[PATCH] Time: Introduce arch generic time accessors
[linux-2.6/mini2440.git] / kernel / timer.c
blobe5adb9e2e7a797ad4ad0330bf8e56e0bf2089d39
1 /*
2 * linux/kernel/timer.c
4 * Kernel internal timers, kernel timekeeping, basic process system calls
6 * Copyright (C) 1991, 1992 Linus Torvalds
8 * 1997-01-28 Modified by Finn Arne Gangstad to make timers scale better.
10 * 1997-09-10 Updated NTP code according to technical memorandum Jan '96
11 * "A Kernel Model for Precision Timekeeping" by Dave Mills
12 * 1998-12-24 Fixed a xtime SMP race (we need the xtime_lock rw spinlock to
13 * serialize accesses to xtime/lost_ticks).
14 * Copyright (C) 1998 Andrea Arcangeli
15 * 1999-03-10 Improved NTP compatibility by Ulrich Windl
16 * 2002-05-31 Move sys_sysinfo here and make its locking sane, Robert Love
17 * 2000-10-05 Implemented scalable SMP per-CPU timer handling.
18 * Copyright (C) 2000, 2001, 2002 Ingo Molnar
19 * Designed by David S. Miller, Alexey Kuznetsov and Ingo Molnar
22 #include <linux/kernel_stat.h>
23 #include <linux/module.h>
24 #include <linux/interrupt.h>
25 #include <linux/percpu.h>
26 #include <linux/init.h>
27 #include <linux/mm.h>
28 #include <linux/swap.h>
29 #include <linux/notifier.h>
30 #include <linux/thread_info.h>
31 #include <linux/time.h>
32 #include <linux/jiffies.h>
33 #include <linux/posix-timers.h>
34 #include <linux/cpu.h>
35 #include <linux/syscalls.h>
36 #include <linux/delay.h>
38 #include <asm/uaccess.h>
39 #include <asm/unistd.h>
40 #include <asm/div64.h>
41 #include <asm/timex.h>
42 #include <asm/io.h>
44 #ifdef CONFIG_TIME_INTERPOLATION
45 static void time_interpolator_update(long delta_nsec);
46 #else
47 #define time_interpolator_update(x)
48 #endif
50 u64 jiffies_64 __cacheline_aligned_in_smp = INITIAL_JIFFIES;
52 EXPORT_SYMBOL(jiffies_64);
55 * per-CPU timer vector definitions:
57 #define TVN_BITS (CONFIG_BASE_SMALL ? 4 : 6)
58 #define TVR_BITS (CONFIG_BASE_SMALL ? 6 : 8)
59 #define TVN_SIZE (1 << TVN_BITS)
60 #define TVR_SIZE (1 << TVR_BITS)
61 #define TVN_MASK (TVN_SIZE - 1)
62 #define TVR_MASK (TVR_SIZE - 1)
64 typedef struct tvec_s {
65 struct list_head vec[TVN_SIZE];
66 } tvec_t;
68 typedef struct tvec_root_s {
69 struct list_head vec[TVR_SIZE];
70 } tvec_root_t;
72 struct tvec_t_base_s {
73 spinlock_t lock;
74 struct timer_list *running_timer;
75 unsigned long timer_jiffies;
76 tvec_root_t tv1;
77 tvec_t tv2;
78 tvec_t tv3;
79 tvec_t tv4;
80 tvec_t tv5;
81 } ____cacheline_aligned_in_smp;
83 typedef struct tvec_t_base_s tvec_base_t;
85 tvec_base_t boot_tvec_bases;
86 EXPORT_SYMBOL(boot_tvec_bases);
87 static DEFINE_PER_CPU(tvec_base_t *, tvec_bases) = { &boot_tvec_bases };
89 static inline void set_running_timer(tvec_base_t *base,
90 struct timer_list *timer)
92 #ifdef CONFIG_SMP
93 base->running_timer = timer;
94 #endif
97 static void internal_add_timer(tvec_base_t *base, struct timer_list *timer)
99 unsigned long expires = timer->expires;
100 unsigned long idx = expires - base->timer_jiffies;
101 struct list_head *vec;
103 if (idx < TVR_SIZE) {
104 int i = expires & TVR_MASK;
105 vec = base->tv1.vec + i;
106 } else if (idx < 1 << (TVR_BITS + TVN_BITS)) {
107 int i = (expires >> TVR_BITS) & TVN_MASK;
108 vec = base->tv2.vec + i;
109 } else if (idx < 1 << (TVR_BITS + 2 * TVN_BITS)) {
110 int i = (expires >> (TVR_BITS + TVN_BITS)) & TVN_MASK;
111 vec = base->tv3.vec + i;
112 } else if (idx < 1 << (TVR_BITS + 3 * TVN_BITS)) {
113 int i = (expires >> (TVR_BITS + 2 * TVN_BITS)) & TVN_MASK;
114 vec = base->tv4.vec + i;
115 } else if ((signed long) idx < 0) {
117 * Can happen if you add a timer with expires == jiffies,
118 * or you set a timer to go off in the past
120 vec = base->tv1.vec + (base->timer_jiffies & TVR_MASK);
121 } else {
122 int i;
123 /* If the timeout is larger than 0xffffffff on 64-bit
124 * architectures then we use the maximum timeout:
126 if (idx > 0xffffffffUL) {
127 idx = 0xffffffffUL;
128 expires = idx + base->timer_jiffies;
130 i = (expires >> (TVR_BITS + 3 * TVN_BITS)) & TVN_MASK;
131 vec = base->tv5.vec + i;
134 * Timers are FIFO:
136 list_add_tail(&timer->entry, vec);
139 /***
140 * init_timer - initialize a timer.
141 * @timer: the timer to be initialized
143 * init_timer() must be done to a timer prior calling *any* of the
144 * other timer functions.
146 void fastcall init_timer(struct timer_list *timer)
148 timer->entry.next = NULL;
149 timer->base = __raw_get_cpu_var(tvec_bases);
151 EXPORT_SYMBOL(init_timer);
153 static inline void detach_timer(struct timer_list *timer,
154 int clear_pending)
156 struct list_head *entry = &timer->entry;
158 __list_del(entry->prev, entry->next);
159 if (clear_pending)
160 entry->next = NULL;
161 entry->prev = LIST_POISON2;
165 * We are using hashed locking: holding per_cpu(tvec_bases).lock
166 * means that all timers which are tied to this base via timer->base are
167 * locked, and the base itself is locked too.
169 * So __run_timers/migrate_timers can safely modify all timers which could
170 * be found on ->tvX lists.
172 * When the timer's base is locked, and the timer removed from list, it is
173 * possible to set timer->base = NULL and drop the lock: the timer remains
174 * locked.
176 static tvec_base_t *lock_timer_base(struct timer_list *timer,
177 unsigned long *flags)
179 tvec_base_t *base;
181 for (;;) {
182 base = timer->base;
183 if (likely(base != NULL)) {
184 spin_lock_irqsave(&base->lock, *flags);
185 if (likely(base == timer->base))
186 return base;
187 /* The timer has migrated to another CPU */
188 spin_unlock_irqrestore(&base->lock, *flags);
190 cpu_relax();
194 int __mod_timer(struct timer_list *timer, unsigned long expires)
196 tvec_base_t *base, *new_base;
197 unsigned long flags;
198 int ret = 0;
200 BUG_ON(!timer->function);
202 base = lock_timer_base(timer, &flags);
204 if (timer_pending(timer)) {
205 detach_timer(timer, 0);
206 ret = 1;
209 new_base = __get_cpu_var(tvec_bases);
211 if (base != new_base) {
213 * We are trying to schedule the timer on the local CPU.
