ext4: Improve error handling in mballoc
[linux-2.6/mini2440.git] / drivers / acpi / processor_idle.c
blob283c08f5f4d4390bfd12a7bfd820787a1344dbde
1 /*
2 * processor_idle - idle state submodule to the ACPI processor driver
4 * Copyright (C) 2001, 2002 Andy Grover <andrew.grover@intel.com>
5 * Copyright (C) 2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com>
6 * Copyright (C) 2004, 2005 Dominik Brodowski <linux@brodo.de>
7 * Copyright (C) 2004 Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>
8 * - Added processor hotplug support
9 * Copyright (C) 2005 Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>
10 * - Added support for C3 on SMP
12 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
14 * This program is free software; you can redistribute it and/or modify
15 * it under the terms of the GNU General Public License as published by
16 * the Free Software Foundation; either version 2 of the License, or (at
17 * your option) any later version.
19 * This program is distributed in the hope that it will be useful, but
20 * WITHOUT ANY WARRANTY; without even the implied warranty of
21 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
22 * General Public License for more details.
24 * You should have received a copy of the GNU General Public License along
25 * with this program; if not, write to the Free Software Foundation, Inc.,
26 * 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA.
28 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
31 #include <linux/kernel.h>
32 #include <linux/module.h>
33 #include <linux/init.h>
34 #include <linux/cpufreq.h>
35 #include <linux/proc_fs.h>
36 #include <linux/seq_file.h>
37 #include <linux/acpi.h>
38 #include <linux/dmi.h>
39 #include <linux/moduleparam.h>
40 #include <linux/sched.h> /* need_resched() */
41 #include <linux/pm_qos_params.h>
42 #include <linux/clockchips.h>
43 #include <linux/cpuidle.h>
44 #include <linux/cpuidle.h>
47 * Include the apic definitions for x86 to have the APIC timer related defines
48 * available also for UP (on SMP it gets magically included via linux/smp.h).
49 * asm/acpi.h is not an option, as it would require more include magic. Also
50 * creating an empty asm-ia64/apic.h would just trade pest vs. cholera.
52 #ifdef CONFIG_X86
53 #include <asm/apic.h>
54 #endif
56 #include <asm/io.h>
57 #include <asm/uaccess.h>
59 #include <acpi/acpi_bus.h>
60 #include <acpi/processor.h>
61 #include <asm/processor.h>
63 #define ACPI_PROCESSOR_COMPONENT 0x01000000
64 #define ACPI_PROCESSOR_CLASS "processor"
65 #define _COMPONENT ACPI_PROCESSOR_COMPONENT
66 ACPI_MODULE_NAME("processor_idle");
67 #define ACPI_PROCESSOR_FILE_POWER "power"
68 #define US_TO_PM_TIMER_TICKS(t) ((t * (PM_TIMER_FREQUENCY/1000)) / 1000)
69 #define PM_TIMER_TICK_NS (1000000000ULL/PM_TIMER_FREQUENCY)
70 #ifndef CONFIG_CPU_IDLE
71 #define C2_OVERHEAD 4 /* 1us (3.579 ticks per us) */
72 #define C3_OVERHEAD 4 /* 1us (3.579 ticks per us) */
73 static void (*pm_idle_save) (void) __read_mostly;
74 #else
75 #define C2_OVERHEAD 1 /* 1us */
76 #define C3_OVERHEAD 1 /* 1us */
77 #endif
78 #define PM_TIMER_TICKS_TO_US(p) (((p) * 1000)/(PM_TIMER_FREQUENCY/1000))
80 static unsigned int max_cstate __read_mostly = ACPI_PROCESSOR_MAX_POWER;
81 #ifdef CONFIG_CPU_IDLE
82 module_param(max_cstate, uint, 0000);
83 #else
84 module_param(max_cstate, uint, 0644);
85 #endif
86 static unsigned int nocst __read_mostly;
87 module_param(nocst, uint, 0000);
89 #ifndef CONFIG_CPU_IDLE
91 * bm_history -- bit-mask with a bit per jiffy of bus-master activity
92 * 1000 HZ: 0xFFFFFFFF: 32 jiffies = 32ms
93 * 800 HZ: 0xFFFFFFFF: 32 jiffies = 40ms
94 * 100 HZ: 0x0000000F: 4 jiffies = 40ms
95 * reduce history for more aggressive entry into C3
97 static unsigned int bm_history __read_mostly =
98 (HZ >= 800 ? 0xFFFFFFFF : ((1U << (HZ / 25)) - 1));
99 module_param(bm_history, uint, 0644);
101 static int acpi_processor_set_power_policy(struct acpi_processor *pr);
103 #else /* CONFIG_CPU_IDLE */
104 static unsigned int latency_factor __read_mostly = 2;
105 module_param(latency_factor, uint, 0644);
106 #endif
109 * IBM ThinkPad R40e crashes mysteriously when going into C2 or C3.
110 * For now disable this. Probably a bug somewhere else.
112 * To skip this limit, boot/load with a large max_cstate limit.
114 static int set_max_cstate(const struct dmi_system_id *id)
116 if (max_cstate > ACPI_PROCESSOR_MAX_POWER)
117 return 0;
119 printk(KERN_NOTICE PREFIX "%s detected - limiting to C%ld max_cstate."
