: we can safely lookup the task_rq without
989 * explicitly disabling preemption.
991 static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
992 __acquires(rq->lock)
994 struct rq *rq;
996 for (;;) {
997 local_irq_save(*flags);
998 rq = task_rq(p);
999 spin_lock(&rq->lock);
1000 if (likely(rq == task_rq(p)))
1001 return rq;
1002 spin_unlock_irqrestore(&rq->lock, *flags);
1006 void task_rq_unlock_wait(struct task_struct *p)
1008 struct rq *rq = task_rq(p);
1010 smp_mb(); /* spin-unlock-wait is not a full memory barrier */
1011 spin_unlock_wait(&rq->lock);
1014 static void __task_rq_unlock(struct rq *rq)
1015 __releases(rq->lock)
1017 spin_unlock(&rq->lock);
1020 static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
1021 __releases(rq->lock)
1023 spin_unlock_irqrestore(&rq->lock, *flags);
1027 * this_rq_lock - lock this runqueue and disable interrupts.
1029 static struct rq *this_rq_lock(void)
1030 __acquires(rq->lock)
1032 struct rq *rq;
1034 local_irq_disable();
1035 rq = this_rq();
1036 spin_lock(&rq->lock);
1038 return rq;
1041 #ifdef CONFIG_SCHED_HRTICK
1043 * Use HR-timers to deliver accurate preemption points.
1045 * Its all a bit involved since we cannot program an hrt while holding the
1046 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
1047 * reschedule event.
1049 * When we get rescheduled we reprogram the hrtick_timer outside of the
1050 * rq->lock.
1054 * Use hrtick when:
1055 * - enabled by features
1056 * - hrtimer is actually high res
1058 static inline int hrtick_enabled(struct rq *rq)
1060 if (!sched_feat(HRTICK))
1061 return 0;
1062 if (!cpu_active(cpu_of(rq)))
1063 return 0;
1064 return hrtimer_is_hres_active(&rq->hrtick_timer);
1067 static void hrtick_clear(struct rq *rq)
1069 if (hrtimer_active(&rq->hrtick_timer))
1070 hrtimer_cancel(&rq->hrtick_timer);
1074 * High-resolution timer tick.
1075 * Runs from hardirq context with interrupts disabled.
1077 static enum hrtimer_restart hrtick(struct hrtimer *timer)
1079 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
1081 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
1083 spin_lock(&rq->lock);
1084 update_rq_clock(rq);
1085 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
1086 spin_unlock(&rq->lock);
1088 return HRTIMER_NORESTART;
1091 #ifdef CONFIG_SMP
1093 * called from hardirq (IPI) context
1095 static void __hrtick_start(void *arg)
1097 struct rq *rq = arg;
1099 spin_lock(&rq->lock);
1100 hrtimer_restart(&rq->hrtick_timer);
1101 rq->hrtick_csd_pending = 0;
1102 spin_unlock(&rq->lock);
1106 * Called to set the hrtick timer state.
1108 * called with rq->lock held and irqs disabled
1110 static void hrtick_start(struct rq *rq, u64 delay)
1112 struct hrtimer *timer = &rq->hrtick_timer;
1113 ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
1115 hrtimer_set_expires(timer, time);
1117 if (rq == this_rq()) {
1118 hrtimer_restart(timer);
1119 } else if (!rq->hrtick_csd_pending) {
1120 __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
1121 rq->hrtick_csd_pending = 1;
1125 static int
1126 hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
1128 int cpu = (int)(long)hcpu;
1130 switch (action) {
1131 case CPU_UP_CANCELED:
1132 case CPU_UP_CANCELED_FROZEN:
1133 case CPU_DOWN_PREPARE:
1134 case CPU_DOWN_PREPARE_FROZEN:
1135 case CPU_DEAD:
1136 case CPU_DEAD_FROZEN:
1137 hrtick_clear(cpu_rq(cpu));
1138 return NOTIFY_OK;
1141 return NOTIFY_DONE;
1144 static __init void init_hrtick(void)
1146 hotcpu_notifier(hotplug_hrtick, 0);
1148 #else
1150 * Called to set the hrtick timer state.
1152 * called with rq->lock held and irqs disabled
1154 static void hrtick_start(struct rq *rq, u64 delay)
1156 __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
1157 HRTIMER_MODE_REL, 0);
1160 static inline void init_hrtick(void)
1163 #endif /* CONFIG_SMP */
1165 static void init_rq_hrtick(struct rq *rq)
1167 #ifdef CONFIG_SMP
1168 rq->hrtick_csd_pending = 0;
1170 rq->hrtick_csd.flags = 0;
1171 rq->hrtick_csd.func = __hrtick_start;
1172 rq->hrtick_csd.info = rq;
1173 #endif
1175 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1176 rq->hrtick_timer.function = hrtick;
1178 #else /* CONFIG_SCHED_HRTICK */
1179 static inline void hrtick_clear(struct rq *rq)
1183 static inline void init_rq_hrtick(struct rq *rq)
1187 static inline void init_hrtick(void)
1190 #endif /* CONFIG_SCHED_HRTICK */
1193 * resched_task - mark a task 'to be rescheduled now'.
1195 * On UP this means the setting of the need_resched flag, on SMP it
1196 * might also involve a cross-CPU call to trigger the scheduler on
1197 * the target CPU.
1199 #ifdef CONFIG_SMP
1201 #ifndef tsk_is_polling
1202 #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
1203 #endif
1205 static void resched_task(struct task_struct *p)
1207 int cpu;
1209 assert_spin_locked(&task_rq(p)->lock);
1211 if (test_tsk_need_resched(p))
1212 return;
1214 set_tsk_need_resched(p);
1216 cpu = task_cpu(p);
1217 if (cpu == smp_processor_id())
1218 return;
1220 /* NEED_RESCHED must be visible before we test polling */
1221 smp_mb();
1222 if (!tsk_is_polling(p))
1223 smp_send_reschedule(cpu);
1226 static void resched_cpu(int cpu)
1228 struct rq *rq = cpu_rq(cpu);
1229 unsigned long flags;
1231 if (!spin_trylock_irqsave(&rq->lock, flags))
1232 return;
1233 resched_task(cpu_curr(cpu));
1234 spin_unlock_irqrestore(&rq->lock, flags);
1237 #ifdef CONFIG_NO_HZ
1239 * When add_timer_on() enqueues a timer into the timer wheel of an
1240 * idle CPU then this timer might expire before the next timer event
1241 * which is scheduled to wake up that CPU. In case of a completely
1242 * idle system the next event might even be infinite time into the
1243 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
1244 * leaves the inner idle loop so the newly added timer is taken into
1245 * account when the CPU goes back to idle and evaluates the timer
1246 * wheel for the next timer event.
1248 void wake_up_idle_cpu(int cpu)
1250 struct rq *rq = cpu_rq(cpu);
1252 if (cpu == smp_processor_id())
1253 return;
1256 * This is safe, as this function is called with the timer
1257 * wheel base lock of (cpu) held. When the CPU is on the way
1258 * to idle and has not yet set rq->curr to idle then it will
1259 * be serialized on the timer wheel base lock and take the new
1260 * timer into account automatically.
1262 if (rq->curr != rq->idle)
1263 return;
1266 * We can set TIF_RESCHED on the idle task of the other CPU
1267 * lockless. The worst case is that the other CPU runs the
1268 * idle task through an additional NOOP schedule()
1270 set_tsk_need_resched(rq->idle);
1272 /* NEED_RESCHED must be visible before we test polling */
1273 smp_mb();
1274 if (!tsk_is_polling(rq->idle))
1275 smp_send_reschedule(cpu);
1277 #endif /* CONFIG_NO_HZ */
1279 #else /* !CONFIG_SMP */
1280 static void resched_task(struct task_struct *p)
1282 assert_spin_locked(&task_rq(p)->lock);
1283 set_tsk_need_resched(p);
1285 #endif /* CONFIG_SMP */
1287 #if BITS_PER_LONG == 32
1288 # define WMULT_CONST (~0UL)
1289 #else
1290 # define WMULT_CONST (1UL << 32)
1291 #endif
1293 #define WMULT_SHIFT 32
1296 * Shift right and round:
1298 #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
1301 * delta *= weight / lw
1303 static unsigned long
1304 calc_delta_mine(unsigned long delta_exec, unsigned long weight,
1305 struct load_weight *lw)
1307 u64 tmp;
1309 if (!lw->inv_weight) {
1310 if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
1311 lw->inv_weight = 1;
1312 else
1313 lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
1314 / (lw->weight+1);
1317 tmp = (u64)delta_exec * weight;
1319 * Check whether we'd overflow the 64-bit multiplication:
1321 if (unlikely(tmp > WMULT_CONST))
1322 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
1323 WMULT_SHIFT/2);
1324 else
1325 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
1327 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
1330 static inline void update_load_add(struct load_weight *lw, unsigned long inc)
1332 lw->weight += inc;
1333 lw->inv_weight = 0;
1336 static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
1338 lw->weight -= dec;
1339 lw->inv_weight = 0;
1343 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1344 * of tasks with abnormal "nice" values across CPUs the contribution that
1345 * each task makes to its run queue's load is weighted according to its
1346 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
1347 * scaled version of the new time slice allocation that they receive on time
1348 * slice expiry etc.
1351 #define WEIGHT_IDLEPRIO 3
1352 #define WMULT_IDLEPRIO 1431655765
1355 * Nice levels are multiplicative, with a gentle 10% change for every
1356 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
1357 * nice 1, it will get ~10% less CPU time than another CPU-bound task
1358 * that remained on nice 0.
1360 * The "10% effect" is relative and cumulative: from _any_ nice level,
1361 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
1362 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
1363 * If a task goes up by ~10% and another task goes down by ~10% then
1364 * the relative distance between them is ~25%.)
1366 static const int prio_to_weight[40] = {
1367 /* -20 */ 88761, 71755, 56483, 46273, 36291,
1368 /* -15 */ 29154, 23254, 18705, 14949, 11916,
1369 /* -10 */ 9548, 7620, 6100, 4904, 3906,
1370 /* -5 */ 3121, 2501, 1991, 1586, 1277,
1371 /* 0 */ 1024, 820, 655, 526, 423,
1372 /* 5 */ 335, 272, 215, 172, 137,
1373 /* 10 */ 110, 87, 70, 56, 45,
1374 /* 15 */ 36, 29, 23, 18, 15,
1378 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
1380 * In cases where the weight does not change often, we can use the
1381 * precalculated inverse to speed up arithmetics by turning divisions
1382 * into multiplications:
1384 static const u32 prio_to_wmult[40] = {
1385 /* -20 */ 48388, 59856, 76040, 92818, 118348,
1386 /* -15 */ 147320, 184698, 229616, 287308, 360437,
1387 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
1388 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
1389 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
1390 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
1391 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
1392 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
1395 static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);
1398 * runqueue iterator, to support SMP load-balancing between different
1399 * scheduling classes, without having to expose their internal data
1400 * structures to the load-balancing proper:
1402 struct rq_iterator {
1403 void *arg;
1404 struct task_struct *(*start)(void *);
1405 struct task_struct *(*next)(void *);
1408 #ifdef CONFIG_SMP
1409 static unsigned long
1410 balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
1411 unsigned long max_load_move, struct sched_domain *sd,
1412 enum cpu_idle_type idle, int *all_pinned,
1413 int *this_best_prio, struct rq_iterator *iterator);
1415 static int
1416 iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
1417 struct sched_domain *sd, enum cpu_idle_type idle,
1418 struct rq_iterator *iterator);
1419 #endif
1421 /* Time spent by the tasks of the cpu accounting group executing in ... */
1422 enum cpuacct_stat_index {
1423 CPUACCT_STAT_USER, /* ... user mode */
1424 CPUACCT_STAT_SYSTEM, /* ... kernel mode */
1426 CPUACCT_STAT_NSTATS,
1429 #ifdef CONFIG_CGROUP_CPUACCT
1430 static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
1431 static void cpuacct_update_stats(struct task_struct *tsk,
1432 enum cpuacct_stat_index idx, cputime_t val);
1433 #else
1434 static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
1435 static inline void cpuacct_update_stats(struct task_struct *tsk,
1436 enum cpuacct_stat_index idx, cputime_t val) {}
1437 #endif
1439 static inline void inc_cpu_load(struct rq *rq, unsigned long load)
1441 update_load_add(&rq->load, load);
1444 static inline void dec_cpu_load(struct rq *rq, unsigned long load)
1446 update_load_sub(&rq->load, load);
1449 #if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED)
1450 typedef int (*tg_visitor)(struct task_group *, void *);
1453 * Iterate the full tree, calling @down when first entering a node and @up when
1454 * leaving it for the final time.
1456 static int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
1458 struct task_group *parent, *child;
1459 int ret;
1461 rcu_read_lock();
1462 parent = &root_task_group;
1463 down:
1464 ret = (*down)(parent, data);
1465 if (ret)
1466 goto out_unlock;
1467 list_for_each_entry_rcu(child, &parent->children, siblings) {
1468 parent = child;
1469 goto down;
1472 continue;
1474 ret = (*up)(parent, data);
1475 if (ret)
1476 goto out_unlock;
1478 child = parent;
1479 parent = parent->parent;
1480 if (parent)
1481 goto up;
1482 out_unlock:
1483 rcu_read_unlock();
1485 return ret;
1488 static int tg_nop(struct task_group *tg, void *data)
1490 return 0;
1492 #endif
1494 #ifdef CONFIG_SMP
1495 static unsigned long source_load(int cpu, int type);
1496 static unsigned long target_load(int cpu, int type);
1497 static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
1499 static unsigned long cpu_avg_load_per_task(int cpu)
1501 struct rq *rq = cpu_rq(cpu);
1502 unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
1504 if (nr_running)
1505 rq->avg_load_per_task = rq->load.weight / nr_running;
1506 else
1507 rq->avg_load_per_task = 0;
1509 return rq->avg_load_per_task;
1512 #ifdef CONFIG_FAIR_GROUP_SCHED
1514 static void __set_se_shares(struct sched_entity *se, unsigned long shares);
1517 * Calculate and set the cpu's group shares.
1519 static void
1520 update_group_shares_cpu(struct task_group *tg, int cpu,
1521 unsigned long sd_shares, unsigned long sd_rq_weight)
1523 unsigned long shares;
1524 unsigned long rq_weight;
1526 if (!tg->se[cpu])
1527 return;
1529 rq_weight = tg->cfs_rq[cpu]->rq_weight;
1532 * \Sum shares * rq_weight
1533 * shares = -----------------------
1534 * \Sum rq_weight
1537 shares = (sd_shares * rq_weight) / sd_rq_weight;
1538 shares = clamp_t(unsigned long, shares, MIN_SHARES, MAX_SHARES);
1540 if (abs(shares - tg->se[cpu]->load.weight) >
1541 sysctl_sched_shares_thresh) {
1542 struct rq *rq = cpu_rq(cpu);
1543 unsigned long flags;
1545 spin_lock_irqsave(&rq->lock, flags);
1546 tg->cfs_rq[cpu]->shares = shares;
1548 __set_se_shares(tg->se[cpu], shares);
1549 spin_unlock_irqrestore(&rq->lock, flags);
1554 * Re-compute the task group their per cpu shares over the given domain.
1555 * This needs to be done in a bottom-up fashion because the rq weight of a
1556 * parent group depends on the shares of its child groups.
1558 static int tg_shares_up(struct task_group *tg, void *data)
1560 unsigned long weight, rq_weight = 0;
1561 unsigned long shares = 0;
1562 struct sched_domain *sd = data;
1563 int i;
1565 for_each_cpu(i, sched_domain_span(sd)) {
1567 * If there are currently no tasks on the cpu pretend there
1568 * is one of average load so that when a new task gets to
1569 * run here it will not get delayed by group starvation.
1571 weight = tg->cfs_rq[i]->load.weight;
1572 if (!weight)
1573 weight = NICE_0_LOAD;
1575 tg->cfs_rq[i]->rq_weight = weight;
1576 rq_weight += weight;
1577 shares += tg->cfs_rq[i]->shares;
1580 if ((!shares && rq_weight) || shares > tg->shares)
1581 shares = tg->shares;
1583 if (!sd->parent || !(sd->parent->flags & SD_LOAD_BALANCE))
1584 shares = tg->shares;
1586 for_each_cpu(i, sched_domain_span(sd))
1587 update_group_shares_cpu(tg, i, shares, rq_weight);
1589 return 0;
1593 * Compute the cpu's hierarchical load factor for each task group.
1594 * This needs to be done in a top-down fashion because the load of a child
1595 * group is a fraction of its parents load.
1597 static int tg_load_down(struct task_group *tg, void *data)
1599 unsigned long load;
1600 long cpu = (long)data;
1602 if (!tg->parent) {
1603 load = cpu_rq(cpu)->load.weight;
1604 } else {
1605 load = tg->parent->cfs_rq[cpu]->h_load;
1606 load *= tg->cfs_rq[cpu]->shares;
1607 load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
1610 tg->cfs_rq[cpu]->h_load = load;
1612 return 0;
1615 static void update_shares(struct sched_domain *sd)
1617 u64 now = cpu_clock(raw_smp_processor_id());
1618 s64 elapsed = now - sd->last_update;
1620 if (elapsed >= (s64)(u64)sysctl_sched_shares_ratelimit) {
1621 sd->last_update = now;
1622 walk_tg_tree(tg_nop, tg_shares_up, sd);
1626 static void update_shares_locked(struct rq *rq, struct sched_domain *sd)
1628 spin_unlock(&rq->lock);
1629 update_shares(sd);
1630 spin_lock(&rq->lock);
1633 static void update_h_load(long cpu)
1635 walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
1638 #else
1640 static inline void update_shares(struct sched_domain *sd)
1644 static inline void update_shares_locked(struct rq *rq, struct sched_domain *sd)
1648 #endif
1650 #ifdef CONFIG_PREEMPT
1653 * fair double_lock_balance: Safely acquires both rq->locks in a fair
1654 * way at the expense of forcing extra atomic operations in all
1655 * invocations. This assures that the double_lock is acquired using the
1656 * same underlying policy as the spinlock_t on this architecture, which
1657 * reduces latency compared to the unfair variant below. However, it
1658 * also adds more overhead and therefore may reduce throughput.
1660 static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1661 __releases(this_rq->lock)
1662 __acquires(busiest->lock)
1663 __acquires(this_rq->lock)
1665 spin_unlock(&this_rq->lock);
1666 double_rq_lock(this_rq, busiest);
1668 return 1;
1671 #else
1673 * Unfair double_lock_balance: Optimizes throughput at the expense of
1674 * latency by eliminating extra atomic operations when the locks are
1675 * already in proper order on entry. This favors lower cpu-ids and will
1676 * grant the double lock to lower cpus over higher ids under contention,
1677 * regardless of entry order into the function.
1679 static int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1680 __releases(this_rq->lock)
1681 __acquires(busiest->lock)
1682 __acquires(this_rq->lock)
1684 int ret = 0;
1686 if (unlikely(!spin_trylock(&busiest->lock))) {
1687 if (busiest < this_rq) {
1688 spin_unlock(&this_rq->lock);
1689 spin_lock(&busiest->lock);
1690 spin_lock_nested(&this_rq->lock, SINGLE_DEPTH_NESTING);
1691 ret = 1;
1692 } else
1693 spin_lock_nested(&busiest->lock, SINGLE_DEPTH_NESTING);
1695 return ret;
1698 #endif /* CONFIG_PREEMPT */
1701 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1703 static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
1705 if (unlikely(!irqs_disabled())) {
1706 /* printk() doesn't work good under rq->lock */
1707 spin_unlock(&this_rq->lock);
1708 BUG_ON(1);
1711 return _double_lock_balance(this_rq, busiest);
1714 static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
1715 __releases(busiest->lock)
1717 spin_unlock(&busiest->lock);
1718 lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
1720 #endif
1722 #ifdef CONFIG_FAIR_GROUP_SCHED
1723 static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares)
1725 #ifdef CONFIG_SMP
1726 cfs_rq->shares = shares;
1727 #endif
1729 #endif
1731 #include "sched_stats.h"
1732 #include "sched_idletask.c"
1733 #include "sched_fair.c"
1734 #include "sched_rt.c"
1735 #ifdef CONFIG_SCHED_DEBUG
1736 # include "sched_debug.c"
1737 #endif
1739 #define sched_class_highest (&rt_sched_class)
1740 #define for_each_class(class) \
1741 for (class = sched_class_highest; class; class = class->next)
1743 static void inc_nr_running(struct rq *rq)
1745 rq->nr_running++;
1748 static void dec_nr_running(struct rq *rq)
1750 rq->nr_running--;
1753 static void set_load_weight(struct task_struct *p)
1755 if (task_has_rt_policy(p)) {
1756 p->se.load.weight = prio_to_weight[0] * 2;
1757 p->se.load.inv_weight = prio_to_wmult[0] >> 1;
1758 return;
1762 * SCHED_IDLE tasks get minimal weight:
1764 if (p->policy == SCHED_IDLE) {
1765 p->se.load.weight = WEIGHT_IDLEPRIO;
1766 p->se.load.inv_weight = WMULT_IDLEPRIO;
1767 return;
1770 p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
1771 p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
1774 static void update_avg(u64 *avg, u64 sample)
1776 s64 diff = sample - *avg;
1777 *avg += diff >> 3;
1780 static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
1782 if (wakeup)
1783 p->se.start_runtime = p->se.sum_exec_runtime;
1785 sched_info_queued(p);
1786 p->sched_class->enqueue_task(rq, p, wakeup);
1787 p->se.on_rq = 1;
1790 static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
1792 if (sleep) {
1793 if (p->se.last_wakeup) {
1794 update_avg(&p->se.avg_overlap,
1795 p->se.sum_exec_runtime - p->se.last_wakeup);
1796 p->se.last_wakeup = 0;
1797 } else {
1798 update_avg(&p->se.avg_wakeup,
1799 sysctl_sched_wakeup_granularity);
1803 sched_info_dequeued(p);
1804 p->sched_class->dequeue_task(rq, p, sleep);
1805 p->se.on_rq = 0;
1809 * __normal_prio - return the priority that is based on the static prio
1811 static inline int __normal_prio(struct task_struct *p)
1813 return p->static_prio;
1817 * Calculate the expected normal priority: i.e. priority
1818 * without taking RT-inheritance into account. Might be
1819 * boosted by interactivity modifiers. Changes upon fork,
1820 * setprio syscalls, and whenever the interactivity
1821 * estimator recalculates.
1823 static inline int normal_prio(struct task_struct *p)
1825 int prio;
1827 if (task_has_rt_policy(p))
1828 prio = MAX_RT_PRIO-1 - p->rt_priority;
1829 else
1830 prio = __normal_prio(p);
1831 return prio;
1835 * Calculate the current priority, i.e. the priority
1836 * taken into account by the scheduler. This value might
1837 * be boosted by RT tasks, or might be boosted by
1838 * interactivity modifiers. Will be RT if the task got
1839 * RT-boosted. If not then it returns p->normal_prio.
1841 static int effective_prio(struct task_struct *p)
1843 p->normal_prio = normal_prio(p);
1845 * If we are RT tasks or we were boosted to RT priority,
1846 * keep the priority unchanged. Otherwise, update priority
1847 * to the normal priority:
1849 if (!rt_prio(p->prio))
1850 return p->normal_prio;
1851 return p->prio;
1855 * activate_task - move a task to the runqueue.
1857 static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
1859 if (task_contributes_to_load(p))
1860 rq->nr_uninterruptible--;
1862 enqueue_task(rq, p, wakeup);
1863 inc_nr_running(rq);
1867 * deactivate_task - remove a task from the runqueue.
1869 static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
1871 if (task_contributes_to_load(p))
1872 rq->nr_uninterruptible++;
1874 dequeue_task(rq, p, sleep);
1875 dec_nr_running(rq);
1879 * task_curr - is this task currently executing on a CPU?
1880 * @p: the task in question.
1882 inline int task_curr(const struct task_struct *p)
1884 return cpu_curr(task_cpu(p)) == p;
1887 static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1889 set_task_rq(p, cpu);
1890 #ifdef CONFIG_SMP
1892 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1893 * successfuly executed on another CPU. We must ensure that updates of
1894 * per-task data have been completed by this moment.
1896 smp_wmb();
1897 task_thread_info(p)->cpu = cpu;
1898 #endif
1901 static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1902 const struct sched_class *prev_class,
1903 int oldprio, int running)
1905 if (prev_class != p->sched_class) {
1906 if (prev_class->switched_from)
1907 prev_class->switched_from(rq, p, running);
1908 p->sched_class->switched_to(rq, p, running);
1909 } else
1910 p->sched_class->prio_changed(rq, p, oldprio, running);
1913 #ifdef CONFIG_SMP
1915 /* Used instead of source_load when we know the type == 0 */
1916 static unsigned long weighted_cpuload(const int cpu)
1918 return cpu_rq(cpu)->load.weight;
1922 * Is this task likely cache-hot:
1924 static int
1925 task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
1927 s64 delta;
1930 * Buddy candidates are cache hot:
1932 if (sched_feat(CACHE_HOT_BUDDY) &&
1933 (&p->se == cfs_rq_of(&p->se)->next ||
1934 &p->se == cfs_rq_of(&p->se)->last))
1935 return 1;
1937 if (p->sched_class != &fair_sched_class)
1938 return 0;
1940 if (sysctl_sched_migration_cost == -1)
1941 return 1;
1942 if (sysctl_sched_migration_cost == 0)
1943 return 0;
1945 delta = now - p->se.exec_start;
1947 return delta < (s64)sysctl_sched_migration_cost;
1951 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
1953 int old_cpu = task_cpu(p);
1954 struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
1955 struct cfs_rq *old_cfsrq = task_cfs_rq(p),
1956 *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu);
1957 u64 clock_offset;
1959 clock_offset = old_rq->clock - new_rq->clock;
1961 trace_sched_migrate_task(p, task_cpu(p), new_cpu);
1963 #ifdef CONFIG_SCHEDSTATS
1964 if (p->se.wait_start)
1965 p->se.wait_start -= clock_offset;
1966 if (p->se.sleep_start)
1967 p->se.sleep_start -= clock_offset;
1968 if (p->se.block_start)
1969 p->se.block_start -= clock_offset;
1970 if (old_cpu != new_cpu) {
1971 schedstat_inc(p, se.nr_migrations);
1972 if (task_hot(p, old_rq->clock, NULL))
1973 schedstat_inc(p, se.nr_forced2_migrations);
1975 #endif
1976 p->se.vruntime -= old_cfsrq->min_vruntime -
1977 new_cfsrq->min_vruntime;
1979 __set_task_cpu(p, new_cpu);
1982 struct migration_req {
1983 struct list_head list;
1985 struct task_struct *task;
1986 int dest_cpu;
1988 struct completion done;
1992 * The task's runqueue lock must be held.
1993 * Returns true if you have to wait for migration thread.
1995 static int
1996 migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
1998 struct rq *rq = task_rq(p);
2001 * If the task is not on a runqueue (and not running), then
2002 * it is sufficient to simply update the task's cpu field.
2004 if (!p->se.on_rq && !task_running(rq, p)) {
2005 set_task_cpu(p, dest_cpu);
2006 return 0;
2009 init_completion(&req->done);
2010 req->task = p;
2011 req->dest_cpu = dest_cpu;
2012 list_add(&req->list, &rq->migration_queue);
2014 return 1;
2018 * wait_task_inactive - wait for a thread to unschedule.
2020 * If @match_state is nonzero, it's the @p->state value just checked and
2021 * not expected to change. If it changes, i.e. @p might have woken up,
2022 * then return zero. When we succeed in waiting for @p to be off its CPU,
2023 * we return a positive number (its total switch count). If a second call
2024 * a short while later returns the same number, the caller can be sure that
2025 * @p has remained unscheduled the whole time.
2027 * The caller must ensure that the task *will* unschedule sometime soon,
2028 * else this function might spin for a *long* time. This function can't
2029 * be called with interrupts off, or it may introduce deadlock with
2030 * smp_call_function() if an IPI is sent by the same process we are
2031 * waiting to become inactive.
2033 unsigned long wait_task_inactive(struct task_struct *p, long match_state)
2035 unsigned long flags;
2036 int running, on_rq;
2037 unsigned long ncsw;
2038 struct rq *rq;
2040 for (;;) {
2042 * We do the initial early heuristics without holding
2043 * any task-queue locks at all. We'll only try to get
2044 * the runqueue lock when things look like they will
2045 * work out!
2047 rq = task_rq(p);
2050 * If the task is actively running on another CPU
2051 * still, just relax and busy-wait without holding
2052 * any locks.
2054 * NOTE! Since we don't hold any locks, it's not
2055 * even sure that "rq" stays as the right runqueue!
2056 * But we don't care, since "task_running()" will
2057 * return false if the runqueue has changed and p
2058 * is actually now running somewhere else!
2060 while (task_running(rq, p)) {
2061 if (match_state && unlikely(p->state != match_state))
2062 return 0;
2063 cpu_relax();
2067 * Ok, time to look more closely! We need the rq
2068 * lock now, to be *sure*. If we're wrong, we'll
2069 * just go back and repeat.
2071 rq = task_rq_lock(p, &flags);
2072 trace_sched_wait_task(rq, p);
2073 running = task_running(rq, p);
2074 on_rq = p->se.on_rq;
2075 ncsw = 0;
2076 if (!match_state || p->state == match_state)
2077 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
2078 task_rq_unlock(rq, &flags);
2081 * If it changed from the expected state, bail out now.
2083 if (unlikely(!ncsw))
2084 break;
2087 * Was it really running after all now that we
2088 * checked with the proper locks actually held?
2090 * Oops. Go back and try again..
2092 if (unlikely(running)) {
2093 cpu_relax();
2094 continue;
2098 * It's not enough that it's not actively running,
2099 * it must be off the runqueue _entirely_, and not
2100 * preempted!
2102 * So if it was still runnable (but just not actively
2103 * running right now), it's preempted, and we should
2104 * yield - it could be a while.
2106 if (unlikely(on_rq)) {
2107 schedule_timeout_uninterruptible(1);
2108 continue;
2112 * Ahh, all good. It wasn't running, and it wasn't
2113 * runnable, which means that it will never become
2114 * running in the future either. We're all done!
2116 break;
2119 return ncsw;
2122 /***
2123 * kick_process - kick a running thread to enter/exit the kernel
2124 * @p: the to-be-kicked thread
2126 * Cause a process which is running on another CPU to enter
2127 * kernel-mode, without any delay. (to get signals handled.)
2129 * NOTE: this function doesnt have to take the runqueue lock,
2130 * because all it wants to ensure is that the remote task enters
2131 * the kernel. If the IPI races and the task has been migrated
2132 * to another CPU then no harm is done and the purpose has been
2133 * achieved as well.
2135 void kick_process(struct task_struct *p)
2137 int cpu;
2139 preempt_disable();
2140 cpu = task_cpu(p);
2141 if ((cpu != smp_processor_id()) && task_curr(p))
2142 smp_send_reschedule(cpu);
2143 preempt_enable();
2147 * Return a low guess at the load of a migration-source cpu weighted
2148 * according to the scheduling class and "nice" value.
2150 * We want to under-estimate the load of migration sources, to
2151 * balance conservatively.
2153 static unsigned long source_load(int cpu, int type)
2155 struct rq *rq = cpu_rq(cpu);
2156 unsigned long total = weighted_cpuload(cpu);
2158 if (type == 0 || !sched_feat(LB_BIAS))
2159 return total;
2161 return min(rq->cpu_load[type-1], total);
2165 * Return a high guess at the load of a migration-target cpu weighted
2166 * according to the scheduling class and "nice" value.
2168 static unsigned long target_load(int cpu, int type)
2170 struct rq *rq = cpu_rq(cpu);
2171 unsigned long total = weighted_cpuload(cpu);
2173 if (type == 0 || !sched_feat(LB_BIAS))
2174 return total;
2176 return max(rq->cpu_load[type-1], total);
2180 * find_idlest_group finds and returns the least busy CPU group within the
2181 * domain.
2183 static struct sched_group *
2184 find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
2186 struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
2187 unsigned long min_load = ULONG_MAX, this_load = 0;
2188 int load_idx = sd->forkexec_idx;
2189 int imbalance = 100 + (sd->imbalance_pct-100)/2;
2191 do {
2192 unsigned long load, avg_load;
2193 int local_group;
2194 int i;
2196 /* Skip over this group if it has no CPUs allowed */
2197 if (!cpumask_intersects(sched_group_cpus(group),
2198 &p->cpus_allowed))
2199 continue;
2201 local_group = cpumask_test_cpu(this_cpu,
2202 sched_group_cpus(group));
2204 /* Tally up the load of all CPUs in the group */
2205 avg_load = 0;
2207 for_each_cpu(i, sched_group_cpus(group)) {
2208 /* Bias balancing toward cpus of our domain */
2209 if (local_group)
2210 load = source_load(i, load_idx);
2211 else
2212 load = target_load(i, load_idx);
2214 avg_load += load;
2217 /* Adjust by relative CPU power of the group */
2218 avg_load = sg_div_cpu_power(group,
2219 avg_load * SCHED_LOAD_SCALE);
2221 if (local_group) {
2222 this_load = avg_load;
2223 this = group;
2224 } else if (avg_load < min_load) {
2225 min_load = avg_load;
2226 idlest = group;
2228 } while (group = group->next, group != sd->groups);
2230 if (!idlest || 100*this_load < imbalance*min_load)
2231 return NULL;
2232 return idlest;
2236 * find_idlest_cpu - find the idlest cpu among the cpus in group.