214 * However we can't change timer's base while it is running,
215 * otherwise del_timer_sync() can't detect that the timer's
216 * handler yet has not finished. This also guarantees that
217 * the timer is serialized wrt itself.
219 if (likely(base->running_timer != timer)) {
220 /* See the comment in lock_timer_base() */
221 timer->base = NULL;
222 spin_unlock(&base->lock);
223 base = new_base;
224 spin_lock(&base->lock);
225 timer->base = base;
229 timer->expires = expires;
230 internal_add_timer(base, timer);
231 spin_unlock_irqrestore(&base->lock, flags);
233 return ret;
236 EXPORT_SYMBOL(__mod_timer);
238 /***
239 * add_timer_on - start a timer on a particular CPU
240 * @timer: the timer to be added
241 * @cpu: the CPU to start it on
243 * This is not very scalable on SMP. Double adds are not possible.
245 void add_timer_on(struct timer_list *timer, int cpu)
247 tvec_base_t *base = per_cpu(tvec_bases, cpu);
248 unsigned long flags;
250 BUG_ON(timer_pending(timer) || !timer->function);
251 spin_lock_irqsave(&base->lock, flags);
252 timer->base = base;
253 internal_add_timer(base, timer);
254 spin_unlock_irqrestore(&base->lock, flags);
258 /***
259 * mod_timer - modify a timer's timeout
260 * @timer: the timer to be modified
262 * mod_timer is a more efficient way to update the expire field of an
263 * active timer (if the timer is inactive it will be activated)
265 * mod_timer(timer, expires) is equivalent to:
267 * del_timer(timer); timer->expires = expires; add_timer(timer);
269 * Note that if there are multiple unserialized concurrent users of the
270 * same timer, then mod_timer() is the only safe way to modify the timeout,
271 * since add_timer() cannot modify an already running timer.
273 * The function returns whether it has modified a pending timer or not.
274 * (ie. mod_timer() of an inactive timer returns 0, mod_timer() of an
275 * active timer returns 1.)
277 int mod_timer(struct timer_list *timer, unsigned long expires)
279 BUG_ON(!timer->function);
282 * This is a common optimization triggered by the
283 * networking code - if the timer is re-modified
284 * to be the same thing then just return:
286 if (timer->expires == expires && timer_pending(timer))
287 return 1;
289 return __mod_timer(timer, expires);
292 EXPORT_SYMBOL(mod_timer);
294 /***
295 * del_timer - deactive a timer.
296 * @timer: the timer to be deactivated
298 * del_timer() deactivates a timer - this works on both active and inactive
299 * timers.
301 * The function returns whether it has deactivated a pending timer or not.
302 * (ie. del_timer() of an inactive timer returns 0, del_timer() of an
303 * active timer returns 1.)
305 int del_timer(struct timer_list *timer)
307 tvec_base_t *base;
308 unsigned long flags;
309 int ret = 0;
311 if (timer_pending(timer)) {
312 base = lock_timer_base(timer, &flags);
313 if (timer_pending(timer)) {
314 detach_timer(timer, 1);
315 ret = 1;
317 spin_unlock_irqrestore(&base->lock, flags);
320 return ret;
323 EXPORT_SYMBOL(del_timer);
325 #ifdef CONFIG_SMP
327 * This function tries to deactivate a timer. Upon successful (ret >= 0)
328 * exit the timer is not queued and the handler is not running on any CPU.
330 * It must not be called from interrupt contexts.
332 int try_to_del_timer_sync(struct timer_list *timer)
334 tvec_base_t *base;
335 unsigned long flags;
336 int ret = -1;
338 base = lock_timer_base(timer, &flags);
340 if (base->running_timer == timer)
341 goto out;
343 ret = 0;
344 if (timer_pending(timer)) {
345 detach_timer(timer, 1);
346 ret = 1;
348 out:
349 spin_unlock_irqrestore(&base->lock, flags);
351 return ret;
354 /***
355 * del_timer_sync - deactivate a timer and wait for the handler to finish.
356 * @timer: the timer to be deactivated
358 * This function only differs from del_timer() on SMP: besides deactivating
359 * the timer it also makes sure the handler has finished executing on other
360 * CPUs.
362 * Synchronization rules: callers must prevent restarting of the timer,
363 * otherwise this function is meaningless. It must not be called from
364 * interrupt contexts. The caller must not hold locks which would prevent
365 * completion of the timer's handler. The timer's handler must not call
366 * add_timer_on(). Upon exit the timer is not queued and the handler is
367 * not running on any CPU.
369 * The function returns whether it has deactivated a pending timer or not.
371 int del_timer_sync(struct timer_list *timer)
373 for (;;) {
374 int ret = try_to_del_timer_sync(timer);
375 if (ret >= 0)
376 return ret;
380 EXPORT_SYMBOL(del_timer_sync);
381 #endif
383 static int cascade(tvec_base_t *base, tvec_t *tv, int index)
385 /* cascade all the timers from tv up one level */
386 struct timer_list *timer, *tmp;
387 struct list_head tv_list;
389 list_replace_init(tv->vec + index, &tv_list);
392 * We are removing _all_ timers from the list, so we
393 * don't have to detach them individually.
395 list_for_each_entry_safe(timer, tmp, &tv_list, entry) {
396 BUG_ON(timer->base != base);
397 internal_add_timer(base, timer);
400 return index;
403 /***
404 * __run_timers - run all expired timers (if any) on this CPU.
405 * @base: the timer vector to be processed.
407 * This function cascades all vectors and executes all expired timer
408 * vectors.
410 #define INDEX(N) (base->timer_jiffies >> (TVR_BITS + N * TVN_BITS)) & TVN_MASK
412 static inline void __run_timers(tvec_base_t *base)
414 struct timer_list *timer;
416 spin_lock_irq(&base->lock);
417 while (time_after_eq(jiffies, base->timer_jiffies)) {
418 struct list_head work_list;
419 struct list_head *head = &work_list;
420 int index = base->timer_jiffies & TVR_MASK;
423 * Cascade timers:
425 if (!index &&
426 (!cascade(base, &base->tv2, INDEX(0))) &&
427 (!cascade(base, &base->tv3, INDEX(1))) &&
428 !cascade(base, &base->tv4, INDEX(2)))
429 cascade(base, &base->tv5, INDEX(3));
430 ++base->timer_jiffies;
431 list_replace_init(base->tv1.vec + index, &work_list);
432 while (!list_empty(head)) {
433 void (*fn)(unsigned long);
434 unsigned long data;
436 timer = list_entry(head->next,struct timer_list,entry);
437 fn = timer->function;
438 data = timer->data;
440 set_running_timer(base, timer);
441 detach_timer(timer, 1);
442 spin_unlock_irq(&base->lock);
444 int preempt_count = preempt_count();
445 fn(data);
446 if (preempt_count != preempt_count()) {
447 printk(KERN_WARNING "huh, entered %p "
448 "with preempt_count %08x, exited"
449 " with %08x?\n",
450 fn, preempt_count,
451 preempt_count());
452 BUG();
455 spin_lock_irq(&base->lock);
458 set_running_timer(base, NULL);
459 spin_unlock_irq(&base->lock);
462 #ifdef CONFIG_NO_IDLE_HZ
464 * Find out when the next timer event is due to happen. This
465 * is used on S/390 to stop all activity when a cpus is idle.