120 " Override with \"processor.max_cstate=%d\"\n", id->ident,
121 (long)id->driver_data, ACPI_PROCESSOR_MAX_POWER + 1);
123 max_cstate = (long)id->driver_data;
125 return 0;
128 /* Actually this shouldn't be __cpuinitdata, would be better to fix the
129 callers to only run once -AK */
130 static struct dmi_system_id __cpuinitdata processor_power_dmi_table[] = {
131 { set_max_cstate, "IBM ThinkPad R40e", {
132 DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
133 DMI_MATCH(DMI_BIOS_VERSION,"1SET70WW")}, (void *)1},
134 { set_max_cstate, "IBM ThinkPad R40e", {
135 DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
136 DMI_MATCH(DMI_BIOS_VERSION,"1SET60WW")}, (void *)1},
137 { set_max_cstate, "IBM ThinkPad R40e", {
138 DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
139 DMI_MATCH(DMI_BIOS_VERSION,"1SET43WW") }, (void*)1},
140 { set_max_cstate, "IBM ThinkPad R40e", {
141 DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
142 DMI_MATCH(DMI_BIOS_VERSION,"1SET45WW") }, (void*)1},
143 { set_max_cstate, "IBM ThinkPad R40e", {
144 DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
145 DMI_MATCH(DMI_BIOS_VERSION,"1SET47WW") }, (void*)1},
146 { set_max_cstate, "IBM ThinkPad R40e", {
147 DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
148 DMI_MATCH(DMI_BIOS_VERSION,"1SET50WW") }, (void*)1},
149 { set_max_cstate, "IBM ThinkPad R40e", {
150 DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
151 DMI_MATCH(DMI_BIOS_VERSION,"1SET52WW") }, (void*)1},
152 { set_max_cstate, "IBM ThinkPad R40e", {
153 DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
154 DMI_MATCH(DMI_BIOS_VERSION,"1SET55WW") }, (void*)1},
155 { set_max_cstate, "IBM ThinkPad R40e", {
156 DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
157 DMI_MATCH(DMI_BIOS_VERSION,"1SET56WW") }, (void*)1},
158 { set_max_cstate, "IBM ThinkPad R40e", {
159 DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
160 DMI_MATCH(DMI_BIOS_VERSION,"1SET59WW") }, (void*)1},
161 { set_max_cstate, "IBM ThinkPad R40e", {
162 DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
163 DMI_MATCH(DMI_BIOS_VERSION,"1SET60WW") }, (void*)1},
164 { set_max_cstate, "IBM ThinkPad R40e", {
165 DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
166 DMI_MATCH(DMI_BIOS_VERSION,"1SET61WW") }, (void*)1},
167 { set_max_cstate, "IBM ThinkPad R40e", {
168 DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
169 DMI_MATCH(DMI_BIOS_VERSION,"1SET62WW") }, (void*)1},
170 { set_max_cstate, "IBM ThinkPad R40e", {
171 DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
172 DMI_MATCH(DMI_BIOS_VERSION,"1SET64WW") }, (void*)1},
173 { set_max_cstate, "IBM ThinkPad R40e", {
174 DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
175 DMI_MATCH(DMI_BIOS_VERSION,"1SET65WW") }, (void*)1},
176 { set_max_cstate, "IBM ThinkPad R40e", {
177 DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
178 DMI_MATCH(DMI_BIOS_VERSION,"1SET68WW") }, (void*)1},
179 { set_max_cstate, "Medion 41700", {
180 DMI_MATCH(DMI_BIOS_VENDOR,"Phoenix Technologies LTD"),
181 DMI_MATCH(DMI_BIOS_VERSION,"R01-A1J")}, (void *)1},
182 { set_max_cstate, "Clevo 5600D", {
183 DMI_MATCH(DMI_BIOS_VENDOR,"Phoenix Technologies LTD"),
184 DMI_MATCH(DMI_BIOS_VERSION,"SHE845M0.86C.0013.D.0302131307")},
185 (void *)2},
189 static inline u32 ticks_elapsed(u32 t1, u32 t2)
191 if (t2 >= t1)
192 return (t2 - t1);
193 else if (!(acpi_gbl_FADT.flags & ACPI_FADT_32BIT_TIMER))
194 return (((0x00FFFFFF - t1) + t2) & 0x00FFFFFF);
195 else
196 return ((0xFFFFFFFF - t1) + t2);
199 static inline u32 ticks_elapsed_in_us(u32 t1, u32 t2)
201 if (t2 >= t1)
202 return PM_TIMER_TICKS_TO_US(t2 - t1);
203 else if (!(acpi_gbl_FADT.flags & ACPI_FADT_32BIT_TIMER))
204 return PM_TIMER_TICKS_TO_US(((0x00FFFFFF - t1) + t2) & 0x00FFFFFF);
205 else
206 return PM_TIMER_TICKS_TO_US((0xFFFFFFFF - t1) + t2);
210 * Callers should disable interrupts before the call and enable
211 * interrupts after return.
213 static void acpi_safe_halt(void)
215 current_thread_info()->status &= ~TS_POLLING;
217 * TS_POLLING-cleared state must be visible before we
218 * test NEED_RESCHED:
220 smp_mb();
221 if (!need_resched()) {
222 safe_halt();
223 local_irq_disable();
225 current_thread_info()->status |= TS_POLLING;
228 #ifndef CONFIG_CPU_IDLE
230 static void
231 acpi_processor_power_activate(struct acpi_processor *pr,
232 struct acpi_processor_cx *new)
234 struct acpi_processor_cx *old;
236 if (!pr || !new)
237 return;
239 old = pr->power.state;
241 if (old)
242 old->promotion.count = 0;
243 new->demotion.count = 0;
245 /* Cleanup from old state. */
246 if (old) {
247 switch (old->type) {
248 case ACPI_STATE_C3:
249 /* Disable bus master reload */
250 if (new->type != ACPI_STATE_C3 && pr->flags.bm_check)
251 acpi_set_register(ACPI_BITREG_BUS_MASTER_RLD, 0);
252 break;
256 /* Prepare to use new state. */
257 switch (new->type) {
258 case ACPI_STATE_C3:
259 /* Enable bus master reload */
260 if (old->type != ACPI_STATE_C3 && pr->flags.bm_check)
261 acpi_set_register(ACPI_BITREG_BUS_MASTER_RLD, 1);
262 break;
265 pr->power.state = new;
267 return;
270 static atomic_t c3_cpu_count;
272 /* Common C-state entry for C2, C3, .. */
273 static void acpi_cstate_enter(struct acpi_processor_cx *cstate)
275 /* Don't trace irqs off for idle */
276 stop_critical_timings();
277 if (cstate->entry_method == ACPI_CSTATE_FFH) {
278 /* Call into architectural FFH based C-state */
279 acpi_processor_ffh_cstate_enter(cstate);
280 } else {
281 int unused;
282 /* IO port based C-state */
283 inb(cstate->address);
284 /* Dummy wait op - must do something useless after P_LVL2 read
285 because chipsets cannot guarantee that STPCLK# signal
286 gets asserted in time to freeze execution properly. */
287 unused = inl(acpi_gbl_FADT.xpm_timer_block.address);
289 start_critical_timings();
291 #endif /* !CONFIG_CPU_IDLE */
293 #ifdef ARCH_APICTIMER_STOPS_ON_C3
296 * Some BIOS implementations switch to C3 in the published C2 state.
297 * This seems to be a common problem on AMD boxen, but other vendors
298 * are affected too. We pick the most conservative approach: we assume
299 * that the local APIC stops in both C2 and C3.
301 static void acpi_timer_check_state(int state, struct acpi_processor *pr,
302 struct acpi_processor_cx *cx)
304 struct acpi_processor_power *pwr = &pr->power;
305 u8 type = local_apic_timer_c2_ok ? ACPI_STATE_C3 : ACPI_STATE_C2;
308 * Check, if one of the previous states already marked the lapic
309 * unstable
311 if (pwr->timer_broadcast_on_state < state)
312 return;
314 if (cx->type >= type)
315 pr->power.timer_broadcast_on_state = state;
318 static void acpi_propagate_timer_broadcast(struct acpi_processor *pr)
320 unsigned long reason;
322 reason = pr->power.timer_broadcast_on_state < INT_MAX ?
323 CLOCK_EVT_NOTIFY_BROADCAST_ON : CLOCK_EVT_NOTIFY_BROADCAST_OFF;
325 clockevents_notify(reason, &pr->id);
328 /* Power(C) State timer broadcast control */
329 static void acpi_state_timer_broadcast(struct acpi_processor *pr,
330 struct acpi_processor_cx *cx,
331 int broadcast)
333 int state = cx - pr->power.states;
335 if (state >= pr->power.timer_broadcast_on_state) {
336 unsigned long reason;
338 reason = broadcast ? CLOCK_EVT_NOTIFY_BROADCAST_ENTER :
339 CLOCK_EVT_NOTIFY_BROADCAST_EXIT;
340 clockevents_notify(reason, &pr->id);
344 #else
346 static void acpi_timer_check_state(int state, struct acpi_processor *pr,
347 struct acpi_processor_cx *cstate) { }
348 static void acpi_propagate_timer_broadcast(struct acpi_processor *pr) { }
349 static void acpi_state_timer_broadcast(struct acpi_processor *pr,
350 struct acpi_processor_cx *cx,
351 int broadcast)
355 #endif
358 * Suspend / resume control
360 static int acpi_idle_suspend;
362 int acpi_processor_suspend(struct acpi_device * device, pm_message_t state)
364 acpi_idle_suspend = 1;
365 return 0;
368 int acpi_processor_resume(struct acpi_device * device)
370 acpi_idle_suspend = 0;
371 return 0;
374 #if defined (CONFIG_GENERIC_TIME) && defined (CONFIG_X86)
375 static int tsc_halts_in_c(int state)
377 switch (boot_cpu_data.x86_vendor) {
378 case X86_VENDOR_AMD:
380 * AMD Fam10h TSC will tick in all
381 * C/P/S0/S1 states when this bit is set.