2238 static int
2239 find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
2241 unsigned long load, min_load = ULONG_MAX;
2242 int idlest = -1;
2243 int i;
2245 /* Traverse only the allowed CPUs */
2246 for_each_cpu_and(i, sched_group_cpus(group), &p->cpus_allowed) {
2247 load = weighted_cpuload(i);
2249 if (load < min_load || (load == min_load && i == this_cpu)) {
2250 min_load = load;
2251 idlest = i;
2255 return idlest;
2259 * sched_balance_self: balance the current task (running on cpu) in domains
2260 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
2261 * SD_BALANCE_EXEC.
2263 * Balance, ie. select the least loaded group.
2265 * Returns the target CPU number, or the same CPU if no balancing is needed.
2267 * preempt must be disabled.
2269 static int sched_balance_self(int cpu, int flag)
2271 struct task_struct *t = current;
2272 struct sched_domain *tmp, *sd = NULL;
2274 for_each_domain(cpu, tmp) {
2276 * If power savings logic is enabled for a domain, stop there.
2278 if (tmp->flags & SD_POWERSAVINGS_BALANCE)
2279 break;
2280 if (tmp->flags & flag)
2281 sd = tmp;
2284 if (sd)
2285 update_shares(sd);
2287 while (sd) {
2288 struct sched_group *group;
2289 int new_cpu, weight;
2291 if (!(sd->flags & flag)) {
2292 sd = sd->child;
2293 continue;
2296 group = find_idlest_group(sd, t, cpu);
2297 if (!group) {
2298 sd = sd->child;
2299 continue;
2302 new_cpu = find_idlest_cpu(group, t, cpu);
2303 if (new_cpu == -1 || new_cpu == cpu) {
2304 /* Now try balancing at a lower domain level of cpu */
2305 sd = sd->child;
2306 continue;
2309 /* Now try balancing at a lower domain level of new_cpu */
2310 cpu = new_cpu;
2311 weight = cpumask_weight(sched_domain_span(sd));
2312 sd = NULL;
2313 for_each_domain(cpu, tmp) {
2314 if (weight <= cpumask_weight(sched_domain_span(tmp)))
2315 break;
2316 if (tmp->flags & flag)
2317 sd = tmp;
2319 /* while loop will break here if sd == NULL */
2322 return cpu;
2325 #endif /* CONFIG_SMP */
2327 /***
2328 * try_to_wake_up - wake up a thread
2329 * @p: the to-be-woken-up thread
2330 * @state: the mask of task states that can be woken
2331 * @sync: do a synchronous wakeup?
2333 * Put it on the run-queue if it's not already there. The "current"
2334 * thread is always on the run-queue (except when the actual
2335 * re-schedule is in progress), and as such you're allowed to do
2336 * the simpler "current->state = TASK_RUNNING" to mark yourself
2337 * runnable without the overhead of this.
2339 * returns failure only if the task is already active.
2341 static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
2343 int cpu, orig_cpu, this_cpu, success = 0;
2344 unsigned long flags;
2345 long old_state;
2346 struct rq *rq;
2348 if (!sched_feat(SYNC_WAKEUPS))
2349 sync = 0;
2351 #ifdef CONFIG_SMP
2352 if (sched_feat(LB_WAKEUP_UPDATE) && !root_task_group_empty()) {
2353 struct sched_domain *sd;
2355 this_cpu = raw_smp_processor_id();
2356 cpu = task_cpu(p);
2358 for_each_domain(this_cpu, sd) {
2359 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
2360 update_shares(sd);
2361 break;
2365 #endif
2367 smp_wmb();
2368 rq = task_rq_lock(p, &flags);
2369 update_rq_clock(rq);
2370 old_state = p->state;
2371 if (!(old_state & state))
2372 goto out;
2374 if (p->se.on_rq)
2375 goto out_running;
2377 cpu = task_cpu(p);
2378 orig_cpu = cpu;
2379 this_cpu = smp_processor_id();
2381 #ifdef CONFIG_SMP
2382 if (unlikely(task_running(rq, p)))
2383 goto out_activate;
2385 cpu = p->sched_class->select_task_rq(p, sync);
2386 if (cpu != orig_cpu) {
2387 set_task_cpu(p, cpu);
2388 task_rq_unlock(rq, &flags);
2389 /* might preempt at this point */
2390 rq = task_rq_lock(p, &flags);
2391 old_state = p->state;
2392 if (!(old_state & state))
2393 goto out;
2394 if (p->se.on_rq)
2395 goto out_running;
2397 this_cpu = smp_processor_id();
2398 cpu = task_cpu(p);
2401 #ifdef CONFIG_SCHEDSTATS
2402 schedstat_inc(rq, ttwu_count);
2403 if (cpu == this_cpu)
2404 schedstat_inc(rq, ttwu_local);
2405 else {
2406 struct sched_domain *sd;
2407 for_each_domain(this_cpu, sd) {
2408 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
2409 schedstat_inc(sd, ttwu_wake_remote);
2410 break;
2414 #endif /* CONFIG_SCHEDSTATS */
2416 out_activate:
2417 #endif /* CONFIG_SMP */
2418 schedstat_inc(p, se.nr_wakeups);
2419 if (sync)
2420 schedstat_inc(p, se.nr_wakeups_sync);
2421 if (orig_cpu != cpu)
2422 schedstat_inc(p, se.nr_wakeups_migrate);
2423 if (cpu == this_cpu)
2424 schedstat_inc(p, se.nr_wakeups_local);
2425 else
2426 schedstat_inc(p, se.nr_wakeups_remote);
2427 activate_task(rq, p, 1);
2428 success = 1;
2431 * Only attribute actual wakeups done by this task.
2433 if (!in_interrupt()) {
2434 struct sched_entity *se = &current->se;
2435 u64 sample = se->sum_exec_runtime;
2437 if (se->last_wakeup)
2438 sample -= se->last_wakeup;
2439 else
2440 sample -= se->start_runtime;
2441 update_avg(&se->avg_wakeup, sample);
2443 se->last_wakeup = se->sum_exec_runtime;
2446 out_running:
2447 trace_sched_wakeup(rq, p, success);
2448 check_preempt_curr(rq, p, sync);
2450 p->state = TASK_RUNNING;
2451 #ifdef CONFIG_SMP
2452 if (p->sched_class->task_wake_up)
2453 p->sched_class->task_wake_up(rq, p);
2454 #endif
2455 out:
2456 task_rq_unlock(rq, &flags);
2458 return success;
2461 int wake_up_process(struct task_struct *p)
2463 return try_to_wake_up(p, TASK_ALL, 0);
2465 EXPORT_SYMBOL(wake_up_process);
2467 int wake_up_state(struct task_struct *p, unsigned int state)
2469 return try_to_wake_up(p, state, 0);
2473 * Perform scheduler related setup for a newly forked process p.
2474 * p is forked by current.
2476 * __sched_fork() is basic setup used by init_idle() too:
2478 static void __sched_fork(struct task_struct *p)
2480 p->se.exec_start = 0;
2481 p->se.sum_exec_runtime = 0;
2482 p->se.prev_sum_exec_runtime = 0;
2483 p->se.last_wakeup = 0;
2484 p->se.avg_overlap = 0;
2485 p->se.start_runtime = 0;
2486 p->se.avg_wakeup = sysctl_sched_wakeup_granularity;
2488 #ifdef CONFIG_SCHEDSTATS
2489 p->se.wait_start = 0;
2490 p->se.sum_sleep_runtime = 0;
2491 p->se.sleep_start = 0;
2492 p->se.block_start = 0;
2493 p->se.sleep_max = 0;
2494 p->se.block_max = 0;
2495 p->se.exec_max = 0;
2496 p->se.slice_max = 0;
2497 p->se.wait_max = 0;
2498 #endif
2500 INIT_LIST_HEAD(&p->rt.run_list);
2501 p->se.on_rq = 0;
2502 INIT_LIST_HEAD(&p->se.group_node);
2504 #ifdef CONFIG_PREEMPT_NOTIFIERS
2505 INIT_HLIST_HEAD(&p->preempt_notifiers);
2506 #endif
2509 * We mark the process as running here, but have not actually
2510 * inserted it onto the runqueue yet. This guarantees that
2511 * nobody will actually run it, and a signal or other external
2512 * event cannot wake it up and insert it on the runqueue either.
2514 p->state = TASK_RUNNING;
2518 * fork()/clone()-time setup:
2520 void sched_fork(struct task_struct *p, int clone_flags)
2522 int cpu = get_cpu();
2524 __sched_fork(p);
2526 #ifdef CONFIG_SMP
2527 cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
2528 #endif
2529 set_task_cpu(p, cpu);
2532 * Make sure we do not leak PI boosting priority to the child:
2534 p->prio = current->normal_prio;
2535 if (!rt_prio(p->prio))
2536 p->sched_class = &fair_sched_class;
2538 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
2539 if (likely(sched_info_on()))
2540 memset(&p->sched_info, 0, sizeof(p->sched_info));
2541 #endif
2542 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
2543 p->oncpu = 0;
2544 #endif
2545 #ifdef CONFIG_PREEMPT
2546 /* Want to start with kernel preemption disabled. */
2547 task_thread_info(p)->preempt_count = 1;
2548 #endif
2549 plist_node_init(&p->pushable_tasks, MAX_PRIO);
2551 put_cpu();
2555 * wake_up_new_task - wake up a newly created task for the first time.
2557 * This function will do some initial scheduler statistics housekeeping
2558 * that must be done for every newly created context, then puts the task
2559 * on the runqueue and wakes it.
2561 void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
2563 unsigned long flags;
2564 struct rq *rq;
2566 rq = task_rq_lock(p, &flags);
2567 BUG_ON(p->state != TASK_RUNNING);
2568 update_rq_clock(rq);
2570 p->prio = effective_prio(p);
2572 if (!p->sched_class->task_new || !current->se.on_rq) {
2573 activate_task(rq, p, 0);
2574 } else {
2576 * Let the scheduling class do new task startup
2577 * management (if any):
2579 p->sched_class->task_new(rq, p);
2580 inc_nr_running(rq);
2582 trace_sched_wakeup_new(rq, p, 1);
2583 check_preempt_curr(rq, p, 0);
2584 #ifdef CONFIG_SMP
2585 if (p->sched_class->task_wake_up)
2586 p->sched_class->task_wake_up(rq, p);
2587 #endif
2588 task_rq_unlock(rq, &flags);
2591 #ifdef CONFIG_PREEMPT_NOTIFIERS
2594 * preempt_notifier_register - tell me when current is being preempted & rescheduled
2595 * @notifier: notifier struct to register
2597 void preempt_notifier_register(struct preempt_notifier *notifier)
2599 hlist_add_head(&notifier->link, &current->preempt_notifiers);
2601 EXPORT_SYMBOL_GPL(preempt_notifier_register);
2604 * preempt_notifier_unregister - no longer interested in preemption notifications
2605 * @notifier: notifier struct to unregister
2607 * This is safe to call from within a preemption notifier.
2609 void preempt_notifier_unregister(struct preempt_notifier *notifier)
2611 hlist_del(&notifier->link);
2613 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2615 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2617 struct preempt_notifier *notifier;
2618 struct hlist_node *node;
2620 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2621 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2624 static void
2625 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2626 struct task_struct *next)
2628 struct preempt_notifier *notifier;
2629 struct hlist_node *node;
2631 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2632 notifier->ops->sched_out(notifier, next);
2635 #else /* !CONFIG_PREEMPT_NOTIFIERS */
2637 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2641 static void
2642 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2643 struct task_struct *next)
2647 #endif /* CONFIG_PREEMPT_NOTIFIERS */
2650 * prepare_task_switch - prepare to switch tasks
2651 * @rq: the runqueue preparing to switch
2652 * @prev: the current task that is being switched out
2653 * @next: the task we are going to switch to.
2655 * This is called with the rq lock held and interrupts off. It must
2656 * be paired with a subsequent finish_task_switch after the context
2657 * switch.
2659 * prepare_task_switch sets up locking and calls architecture specific
2660 * hooks.
2662 static inline void
2663 prepare_task_switch(struct rq *rq, struct task_struct *prev,
2664 struct task_struct *next)
2666 fire_sched_out_preempt_notifiers(prev, next);
2667 prepare_lock_switch(rq, next);
2668 prepare_arch_switch(next);
2672 * finish_task_switch - clean up after a task-switch
2673 * @rq: runqueue associated with task-switch
2674 * @prev: the thread we just switched away from.
2676 * finish_task_switch must be called after the context switch, paired
2677 * with a prepare_task_switch call before the context switch.
2678 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2679 * and do any other architecture-specific cleanup actions.
2681 * Note that we may have delayed dropping an mm in context_switch(). If
2682 * so, we finish that here outside of the runqueue lock. (Doing it
2683 * with the lock held can cause deadlocks; see schedule() for
2684 * details.)
2686 static void finish_task_switch(struct rq *rq, struct task_struct *prev)
2687 __releases(rq->lock)
2689 struct mm_struct *mm = rq->prev_mm;
2690 long prev_state;
2691 #ifdef CONFIG_SMP
2692 int post_schedule = 0;
2694 if (current->sched_class->needs_post_schedule)
2695 post_schedule = current->sched_class->needs_post_schedule(rq);
2696 #endif
2698 rq->prev_mm = NULL;
2701 * A task struct has one reference for the use as "current".
2702 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
2703 * schedule one last time. The schedule call will never return, and
2704 * the scheduled task must drop that reference.
2705 * The test for TASK_DEAD must occur while the runqueue locks are
2706 * still held, otherwise prev could be scheduled on another cpu, die
2707 * there before we look at prev->state, and then the reference would
2708 * be dropped twice.
2709 * Manfred Spraul <manfred@colorfullife.com>
2711 prev_state = prev->state;
2712 finish_arch_switch(prev);
2713 finish_lock_switch(rq, prev);
2714 #ifdef CONFIG_SMP
2715 if (post_schedule)
2716 current->sched_class->post_schedule(rq);
2717 #endif
2719 fire_sched_in_preempt_notifiers(current);
2720 if (mm)
2721 mmdrop(mm);
2722 if (unlikely(prev_state == TASK_DEAD)) {
2724 * Remove function-return probe instances associated with this
2725 * task and put them back on the free list.
2727 kprobe_flush_task(prev);
2728 put_task_struct(prev);
2733 * schedule_tail - first thing a freshly forked thread must call.
2734 * @prev: the thread we just switched away from.
2736 asmlinkage void schedule_tail(struct task_struct *prev)
2737 __releases(rq->lock)
2739 struct rq *rq = this_rq();
2741 finish_task_switch(rq, prev);
2742 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
2743 /* In this case, finish_task_switch does not reenable preemption */
2744 preempt_enable();
2745 #endif
2746 if (current->set_child_tid)
2747 put_user(task_pid_vnr(current), current->set_child_tid);
2751 * context_switch - switch to the new MM and the new
2752 * thread's register state.
2754 static inline void
2755 context_switch(struct rq *rq, struct task_struct *prev,
2756 struct task_struct *next)
2758 struct mm_struct *mm, *oldmm;
2760 prepare_task_switch(rq, prev, next);
2761 trace_sched_switch(rq, prev, next);
2762 mm = next->mm;
2763 oldmm = prev->active_mm;
2765 * For paravirt, this is coupled with an exit in switch_to to
2766 * combine the page table reload and the switch backend into
2767 * one hypercall.
2769 arch_enter_lazy_cpu_mode();
2771 if (unlikely(!mm)) {
2772 next->active_mm = oldmm;
2773 atomic_inc(&oldmm->mm_count);
2774 enter_lazy_tlb(oldmm, next);
2775 } else
2776 switch_mm(oldmm, mm, next);
2778 if (unlikely(!prev->mm)) {
2779 prev->active_mm = NULL;
2780 rq->prev_mm = oldmm;
2783 * Since the runqueue lock will be released by the next
2784 * task (which is an invalid locking op but in the case
2785 * of the scheduler it's an obvious special-case), so we
2786 * do an early lockdep release here:
2788 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
2789 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2790 #endif
2792 /* Here we just switch the register state and the stack. */
2793 switch_to(prev, next, prev);
2795 barrier();
2797 * this_rq must be evaluated again because prev may have moved
2798 * CPUs since it called schedule(), thus the 'rq' on its stack
2799 * frame will be invalid.
2801 finish_task_switch(this_rq(), prev);
2805 * nr_running, nr_uninterruptible and nr_context_switches:
2807 * externally visible scheduler statistics: current number of runnable
2808 * threads, current number of uninterruptible-sleeping threads, total
2809 * number of context switches performed since bootup.
2811 unsigned long nr_running(void)
2813 unsigned long i, sum = 0;
2815 for_each_online_cpu(i)
2816 sum += cpu_rq(i)->nr_running;
2818 return sum;
2821 unsigned long nr_uninterruptible(void)
2823 unsigned long i, sum = 0;
2825 for_each_possible_cpu(i)
2826 sum += cpu_rq(i)->nr_uninterruptible;
2829 * Since we read the counters lockless, it might be slightly
2830 * inaccurate. Do not allow it to go below zero though:
2832 if (unlikely((long)sum < 0))
2833 sum = 0;
2835 return sum;
2838 unsigned long long nr_context_switches(void)
2840 int i;
2841 unsigned long long sum = 0;
2843 for_each_possible_cpu(i)
2844 sum += cpu_rq(i)->nr_switches;
2846 return sum;
2849 unsigned long nr_iowait(void)
2851 unsigned long i, sum = 0;
2853 for_each_possible_cpu(i)
2854 sum += atomic_read(&cpu_rq(i)->nr_iowait);
2856 return sum;
2859 unsigned long nr_active(void)
2861 unsigned long i, running = 0, uninterruptible = 0;
2863 for_each_online_cpu(i) {
2864 running += cpu_rq(i)->nr_running;
2865 uninterruptible += cpu_rq(i)->nr_uninterruptible;
2868 if (unlikely((long)uninterruptible < 0))
2869 uninterruptible = 0;
2871 return running + uninterruptible;
2875 * Update rq->cpu_load[] statistics. This function is usually called every
2876 * scheduler tick (TICK_NSEC).
2878 static void update_cpu_load(struct rq *this_rq)
2880 unsigned long this_load = this_rq->load.weight;
2881 int i, scale;
2883 this_rq->nr_load_updates++;
2885 /* Update our load: */
2886 for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
2887 unsigned long old_load, new_load;
2889 /* scale is effectively 1 << i now, and >> i divides by scale */
2891 old_load = this_rq->cpu_load[i];
2892 new_load = this_load;
2894 * Round up the averaging division if load is increasing. This
2895 * prevents us from getting stuck on 9 if the load is 10, for
2896 * example.
2898 if (new_load > old_load)
2899 new_load += scale-1;
2900 this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
2904 #ifdef CONFIG_SMP
2907 * double_rq_lock - safely lock two runqueues
2909 * Note this does not disable interrupts like task_rq_lock,
2910 * you need to do so manually before calling.
2912 static void double_rq_lock(struct rq *rq1, struct rq *rq2)
2913 __acquires(rq1->lock)
2914 __acquires(rq2->lock)
2916 BUG_ON(!irqs_disabled());
2917 if (rq1 == rq2) {
2918 spin_lock(&rq1->lock);
2919 __acquire(rq2->lock); /* Fake it out ;) */
2920 } else {
2921 if (rq1 < rq2) {
2922 spin_lock(&rq1->lock);
2923 spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
2924 } else {
2925 spin_lock(&rq2->lock);
2926 spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
2929 update_rq_clock(rq1);
2930 update_rq_clock(rq2);
2934 * double_rq_unlock - safely unlock two runqueues
2936 * Note this does not restore interrupts like task_rq_unlock,
2937 * you need to do so manually after calling.
2939 static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
2940 __releases(rq1->lock)
2941 __releases(rq2->lock)
2943 spin_unlock(&rq1->lock);
2944 if (rq1 != rq2)
2945 spin_unlock(&rq2->lock);
2946 else
2947 __release(rq2->lock);
2951 * If dest_cpu is allowed for this process, migrate the task to it.
2952 * This is accomplished by forcing the cpu_allowed mask to only
2953 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
2954 * the cpu_allowed mask is restored.
2956 static void sched_migrate_task(struct task_struct *p, int dest_cpu)
2958 struct migration_req req;
2959 unsigned long flags;
2960 struct rq *rq;
2962 rq = task_rq_lock(p, &flags);
2963 if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed)
2964 || unlikely(!cpu_active(dest_cpu)))
2965 goto out;
2967 /* force the process onto the specified CPU */
2968 if (migrate_task(p, dest_cpu, &req)) {
2969 /* Need to wait for migration thread (might exit: take ref). */
2970 struct task_struct *mt = rq->migration_thread;
2972 get_task_struct(mt);
2973 task_rq_unlock(rq, &flags);
2974 wake_up_process(mt);
2975 put_task_struct(mt);
2976 wait_for_completion(&req.done);
2978 return;
2980 out:
2981 task_rq_unlock(rq, &flags);
2985 * sched_exec - execve() is a valuable balancing opportunity, because at
2986 * this point the task has the smallest effective memory and cache footprint.
2988 void sched_exec(void)
2990 int new_cpu, this_cpu = get_cpu();
2991 new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
2992 put_cpu();
2993 if (new_cpu != this_cpu)
2994 sched_migrate_task(current, new_cpu);
2998 * pull_task - move a task from a remote runqueue to the local runqueue.
2999 * Both runqueues must be locked.
3001 static void pull_task(struct rq *src_rq, struct task_struct *p,
3002 struct rq *this_rq, int this_cpu)
3004 deactivate_task(src_rq, p, 0);
3005 set_task_cpu(p, this_cpu);
3006 activate_task(this_rq, p, 0);
3008 * Note that idle threads have a prio of MAX_PRIO, for this test
3009 * to be always true for them.
3011 check_preempt_curr(this_rq, p, 0);
3015 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
3017 static
3018 int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
3019 struct sched_domain *sd, enum cpu_idle_type idle,
3020 int *all_pinned)
3022 int tsk_cache_hot = 0;
3024 * We do not migrate tasks that are:
3025 * 1) running (obviously), or
3026 * 2) cannot be migrated to this CPU due to cpus_allowed, or
3027 * 3) are cache-hot on their current CPU.
3029 if (!cpumask_test_cpu(this_cpu, &p->cpus_allowed)) {
3030 schedstat_inc(p, se.nr_failed_migrations_affine);
3031 return 0;
3033 *all_pinned = 0;
3035 if (task_running(rq, p)) {
3036 schedstat_inc(p, se.nr_failed_migrations_running);
3037 return 0;
3041 * Aggressive migration if:
3042 * 1) task is cache cold, or
3043 * 2) too many balance attempts have failed.
3046 tsk_cache_hot = task_hot(p, rq->clock, sd);
3047 if (!tsk_cache_hot ||
3048 sd->nr_balance_failed > sd->cache_nice_tries) {
3049 #ifdef CONFIG_SCHEDSTATS
3050 if (tsk_cache_hot) {
3051 schedstat_inc(sd, lb_hot_gained[idle]);
3052 schedstat_inc(p, se.nr_forced_migrations);
3054 #endif
3055 return 1;
3058 if (tsk_cache_hot) {
3059 schedstat_inc(p, se.nr_failed_migrations_hot);
3060 return 0;
3062 return 1;
3065 static unsigned long
3066 balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
3067 unsigned long max_load_move, struct sched_domain *sd,
3068 enum cpu_idle_type idle, int *all_pinned,
3069 int *this_best_prio, struct rq_iterator *iterator)
3071 int loops = 0, pulled = 0, pinned = 0;
3072 struct task_struct *p;
3073 long rem_load_move = max_load_move;
3075 if (max_load_move == 0)
3076 goto out;
3078 pinned = 1;
3081 * Start the load-balancing iterator:
3083 p = iterator->start(iterator->arg);
3084 next:
3085 if (!p || loops++ > sysctl_sched_nr_migrate)
3086 goto out;
3088 if ((p->se.load.weight >> 1) > rem_load_move ||
3089 !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
3090 p = iterator->next(iterator->arg);
3091 goto next;
3094 pull_task(busiest, p, this_rq, this_cpu);
3095 pulled++;
3096 rem_load_move -= p->se.load.weight;
3098 #ifdef CONFIG_PREEMPT
3100 * NEWIDLE balancing is a source of latency, so preemptible kernels
3101 * will stop after the first task is pulled to minimize the critical
3102 * section.
3104 if (idle == CPU_NEWLY_IDLE)
3105 goto out;
3106 #endif
3109 * We only want to steal up to the prescribed amount of weighted load.
3111 if (rem_load_move > 0) {
3112 if (p->prio < *this_best_prio)
3113 *this_best_prio = p->prio;
3114 p = iterator->next(iterator->arg);
3115 goto next;
3117 out:
3119 * Right now, this is one of only two places pull_task() is called,
3120 * so we can safely collect pull_task() stats here rather than
3121 * inside pull_task().
3123 schedstat_add(sd, lb_gained[idle], pulled);
3125 if (all_pinned)
3126 *all_pinned = pinned;
3128 return max_load_move - rem_load_move;
3132 * move_tasks tries to move up to max_load_move weighted load from busiest to
3133 * this_rq, as part of a balancing operation within domain "sd".
3134 * Returns 1 if successful and 0 otherwise.
3136 * Called with both runqueues locked.
3138 static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
3139 unsigned long max_load_move,
3140 struct sched_domain *sd, enum cpu_idle_type idle,
3141 int *all_pinned)
3143 const struct sched_class *class = sched_class_highest;
3144 unsigned long total_load_moved = 0;
3145 int this_best_prio = this_rq->curr->prio;
3147 do {
3148 total_load_moved +=
3149 class->load_balance(this_rq, this_cpu, busiest,
3150 max_load_move - total_load_moved,
3151 sd, idle, all_pinned, &this_best_prio);
3152 class = class->next;
3154 #ifdef CONFIG_PREEMPT
3156 * NEWIDLE balancing is a source of latency, so preemptible
3157 * kernels will stop after the first task is pulled to minimize
3158 * the critical section.
3160 if (idle == CPU_NEWLY_IDLE && this_rq->nr_running)
3161 break;
3162 #endif
3163 } while (class && max_load_move > total_load_moved);
3165 return total_load_moved > 0;
3168 static int
3169 iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
3170 struct sched_domain *sd, enum cpu_idle_type idle,
3171 struct rq_iterator *iterator)
3173 struct task_struct *p = iterator->start(iterator->arg);
3174 int pinned = 0;
3176 while (p) {
3177 if (can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
3178 pull_task(busiest, p, this_rq, this_cpu);
3180 * Right now, this is only the second place pull_task()
3181 * is called, so we can safely collect pull_task()
3182 * stats here rather than inside pull_task().
3184 schedstat_inc(sd, lb_gained[idle]);
3186 return 1;
3188 p = iterator->next(iterator->arg);
3191 return 0;
3195 * move_one_task tries to move exactly one task from busiest to this_rq, as
3196 * part of active balancing operations within "domain".
3197 * Returns 1 if successful and 0 otherwise.
3199 * Called with both runqueues locked.
3201 static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
3202 struct sched_domain *sd, enum cpu_idle_type idle)
3204 const struct sched_class *class;
3206 for (class = sched_class_highest; class; class = class->next)
3207 if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle))
3208 return 1;
3210 return 0;
3212 /********** Helpers for find_busiest_group ************************/
3214 * sd_lb_stats - Structure to store the statistics of a sched_domain
3215 * during load balancing.
3217 struct sd_lb_stats {
3218 struct sched_group *busiest; /* Busiest group in this sd */
3219 struct sched_group *this; /* Local group in this sd */
3220 unsigned long total_load; /* Total load of all groups in sd */
3221 unsigned long total_pwr; /* Total power of all groups in sd */
3222 unsigned long avg_load; /* Average load across all groups in sd */
3224 /** Statistics of this group */
3225 unsigned long this_load;
3226 unsigned long this_load_per_task;
3227 unsigned long this_nr_running;
3229 /* Statistics of the busiest group */
3230 unsigned long max_load;
3231 unsigned long busiest_load_per_task;
3232 unsigned long busiest_nr_running;
3234 int group_imb; /* Is there imbalance in this sd */
3235 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3236 int power_savings_balance; /* Is powersave balance needed for this sd */
3237 struct sched_group *group_min; /* Least loaded group in sd */
3238 struct sched_group *group_leader; /* Group which relieves group_min */
3239 unsigned long min_load_per_task; /* load_per_task in group_min */
3240 unsigned long leader_nr_running; /* Nr running of group_leader */
3241 unsigned long min_nr_running; /* Nr running of group_min */
3242 #endif
3246 * sg_lb_stats - stats of a sched_group required for load_balancing
3248 struct sg_lb_stats {
3249 unsigned long avg_load; /*Avg load across the CPUs of the group */
3250 unsigned long group_load; /* Total load over the CPUs of the group */
3251 unsigned long sum_nr_running; /* Nr tasks running in the group */
3252 unsigned long sum_weighted_load; /* Weighted load of group's tasks */
3253 unsigned long group_capacity;
3254 int group_imb; /* Is there an imbalance in the group ? */
3258 * group_first_cpu - Returns the first cpu in the cpumask of a sched_group.
3259 * @group: The group whose first cpu is to be returned.
3261 static inline unsigned int group_first_cpu(struct sched_group *group)
3263 return cpumask_first(sched_group_cpus(group));
3267 * get_sd_load_idx - Obtain the load index for a given sched domain.
3268 * @sd: The sched_domain whose load_idx is to be obtained.
3269 * @idle: The Idle status of the CPU for whose sd load_icx is obtained.
3271 static inline int get_sd_load_idx(struct sched_domain *sd,
3272 enum cpu_idle_type idle)
3274 int load_idx;
3276 switch (idle) {
3277 case CPU_NOT_IDLE:
3278 load_idx = sd->busy_idx;
3279 break;
3281 case CPU_NEWLY_IDLE:
3282 load_idx = sd->newidle_idx;
3283 break;
3284 default:
3285 load_idx = sd->idle_idx;
3286 break;
3289 return load_idx;
3293 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3295 * init_sd_power_savings_stats - Initialize power savings statistics for
3296 * the given sched_domain, during load balancing.
3298 * @sd: Sched domain whose power-savings statistics are to be initialized.
3299 * @sds: Variable containing the statistics for sd.
3300 * @idle: Idle status of the CPU at which we're performing load-balancing.
3302 static inline void init_sd_power_savings_stats(struct sched_domain *sd,
3303 struct sd_lb_stats *sds, enum cpu_idle_type idle)
3306 * Busy processors will not participate in power savings
3307 * balance.
3309 if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
3310 sds->power_savings_balance = 0;
3311 else {
3312 sds->power_savings_balance = 1;
3313 sds->min_nr_running = ULONG_MAX;
3314 sds->leader_nr_running = 0;
3319 * update_sd_power_savings_stats - Update the power saving stats for a
3320 * sched_domain while performing load balancing.
3322 * @group: sched_group belonging to the sched_domain under consideration.
3323 * @sds: Variable containing the statistics of the sched_domain
3324 * @local_group: Does group contain the CPU for which we're performing
3325 * load balancing ?
3326 * @sgs: Variable containing the statistics of the group.
3328 static inline void update_sd_power_savings_stats(struct sched_group *group,
3329 struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
3332 if (!sds->power_savings_balance)
3333 return;
3336 * If the local group is idle or completely loaded
3337 * no need to do power savings balance at this domain
3339 if (local_group && (sds->this_nr_running >= sgs->group_capacity ||
3340 !sds->this_nr_running))
3341 sds->power_savings_balance = 0;
3344 * If a group is already running at full capacity or idle,
3345 * don't include that group in power savings calculations
3347 if (!sds->power_savings_balance ||
3348 sgs->sum_nr_running >= sgs->group_capacity ||
3349 !sgs->sum_nr_running)
3350 return;
3353 * Calculate the group which has the least non-idle load.
3354 * This is the group from where we need to pick up the load
3355 * for saving power
3357 if ((sgs->sum_nr_running < sds->min_nr_running) ||
3358 (sgs->sum_nr_running == sds->min_nr_running &&
3359 group_first_cpu(group) > group_first_cpu(sds->group_min))) {
3360 sds->group_min = group;
3361 sds->min_nr_running = sgs->sum_nr_running;
3362 sds->min_load_per_task = sgs->sum_weighted_load /
3363 sgs->sum_nr_running;
3367 * Calculate the group which is almost near its
3368 * capacity but still has some space to pick up some load
3369 * from other group and save more power
3371 if (sgs->sum_nr_running > sgs->group_capacity - 1)
3372 return;
3374 if (sgs->sum_nr_running > sds->leader_nr_running ||
3375 (sgs->sum_nr_running == sds->leader_nr_running &&
3376 group_first_cpu(group) < group_first_cpu(sds->group_leader))) {
3377 sds->group_leader = group;
3378 sds->leader_nr_running = sgs->sum_nr_running;
3383 * check_power_save_busiest_group - see if there is potential for some power-savings balance
3384 * @sds: Variable containing the statistics of the sched_domain
3385 * under consideration.