466 * This functions needs to be called disabled.
468 unsigned long next_timer_interrupt(void)
470 tvec_base_t *base;
471 struct list_head *list;
472 struct timer_list *nte;
473 unsigned long expires;
474 unsigned long hr_expires = MAX_JIFFY_OFFSET;
475 ktime_t hr_delta;
476 tvec_t *varray[4];
477 int i, j;
479 hr_delta = hrtimer_get_next_event();
480 if (hr_delta.tv64 != KTIME_MAX) {
481 struct timespec tsdelta;
482 tsdelta = ktime_to_timespec(hr_delta);
483 hr_expires = timespec_to_jiffies(&tsdelta);
484 if (hr_expires < 3)
485 return hr_expires + jiffies;
487 hr_expires += jiffies;
489 base = __get_cpu_var(tvec_bases);
490 spin_lock(&base->lock);
491 expires = base->timer_jiffies + (LONG_MAX >> 1);
492 list = NULL;
494 /* Look for timer events in tv1. */
495 j = base->timer_jiffies & TVR_MASK;
496 do {
497 list_for_each_entry(nte, base->tv1.vec + j, entry) {
498 expires = nte->expires;
499 if (j < (base->timer_jiffies & TVR_MASK))
500 list = base->tv2.vec + (INDEX(0));
501 goto found;
503 j = (j + 1) & TVR_MASK;
504 } while (j != (base->timer_jiffies & TVR_MASK));
506 /* Check tv2-tv5. */
507 varray[0] = &base->tv2;
508 varray[1] = &base->tv3;
509 varray[2] = &base->tv4;
510 varray[3] = &base->tv5;
511 for (i = 0; i < 4; i++) {
512 j = INDEX(i);
513 do {
514 if (list_empty(varray[i]->vec + j)) {
515 j = (j + 1) & TVN_MASK;
516 continue;
518 list_for_each_entry(nte, varray[i]->vec + j, entry)
519 if (time_before(nte->expires, expires))
520 expires = nte->expires;
521 if (j < (INDEX(i)) && i < 3)
522 list = varray[i + 1]->vec + (INDEX(i + 1));
523 goto found;
524 } while (j != (INDEX(i)));
526 found:
527 if (list) {
529 * The search wrapped. We need to look at the next list
530 * from next tv element that would cascade into tv element
531 * where we found the timer element.
533 list_for_each_entry(nte, list, entry) {
534 if (time_before(nte->expires, expires))
535 expires = nte->expires;
538 spin_unlock(&base->lock);
541 * It can happen that other CPUs service timer IRQs and increment
542 * jiffies, but we have not yet got a local timer tick to process
543 * the timer wheels. In that case, the expiry time can be before
544 * jiffies, but since the high-resolution timer here is relative to
545 * jiffies, the default expression when high-resolution timers are
546 * not active,
548 * time_before(MAX_JIFFY_OFFSET + jiffies, expires)
550 * would falsely evaluate to true. If that is the case, just
551 * return jiffies so that we can immediately fire the local timer
553 if (time_before(expires, jiffies))
554 return jiffies;
556 if (time_before(hr_expires, expires))
557 return hr_expires;
559 return expires;
561 #endif
563 /******************************************************************/
566 * Timekeeping variables
568 unsigned long tick_usec = TICK_USEC; /* USER_HZ period (usec) */
569 unsigned long tick_nsec = TICK_NSEC; /* ACTHZ period (nsec) */
572 * The current time
573 * wall_to_monotonic is what we need to add to xtime (or xtime corrected
574 * for sub jiffie times) to get to monotonic time. Monotonic is pegged
575 * at zero at system boot time, so wall_to_monotonic will be negative,
576 * however, we will ALWAYS keep the tv_nsec part positive so we can use
577 * the usual normalization.
579 struct timespec xtime __attribute__ ((aligned (16)));
580 struct timespec wall_to_monotonic __attribute__ ((aligned (16)));
582 EXPORT_SYMBOL(xtime);
584 /* Don't completely fail for HZ > 500. */
585 int tickadj = 500/HZ ? : 1; /* microsecs */
589 * phase-lock loop variables
591 /* TIME_ERROR prevents overwriting the CMOS clock */
592 int time_state = TIME_OK; /* clock synchronization status */
593 int time_status = STA_UNSYNC; /* clock status bits */
594 long time_offset; /* time adjustment (us) */
595 long time_constant = 2; /* pll time constant */
596 long time_tolerance = MAXFREQ; /* frequency tolerance (ppm) */
597 long time_precision = 1; /* clock precision (us) */
598 long time_maxerror = NTP_PHASE_LIMIT; /* maximum error (us) */
599 long time_esterror = NTP_PHASE_LIMIT; /* estimated error (us) */
600 long time_freq = (((NSEC_PER_SEC + HZ/2) % HZ - HZ/2) << SHIFT_USEC) / NSEC_PER_USEC;
601 /* frequency offset (scaled ppm)*/
602 static long time_adj; /* tick adjust (scaled 1 / HZ) */
603 long time_reftime; /* time at last adjustment (s) */
604 long time_adjust;
605 long time_next_adjust;
608 * this routine handles the overflow of the microsecond field
610 * The tricky bits of code to handle the accurate clock support
611 * were provided by Dave Mills (Mills@UDEL.EDU) of NTP fame.
612 * They were originally developed for SUN and DEC kernels.
613 * All the kudos should go to Dave for this stuff.
616 static void second_overflow(void)
618 long ltemp;
620 /* Bump the maxerror field */
621 time_maxerror += time_tolerance >> SHIFT_USEC;
622 if (time_maxerror > NTP_PHASE_LIMIT) {
623 time_maxerror = NTP_PHASE_LIMIT;
624 time_status |= STA_UNSYNC;
628 * Leap second processing. If in leap-insert state at the end of the
629 * day, the system clock is set back one second; if in leap-delete
630 * state, the system clock is set ahead one second. The microtime()
631 * routine or external clock driver will insure that reported time is
632 * always monotonic. The ugly divides should be replaced.
634 switch (time_state) {
635 case TIME_OK:
636 if (time_status & STA_INS)
637 time_state = TIME_INS;
638 else if (time_status & STA_DEL)
639 time_state = TIME_DEL;
640 break;
641 case TIME_INS:
642 if (xtime.tv_sec % 86400 == 0) {
643 xtime.tv_sec--;
644 wall_to_monotonic.tv_sec++;
646 * The timer interpolator will make time change
647 * gradually instead of an immediate jump by one second
649 time_interpolator_update(-NSEC_PER_SEC);
650 time_state = TIME_OOP;
651 clock_was_set();
652 printk(KERN_NOTICE "Clock: inserting leap second "
653 "23:59:60 UTC\n");
655 break;
656 case TIME_DEL:
657 if ((xtime.tv_sec + 1) % 86400 == 0) {
658 xtime.tv_sec++;
659 wall_to_monotonic.tv_sec--;
661 * Use of time interpolator for a gradual change of
662 * time
664 time_interpolator_update(NSEC_PER_SEC);
665 time_state = TIME_WAIT;
666 clock_was_set();
667 printk(KERN_NOTICE "Clock: deleting leap second "
668 "23:59:59 UTC\n");
670 break;
671 case TIME_OOP:
672 time_state = TIME_WAIT;
673 break;
674 case TIME_WAIT:
675 if (!(time_status & (STA_INS | STA_DEL)))
676 time_state = TIME_OK;
680 * Compute the phase adjustment for the next second. In PLL mode, the
681 * offset is reduced by a fixed factor times the time constant. In FLL
682 * mode the offset is used directly. In either mode, the maximum phase
683 * adjustment for each second is clamped so as to spread the adjustment
684 * over not more than the number of seconds between updates.