383 if (boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
384 return 0;
385 /*FALL THROUGH*/
386 case X86_VENDOR_INTEL:
387 /* Several cases known where TSC halts in C2 too */
388 default:
389 return state > ACPI_STATE_C1;
392 #endif
394 #ifndef CONFIG_CPU_IDLE
395 static void acpi_processor_idle(void)
397 struct acpi_processor *pr = NULL;
398 struct acpi_processor_cx *cx = NULL;
399 struct acpi_processor_cx *next_state = NULL;
400 int sleep_ticks = 0;
401 u32 t1, t2 = 0;
404 * Interrupts must be disabled during bus mastering calculations and
405 * for C2/C3 transitions.
407 local_irq_disable();
409 pr = __get_cpu_var(processors);
410 if (!pr) {
411 local_irq_enable();
412 return;
416 * Check whether we truly need to go idle, or should
417 * reschedule:
419 if (unlikely(need_resched())) {
420 local_irq_enable();
421 return;
424 cx = pr->power.state;
425 if (!cx || acpi_idle_suspend) {
426 if (pm_idle_save) {
427 pm_idle_save(); /* enables IRQs */
428 } else {
429 acpi_safe_halt();
430 local_irq_enable();
433 return;
437 * Check BM Activity
438 * -----------------
439 * Check for bus mastering activity (if required), record, and check
440 * for demotion.
442 if (pr->flags.bm_check) {
443 u32 bm_status = 0;
444 unsigned long diff = jiffies - pr->power.bm_check_timestamp;
446 if (diff > 31)
447 diff = 31;
449 pr->power.bm_activity <<= diff;
451 acpi_get_register(ACPI_BITREG_BUS_MASTER_STATUS, &bm_status);
452 if (bm_status) {
453 pr->power.bm_activity |= 0x1;
454 acpi_set_register(ACPI_BITREG_BUS_MASTER_STATUS, 1);
457 * PIIX4 Erratum #18: Note that BM_STS doesn't always reflect
458 * the true state of bus mastering activity; forcing us to
459 * manually check the BMIDEA bit of each IDE channel.
461 else if (errata.piix4.bmisx) {
462 if ((inb_p(errata.piix4.bmisx + 0x02) & 0x01)
463 || (inb_p(errata.piix4.bmisx + 0x0A) & 0x01))
464 pr->power.bm_activity |= 0x1;
467 pr->power.bm_check_timestamp = jiffies;
470 * If bus mastering is or was active this jiffy, demote
471 * to avoid a faulty transition. Note that the processor
472 * won't enter a low-power state during this call (to this
473 * function) but should upon the next.
475 * TBD: A better policy might be to fallback to the demotion
476 * state (use it for this quantum only) istead of
477 * demoting -- and rely on duration as our sole demotion
478 * qualification. This may, however, introduce DMA
479 * issues (e.g. floppy DMA transfer overrun/underrun).
481 if ((pr->power.bm_activity & 0x1) &&
482 cx->demotion.threshold.bm) {
483 local_irq_enable();
484 next_state = cx->demotion.state;
485 goto end;
489 #ifdef CONFIG_HOTPLUG_CPU
491 * Check for P_LVL2_UP flag before entering C2 and above on
492 * an SMP system. We do it here instead of doing it at _CST/P_LVL
493 * detection phase, to work cleanly with logical CPU hotplug.
495 if ((cx->type != ACPI_STATE_C1) && (num_online_cpus() > 1) &&
496 !pr->flags.has_cst && !(acpi_gbl_FADT.flags & ACPI_FADT_C2_MP_SUPPORTED))
497 cx = &pr->power.states[ACPI_STATE_C1];
498 #endif
501 * Sleep:
502 * ------
503 * Invoke the current Cx state to put the processor to sleep.
505 if (cx->type == ACPI_STATE_C2 || cx->type == ACPI_STATE_C3) {
506 current_thread_info()->status &= ~TS_POLLING;
508 * TS_POLLING-cleared state must be visible before we
509 * test NEED_RESCHED:
511 smp_mb();
512 if (need_resched()) {
513 current_thread_info()->status |= TS_POLLING;
514 local_irq_enable();
515 return;
519 switch (cx->type) {
521 case ACPI_STATE_C1:
523 * Invoke C1.
524 * Use the appropriate idle routine, the one that would
525 * be used without acpi C-states.
527 if (pm_idle_save) {
528 pm_idle_save(); /* enables IRQs */
529 } else {
530 acpi_safe_halt();
531 local_irq_enable();
535 * TBD: Can't get time duration while in C1, as resumes
536 * go to an ISR rather than here. Need to instrument
537 * base interrupt handler.
539 * Note: the TSC better not stop in C1, sched_clock() will
540 * skew otherwise.
542 sleep_ticks = 0xFFFFFFFF;
544 break;
546 case ACPI_STATE_C2:
547 /* Get start time (ticks) */
548 t1 = inl(acpi_gbl_FADT.xpm_timer_block.address);
549 /* Tell the scheduler that we are going deep-idle: */
550 sched_clock_idle_sleep_event();
551 /* Invoke C2 */
552 acpi_state_timer_broadcast(pr, cx, 1);
553 acpi_cstate_enter(cx);
554 /* Get end time (ticks) */
555 t2 = inl(acpi_gbl_FADT.xpm_timer_block.address);
557 #if defined (CONFIG_GENERIC_TIME) && defined (CONFIG_X86)
558 /* TSC halts in C2, so notify users */
559 if (tsc_halts_in_c(ACPI_STATE_C2))
560 mark_tsc_unstable("possible TSC halt in C2");
561 #endif
562 /* Compute time (ticks) that we were actually asleep */
563 sleep_ticks = ticks_elapsed(t1, t2);
565 /* Tell the scheduler how much we idled: */
566 sched_clock_idle_wakeup_event(sleep_ticks*PM_TIMER_TICK_NS);
568 /* Re-enable interrupts */
569 local_irq_enable();
570 /* Do not account our idle-switching overhead: */
571 sleep_ticks -= cx->latency_ticks + C2_OVERHEAD;
573 current_thread_info()->status |= TS_POLLING;
574 acpi_state_timer_broadcast(pr, cx, 0);
575 break;
577 case ACPI_STATE_C3:
578 acpi_unlazy_tlb(smp_processor_id());
580 * Must be done before busmaster disable as we might
581 * need to access HPET !