3386 * @this_cpu: Cpu at which we're currently performing load-balancing.
3387 * @imbalance: Variable to store the imbalance.
3389 * Description:
3390 * Check if we have potential to perform some power-savings balance.
3391 * If yes, set the busiest group to be the least loaded group in the
3392 * sched_domain, so that it's CPUs can be put to idle.
3394 * Returns 1 if there is potential to perform power-savings balance.
3395 * Else returns 0.
3397 static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
3398 int this_cpu, unsigned long *imbalance)
3400 if (!sds->power_savings_balance)
3401 return 0;
3403 if (sds->this != sds->group_leader ||
3404 sds->group_leader == sds->group_min)
3405 return 0;
3407 *imbalance = sds->min_load_per_task;
3408 sds->busiest = sds->group_min;
3410 if (sched_mc_power_savings >= POWERSAVINGS_BALANCE_WAKEUP) {
3411 cpu_rq(this_cpu)->rd->sched_mc_preferred_wakeup_cpu =
3412 group_first_cpu(sds->group_leader);
3415 return 1;
3418 #else /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
3419 static inline void init_sd_power_savings_stats(struct sched_domain *sd,
3420 struct sd_lb_stats *sds, enum cpu_idle_type idle)
3422 return;
3425 static inline void update_sd_power_savings_stats(struct sched_group *group,
3426 struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
3428 return;
3431 static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
3432 int this_cpu, unsigned long *imbalance)
3434 return 0;
3436 #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
3440 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
3441 * @group: sched_group whose statistics are to be updated.
3442 * @this_cpu: Cpu for which load balance is currently performed.
3443 * @idle: Idle status of this_cpu
3444 * @load_idx: Load index of sched_domain of this_cpu for load calc.
3445 * @sd_idle: Idle status of the sched_domain containing group.
3446 * @local_group: Does group contain this_cpu.
3447 * @cpus: Set of cpus considered for load balancing.
3448 * @balance: Should we balance.
3449 * @sgs: variable to hold the statistics for this group.
3451 static inline void update_sg_lb_stats(struct sched_group *group, int this_cpu,
3452 enum cpu_idle_type idle, int load_idx, int *sd_idle,
3453 int local_group, const struct cpumask *cpus,
3454 int *balance, struct sg_lb_stats *sgs)
3456 unsigned long load, max_cpu_load, min_cpu_load;
3457 int i;
3458 unsigned int balance_cpu = -1, first_idle_cpu = 0;
3459 unsigned long sum_avg_load_per_task;
3460 unsigned long avg_load_per_task;
3462 if (local_group)
3463 balance_cpu = group_first_cpu(group);
3465 /* Tally up the load of all CPUs in the group */
3466 sum_avg_load_per_task = avg_load_per_task = 0;
3467 max_cpu_load = 0;
3468 min_cpu_load = ~0UL;
3470 for_each_cpu_and(i, sched_group_cpus(group), cpus) {
3471 struct rq *rq = cpu_rq(i);
3473 if (*sd_idle && rq->nr_running)
3474 *sd_idle = 0;
3476 /* Bias balancing toward cpus of our domain */
3477 if (local_group) {
3478 if (idle_cpu(i) && !first_idle_cpu) {
3479 first_idle_cpu = 1;
3480 balance_cpu = i;
3483 load = target_load(i, load_idx);
3484 } else {
3485 load = source_load(i, load_idx);
3486 if (load > max_cpu_load)
3487 max_cpu_load = load;
3488 if (min_cpu_load > load)
3489 min_cpu_load = load;
3492 sgs->group_load += load;
3493 sgs->sum_nr_running += rq->nr_running;
3494 sgs->sum_weighted_load += weighted_cpuload(i);
3496 sum_avg_load_per_task += cpu_avg_load_per_task(i);
3500 * First idle cpu or the first cpu(busiest) in this sched group
3501 * is eligible for doing load balancing at this and above
3502 * domains. In the newly idle case, we will allow all the cpu's
3503 * to do the newly idle load balance.
3505 if (idle != CPU_NEWLY_IDLE && local_group &&
3506 balance_cpu != this_cpu && balance) {
3507 *balance = 0;
3508 return;
3511 /* Adjust by relative CPU power of the group */
3512 sgs->avg_load = sg_div_cpu_power(group,
3513 sgs->group_load * SCHED_LOAD_SCALE);
3517 * Consider the group unbalanced when the imbalance is larger
3518 * than the average weight of two tasks.
3520 * APZ: with cgroup the avg task weight can vary wildly and
3521 * might not be a suitable number - should we keep a
3522 * normalized nr_running number somewhere that negates
3523 * the hierarchy?
3525 avg_load_per_task = sg_div_cpu_power(group,
3526 sum_avg_load_per_task * SCHED_LOAD_SCALE);
3528 if ((max_cpu_load - min_cpu_load) > 2*avg_load_per_task)
3529 sgs->group_imb = 1;
3531 sgs->group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;
3536 * update_sd_lb_stats - Update sched_group's statistics for load balancing.
3537 * @sd: sched_domain whose statistics are to be updated.
3538 * @this_cpu: Cpu for which load balance is currently performed.
3539 * @idle: Idle status of this_cpu
3540 * @sd_idle: Idle status of the sched_domain containing group.
3541 * @cpus: Set of cpus considered for load balancing.
3542 * @balance: Should we balance.
3543 * @sds: variable to hold the statistics for this sched_domain.
3545 static inline void update_sd_lb_stats(struct sched_domain *sd, int this_cpu,
3546 enum cpu_idle_type idle, int *sd_idle,
3547 const struct cpumask *cpus, int *balance,
3548 struct sd_lb_stats *sds)
3550 struct sched_group *group = sd->groups;
3551 struct sg_lb_stats sgs;
3552 int load_idx;
3554 init_sd_power_savings_stats(sd, sds, idle);
3555 load_idx = get_sd_load_idx(sd, idle);
3557 do {
3558 int local_group;
3560 local_group = cpumask_test_cpu(this_cpu,
3561 sched_group_cpus(group));
3562 memset(&sgs, 0, sizeof(sgs));
3563 update_sg_lb_stats(group, this_cpu, idle, load_idx, sd_idle,
3564 local_group, cpus, balance, &sgs);
3566 if (local_group && balance && !(*balance))
3567 return;
3569 sds->total_load += sgs.group_load;
3570 sds->total_pwr += group->__cpu_power;
3572 if (local_group) {
3573 sds->this_load = sgs.avg_load;
3574 sds->this = group;
3575 sds->this_nr_running = sgs.sum_nr_running;
3576 sds->this_load_per_task = sgs.sum_weighted_load;
3577 } else if (sgs.avg_load > sds->max_load &&
3578 (sgs.sum_nr_running > sgs.group_capacity ||
3579 sgs.group_imb)) {
3580 sds->max_load = sgs.avg_load;
3581 sds->busiest = group;
3582 sds->busiest_nr_running = sgs.sum_nr_running;
3583 sds->busiest_load_per_task = sgs.sum_weighted_load;
3584 sds->group_imb = sgs.group_imb;
3587 update_sd_power_savings_stats(group, sds, local_group, &sgs);
3588 group = group->next;
3589 } while (group != sd->groups);
3594 * fix_small_imbalance - Calculate the minor imbalance that exists
3595 * amongst the groups of a sched_domain, during
3596 * load balancing.
3597 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
3598 * @this_cpu: The cpu at whose sched_domain we're performing load-balance.
3599 * @imbalance: Variable to store the imbalance.
3601 static inline void fix_small_imbalance(struct sd_lb_stats *sds,
3602 int this_cpu, unsigned long *imbalance)
3604 unsigned long tmp, pwr_now = 0, pwr_move = 0;
3605 unsigned int imbn = 2;
3607 if (sds->this_nr_running) {
3608 sds->this_load_per_task /= sds->this_nr_running;
3609 if (sds->busiest_load_per_task >
3610 sds->this_load_per_task)
3611 imbn = 1;
3612 } else
3613 sds->this_load_per_task =
3614 cpu_avg_load_per_task(this_cpu);
3616 if (sds->max_load - sds->this_load + sds->busiest_load_per_task >=
3617 sds->busiest_load_per_task * imbn) {
3618 *imbalance = sds->busiest_load_per_task;
3619 return;
3623 * OK, we don't have enough imbalance to justify moving tasks,
3624 * however we may be able to increase total CPU power used by
3625 * moving them.
3628 pwr_now += sds->busiest->__cpu_power *
3629 min(sds->busiest_load_per_task, sds->max_load);
3630 pwr_now += sds->this->__cpu_power *
3631 min(sds->this_load_per_task, sds->this_load);
3632 pwr_now /= SCHED_LOAD_SCALE;
3634 /* Amount of load we'd subtract */
3635 tmp = sg_div_cpu_power(sds->busiest,
3636 sds->busiest_load_per_task * SCHED_LOAD_SCALE);
3637 if (sds->max_load > tmp)
3638 pwr_move += sds->busiest->__cpu_power *
3639 min(sds->busiest_load_per_task, sds->max_load - tmp);
3641 /* Amount of load we'd add */
3642 if (sds->max_load * sds->busiest->__cpu_power <
3643 sds->busiest_load_per_task * SCHED_LOAD_SCALE)
3644 tmp = sg_div_cpu_power(sds->this,
3645 sds->max_load * sds->busiest->__cpu_power);
3646 else
3647 tmp = sg_div_cpu_power(sds->this,
3648 sds->busiest_load_per_task * SCHED_LOAD_SCALE);
3649 pwr_move += sds->this->__cpu_power *
3650 min(sds->this_load_per_task, sds->this_load + tmp);
3651 pwr_move /= SCHED_LOAD_SCALE;
3653 /* Move if we gain throughput */
3654 if (pwr_move > pwr_now)
3655 *imbalance = sds->busiest_load_per_task;
3659 * calculate_imbalance - Calculate the amount of imbalance present within the
3660 * groups of a given sched_domain during load balance.
3661 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
3662 * @this_cpu: Cpu for which currently load balance is being performed.
3663 * @imbalance: The variable to store the imbalance.
3665 static inline void calculate_imbalance(struct sd_lb_stats *sds, int this_cpu,
3666 unsigned long *imbalance)
3668 unsigned long max_pull;
3670 * In the presence of smp nice balancing, certain scenarios can have
3671 * max load less than avg load(as we skip the groups at or below
3672 * its cpu_power, while calculating max_load..)
3674 if (sds->max_load < sds->avg_load) {
3675 *imbalance = 0;
3676 return fix_small_imbalance(sds, this_cpu, imbalance);
3679 /* Don't want to pull so many tasks that a group would go idle */
3680 max_pull = min(sds->max_load - sds->avg_load,
3681 sds->max_load - sds->busiest_load_per_task);
3683 /* How much load to actually move to equalise the imbalance */
3684 *imbalance = min(max_pull * sds->busiest->__cpu_power,
3685 (sds->avg_load - sds->this_load) * sds->this->__cpu_power)
3686 / SCHED_LOAD_SCALE;
3689 * if *imbalance is less than the average load per runnable task
3690 * there is no gaurantee that any tasks will be moved so we'll have
3691 * a think about bumping its value to force at least one task to be
3692 * moved
3694 if (*imbalance < sds->busiest_load_per_task)
3695 return fix_small_imbalance(sds, this_cpu, imbalance);
3698 /******* find_busiest_group() helpers end here *********************/
3701 * find_busiest_group - Returns the busiest group within the sched_domain
3702 * if there is an imbalance. If there isn't an imbalance, and
3703 * the user has opted for power-savings, it returns a group whose
3704 * CPUs can be put to idle by rebalancing those tasks elsewhere, if
3705 * such a group exists.
3707 * Also calculates the amount of weighted load which should be moved
3708 * to restore balance.
3710 * @sd: The sched_domain whose busiest group is to be returned.
3711 * @this_cpu: The cpu for which load balancing is currently being performed.
3712 * @imbalance: Variable which stores amount of weighted load which should
3713 * be moved to restore balance/put a group to idle.
3714 * @idle: The idle status of this_cpu.
3715 * @sd_idle: The idleness of sd
3716 * @cpus: The set of CPUs under consideration for load-balancing.
3717 * @balance: Pointer to a variable indicating if this_cpu
3718 * is the appropriate cpu to perform load balancing at this_level.
3720 * Returns: - the busiest group if imbalance exists.
3721 * - If no imbalance and user has opted for power-savings balance,
3722 * return the least loaded group whose CPUs can be
3723 * put to idle by rebalancing its tasks onto our group.
3725 static struct sched_group *
3726 find_busiest_group(struct sched_domain *sd, int this_cpu,
3727 unsigned long *imbalance, enum cpu_idle_type idle,
3728 int *sd_idle, const struct cpumask *cpus, int *balance)
3730 struct sd_lb_stats sds;
3732 memset(&sds, 0, sizeof(sds));
3735 * Compute the various statistics relavent for load balancing at
3736 * this level.
3738 update_sd_lb_stats(sd, this_cpu, idle, sd_idle, cpus,
3739 balance, &sds);
3741 /* Cases where imbalance does not exist from POV of this_cpu */
3742 /* 1) this_cpu is not the appropriate cpu to perform load balancing
3743 * at this level.
3744 * 2) There is no busy sibling group to pull from.
3745 * 3) This group is the busiest group.
3746 * 4) This group is more busy than the avg busieness at this
3747 * sched_domain.
3748 * 5) The imbalance is within the specified limit.
3749 * 6) Any rebalance would lead to ping-pong
3751 if (balance && !(*balance))
3752 goto ret;
3754 if (!sds.busiest || sds.busiest_nr_running == 0)
3755 goto out_balanced;
3757 if (sds.this_load >= sds.max_load)
3758 goto out_balanced;
3760 sds.avg_load = (SCHED_LOAD_SCALE * sds.total_load) / sds.total_pwr;
3762 if (sds.this_load >= sds.avg_load)
3763 goto out_balanced;
3765 if (100 * sds.max_load <= sd->imbalance_pct * sds.this_load)
3766 goto out_balanced;
3768 sds.busiest_load_per_task /= sds.busiest_nr_running;
3769 if (sds.group_imb)
3770 sds.busiest_load_per_task =
3771 min(sds.busiest_load_per_task, sds.avg_load);
3774 * We're trying to get all the cpus to the average_load, so we don't
3775 * want to push ourselves above the average load, nor do we wish to
3776 * reduce the max loaded cpu below the average load, as either of these
3777 * actions would just result in more rebalancing later, and ping-pong
3778 * tasks around. Thus we look for the minimum possible imbalance.
3779 * Negative imbalances (*we* are more loaded than anyone else) will
3780 * be counted as no imbalance for these purposes -- we can't fix that
3781 * by pulling tasks to us. Be careful of negative numbers as they'll
3782 * appear as very large values with unsigned longs.
3784 if (sds.max_load <= sds.busiest_load_per_task)
3785 goto out_balanced;
3787 /* Looks like there is an imbalance. Compute it */
3788 calculate_imbalance(&sds, this_cpu, imbalance);
3789 return sds.busiest;
3791 out_balanced:
3793 * There is no obvious imbalance. But check if we can do some balancing
3794 * to save power.
3796 if (check_power_save_busiest_group(&sds, this_cpu, imbalance))
3797 return sds.busiest;
3798 ret:
3799 *imbalance = 0;
3800 return NULL;
3804 * find_busiest_queue - find the busiest runqueue among the cpus in group.
3806 static struct rq *
3807 find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
3808 unsigned long imbalance, const struct cpumask *cpus)
3810 struct rq *busiest = NULL, *rq;
3811 unsigned long max_load = 0;
3812 int i;
3814 for_each_cpu(i, sched_group_cpus(group)) {
3815 unsigned long wl;
3817 if (!cpumask_test_cpu(i, cpus))
3818 continue;
3820 rq = cpu_rq(i);
3821 wl = weighted_cpuload(i);
3823 if (rq->nr_running == 1 && wl > imbalance)
3824 continue;
3826 if (wl > max_load) {
3827 max_load = wl;
3828 busiest = rq;
3832 return busiest;
3836 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
3837 * so long as it is large enough.
3839 #define MAX_PINNED_INTERVAL 512
3841 /* Working cpumask for load_balance and load_balance_newidle. */
3842 static DEFINE_PER_CPU(cpumask_var_t, load_balance_tmpmask);
3845 * Check this_cpu to ensure it is balanced within domain. Attempt to move
3846 * tasks if there is an imbalance.
3848 static int load_balance(int this_cpu, struct rq *this_rq,
3849 struct sched_domain *sd, enum cpu_idle_type idle,
3850 int *balance)
3852 int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
3853 struct sched_group *group;
3854 unsigned long imbalance;
3855 struct rq *busiest;
3856 unsigned long flags;
3857 struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask);
3859 cpumask_setall(cpus);
3862 * When power savings policy is enabled for the parent domain, idle
3863 * sibling can pick up load irrespective of busy siblings. In this case,
3864 * let the state of idle sibling percolate up as CPU_IDLE, instead of
3865 * portraying it as CPU_NOT_IDLE.
3867 if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
3868 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3869 sd_idle = 1;
3871 schedstat_inc(sd, lb_count[idle]);
3873 redo:
3874 update_shares(sd);
3875 group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
3876 cpus, balance);
3878 if (*balance == 0)
3879 goto out_balanced;
3881 if (!group) {
3882 schedstat_inc(sd, lb_nobusyg[idle]);
3883 goto out_balanced;
3886 busiest = find_busiest_queue(group, idle, imbalance, cpus);
3887 if (!busiest) {
3888 schedstat_inc(sd, lb_nobusyq[idle]);
3889 goto out_balanced;
3892 BUG_ON(busiest == this_rq);
3894 schedstat_add(sd, lb_imbalance[idle], imbalance);
3896 ld_moved = 0;
3897 if (busiest->nr_running > 1) {
3899 * Attempt to move tasks. If find_busiest_group has found
3900 * an imbalance but busiest->nr_running <= 1, the group is
3901 * still unbalanced. ld_moved simply stays zero, so it is
3902 * correctly treated as an imbalance.
3904 local_irq_save(flags);
3905 double_rq_lock(this_rq, busiest);
3906 ld_moved = move_tasks(this_rq, this_cpu, busiest,
3907 imbalance, sd, idle, &all_pinned);
3908 double_rq_unlock(this_rq, busiest);
3909 local_irq_restore(flags);
3912 * some other cpu did the load balance for us.
3914 if (ld_moved && this_cpu != smp_processor_id())
3915 resched_cpu(this_cpu);
3917 /* All tasks on this runqueue were pinned by CPU affinity */
3918 if (unlikely(all_pinned)) {
3919 cpumask_clear_cpu(cpu_of(busiest), cpus);
3920 if (!cpumask_empty(cpus))
3921 goto redo;
3922 goto out_balanced;
3926 if (!ld_moved) {
3927 schedstat_inc(sd, lb_failed[idle]);
3928 sd->nr_balance_failed++;
3930 if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
3932 spin_lock_irqsave(&busiest->lock, flags);
3934 /* don't kick the migration_thread, if the curr
3935 * task on busiest cpu can't be moved to this_cpu
3937 if (!cpumask_test_cpu(this_cpu,
3938 &busiest->curr->cpus_allowed)) {
3939 spin_unlock_irqrestore(&busiest->lock, flags);
3940 all_pinned = 1;
3941 goto out_one_pinned;
3944 if (!busiest->active_balance) {
3945 busiest->active_balance = 1;
3946 busiest->push_cpu = this_cpu;
3947 active_balance = 1;
3949 spin_unlock_irqrestore(&busiest->lock, flags);
3950 if (active_balance)
3951 wake_up_process(busiest->migration_thread);
3954 * We've kicked active balancing, reset the failure
3955 * counter.
3957 sd->nr_balance_failed = sd->cache_nice_tries+1;
3959 } else
3960 sd->nr_balance_failed = 0;
3962 if (likely(!active_balance)) {
3963 /* We were unbalanced, so reset the balancing interval */
3964 sd->balance_interval = sd->min_interval;
3965 } else {
3967 * If we've begun active balancing, start to back off. This
3968 * case may not be covered by the all_pinned logic if there
3969 * is only 1 task on the busy runqueue (because we don't call
3970 * move_tasks).
3972 if (sd->balance_interval < sd->max_interval)
3973 sd->balance_interval *= 2;
3976 if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3977 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3978 ld_moved = -1;
3980 goto out;
3982 out_balanced:
3983 schedstat_inc(sd, lb_balanced[idle]);
3985 sd->nr_balance_failed = 0;
3987 out_one_pinned:
3988 /* tune up the balancing interval */
3989 if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
3990 (sd->balance_interval < sd->max_interval))
3991 sd->balance_interval *= 2;
3993 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3994 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3995 ld_moved = -1;
3996 else
3997 ld_moved = 0;
3998 out:
3999 if (ld_moved)
4000 update_shares(sd);
4001 return ld_moved;
4005 * Check this_cpu to ensure it is balanced within domain. Attempt to move
4006 * tasks if there is an imbalance.
4008 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
4009 * this_rq is locked.
4011 static int
4012 load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd)
4014 struct sched_group *group;
4015 struct rq *busiest = NULL;
4016 unsigned long imbalance;
4017 int ld_moved = 0;
4018 int sd_idle = 0;
4019 int all_pinned = 0;
4020 struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask);
4022 cpumask_setall(cpus);
4025 * When power savings policy is enabled for the parent domain, idle
4026 * sibling can pick up load irrespective of busy siblings. In this case,
4027 * let the state of idle sibling percolate up as IDLE, instead of
4028 * portraying it as CPU_NOT_IDLE.
4030 if (sd->flags & SD_SHARE_CPUPOWER &&
4031 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
4032 sd_idle = 1;
4034 schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
4035 redo:
4036 update_shares_locked(this_rq, sd);
4037 group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
4038 &sd_idle, cpus, NULL);
4039 if (!group) {
4040 schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
4041 goto out_balanced;
4044 busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance, cpus);
4045 if (!busiest) {
4046 schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
4047 goto out_balanced;
4050 BUG_ON(busiest == this_rq);
4052 schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
4054 ld_moved = 0;
4055 if (busiest->nr_running > 1) {
4056 /* Attempt to move tasks */
4057 double_lock_balance(this_rq, busiest);
4058 /* this_rq->clock is already updated */
4059 update_rq_clock(busiest);
4060 ld_moved = move_tasks(this_rq, this_cpu, busiest,
4061 imbalance, sd, CPU_NEWLY_IDLE,
4062 &all_pinned);
4063 double_unlock_balance(this_rq, busiest);
4065 if (unlikely(all_pinned)) {
4066 cpumask_clear_cpu(cpu_of(busiest), cpus);
4067 if (!cpumask_empty(cpus))
4068 goto redo;
4072 if (!ld_moved) {
4073 int active_balance = 0;
4075 schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
4076 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
4077 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
4078 return -1;
4080 if (sched_mc_power_savings < POWERSAVINGS_BALANCE_WAKEUP)
4081 return -1;
4083 if (sd->nr_balance_failed++ < 2)
4084 return -1;
4087 * The only task running in a non-idle cpu can be moved to this
4088 * cpu in an attempt to completely freeup the other CPU
4089 * package. The same method used to move task in load_balance()
4090 * have been extended for load_balance_newidle() to speedup
4091 * consolidation at sched_mc=POWERSAVINGS_BALANCE_WAKEUP (2)
4093 * The package power saving logic comes from
4094 * find_busiest_group(). If there are no imbalance, then
4095 * f_b_g() will return NULL. However when sched_mc={1,2} then
4096 * f_b_g() will select a group from which a running task may be
4097 * pulled to this cpu in order to make the other package idle.
4098 * If there is no opportunity to make a package idle and if
4099 * there are no imbalance, then f_b_g() will return NULL and no
4100 * action will be taken in load_balance_newidle().
4102 * Under normal task pull operation due to imbalance, there
4103 * will be more than one task in the source run queue and
4104 * move_tasks() will succeed. ld_moved will be true and this
4105 * active balance code will not be triggered.
4108 /* Lock busiest in correct order while this_rq is held */
4109 double_lock_balance(this_rq, busiest);
4112 * don't kick the migration_thread, if the curr
4113 * task on busiest cpu can't be moved to this_cpu
4115 if (!cpumask_test_cpu(this_cpu, &busiest->curr->cpus_allowed)) {
4116 double_unlock_balance(this_rq, busiest);
4117 all_pinned = 1;
4118 return ld_moved;
4121 if (!busiest->active_balance) {
4122 busiest->active_balance = 1;
4123 busiest->push_cpu = this_cpu;
4124 active_balance = 1;
4127 double_unlock_balance(this_rq, busiest);
4129 * Should not call ttwu while holding a rq->lock
4131 spin_unlock(&this_rq->lock);
4132 if (active_balance)
4133 wake_up_process(busiest->migration_thread);
4134 spin_lock(&this_rq->lock);
4136 } else
4137 sd->nr_balance_failed = 0;
4139 update_shares_locked(this_rq, sd);
4140 return ld_moved;
4142 out_balanced:
4143 schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
4144 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
4145 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
4146 return -1;
4147 sd->nr_balance_failed = 0;
4149 return 0;
4153 * idle_balance is called by schedule() if this_cpu is about to become
4154 * idle. Attempts to pull tasks from other CPUs.
4156 static void idle_balance(int this_cpu, struct rq *this_rq)
4158 struct sched_domain *sd;
4159 int pulled_task = 0;
4160 unsigned long next_balance = jiffies + HZ;
4162 for_each_domain(this_cpu, sd) {
4163 unsigned long interval;
4165 if (!(sd->flags & SD_LOAD_BALANCE))
4166 continue;
4168 if (sd->flags & SD_BALANCE_NEWIDLE)
4169 /* If we've pulled tasks over stop searching: */
4170 pulled_task = load_balance_newidle(this_cpu, this_rq,
4171 sd);
4173 interval = msecs_to_jiffies(sd->balance_interval);
4174 if (time_after(next_balance, sd->last_balance + interval))
4175 next_balance = sd->last_balance + interval;
4176 if (pulled_task)
4177 break;
4179 if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
4181 * We are going idle. next_balance may be set based on
4182 * a busy processor. So reset next_balance.
4184 this_rq->next_balance = next_balance;
4189 * active_load_balance is run by migration threads. It pushes running tasks
4190 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
4191 * running on each physical CPU where possible, and avoids physical /
4192 * logical imbalances.
4194 * Called with busiest_rq locked.
4196 static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
4198 int target_cpu = busiest_rq->push_cpu;
4199 struct sched_domain *sd;
4200 struct rq *target_rq;
4202 /* Is there any task to move? */
4203 if (busiest_rq->nr_running <= 1)
4204 return;
4206 target_rq = cpu_rq(target_cpu);
4209 * This condition is "impossible", if it occurs
4210 * we need to fix it. Originally reported by
4211 * Bjorn Helgaas on a 128-cpu setup.
4213 BUG_ON(busiest_rq == target_rq);
4215 /* move a task from busiest_rq to target_rq */
4216 double_lock_balance(busiest_rq, target_rq);
4217 update_rq_clock(busiest_rq);
4218 update_rq_clock(target_rq);
4220 /* Search for an sd spanning us and the target CPU. */
4221 for_each_domain(target_cpu, sd) {
4222 if ((sd->flags & SD_LOAD_BALANCE) &&
4223 cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
4224 break;
4227 if (likely(sd)) {
4228 schedstat_inc(sd, alb_count);
4230 if (move_one_task(target_rq, target_cpu, busiest_rq,
4231 sd, CPU_IDLE))
4232 schedstat_inc(sd, alb_pushed);
4233 else
4234 schedstat_inc(sd, alb_failed);
4236 double_unlock_balance(busiest_rq, target_rq);
4239 #ifdef CONFIG_NO_HZ
4240 static struct {
4241 atomic_t load_balancer;
4242 cpumask_var_t cpu_mask;
4243 } nohz ____cacheline_aligned = {
4244 .load_balancer = ATOMIC_INIT(-1),
4248 * This routine will try to nominate the ilb (idle load balancing)
4249 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
4250 * load balancing on behalf of all those cpus. If all the cpus in the system
4251 * go into this tickless mode, then there will be no ilb owner (as there is
4252 * no need for one) and all the cpus will sleep till the next wakeup event
4253 * arrives...
4255 * For the ilb owner, tick is not stopped. And this tick will be used
4256 * for idle load balancing. ilb owner will still be part of
4257 * nohz.cpu_mask..
4259 * While stopping the tick, this cpu will become the ilb owner if there
4260 * is no other owner. And will be the owner till that cpu becomes busy
4261 * or if all cpus in the system stop their ticks at which point
4262 * there is no need for ilb owner.
4264 * When the ilb owner becomes busy, it nominates another owner, during the
4265 * next busy scheduler_tick()
4267 int select_nohz_load_balancer(int stop_tick)
4269 int cpu = smp_processor_id();
4271 if (stop_tick) {
4272 cpu_rq(cpu)->in_nohz_recently = 1;
4274 if (!cpu_active(cpu)) {
4275 if (atomic_read(&nohz.load_balancer) != cpu)
4276 return 0;
4279 * If we are going offline and still the leader,
4280 * give up!
4282 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
4283 BUG();
4285 return 0;
4288 cpumask_set_cpu(cpu, nohz.cpu_mask);
4290 /* time for ilb owner also to sleep */
4291 if (cpumask_weight(nohz.cpu_mask) == num_online_cpus()) {
4292 if (atomic_read(&nohz.load_balancer) == cpu)
4293 atomic_set(&nohz.load_balancer, -1);
4294 return 0;
4297 if (atomic_read(&nohz.load_balancer) == -1) {
4298 /* make me the ilb owner */
4299 if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
4300 return 1;
4301 } else if (atomic_read(&nohz.load_balancer) == cpu)
4302 return 1;
4303 } else {
4304 if (!cpumask_test_cpu(cpu, nohz.cpu_mask))
4305 return 0;
4307 cpumask_clear_cpu(cpu, nohz.cpu_mask);
4309 if (atomic_read(&nohz.load_balancer) == cpu)
4310 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
4311 BUG();
4313 return 0;
4315 #endif
4317 static DEFINE_SPINLOCK(balancing);
4320 * It checks each scheduling domain to see if it is due to be balanced,
4321 * and initiates a balancing operation if so.
4323 * Balancing parameters are set up in arch_init_sched_domains.
4325 static void rebalance_domains(int cpu, enum cpu_idle_type idle)
4327 int balance = 1;
4328 struct rq *rq = cpu_rq(cpu);
4329 unsigned long interval;
4330 struct sched_domain *sd;
4331 /* Earliest time when we have to do rebalance again */
4332 unsigned long next_balance = jiffies + 60*HZ;
4333 int update_next_balance = 0;
4334 int need_serialize;
4336 for_each_domain(cpu, sd) {
4337 if (!(sd->flags & SD_LOAD_BALANCE))
4338 continue;
4340 interval = sd->balance_interval;
4341 if (idle != CPU_IDLE)
4342 interval *= sd->busy_factor;
4344 /* scale ms to jiffies */
4345 interval = msecs_to_jiffies(interval);
4346 if (unlikely(!interval))
4347 interval = 1;
4348 if (interval > HZ*NR_CPUS/10)
4349 interval = HZ*NR_CPUS/10;
4351 need_serialize = sd->flags & SD_SERIALIZE;
4353 if (need_serialize) {
4354 if (!spin_trylock(&balancing))
4355 goto out;
4358 if (time_after_eq(jiffies, sd->last_balance + interval)) {
4359 if (load_balance(cpu, rq, sd, idle, &balance)) {
4361 * We've pulled tasks over so either we're no
4362 * longer idle, or one of our SMT siblings is
4363 * not idle.
4365 idle = CPU_NOT_IDLE;
4367 sd->last_balance = jiffies;
4369 if (need_serialize)
4370 spin_unlock(&balancing);
4371 out:
4372 if (time_after(next_balance, sd->last_balance + interval)) {
4373 next_balance = sd->last_balance + interval;
4374 update_next_balance = 1;
4378 * Stop the load balance at this level. There is another
4379 * CPU in our sched group which is doing load balancing more
4380 * actively.
4382 if (!balance)
4383 break;
4387 * next_balance will be updated only when there is a need.
4388 * When the cpu is attached to null domain for ex, it will not be
4389 * updated.
4391 if (likely(update_next_balance))
4392 rq->next_balance = next_balance;
4396 * run_rebalance_domains is triggered when needed from the scheduler tick.
4397 * In CONFIG_NO_HZ case, the idle load balance owner will do the
4398 * rebalancing for all the cpus for whom scheduler ticks are stopped.
4400 static void run_rebalance_domains(struct softirq_action *h)
4402 int this_cpu = smp_processor_id();
4403 struct rq *this_rq = cpu_rq(this_cpu);
4404 enum cpu_idle_type idle = this_rq->idle_at_tick ?
4405 CPU_IDLE : CPU_NOT_IDLE;
4407 rebalance_domains(this_cpu, idle);
4409 #ifdef CONFIG_NO_HZ
4411 * If this cpu is the owner for idle load balancing, then do the
4412 * balancing on behalf of the other idle cpus whose ticks are
4413 * stopped.