686 ltemp = time_offset;
687 if (!(time_status & STA_FLL))
688 ltemp = shift_right(ltemp, SHIFT_KG + time_constant);
689 ltemp = min(ltemp, (MAXPHASE / MINSEC) << SHIFT_UPDATE);
690 ltemp = max(ltemp, -(MAXPHASE / MINSEC) << SHIFT_UPDATE);
691 time_offset -= ltemp;
692 time_adj = ltemp << (SHIFT_SCALE - SHIFT_HZ - SHIFT_UPDATE);
695 * Compute the frequency estimate and additional phase adjustment due
696 * to frequency error for the next second.
698 ltemp = time_freq;
699 time_adj += shift_right(ltemp,(SHIFT_USEC + SHIFT_HZ - SHIFT_SCALE));
701 #if HZ == 100
703 * Compensate for (HZ==100) != (1 << SHIFT_HZ). Add 25% and 3.125% to
704 * get 128.125; => only 0.125% error (p. 14)
706 time_adj += shift_right(time_adj, 2) + shift_right(time_adj, 5);
707 #endif
708 #if HZ == 250
710 * Compensate for (HZ==250) != (1 << SHIFT_HZ). Add 1.5625% and
711 * 0.78125% to get 255.85938; => only 0.05% error (p. 14)
713 time_adj += shift_right(time_adj, 6) + shift_right(time_adj, 7);
714 #endif
715 #if HZ == 1000
717 * Compensate for (HZ==1000) != (1 << SHIFT_HZ). Add 1.5625% and
718 * 0.78125% to get 1023.4375; => only 0.05% error (p. 14)
720 time_adj += shift_right(time_adj, 6) + shift_right(time_adj, 7);
721 #endif
725 * Returns how many microseconds we need to add to xtime this tick
726 * in doing an adjustment requested with adjtime.
728 static long adjtime_adjustment(void)
730 long time_adjust_step;
732 time_adjust_step = time_adjust;
733 if (time_adjust_step) {
735 * We are doing an adjtime thing. Prepare time_adjust_step to
736 * be within bounds. Note that a positive time_adjust means we
737 * want the clock to run faster.
739 * Limit the amount of the step to be in the range
740 * -tickadj .. +tickadj
742 time_adjust_step = min(time_adjust_step, (long)tickadj);
743 time_adjust_step = max(time_adjust_step, (long)-tickadj);
745 return time_adjust_step;
748 /* in the NTP reference this is called "hardclock()" */
749 static void update_ntp_one_tick(void)
751 long time_adjust_step;
753 time_adjust_step = adjtime_adjustment();
754 if (time_adjust_step)
755 /* Reduce by this step the amount of time left */
756 time_adjust -= time_adjust_step;
758 /* Changes by adjtime() do not take effect till next tick. */
759 if (time_next_adjust != 0) {
760 time_adjust = time_next_adjust;
761 time_next_adjust = 0;
766 * Return how long ticks are at the moment, that is, how much time
767 * update_wall_time_one_tick will add to xtime next time we call it
768 * (assuming no calls to do_adjtimex in the meantime).
769 * The return value is in fixed-point nanoseconds shifted by the
770 * specified number of bits to the right of the binary point.
771 * This function has no side-effects.
773 u64 current_tick_length(long shift)
775 long delta_nsec;
776 u64 ret;
778 /* calculate the finest interval NTP will allow.
779 * ie: nanosecond value shifted by (SHIFT_SCALE - 10)
781 delta_nsec = tick_nsec + adjtime_adjustment() * 1000;
782 ret = ((u64) delta_nsec << (SHIFT_SCALE - 10)) + time_adj;
784 /* convert from (SHIFT_SCALE - 10) to specified shift scale: */
785 shift = shift - (SHIFT_SCALE - 10);
786 if (shift < 0)
787 ret >>= -shift;
788 else
789 ret <<= shift;
791 return ret;
794 /* XXX - all of this timekeeping code should be later moved to time.c */
795 #include <linux/clocksource.h>
796 static struct clocksource *clock; /* pointer to current clocksource */
797 static cycle_t last_clock_cycle; /* cycle value at last update_wall_time */
799 #ifdef CONFIG_GENERIC_TIME
801 * __get_nsec_offset - Returns nanoseconds since last call to periodic_hook
803 * private function, must hold xtime_lock lock when being
804 * called. Returns the number of nanoseconds since the
805 * last call to update_wall_time() (adjusted by NTP scaling)
807 static inline s64 __get_nsec_offset(void)
809 cycle_t cycle_now, cycle_delta;
810 s64 ns_offset;
812 /* read clocksource: */
813 cycle_now = read_clocksource(clock);
815 /* calculate the delta since the last update_wall_time: */
816 cycle_delta = (cycle_now - last_clock_cycle) & clock->mask;
818 /* convert to nanoseconds: */
819 ns_offset = cyc2ns(clock, cycle_delta);
821 return ns_offset;
825 * __get_realtime_clock_ts - Returns the time of day in a timespec
826 * @ts: pointer to the timespec to be set
828 * Returns the time of day in a timespec. Used by
829 * do_gettimeofday() and get_realtime_clock_ts().
831 static inline void __get_realtime_clock_ts(struct timespec *ts)
833 unsigned long seq;
834 s64 nsecs;
836 do {
837 seq = read_seqbegin(&xtime_lock);
839 *ts = xtime;
840 nsecs = __get_nsec_offset();
842 } while (read_seqretry(&xtime_lock, seq));
844 timespec_add_ns(ts, nsecs);
848 * get_realtime_clock_ts - Returns the time of day in a timespec
849 * @ts: pointer to the timespec to be set
851 * Returns the time of day in a timespec.