583 acpi_state_timer_broadcast(pr, cx, 1);
585 * disable bus master
586 * bm_check implies we need ARB_DIS
587 * !bm_check implies we need cache flush
588 * bm_control implies whether we can do ARB_DIS
590 * That leaves a case where bm_check is set and bm_control is
591 * not set. In that case we cannot do much, we enter C3
592 * without doing anything.
594 if (pr->flags.bm_check && pr->flags.bm_control) {
595 if (atomic_inc_return(&c3_cpu_count) ==
596 num_online_cpus()) {
598 * All CPUs are trying to go to C3
599 * Disable bus master arbitration
601 acpi_set_register(ACPI_BITREG_ARB_DISABLE, 1);
603 } else if (!pr->flags.bm_check) {
604 /* SMP with no shared cache... Invalidate cache */
605 ACPI_FLUSH_CPU_CACHE();
608 /* Get start time (ticks) */
609 t1 = inl(acpi_gbl_FADT.xpm_timer_block.address);
610 /* Invoke C3 */
611 /* Tell the scheduler that we are going deep-idle: */
612 sched_clock_idle_sleep_event();
613 acpi_cstate_enter(cx);
614 /* Get end time (ticks) */
615 t2 = inl(acpi_gbl_FADT.xpm_timer_block.address);
616 if (pr->flags.bm_check && pr->flags.bm_control) {
617 /* Enable bus master arbitration */
618 atomic_dec(&c3_cpu_count);
619 acpi_set_register(ACPI_BITREG_ARB_DISABLE, 0);
622 #if defined (CONFIG_GENERIC_TIME) && defined (CONFIG_X86)
623 /* TSC halts in C3, so notify users */
624 if (tsc_halts_in_c(ACPI_STATE_C3))
625 mark_tsc_unstable("TSC halts in C3");
626 #endif
627 /* Compute time (ticks) that we were actually asleep */
628 sleep_ticks = ticks_elapsed(t1, t2);
629 /* Tell the scheduler how much we idled: */
630 sched_clock_idle_wakeup_event(sleep_ticks*PM_TIMER_TICK_NS);
632 /* Re-enable interrupts */
633 local_irq_enable();
634 /* Do not account our idle-switching overhead: */
635 sleep_ticks -= cx->latency_ticks + C3_OVERHEAD;
637 current_thread_info()->status |= TS_POLLING;
638 acpi_state_timer_broadcast(pr, cx, 0);
639 break;
641 default:
642 local_irq_enable();
643 return;
645 cx->usage++;
646 if ((cx->type != ACPI_STATE_C1) && (sleep_ticks > 0))
647 cx->time += sleep_ticks;
649 next_state = pr->power.state;
651 #ifdef CONFIG_HOTPLUG_CPU
652 /* Don't do promotion/demotion */
653 if ((cx->type == ACPI_STATE_C1) && (num_online_cpus() > 1) &&
654 !pr->flags.has_cst && !(acpi_gbl_FADT.flags & ACPI_FADT_C2_MP_SUPPORTED)) {
655 next_state = cx;
656 goto end;
658 #endif
661 * Promotion?
662 * ----------
663 * Track the number of longs (time asleep is greater than threshold)
664 * and promote when the count threshold is reached. Note that bus
665 * mastering activity may prevent promotions.
666 * Do not promote above max_cstate.
668 if (cx->promotion.state &&
669 ((cx->promotion.state - pr->power.states) <= max_cstate)) {
670 if (sleep_ticks > cx->promotion.threshold.ticks &&
671 cx->promotion.state->latency <=
672 pm_qos_requirement(PM_QOS_CPU_DMA_LATENCY)) {
673 cx->promotion.count++;
674 cx->demotion.count = 0;
675 if (cx->promotion.count >=
676 cx->promotion.threshold.count) {
677 if (pr->flags.bm_check) {
678 if (!
679 (pr->power.bm_activity & cx->
680 promotion.threshold.bm)) {
681 next_state =
682 cx->promotion.state;
683 goto end;
685 } else {
686 next_state = cx->promotion.state;
687 goto end;
694 * Demotion?
695 * ---------
696 * Track the number of shorts (time asleep is less than time threshold)
697 * and demote when the usage threshold is reached.
699 if (cx->demotion.state) {
700 if (sleep_ticks < cx->demotion.threshold.ticks) {
701 cx->demotion.count++;
702 cx->promotion.count = 0;
703 if (cx->demotion.count >= cx->demotion.threshold.count) {
704 next_state = cx->demotion.state;
705 goto end;
710 end:
712 * Demote if current state exceeds max_cstate
713 * or if the latency of the current state is unacceptable
715 if ((pr->power.state - pr->power.states) > max_cstate ||
716 pr->power.state->latency >
717 pm_qos_requirement(PM_QOS_CPU_DMA_LATENCY)) {
718 if (cx->demotion.state)
719 next_state = cx->demotion.state;
723 * New Cx State?
724 * -------------
725 * If we're going to start using a new Cx state we must clean up
726 * from the previous and prepare to use the new.
728 if (next_state != pr->power.state)
729 acpi_processor_power_activate(pr, next_state);
732 static int acpi_processor_set_power_policy(struct acpi_processor *pr)
734 unsigned int i;
735 unsigned int state_is_set = 0;
736 struct acpi_processor_cx *lower = NULL;
737 struct acpi_processor_cx *higher = NULL;
738 struct acpi_processor_cx *cx;
741 if (!pr)
742 return -EINVAL;
745 * This function sets the default Cx state policy (OS idle handler).
746 * Our scheme is to promote quickly to C2 but more conservatively
747 * to C3. We're favoring C2 for its characteristics of low latency
748 * (quick response), good power savings, and ability to allow bus
749 * mastering activity. Note that the Cx state policy is completely
750 * customizable and can be altered dynamically.
753 /* startup state */
754 for (i = 1; i < ACPI_PROCESSOR_MAX_POWER; i++) {
755 cx = &pr->power.states[i];
756 if (!cx->valid)
757 continue;
759 if (!state_is_set)
760 pr->power.state = cx;
761 state_is_set++;
762 break;
765 if (!state_is_set)
766 return -ENODEV;
768 /* demotion */
769 for (i = 1; i < ACPI_PROCESSOR_MAX_POWER; i++) {
770 cx = &pr->power.states[i];
771 if (!cx->valid)
772 continue;
774 if (lower) {
775 cx->demotion.state = lower;
776 cx->demotion.threshold.ticks = cx->latency_ticks;
777 cx->demotion.threshold.count = 1;
778 if (cx->type == ACPI_STATE_C3)
779 cx->demotion.threshold.bm = bm_history;
782 lower = cx;
785 /* promotion */
786 for (i = (ACPI_PROCESSOR_MAX_POWER - 1); i > 0; i--) {
787 cx = &pr->power.states[i];
788 if (!cx->valid)
789 continue;
791 if (higher) {
792 cx->promotion.state = higher;
793 cx->promotion.threshold.ticks = cx->latency_ticks;
794 if (cx->type >= ACPI_STATE_C2)
795 cx->promotion.threshold.count = 4;
796 else
797 cx->promotion.threshold.count = 10;
798 if (higher->type == ACPI_STATE_C3)
799 cx->promotion.threshold.bm = bm_history;
802 higher = cx;
805 return 0;
807 #endif /* !CONFIG_CPU_IDLE */
809 static int acpi_processor_get_power_info_fadt(struct acpi_processor *pr)
812 if (!pr)
813 return -EINVAL;
815 if (!pr->pblk)
816 return -ENODEV;
818 /* if info is obtained from pblk/fadt, type equals state */
819 pr->power.states[ACPI_STATE_C2].type = ACPI_STATE_C2;
820 pr->power.states[ACPI_STATE_C3].type = ACPI_STATE_C3;
822 #ifndef CONFIG_HOTPLUG_CPU
824 * Check for P_LVL2_UP flag before entering C2 and above on
825 * an SMP system.