4415 if (this_rq->idle_at_tick &&
4416 atomic_read(&nohz.load_balancer) == this_cpu) {
4417 struct rq *rq;
4418 int balance_cpu;
4420 for_each_cpu(balance_cpu, nohz.cpu_mask) {
4421 if (balance_cpu == this_cpu)
4422 continue;
4425 * If this cpu gets work to do, stop the load balancing
4426 * work being done for other cpus. Next load
4427 * balancing owner will pick it up.
4429 if (need_resched())
4430 break;
4432 rebalance_domains(balance_cpu, CPU_IDLE);
4434 rq = cpu_rq(balance_cpu);
4435 if (time_after(this_rq->next_balance, rq->next_balance))
4436 this_rq->next_balance = rq->next_balance;
4439 #endif
4442 static inline int on_null_domain(int cpu)
4444 return !rcu_dereference(cpu_rq(cpu)->sd);
4448 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
4450 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
4451 * idle load balancing owner or decide to stop the periodic load balancing,
4452 * if the whole system is idle.
4454 static inline void trigger_load_balance(struct rq *rq, int cpu)
4456 #ifdef CONFIG_NO_HZ
4458 * If we were in the nohz mode recently and busy at the current
4459 * scheduler tick, then check if we need to nominate new idle
4460 * load balancer.
4462 if (rq->in_nohz_recently && !rq->idle_at_tick) {
4463 rq->in_nohz_recently = 0;
4465 if (atomic_read(&nohz.load_balancer) == cpu) {
4466 cpumask_clear_cpu(cpu, nohz.cpu_mask);
4467 atomic_set(&nohz.load_balancer, -1);
4470 if (atomic_read(&nohz.load_balancer) == -1) {
4472 * simple selection for now: Nominate the
4473 * first cpu in the nohz list to be the next
4474 * ilb owner.
4476 * TBD: Traverse the sched domains and nominate
4477 * the nearest cpu in the nohz.cpu_mask.
4479 int ilb = cpumask_first(nohz.cpu_mask);
4481 if (ilb < nr_cpu_ids)
4482 resched_cpu(ilb);
4487 * If this cpu is idle and doing idle load balancing for all the
4488 * cpus with ticks stopped, is it time for that to stop?
4490 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
4491 cpumask_weight(nohz.cpu_mask) == num_online_cpus()) {
4492 resched_cpu(cpu);
4493 return;
4497 * If this cpu is idle and the idle load balancing is done by
4498 * someone else, then no need raise the SCHED_SOFTIRQ
4500 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
4501 cpumask_test_cpu(cpu, nohz.cpu_mask))
4502 return;
4503 #endif
4504 /* Don't need to rebalance while attached to NULL domain */
4505 if (time_after_eq(jiffies, rq->next_balance) &&
4506 likely(!on_null_domain(cpu)))
4507 raise_softirq(SCHED_SOFTIRQ);
4510 #else /* CONFIG_SMP */
4513 * on UP we do not need to balance between CPUs:
4515 static inline void idle_balance(int cpu, struct rq *rq)
4519 #endif
4521 DEFINE_PER_CPU(struct kernel_stat, kstat);
4523 EXPORT_PER_CPU_SYMBOL(kstat);
4526 * Return any ns on the sched_clock that have not yet been accounted in
4527 * @p in case that task is currently running.
4529 * Called with task_rq_lock() held on @rq.
4531 static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
4533 u64 ns = 0;
4535 if (task_current(rq, p)) {
4536 update_rq_clock(rq);
4537 ns = rq->clock - p->se.exec_start;
4538 if ((s64)ns < 0)
4539 ns = 0;
4542 return ns;
4545 unsigned long long task_delta_exec(struct task_struct *p)
4547 unsigned long flags;
4548 struct rq *rq;
4549 u64 ns = 0;
4551 rq = task_rq_lock(p, &flags);
4552 ns = do_task_delta_exec(p, rq);
4553 task_rq_unlock(rq, &flags);
4555 return ns;
4559 * Return accounted runtime for the task.
4560 * In case the task is currently running, return the runtime plus current's
4561 * pending runtime that have not been accounted yet.
4563 unsigned long long task_sched_runtime(struct task_struct *p)
4565 unsigned long flags;
4566 struct rq *rq;
4567 u64 ns = 0;
4569 rq = task_rq_lock(p, &flags);
4570 ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
4571 task_rq_unlock(rq, &flags);
4573 return ns;
4577 * Return sum_exec_runtime for the thread group.
4578 * In case the task is currently running, return the sum plus current's
4579 * pending runtime that have not been accounted yet.
4581 * Note that the thread group might have other running tasks as well,
4582 * so the return value not includes other pending runtime that other
4583 * running tasks might have.
4585 unsigned long long thread_group_sched_runtime(struct task_struct *p)
4587 struct task_cputime totals;
4588 unsigned long flags;
4589 struct rq *rq;
4590 u64 ns;
4592 rq = task_rq_lock(p, &flags);
4593 thread_group_cputime(p, &totals);
4594 ns = totals.sum_exec_runtime + do_task_delta_exec(p, rq);
4595 task_rq_unlock(rq, &flags);
4597 return ns;
4601 * Account user cpu time to a process.
4602 * @p: the process that the cpu time gets accounted to
4603 * @cputime: the cpu time spent in user space since the last update
4604 * @cputime_scaled: cputime scaled by cpu frequency
4606 void account_user_time(struct task_struct *p, cputime_t cputime,
4607 cputime_t cputime_scaled)
4609 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4610 cputime64_t tmp;
4612 /* Add user time to process. */
4613 p->utime = cputime_add(p->utime, cputime);
4614 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
4615 account_group_user_time(p, cputime);
4617 /* Add user time to cpustat. */
4618 tmp = cputime_to_cputime64(cputime);
4619 if (TASK_NICE(p) > 0)
4620 cpustat->nice = cputime64_add(cpustat->nice, tmp);
4621 else
4622 cpustat->user = cputime64_add(cpustat->user, tmp);
4624 cpuacct_update_stats(p, CPUACCT_STAT_USER, cputime);
4625 /* Account for user time used */
4626 acct_update_integrals(p);
4630 * Account guest cpu time to a process.
4631 * @p: the process that the cpu time gets accounted to
4632 * @cputime: the cpu time spent in virtual machine since the last update
4633 * @cputime_scaled: cputime scaled by cpu frequency
4635 static void account_guest_time(struct task_struct *p, cputime_t cputime,
4636 cputime_t cputime_scaled)
4638 cputime64_t tmp;
4639 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4641 tmp = cputime_to_cputime64(cputime);
4643 /* Add guest time to process. */
4644 p->utime = cputime_add(p->utime, cputime);
4645 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
4646 account_group_user_time(p, cputime);
4647 p->gtime = cputime_add(p->gtime, cputime);
4649 /* Add guest time to cpustat. */
4650 cpustat->user = cputime64_add(cpustat->user, tmp);
4651 cpustat->guest = cputime64_add(cpustat->guest, tmp);
4655 * Account system cpu time to a process.
4656 * @p: the process that the cpu time gets accounted to
4657 * @hardirq_offset: the offset to subtract from hardirq_count()
4658 * @cputime: the cpu time spent in kernel space since the last update
4659 * @cputime_scaled: cputime scaled by cpu frequency
4661 void account_system_time(struct task_struct *p, int hardirq_offset,
4662 cputime_t cputime, cputime_t cputime_scaled)
4664 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4665 cputime64_t tmp;
4667 if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
4668 account_guest_time(p, cputime, cputime_scaled);
4669 return;
4672 /* Add system time to process. */
4673 p->stime = cputime_add(p->stime, cputime);
4674 p->stimescaled = cputime_add(p->stimescaled, cputime_scaled);
4675 account_group_system_time(p, cputime);
4677 /* Add system time to cpustat. */
4678 tmp = cputime_to_cputime64(cputime);
4679 if (hardirq_count() - hardirq_offset)
4680 cpustat->irq = cputime64_add(cpustat->irq, tmp);
4681 else if (softirq_count())
4682 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
4683 else
4684 cpustat->system = cputime64_add(cpustat->system, tmp);
4686 cpuacct_update_stats(p, CPUACCT_STAT_SYSTEM, cputime);
4688 /* Account for system time used */
4689 acct_update_integrals(p);
4693 * Account for involuntary wait time.
4694 * @steal: the cpu time spent in involuntary wait
4696 void account_steal_time(cputime_t cputime)
4698 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4699 cputime64_t cputime64 = cputime_to_cputime64(cputime);
4701 cpustat->steal = cputime64_add(cpustat->steal, cputime64);
4705 * Account for idle time.
4706 * @cputime: the cpu time spent in idle wait
4708 void account_idle_time(cputime_t cputime)
4710 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4711 cputime64_t cputime64 = cputime_to_cputime64(cputime);
4712 struct rq *rq = this_rq();
4714 if (atomic_read(&rq->nr_iowait) > 0)
4715 cpustat->iowait = cputime64_add(cpustat->iowait, cputime64);
4716 else
4717 cpustat->idle = cputime64_add(cpustat->idle, cputime64);
4720 #ifndef CONFIG_VIRT_CPU_ACCOUNTING
4723 * Account a single tick of cpu time.
4724 * @p: the process that the cpu time gets accounted to
4725 * @user_tick: indicates if the tick is a user or a system tick
4727 void account_process_tick(struct task_struct *p, int user_tick)
4729 cputime_t one_jiffy = jiffies_to_cputime(1);
4730 cputime_t one_jiffy_scaled = cputime_to_scaled(one_jiffy);
4731 struct rq *rq = this_rq();
4733 if (user_tick)
4734 account_user_time(p, one_jiffy, one_jiffy_scaled);
4735 else if (p != rq->idle)
4736 account_system_time(p, HARDIRQ_OFFSET, one_jiffy,
4737 one_jiffy_scaled);
4738 else
4739 account_idle_time(one_jiffy);
4743 * Account multiple ticks of steal time.
4744 * @p: the process from which the cpu time has been stolen
4745 * @ticks: number of stolen ticks
4747 void account_steal_ticks(unsigned long ticks)
4749 account_steal_time(jiffies_to_cputime(ticks));
4753 * Account multiple ticks of idle time.
4754 * @ticks: number of stolen ticks
4756 void account_idle_ticks(unsigned long ticks)
4758 account_idle_time(jiffies_to_cputime(ticks));
4761 #endif
4764 * Use precise platform statistics if available:
4766 #ifdef CONFIG_VIRT_CPU_ACCOUNTING
4767 cputime_t task_utime(struct task_struct *p)
4769 return p->utime;
4772 cputime_t task_stime(struct task_struct *p)
4774 return p->stime;
4776 #else
4777 cputime_t task_utime(struct task_struct *p)
4779 clock_t utime = cputime_to_clock_t(p->utime),
4780 total = utime + cputime_to_clock_t(p->stime);
4781 u64 temp;
4784 * Use CFS's precise accounting:
4786 temp = (u64)nsec_to_clock_t(p->se.sum_exec_runtime);
4788 if (total) {
4789 temp *= utime;
4790 do_div(temp, total);
4792 utime = (clock_t)temp;
4794 p->prev_utime = max(p->prev_utime, clock_t_to_cputime(utime));
4795 return p->prev_utime;
4798 cputime_t task_stime(struct task_struct *p)
4800 clock_t stime;
4803 * Use CFS's precise accounting. (we subtract utime from
4804 * the total, to make sure the total observed by userspace
4805 * grows monotonically - apps rely on that):
4807 stime = nsec_to_clock_t(p->se.sum_exec_runtime) -
4808 cputime_to_clock_t(task_utime(p));
4810 if (stime >= 0)
4811 p->prev_stime = max(p->prev_stime, clock_t_to_cputime(stime));
4813 return p->prev_stime;
4815 #endif
4817 inline cputime_t task_gtime(struct task_struct *p)
4819 return p->gtime;
4823 * This function gets called by the timer code, with HZ frequency.
4824 * We call it with interrupts disabled.
4826 * It also gets called by the fork code, when changing the parent's
4827 * timeslices.
4829 void scheduler_tick(void)
4831 int cpu = smp_processor_id();
4832 struct rq *rq = cpu_rq(cpu);
4833 struct task_struct *curr = rq->curr;
4835 sched_clock_tick();
4837 spin_lock(&rq->lock);
4838 update_rq_clock(rq);
4839 update_cpu_load(rq);
4840 curr->sched_class->task_tick(rq, curr, 0);
4841 spin_unlock(&rq->lock);
4843 #ifdef CONFIG_SMP
4844 rq->idle_at_tick = idle_cpu(cpu);
4845 trigger_load_balance(rq, cpu);
4846 #endif
4849 unsigned long get_parent_ip(unsigned long addr)
4851 if (in_lock_functions(addr)) {
4852 addr = CALLER_ADDR2;
4853 if (in_lock_functions(addr))
4854 addr = CALLER_ADDR3;
4856 return addr;
4859 #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
4860 defined(CONFIG_PREEMPT_TRACER))
4862 void __kprobes add_preempt_count(int val)
4864 #ifdef CONFIG_DEBUG_PREEMPT
4866 * Underflow?
4868 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
4869 return;
4870 #endif
4871 preempt_count() += val;
4872 #ifdef CONFIG_DEBUG_PREEMPT
4874 * Spinlock count overflowing soon?
4876 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
4877 PREEMPT_MASK - 10);
4878 #endif
4879 if (preempt_count() == val)
4880 trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
4882 EXPORT_SYMBOL(add_preempt_count);
4884 void __kprobes sub_preempt_count(int val)
4886 #ifdef CONFIG_DEBUG_PREEMPT
4888 * Underflow?
4890 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
4891 return;
4893 * Is the spinlock portion underflowing?
4895 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
4896 !(preempt_count() & PREEMPT_MASK)))
4897 return;
4898 #endif
4900 if (preempt_count() == val)
4901 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
4902 preempt_count() -= val;
4904 EXPORT_SYMBOL(sub_preempt_count);
4906 #endif
4909 * Print scheduling while atomic bug:
4911 static noinline void __schedule_bug(struct task_struct *prev)
4913 struct pt_regs *regs = get_irq_regs();
4915 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
4916 prev->comm, prev->pid, preempt_count());
4918 debug_show_held_locks(prev);
4919 print_modules();
4920 if (irqs_disabled())
4921 print_irqtrace_events(prev);
4923 if (regs)
4924 show_regs(regs);
4925 else
4926 dump_stack();
4930 * Various schedule()-time debugging checks and statistics:
4932 static inline void schedule_debug(struct task_struct *prev)
4935 * Test if we are atomic. Since do_exit() needs to call into
4936 * schedule() atomically, we ignore that path for now.
4937 * Otherwise, whine if we are scheduling when we should not be.
4939 if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
4940 __schedule_bug(prev);
4942 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
4944 schedstat_inc(this_rq(), sched_count);
4945 #ifdef CONFIG_SCHEDSTATS
4946 if (unlikely(prev->lock_depth >= 0)) {
4947 schedstat_inc(this_rq(), bkl_count);
4948 schedstat_inc(prev, sched_info.bkl_count);
4950 #endif
4953 static void put_prev_task(struct rq *rq, struct task_struct *prev)
4955 if (prev->state == TASK_RUNNING) {
4956 u64 runtime = prev->se.sum_exec_runtime;
4958 runtime -= prev->se.prev_sum_exec_runtime;
4959 runtime = min_t(u64, runtime, 2*sysctl_sched_migration_cost);
4962 * In order to avoid avg_overlap growing stale when we are
4963 * indeed overlapping and hence not getting put to sleep, grow
4964 * the avg_overlap on preemption.
4966 * We use the average preemption runtime because that
4967 * correlates to the amount of cache footprint a task can
4968 * build up.
4970 update_avg(&prev->se.avg_overlap, runtime);
4972 prev->sched_class->put_prev_task(rq, prev);
4976 * Pick up the highest-prio task:
4978 static inline struct task_struct *
4979 pick_next_task(struct rq *rq)
4981 const struct sched_class *class;
4982 struct task_struct *p;
4985 * Optimization: we know that if all tasks are in
4986 * the fair class we can call that function directly:
4988 if (likely(rq->nr_running == rq->cfs.nr_running)) {
4989 p = fair_sched_class.pick_next_task(rq);
4990 if (likely(p))
4991 return p;
4994 class = sched_class_highest;
4995 for ( ; ; ) {
4996 p = class->pick_next_task(rq);
4997 if (p)
4998 return p;
5000 * Will never be NULL as the idle class always
5001 * returns a non-NULL p:
5003 class = class->next;
5008 * schedule() is the main scheduler function.
5010 asmlinkage void __sched __schedule(void)
5012 struct task_struct *prev, *next;
5013 unsigned long *switch_count;
5014 struct rq *rq;
5015 int cpu;
5017 cpu = smp_processor_id();
5018 rq = cpu_rq(cpu);
5019 rcu_qsctr_inc(cpu);
5020 prev = rq->curr;
5021 switch_count = &prev->nivcsw;
5023 release_kernel_lock(prev);
5024 need_resched_nonpreemptible:
5026 schedule_debug(prev);
5028 if (sched_feat(HRTICK))
5029 hrtick_clear(rq);
5031 spin_lock_irq(&rq->lock);
5032 update_rq_clock(rq);
5033 clear_tsk_need_resched(prev);
5035 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
5036 if (unlikely(signal_pending_state(prev->state, prev)))
5037 prev->state = TASK_RUNNING;
5038 else
5039 deactivate_task(rq, prev, 1);
5040 switch_count = &prev->nvcsw;
5043 #ifdef CONFIG_SMP
5044 if (prev->sched_class->pre_schedule)
5045 prev->sched_class->pre_schedule(rq, prev);
5046 #endif
5048 if (unlikely(!rq->nr_running))
5049 idle_balance(cpu, rq);
5051 put_prev_task(rq, prev);
5052 next = pick_next_task(rq);
5054 if (likely(prev != next)) {
5055 sched_info_switch(prev, next);
5057 rq->nr_switches++;
5058 rq->curr = next;
5059 ++*switch_count;
5061 context_switch(rq, prev, next); /* unlocks the rq */
5063 * the context switch might have flipped the stack from under
5064 * us, hence refresh the local variables.
5066 cpu = smp_processor_id();
5067 rq = cpu_rq(cpu);
5068 } else
5069 spin_unlock_irq(&rq->lock);
5071 if (unlikely(reacquire_kernel_lock(current) < 0))
5072 goto need_resched_nonpreemptible;
5075 asmlinkage void __sched schedule(void)
5077 need_resched:
5078 preempt_disable();
5079 __schedule();
5080 preempt_enable_no_resched();
5081 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
5082 goto need_resched;
5084 EXPORT_SYMBOL(schedule);
5086 #ifdef CONFIG_SMP
5088 * Look out! "owner" is an entirely speculative pointer
5089 * access and not reliable.
5091 int mutex_spin_on_owner(struct mutex *lock, struct thread_info *owner)
5093 unsigned int cpu;
5094 struct rq *rq;
5096 if (!sched_feat(OWNER_SPIN))
5097 return 0;
5099 #ifdef CONFIG_DEBUG_PAGEALLOC
5101 * Need to access the cpu field knowing that
5102 * DEBUG_PAGEALLOC could have unmapped it if
5103 * the mutex owner just released it and exited.
5105 if (probe_kernel_address(&owner->cpu, cpu))
5106 goto out;
5107 #else
5108 cpu = owner->cpu;
5109 #endif
5112 * Even if the access succeeded (likely case),
5113 * the cpu field may no longer be valid.
5115 if (cpu >= nr_cpumask_bits)
5116 goto out;
5119 * We need to validate that we can do a
5120 * get_cpu() and that we have the percpu area.
5122 if (!cpu_online(cpu))
5123 goto out;
5125 rq = cpu_rq(cpu);
5127 for (;;) {
5129 * Owner changed, break to re-assess state.
5131 if (lock->owner != owner)
5132 break;
5135 * Is that owner really running on that cpu?
5137 if (task_thread_info(rq->curr) != owner || need_resched())
5138 return 0;
5140 cpu_relax();
5142 out:
5143 return 1;
5145 #endif
5147 #ifdef CONFIG_PREEMPT
5149 * this is the entry point to schedule() from in-kernel preemption
5150 * off of preempt_enable. Kernel preemptions off return from interrupt
5151 * occur there and call schedule directly.
5153 asmlinkage void __sched preempt_schedule(void)
5155 struct thread_info *ti = current_thread_info();
5158 * If there is a non-zero preempt_count or interrupts are disabled,
5159 * we do not want to preempt the current task. Just return..
5161 if (likely(ti->preempt_count || irqs_disabled()))
5162 return;
5164 do {
5165 add_preempt_count(PREEMPT_ACTIVE);
5166 schedule();
5167 sub_preempt_count(PREEMPT_ACTIVE);
5170 * Check again in case we missed a preemption opportunity
5171 * between schedule and now.
5173 barrier();
5174 } while (need_resched());
5176 EXPORT_SYMBOL(preempt_schedule);
5179 * this is the entry point to schedule() from kernel preemption
5180 * off of irq context.
5181 * Note, that this is called and return with irqs disabled. This will
5182 * protect us against recursive calling from irq.
5184 asmlinkage void __sched preempt_schedule_irq(void)
5186 struct thread_info *ti = current_thread_info();
5188 /* Catch callers which need to be fixed */
5189 BUG_ON(ti->preempt_count || !irqs_disabled());
5191 do {
5192 add_preempt_count(PREEMPT_ACTIVE);
5193 local_irq_enable();
5194 schedule();
5195 local_irq_disable();
5196 sub_preempt_count(PREEMPT_ACTIVE);
5199 * Check again in case we missed a preemption opportunity
5200 * between schedule and now.
5202 barrier();
5203 } while (need_resched());
5206 #endif /* CONFIG_PREEMPT */
5208 int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
5209 void *key)
5211 return try_to_wake_up(curr->private, mode, sync);
5213 EXPORT_SYMBOL(default_wake_function);
5216 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
5217 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
5218 * number) then we wake all the non-exclusive tasks and one exclusive task.
5220 * There are circumstances in which we can try to wake a task which has already
5221 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
5222 * zero in this (rare) case, and we handle it by continuing to scan the queue.
5224 void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
5225 int nr_exclusive, int sync, void *key)
5227 wait_queue_t *curr, *next;
5229 list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
5230 unsigned flags = curr->flags;
5232 if (curr->func(curr, mode, sync, key) &&
5233 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
5234 break;
5239 * __wake_up - wake up threads blocked on a waitqueue.
5240 * @q: the waitqueue
5241 * @mode: which threads
5242 * @nr_exclusive: how many wake-one or wake-many threads to wake up
5243 * @key: is directly passed to the wakeup function
5245 void __wake_up(wait_queue_head_t *q, unsigned int mode,
5246 int nr_exclusive, void *key)
5248 unsigned long flags;
5250 spin_lock_irqsave(&q->lock, flags);
5251 __wake_up_common(q, mode, nr_exclusive, 0, key);
5252 spin_unlock_irqrestore(&q->lock, flags);
5254 EXPORT_SYMBOL(__wake_up);
5257 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
5259 void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
5261 __wake_up_common(q, mode, 1, 0, NULL);
5264 void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
5266 __wake_up_common(q, mode, 1, 0, key);
5270 * __wake_up_sync_key - wake up threads blocked on a waitqueue.
5271 * @q: the waitqueue
5272 * @mode: which threads
5273 * @nr_exclusive: how many wake-one or wake-many threads to wake up
5274 * @key: opaque value to be passed to wakeup targets
5276 * The sync wakeup differs that the waker knows that it will schedule
5277 * away soon, so while the target thread will be woken up, it will not
5278 * be migrated to another CPU - ie. the two threads are 'synchronized'
5279 * with each other. This can prevent needless bouncing between CPUs.
5281 * On UP it can prevent extra preemption.
5283 void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
5284 int nr_exclusive, void *key)
5286 unsigned long flags;
5287 int sync = 1;
5289 if (unlikely(!q))
5290 return;
5292 if (unlikely(!nr_exclusive))
5293 sync = 0;
5295 spin_lock_irqsave(&q->lock, flags);
5296 __wake_up_common(q, mode, nr_exclusive, sync, key);
5297 spin_unlock_irqrestore(&q->lock, flags);
5299 EXPORT_SYMBOL_GPL(__wake_up_sync_key);
5302 * __wake_up_sync - see __wake_up_sync_key()
5304 void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
5306 __wake_up_sync_key(q, mode, nr_exclusive, NULL);
5308 EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
5311 * complete: - signals a single thread waiting on this completion
5312 * @x: holds the state of this particular completion
5314 * This will wake up a single thread waiting on this completion. Threads will be
5315 * awakened in the same order in which they were queued.
5317 * See also complete_all(), wait_for_completion() and related routines.
5319 void complete(struct completion *x)
5321 unsigned long flags;
5323 spin_lock_irqsave(&x->wait.lock, flags);
5324 x->done++;
5325 __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
5326 spin_unlock_irqrestore(&x->wait.lock, flags);
5328 EXPORT_SYMBOL(complete);
5331 * complete_all: - signals all threads waiting on this completion
5332 * @x: holds the state of this particular completion
5334 * This will wake up all threads waiting on this particular completion event.
5336 void complete_all(struct completion *x)
5338 unsigned long flags;
5340 spin_lock_irqsave(&x->wait.lock, flags);
5341 x->done += UINT_MAX/2;
5342 __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
5343 spin_unlock_irqrestore(&x->wait.lock, flags);
5345 EXPORT_SYMBOL(complete_all);
5347 static inline long __sched
5348 do_wait_for_common(struct completion *x, long timeout, int state)
5350 if (!x->done) {
5351 DECLARE_WAITQUEUE(wait, current);
5353 wait.flags |= WQ_FLAG_EXCLUSIVE;
5354 __add_wait_queue_tail(&x->wait, &wait);
5355 do {
5356 if (signal_pending_state(state, current)) {
5357 timeout = -ERESTARTSYS;
5358 break;
5360 __set_current_state(state);
5361 spin_unlock_irq(&x->wait.lock);
5362 timeout = schedule_timeout(timeout);
5363 spin_lock_irq(&x->wait.lock);
5364 } while (!x->done && timeout);
5365 __remove_wait_queue(&x->wait, &wait);
5366 if (!x->done)
5367 return timeout;
5369 x->done--;
5370 return timeout ?: 1;
5373 static long __sched
5374 wait_for_common(struct completion *x, long timeout, int state)
5376 might_sleep();
5378 spin_lock_irq(&x->wait.lock);
5379 timeout = do_wait_for_common(x, timeout, state);
5380 spin_unlock_irq(&x->wait.lock);
5381 return timeout;
5385 * wait_for_completion: - waits for completion of a task
5386 * @x: holds the state of this particular completion
5388 * This waits to be signaled for completion of a specific task. It is NOT
5389 * interruptible and there is no timeout.
5391 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
5392 * and interrupt capability. Also see complete().
5394 void __sched wait_for_completion(struct completion *x)
5396 wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
5398 EXPORT_SYMBOL(wait_for_completion);
5401 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
5402 * @x: holds the state of this particular completion
5403 * @timeout: timeout value in jiffies
5405 * This waits for either a completion of a specific task to be signaled or for a
5406 * specified timeout to expire. The timeout is in jiffies. It is not
5407 * interruptible.
5409 unsigned long __sched
5410 wait_for_completion_timeout(struct completion *x, unsigned long timeout)
5412 return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
5414 EXPORT_SYMBOL(wait_for_completion_timeout);
5417 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
5418 * @x: holds the state of this particular completion
5420 * This waits for completion of a specific task to be signaled. It is
5421 * interruptible.
5423 int __sched wait_for_completion_interruptible(struct completion *x)
5425 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
5426 if (t == -ERESTARTSYS)
5427 return t;
5428 return 0;
5430 EXPORT_SYMBOL(wait_for_completion_interruptible);
5433 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
5434 * @x: holds the state of this particular completion
5435 * @timeout: timeout value in jiffies
5437 * This waits for either a completion of a specific task to be signaled or for a
5438 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
5440 unsigned long __sched
5441 wait_for_completion_interruptible_timeout(struct completion *x,
5442 unsigned long timeout)
5444 return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
5446 EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
5449 * wait_for_completion_killable: - waits for completion of a task (killable)
5450 * @x: holds the state of this particular completion
5452 * This waits to be signaled for completion of a specific task. It can be
5453 * interrupted by a kill signal.
5455 int __sched wait_for_completion_killable(struct completion *x)
5457 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
5458 if (t == -ERESTARTSYS)
5459 return t;
5460 return 0;
5462 EXPORT_SYMBOL(wait_for_completion_killable);
5465 * try_wait_for_completion - try to decrement a completion without blocking
5466 * @x: completion structure
5468 * Returns: 0 if a decrement cannot be done without blocking
5469 * 1 if a decrement succeeded.
5471 * If a completion is being used as a counting completion,
5472 * attempt to decrement the counter without blocking. This
5473 * enables us to avoid waiting if the resource the completion
5474 * is protecting is not available.
5476 bool try_wait_for_completion(struct completion *x)
5478 int ret = 1;
5480 spin_lock_irq(&x->wait.lock);
5481 if (!x->done)
5482 ret = 0;
5483 else
5484 x->done--;
5485 spin_unlock_irq(&x->wait.lock);
5486 return ret;
5488 EXPORT_SYMBOL(try_wait_for_completion);
5491 * completion_done - Test to see if a completion has any waiters
5492 * @x: completion structure
5494 * Returns: 0 if there are waiters (wait_for_completion() in progress)
5495 * 1 if there are no waiters.
5498 bool completion_done(struct completion *x)
5500 int ret = 1;
5502 spin_lock_irq(&x->wait.lock);
5503 if (!x->done)
5504 ret = 0;
5505 spin_unlock_irq(&x->wait.lock);
5506 return ret;
5508 EXPORT_SYMBOL(completion_done);
5510 static long __sched
5511 sleep_on_common(wait_queue_head_t *q, int state, long timeout)
5513 unsigned long flags;
5514 wait_queue_t wait;
5516 init_waitqueue_entry(&wait, current);
5518 __set_current_state(state);
5520 spin_lock_irqsave(&q->lock, flags);
5521 __add_wait_queue(q, &wait);
5522 spin_unlock(&q->lock);
5523 timeout = schedule_timeout(timeout);
5524 spin_lock_irq(&q->lock);
5525 __remove_wait_queue(q, &wait);
5526 spin_unlock_irqrestore(&q->lock, flags);
5528 return timeout;
5531 void __sched interruptible_sleep_on(wait_queue_head_t *q)
5533 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
5535 EXPORT_SYMBOL(interruptible_sleep_on);
5537 long __sched
5538 interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
5540 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
5542 EXPORT_SYMBOL(interruptible_sleep_on_timeout);
5544 void __sched sleep_on(wait_queue_head_t *q)
5546 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
5548 EXPORT_SYMBOL(sleep_on);
5550 long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
5552 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
5554 EXPORT_SYMBOL(sleep_on_timeout);
5556 #ifdef CONFIG_RT_MUTEXES
5559 * rt_mutex_setprio - set the current priority of a task
5560 * @p: task
5561 * @prio: prio value (kernel-internal form)
5563 * This function changes the 'effective' priority of a task. It does
5564 * not touch ->normal_prio like __setscheduler().
5566 * Used by the rt_mutex code to implement priority inheritance logic.
5568 void rt_mutex_setprio(struct task_struct *p, int prio)
5570 unsigned long flags;
5571 int oldprio, on_rq, running;
5572 struct rq *rq;
5573 const struct sched_class *prev_class = p->sched_class;
5575 BUG_ON(prio < 0 || prio > MAX_PRIO);
5577 rq = task_rq_lock(p, &flags);
5578 update_rq_clock(rq);
5580 oldprio = p->prio;
5581 on_rq = p->se.on_rq;
5582 running = task_current(rq, p);
5583 if (on_rq)
5584 dequeue_task(rq, p, 0);
5585 if (running)
5586 p->sched_class->put_prev_task(rq, p);
5588 if (rt_prio(prio))
5589 p->sched_class = &rt_sched_class;
5590 else
5591 p->sched_class = &fair_sched_class;
5593 p->prio = prio;
5595 if (running)
5596 p->sched_class->set_curr_task(rq);
5597 if (on_rq) {
5598 enqueue_task(rq, p, 0);
5600 check_class_changed(rq, p, prev_class, oldprio, running);
5602 task_rq_unlock(rq, &flags);
5605 #endif
5607 void set_user_nice(struct task_struct *p, long nice)
5609 int old_prio, delta, on_rq;
5610 unsigned long flags;
5611 struct rq *rq;
5613 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
5614 return;
5616 * We have to be careful, if called from sys_setpriority(),
5617 * the task might be in the middle of scheduling on another CPU.