853 void getnstimeofday(struct timespec *ts)
855 __get_realtime_clock_ts(ts);
858 EXPORT_SYMBOL(getnstimeofday);
861 * do_gettimeofday - Returns the time of day in a timeval
862 * @tv: pointer to the timeval to be set
864 * NOTE: Users should be converted to using get_realtime_clock_ts()
866 void do_gettimeofday(struct timeval *tv)
868 struct timespec now;
870 __get_realtime_clock_ts(&now);
871 tv->tv_sec = now.tv_sec;
872 tv->tv_usec = now.tv_nsec/1000;
875 EXPORT_SYMBOL(do_gettimeofday);
877 * do_settimeofday - Sets the time of day
878 * @tv: pointer to the timespec variable containing the new time
880 * Sets the time of day to the new time and update NTP and notify hrtimers
882 int do_settimeofday(struct timespec *tv)
884 unsigned long flags;
885 time_t wtm_sec, sec = tv->tv_sec;
886 long wtm_nsec, nsec = tv->tv_nsec;
888 if ((unsigned long)tv->tv_nsec >= NSEC_PER_SEC)
889 return -EINVAL;
891 write_seqlock_irqsave(&xtime_lock, flags);
893 nsec -= __get_nsec_offset();
895 wtm_sec = wall_to_monotonic.tv_sec + (xtime.tv_sec - sec);
896 wtm_nsec = wall_to_monotonic.tv_nsec + (xtime.tv_nsec - nsec);
898 set_normalized_timespec(&xtime, sec, nsec);
899 set_normalized_timespec(&wall_to_monotonic, wtm_sec, wtm_nsec);
901 ntp_clear();
903 write_sequnlock_irqrestore(&xtime_lock, flags);
905 /* signal hrtimers about time change */
906 clock_was_set();
908 return 0;
911 EXPORT_SYMBOL(do_settimeofday);
914 * change_clocksource - Swaps clocksources if a new one is available
916 * Accumulates current time interval and initializes new clocksource
918 static int change_clocksource(void)
920 struct clocksource *new;
921 cycle_t now;
922 u64 nsec;
923 new = get_next_clocksource();
924 if (clock != new) {
925 now = read_clocksource(new);
926 nsec = __get_nsec_offset();
927 timespec_add_ns(&xtime, nsec);
929 clock = new;
930 last_clock_cycle = now;
931 printk(KERN_INFO "Time: %s clocksource has been installed.\n",
932 clock->name);
933 return 1;
934 } else if (clock->update_callback) {
935 return clock->update_callback();
937 return 0;
939 #else
940 #define change_clocksource() (0)
941 #endif
944 * timeofday_is_continuous - check to see if timekeeping is free running
946 int timekeeping_is_continuous(void)
948 unsigned long seq;
949 int ret;
951 do {
952 seq = read_seqbegin(&xtime_lock);
954 ret = clock->is_continuous;
956 } while (read_seqretry(&xtime_lock, seq));
958 return ret;
962 * timekeeping_init - Initializes the clocksource and common timekeeping values
964 void __init timekeeping_init(void)
966 unsigned long flags;
968 write_seqlock_irqsave(&xtime_lock, flags);
969 clock = get_next_clocksource();
970 calculate_clocksource_interval(clock, tick_nsec);
971 last_clock_cycle = read_clocksource(clock);
972 ntp_clear();
973 write_sequnlock_irqrestore(&xtime_lock, flags);
978 * timekeeping_resume - Resumes the generic timekeeping subsystem.
979 * @dev: unused
981 * This is for the generic clocksource timekeeping.
982 * xtime/wall_to_monotonic/jiffies/wall_jiffies/etc are
983 * still managed by arch specific suspend/resume code.
985 static int timekeeping_resume(struct sys_device *dev)
987 unsigned long flags;
989 write_seqlock_irqsave(&xtime_lock, flags);
990 /* restart the last cycle value */
991 last_clock_cycle = read_clocksource(clock);
992 write_sequnlock_irqrestore(&xtime_lock, flags);
993 return 0;
996 /* sysfs resume/suspend bits for timekeeping */
997 static struct sysdev_class timekeeping_sysclass = {
998 .resume = timekeeping_resume,
999 set_kset_name("timekeeping"),
1002 static struct sys_device device_timer = {
1003 .id = 0,
1004 .cls = &timekeeping_sysclass,
1007 static int __init timekeeping_init_device(void)
1009 int error = sysdev_class_register(&timekeeping_sysclass);
1010 if (!error)
1011 error = sysdev_register(&device_timer);
1012 return error;
1015 device_initcall(timekeeping_init_device);
1018 * update_wall_time - Uses the current clocksource to increment the wall time
1020 * Called from the timer interrupt, must hold a write on xtime_lock.
1022 static void update_wall_time(void)
1024 static s64 remainder_snsecs, error;
1025 s64 snsecs_per_sec;
1026 cycle_t now, offset;
1028 snsecs_per_sec = (s64)NSEC_PER_SEC << clock->shift;
1029 remainder_snsecs += (s64)xtime.tv_nsec << clock->shift;
1031 now = read_clocksource(clock);
1032 offset = (now - last_clock_cycle)&clock->mask;
1034 /* normally this loop will run just once, however in the
1035 * case of lost or late ticks, it will accumulate correctly.
1037 while (offset > clock->interval_cycles) {
1038 /* get the ntp interval in clock shifted nanoseconds */
1039 s64 ntp_snsecs = current_tick_length(clock->shift);
1041 /* accumulate one interval */
1042 remainder_snsecs += clock->interval_snsecs;
1043 last_clock_cycle += clock->interval_cycles;
1044 offset -= clock->interval_cycles;
1046 /* interpolator bits */
1047 time_interpolator_update(clock->interval_snsecs
1048 >> clock->shift);
1049 /* increment the NTP state machine */
1050 update_ntp_one_tick();
1052 /* accumulate error between NTP and clock interval */
1053 error += (ntp_snsecs - (s64)clock->interval_snsecs);
1055 /* correct the clock when NTP error is too big */
1056 remainder_snsecs += make_ntp_adj(clock, offset, &error);
1058 if (remainder_snsecs >= snsecs_per_sec) {
1059 remainder_snsecs -= snsecs_per_sec;
1060 xtime.tv_sec++;
1061 second_overflow();
1064 /* store full nanoseconds into xtime */
1065 xtime.tv_nsec = remainder_snsecs >> clock->shift;
1066 remainder_snsecs -= (s64)xtime.tv_nsec << clock->shift;
1068 /* check to see if there is a new clocksource to use */
1069 if (change_clocksource()) {
1070 error = 0;
1071 remainder_snsecs = 0;
1072 calculate_clocksource_interval(clock, tick_nsec);
1077 * Called from the timer interrupt handler to charge one tick to the current
1078 * process. user_tick is 1 if the tick is user time, 0 for system.
1080 void update_process_times(int user_tick)
1082 struct task_struct *p = current;
1083 int cpu = smp_processor_id();
1085 /* Note: this timer irq context must be accounted for as well. */
1086 if (user_tick)
1087 account_user_time(p, jiffies_to_cputime(1));
1088 else
1089 account_system_time(p, HARDIRQ_OFFSET, jiffies_to_cputime(1));
1090 run_local_timers();
1091 if (rcu_pending(cpu))
1092 rcu_check_callbacks(cpu, user_tick);
1093 scheduler_tick();
1094 run_posix_cpu_timers(p);
1098 * Nr of active tasks - counted in fixed-point numbers
1100 static unsigned long count_active_tasks(void)
1102 return nr_active() * FIXED_1;
1106 * Hmm.. Changed this, as the GNU make sources (load.c) seems to
1107 * imply that avenrun[] is the standard name for this kind of thing.
1108 * Nothing else seems to be standardized: the fractional size etc
1109 * all seem to differ on different machines.
1111 * Requires xtime_lock to access.
1113 unsigned long avenrun[3];
1115 EXPORT_SYMBOL(avenrun);
1118 * calc_load - given tick count, update the avenrun load estimates.
1119 * This is called while holding a write_lock on xtime_lock.
1121 static inline void calc_load(unsigned long ticks)
1123 unsigned long active_tasks; /* fixed-point */
1124 static int count = LOAD_FREQ;
1126 count -= ticks;
1127 if (count < 0) {
1128 count += LOAD_FREQ;
1129 active_tasks = count_active_tasks();
1130 CALC_LOAD(avenrun[0], EXP_1, active_tasks);
1131 CALC_LOAD(avenrun[1], EXP_5, active_tasks);
1132 CALC_LOAD(avenrun[2], EXP_15, active_tasks);
1136 /* jiffies at the most recent update of wall time */
1137 unsigned long wall_jiffies = INITIAL_JIFFIES;
1140 * This read-write spinlock protects us from races in SMP while
1141 * playing with xtime and avenrun.