827 if ((num_online_cpus() > 1) &&
828 !(acpi_gbl_FADT.flags & ACPI_FADT_C2_MP_SUPPORTED))
829 return -ENODEV;
830 #endif
832 /* determine C2 and C3 address from pblk */
833 pr->power.states[ACPI_STATE_C2].address = pr->pblk + 4;
834 pr->power.states[ACPI_STATE_C3].address = pr->pblk + 5;
836 /* determine latencies from FADT */
837 pr->power.states[ACPI_STATE_C2].latency = acpi_gbl_FADT.C2latency;
838 pr->power.states[ACPI_STATE_C3].latency = acpi_gbl_FADT.C3latency;
840 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
841 "lvl2[0x%08x] lvl3[0x%08x]\n",
842 pr->power.states[ACPI_STATE_C2].address,
843 pr->power.states[ACPI_STATE_C3].address));
845 return 0;
848 static int acpi_processor_get_power_info_default(struct acpi_processor *pr)
850 if (!pr->power.states[ACPI_STATE_C1].valid) {
851 /* set the first C-State to C1 */
852 /* all processors need to support C1 */
853 pr->power.states[ACPI_STATE_C1].type = ACPI_STATE_C1;
854 pr->power.states[ACPI_STATE_C1].valid = 1;
855 pr->power.states[ACPI_STATE_C1].entry_method = ACPI_CSTATE_HALT;
857 /* the C0 state only exists as a filler in our array */
858 pr->power.states[ACPI_STATE_C0].valid = 1;
859 return 0;
862 static int acpi_processor_get_power_info_cst(struct acpi_processor *pr)
864 acpi_status status = 0;
865 acpi_integer count;
866 int current_count;
867 int i;
868 struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
869 union acpi_object *cst;
872 if (nocst)
873 return -ENODEV;
875 current_count = 0;
877 status = acpi_evaluate_object(pr->handle, "_CST", NULL, &buffer);
878 if (ACPI_FAILURE(status)) {
879 ACPI_DEBUG_PRINT((ACPI_DB_INFO, "No _CST, giving up\n"));
880 return -ENODEV;
883 cst = buffer.pointer;
885 /* There must be at least 2 elements */
886 if (!cst || (cst->type != ACPI_TYPE_PACKAGE) || cst->package.count < 2) {
887 printk(KERN_ERR PREFIX "not enough elements in _CST\n");
888 status = -EFAULT;
889 goto end;
892 count = cst->package.elements[0].integer.value;
894 /* Validate number of power states. */
895 if (count < 1 || count != cst->package.count - 1) {
896 printk(KERN_ERR PREFIX "count given by _CST is not valid\n");
897 status = -EFAULT;
898 goto end;
901 /* Tell driver that at least _CST is supported. */
902 pr->flags.has_cst = 1;
904 for (i = 1; i <= count; i++) {
905 union acpi_object *element;
906 union acpi_object *obj;
907 struct acpi_power_register *reg;
908 struct acpi_processor_cx cx;
910 memset(&cx, 0, sizeof(cx));
912 element = &(cst->package.elements[i]);
913 if (element->type != ACPI_TYPE_PACKAGE)
914 continue;
916 if (element->package.count != 4)
917 continue;
919 obj = &(element->package.elements[0]);
921 if (obj->type != ACPI_TYPE_BUFFER)
922 continue;
924 reg = (struct acpi_power_register *)obj->buffer.pointer;
926 if (reg->space_id != ACPI_ADR_SPACE_SYSTEM_IO &&
927 (reg->space_id != ACPI_ADR_SPACE_FIXED_HARDWARE))
928 continue;
930 /* There should be an easy way to extract an integer... */
931 obj = &(element->package.elements[1]);
932 if (obj->type != ACPI_TYPE_INTEGER)
933 continue;
935 cx.type = obj->integer.value;
937 * Some buggy BIOSes won't list C1 in _CST -
938 * Let acpi_processor_get_power_info_default() handle them later
940 if (i == 1 && cx.type != ACPI_STATE_C1)
941 current_count++;
943 cx.address = reg->address;
944 cx.index = current_count + 1;
946 cx.entry_method = ACPI_CSTATE_SYSTEMIO;
947 if (reg->space_id == ACPI_ADR_SPACE_FIXED_HARDWARE) {
948 if (acpi_processor_ffh_cstate_probe
949 (pr->id, &cx, reg) == 0) {
950 cx.entry_method = ACPI_CSTATE_FFH;
951 } else if (cx.type == ACPI_STATE_C1) {
953 * C1 is a special case where FIXED_HARDWARE
954 * can be handled in non-MWAIT way as well.
955 * In that case, save this _CST entry info.
956 * Otherwise, ignore this info and continue.
958 cx.entry_method = ACPI_CSTATE_HALT;
959 snprintf(cx.desc, ACPI_CX_DESC_LEN, "ACPI HLT");
960 } else {
961 continue;
963 if (cx.type == ACPI_STATE_C1 &&
964 (idle_halt || idle_nomwait)) {
966 * In most cases the C1 space_id obtained from
967 * _CST object is FIXED_HARDWARE access mode.
968 * But when the option of idle=halt is added,
969 * the entry_method type should be changed from
970 * CSTATE_FFH to CSTATE_HALT.
971 * When the option of idle=nomwait is added,
972 * the C1 entry_method type should be
973 * CSTATE_HALT.
975 cx.entry_method = ACPI_CSTATE_HALT;
976 snprintf(cx.desc, ACPI_CX_DESC_LEN, "ACPI HLT");
978 } else {
979 snprintf(cx.desc, ACPI_CX_DESC_LEN, "ACPI IOPORT 0x%x",
980 cx.address);
983 if (cx.type == ACPI_STATE_C1) {
984 cx.valid = 1;
987 obj = &(element->package.elements[2]);
988 if (obj->type != ACPI_TYPE_INTEGER)
989 continue;
991 cx.latency = obj->integer.value;
993 obj = &(element->package.elements[3]);
994 if (obj->type != ACPI_TYPE_INTEGER)
995 continue;
997 cx.power = obj->integer.value;
999 current_count++;
1000 memcpy(&(pr->power.states[current_count]), &cx, sizeof(cx));
1003 * We support total ACPI_PROCESSOR_MAX_POWER - 1
1004 * (From 1 through ACPI_PROCESSOR_MAX_POWER - 1)
1006 if (current_count >= (ACPI_PROCESSOR_MAX_POWER - 1)) {
1007 printk(KERN_WARNING
1008 "Limiting number of power states to max (%d)\n",
1009 ACPI_PROCESSOR_MAX_POWER);
1010 printk(KERN_WARNING
1011 "Please increase ACPI_PROCESSOR_MAX_POWER if needed.\n");
1012 break;
1016 ACPI_DEBUG_PRINT((ACPI_DB_INFO, "Found %d power states\n",
1017 current_count));
1019 /* Validate number of power states discovered */
1020 if (current_count < 2)
1021 status = -EFAULT;
1023 end:
1024 kfree(buffer.pointer);
1026 return status;
1029 static void acpi_processor_power_verify_c2(struct acpi_processor_cx *cx)
1032 if (!cx->address)
1033 return;
1036 * C2 latency must be less than or equal to 100
1037 * microseconds.