5619 rq = task_rq_lock(p, &flags);
5620 update_rq_clock(rq);
5622 * The RT priorities are set via sched_setscheduler(), but we still
5623 * allow the 'normal' nice value to be set - but as expected
5624 * it wont have any effect on scheduling until the task is
5625 * SCHED_FIFO/SCHED_RR:
5627 if (task_has_rt_policy(p)) {
5628 p->static_prio = NICE_TO_PRIO(nice);
5629 goto out_unlock;
5631 on_rq = p->se.on_rq;
5632 if (on_rq)
5633 dequeue_task(rq, p, 0);
5635 p->static_prio = NICE_TO_PRIO(nice);
5636 set_load_weight(p);
5637 old_prio = p->prio;
5638 p->prio = effective_prio(p);
5639 delta = p->prio - old_prio;
5641 if (on_rq) {
5642 enqueue_task(rq, p, 0);
5644 * If the task increased its priority or is running and
5645 * lowered its priority, then reschedule its CPU:
5647 if (delta < 0 || (delta > 0 && task_running(rq, p)))
5648 resched_task(rq->curr);
5650 out_unlock:
5651 task_rq_unlock(rq, &flags);
5653 EXPORT_SYMBOL(set_user_nice);
5656 * can_nice - check if a task can reduce its nice value
5657 * @p: task
5658 * @nice: nice value
5660 int can_nice(const struct task_struct *p, const int nice)
5662 /* convert nice value [19,-20] to rlimit style value [1,40] */
5663 int nice_rlim = 20 - nice;
5665 return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
5666 capable(CAP_SYS_NICE));
5669 #ifdef __ARCH_WANT_SYS_NICE
5672 * sys_nice - change the priority of the current process.
5673 * @increment: priority increment
5675 * sys_setpriority is a more generic, but much slower function that
5676 * does similar things.
5678 SYSCALL_DEFINE1(nice, int, increment)
5680 long nice, retval;
5683 * Setpriority might change our priority at the same moment.
5684 * We don't have to worry. Conceptually one call occurs first
5685 * and we have a single winner.
5687 if (increment < -40)
5688 increment = -40;
5689 if (increment > 40)
5690 increment = 40;
5692 nice = TASK_NICE(current) + increment;
5693 if (nice < -20)
5694 nice = -20;
5695 if (nice > 19)
5696 nice = 19;
5698 if (increment < 0 && !can_nice(current, nice))
5699 return -EPERM;
5701 retval = security_task_setnice(current, nice);
5702 if (retval)
5703 return retval;
5705 set_user_nice(current, nice);
5706 return 0;
5709 #endif
5712 * task_prio - return the priority value of a given task.
5713 * @p: the task in question.
5715 * This is the priority value as seen by users in /proc.
5716 * RT tasks are offset by -200. Normal tasks are centered
5717 * around 0, value goes from -16 to +15.
5719 int task_prio(const struct task_struct *p)
5721 return p->prio - MAX_RT_PRIO;
5725 * task_nice - return the nice value of a given task.
5726 * @p: the task in question.
5728 int task_nice(const struct task_struct *p)
5730 return TASK_NICE(p);
5732 EXPORT_SYMBOL(task_nice);
5735 * idle_cpu - is a given cpu idle currently?
5736 * @cpu: the processor in question.
5738 int idle_cpu(int cpu)
5740 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
5744 * idle_task - return the idle task for a given cpu.
5745 * @cpu: the processor in question.
5747 struct task_struct *idle_task(int cpu)
5749 return cpu_rq(cpu)->idle;
5753 * find_process_by_pid - find a process with a matching PID value.
5754 * @pid: the pid in question.
5756 static struct task_struct *find_process_by_pid(pid_t pid)
5758 return pid ? find_task_by_vpid(pid) : current;
5761 /* Actually do priority change: must hold rq lock. */
5762 static void
5763 __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
5765 BUG_ON(p->se.on_rq);
5767 p->policy = policy;
5768 switch (p->policy) {
5769 case SCHED_NORMAL:
5770 case SCHED_BATCH:
5771 case SCHED_IDLE:
5772 p->sched_class = &fair_sched_class;
5773 break;
5774 case SCHED_FIFO:
5775 case SCHED_RR:
5776 p->sched_class = &rt_sched_class;
5777 break;
5780 p->rt_priority = prio;
5781 p->normal_prio = normal_prio(p);
5782 /* we are holding p->pi_lock already */
5783 p->prio = rt_mutex_getprio(p);
5784 set_load_weight(p);
5788 * check the target process has a UID that matches the current process's
5790 static bool check_same_owner(struct task_struct *p)
5792 const struct cred *cred = current_cred(), *pcred;
5793 bool match;
5795 rcu_read_lock();
5796 pcred = __task_cred(p);
5797 match = (cred->euid == pcred->euid ||
5798 cred->euid == pcred->uid);
5799 rcu_read_unlock();
5800 return match;
5803 static int __sched_setscheduler(struct task_struct *p, int policy,
5804 struct sched_param *param, bool user)
5806 int retval, oldprio, oldpolicy = -1, on_rq, running;
5807 unsigned long flags;
5808 const struct sched_class *prev_class = p->sched_class;
5809 struct rq *rq;
5811 /* may grab non-irq protected spin_locks */
5812 BUG_ON(in_interrupt());
5813 recheck:
5814 /* double check policy once rq lock held */
5815 if (policy < 0)
5816 policy = oldpolicy = p->policy;
5817 else if (policy != SCHED_FIFO && policy != SCHED_RR &&
5818 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
5819 policy != SCHED_IDLE)
5820 return -EINVAL;
5822 * Valid priorities for SCHED_FIFO and SCHED_RR are
5823 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
5824 * SCHED_BATCH and SCHED_IDLE is 0.
5826 if (param->sched_priority < 0 ||
5827 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
5828 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
5829 return -EINVAL;
5830 if (rt_policy(policy) != (param->sched_priority != 0))
5831 return -EINVAL;
5834 * Allow unprivileged RT tasks to decrease priority:
5836 if (user && !capable(CAP_SYS_NICE)) {
5837 if (rt_policy(policy)) {
5838 unsigned long rlim_rtprio;
5840 if (!lock_task_sighand(p, &flags))
5841 return -ESRCH;
5842 rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
5843 unlock_task_sighand(p, &flags);
5845 /* can't set/change the rt policy */
5846 if (policy != p->policy && !rlim_rtprio)
5847 return -EPERM;
5849 /* can't increase priority */
5850 if (param->sched_priority > p->rt_priority &&
5851 param->sched_priority > rlim_rtprio)
5852 return -EPERM;
5855 * Like positive nice levels, dont allow tasks to
5856 * move out of SCHED_IDLE either:
5858 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
5859 return -EPERM;
5861 /* can't change other user's priorities */
5862 if (!check_same_owner(p))
5863 return -EPERM;
5866 if (user) {
5867 #ifdef CONFIG_RT_GROUP_SCHED
5869 * Do not allow realtime tasks into groups that have no runtime
5870 * assigned.
5872 if (rt_bandwidth_enabled() && rt_policy(policy) &&
5873 task_group(p)->rt_bandwidth.rt_runtime == 0)
5874 return -EPERM;
5875 #endif
5877 retval = security_task_setscheduler(p, policy, param);
5878 if (retval)
5879 return retval;
5883 * make sure no PI-waiters arrive (or leave) while we are
5884 * changing the priority of the task:
5886 spin_lock_irqsave(&p->pi_lock, flags);
5888 * To be able to change p->policy safely, the apropriate
5889 * runqueue lock must be held.
5891 rq = __task_rq_lock(p);
5892 /* recheck policy now with rq lock held */
5893 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
5894 policy = oldpolicy = -1;
5895 __task_rq_unlock(rq);
5896 spin_unlock_irqrestore(&p->pi_lock, flags);
5897 goto recheck;
5899 update_rq_clock(rq);
5900 on_rq = p->se.on_rq;
5901 running = task_current(rq, p);
5902 if (on_rq)
5903 deactivate_task(rq, p, 0);
5904 if (running)
5905 p->sched_class->put_prev_task(rq, p);
5907 oldprio = p->prio;
5908 __setscheduler(rq, p, policy, param->sched_priority);
5910 if (running)
5911 p->sched_class->set_curr_task(rq);
5912 if (on_rq) {
5913 activate_task(rq, p, 0);
5915 check_class_changed(rq, p, prev_class, oldprio, running);
5917 __task_rq_unlock(rq);
5918 spin_unlock_irqrestore(&p->pi_lock, flags);
5920 rt_mutex_adjust_pi(p);
5922 return 0;
5926 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
5927 * @p: the task in question.
5928 * @policy: new policy.
5929 * @param: structure containing the new RT priority.
5931 * NOTE that the task may be already dead.
5933 int sched_setscheduler(struct task_struct *p, int policy,
5934 struct sched_param *param)
5936 return __sched_setscheduler(p, policy, param, true);
5938 EXPORT_SYMBOL_GPL(sched_setscheduler);
5941 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
5942 * @p: the task in question.
5943 * @policy: new policy.
5944 * @param: structure containing the new RT priority.
5946 * Just like sched_setscheduler, only don't bother checking if the
5947 * current context has permission. For example, this is needed in
5948 * stop_machine(): we create temporary high priority worker threads,
5949 * but our caller might not have that capability.
5951 int sched_setscheduler_nocheck(struct task_struct *p, int policy,
5952 struct sched_param *param)
5954 return __sched_setscheduler(p, policy, param, false);
5957 static int
5958 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
5960 struct sched_param lparam;
5961 struct task_struct *p;
5962 int retval;
5964 if (!param || pid < 0)
5965 return -EINVAL;
5966 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
5967 return -EFAULT;
5969 rcu_read_lock();
5970 retval = -ESRCH;
5971 p = find_process_by_pid(pid);
5972 if (p != NULL)
5973 retval = sched_setscheduler(p, policy, &lparam);
5974 rcu_read_unlock();
5976 return retval;
5980 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
5981 * @pid: the pid in question.
5982 * @policy: new policy.
5983 * @param: structure containing the new RT priority.
5985 SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
5986 struct sched_param __user *, param)
5988 /* negative values for policy are not valid */
5989 if (policy < 0)
5990 return -EINVAL;
5992 return do_sched_setscheduler(pid, policy, param);
5996 * sys_sched_setparam - set/change the RT priority of a thread
5997 * @pid: the pid in question.
5998 * @param: structure containing the new RT priority.
6000 SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
6002 return do_sched_setscheduler(pid, -1, param);
6006 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
6007 * @pid: the pid in question.
6009 SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
6011 struct task_struct *p;
6012 int retval;
6014 if (pid < 0)
6015 return -EINVAL;
6017 retval = -ESRCH;
6018 read_lock(&tasklist_lock);
6019 p = find_process_by_pid(pid);
6020 if (p) {
6021 retval = security_task_getscheduler(p);
6022 if (!retval)
6023 retval = p->policy;
6025 read_unlock(&tasklist_lock);
6026 return retval;
6030 * sys_sched_getscheduler - get the RT priority of a thread
6031 * @pid: the pid in question.
6032 * @param: structure containing the RT priority.
6034 SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
6036 struct sched_param lp;
6037 struct task_struct *p;
6038 int retval;
6040 if (!param || pid < 0)
6041 return -EINVAL;
6043 read_lock(&tasklist_lock);
6044 p = find_process_by_pid(pid);
6045 retval = -ESRCH;
6046 if (!p)
6047 goto out_unlock;
6049 retval = security_task_getscheduler(p);
6050 if (retval)
6051 goto out_unlock;
6053 lp.sched_priority = p->rt_priority;
6054 read_unlock(&tasklist_lock);
6057 * This one might sleep, we cannot do it with a spinlock held ...
6059 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
6061 return retval;
6063 out_unlock:
6064 read_unlock(&tasklist_lock);
6065 return retval;
6068 long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
6070 cpumask_var_t cpus_allowed, new_mask;
6071 struct task_struct *p;
6072 int retval;
6074 get_online_cpus();
6075 read_lock(&tasklist_lock);
6077 p = find_process_by_pid(pid);
6078 if (!p) {
6079 read_unlock(&tasklist_lock);
6080 put_online_cpus();
6081 return -ESRCH;
6085 * It is not safe to call set_cpus_allowed with the
6086 * tasklist_lock held. We will bump the task_struct's
6087 * usage count and then drop tasklist_lock.
6089 get_task_struct(p);
6090 read_unlock(&tasklist_lock);
6092 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
6093 retval = -ENOMEM;
6094 goto out_put_task;
6096 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
6097 retval = -ENOMEM;
6098 goto out_free_cpus_allowed;
6100 retval = -EPERM;
6101 if (!check_same_owner(p) && !capable(CAP_SYS_NICE))
6102 goto out_unlock;
6104 retval = security_task_setscheduler(p, 0, NULL);
6105 if (retval)
6106 goto out_unlock;
6108 cpuset_cpus_allowed(p, cpus_allowed);
6109 cpumask_and(new_mask, in_mask, cpus_allowed);
6110 again:
6111 retval = set_cpus_allowed_ptr(p, new_mask);
6113 if (!retval) {
6114 cpuset_cpus_allowed(p, cpus_allowed);
6115 if (!cpumask_subset(new_mask, cpus_allowed)) {
6117 * We must have raced with a concurrent cpuset
6118 * update. Just reset the cpus_allowed to the
6119 * cpuset's cpus_allowed
6121 cpumask_copy(new_mask, cpus_allowed);
6122 goto again;
6125 out_unlock:
6126 free_cpumask_var(new_mask);
6127 out_free_cpus_allowed:
6128 free_cpumask_var(cpus_allowed);
6129 out_put_task:
6130 put_task_struct(p);
6131 put_online_cpus();
6132 return retval;
6135 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
6136 struct cpumask *new_mask)
6138 if (len < cpumask_size())
6139 cpumask_clear(new_mask);
6140 else if (len > cpumask_size())
6141 len = cpumask_size();
6143 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
6147 * sys_sched_setaffinity - set the cpu affinity of a process
6148 * @pid: pid of the process
6149 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
6150 * @user_mask_ptr: user-space pointer to the new cpu mask
6152 SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
6153 unsigned long __user *, user_mask_ptr)
6155 cpumask_var_t new_mask;
6156 int retval;
6158 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
6159 return -ENOMEM;
6161 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
6162 if (retval == 0)
6163 retval = sched_setaffinity(pid, new_mask);
6164 free_cpumask_var(new_mask);
6165 return retval;
6168 long sched_getaffinity(pid_t pid, struct cpumask *mask)
6170 struct task_struct *p;
6171 int retval;
6173 get_online_cpus();
6174 read_lock(&tasklist_lock);
6176 retval = -ESRCH;
6177 p = find_process_by_pid(pid);
6178 if (!p)
6179 goto out_unlock;
6181 retval = security_task_getscheduler(p);
6182 if (retval)
6183 goto out_unlock;
6185 cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
6187 out_unlock:
6188 read_unlock(&tasklist_lock);
6189 put_online_cpus();
6191 return retval;
6195 * sys_sched_getaffinity - get the cpu affinity of a process
6196 * @pid: pid of the process
6197 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
6198 * @user_mask_ptr: user-space pointer to hold the current cpu mask
6200 SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
6201 unsigned long __user *, user_mask_ptr)
6203 int ret;
6204 cpumask_var_t mask;
6206 if (len < cpumask_size())
6207 return -EINVAL;
6209 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
6210 return -ENOMEM;
6212 ret = sched_getaffinity(pid, mask);
6213 if (ret == 0) {
6214 if (copy_to_user(user_mask_ptr, mask, cpumask_size()))
6215 ret = -EFAULT;
6216 else
6217 ret = cpumask_size();
6219 free_cpumask_var(mask);
6221 return ret;
6225 * sys_sched_yield - yield the current processor to other threads.
6227 * This function yields the current CPU to other tasks. If there are no
6228 * other threads running on this CPU then this function will return.
6230 SYSCALL_DEFINE0(sched_yield)
6232 struct rq *rq = this_rq_lock();
6234 schedstat_inc(rq, yld_count);
6235 current->sched_class->yield_task(rq);
6238 * Since we are going to call schedule() anyway, there's
6239 * no need to preempt or enable interrupts:
6241 __release(rq->lock);
6242 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
6243 _raw_spin_unlock(&rq->lock);
6244 preempt_enable_no_resched();
6246 schedule();
6248 return 0;
6251 static void __cond_resched(void)
6253 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
6254 __might_sleep(__FILE__, __LINE__);
6255 #endif
6257 * The BKS might be reacquired before we have dropped
6258 * PREEMPT_ACTIVE, which could trigger a second
6259 * cond_resched() call.
6261 do {
6262 add_preempt_count(PREEMPT_ACTIVE);
6263 schedule();
6264 sub_preempt_count(PREEMPT_ACTIVE);
6265 } while (need_resched());
6268 int __sched _cond_resched(void)
6270 if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) &&
6271 system_state == SYSTEM_RUNNING) {
6272 __cond_resched();
6273 return 1;
6275 return 0;
6277 EXPORT_SYMBOL(_cond_resched);
6280 * cond_resched_lock() - if a reschedule is pending, drop the given lock,
6281 * call schedule, and on return reacquire the lock.
6283 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
6284 * operations here to prevent schedule() from being called twice (once via
6285 * spin_unlock(), once by hand).
6287 int cond_resched_lock(spinlock_t *lock)
6289 int resched = need_resched() && system_state == SYSTEM_RUNNING;
6290 int ret = 0;
6292 if (spin_needbreak(lock) || resched) {
6293 spin_unlock(lock);
6294 if (resched && need_resched())
6295 __cond_resched();
6296 else
6297 cpu_relax();
6298 ret = 1;
6299 spin_lock(lock);
6301 return ret;
6303 EXPORT_SYMBOL(cond_resched_lock);
6305 int __sched cond_resched_softirq(void)
6307 BUG_ON(!in_softirq());
6309 if (need_resched() && system_state == SYSTEM_RUNNING) {
6310 local_bh_enable();
6311 __cond_resched();
6312 local_bh_disable();
6313 return 1;
6315 return 0;
6317 EXPORT_SYMBOL(cond_resched_softirq);
6320 * yield - yield the current processor to other threads.
6322 * This is a shortcut for kernel-space yielding - it marks the
6323 * thread runnable and calls sys_sched_yield().
6325 void __sched yield(void)
6327 set_current_state(TASK_RUNNING);
6328 sys_sched_yield();
6330 EXPORT_SYMBOL(yield);
6333 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
6334 * that process accounting knows that this is a task in IO wait state.
6336 * But don't do that if it is a deliberate, throttling IO wait (this task
6337 * has set its backing_dev_info: the queue against which it should throttle)
6339 void __sched io_schedule(void)
6341 struct rq *rq = &__raw_get_cpu_var(runqueues);
6343 delayacct_blkio_start();
6344 atomic_inc(&rq->nr_iowait);
6345 schedule();
6346 atomic_dec(&rq->nr_iowait);
6347 delayacct_blkio_end();
6349 EXPORT_SYMBOL(io_schedule);
6351 long __sched io_schedule_timeout(long timeout)
6353 struct rq *rq = &__raw_get_cpu_var(runqueues);
6354 long ret;
6356 delayacct_blkio_start();
6357 atomic_inc(&rq->nr_iowait);
6358 ret = schedule_timeout(timeout);
6359 atomic_dec(&rq->nr_iowait);
6360 delayacct_blkio_end();
6361 return ret;
6365 * sys_sched_get_priority_max - return maximum RT priority.
6366 * @policy: scheduling class.
6368 * this syscall returns the maximum rt_priority that can be used
6369 * by a given scheduling class.
6371 SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
6373 int ret = -EINVAL;
6375 switch (policy) {
6376 case SCHED_FIFO:
6377 case SCHED_RR:
6378 ret = MAX_USER_RT_PRIO-1;
6379 break;
6380 case SCHED_NORMAL:
6381 case SCHED_BATCH:
6382 case SCHED_IDLE:
6383 ret = 0;
6384 break;
6386 return ret;
6390 * sys_sched_get_priority_min - return minimum RT priority.
6391 * @policy: scheduling class.
6393 * this syscall returns the minimum rt_priority that can be used
6394 * by a given scheduling class.
6396 SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
6398 int ret = -EINVAL;
6400 switch (policy) {
6401 case SCHED_FIFO:
6402 case SCHED_RR:
6403 ret = 1;
6404 break;
6405 case SCHED_NORMAL:
6406 case SCHED_BATCH:
6407 case SCHED_IDLE:
6408 ret = 0;
6410 return ret;
6414 * sys_sched_rr_get_interval - return the default timeslice of a process.
6415 * @pid: pid of the process.
6416 * @interval: userspace pointer to the timeslice value.
6418 * this syscall writes the default timeslice value of a given process
6419 * into the user-space timespec buffer. A value of '0' means infinity.
6421 SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
6422 struct timespec __user *, interval)
6424 struct task_struct *p;
6425 unsigned int time_slice;
6426 int retval;
6427 struct timespec t;
6429 if (pid < 0)
6430 return -EINVAL;
6432 retval = -ESRCH;
6433 read_lock(&tasklist_lock);
6434 p = find_process_by_pid(pid);
6435 if (!p)
6436 goto out_unlock;
6438 retval = security_task_getscheduler(p);
6439 if (retval)
6440 goto out_unlock;
6443 * Time slice is 0 for SCHED_FIFO tasks and for SCHED_OTHER
6444 * tasks that are on an otherwise idle runqueue:
6446 time_slice = 0;
6447 if (p->policy == SCHED_RR) {
6448 time_slice = DEF_TIMESLICE;
6449 } else if (p->policy != SCHED_FIFO) {
6450 struct sched_entity *se = &p->se;
6451 unsigned long flags;
6452 struct rq *rq;
6454 rq = task_rq_lock(p, &flags);
6455 if (rq->cfs.load.weight)
6456 time_slice = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
6457 task_rq_unlock(rq, &flags);
6459 read_unlock(&tasklist_lock);
6460 jiffies_to_timespec(time_slice, &t);
6461 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
6462 return retval;
6464 out_unlock:
6465 read_unlock(&tasklist_lock);
6466 return retval;
6469 static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
6471 void sched_show_task(struct task_struct *p)
6473 unsigned long free = 0;
6474 unsigned state;
6476 state = p->state ? __ffs(p->state) + 1 : 0;
6477 printk(KERN_INFO "%-13.13s %c", p->comm,
6478 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
6479 #if BITS_PER_LONG == 32
6480 if (state == TASK_RUNNING)
6481 printk(KERN_CONT " running ");
6482 else
6483 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
6484 #else
6485 if (state == TASK_RUNNING)
6486 printk(KERN_CONT " running task ");
6487 else
6488 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
6489 #endif
6490 #ifdef CONFIG_DEBUG_STACK_USAGE
6491 free = stack_not_used(p);
6492 #endif
6493 printk(KERN_CONT "%5lu %5d %6d\n", free,
6494 task_pid_nr(p), task_pid_nr(p->real_parent));
6496 show_stack(p, NULL);
6499 void show_state_filter(unsigned long state_filter)
6501 struct task_struct *g, *p;
6503 #if BITS_PER_LONG == 32
6504 printk(KERN_INFO
6505 " task PC stack pid father\n");
6506 #else
6507 printk(KERN_INFO
6508 " task PC stack pid father\n");
6509 #endif
6510 read_lock(&tasklist_lock);
6511 do_each_thread(g, p) {
6513 * reset the NMI-timeout, listing all files on a slow
6514 * console might take alot of time:
6516 touch_nmi_watchdog();
6517 if (!state_filter || (p->state & state_filter))
6518 sched_show_task(p);
6519 } while_each_thread(g, p);
6521 touch_all_softlockup_watchdogs();
6523 #ifdef CONFIG_SCHED_DEBUG
6524 sysrq_sched_debug_show();
6525 #endif
6526 read_unlock(&tasklist_lock);
6528 * Only show locks if all tasks are dumped:
6530 if (state_filter == -1)
6531 debug_show_all_locks();
6534 void __cpuinit init_idle_bootup_task(struct task_struct *idle)
6536 idle->sched_class = &idle_sched_class;
6540 * init_idle - set up an idle thread for a given CPU
6541 * @idle: task in question
6542 * @cpu: cpu the idle task belongs to
6544 * NOTE: this function does not set the idle thread's NEED_RESCHED
6545 * flag, to make booting more robust.
6547 void __cpuinit init_idle(struct task_struct *idle, int cpu)
6549 struct rq *rq = cpu_rq(cpu);
6550 unsigned long flags;
6552 spin_lock_irqsave(&rq->lock, flags);
6554 __sched_fork(idle);
6555 idle->se.exec_start = sched_clock();
6557 idle->prio = idle->normal_prio = MAX_PRIO;
6558 cpumask_copy(&idle->cpus_allowed, cpumask_of(cpu));
6559 __set_task_cpu(idle, cpu);
6561 rq->curr = rq->idle = idle;
6562 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
6563 idle->oncpu = 1;
6564 #endif
6565 spin_unlock_irqrestore(&rq->lock, flags);
6567 /* Set the preempt count _outside_ the spinlocks! */
6568 #if defined(CONFIG_PREEMPT)
6569 task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
6570 #else
6571 task_thread_info(idle)->preempt_count = 0;
6572 #endif
6574 * The idle tasks have their own, simple scheduling class:
6576 idle->sched_class = &idle_sched_class;
6577 ftrace_graph_init_task(idle);
6581 * In a system that switches off the HZ timer nohz_cpu_mask
6582 * indicates which cpus entered this state. This is used
6583 * in the rcu update to wait only for active cpus. For system
6584 * which do not switch off the HZ timer nohz_cpu_mask should
6585 * always be CPU_BITS_NONE.
6587 cpumask_var_t nohz_cpu_mask;
6590 * Increase the granularity value when there are more CPUs,
6591 * because with more CPUs the 'effective latency' as visible
6592 * to users decreases. But the relationship is not linear,
6593 * so pick a second-best guess by going with the log2 of the
6594 * number of CPUs.
6596 * This idea comes from the SD scheduler of Con Kolivas:
6598 static inline void sched_init_granularity(void)
6600 unsigned int factor = 1 + ilog2(num_online_cpus());
6601 const unsigned long limit = 200000000;
6603 sysctl_sched_min_granularity *= factor;
6604 if (sysctl_sched_min_granularity > limit)
6605 sysctl_sched_min_granularity = limit;
6607 sysctl_sched_latency *= factor;
6608 if (sysctl_sched_latency > limit)
6609 sysctl_sched_latency = limit;
6611 sysctl_sched_wakeup_granularity *= factor;
6613 sysctl_sched_shares_ratelimit *= factor;
6616 #ifdef CONFIG_SMP
6618 * This is how migration works:
6620 * 1) we queue a struct migration_req structure in the source CPU's
6621 * runqueue and wake up that CPU's migration thread.
6622 * 2) we down() the locked semaphore => thread blocks.
6623 * 3) migration thread wakes up (implicitly it forces the migrated
6624 * thread off the CPU)
6625 * 4) it gets the migration request and checks whether the migrated
6626 * task is still in the wrong runqueue.
6627 * 5) if it's in the wrong runqueue then the migration thread removes
6628 * it and puts it into the right queue.
6629 * 6) migration thread up()s the semaphore.
6630 * 7) we wake up and the migration is done.
6634 * Change a given task's CPU affinity. Migrate the thread to a
6635 * proper CPU and schedule it away if the CPU it's executing on
6636 * is removed from the allowed bitmask.
6638 * NOTE: the caller must have a valid reference to the task, the
6639 * task must not exit() & deallocate itself prematurely. The
6640 * call is not atomic; no spinlocks may be held.
6642 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
6644 struct migration_req req;
6645 unsigned long flags;
6646 struct rq *rq;
6647 int ret = 0;
6649 rq = task_rq_lock(p, &flags);
6650 if (!cpumask_intersects(new_mask, cpu_online_mask)) {
6651 ret = -EINVAL;
6652 goto out;
6655 if (unlikely((p->flags & PF_THREAD_BOUND) && p != current &&
6656 !cpumask_equal(&p->cpus_allowed, new_mask))) {
6657 ret = -EINVAL;
6658 goto out;
6661 if (p->sched_class->set_cpus_allowed)
6662 p->sched_class->set_cpus_allowed(p, new_mask);
6663 else {
6664 cpumask_copy(&p->cpus_allowed, new_mask);
6665 p->rt.nr_cpus_allowed = cpumask_weight(new_mask);
6668 /* Can the task run on the task's current CPU? If so, we're done */
6669 if (cpumask_test_cpu(task_cpu(p), new_mask))
6670 goto out;
6672 if (migrate_task(p, cpumask_any_and(cpu_online_mask, new_mask), &req)) {
6673 /* Need help from migration thread: drop lock and wait. */
6674 task_rq_unlock(rq, &flags);
6675 wake_up_process(rq->migration_thread);
6676 wait_for_completion(&req.done);
6677 tlb_migrate_finish(p->mm);
6678 return 0;
6680 out:
6681 task_rq_unlock(rq, &flags);
6683 return ret;
6685 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
6688 * Move (not current) task off this cpu, onto dest cpu. We're doing
6689 * this because either it can't run here any more (set_cpus_allowed()
6690 * away from this CPU, or CPU going down), or because we're
6691 * attempting to rebalance this task on exec (sched_exec).
6693 * So we race with normal scheduler movements, but that's OK, as long
6694 * as the task is no longer on this CPU.
6696 * Returns non-zero if task was successfully migrated.
6698 static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
6700 struct rq *rq_dest, *rq_src;
6701 int ret = 0, on_rq;
6703 if (unlikely(!cpu_active(dest_cpu)))
6704 return ret;
6706 rq_src = cpu_rq(src_cpu);
6707 rq_dest = cpu_rq(dest_cpu);
6709 double_rq_lock(rq_src, rq_dest);
6710 /* Already moved. */
6711 if (task_cpu(p) != src_cpu)
6712 goto done;
6713 /* Affinity changed (again). */
6714 if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
6715 goto fail;
6717 on_rq = p->se.on_rq;
6718 if (on_rq)
6719 deactivate_task(rq_src, p, 0);
6721 set_task_cpu(p, dest_cpu);
6722 if (on_rq) {
6723 activate_task(rq_dest, p, 0);
6724 check_preempt_curr(rq_dest, p, 0);
6726 done:
6727 ret = 1;
6728 fail:
6729 double_rq_unlock(rq_src, rq_dest);
6730 return ret;
6734 * migration_thread - this is a highprio system thread that performs
6735 * thread migration by bumping thread off CPU then 'pushing' onto
6736 * another runqueue.
6738 static int migration_thread(void *data)
6740 int cpu = (long)data;
6741 struct rq *rq;
6743 rq = cpu_rq(cpu);
6744 BUG_ON(rq->migration_thread != current);
6746 set_current_state(TASK_INTERRUPTIBLE);
6747 while (!kthread_should_stop()) {
6748 struct migration_req *req;
6749 struct list_head *head;
6751 spin_lock_irq(&rq->lock);
6753 if (cpu_is_offline(cpu)) {
6754 spin_unlock_irq(&rq->lock);
6755 goto wait_to_die;
6758 if (rq->active_balance) {
6759 active_load_balance(rq, cpu);
6760 rq->active_balance = 0;
6763 head = &rq->migration_queue;
6765 if (list_empty(head)) {
6766 spin_unlock_irq(&rq->lock);
6767 schedule();
6768 set_current_state(TASK_INTERRUPTIBLE);
6769 continue;
6771 req = list_entry(head->next, struct migration_req, list);
6772 list_del_init(head->next);
6774 spin_unlock(&rq->lock);
6775 __migrate_task(req->task, cpu, req->dest_cpu);
6776 local_irq_enable();
6778 complete(&req->done);
6780 __set_current_state(TASK_RUNNING);
6781 return 0;
6783 wait_to_die:
6784 /* Wait for kthread_stop */
6785 set_current_state(TASK_INTERRUPTIBLE);
6786 while (!kthread_should_stop()) {
6787 schedule();
6788 set_current_state(TASK_INTERRUPTIBLE);
6790 __set_current_state(TASK_RUNNING);
6791 return 0;
6794 #ifdef CONFIG_HOTPLUG_CPU
6796 static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
6798 int ret;
6800 local_irq_disable();
6801 ret = __migrate_task(p, src_cpu, dest_cpu);
6802 local_irq_enable();
6803 return ret;
6807 * Figure out where task on dead CPU should go, use force if necessary.
6809 static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
6811 int dest_cpu;
6812 const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(dead_cpu));
6814 again:
6815 /* Look for allowed, online CPU in same node. */
6816 for_each_cpu_and(dest_cpu, nodemask, cpu_online_mask)
6817 if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
6818 goto move;
6820 /* Any allowed, online CPU? */
6821 dest_cpu = cpumask_any_and(&p->cpus_allowed, cpu_online_mask);
6822 if (dest_cpu < nr_cpu_ids)
6823 goto move;
6825 /* No more Mr. Nice Guy. */
6826 if (dest_cpu >= nr_cpu_ids) {
6827 cpuset_cpus_allowed_locked(p, &p->cpus_allowed);
6828 dest_cpu = cpumask_any_and(cpu_online_mask, &p->cpus_allowed);
6831 * Don't tell them about moving exiting tasks or
6832 * kernel threads (both mm NULL), since they never
6833 * leave kernel.