1143 #ifndef ARCH_HAVE_XTIME_LOCK
1144 seqlock_t xtime_lock __cacheline_aligned_in_smp = SEQLOCK_UNLOCKED;
1146 EXPORT_SYMBOL(xtime_lock);
1147 #endif
1150 * This function runs timers and the timer-tq in bottom half context.
1152 static void run_timer_softirq(struct softirq_action *h)
1154 tvec_base_t *base = __get_cpu_var(tvec_bases);
1156 hrtimer_run_queues();
1157 if (time_after_eq(jiffies, base->timer_jiffies))
1158 __run_timers(base);
1162 * Called by the local, per-CPU timer interrupt on SMP.
1164 void run_local_timers(void)
1166 raise_softirq(TIMER_SOFTIRQ);
1167 softlockup_tick();
1171 * Called by the timer interrupt. xtime_lock must already be taken
1172 * by the timer IRQ!
1174 static inline void update_times(void)
1176 unsigned long ticks;
1178 ticks = jiffies - wall_jiffies;
1179 wall_jiffies += ticks;
1180 update_wall_time();
1181 calc_load(ticks);
1185 * The 64-bit jiffies value is not atomic - you MUST NOT read it
1186 * without sampling the sequence number in xtime_lock.
1187 * jiffies is defined in the linker script...
1190 void do_timer(struct pt_regs *regs)
1192 jiffies_64++;
1193 /* prevent loading jiffies before storing new jiffies_64 value. */
1194 barrier();
1195 update_times();
1198 #ifdef __ARCH_WANT_SYS_ALARM
1201 * For backwards compatibility? This can be done in libc so Alpha
1202 * and all newer ports shouldn't need it.
1204 asmlinkage unsigned long sys_alarm(unsigned int seconds)
1206 return alarm_setitimer(seconds);
1209 #endif
1211 #ifndef __alpha__
1214 * The Alpha uses getxpid, getxuid, and getxgid instead. Maybe this
1215 * should be moved into arch/i386 instead?
1219 * sys_getpid - return the thread group id of the current process
1221 * Note, despite the name, this returns the tgid not the pid. The tgid and
1222 * the pid are identical unless CLONE_THREAD was specified on clone() in
1223 * which case the tgid is the same in all threads of the same group.
1225 * This is SMP safe as current->tgid does not change.
1227 asmlinkage long sys_getpid(void)
1229 return current->tgid;
1233 * Accessing ->group_leader->real_parent is not SMP-safe, it could
1234 * change from under us. However, rather than getting any lock
1235 * we can use an optimistic algorithm: get the parent
1236 * pid, and go back and check that the parent is still
1237 * the same. If it has changed (which is extremely unlikely
1238 * indeed), we just try again..
1240 * NOTE! This depends on the fact that even if we _do_
1241 * get an old value of "parent", we can happily dereference
1242 * the pointer (it was and remains a dereferencable kernel pointer
1243 * no matter what): we just can't necessarily trust the result
1244 * until we know that the parent pointer is valid.
1246 * NOTE2: ->group_leader never changes from under us.
1248 asmlinkage long sys_getppid(void)
1250 int pid;
1251 struct task_struct *me = current;
1252 struct task_struct *parent;
1254 parent = me->group_leader->real_parent;
1255 for (;;) {
1256 pid = parent->tgid;
1257 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
1259 struct task_struct *old = parent;
1262 * Make sure we read the pid before re-reading the
1263 * parent pointer:
1265 smp_rmb();
1266 parent = me->group_leader->real_parent;
1267 if (old != parent)
1268 continue;
1270 #endif
1271 break;
1273 return pid;
1276 asmlinkage long sys_getuid(void)
1278 /* Only we change this so SMP safe */
1279 return current->uid;
1282 asmlinkage long sys_geteuid(void)
1284 /* Only we change this so SMP safe */
1285 return current->euid;
1288 asmlinkage long sys_getgid(void)
1290 /* Only we change this so SMP safe */
1291 return current->gid;
1294 asmlinkage long sys_getegid(void)
1296 /* Only we change this so SMP safe */
1297 return current->egid;
1300 #endif
1302 static void process_timeout(unsigned long __data)
1304 wake_up_process((task_t *)__data);
1308 * schedule_timeout - sleep until timeout
1309 * @timeout: timeout value in jiffies
1311 * Make the current task sleep until @timeout jiffies have
1312 * elapsed. The routine will return immediately unless
1313 * the current task state has been set (see set_current_state()).
1315 * You can set the task state as follows -
1317 * %TASK_UNINTERRUPTIBLE - at least @timeout jiffies are guaranteed to
1318 * pass before the routine returns. The routine will return 0
1320 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
1321 * delivered to the current task. In this case the remaining time
1322 * in jiffies will be returned, or 0 if the timer expired in time
1324 * The current task state is guaranteed to be TASK_RUNNING when this
1325 * routine returns.
1327 * Specifying a @timeout value of %MAX_SCHEDULE_TIMEOUT will schedule
1328 * the CPU away without a bound on the timeout. In this case the return
1329 * value will be %MAX_SCHEDULE_TIMEOUT.
1331 * In all cases the return value is guaranteed to be non-negative.
1333 fastcall signed long __sched schedule_timeout(signed long timeout)
1335 struct timer_list timer;
1336 unsigned long expire;
1338 switch (timeout)
1340 case MAX_SCHEDULE_TIMEOUT:
1342 * These two special cases are useful to be comfortable
1343 * in the caller. Nothing more. We could take
1344 * MAX_SCHEDULE_TIMEOUT from one of the negative value
1345 * but I' d like to return a valid offset (>=0) to allow
1346 * the caller to do everything it want with the retval.
1348 schedule();
1349 goto out;
1350 default:
1352 * Another bit of PARANOID. Note that the retval will be
1353 * 0 since no piece of kernel is supposed to do a check
1354 * for a negative retval of schedule_timeout() (since it
1355 * should never happens anyway). You just have the printk()
1356 * that will tell you if something is gone wrong and where.
1358 if (timeout < 0)
1360 printk(KERN_ERR "schedule_timeout: wrong timeout "
1361 "value %lx from %p\n", timeout,
1362 __builtin_return_address(0));
1363 current->state = TASK_RUNNING;
1364 goto out;
1368 expire = timeout + jiffies;
1370 setup_timer(&timer, process_timeout, (unsigned long)current);
1371 __mod_timer(&timer, expire);
1372 schedule();
1373 del_singleshot_timer_sync(&timer);
1375 timeout = expire - jiffies;
1377 out:
1378 return timeout < 0 ? 0 : timeout;
1380 EXPORT_SYMBOL(schedule_timeout);
1383 * We can use __set_current_state() here because schedule_timeout() calls
1384 * schedule() unconditionally.