1039 else if (cx->latency > ACPI_PROCESSOR_MAX_C2_LATENCY) {
1040 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
1041 "latency too large [%d]\n", cx->latency));
1042 return;
1046 * Otherwise we've met all of our C2 requirements.
1047 * Normalize the C2 latency to expidite policy
1049 cx->valid = 1;
1051 #ifndef CONFIG_CPU_IDLE
1052 cx->latency_ticks = US_TO_PM_TIMER_TICKS(cx->latency);
1053 #else
1054 cx->latency_ticks = cx->latency;
1055 #endif
1057 return;
1060 static void acpi_processor_power_verify_c3(struct acpi_processor *pr,
1061 struct acpi_processor_cx *cx)
1063 static int bm_check_flag;
1066 if (!cx->address)
1067 return;
1070 * C3 latency must be less than or equal to 1000
1071 * microseconds.
1073 else if (cx->latency > ACPI_PROCESSOR_MAX_C3_LATENCY) {
1074 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
1075 "latency too large [%d]\n", cx->latency));
1076 return;
1080 * PIIX4 Erratum #18: We don't support C3 when Type-F (fast)
1081 * DMA transfers are used by any ISA device to avoid livelock.
1082 * Note that we could disable Type-F DMA (as recommended by
1083 * the erratum), but this is known to disrupt certain ISA
1084 * devices thus we take the conservative approach.
1086 else if (errata.piix4.fdma) {
1087 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
1088 "C3 not supported on PIIX4 with Type-F DMA\n"));
1089 return;
1092 /* All the logic here assumes flags.bm_check is same across all CPUs */
1093 if (!bm_check_flag) {
1094 /* Determine whether bm_check is needed based on CPU */
1095 acpi_processor_power_init_bm_check(&(pr->flags), pr->id);
1096 bm_check_flag = pr->flags.bm_check;
1097 } else {
1098 pr->flags.bm_check = bm_check_flag;
1101 if (pr->flags.bm_check) {
1102 if (!pr->flags.bm_control) {
1103 if (pr->flags.has_cst != 1) {
1104 /* bus mastering control is necessary */
1105 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
1106 "C3 support requires BM control\n"));
1107 return;
1108 } else {
1109 /* Here we enter C3 without bus mastering */
1110 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
1111 "C3 support without BM control\n"));
1114 } else {
1116 * WBINVD should be set in fadt, for C3 state to be
1117 * supported on when bm_check is not required.
1119 if (!(acpi_gbl_FADT.flags & ACPI_FADT_WBINVD)) {
1120 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
1121 "Cache invalidation should work properly"
1122 " for C3 to be enabled on SMP systems\n"));
1123 return;
1125 acpi_set_register(ACPI_BITREG_BUS_MASTER_RLD, 0);
1129 * Otherwise we've met all of our C3 requirements.
1130 * Normalize the C3 latency to expidite policy. Enable
1131 * checking of bus mastering status (bm_check) so we can
1132 * use this in our C3 policy
1134 cx->valid = 1;
1136 #ifndef CONFIG_CPU_IDLE
1137 cx->latency_ticks = US_TO_PM_TIMER_TICKS(cx->latency);
1138 #else
1139 cx->latency_ticks = cx->latency;
1140 #endif
1142 return;
1145 static int acpi_processor_power_verify(struct acpi_processor *pr)
1147 unsigned int i;
1148 unsigned int working = 0;
1150 pr->power.timer_broadcast_on_state = INT_MAX;
1152 for (i = 1; i < ACPI_PROCESSOR_MAX_POWER; i++) {
1153 struct acpi_processor_cx *cx = &pr->power.states[i];
1155 switch (cx->type) {
1156 case ACPI_STATE_C1:
1157 cx->valid = 1;
1158 break;
1160 case ACPI_STATE_C2:
1161 acpi_processor_power_verify_c2(cx);
1162 if (cx->valid)
1163 acpi_timer_check_state(i, pr, cx);
1164 break;
1166 case ACPI_STATE_C3:
1167 acpi_processor_power_verify_c3(pr, cx);
1168 if (cx->valid)
1169 acpi_timer_check_state(i, pr, cx);
1170 break;
1173 if (cx->valid)
1174 working++;
1177 acpi_propagate_timer_broadcast(pr);
1179 return (working);
1182 static int acpi_processor_get_power_info(struct acpi_processor *pr)
1184 unsigned int i;
1185 int result;
1188 /* NOTE: the idle thread may not be running while calling
1189 * this function */
1191 /* Zero initialize all the C-states info. */
1192 memset(pr->power.states, 0, sizeof(pr->power.states));
1194 result = acpi_processor_get_power_info_cst(pr);
1195 if (result == -ENODEV)
1196 result = acpi_processor_get_power_info_fadt(pr);
1198 if (result)
1199 return result;
1201 acpi_processor_get_power_info_default(pr);
1203 pr->power.count = acpi_processor_power_verify(pr);
1205 #ifndef CONFIG_CPU_IDLE
1207 * Set Default Policy
1208 * ------------------
1209 * Now that we know which states are supported, set the default
1210 * policy. Note that this policy can be changed dynamically
1211 * (e.g. encourage deeper sleeps to conserve battery life when
1212 * not on AC).