6835 if (p->mm && printk_ratelimit()) {
6836 printk(KERN_INFO "process %d (%s) no "
6837 "longer affine to cpu%d\n",
6838 task_pid_nr(p), p->comm, dead_cpu);
6842 move:
6843 /* It can have affinity changed while we were choosing. */
6844 if (unlikely(!__migrate_task_irq(p, dead_cpu, dest_cpu)))
6845 goto again;
6849 * While a dead CPU has no uninterruptible tasks queued at this point,
6850 * it might still have a nonzero ->nr_uninterruptible counter, because
6851 * for performance reasons the counter is not stricly tracking tasks to
6852 * their home CPUs. So we just add the counter to another CPU's counter,
6853 * to keep the global sum constant after CPU-down:
6855 static void migrate_nr_uninterruptible(struct rq *rq_src)
6857 struct rq *rq_dest = cpu_rq(cpumask_any(cpu_online_mask));
6858 unsigned long flags;
6860 local_irq_save(flags);
6861 double_rq_lock(rq_src, rq_dest);
6862 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
6863 rq_src->nr_uninterruptible = 0;
6864 double_rq_unlock(rq_src, rq_dest);
6865 local_irq_restore(flags);
6868 /* Run through task list and migrate tasks from the dead cpu. */
6869 static void migrate_live_tasks(int src_cpu)
6871 struct task_struct *p, *t;
6873 read_lock(&tasklist_lock);
6875 do_each_thread(t, p) {
6876 if (p == current)
6877 continue;
6879 if (task_cpu(p) == src_cpu)
6880 move_task_off_dead_cpu(src_cpu, p);
6881 } while_each_thread(t, p);
6883 read_unlock(&tasklist_lock);
6887 * Schedules idle task to be the next runnable task on current CPU.
6888 * It does so by boosting its priority to highest possible.
6889 * Used by CPU offline code.
6891 void sched_idle_next(void)
6893 int this_cpu = smp_processor_id();
6894 struct rq *rq = cpu_rq(this_cpu);
6895 struct task_struct *p = rq->idle;
6896 unsigned long flags;
6898 /* cpu has to be offline */
6899 BUG_ON(cpu_online(this_cpu));
6902 * Strictly not necessary since rest of the CPUs are stopped by now
6903 * and interrupts disabled on the current cpu.
6905 spin_lock_irqsave(&rq->lock, flags);
6907 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
6909 update_rq_clock(rq);
6910 activate_task(rq, p, 0);
6912 spin_unlock_irqrestore(&rq->lock, flags);
6916 * Ensures that the idle task is using init_mm right before its cpu goes
6917 * offline.
6919 void idle_task_exit(void)
6921 struct mm_struct *mm = current->active_mm;
6923 BUG_ON(cpu_online(smp_processor_id()));
6925 if (mm != &init_mm)
6926 switch_mm(mm, &init_mm, current);
6927 mmdrop(mm);
6930 /* called under rq->lock with disabled interrupts */
6931 static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
6933 struct rq *rq = cpu_rq(dead_cpu);
6935 /* Must be exiting, otherwise would be on tasklist. */
6936 BUG_ON(!p->exit_state);
6938 /* Cannot have done final schedule yet: would have vanished. */
6939 BUG_ON(p->state == TASK_DEAD);
6941 get_task_struct(p);
6944 * Drop lock around migration; if someone else moves it,
6945 * that's OK. No task can be added to this CPU, so iteration is
6946 * fine.
6948 spin_unlock_irq(&rq->lock);
6949 move_task_off_dead_cpu(dead_cpu, p);
6950 spin_lock_irq(&rq->lock);
6952 put_task_struct(p);
6955 /* release_task() removes task from tasklist, so we won't find dead tasks. */
6956 static void migrate_dead_tasks(unsigned int dead_cpu)
6958 struct rq *rq = cpu_rq(dead_cpu);
6959 struct task_struct *next;
6961 for ( ; ; ) {
6962 if (!rq->nr_running)
6963 break;
6964 update_rq_clock(rq);
6965 next = pick_next_task(rq);
6966 if (!next)
6967 break;
6968 next->sched_class->put_prev_task(rq, next);
6969 migrate_dead(dead_cpu, next);
6973 #endif /* CONFIG_HOTPLUG_CPU */
6975 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
6977 static struct ctl_table sd_ctl_dir[] = {
6979 .procname = "sched_domain",
6980 .mode = 0555,
6982 {0, },
6985 static struct ctl_table sd_ctl_root[] = {
6987 .ctl_name = CTL_KERN,
6988 .procname = "kernel",
6989 .mode = 0555,
6990 .child = sd_ctl_dir,
6992 {0, },
6995 static struct ctl_table *sd_alloc_ctl_entry(int n)
6997 struct ctl_table *entry =
6998 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
7000 return entry;
7003 static void sd_free_ctl_entry(struct ctl_table **tablep)
7005 struct ctl_table *entry;
7008 * In the intermediate directories, both the child directory and
7009 * procname are dynamically allocated and could fail but the mode
7010 * will always be set. In the lowest directory the names are
7011 * static strings and all have proc handlers.
7013 for (entry = *tablep; entry->mode; entry++) {
7014 if (entry->child)
7015 sd_free_ctl_entry(&entry->child);
7016 if (entry->proc_handler == NULL)
7017 kfree(entry->procname);
7020 kfree(*tablep);
7021 *tablep = NULL;
7024 static void
7025 set_table_entry(struct ctl_table *entry,
7026 const char *procname, void *data, int maxlen,
7027 mode_t mode, proc_handler *proc_handler)
7029 entry->procname = procname;
7030 entry->data = data;
7031 entry->maxlen = maxlen;
7032 entry->mode = mode;
7033 entry->proc_handler = proc_handler;
7036 static struct ctl_table *
7037 sd_alloc_ctl_domain_table(struct sched_domain *sd)
7039 struct ctl_table *table = sd_alloc_ctl_entry(13);
7041 if (table == NULL)
7042 return NULL;
7044 set_table_entry(&table[0], "min_interval", &sd->min_interval,
7045 sizeof(long), 0644, proc_doulongvec_minmax);
7046 set_table_entry(&table[1], "max_interval", &sd->max_interval,
7047 sizeof(long), 0644, proc_doulongvec_minmax);
7048 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
7049 sizeof(int), 0644, proc_dointvec_minmax);
7050 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
7051 sizeof(int), 0644, proc_dointvec_minmax);
7052 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
7053 sizeof(int), 0644, proc_dointvec_minmax);
7054 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
7055 sizeof(int), 0644, proc_dointvec_minmax);
7056 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
7057 sizeof(int), 0644, proc_dointvec_minmax);
7058 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
7059 sizeof(int), 0644, proc_dointvec_minmax);
7060 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
7061 sizeof(int), 0644, proc_dointvec_minmax);
7062 set_table_entry(&table[9], "cache_nice_tries",
7063 &sd->cache_nice_tries,
7064 sizeof(int), 0644, proc_dointvec_minmax);
7065 set_table_entry(&table[10], "flags", &sd->flags,
7066 sizeof(int), 0644, proc_dointvec_minmax);
7067 set_table_entry(&table[11], "name", sd->name,
7068 CORENAME_MAX_SIZE, 0444, proc_dostring);
7069 /* &table[12] is terminator */
7071 return table;
7074 static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
7076 struct ctl_table *entry, *table;
7077 struct sched_domain *sd;
7078 int domain_num = 0, i;
7079 char buf[32];
7081 for_each_domain(cpu, sd)
7082 domain_num++;
7083 entry = table = sd_alloc_ctl_entry(domain_num + 1);
7084 if (table == NULL)
7085 return NULL;
7087 i = 0;
7088 for_each_domain(cpu, sd) {
7089 snprintf(buf, 32, "domain%d", i);
7090 entry->procname = kstrdup(buf, GFP_KERNEL);
7091 entry->mode = 0555;
7092 entry->child = sd_alloc_ctl_domain_table(sd);
7093 entry++;
7094 i++;
7096 return table;
7099 static struct ctl_table_header *sd_sysctl_header;
7100 static void register_sched_domain_sysctl(void)
7102 int i, cpu_num = num_online_cpus();
7103 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
7104 char buf[32];
7106 WARN_ON(sd_ctl_dir[0].child);
7107 sd_ctl_dir[0].child = entry;
7109 if (entry == NULL)
7110 return;
7112 for_each_online_cpu(i) {
7113 snprintf(buf, 32, "cpu%d", i);
7114 entry->procname = kstrdup(buf, GFP_KERNEL);
7115 entry->mode = 0555;
7116 entry->child = sd_alloc_ctl_cpu_table(i);
7117 entry++;
7120 WARN_ON(sd_sysctl_header);
7121 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
7124 /* may be called multiple times per register */
7125 static void unregister_sched_domain_sysctl(void)
7127 if (sd_sysctl_header)
7128 unregister_sysctl_table(sd_sysctl_header);
7129 sd_sysctl_header = NULL;
7130 if (sd_ctl_dir[0].child)
7131 sd_free_ctl_entry(&sd_ctl_dir[0].child);
7133 #else
7134 static void register_sched_domain_sysctl(void)
7137 static void unregister_sched_domain_sysctl(void)
7140 #endif
7142 static void set_rq_online(struct rq *rq)
7144 if (!rq->online) {
7145 const struct sched_class *class;
7147 cpumask_set_cpu(rq->cpu, rq->rd->online);
7148 rq->online = 1;
7150 for_each_class(class) {
7151 if (class->rq_online)
7152 class->rq_online(rq);
7157 static void set_rq_offline(struct rq *rq)
7159 if (rq->online) {
7160 const struct sched_class *class;
7162 for_each_class(class) {
7163 if (class->rq_offline)
7164 class->rq_offline(rq);
7167 cpumask_clear_cpu(rq->cpu, rq->rd->online);
7168 rq->online = 0;
7173 * migration_call - callback that gets triggered when a CPU is added.
7174 * Here we can start up the necessary migration thread for the new CPU.
7176 static int __cpuinit
7177 migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
7179 struct task_struct *p;
7180 int cpu = (long)hcpu;
7181 unsigned long flags;
7182 struct rq *rq;
7184 switch (action) {
7186 case CPU_UP_PREPARE:
7187 case CPU_UP_PREPARE_FROZEN:
7188 p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
7189 if (IS_ERR(p))
7190 return NOTIFY_BAD;
7191 kthread_bind(p, cpu);
7192 /* Must be high prio: stop_machine expects to yield to it. */
7193 rq = task_rq_lock(p, &flags);
7194 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
7195 task_rq_unlock(rq, &flags);
7196 cpu_rq(cpu)->migration_thread = p;
7197 break;
7199 case CPU_ONLINE:
7200 case CPU_ONLINE_FROZEN:
7201 /* Strictly unnecessary, as first user will wake it. */
7202 wake_up_process(cpu_rq(cpu)->migration_thread);
7204 /* Update our root-domain */
7205 rq = cpu_rq(cpu);
7206 spin_lock_irqsave(&rq->lock, flags);
7207 if (rq->rd) {
7208 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
7210 set_rq_online(rq);
7212 spin_unlock_irqrestore(&rq->lock, flags);
7213 break;
7215 #ifdef CONFIG_HOTPLUG_CPU
7216 case CPU_UP_CANCELED:
7217 case CPU_UP_CANCELED_FROZEN:
7218 if (!cpu_rq(cpu)->migration_thread)
7219 break;
7220 /* Unbind it from offline cpu so it can run. Fall thru. */
7221 kthread_bind(cpu_rq(cpu)->migration_thread,
7222 cpumask_any(cpu_online_mask));
7223 kthread_stop(cpu_rq(cpu)->migration_thread);
7224 cpu_rq(cpu)->migration_thread = NULL;
7225 break;
7227 case CPU_DEAD:
7228 case CPU_DEAD_FROZEN:
7229 cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
7230 migrate_live_tasks(cpu);
7231 rq = cpu_rq(cpu);
7232 kthread_stop(rq->migration_thread);
7233 rq->migration_thread = NULL;
7234 /* Idle task back to normal (off runqueue, low prio) */
7235 spin_lock_irq(&rq->lock);
7236 update_rq_clock(rq);
7237 deactivate_task(rq, rq->idle, 0);
7238 rq->idle->static_prio = MAX_PRIO;
7239 __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
7240 rq->idle->sched_class = &idle_sched_class;
7241 migrate_dead_tasks(cpu);
7242 spin_unlock_irq(&rq->lock);
7243 cpuset_unlock();
7244 migrate_nr_uninterruptible(rq);
7245 BUG_ON(rq->nr_running != 0);
7248 * No need to migrate the tasks: it was best-effort if
7249 * they didn't take sched_hotcpu_mutex. Just wake up
7250 * the requestors.
7252 spin_lock_irq(&rq->lock);
7253 while (!list_empty(&rq->migration_queue)) {
7254 struct migration_req *req;
7256 req = list_entry(rq->migration_queue.next,
7257 struct migration_req, list);
7258 list_del_init(&req->list);
7259 spin_unlock_irq(&rq->lock);
7260 complete(&req->done);
7261 spin_lock_irq(&rq->lock);
7263 spin_unlock_irq(&rq->lock);
7264 break;
7266 case CPU_DYING:
7267 case CPU_DYING_FROZEN:
7268 /* Update our root-domain */
7269 rq = cpu_rq(cpu);
7270 spin_lock_irqsave(&rq->lock, flags);
7271 if (rq->rd) {
7272 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
7273 set_rq_offline(rq);
7275 spin_unlock_irqrestore(&rq->lock, flags);
7276 break;
7277 #endif
7279 return NOTIFY_OK;
7282 /* Register at highest priority so that task migration (migrate_all_tasks)
7283 * happens before everything else.
7285 static struct notifier_block __cpuinitdata migration_notifier = {
7286 .notifier_call = migration_call,
7287 .priority = 10
7290 static int __init migration_init(void)
7292 void *cpu = (void *)(long)smp_processor_id();
7293 int err;
7295 /* Start one for the boot CPU: */
7296 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
7297 BUG_ON(err == NOTIFY_BAD);
7298 migration_call(&migration_notifier, CPU_ONLINE, cpu);
7299 register_cpu_notifier(&migration_notifier);
7301 return err;
7303 early_initcall(migration_init);
7304 #endif
7306 #ifdef CONFIG_SMP
7308 #ifdef CONFIG_SCHED_DEBUG
7310 static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
7311 struct cpumask *groupmask)
7313 struct sched_group *group = sd->groups;
7314 char str[256];
7316 cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
7317 cpumask_clear(groupmask);
7319 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
7321 if (!(sd->flags & SD_LOAD_BALANCE)) {
7322 printk("does not load-balance\n");
7323 if (sd->parent)
7324 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
7325 " has parent");
7326 return -1;
7329 printk(KERN_CONT "span %s level %s\n", str, sd->name);
7331 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
7332 printk(KERN_ERR "ERROR: domain->span does not contain "
7333 "CPU%d\n", cpu);
7335 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
7336 printk(KERN_ERR "ERROR: domain->groups does not contain"
7337 " CPU%d\n", cpu);
7340 printk(KERN_DEBUG "%*s groups:", level + 1, "");
7341 do {
7342 if (!group) {
7343 printk("\n");
7344 printk(KERN_ERR "ERROR: group is NULL\n");
7345 break;
7348 if (!group->__cpu_power) {
7349 printk(KERN_CONT "\n");
7350 printk(KERN_ERR "ERROR: domain->cpu_power not "
7351 "set\n");
7352 break;
7355 if (!cpumask_weight(sched_group_cpus(group))) {
7356 printk(KERN_CONT "\n");
7357 printk(KERN_ERR "ERROR: empty group\n");
7358 break;
7361 if (cpumask_intersects(groupmask, sched_group_cpus(group))) {
7362 printk(KERN_CONT "\n");
7363 printk(KERN_ERR "ERROR: repeated CPUs\n");
7364 break;
7367 cpumask_or(groupmask, groupmask, sched_group_cpus(group));
7369 cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
7370 printk(KERN_CONT " %s (__cpu_power = %d)", str,
7371 group->__cpu_power);
7373 group = group->next;
7374 } while (group != sd->groups);
7375 printk(KERN_CONT "\n");
7377 if (!cpumask_equal(sched_domain_span(sd), groupmask))
7378 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
7380 if (sd->parent &&
7381 !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
7382 printk(KERN_ERR "ERROR: parent span is not a superset "
7383 "of domain->span\n");
7384 return 0;
7387 static void sched_domain_debug(struct sched_domain *sd, int cpu)
7389 cpumask_var_t groupmask;
7390 int level = 0;
7392 if (!sd) {
7393 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
7394 return;
7397 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
7399 if (!alloc_cpumask_var(&groupmask, GFP_KERNEL)) {
7400 printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
7401 return;
7404 for (;;) {
7405 if (sched_domain_debug_one(sd, cpu, level, groupmask))
7406 break;
7407 level++;
7408 sd = sd->parent;
7409 if (!sd)
7410 break;
7412 free_cpumask_var(groupmask);
7414 #else /* !CONFIG_SCHED_DEBUG */
7415 # define sched_domain_debug(sd, cpu) do { } while (0)
7416 #endif /* CONFIG_SCHED_DEBUG */
7418 static int sd_degenerate(struct sched_domain *sd)
7420 if (cpumask_weight(sched_domain_span(sd)) == 1)
7421 return 1;
7423 /* Following flags need at least 2 groups */
7424 if (sd->flags & (SD_LOAD_BALANCE |
7425 SD_BALANCE_NEWIDLE |
7426 SD_BALANCE_FORK |
7427 SD_BALANCE_EXEC |
7428 SD_SHARE_CPUPOWER |
7429 SD_SHARE_PKG_RESOURCES)) {
7430 if (sd->groups != sd->groups->next)
7431 return 0;
7434 /* Following flags don't use groups */
7435 if (sd->flags & (SD_WAKE_IDLE |
7436 SD_WAKE_AFFINE |
7437 SD_WAKE_BALANCE))
7438 return 0;
7440 return 1;
7443 static int
7444 sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
7446 unsigned long cflags = sd->flags, pflags = parent->flags;
7448 if (sd_degenerate(parent))
7449 return 1;
7451 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
7452 return 0;
7454 /* Does parent contain flags not in child? */
7455 /* WAKE_BALANCE is a subset of WAKE_AFFINE */
7456 if (cflags & SD_WAKE_AFFINE)
7457 pflags &= ~SD_WAKE_BALANCE;
7458 /* Flags needing groups don't count if only 1 group in parent */
7459 if (parent->groups == parent->groups->next) {
7460 pflags &= ~(SD_LOAD_BALANCE |
7461 SD_BALANCE_NEWIDLE |
7462 SD_BALANCE_FORK |
7463 SD_BALANCE_EXEC |
7464 SD_SHARE_CPUPOWER |
7465 SD_SHARE_PKG_RESOURCES);
7466 if (nr_node_ids == 1)
7467 pflags &= ~SD_SERIALIZE;
7469 if (~cflags & pflags)
7470 return 0;
7472 return 1;
7475 static void free_rootdomain(struct root_domain *rd)
7477 cpupri_cleanup(&rd->cpupri);
7479 free_cpumask_var(rd->rto_mask);
7480 free_cpumask_var(rd->online);
7481 free_cpumask_var(rd->span);
7482 kfree(rd);
7485 static void rq_attach_root(struct rq *rq, struct root_domain *rd)
7487 struct root_domain *old_rd = NULL;
7488 unsigned long flags;
7490 spin_lock_irqsave(&rq->lock, flags);
7492 if (rq->rd) {
7493 old_rd = rq->rd;
7495 if (cpumask_test_cpu(rq->cpu, old_rd->online))
7496 set_rq_offline(rq);
7498 cpumask_clear_cpu(rq->cpu, old_rd->span);
7501 * If we dont want to free the old_rt yet then
7502 * set old_rd to NULL to skip the freeing later
7503 * in this function:
7505 if (!atomic_dec_and_test(&old_rd->refcount))
7506 old_rd = NULL;
7509 atomic_inc(&rd->refcount);
7510 rq->rd = rd;
7512 cpumask_set_cpu(rq->cpu, rd->span);
7513 if (cpumask_test_cpu(rq->cpu, cpu_online_mask))
7514 set_rq_online(rq);
7516 spin_unlock_irqrestore(&rq->lock, flags);
7518 if (old_rd)
7519 free_rootdomain(old_rd);
7522 static int __init_refok init_rootdomain(struct root_domain *rd, bool bootmem)
7524 memset(rd, 0, sizeof(*rd));
7526 if (bootmem) {
7527 alloc_bootmem_cpumask_var(&def_root_domain.span);
7528 alloc_bootmem_cpumask_var(&def_root_domain.online);
7529 alloc_bootmem_cpumask_var(&def_root_domain.rto_mask);
7530 cpupri_init(&rd->cpupri, true);
7531 return 0;
7534 if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
7535 goto out;
7536 if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
7537 goto free_span;
7538 if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
7539 goto free_online;
7541 if (cpupri_init(&rd->cpupri, false) != 0)
7542 goto free_rto_mask;
7543 return 0;
7545 free_rto_mask:
7546 free_cpumask_var(rd->rto_mask);
7547 free_online:
7548 free_cpumask_var(rd->online);
7549 free_span:
7550 free_cpumask_var(rd->span);
7551 out:
7552 return -ENOMEM;
7555 static void init_defrootdomain(void)
7557 init_rootdomain(&def_root_domain, true);
7559 atomic_set(&def_root_domain.refcount, 1);
7562 static struct root_domain *alloc_rootdomain(void)
7564 struct root_domain *rd;
7566 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
7567 if (!rd)
7568 return NULL;
7570 if (init_rootdomain(rd, false) != 0) {
7571 kfree(rd);
7572 return NULL;
7575 return rd;
7579 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
7580 * hold the hotplug lock.
7582 static void
7583 cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
7585 struct rq *rq = cpu_rq(cpu);
7586 struct sched_domain *tmp;
7588 /* Remove the sched domains which do not contribute to scheduling. */
7589 for (tmp = sd; tmp; ) {
7590 struct sched_domain *parent = tmp->parent;
7591 if (!parent)
7592 break;
7594 if (sd_parent_degenerate(tmp, parent)) {
7595 tmp->parent = parent->parent;
7596 if (parent->parent)
7597 parent->parent->child = tmp;
7598 } else
7599 tmp = tmp->parent;
7602 if (sd && sd_degenerate(sd)) {
7603 sd = sd->parent;
7604 if (sd)
7605 sd->child = NULL;
7608 sched_domain_debug(sd, cpu);
7610 rq_attach_root(rq, rd);
7611 rcu_assign_pointer(rq->sd, sd);
7614 /* cpus with isolated domains */
7615 static cpumask_var_t cpu_isolated_map;
7617 /* Setup the mask of cpus configured for isolated domains */
7618 static int __init isolated_cpu_setup(char *str)
7620 cpulist_parse(str, cpu_isolated_map);
7621 return 1;
7624 __setup("isolcpus=", isolated_cpu_setup);
7627 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
7628 * to a function which identifies what group(along with sched group) a CPU
7629 * belongs to. The return value of group_fn must be a >= 0 and < nr_cpu_ids
7630 * (due to the fact that we keep track of groups covered with a struct cpumask).
7632 * init_sched_build_groups will build a circular linked list of the groups
7633 * covered by the given span, and will set each group's ->cpumask correctly,
7634 * and ->cpu_power to 0.
7636 static void
7637 init_sched_build_groups(const struct cpumask *span,
7638 const struct cpumask *cpu_map,
7639 int (*group_fn)(int cpu, const struct cpumask *cpu_map,
7640 struct sched_group **sg,
7641 struct cpumask *tmpmask),
7642 struct cpumask *covered, struct cpumask *tmpmask)
7644 struct sched_group *first = NULL, *last = NULL;
7645 int i;
7647 cpumask_clear(covered);
7649 for_each_cpu(i, span) {
7650 struct sched_group *sg;
7651 int group = group_fn(i, cpu_map, &sg, tmpmask);
7652 int j;
7654 if (cpumask_test_cpu(i, covered))
7655 continue;
7657 cpumask_clear(sched_group_cpus(sg));
7658 sg->__cpu_power = 0;
7660 for_each_cpu(j, span) {
7661 if (group_fn(j, cpu_map, NULL, tmpmask) != group)
7662 continue;
7664 cpumask_set_cpu(j, covered);
7665 cpumask_set_cpu(j, sched_group_cpus(sg));
7667 if (!first)
7668 first = sg;
7669 if (last)
7670 last->next = sg;
7671 last = sg;
7673 last->next = first;
7676 #define SD_NODES_PER_DOMAIN 16
7678 #ifdef CONFIG_NUMA
7681 * find_next_best_node - find the next node to include in a sched_domain
7682 * @node: node whose sched_domain we're building
7683 * @used_nodes: nodes already in the sched_domain
7685 * Find the next node to include in a given scheduling domain. Simply
7686 * finds the closest node not already in the @used_nodes map.
7688 * Should use nodemask_t.
7690 static int find_next_best_node(int node, nodemask_t *used_nodes)
7692 int i, n, val, min_val, best_node = 0;
7694 min_val = INT_MAX;
7696 for (i = 0; i < nr_node_ids; i++) {
7697 /* Start at @node */
7698 n = (node + i) % nr_node_ids;
7700 if (!nr_cpus_node(n))
7701 continue;
7703 /* Skip already used nodes */
7704 if (node_isset(n, *used_nodes))
7705 continue;
7707 /* Simple min distance search */
7708 val = node_distance(node, n);
7710 if (val < min_val) {
7711 min_val = val;
7712 best_node = n;
7716 node_set(best_node, *used_nodes);
7717 return best_node;
7721 * sched_domain_node_span - get a cpumask for a node's sched_domain
7722 * @node: node whose cpumask we're constructing
7723 * @span: resulting cpumask
7725 * Given a node, construct a good cpumask for its sched_domain to span. It
7726 * should be one that prevents unnecessary balancing, but also spreads tasks
7727 * out optimally.
7729 static void sched_domain_node_span(int node, struct cpumask *span)
7731 nodemask_t used_nodes;
7732 int i;
7734 cpumask_clear(span);
7735 nodes_clear(used_nodes);
7737 cpumask_or(span, span, cpumask_of_node(node));
7738 node_set(node, used_nodes);
7740 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
7741 int next_node = find_next_best_node(node, &used_nodes);
7743 cpumask_or(span, span, cpumask_of_node(next_node));
7746 #endif /* CONFIG_NUMA */
7748 int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
7751 * The cpus mask in sched_group and sched_domain hangs off the end.
7752 * FIXME: use cpumask_var_t or dynamic percpu alloc to avoid wasting space
7753 * for nr_cpu_ids < CONFIG_NR_CPUS.
7755 struct static_sched_group {
7756 struct sched_group sg;
7757 DECLARE_BITMAP(cpus, CONFIG_NR_CPUS);
7760 struct static_sched_domain {
7761 struct sched_domain sd;
7762 DECLARE_BITMAP(span, CONFIG_NR_CPUS);
7766 * SMT sched-domains:
7768 #ifdef CONFIG_SCHED_SMT
7769 static DEFINE_PER_CPU(struct static_sched_domain, cpu_domains);
7770 static DEFINE_PER_CPU(struct static_sched_group, sched_group_cpus);
7772 static int
7773 cpu_to_cpu_group(int cpu, const struct cpumask *cpu_map,
7774 struct sched_group **sg, struct cpumask *unused)
7776 if (sg)
7777 *sg = &per_cpu(sched_group_cpus, cpu).sg;
7778 return cpu;
7780 #endif /* CONFIG_SCHED_SMT */
7783 * multi-core sched-domains:
7785 #ifdef CONFIG_SCHED_MC
7786 static DEFINE_PER_CPU(struct static_sched_domain, core_domains);
7787 static DEFINE_PER_CPU(struct static_sched_group, sched_group_core);
7788 #endif /* CONFIG_SCHED_MC */
7790 #if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
7791 static int
7792 cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
7793 struct sched_group **sg, struct cpumask *mask)
7795 int group;
7797 cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
7798 group = cpumask_first(mask);
7799 if (sg)
7800 *sg = &per_cpu(sched_group_core, group).sg;
7801 return group;
7803 #elif defined(CONFIG_SCHED_MC)
7804 static int
7805 cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
7806 struct sched_group **sg, struct cpumask *unused)
7808 if (sg)
7809 *sg = &per_cpu(sched_group_core, cpu).sg;
7810 return cpu;
7812 #endif
7814 static DEFINE_PER_CPU(struct static_sched_domain, phys_domains);
7815 static DEFINE_PER_CPU(struct static_sched_group, sched_group_phys);
7817 static int
7818 cpu_to_phys_group(int cpu, const struct cpumask *cpu_map,
7819 struct sched_group **sg, struct cpumask *mask)
7821 int group;
7822 #ifdef CONFIG_SCHED_MC
7823 cpumask_and(mask, cpu_coregroup_mask(cpu), cpu_map);
7824 group = cpumask_first(mask);
7825 #elif defined(CONFIG_SCHED_SMT)
7826 cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
7827 group = cpumask_first(mask);
7828 #else
7829 group = cpu;
7830 #endif
7831 if (sg)
7832 *sg = &per_cpu(sched_group_phys, group).sg;
7833 return group;
7836 #ifdef CONFIG_NUMA
7838 * The init_sched_build_groups can't handle what we want to do with node
7839 * groups, so roll our own. Now each node has its own list of groups which
7840 * gets dynamically allocated.
7842 static DEFINE_PER_CPU(struct static_sched_domain, node_domains);
7843 static struct sched_group ***sched_group_nodes_bycpu;
7845 static DEFINE_PER_CPU(struct static_sched_domain, allnodes_domains);
7846 static DEFINE_PER_CPU(struct static_sched_group, sched_group_allnodes);
7848 static int cpu_to_allnodes_group(int cpu, const struct cpumask *cpu_map,
7849 struct sched_group **sg,
7850 struct cpumask *nodemask)
7852 int group;
7854 cpumask_and(nodemask, cpumask_of_node(cpu_to_node(cpu)), cpu_map);
7855 group = cpumask_first(nodemask);
7857 if (sg)
7858 *sg = &per_cpu(sched_group_allnodes, group).sg;
7859 return group;
7862 static void init_numa_sched_groups_power(struct sched_group *group_head)
7864 struct sched_group *sg = group_head;
7865 int j;
7867 if (!sg)
7868 return;
7869 do {
7870 for_each_cpu(j, sched_group_cpus(sg)) {
7871 struct sched_domain *sd;
7873 sd = &per_cpu(phys_domains, j).sd;
7874 if (j != cpumask_first(sched_group_cpus(sd->groups))) {
7876 * Only add "power" once for each
7877 * physical package.
7879 continue;
7882 sg_inc_cpu_power(sg, sd->groups->__cpu_power);
7884 sg = sg->next;
7885 } while (sg != group_head);
7887 #endif /* CONFIG_NUMA */
7889 #ifdef CONFIG_NUMA
7890 /* Free memory allocated for various sched_group structures */
7891 static void free_sched_groups(const struct cpumask *cpu_map,
7892 struct cpumask *nodemask)
7894 int cpu, i;
7896 for_each_cpu(cpu, cpu_map) {
7897 struct sched_group **sched_group_nodes
7898 = sched_group_nodes_bycpu[cpu];
7900 if (!sched_group_nodes)
7901 continue;
7903 for (i = 0; i < nr_node_ids; i++) {
7904 struct sched_group *oldsg, *sg = sched_group_nodes[i];
7906 cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
7907 if (cpumask_empty(nodemask))
7908 continue;
7910 if (sg == NULL)
7911 continue;
7912 sg = sg->next;
7913 next_sg:
7914 oldsg = sg;
7915 sg = sg->next;
7916 kfree(oldsg);
7917 if (oldsg != sched_group_nodes[i])
7918 goto next_sg;
7920 kfree(sched_group_nodes);
7921 sched_group_nodes_bycpu[cpu] = NULL;
7924 #else /* !CONFIG_NUMA */
7925 static void free_sched_groups(const struct cpumask *cpu_map,
7926 struct cpumask *nodemask)
7929 #endif /* CONFIG_NUMA */
7932 * Initialize sched groups cpu_power.
7934 * cpu_power indicates the capacity of sched group, which is used while
7935 * distributing the load between different sched groups in a sched domain.
7936 * Typically cpu_power for all the groups in a sched domain will be same unless
7937 * there are asymmetries in the topology. If there are asymmetries, group
7938 * having more cpu_power will pickup more load compared to the group having
7939 * less cpu_power.
7941 * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
7942 * the maximum number of tasks a group can handle in the presence of other idle
7943 * or lightly loaded groups in the same sched domain.
7945 static void init_sched_groups_power(int cpu, struct sched_domain *sd)
7947 struct sched_domain *child;
7948 struct sched_group *group;
7950 WARN_ON(!sd || !sd->groups);
7952 if (cpu != cpumask_first(sched_group_cpus(sd->groups)))
7953 return;
7955 child = sd->child;
7957 sd->groups->__cpu_power = 0;
7960 * For perf policy, if the groups in child domain share resources
7961 * (for example cores sharing some portions of the cache hierarchy
7962 * or SMT), then set this domain groups cpu_power such that each group
7963 * can handle only one task, when there are other idle groups in the
7964 * same sched domain.