1386 signed long __sched schedule_timeout_interruptible(signed long timeout)
1388 __set_current_state(TASK_INTERRUPTIBLE);
1389 return schedule_timeout(timeout);
1391 EXPORT_SYMBOL(schedule_timeout_interruptible);
1393 signed long __sched schedule_timeout_uninterruptible(signed long timeout)
1395 __set_current_state(TASK_UNINTERRUPTIBLE);
1396 return schedule_timeout(timeout);
1398 EXPORT_SYMBOL(schedule_timeout_uninterruptible);
1400 /* Thread ID - the internal kernel "pid" */
1401 asmlinkage long sys_gettid(void)
1403 return current->pid;
1407 * sys_sysinfo - fill in sysinfo struct
1409 asmlinkage long sys_sysinfo(struct sysinfo __user *info)
1411 struct sysinfo val;
1412 unsigned long mem_total, sav_total;
1413 unsigned int mem_unit, bitcount;
1414 unsigned long seq;
1416 memset((char *)&val, 0, sizeof(struct sysinfo));
1418 do {
1419 struct timespec tp;
1420 seq = read_seqbegin(&xtime_lock);
1423 * This is annoying. The below is the same thing
1424 * posix_get_clock_monotonic() does, but it wants to
1425 * take the lock which we want to cover the loads stuff
1426 * too.
1429 getnstimeofday(&tp);
1430 tp.tv_sec += wall_to_monotonic.tv_sec;
1431 tp.tv_nsec += wall_to_monotonic.tv_nsec;
1432 if (tp.tv_nsec - NSEC_PER_SEC >= 0) {
1433 tp.tv_nsec = tp.tv_nsec - NSEC_PER_SEC;
1434 tp.tv_sec++;
1436 val.uptime = tp.tv_sec + (tp.tv_nsec ? 1 : 0);
1438 val.loads[0] = avenrun[0] << (SI_LOAD_SHIFT - FSHIFT);
1439 val.loads[1] = avenrun[1] << (SI_LOAD_SHIFT - FSHIFT);
1440 val.loads[2] = avenrun[2] << (SI_LOAD_SHIFT - FSHIFT);
1442 val.procs = nr_threads;
1443 } while (read_seqretry(&xtime_lock, seq));
1445 si_meminfo(&val);
1446 si_swapinfo(&val);
1449 * If the sum of all the available memory (i.e. ram + swap)
1450 * is less than can be stored in a 32 bit unsigned long then
1451 * we can be binary compatible with 2.2.x kernels. If not,
1452 * well, in that case 2.2.x was broken anyways...
1454 * -Erik Andersen <andersee@debian.org>
1457 mem_total = val.totalram + val.totalswap;
1458 if (mem_total < val.totalram || mem_total < val.totalswap)
1459 goto out;
1460 bitcount = 0;
1461 mem_unit = val.mem_unit;
1462 while (mem_unit > 1) {
1463 bitcount++;
1464 mem_unit >>= 1;
1465 sav_total = mem_total;
1466 mem_total <<= 1;
1467 if (mem_total < sav_total)
1468 goto out;
1472 * If mem_total did not overflow, multiply all memory values by
1473 * val.mem_unit and set it to 1. This leaves things compatible
1474 * with 2.2.x, and also retains compatibility with earlier 2.4.x
1475 * kernels...
1478 val.mem_unit = 1;
1479 val.totalram <<= bitcount;
1480 val.freeram <<= bitcount;
1481 val.sharedram <<= bitcount;
1482 val.bufferram <<= bitcount;
1483 val.totalswap <<= bitcount;
1484 val.freeswap <<= bitcount;
1485 val.totalhigh <<= bitcount;
1486 val.freehigh <<= bitcount;
1488 out:
1489 if (copy_to_user(info, &val, sizeof(struct sysinfo)))
1490 return -EFAULT;
1492 return 0;
1495 static int __devinit init_timers_cpu(int cpu)
1497 int j;
1498 tvec_base_t *base;
1499 static char __devinitdata tvec_base_done[NR_CPUS];
1501 if (!tvec_base_done[cpu]) {
1502 static char boot_done;
1504 if (boot_done) {
1506 * The APs use this path later in boot
1508 base = kmalloc_node(sizeof(*base), GFP_KERNEL,
1509 cpu_to_node(cpu));
1510 if (!base)
1511 return -ENOMEM;
1512 memset(base, 0, sizeof(*base));
1513 per_cpu(tvec_bases, cpu) = base;
1514 } else {
1516 * This is for the boot CPU - we use compile-time
1517 * static initialisation because per-cpu memory isn't
1518 * ready yet and because the memory allocators are not
1519 * initialised either.
1521 boot_done = 1;
1522 base = &boot_tvec_bases;
1524 tvec_base_done[cpu] = 1;
1525 } else {
1526 base = per_cpu(tvec_bases, cpu);
1529 spin_lock_init(&base->lock);
1530 for (j = 0; j < TVN_SIZE; j++) {
1531 INIT_LIST_HEAD(base->tv5.vec + j);
1532 INIT_LIST_HEAD(base->tv4.vec + j);
1533 INIT_LIST_HEAD(base->tv3.vec + j);
1534 INIT_LIST_HEAD(base->tv2.vec + j);
1536 for (j = 0; j < TVR_SIZE; j++)
1537 INIT_LIST_HEAD(base->tv1.vec + j);
1539 base->timer_jiffies = jiffies;
1540 return 0;
1543 #ifdef CONFIG_HOTPLUG_CPU
1544 static void migrate_timer_list(tvec_base_t *new_base, struct list_head *head)
1546 struct timer_list *timer;
1548 while (!list_empty(head)) {
1549 timer = list_entry(head->next, struct timer_list, entry);
1550 detach_timer(timer, 0);
1551 timer->base = new_base;
1552 internal_add_timer(new_base, timer);
1556 static void __devinit migrate_timers(int cpu)
1558 tvec_base_t *old_base;
1559 tvec_base_t *new_base;
1560 int i;
1562 BUG_ON(cpu_online(cpu));
1563 old_base = per_cpu(tvec_bases, cpu);
1564 new_base = get_cpu_var(tvec_bases);
1566 local_irq_disable();
1567 spin_lock(&new_base->lock);
1568 spin_lock(&old_base->lock);
1570 BUG_ON(old_base->running_timer);
1572 for (i = 0; i < TVR_SIZE; i++)
1573 migrate_timer_list(new_base, old_base->tv1.vec + i);
1574 for (i = 0; i < TVN_SIZE; i++) {
1575 migrate_timer_list(new_base, old_base->tv2.vec + i);
1576 migrate_timer_list(new_base, old_base->tv3.vec + i);
1577 migrate_timer_list(new_base, old_base->tv4.vec + i);
1578 migrate_timer_list(new_base, old_base->tv5.vec + i);
1581 spin_unlock(&old_base->lock);
1582 spin_unlock(&new_base->lock);
1583 local_irq_enable();
1584 put_cpu_var(tvec_bases);
1586 #endif /* CONFIG_HOTPLUG_CPU */
1588 static int timer_cpu_notify(struct notifier_block *self,
1589 unsigned long action, void *hcpu)
1591 long cpu = (long)hcpu;
1592 switch(action) {
1593 case CPU_UP_PREPARE:
1594 if (init_timers_cpu(cpu) < 0)
1595 return NOTIFY_BAD;
1596 break;
1597 #ifdef CONFIG_HOTPLUG_CPU
1598 case CPU_DEAD:
1599 migrate_timers(cpu);
1600 break;
1601 #endif
1602 default:
1603 break;
1605 return NOTIFY_OK;
1608 static struct notifier_block timers_nb = {
1609 .notifier_call = timer_cpu_notify,
1613 void __init init_timers(void)
1615 timer_cpu_notify(&timers_nb, (unsigned long)CPU_UP_PREPARE,
1616 (void *)(long)smp_processor_id());
1617 register_cpu_notifier(&timers_nb);
1618 open_softirq(TIMER_SOFTIRQ, run_timer_softirq, NULL);
1621 #ifdef CONFIG_TIME_INTERPOLATION
1623 struct time_interpolator *time_interpolator __read_mostly;
1624 static struct time_interpolator *time_interpolator_list __read_mostly;
1625 static DEFINE_SPINLOCK(time_interpolator_lock);
1627 static inline u64 time_interpolator_get_cycles(unsigned int src)
1629 unsigned long (*x)(void);
1631 switch (src)
1633 case TIME_SOURCE_FUNCTION:
1634 x = time_interpolator->addr;
1635 return x();
1637 case TIME_SOURCE_MMIO64 :
1638 return readq_relaxed((void __iomem *)time_interpolator->addr);
1640 case TIME_SOURCE_MMIO32 :
1641 return readl_relaxed((void __iomem *)time_interpolator->addr);
1643 default: return get_cycles();
1647 static inline u64 time_interpolator_get_counter(int writelock)
1649 unsigned int src = time_interpolator->source;
1651 if (time_interpolator->jitter)
1653 u64 lcycle;
1654 u64 now;
1656 do {
1657 lcycle = time_interpolator->last_cycle;
1658 now = time_interpolator_get_cycles(src);
1659 if (lcycle && time_after(lcycle, now))
1660 return lcycle;
1662 /* When holding the xtime write lock, there's no need
1663 * to add the overhead of the cmpxchg. Readers are
1664 * force to retry until the write lock is released.