1214 result = acpi_processor_set_power_policy(pr);
1215 if (result)
1216 return result;
1217 #endif
1220 * if one state of type C2 or C3 is available, mark this
1221 * CPU as being "idle manageable"
1223 for (i = 1; i < ACPI_PROCESSOR_MAX_POWER; i++) {
1224 if (pr->power.states[i].valid) {
1225 pr->power.count = i;
1226 if (pr->power.states[i].type >= ACPI_STATE_C2)
1227 pr->flags.power = 1;
1231 return 0;
1234 static int acpi_processor_power_seq_show(struct seq_file *seq, void *offset)
1236 struct acpi_processor *pr = seq->private;
1237 unsigned int i;
1240 if (!pr)
1241 goto end;
1243 seq_printf(seq, "active state: C%zd\n"
1244 "max_cstate: C%d\n"
1245 "bus master activity: %08x\n"
1246 "maximum allowed latency: %d usec\n",
1247 pr->power.state ? pr->power.state - pr->power.states : 0,
1248 max_cstate, (unsigned)pr->power.bm_activity,
1249 pm_qos_requirement(PM_QOS_CPU_DMA_LATENCY));
1251 seq_puts(seq, "states:\n");
1253 for (i = 1; i <= pr->power.count; i++) {
1254 seq_printf(seq, " %cC%d: ",
1255 (&pr->power.states[i] ==
1256 pr->power.state ? '*' : ' '), i);
1258 if (!pr->power.states[i].valid) {
1259 seq_puts(seq, "<not supported>\n");
1260 continue;
1263 switch (pr->power.states[i].type) {
1264 case ACPI_STATE_C1:
1265 seq_printf(seq, "type[C1] ");
1266 break;
1267 case ACPI_STATE_C2:
1268 seq_printf(seq, "type[C2] ");
1269 break;
1270 case ACPI_STATE_C3:
1271 seq_printf(seq, "type[C3] ");
1272 break;
1273 default:
1274 seq_printf(seq, "type[--] ");
1275 break;
1278 if (pr->power.states[i].promotion.state)
1279 seq_printf(seq, "promotion[C%zd] ",
1280 (pr->power.states[i].promotion.state -
1281 pr->power.states));
1282 else
1283 seq_puts(seq, "promotion[--] ");
1285 if (pr->power.states[i].demotion.state)
1286 seq_printf(seq, "demotion[C%zd] ",
1287 (pr->power.states[i].demotion.state -
1288 pr->power.states));
1289 else
1290 seq_puts(seq, "demotion[--] ");
1292 seq_printf(seq, "latency[%03d] usage[%08d] duration[%020llu]\n",
1293 pr->power.states[i].latency,
1294 pr->power.states[i].usage,
1295 (unsigned long long)pr->power.states[i].time);
1298 end:
1299 return 0;
1302 static int acpi_processor_power_open_fs(struct inode *inode, struct file *file)
1304 return single_open(file, acpi_processor_power_seq_show,
1305 PDE(inode)->data);
1308 static const struct file_operations acpi_processor_power_fops = {
1309 .owner = THIS_MODULE,
1310 .open = acpi_processor_power_open_fs,
1311 .read = seq_read,
1312 .llseek = seq_lseek,
1313 .release = single_release,
1316 #ifndef CONFIG_CPU_IDLE
1318 int acpi_processor_cst_has_changed(struct acpi_processor *pr)
1320 int result = 0;
1322 if (boot_option_idle_override)
1323 return 0;
1325 if (!pr)
1326 return -EINVAL;
1328 if (nocst) {
1329 return -ENODEV;
1332 if (!pr->flags.power_setup_done)
1333 return -ENODEV;
1336 * Fall back to the default idle loop, when pm_idle_save had
1337 * been initialized.
1339 if (pm_idle_save) {
1340 pm_idle = pm_idle_save;
1341 /* Relies on interrupts forcing exit from idle. */
1342 synchronize_sched();
1345 pr->flags.power = 0;
1346 result = acpi_processor_get_power_info(pr);
1347 if ((pr->flags.power == 1) && (pr->flags.power_setup_done))
1348 pm_idle = acpi_processor_idle;
1350 return result;
1353 #ifdef CONFIG_SMP
1354 static void smp_callback(void *v)
1356 /* we already woke the CPU up, nothing more to do */
1360 * This function gets called when a part of the kernel has a new latency
1361 * requirement. This means we need to get all processors out of their C-state,
1362 * and then recalculate a new suitable C-state. Just do a cross-cpu IPI; that
1363 * wakes them all right up.
1365 static int acpi_processor_latency_notify(struct notifier_block *b,
1366 unsigned long l, void *v)
1368 smp_call_function(smp_callback, NULL, 1);
1369 return NOTIFY_OK;
1372 static struct notifier_block acpi_processor_latency_notifier = {
1373 .notifier_call = acpi_processor_latency_notify,
1376 #endif
1378 #else /* CONFIG_CPU_IDLE */
1381 * acpi_idle_bm_check - checks if bus master activity was detected
1383 static int acpi_idle_bm_check(void)
1385 u32 bm_status = 0;
1387 acpi_get_register(ACPI_BITREG_BUS_MASTER_STATUS, &bm_status);
1388 if (bm_status)
1389 acpi_set_register(ACPI_BITREG_BUS_MASTER_STATUS, 1);
1391 * PIIX4 Erratum #18: Note that BM_STS doesn't always reflect
1392 * the true state of bus mastering activity; forcing us to
1393 * manually check the BMIDEA bit of each IDE channel.
1395 else if (errata.piix4.bmisx) {
1396 if ((inb_p(errata.piix4.bmisx + 0x02) & 0x01)
1397 || (inb_p(errata.piix4.bmisx + 0x0A) & 0x01))
1398 bm_status = 1;
1400 return bm_status;
1404 * acpi_idle_update_bm_rld - updates the BM_RLD bit depending on target state
1405 * @pr: the processor
1406 * @target: the new target state
1408 static inline void acpi_idle_update_bm_rld(struct acpi_processor *pr,
1409 struct acpi_processor_cx *target)
1411 if (pr->flags.bm_rld_set && target->type != ACPI_STATE_C3) {
1412 acpi_set_register(ACPI_BITREG_BUS_MASTER_RLD, 0);
1413 pr->flags.bm_rld_set = 0;
1416 if (!pr->flags.bm_rld_set && target->type == ACPI_STATE_C3) {
1417 acpi_set_register(ACPI_BITREG_BUS_MASTER_RLD, 1);
1418 pr->flags.bm_rld_set = 1;
1423 * acpi_idle_do_entry - a helper function that does C2 and C3 type entry
1424 * @cx: cstate data
1426 * Caller disables interrupt before call and enables interrupt after return.
1428 static inline void acpi_idle_do_entry(struct acpi_processor_cx *cx)
1430 /* Don't trace irqs off for idle */
1431 stop_critical_timings();
1432 if (cx->entry_method == ACPI_CSTATE_FFH) {
1433 /* Call into architectural FFH based C-state */
1434 acpi_processor_ffh_cstate_enter(cx);
1435 } else if (cx->entry_method == ACPI_CSTATE_HALT) {
1436 acpi_safe_halt();
1437 } else {
1438 int unused;
1439 /* IO port based C-state */
1440 inb(cx->address);
1441 /* Dummy wait op - must do something useless after P_LVL2 read
1442 because chipsets cannot guarantee that STPCLK# signal
1443 gets asserted in time to freeze execution properly. */
1444 unused = inl(acpi_gbl_FADT.xpm_timer_block.address);
1446 start_critical_timings();
1450 * acpi_idle_enter_c1 - enters an ACPI C1 state-type
1451 * @dev: the target CPU
1452 * @state: the state data
1454 * This is equivalent to the HALT instruction.