7966 if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
7967 (child->flags &
7968 (SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
7969 sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE);
7970 return;
7974 * add cpu_power of each child group to this groups cpu_power
7976 group = child->groups;
7977 do {
7978 sg_inc_cpu_power(sd->groups, group->__cpu_power);
7979 group = group->next;
7980 } while (group != child->groups);
7984 * Initializers for schedule domains
7985 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
7988 #ifdef CONFIG_SCHED_DEBUG
7989 # define SD_INIT_NAME(sd, type) sd->name = #type
7990 #else
7991 # define SD_INIT_NAME(sd, type) do { } while (0)
7992 #endif
7994 #define SD_INIT(sd, type) sd_init_##type(sd)
7996 #define SD_INIT_FUNC(type) \
7997 static noinline void sd_init_##type(struct sched_domain *sd) \
7999 memset(sd, 0, sizeof(*sd)); \
8000 *sd = SD_##type##_INIT; \
8001 sd->level = SD_LV_##type; \
8002 SD_INIT_NAME(sd, type); \
8005 SD_INIT_FUNC(CPU)
8006 #ifdef CONFIG_NUMA
8007 SD_INIT_FUNC(ALLNODES)
8008 SD_INIT_FUNC(NODE)
8009 #endif
8010 #ifdef CONFIG_SCHED_SMT
8011 SD_INIT_FUNC(SIBLING)
8012 #endif
8013 #ifdef CONFIG_SCHED_MC
8014 SD_INIT_FUNC(MC)
8015 #endif
8017 static int default_relax_domain_level = -1;
8019 static int __init setup_relax_domain_level(char *str)
8021 unsigned long val;
8023 val = simple_strtoul(str, NULL, 0);
8024 if (val < SD_LV_MAX)
8025 default_relax_domain_level = val;
8027 return 1;
8029 __setup("relax_domain_level=", setup_relax_domain_level);
8031 static void set_domain_attribute(struct sched_domain *sd,
8032 struct sched_domain_attr *attr)
8034 int request;
8036 if (!attr || attr->relax_domain_level < 0) {
8037 if (default_relax_domain_level < 0)
8038 return;
8039 else
8040 request = default_relax_domain_level;
8041 } else
8042 request = attr->relax_domain_level;
8043 if (request < sd->level) {
8044 /* turn off idle balance on this domain */
8045 sd->flags &= ~(SD_WAKE_IDLE|SD_BALANCE_NEWIDLE);
8046 } else {
8047 /* turn on idle balance on this domain */
8048 sd->flags |= (SD_WAKE_IDLE_FAR|SD_BALANCE_NEWIDLE);
8053 * Build sched domains for a given set of cpus and attach the sched domains
8054 * to the individual cpus
8056 static int __build_sched_domains(const struct cpumask *cpu_map,
8057 struct sched_domain_attr *attr)
8059 int i, err = -ENOMEM;
8060 struct root_domain *rd;
8061 cpumask_var_t nodemask, this_sibling_map, this_core_map, send_covered,
8062 tmpmask;
8063 #ifdef CONFIG_NUMA
8064 cpumask_var_t domainspan, covered, notcovered;
8065 struct sched_group **sched_group_nodes = NULL;
8066 int sd_allnodes = 0;
8068 if (!alloc_cpumask_var(&domainspan, GFP_KERNEL))
8069 goto out;
8070 if (!alloc_cpumask_var(&covered, GFP_KERNEL))
8071 goto free_domainspan;
8072 if (!alloc_cpumask_var(&notcovered, GFP_KERNEL))
8073 goto free_covered;
8074 #endif
8076 if (!alloc_cpumask_var(&nodemask, GFP_KERNEL))
8077 goto free_notcovered;
8078 if (!alloc_cpumask_var(&this_sibling_map, GFP_KERNEL))
8079 goto free_nodemask;
8080 if (!alloc_cpumask_var(&this_core_map, GFP_KERNEL))
8081 goto free_this_sibling_map;
8082 if (!alloc_cpumask_var(&send_covered, GFP_KERNEL))
8083 goto free_this_core_map;
8084 if (!alloc_cpumask_var(&tmpmask, GFP_KERNEL))
8085 goto free_send_covered;
8087 #ifdef CONFIG_NUMA
8089 * Allocate the per-node list of sched groups
8091 sched_group_nodes = kcalloc(nr_node_ids, sizeof(struct sched_group *),
8092 GFP_KERNEL);
8093 if (!sched_group_nodes) {
8094 printk(KERN_WARNING "Can not alloc sched group node list\n");
8095 goto free_tmpmask;
8097 #endif
8099 rd = alloc_rootdomain();
8100 if (!rd) {
8101 printk(KERN_WARNING "Cannot alloc root domain\n");
8102 goto free_sched_groups;
8105 #ifdef CONFIG_NUMA
8106 sched_group_nodes_bycpu[cpumask_first(cpu_map)] = sched_group_nodes;
8107 #endif
8110 * Set up domains for cpus specified by the cpu_map.
8112 for_each_cpu(i, cpu_map) {
8113 struct sched_domain *sd = NULL, *p;
8115 cpumask_and(nodemask, cpumask_of_node(cpu_to_node(i)), cpu_map);
8117 #ifdef CONFIG_NUMA
8118 if (cpumask_weight(cpu_map) >
8119 SD_NODES_PER_DOMAIN*cpumask_weight(nodemask)) {
8120 sd = &per_cpu(allnodes_domains, i).sd;
8121 SD_INIT(sd, ALLNODES);
8122 set_domain_attribute(sd, attr);
8123 cpumask_copy(sched_domain_span(sd), cpu_map);
8124 cpu_to_allnodes_group(i, cpu_map, &sd->groups, tmpmask);
8125 p = sd;
8126 sd_allnodes = 1;
8127 } else
8128 p = NULL;
8130 sd = &per_cpu(node_domains, i).sd;
8131 SD_INIT(sd, NODE);
8132 set_domain_attribute(sd, attr);
8133 sched_domain_node_span(cpu_to_node(i), sched_domain_span(sd));
8134 sd->parent = p;
8135 if (p)
8136 p->child = sd;
8137 cpumask_and(sched_domain_span(sd),
8138 sched_domain_span(sd), cpu_map);
8139 #endif
8141 p = sd;
8142 sd = &per_cpu(phys_domains, i).sd;
8143 SD_INIT(sd, CPU);
8144 set_domain_attribute(sd, attr);
8145 cpumask_copy(sched_domain_span(sd), nodemask);
8146 sd->parent = p;
8147 if (p)
8148 p->child = sd;
8149 cpu_to_phys_group(i, cpu_map, &sd->groups, tmpmask);
8151 #ifdef CONFIG_SCHED_MC
8152 p = sd;
8153 sd = &per_cpu(core_domains, i).sd;
8154 SD_INIT(sd, MC);
8155 set_domain_attribute(sd, attr);
8156 cpumask_and(sched_domain_span(sd), cpu_map,
8157 cpu_coregroup_mask(i));
8158 sd->parent = p;
8159 p->child = sd;
8160 cpu_to_core_group(i, cpu_map, &sd->groups, tmpmask);
8161 #endif
8163 #ifdef CONFIG_SCHED_SMT
8164 p = sd;
8165 sd = &per_cpu(cpu_domains, i).sd;
8166 SD_INIT(sd, SIBLING);
8167 set_domain_attribute(sd, attr);
8168 cpumask_and(sched_domain_span(sd),
8169 topology_thread_cpumask(i), cpu_map);
8170 sd->parent = p;
8171 p->child = sd;
8172 cpu_to_cpu_group(i, cpu_map, &sd->groups, tmpmask);
8173 #endif
8176 #ifdef CONFIG_SCHED_SMT
8177 /* Set up CPU (sibling) groups */
8178 for_each_cpu(i, cpu_map) {
8179 cpumask_and(this_sibling_map,
8180 topology_thread_cpumask(i), cpu_map);
8181 if (i != cpumask_first(this_sibling_map))
8182 continue;
8184 init_sched_build_groups(this_sibling_map, cpu_map,
8185 &cpu_to_cpu_group,
8186 send_covered, tmpmask);
8188 #endif
8190 #ifdef CONFIG_SCHED_MC
8191 /* Set up multi-core groups */
8192 for_each_cpu(i, cpu_map) {
8193 cpumask_and(this_core_map, cpu_coregroup_mask(i), cpu_map);
8194 if (i != cpumask_first(this_core_map))
8195 continue;
8197 init_sched_build_groups(this_core_map, cpu_map,
8198 &cpu_to_core_group,
8199 send_covered, tmpmask);
8201 #endif
8203 /* Set up physical groups */
8204 for (i = 0; i < nr_node_ids; i++) {
8205 cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
8206 if (cpumask_empty(nodemask))
8207 continue;
8209 init_sched_build_groups(nodemask, cpu_map,
8210 &cpu_to_phys_group,
8211 send_covered, tmpmask);
8214 #ifdef CONFIG_NUMA
8215 /* Set up node groups */
8216 if (sd_allnodes) {
8217 init_sched_build_groups(cpu_map, cpu_map,
8218 &cpu_to_allnodes_group,
8219 send_covered, tmpmask);
8222 for (i = 0; i < nr_node_ids; i++) {
8223 /* Set up node groups */
8224 struct sched_group *sg, *prev;
8225 int j;
8227 cpumask_clear(covered);
8228 cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
8229 if (cpumask_empty(nodemask)) {
8230 sched_group_nodes[i] = NULL;
8231 continue;
8234 sched_domain_node_span(i, domainspan);
8235 cpumask_and(domainspan, domainspan, cpu_map);
8237 sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
8238 GFP_KERNEL, i);
8239 if (!sg) {
8240 printk(KERN_WARNING "Can not alloc domain group for "
8241 "node %d\n", i);
8242 goto error;
8244 sched_group_nodes[i] = sg;
8245 for_each_cpu(j, nodemask) {
8246 struct sched_domain *sd;
8248 sd = &per_cpu(node_domains, j).sd;
8249 sd->groups = sg;
8251 sg->__cpu_power = 0;
8252 cpumask_copy(sched_group_cpus(sg), nodemask);
8253 sg->next = sg;
8254 cpumask_or(covered, covered, nodemask);
8255 prev = sg;
8257 for (j = 0; j < nr_node_ids; j++) {
8258 int n = (i + j) % nr_node_ids;
8260 cpumask_complement(notcovered, covered);
8261 cpumask_and(tmpmask, notcovered, cpu_map);
8262 cpumask_and(tmpmask, tmpmask, domainspan);
8263 if (cpumask_empty(tmpmask))
8264 break;
8266 cpumask_and(tmpmask, tmpmask, cpumask_of_node(n));
8267 if (cpumask_empty(tmpmask))
8268 continue;
8270 sg = kmalloc_node(sizeof(struct sched_group) +
8271 cpumask_size(),
8272 GFP_KERNEL, i);
8273 if (!sg) {
8274 printk(KERN_WARNING
8275 "Can not alloc domain group for node %d\n", j);
8276 goto error;
8278 sg->__cpu_power = 0;
8279 cpumask_copy(sched_group_cpus(sg), tmpmask);
8280 sg->next = prev->next;
8281 cpumask_or(covered, covered, tmpmask);
8282 prev->next = sg;
8283 prev = sg;
8286 #endif
8288 /* Calculate CPU power for physical packages and nodes */
8289 #ifdef CONFIG_SCHED_SMT
8290 for_each_cpu(i, cpu_map) {
8291 struct sched_domain *sd = &per_cpu(cpu_domains, i).sd;
8293 init_sched_groups_power(i, sd);
8295 #endif
8296 #ifdef CONFIG_SCHED_MC
8297 for_each_cpu(i, cpu_map) {
8298 struct sched_domain *sd = &per_cpu(core_domains, i).sd;
8300 init_sched_groups_power(i, sd);
8302 #endif
8304 for_each_cpu(i, cpu_map) {
8305 struct sched_domain *sd = &per_cpu(phys_domains, i).sd;
8307 init_sched_groups_power(i, sd);
8310 #ifdef CONFIG_NUMA
8311 for (i = 0; i < nr_node_ids; i++)
8312 init_numa_sched_groups_power(sched_group_nodes[i]);
8314 if (sd_allnodes) {
8315 struct sched_group *sg;
8317 cpu_to_allnodes_group(cpumask_first(cpu_map), cpu_map, &sg,
8318 tmpmask);
8319 init_numa_sched_groups_power(sg);
8321 #endif
8323 /* Attach the domains */
8324 for_each_cpu(i, cpu_map) {
8325 struct sched_domain *sd;
8326 #ifdef CONFIG_SCHED_SMT
8327 sd = &per_cpu(cpu_domains, i).sd;
8328 #elif defined(CONFIG_SCHED_MC)
8329 sd = &per_cpu(core_domains, i).sd;
8330 #else
8331 sd = &per_cpu(phys_domains, i).sd;
8332 #endif
8333 cpu_attach_domain(sd, rd, i);
8336 err = 0;
8338 free_tmpmask:
8339 free_cpumask_var(tmpmask);
8340 free_send_covered:
8341 free_cpumask_var(send_covered);
8342 free_this_core_map:
8343 free_cpumask_var(this_core_map);
8344 free_this_sibling_map:
8345 free_cpumask_var(this_sibling_map);
8346 free_nodemask:
8347 free_cpumask_var(nodemask);
8348 free_notcovered:
8349 #ifdef CONFIG_NUMA
8350 free_cpumask_var(notcovered);
8351 free_covered:
8352 free_cpumask_var(covered);
8353 free_domainspan:
8354 free_cpumask_var(domainspan);
8355 out:
8356 #endif
8357 return err;
8359 free_sched_groups:
8360 #ifdef CONFIG_NUMA
8361 kfree(sched_group_nodes);
8362 #endif
8363 goto free_tmpmask;
8365 #ifdef CONFIG_NUMA
8366 error:
8367 free_sched_groups(cpu_map, tmpmask);
8368 free_rootdomain(rd);
8369 goto free_tmpmask;
8370 #endif
8373 static int build_sched_domains(const struct cpumask *cpu_map)
8375 return __build_sched_domains(cpu_map, NULL);
8378 static struct cpumask *doms_cur; /* current sched domains */
8379 static int ndoms_cur; /* number of sched domains in 'doms_cur' */
8380 static struct sched_domain_attr *dattr_cur;
8381 /* attribues of custom domains in 'doms_cur' */
8384 * Special case: If a kmalloc of a doms_cur partition (array of
8385 * cpumask) fails, then fallback to a single sched domain,
8386 * as determined by the single cpumask fallback_doms.
8388 static cpumask_var_t fallback_doms;
8391 * arch_update_cpu_topology lets virtualized architectures update the
8392 * cpu core maps. It is supposed to return 1 if the topology changed
8393 * or 0 if it stayed the same.
8395 int __attribute__((weak)) arch_update_cpu_topology(void)
8397 return 0;
8401 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
8402 * For now this just excludes isolated cpus, but could be used to
8403 * exclude other special cases in the future.
8405 static int arch_init_sched_domains(const struct cpumask *cpu_map)
8407 int err;
8409 arch_update_cpu_topology();
8410 ndoms_cur = 1;
8411 doms_cur = kmalloc(cpumask_size(), GFP_KERNEL);
8412 if (!doms_cur)
8413 doms_cur = fallback_doms;
8414 cpumask_andnot(doms_cur, cpu_map, cpu_isolated_map);
8415 dattr_cur = NULL;
8416 err = build_sched_domains(doms_cur);
8417 register_sched_domain_sysctl();
8419 return err;
8422 static void arch_destroy_sched_domains(const struct cpumask *cpu_map,
8423 struct cpumask *tmpmask)
8425 free_sched_groups(cpu_map, tmpmask);
8429 * Detach sched domains from a group of cpus specified in cpu_map
8430 * These cpus will now be attached to the NULL domain
8432 static void detach_destroy_domains(const struct cpumask *cpu_map)
8434 /* Save because hotplug lock held. */
8435 static DECLARE_BITMAP(tmpmask, CONFIG_NR_CPUS);
8436 int i;
8438 for_each_cpu(i, cpu_map)
8439 cpu_attach_domain(NULL, &def_root_domain, i);
8440 synchronize_sched();
8441 arch_destroy_sched_domains(cpu_map, to_cpumask(tmpmask));
8444 /* handle null as "default" */
8445 static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
8446 struct sched_domain_attr *new, int idx_new)
8448 struct sched_domain_attr tmp;
8450 /* fast path */
8451 if (!new && !cur)
8452 return 1;
8454 tmp = SD_ATTR_INIT;
8455 return !memcmp(cur ? (cur + idx_cur) : &tmp,
8456 new ? (new + idx_new) : &tmp,
8457 sizeof(struct sched_domain_attr));
8461 * Partition sched domains as specified by the 'ndoms_new'
8462 * cpumasks in the array doms_new[] of cpumasks. This compares
8463 * doms_new[] to the current sched domain partitioning, doms_cur[].
8464 * It destroys each deleted domain and builds each new domain.
8466 * 'doms_new' is an array of cpumask's of length 'ndoms_new'.
8467 * The masks don't intersect (don't overlap.) We should setup one
8468 * sched domain for each mask. CPUs not in any of the cpumasks will
8469 * not be load balanced. If the same cpumask appears both in the
8470 * current 'doms_cur' domains and in the new 'doms_new', we can leave
8471 * it as it is.
8473 * The passed in 'doms_new' should be kmalloc'd. This routine takes
8474 * ownership of it and will kfree it when done with it. If the caller
8475 * failed the kmalloc call, then it can pass in doms_new == NULL &&
8476 * ndoms_new == 1, and partition_sched_domains() will fallback to
8477 * the single partition 'fallback_doms', it also forces the domains
8478 * to be rebuilt.
8480 * If doms_new == NULL it will be replaced with cpu_online_mask.
8481 * ndoms_new == 0 is a special case for destroying existing domains,
8482 * and it will not create the default domain.
8484 * Call with hotplug lock held
8486 /* FIXME: Change to struct cpumask *doms_new[] */
8487 void partition_sched_domains(int ndoms_new, struct cpumask *doms_new,
8488 struct sched_domain_attr *dattr_new)
8490 int i, j, n;
8491 int new_topology;
8493 mutex_lock(&sched_domains_mutex);
8495 /* always unregister in case we don't destroy any domains */
8496 unregister_sched_domain_sysctl();
8498 /* Let architecture update cpu core mappings. */
8499 new_topology = arch_update_cpu_topology();
8501 n = doms_new ? ndoms_new : 0;
8503 /* Destroy deleted domains */
8504 for (i = 0; i < ndoms_cur; i++) {
8505 for (j = 0; j < n && !new_topology; j++) {
8506 if (cpumask_equal(&doms_cur[i], &doms_new[j])
8507 && dattrs_equal(dattr_cur, i, dattr_new, j))
8508 goto match1;
8510 /* no match - a current sched domain not in new doms_new[] */
8511 detach_destroy_domains(doms_cur + i);
8512 match1:
8516 if (doms_new == NULL) {
8517 ndoms_cur = 0;
8518 doms_new = fallback_doms;
8519 cpumask_andnot(&doms_new[0], cpu_online_mask, cpu_isolated_map);
8520 WARN_ON_ONCE(dattr_new);
8523 /* Build new domains */
8524 for (i = 0; i < ndoms_new; i++) {
8525 for (j = 0; j < ndoms_cur && !new_topology; j++) {
8526 if (cpumask_equal(&doms_new[i], &doms_cur[j])
8527 && dattrs_equal(dattr_new, i, dattr_cur, j))
8528 goto match2;
8530 /* no match - add a new doms_new */
8531 __build_sched_domains(doms_new + i,
8532 dattr_new ? dattr_new + i : NULL);
8533 match2:
8537 /* Remember the new sched domains */
8538 if (doms_cur != fallback_doms)
8539 kfree(doms_cur);
8540 kfree(dattr_cur); /* kfree(NULL) is safe */
8541 doms_cur = doms_new;
8542 dattr_cur = dattr_new;
8543 ndoms_cur = ndoms_new;
8545 register_sched_domain_sysctl();
8547 mutex_unlock(&sched_domains_mutex);
8550 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
8551 static void arch_reinit_sched_domains(void)
8553 get_online_cpus();
8555 /* Destroy domains first to force the rebuild */
8556 partition_sched_domains(0, NULL, NULL);
8558 rebuild_sched_domains();
8559 put_online_cpus();
8562 static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
8564 unsigned int level = 0;
8566 if (sscanf(buf, "%u", &level) != 1)
8567 return -EINVAL;
8570 * level is always be positive so don't check for
8571 * level < POWERSAVINGS_BALANCE_NONE which is 0
8572 * What happens on 0 or 1 byte write,
8573 * need to check for count as well?
8576 if (level >= MAX_POWERSAVINGS_BALANCE_LEVELS)
8577 return -EINVAL;
8579 if (smt)
8580 sched_smt_power_savings = level;
8581 else
8582 sched_mc_power_savings = level;
8584 arch_reinit_sched_domains();
8586 return count;
8589 #ifdef CONFIG_SCHED_MC
8590 static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
8591 char *page)
8593 return sprintf(page, "%u\n", sched_mc_power_savings);
8595 static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
8596 const char *buf, size_t count)
8598 return sched_power_savings_store(buf, count, 0);
8600 static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
8601 sched_mc_power_savings_show,
8602 sched_mc_power_savings_store);
8603 #endif
8605 #ifdef CONFIG_SCHED_SMT
8606 static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
8607 char *page)
8609 return sprintf(page, "%u\n", sched_smt_power_savings);
8611 static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
8612 const char *buf, size_t count)
8614 return sched_power_savings_store(buf, count, 1);
8616 static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
8617 sched_smt_power_savings_show,
8618 sched_smt_power_savings_store);
8619 #endif
8621 int __init sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
8623 int err = 0;
8625 #ifdef CONFIG_SCHED_SMT
8626 if (smt_capable())
8627 err = sysfs_create_file(&cls->kset.kobj,
8628 &attr_sched_smt_power_savings.attr);
8629 #endif
8630 #ifdef CONFIG_SCHED_MC
8631 if (!err && mc_capable())
8632 err = sysfs_create_file(&cls->kset.kobj,
8633 &attr_sched_mc_power_savings.attr);
8634 #endif
8635 return err;
8637 #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
8639 #ifndef CONFIG_CPUSETS
8641 * Add online and remove offline CPUs from the scheduler domains.
8642 * When cpusets are enabled they take over this function.
8644 static int update_sched_domains(struct notifier_block *nfb,
8645 unsigned long action, void *hcpu)
8647 switch (action) {
8648 case CPU_ONLINE:
8649 case CPU_ONLINE_FROZEN:
8650 case CPU_DEAD:
8651 case CPU_DEAD_FROZEN:
8652 partition_sched_domains(1, NULL, NULL);
8653 return NOTIFY_OK;
8655 default:
8656 return NOTIFY_DONE;
8659 #endif
8661 static int update_runtime(struct notifier_block *nfb,
8662 unsigned long action, void *hcpu)
8664 int cpu = (int)(long)hcpu;
8666 switch (action) {
8667 case CPU_DOWN_PREPARE:
8668 case CPU_DOWN_PREPARE_FROZEN:
8669 disable_runtime(cpu_rq(cpu));
8670 return NOTIFY_OK;
8672 case CPU_DOWN_FAILED:
8673 case CPU_DOWN_FAILED_FROZEN:
8674 case CPU_ONLINE:
8675 case CPU_ONLINE_FROZEN:
8676 enable_runtime(cpu_rq(cpu));
8677 return NOTIFY_OK;
8679 default:
8680 return NOTIFY_DONE;
8684 void __init sched_init_smp(void)
8686 cpumask_var_t non_isolated_cpus;
8688 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
8690 #if defined(CONFIG_NUMA)
8691 sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
8692 GFP_KERNEL);
8693 BUG_ON(sched_group_nodes_bycpu == NULL);
8694 #endif
8695 get_online_cpus();
8696 mutex_lock(&sched_domains_mutex);
8697 arch_init_sched_domains(cpu_online_mask);
8698 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
8699 if (cpumask_empty(non_isolated_cpus))
8700 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
8701 mutex_unlock(&sched_domains_mutex);
8702 put_online_cpus();
8704 #ifndef CONFIG_CPUSETS
8705 /* XXX: Theoretical race here - CPU may be hotplugged now */
8706 hotcpu_notifier(update_sched_domains, 0);
8707 #endif
8709 /* RT runtime code needs to handle some hotplug events */
8710 hotcpu_notifier(update_runtime, 0);
8712 init_hrtick();
8714 /* Move init over to a non-isolated CPU */
8715 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
8716 BUG();
8717 sched_init_granularity();
8718 free_cpumask_var(non_isolated_cpus);
8720 alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
8721 init_sched_rt_class();
8723 #else
8724 void __init sched_init_smp(void)
8726 sched_init_granularity();
8728 #endif /* CONFIG_SMP */
8730 int in_sched_functions(unsigned long addr)
8732 return in_lock_functions(addr) ||
8733 (addr >= (unsigned long)__sched_text_start
8734 && addr < (unsigned long)__sched_text_end);
8737 static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
8739 cfs_rq->tasks_timeline = RB_ROOT;
8740 INIT_LIST_HEAD(&cfs_rq->tasks);
8741 #ifdef CONFIG_FAIR_GROUP_SCHED
8742 cfs_rq->rq = rq;
8743 #endif
8744 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
8747 static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
8749 struct rt_prio_array *array;
8750 int i;
8752 array = &rt_rq->active;
8753 for (i = 0; i < MAX_RT_PRIO; i++) {
8754 INIT_LIST_HEAD(array->queue + i);
8755 __clear_bit(i, array->bitmap);
8757 /* delimiter for bitsearch: */
8758 __set_bit(MAX_RT_PRIO, array->bitmap);
8760 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
8761 rt_rq->highest_prio.curr = MAX_RT_PRIO;
8762 #ifdef CONFIG_SMP
8763 rt_rq->highest_prio.next = MAX_RT_PRIO;
8764 #endif
8765 #endif
8766 #ifdef CONFIG_SMP
8767 rt_rq->rt_nr_migratory = 0;
8768 rt_rq->overloaded = 0;
8769 plist_head_init(&rq->rt.pushable_tasks, &rq->lock);
8770 #endif
8772 rt_rq->rt_time = 0;
8773 rt_rq->rt_throttled = 0;
8774 rt_rq->rt_runtime = 0;
8775 spin_lock_init(&rt_rq->rt_runtime_lock);
8777 #ifdef CONFIG_RT_GROUP_SCHED
8778 rt_rq->rt_nr_boosted = 0;
8779 rt_rq->rq = rq;
8780 #endif
8783 #ifdef CONFIG_FAIR_GROUP_SCHED
8784 static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
8785 struct sched_entity *se, int cpu, int add,
8786 struct sched_entity *parent)
8788 struct rq *rq = cpu_rq(cpu);
8789 tg->cfs_rq[cpu] = cfs_rq;
8790 init_cfs_rq(cfs_rq, rq);
8791 cfs_rq->tg = tg;
8792 if (add)
8793 list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
8795 tg->se[cpu] = se;
8796 /* se could be NULL for init_task_group */
8797 if (!se)
8798 return;
8800 if (!parent)
8801 se->cfs_rq = &rq->cfs;
8802 else
8803 se->cfs_rq = parent->my_q;
8805 se->my_q = cfs_rq;
8806 se->load.weight = tg->shares;
8807 se->load.inv_weight = 0;
8808 se->parent = parent;
8810 #endif
8812 #ifdef CONFIG_RT_GROUP_SCHED
8813 static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
8814 struct sched_rt_entity *rt_se, int cpu, int add,
8815 struct sched_rt_entity *parent)
8817 struct rq *rq = cpu_rq(cpu);
8819 tg->rt_rq[cpu] = rt_rq;
8820 init_rt_rq(rt_rq, rq);
8821 rt_rq->tg = tg;
8822 rt_rq->rt_se = rt_se;
8823 rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
8824 if (add)
8825 list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);
8827 tg->rt_se[cpu] = rt_se;
8828 if (!rt_se)
8829 return;
8831 if (!parent)
8832 rt_se->rt_rq = &rq->rt;
8833 else
8834 rt_se->rt_rq = parent->my_q;
8836 rt_se->my_q = rt_rq;
8837 rt_se->parent = parent;
8838 INIT_LIST_HEAD(&rt_se->run_list);
8840 #endif
8842 void __init sched_init(void)
8844 int i, j;
8845 unsigned long alloc_size = 0, ptr;
8847 #ifdef CONFIG_FAIR_GROUP_SCHED
8848 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
8849 #endif
8850 #ifdef CONFIG_RT_GROUP_SCHED
8851 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
8852 #endif
8853 #ifdef CONFIG_USER_SCHED
8854 alloc_size *= 2;
8855 #endif
8856 #ifdef CONFIG_CPUMASK_OFFSTACK
8857 alloc_size += num_possible_cpus() * cpumask_size();
8858 #endif
8860 * As sched_init() is called before page_alloc is setup,
8861 * we use alloc_bootmem().
8863 if (alloc_size) {
8864 ptr = (unsigned long)alloc_bootmem(alloc_size);
8866 #ifdef CONFIG_FAIR_GROUP_SCHED
8867 init_task_group.se = (struct sched_entity **)ptr;
8868 ptr += nr_cpu_ids * sizeof(void **);
8870 init_task_group.cfs_rq = (struct cfs_rq **)ptr;
8871 ptr += nr_cpu_ids * sizeof(void **);
8873 #ifdef CONFIG_USER_SCHED
8874 root_task_group.se = (struct sched_entity **)ptr;
8875 ptr += nr_cpu_ids * sizeof(void **);
8877 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
8878 ptr += nr_cpu_ids * sizeof(void **);
8879 #endif /* CONFIG_USER_SCHED */
8880 #endif /* CONFIG_FAIR_GROUP_SCHED */
8881 #ifdef CONFIG_RT_GROUP_SCHED
8882 init_task_group.rt_se = (struct sched_rt_entity **)ptr;
8883 ptr += nr_cpu_ids * sizeof(void **);
8885 init_task_group.rt_rq = (struct rt_rq **)ptr;
8886 ptr += nr_cpu_ids * sizeof(void **);
8888 #ifdef CONFIG_USER_SCHED
8889 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
8890 ptr += nr_cpu_ids * sizeof(void **);
8892 root_task_group.rt_rq = (struct rt_rq **)ptr;
8893 ptr += nr_cpu_ids * sizeof(void **);
8894 #endif /* CONFIG_USER_SCHED */
8895 #endif /* CONFIG_RT_GROUP_SCHED */
8896 #ifdef CONFIG_CPUMASK_OFFSTACK
8897 for_each_possible_cpu(i) {
8898 per_cpu(load_balance_tmpmask, i) = (void *)ptr;
8899 ptr += cpumask_size();
8901 #endif /* CONFIG_CPUMASK_OFFSTACK */
8904 #ifdef CONFIG_SMP
8905 init_defrootdomain();
8906 #endif
8908 init_rt_bandwidth(&def_rt_bandwidth,
8909 global_rt_period(), global_rt_runtime());
8911 #ifdef CONFIG_RT_GROUP_SCHED
8912 init_rt_bandwidth(&init_task_group.rt_bandwidth,
8913 global_rt_period(), global_rt_runtime());
8914 #ifdef CONFIG_USER_SCHED
8915 init_rt_bandwidth(&root_task_group.rt_bandwidth,
8916 global_rt_period(), RUNTIME_INF);
8917 #endif /* CONFIG_USER_SCHED */
8918 #endif /* CONFIG_RT_GROUP_SCHED */
8920 #ifdef CONFIG_GROUP_SCHED
8921 list_add(&init_task_group.list, &task_groups);
8922 INIT_LIST_HEAD(&init_task_group.children);
8924 #ifdef CONFIG_USER_SCHED
8925 INIT_LIST_HEAD(&root_task_group.children);
8926 init_task_group.parent = &root_task_group;
8927 list_add(&init_task_group.siblings, &root_task_group.children);
8928 #endif /* CONFIG_USER_SCHED */
8929 #endif /* CONFIG_GROUP_SCHED */
8931 for_each_possible_cpu(i) {
8932 struct rq *rq;
8934 rq = cpu_rq(i);
8935 spin_lock_init(&rq->lock);
8936 rq->nr_running = 0;
8937 init_cfs_rq(&rq->cfs, rq);
8938 init_rt_rq(&rq->rt, rq);
8939 #ifdef CONFIG_FAIR_GROUP_SCHED
8940 init_task_group.shares = init_task_group_load;
8941 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
8942 #ifdef CONFIG_CGROUP_SCHED
8944 * How much cpu bandwidth does init_task_group get?
8946 * In case of task-groups formed thr' the cgroup filesystem, it
8947 * gets 100% of the cpu resources in the system. This overall
8948 * system cpu resource is divided among the tasks of
8949 * init_task_group and its child task-groups in a fair manner,
8950 * based on each entity's (task or task-group's) weight
8951 * (se->load.weight).
8953 * In other words, if init_task_group has 10 tasks of weight
8954 * 1024) and two child groups A0 and A1 (of weight 1024 each),
8955 * then A0's share of the cpu resource is:
8957 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
8959 * We achieve this by letting init_task_group's tasks sit
8960 * directly in rq->cfs (i.e init_task_group->se[] = NULL).
8962 init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, 1, NULL);
8963 #elif defined CONFIG_USER_SCHED
8964 root_task_group.shares = NICE_0_LOAD;
8965 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, 0, NULL);
8967 * In case of task-groups formed thr' the user id of tasks,
8968 * init_task_group represents tasks belonging to root user.
8969 * Hence it forms a sibling of all subsequent groups formed.
8970 * In this case, init_task_group gets only a fraction of overall
8971 * system cpu resource, based on the weight assigned to root
8972 * user's cpu share (INIT_TASK_GROUP_LOAD). This is accomplished
8973 * by letting tasks of init_task_group sit in a separate cfs_rq
8974 * (init_cfs_rq) and having one entity represent this group of
8975 * tasks in rq->cfs (i.e init_task_group->se[] != NULL).