1666 if (writelock) {
1667 time_interpolator->last_cycle = now;
1668 return now;
1670 /* Keep track of the last timer value returned. The use of cmpxchg here
1671 * will cause contention in an SMP environment.
1673 } while (unlikely(cmpxchg(&time_interpolator->last_cycle, lcycle, now) != lcycle));
1674 return now;
1676 else
1677 return time_interpolator_get_cycles(src);
1680 void time_interpolator_reset(void)
1682 time_interpolator->offset = 0;
1683 time_interpolator->last_counter = time_interpolator_get_counter(1);
1686 #define GET_TI_NSECS(count,i) (((((count) - i->last_counter) & (i)->mask) * (i)->nsec_per_cyc) >> (i)->shift)
1688 unsigned long time_interpolator_get_offset(void)
1690 /* If we do not have a time interpolator set up then just return zero */
1691 if (!time_interpolator)
1692 return 0;
1694 return time_interpolator->offset +
1695 GET_TI_NSECS(time_interpolator_get_counter(0), time_interpolator);
1698 #define INTERPOLATOR_ADJUST 65536
1699 #define INTERPOLATOR_MAX_SKIP 10*INTERPOLATOR_ADJUST
1701 static void time_interpolator_update(long delta_nsec)
1703 u64 counter;
1704 unsigned long offset;
1706 /* If there is no time interpolator set up then do nothing */
1707 if (!time_interpolator)
1708 return;
1711 * The interpolator compensates for late ticks by accumulating the late
1712 * time in time_interpolator->offset. A tick earlier than expected will
1713 * lead to a reset of the offset and a corresponding jump of the clock
1714 * forward. Again this only works if the interpolator clock is running
1715 * slightly slower than the regular clock and the tuning logic insures
1716 * that.
1719 counter = time_interpolator_get_counter(1);
1720 offset = time_interpolator->offset +
1721 GET_TI_NSECS(counter, time_interpolator);
1723 if (delta_nsec < 0 || (unsigned long) delta_nsec < offset)
1724 time_interpolator->offset = offset - delta_nsec;
1725 else {
1726 time_interpolator->skips++;
1727 time_interpolator->ns_skipped += delta_nsec - offset;
1728 time_interpolator->offset = 0;
1730 time_interpolator->last_counter = counter;
1732 /* Tuning logic for time interpolator invoked every minute or so.
1733 * Decrease interpolator clock speed if no skips occurred and an offset is carried.
1734 * Increase interpolator clock speed if we skip too much time.
1736 if (jiffies % INTERPOLATOR_ADJUST == 0)
1738 if (time_interpolator->skips == 0 && time_interpolator->offset > tick_nsec)
1739 time_interpolator->nsec_per_cyc--;
1740 if (time_interpolator->ns_skipped > INTERPOLATOR_MAX_SKIP && time_interpolator->offset == 0)
1741 time_interpolator->nsec_per_cyc++;
1742 time_interpolator->skips = 0;
1743 time_interpolator->ns_skipped = 0;
1747 static inline int
1748 is_better_time_interpolator(struct time_interpolator *new)
1750 if (!time_interpolator)
1751 return 1;
1752 return new->frequency > 2*time_interpolator->frequency ||
1753 (unsigned long)new->drift < (unsigned long)time_interpolator->drift;
1756 void
1757 register_time_interpolator(struct time_interpolator *ti)
1759 unsigned long flags;
1761 /* Sanity check */
1762 BUG_ON(ti->frequency == 0 || ti->mask == 0);
1764 ti->nsec_per_cyc = ((u64)NSEC_PER_SEC << ti->shift) / ti->frequency;
1765 spin_lock(&time_interpolator_lock);
1766 write_seqlock_irqsave(&xtime_lock, flags);
1767 if (is_better_time_interpolator(ti)) {
1768 time_interpolator = ti;
1769 time_interpolator_reset();
1771 write_sequnlock_irqrestore(&xtime_lock, flags);
1773 ti->next = time_interpolator_list;
1774 time_interpolator_list = ti;
1775 spin_unlock(&time_interpolator_lock);
1778 void
1779 unregister_time_interpolator(struct time_interpolator *ti)
1781 struct time_interpolator *curr, **prev;
1782 unsigned long flags;
1784 spin_lock(&time_interpolator_lock);
1785 prev = &time_interpolator_list;
1786 for (curr = *prev; curr; curr = curr->next) {
1787 if (curr == ti) {
1788 *prev = curr->next;
1789 break;
1791 prev = &curr->next;
1794 write_seqlock_irqsave(&xtime_lock, flags);
1795 if (ti == time_interpolator) {
1796 /* we lost the best time-interpolator: */
1797 time_interpolator = NULL;
1798 /* find the next-best interpolator */
1799 for (curr = time_interpolator_list; curr; curr = curr->next)
1800 if (is_better_time_interpolator(curr))
1801 time_interpolator = curr;
1802 time_interpolator_reset();
1804 write_sequnlock_irqrestore(&xtime_lock, flags);
1805 spin_unlock(&time_interpolator_lock);
1807 #endif /* CONFIG_TIME_INTERPOLATION */
1810 * msleep - sleep safely even with waitqueue interruptions
1811 * @msecs: Time in milliseconds to sleep for
1813 void msleep(unsigned int msecs)
1815 unsigned long timeout = msecs_to_jiffies(msecs) + 1;
1817 while (timeout)
1818 timeout = schedule_timeout_uninterruptible(timeout);
1821 EXPORT_SYMBOL(msleep);
1824 * msleep_interruptible - sleep waiting for signals
1825 * @msecs: Time in milliseconds to sleep for
1827 unsigned long msleep_interruptible(unsigned int msecs)
1829 unsigned long timeout = msecs_to_jiffies(msecs) + 1;
1831 while (timeout && !signal_pending(current))
1832 timeout = schedule_timeout_interruptible(timeout);
1833 return jiffies_to_msecs(timeout);
1836 EXPORT_SYMBOL(msleep_interruptible);