8977 init_tg_cfs_entry(&init_task_group,
8978 &per_cpu(init_cfs_rq, i),
8979 &per_cpu(init_sched_entity, i), i, 1,
8980 root_task_group.se[i]);
8982 #endif
8983 #endif /* CONFIG_FAIR_GROUP_SCHED */
8985 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
8986 #ifdef CONFIG_RT_GROUP_SCHED
8987 INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
8988 #ifdef CONFIG_CGROUP_SCHED
8989 init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, 1, NULL);
8990 #elif defined CONFIG_USER_SCHED
8991 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, 0, NULL);
8992 init_tg_rt_entry(&init_task_group,
8993 &per_cpu(init_rt_rq, i),
8994 &per_cpu(init_sched_rt_entity, i), i, 1,
8995 root_task_group.rt_se[i]);
8996 #endif
8997 #endif
8999 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
9000 rq->cpu_load[j] = 0;
9001 #ifdef CONFIG_SMP
9002 rq->sd = NULL;
9003 rq->rd = NULL;
9004 rq->active_balance = 0;
9005 rq->next_balance = jiffies;
9006 rq->push_cpu = 0;
9007 rq->cpu = i;
9008 rq->online = 0;
9009 rq->migration_thread = NULL;
9010 INIT_LIST_HEAD(&rq->migration_queue);
9011 rq_attach_root(rq, &def_root_domain);
9012 #endif
9013 init_rq_hrtick(rq);
9014 atomic_set(&rq->nr_iowait, 0);
9017 set_load_weight(&init_task);
9019 #ifdef CONFIG_PREEMPT_NOTIFIERS
9020 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
9021 #endif
9023 #ifdef CONFIG_SMP
9024 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
9025 #endif
9027 #ifdef CONFIG_RT_MUTEXES
9028 plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
9029 #endif
9032 * The boot idle thread does lazy MMU switching as well:
9034 atomic_inc(&init_mm.mm_count);
9035 enter_lazy_tlb(&init_mm, current);
9038 * Make us the idle thread. Technically, schedule() should not be
9039 * called from this thread, however somewhere below it might be,
9040 * but because we are the idle thread, we just pick up running again
9041 * when this runqueue becomes "idle".
9043 init_idle(current, smp_processor_id());
9045 * During early bootup we pretend to be a normal task:
9047 current->sched_class = &fair_sched_class;
9049 /* Allocate the nohz_cpu_mask if CONFIG_CPUMASK_OFFSTACK */
9050 alloc_bootmem_cpumask_var(&nohz_cpu_mask);
9051 #ifdef CONFIG_SMP
9052 #ifdef CONFIG_NO_HZ
9053 alloc_bootmem_cpumask_var(&nohz.cpu_mask);
9054 #endif
9055 alloc_bootmem_cpumask_var(&cpu_isolated_map);
9056 #endif /* SMP */
9058 scheduler_running = 1;
9061 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
9062 void __might_sleep(char *file, int line)
9064 #ifdef in_atomic
9065 static unsigned long prev_jiffy; /* ratelimiting */
9067 if ((!in_atomic() && !irqs_disabled()) ||
9068 system_state != SYSTEM_RUNNING || oops_in_progress)
9069 return;
9070 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
9071 return;
9072 prev_jiffy = jiffies;
9074 printk(KERN_ERR
9075 "BUG: sleeping function called from invalid context at %s:%d\n",
9076 file, line);
9077 printk(KERN_ERR
9078 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
9079 in_atomic(), irqs_disabled(),
9080 current->pid, current->comm);
9082 debug_show_held_locks(current);
9083 if (irqs_disabled())
9084 print_irqtrace_events(current);
9085 dump_stack();
9086 #endif
9088 EXPORT_SYMBOL(__might_sleep);
9089 #endif
9091 #ifdef CONFIG_MAGIC_SYSRQ
9092 static void normalize_task(struct rq *rq, struct task_struct *p)
9094 int on_rq;
9096 update_rq_clock(rq);
9097 on_rq = p->se.on_rq;
9098 if (on_rq)
9099 deactivate_task(rq, p, 0);
9100 __setscheduler(rq, p, SCHED_NORMAL, 0);
9101 if (on_rq) {
9102 activate_task(rq, p, 0);
9103 resched_task(rq->curr);
9107 void normalize_rt_tasks(void)
9109 struct task_struct *g, *p;
9110 unsigned long flags;
9111 struct rq *rq;
9113 read_lock_irqsave(&tasklist_lock, flags);
9114 do_each_thread(g, p) {
9116 * Only normalize user tasks:
9118 if (!p->mm)
9119 continue;
9121 p->se.exec_start = 0;
9122 #ifdef CONFIG_SCHEDSTATS
9123 p->se.wait_start = 0;
9124 p->se.sleep_start = 0;
9125 p->se.block_start = 0;
9126 #endif
9128 if (!rt_task(p)) {
9130 * Renice negative nice level userspace
9131 * tasks back to 0:
9133 if (TASK_NICE(p) < 0 && p->mm)
9134 set_user_nice(p, 0);
9135 continue;
9138 spin_lock(&p->pi_lock);
9139 rq = __task_rq_lock(p);
9141 normalize_task(rq, p);
9143 __task_rq_unlock(rq);
9144 spin_unlock(&p->pi_lock);
9145 } while_each_thread(g, p);
9147 read_unlock_irqrestore(&tasklist_lock, flags);
9150 #endif /* CONFIG_MAGIC_SYSRQ */
9152 #ifdef CONFIG_IA64
9154 * These functions are only useful for the IA64 MCA handling.
9156 * They can only be called when the whole system has been
9157 * stopped - every CPU needs to be quiescent, and no scheduling
9158 * activity can take place. Using them for anything else would
9159 * be a serious bug, and as a result, they aren't even visible
9160 * under any other configuration.
9164 * curr_task - return the current task for a given cpu.
9165 * @cpu: the processor in question.
9167 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
9169 struct task_struct *curr_task(int cpu)
9171 return cpu_curr(cpu);
9175 * set_curr_task - set the current task for a given cpu.
9176 * @cpu: the processor in question.
9177 * @p: the task pointer to set.
9179 * Description: This function must only be used when non-maskable interrupts
9180 * are serviced on a separate stack. It allows the architecture to switch the
9181 * notion of the current task on a cpu in a non-blocking manner. This function
9182 * must be called with all CPU's synchronized, and interrupts disabled, the
9183 * and caller must save the original value of the current task (see
9184 * curr_task() above) and restore that value before reenabling interrupts and
9185 * re-starting the system.
9187 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
9189 void set_curr_task(int cpu, struct task_struct *p)
9191 cpu_curr(cpu) = p;
9194 #endif
9196 #ifdef CONFIG_FAIR_GROUP_SCHED
9197 static void free_fair_sched_group(struct task_group *tg)
9199 int i;
9201 for_each_possible_cpu(i) {
9202 if (tg->cfs_rq)
9203 kfree(tg->cfs_rq[i]);
9204 if (tg->se)
9205 kfree(tg->se[i]);
9208 kfree(tg->cfs_rq);
9209 kfree(tg->se);
9212 static
9213 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
9215 struct cfs_rq *cfs_rq;
9216 struct sched_entity *se;
9217 struct rq *rq;
9218 int i;
9220 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
9221 if (!tg->cfs_rq)
9222 goto err;
9223 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
9224 if (!tg->se)
9225 goto err;
9227 tg->shares = NICE_0_LOAD;
9229 for_each_possible_cpu(i) {
9230 rq = cpu_rq(i);
9232 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
9233 GFP_KERNEL, cpu_to_node(i));
9234 if (!cfs_rq)
9235 goto err;
9237 se = kzalloc_node(sizeof(struct sched_entity),
9238 GFP_KERNEL, cpu_to_node(i));
9239 if (!se)
9240 goto err;
9242 init_tg_cfs_entry(tg, cfs_rq, se, i, 0, parent->se[i]);
9245 return 1;
9247 err:
9248 return 0;
9251 static inline void register_fair_sched_group(struct task_group *tg, int cpu)
9253 list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list,
9254 &cpu_rq(cpu)->leaf_cfs_rq_list);
9257 static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
9259 list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list);
9261 #else /* !CONFG_FAIR_GROUP_SCHED */
9262 static inline void free_fair_sched_group(struct task_group *tg)
9266 static inline
9267 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
9269 return 1;
9272 static inline void register_fair_sched_group(struct task_group *tg, int cpu)
9276 static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
9279 #endif /* CONFIG_FAIR_GROUP_SCHED */
9281 #ifdef CONFIG_RT_GROUP_SCHED
9282 static void free_rt_sched_group(struct task_group *tg)
9284 int i;
9286 destroy_rt_bandwidth(&tg->rt_bandwidth);
9288 for_each_possible_cpu(i) {
9289 if (tg->rt_rq)
9290 kfree(tg->rt_rq[i]);
9291 if (tg->rt_se)
9292 kfree(tg->rt_se[i]);
9295 kfree(tg->rt_rq);
9296 kfree(tg->rt_se);
9299 static
9300 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
9302 struct rt_rq *rt_rq;
9303 struct sched_rt_entity *rt_se;
9304 struct rq *rq;
9305 int i;
9307 tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
9308 if (!tg->rt_rq)
9309 goto err;
9310 tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
9311 if (!tg->rt_se)
9312 goto err;
9314 init_rt_bandwidth(&tg->rt_bandwidth,
9315 ktime_to_ns(def_rt_bandwidth.rt_period), 0);
9317 for_each_possible_cpu(i) {
9318 rq = cpu_rq(i);
9320 rt_rq = kzalloc_node(sizeof(struct rt_rq),
9321 GFP_KERNEL, cpu_to_node(i));
9322 if (!rt_rq)
9323 goto err;
9325 rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
9326 GFP_KERNEL, cpu_to_node(i));
9327 if (!rt_se)
9328 goto err;
9330 init_tg_rt_entry(tg, rt_rq, rt_se, i, 0, parent->rt_se[i]);
9333 return 1;
9335 err:
9336 return 0;
9339 static inline void register_rt_sched_group(struct task_group *tg, int cpu)
9341 list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list,
9342 &cpu_rq(cpu)->leaf_rt_rq_list);
9345 static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
9347 list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list);
9349 #else /* !CONFIG_RT_GROUP_SCHED */
9350 static inline void free_rt_sched_group(struct task_group *tg)
9354 static inline
9355 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
9357 return 1;
9360 static inline void register_rt_sched_group(struct task_group *tg, int cpu)
9364 static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
9367 #endif /* CONFIG_RT_GROUP_SCHED */
9369 #ifdef CONFIG_GROUP_SCHED
9370 static void free_sched_group(struct task_group *tg)
9372 free_fair_sched_group(tg);
9373 free_rt_sched_group(tg);
9374 kfree(tg);
9377 /* allocate runqueue etc for a new task group */
9378 struct task_group *sched_create_group(struct task_group *parent)
9380 struct task_group *tg;
9381 unsigned long flags;
9382 int i;
9384 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
9385 if (!tg)
9386 return ERR_PTR(-ENOMEM);
9388 if (!alloc_fair_sched_group(tg, parent))
9389 goto err;
9391 if (!alloc_rt_sched_group(tg, parent))
9392 goto err;
9394 spin_lock_irqsave(&task_group_lock, flags);
9395 for_each_possible_cpu(i) {
9396 register_fair_sched_group(tg, i);
9397 register_rt_sched_group(tg, i);
9399 list_add_rcu(&tg->list, &task_groups);
9401 WARN_ON(!parent); /* root should already exist */
9403 tg->parent = parent;
9404 INIT_LIST_HEAD(&tg->children);
9405 list_add_rcu(&tg->siblings, &parent->children);
9406 spin_unlock_irqrestore(&task_group_lock, flags);
9408 return tg;
9410 err:
9411 free_sched_group(tg);
9412 return ERR_PTR(-ENOMEM);
9415 /* rcu callback to free various structures associated with a task group */
9416 static void free_sched_group_rcu(struct rcu_head *rhp)
9418 /* now it should be safe to free those cfs_rqs */
9419 free_sched_group(container_of(rhp, struct task_group, rcu));
9422 /* Destroy runqueue etc associated with a task group */
9423 void sched_destroy_group(struct task_group *tg)
9425 unsigned long flags;
9426 int i;
9428 spin_lock_irqsave(&task_group_lock, flags);
9429 for_each_possible_cpu(i) {
9430 unregister_fair_sched_group(tg, i);
9431 unregister_rt_sched_group(tg, i);
9433 list_del_rcu(&tg->list);
9434 list_del_rcu(&tg->siblings);
9435 spin_unlock_irqrestore(&task_group_lock, flags);
9437 /* wait for possible concurrent references to cfs_rqs complete */
9438 call_rcu(&tg->rcu, free_sched_group_rcu);
9441 /* change task's runqueue when it moves between groups.
9442 * The caller of this function should have put the task in its new group
9443 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
9444 * reflect its new group.
9446 void sched_move_task(struct task_struct *tsk)
9448 int on_rq, running;
9449 unsigned long flags;
9450 struct rq *rq;
9452 rq = task_rq_lock(tsk, &flags);
9454 update_rq_clock(rq);
9456 running = task_current(rq, tsk);
9457 on_rq = tsk->se.on_rq;
9459 if (on_rq)
9460 dequeue_task(rq, tsk, 0);
9461 if (unlikely(running))
9462 tsk->sched_class->put_prev_task(rq, tsk);
9464 set_task_rq(tsk, task_cpu(tsk));
9466 #ifdef CONFIG_FAIR_GROUP_SCHED
9467 if (tsk->sched_class->moved_group)
9468 tsk->sched_class->moved_group(tsk);
9469 #endif
9471 if (unlikely(running))
9472 tsk->sched_class->set_curr_task(rq);
9473 if (on_rq)
9474 enqueue_task(rq, tsk, 0);
9476 task_rq_unlock(rq, &flags);
9478 #endif /* CONFIG_GROUP_SCHED */
9480 #ifdef CONFIG_FAIR_GROUP_SCHED
9481 static void __set_se_shares(struct sched_entity *se, unsigned long shares)
9483 struct cfs_rq *cfs_rq = se->cfs_rq;
9484 int on_rq;
9486 on_rq = se->on_rq;
9487 if (on_rq)
9488 dequeue_entity(cfs_rq, se, 0);
9490 se->load.weight = shares;
9491 se->load.inv_weight = 0;
9493 if (on_rq)
9494 enqueue_entity(cfs_rq, se, 0);
9497 static void set_se_shares(struct sched_entity *se, unsigned long shares)
9499 struct cfs_rq *cfs_rq = se->cfs_rq;
9500 struct rq *rq = cfs_rq->rq;
9501 unsigned long flags;
9503 spin_lock_irqsave(&rq->lock, flags);
9504 __set_se_shares(se, shares);
9505 spin_unlock_irqrestore(&rq->lock, flags);
9508 static DEFINE_MUTEX(shares_mutex);
9510 int sched_group_set_shares(struct task_group *tg, unsigned long shares)
9512 int i;
9513 unsigned long flags;
9516 * We can't change the weight of the root cgroup.
9518 if (!tg->se[0])
9519 return -EINVAL;
9521 if (shares < MIN_SHARES)
9522 shares = MIN_SHARES;
9523 else if (shares > MAX_SHARES)
9524 shares = MAX_SHARES;
9526 mutex_lock(&shares_mutex);
9527 if (tg->shares == shares)
9528 goto done;
9530 spin_lock_irqsave(&task_group_lock, flags);
9531 for_each_possible_cpu(i)
9532 unregister_fair_sched_group(tg, i);
9533 list_del_rcu(&tg->siblings);
9534 spin_unlock_irqrestore(&task_group_lock, flags);
9536 /* wait for any ongoing reference to this group to finish */
9537 synchronize_sched();
9540 * Now we are free to modify the group's share on each cpu
9541 * w/o tripping rebalance_share or load_balance_fair.
9543 tg->shares = shares;
9544 for_each_possible_cpu(i) {
9546 * force a rebalance
9548 cfs_rq_set_shares(tg->cfs_rq[i], 0);
9549 set_se_shares(tg->se[i], shares);
9553 * Enable load balance activity on this group, by inserting it back on
9554 * each cpu's rq->leaf_cfs_rq_list.
9556 spin_lock_irqsave(&task_group_lock, flags);
9557 for_each_possible_cpu(i)
9558 register_fair_sched_group(tg, i);
9559 list_add_rcu(&tg->siblings, &tg->parent->children);
9560 spin_unlock_irqrestore(&task_group_lock, flags);
9561 done:
9562 mutex_unlock(&shares_mutex);
9563 return 0;
9566 unsigned long sched_group_shares(struct task_group *tg)
9568 return tg->shares;
9570 #endif
9572 #ifdef CONFIG_RT_GROUP_SCHED
9574 * Ensure that the real time constraints are schedulable.
9576 static DEFINE_MUTEX(rt_constraints_mutex);
9578 static unsigned long to_ratio(u64 period, u64 runtime)
9580 if (runtime == RUNTIME_INF)
9581 return 1ULL << 20;
9583 return div64_u64(runtime << 20, period);
9586 /* Must be called with tasklist_lock held */
9587 static inline int tg_has_rt_tasks(struct task_group *tg)
9589 struct task_struct *g, *p;
9591 do_each_thread(g, p) {
9592 if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
9593 return 1;
9594 } while_each_thread(g, p);
9596 return 0;
9599 struct rt_schedulable_data {
9600 struct task_group *tg;
9601 u64 rt_period;
9602 u64 rt_runtime;
9605 static int tg_schedulable(struct task_group *tg, void *data)
9607 struct rt_schedulable_data *d = data;
9608 struct task_group *child;
9609 unsigned long total, sum = 0;
9610 u64 period, runtime;
9612 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
9613 runtime = tg->rt_bandwidth.rt_runtime;
9615 if (tg == d->tg) {
9616 period = d->rt_period;
9617 runtime = d->rt_runtime;
9620 #ifdef CONFIG_USER_SCHED
9621 if (tg == &root_task_group) {
9622 period = global_rt_period();
9623 runtime = global_rt_runtime();
9625 #endif
9628 * Cannot have more runtime than the period.
9630 if (runtime > period && runtime != RUNTIME_INF)
9631 return -EINVAL;
9634 * Ensure we don't starve existing RT tasks.
9636 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
9637 return -EBUSY;
9639 total = to_ratio(period, runtime);
9642 * Nobody can have more than the global setting allows.
9644 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
9645 return -EINVAL;
9648 * The sum of our children's runtime should not exceed our own.
9650 list_for_each_entry_rcu(child, &tg->children, siblings) {
9651 period = ktime_to_ns(child->rt_bandwidth.rt_period);
9652 runtime = child->rt_bandwidth.rt_runtime;
9654 if (child == d->tg) {
9655 period = d->rt_period;
9656 runtime = d->rt_runtime;
9659 sum += to_ratio(period, runtime);
9662 if (sum > total)
9663 return -EINVAL;
9665 return 0;
9668 static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
9670 struct rt_schedulable_data data = {
9671 .tg = tg,
9672 .rt_period = period,
9673 .rt_runtime = runtime,
9676 return walk_tg_tree(tg_schedulable, tg_nop, &data);
9679 static int tg_set_bandwidth(struct task_group *tg,
9680 u64 rt_period, u64 rt_runtime)
9682 int i, err = 0;
9684 mutex_lock(&rt_constraints_mutex);
9685 read_lock(&tasklist_lock);
9686 err = __rt_schedulable(tg, rt_period, rt_runtime);
9687 if (err)
9688 goto unlock;
9690 spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
9691 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
9692 tg->rt_bandwidth.rt_runtime = rt_runtime;
9694 for_each_possible_cpu(i) {
9695 struct rt_rq *rt_rq = tg->rt_rq[i];
9697 spin_lock(&rt_rq->rt_runtime_lock);
9698 rt_rq->rt_runtime = rt_runtime;
9699 spin_unlock(&rt_rq->rt_runtime_lock);
9701 spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
9702 unlock:
9703 read_unlock(&tasklist_lock);
9704 mutex_unlock(&rt_constraints_mutex);
9706 return err;
9709 int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
9711 u64 rt_runtime, rt_period;
9713 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
9714 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
9715 if (rt_runtime_us < 0)
9716 rt_runtime = RUNTIME_INF;
9718 return tg_set_bandwidth(tg, rt_period, rt_runtime);
9721 long sched_group_rt_runtime(struct task_group *tg)
9723 u64 rt_runtime_us;
9725 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
9726 return -1;
9728 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
9729 do_div(rt_runtime_us, NSEC_PER_USEC);
9730 return rt_runtime_us;
9733 int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
9735 u64 rt_runtime, rt_period;
9737 rt_period = (u64)rt_period_us * NSEC_PER_USEC;
9738 rt_runtime = tg->rt_bandwidth.rt_runtime;
9740 if (rt_period == 0)
9741 return -EINVAL;
9743 return tg_set_bandwidth(tg, rt_period, rt_runtime);
9746 long sched_group_rt_period(struct task_group *tg)
9748 u64 rt_period_us;
9750 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
9751 do_div(rt_period_us, NSEC_PER_USEC);
9752 return rt_period_us;
9755 static int sched_rt_global_constraints(void)
9757 u64 runtime, period;
9758 int ret = 0;
9760 if (sysctl_sched_rt_period <= 0)
9761 return -EINVAL;
9763 runtime = global_rt_runtime();
9764 period = global_rt_period();
9767 * Sanity check on the sysctl variables.
9769 if (runtime > period && runtime != RUNTIME_INF)
9770 return -EINVAL;
9772 mutex_lock(&rt_constraints_mutex);
9773 read_lock(&tasklist_lock);
9774 ret = __rt_schedulable(NULL, 0, 0);
9775 read_unlock(&tasklist_lock);
9776 mutex_unlock(&rt_constraints_mutex);
9778 return ret;
9781 int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
9783 /* Don't accept realtime tasks when there is no way for them to run */
9784 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
9785 return 0;
9787 return 1;
9790 #else /* !CONFIG_RT_GROUP_SCHED */
9791 static int sched_rt_global_constraints(void)
9793 unsigned long flags;
9794 int i;
9796 if (sysctl_sched_rt_period <= 0)
9797 return -EINVAL;
9799 spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
9800 for_each_possible_cpu(i) {
9801 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
9803 spin_lock(&rt_rq->rt_runtime_lock);
9804 rt_rq->rt_runtime = global_rt_runtime();
9805 spin_unlock(&rt_rq->rt_runtime_lock);
9807 spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
9809 return 0;
9811 #endif /* CONFIG_RT_GROUP_SCHED */
9813 int sched_rt_handler(struct ctl_table *table, int write,
9814 struct file *filp, void __user *buffer, size_t *lenp,
9815 loff_t *ppos)
9817 int ret;
9818 int old_period, old_runtime;
9819 static DEFINE_MUTEX(mutex);
9821 mutex_lock(&mutex);
9822 old_period = sysctl_sched_rt_period;
9823 old_runtime = sysctl_sched_rt_runtime;
9825 ret = proc_dointvec(table, write, filp, buffer, lenp, ppos);
9827 if (!ret && write) {
9828 ret = sched_rt_global_constraints();
9829 if (ret) {
9830 sysctl_sched_rt_period = old_period;
9831 sysctl_sched_rt_runtime = old_runtime;
9832 } else {
9833 def_rt_bandwidth.rt_runtime = global_rt_runtime();
9834 def_rt_bandwidth.rt_period =
9835 ns_to_ktime(global_rt_period());
9838 mutex_unlock(&mutex);
9840 return ret;
9843 #ifdef CONFIG_CGROUP_SCHED
9845 /* return corresponding task_group object of a cgroup */
9846 static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
9848 return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
9849 struct task_group, css);
9852 static struct cgroup_subsys_state *
9853 cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
9855 struct task_group *tg, *parent;
9857 if (!cgrp->parent) {
9858 /* This is early initialization for the top cgroup */
9859 return &init_task_group.css;
9862 parent = cgroup_tg(cgrp->parent);
9863 tg = sched_create_group(parent);
9864 if (IS_ERR(tg))
9865 return ERR_PTR(-ENOMEM);
9867 return &tg->css;
9870 static void
9871 cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
9873 struct task_group *tg = cgroup_tg(cgrp);
9875 sched_destroy_group(tg);
9878 static int
9879 cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
9880 struct task_struct *tsk)
9882 #ifdef CONFIG_RT_GROUP_SCHED
9883 if (!sched_rt_can_attach(cgroup_tg(cgrp), tsk))
9884 return -EINVAL;
9885 #else
9886 /* We don't support RT-tasks being in separate groups */
9887 if (tsk->sched_class != &fair_sched_class)
9888 return -EINVAL;
9889 #endif
9891 return 0;
9894 static void
9895 cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
9896 struct cgroup *old_cont, struct task_struct *tsk)
9898 sched_move_task(tsk);
9901 #ifdef CONFIG_FAIR_GROUP_SCHED
9902 static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
9903 u64 shareval)
9905 return sched_group_set_shares(cgroup_tg(cgrp), shareval);
9908 static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
9910 struct task_group *tg = cgroup_tg(cgrp);
9912 return (u64) tg->shares;
9914 #endif /* CONFIG_FAIR_GROUP_SCHED */
9916 #ifdef CONFIG_RT_GROUP_SCHED
9917 static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
9918 s64 val)
9920 return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
9923 static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
9925 return sched_group_rt_runtime(cgroup_tg(cgrp));
9928 static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
9929 u64 rt_period_us)
9931 return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
9934 static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
9936 return sched_group_rt_period(cgroup_tg(cgrp));
9938 #endif /* CONFIG_RT_GROUP_SCHED */
9940 static struct cftype cpu_files[] = {
9941 #ifdef CONFIG_FAIR_GROUP_SCHED
9943 .name = "shares",
9944 .read_u64 = cpu_shares_read_u64,
9945 .write_u64 = cpu_shares_write_u64,
9947 #endif
9948 #ifdef CONFIG_RT_GROUP_SCHED
9950 .name = "rt_runtime_us",
9951 .read_s64 = cpu_rt_runtime_read,
9952 .write_s64 = cpu_rt_runtime_write,
9955 .name = "rt_period_us",
9956 .read_u64 = cpu_rt_period_read_uint,
9957 .write_u64 = cpu_rt_period_write_uint,
9959 #endif
9962 static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
9964 return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
9967 struct cgroup_subsys cpu_cgroup_subsys = {
9968 .name = "cpu",
9969 .create = cpu_cgroup_create,
9970 .destroy = cpu_cgroup_destroy,
9971 .can_attach = cpu_cgroup_can_attach,
9972 .attach = cpu_cgroup_attach,
9973 .populate = cpu_cgroup_populate,
9974 .subsys_id = cpu_cgroup_subsys_id,
9975 .early_init = 1,
9978 #endif /* CONFIG_CGROUP_SCHED */
9980 #ifdef CONFIG_CGROUP_CPUACCT
9983 * CPU accounting code for task groups.
9985 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
9986 * (balbir@in.ibm.com).
9989 /* track cpu usage of a group of tasks and its child groups */
9990 struct cpuacct {
9991 struct cgroup_subsys_state css;
9992 /* cpuusage holds pointer to a u64-type object on every cpu */
9993 u64 *cpuusage;
9994 struct percpu_counter cpustat[CPUACCT_STAT_NSTATS];
9995 struct cpuacct *parent;
9998 struct cgroup_subsys cpuacct_subsys;
10000 /* return cpu accounting group corresponding to this container */
10001 static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
10003 return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
10004 struct cpuacct, css);
10007 /* return cpu accounting group to which this task belongs */
10008 static inline struct cpuacct *task_ca(struct task_struct *tsk)
10010 return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
10011 struct cpuacct, css);
10014 /* create a new cpu accounting group */
10015 static struct cgroup_subsys_state *cpuacct_create(
10016 struct cgroup_subsys *ss, struct cgroup *cgrp)
10018 struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
10019 int i;
10021 if (!ca)
10022 goto out;
10024 ca->cpuusage = alloc_percpu(u64);
10025 if (!ca->cpuusage)
10026 goto out_free_ca;
10028 for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
10029 if (percpu_counter_init(&ca->cpustat[i], 0))
10030 goto out_free_counters;
10032 if (cgrp->parent)
10033 ca->parent = cgroup_ca(cgrp->parent);
10035 return &ca->css;
10037 out_free_counters:
10038 while (--i >= 0)
10039 percpu_counter_destroy(&ca->cpustat[i]);
10040 free_percpu(ca->cpuusage);
10041 out_free_ca:
10042 kfree(ca);
10043 out:
10044 return ERR_PTR(-ENOMEM);
10047 /* destroy an existing cpu accounting group */
10048 static void
10049 cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
10051 struct cpuacct *ca = cgroup_ca(cgrp);
10052 int i;
10054 for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
10055 percpu_counter_destroy(&ca->cpustat[i]);
10056 free_percpu(ca->cpuusage);
10057 kfree(ca);
10060 static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
10062 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
10063 u64 data;
10065 #ifndef CONFIG_64BIT
10067 * Take rq->lock to make 64-bit read safe on 32-bit platforms.
10069 spin_lock_irq(&cpu_rq(cpu)->lock);
10070 data = *cpuusage;
10071 spin_unlock_irq(&cpu_rq(cpu)->lock);
10072 #else
10073 data = *cpuusage;
10074 #endif
10076 return data;
10079 static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
10081 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
10083 #ifndef CONFIG_64BIT
10085 * Take rq->lock to make 64-bit write safe on 32-bit platforms.
10087 spin_lock_irq(&cpu_rq(cpu)->lock);
10088 *cpuusage = val;
10089 spin_unlock_irq(&cpu_rq(cpu)->lock);
10090 #else
10091 *cpuusage = val;
10092 #endif
10095 /* return total cpu usage (in nanoseconds) of a group */
10096 static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
10098 struct cpuacct *ca = cgroup_ca(cgrp);
10099 u64 totalcpuusage = 0;
10100 int i;
10102 for_each_present_cpu(i)
10103 totalcpuusage += cpuacct_cpuusage_read(ca, i);
10105 return totalcpuusage;
10108 static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
10109 u64 reset)
10111 struct cpuacct *ca = cgroup_ca(cgrp);
10112 int err = 0;
10113 int i;
10115 if (reset) {
10116 err = -EINVAL;
10117 goto out;
10120 for_each_present_cpu(i)
10121 cpuacct_cpuusage_write(ca, i, 0);
10123 out:
10124 return err;
10127 static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
10128 struct seq_file *m)
10130 struct cpuacct *ca = cgroup_ca(cgroup);
10131 u64 percpu;
10132 int i;
10134 for_each_present_cpu(i) {
10135 percpu = cpuacct_cpuusage_read(ca, i);
10136 seq_printf(m, "%llu ", (unsigned long long) percpu);
10138 seq_printf(m, "\n");
10139 return 0;
10142 static const char *cpuacct_stat_desc[] = {
10143 [CPUACCT_STAT_USER] = "user",
10144 [CPUACCT_STAT_SYSTEM] = "system",
10147 static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft,
10148 struct cgroup_map_cb *cb)
10150 struct cpuacct *ca = cgroup_ca(cgrp);
10151 int i;
10153 for (i = 0; i < CPUACCT_STAT_NSTATS; i++) {
10154 s64 val = percpu_counter_read(&ca->cpustat[i]);
10155 val = cputime64_to_clock_t(val);
10156 cb->fill(cb, cpuacct_stat_desc[i], val);
10158 return 0;
10161 static struct cftype files[] = {
10163 .name = "usage",
10164 .read_u64 = cpuusage_read,
10165 .write_u64 = cpuusage_write,
10168 .name = "usage_percpu",
10169 .read_seq_string = cpuacct_percpu_seq_read,
10172 .name = "stat",
10173 .read_map = cpuacct_stats_show,
10177 static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
10179 return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
10183 * charge this task's execution time to its accounting group.
10185 * called with rq->lock held.
10187 static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
10189 struct cpuacct *ca;
10190 int cpu;
10192 if (unlikely(!cpuacct_subsys.active))
10193 return;
10195 cpu = task_cpu(tsk);
10197 rcu_read_lock();
10199 ca = task_ca(tsk);
10201 for (; ca; ca = ca->parent) {
10202 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
10203 *cpuusage += cputime;
10206 rcu_read_unlock();
10210 * Charge the system/user time to the task's accounting group.
10212 static void cpuacct_update_stats(struct task_struct *tsk,
10213 enum cpuacct_stat_index idx, cputime_t val)
10215 struct cpuacct *ca;
10217 if (unlikely(!cpuacct_subsys.active))
10218 return;
10220 rcu_read_lock();
10221 ca = task_ca(tsk);
10223 do {
10224 percpu_counter_add(&ca->cpustat[idx], val);
10225 ca = ca->parent;
10226 } while (ca);
10227 rcu_read_unlock();
10230 struct cgroup_subsys cpuacct_subsys = {
10231 .name = "cpuacct",
10232 .create = cpuacct_create,
10233 .destroy = cpuacct_destroy,
10234 .populate = cpuacct_populate,
10235 .subsys_id = cpuacct_subsys_id,
10237 #endif /* CONFIG_CGROUP_CPUACCT */