1456 static int acpi_idle_enter_c1(struct cpuidle_device *dev,
1457 struct cpuidle_state *state)
1459 u32 t1, t2;
1460 struct acpi_processor *pr;
1461 struct acpi_processor_cx *cx = cpuidle_get_statedata(state);
1463 pr = __get_cpu_var(processors);
1465 if (unlikely(!pr))
1466 return 0;
1468 local_irq_disable();
1470 /* Do not access any ACPI IO ports in suspend path */
1471 if (acpi_idle_suspend) {
1472 acpi_safe_halt();
1473 local_irq_enable();
1474 return 0;
1477 if (pr->flags.bm_check)
1478 acpi_idle_update_bm_rld(pr, cx);
1480 t1 = inl(acpi_gbl_FADT.xpm_timer_block.address);
1481 acpi_idle_do_entry(cx);
1482 t2 = inl(acpi_gbl_FADT.xpm_timer_block.address);
1484 local_irq_enable();
1485 cx->usage++;
1487 return ticks_elapsed_in_us(t1, t2);
1491 * acpi_idle_enter_simple - enters an ACPI state without BM handling
1492 * @dev: the target CPU
1493 * @state: the state data
1495 static int acpi_idle_enter_simple(struct cpuidle_device *dev,
1496 struct cpuidle_state *state)
1498 struct acpi_processor *pr;
1499 struct acpi_processor_cx *cx = cpuidle_get_statedata(state);
1500 u32 t1, t2;
1501 int sleep_ticks = 0;
1503 pr = __get_cpu_var(processors);
1505 if (unlikely(!pr))
1506 return 0;
1508 if (acpi_idle_suspend)
1509 return(acpi_idle_enter_c1(dev, state));
1511 local_irq_disable();
1512 current_thread_info()->status &= ~TS_POLLING;
1514 * TS_POLLING-cleared state must be visible before we test
1515 * NEED_RESCHED:
1517 smp_mb();
1519 if (unlikely(need_resched())) {
1520 current_thread_info()->status |= TS_POLLING;
1521 local_irq_enable();
1522 return 0;
1526 * Must be done before busmaster disable as we might need to
1527 * access HPET !
1529 acpi_state_timer_broadcast(pr, cx, 1);
1531 if (pr->flags.bm_check)
1532 acpi_idle_update_bm_rld(pr, cx);
1534 if (cx->type == ACPI_STATE_C3)
1535 ACPI_FLUSH_CPU_CACHE();
1537 t1 = inl(acpi_gbl_FADT.xpm_timer_block.address);
1538 /* Tell the scheduler that we are going deep-idle: */
1539 sched_clock_idle_sleep_event();
1540 acpi_idle_do_entry(cx);
1541 t2 = inl(acpi_gbl_FADT.xpm_timer_block.address);
1543 #if defined (CONFIG_GENERIC_TIME) && defined (CONFIG_X86)
1544 /* TSC could halt in idle, so notify users */
1545 if (tsc_halts_in_c(cx->type))
1546 mark_tsc_unstable("TSC halts in idle");;
1547 #endif
1548 sleep_ticks = ticks_elapsed(t1, t2);
1550 /* Tell the scheduler how much we idled: */
1551 sched_clock_idle_wakeup_event(sleep_ticks*PM_TIMER_TICK_NS);
1553 local_irq_enable();
1554 current_thread_info()->status |= TS_POLLING;
1556 cx->usage++;
1558 acpi_state_timer_broadcast(pr, cx, 0);
1559 cx->time += sleep_ticks;
1560 return ticks_elapsed_in_us(t1, t2);
1563 static int c3_cpu_count;
1564 static DEFINE_SPINLOCK(c3_lock);
1567 * acpi_idle_enter_bm - enters C3 with proper BM handling
1568 * @dev: the target CPU
1569 * @state: the state data
1571 * If BM is detected, the deepest non-C3 idle state is entered instead.
1573 static int acpi_idle_enter_bm(struct cpuidle_device *dev,
1574 struct cpuidle_state *state)
1576 struct acpi_processor *pr;
1577 struct acpi_processor_cx *cx = cpuidle_get_statedata(state);
1578 u32 t1, t2;
1579 int sleep_ticks = 0;
1581 pr = __get_cpu_var(processors);
1583 if (unlikely(!pr))
1584 return 0;
1586 if (acpi_idle_suspend)
1587 return(acpi_idle_enter_c1(dev, state));
1589 if (acpi_idle_bm_check()) {
1590 if (dev->safe_state) {
1591 return dev->safe_state->enter(dev, dev->safe_state);
1592 } else {
1593 local_irq_disable();
1594 acpi_safe_halt();
1595 local_irq_enable();
1596 return 0;
1600 local_irq_disable();
1601 current_thread_info()->status &= ~TS_POLLING;
1603 * TS_POLLING-cleared state must be visible before we test
1604 * NEED_RESCHED:
1606 smp_mb();
1608 if (unlikely(need_resched())) {
1609 current_thread_info()->status |= TS_POLLING;
1610 local_irq_enable();
1611 return 0;
1614 acpi_unlazy_tlb(smp_processor_id());
1616 /* Tell the scheduler that we are going deep-idle: */
1617 sched_clock_idle_sleep_event();
1619 * Must be done before busmaster disable as we might need to
1620 * access HPET !
1622 acpi_state_timer_broadcast(pr, cx, 1);
1624 acpi_idle_update_bm_rld(pr, cx);
1627 * disable bus master
1628 * bm_check implies we need ARB_DIS
1629 * !bm_check implies we need cache flush
1630 * bm_control implies whether we can do ARB_DIS
1632 * That leaves a case where bm_check is set and bm_control is
1633 * not set. In that case we cannot do much, we enter C3
1634 * without doing anything.
1636 if (pr->flags.bm_check && pr->flags.bm_control) {
1637 spin_lock(&c3_lock);
1638 c3_cpu_count++;
1639 /* Disable bus master arbitration when all CPUs are in C3 */
1640 if (c3_cpu_count == num_online_cpus())
1641 acpi_set_register(ACPI_BITREG_ARB_DISABLE, 1);
1642 spin_unlock(&c3_lock);
1643 } else if (!pr->flags.bm_check) {
1644 ACPI_FLUSH_CPU_CACHE();
1647 t1 = inl(acpi_gbl_FADT.xpm_timer_block.address);
1648 acpi_idle_do_entry(cx);
1649 t2 = inl(acpi_gbl_FADT.xpm_timer_block.address);
1651 /* Re-enable bus master arbitration */
1652 if (pr->flags.bm_check && pr->flags.bm_control) {
1653 spin_lock(&c3_lock);
1654 acpi_set_register(ACPI_BITREG_ARB_DISABLE, 0);
1655 c3_cpu_count--;
1656 spin_unlock(&c3_lock);
1659 #if defined (CONFIG_GENERIC_TIME) && defined (CONFIG_X86)
1660 /* TSC could halt in idle, so notify users */
1661 if (tsc_halts_in_c(ACPI_STATE_C3))
1662 mark_tsc_unstable("TSC halts in idle");
1663 #endif
1664 sleep_ticks = ticks_elapsed(t1, t2);
1665 /* Tell the scheduler how much we idled: */
1666 sched_clock_idle_wakeup_event(sleep_ticks*PM_TIMER_TICK_NS);
1668 local_irq_enable();
1669 current_thread_info()->status |= TS_POLLING;
1671 cx->usage++;
1673 acpi_state_timer_broadcast(pr, cx, 0);
1674 cx->time += sleep_ticks;
1675 return ticks_elapsed_in_us(t1, t2);
1678 struct cpuidle_driver acpi_idle_driver = {
1679 .name = "acpi_idle",
1680 .owner = THIS_MODULE,
1684 * acpi_processor_setup_cpuidle - prepares and configures CPUIDLE
1685 * @pr: the ACPI processor
1687 static int acpi_processor_setup_cpuidle(struct acpi_processor *pr)
1689 int i, count = CPUIDLE_DRIVER_STATE_START;
1690 struct acpi_processor_cx *cx;
1691 struct cpuidle_state *state;
1692 struct cpuidle_device *dev = &pr->power.dev;
1694 if (!pr->flags.power_setup_done)
1695 return -EINVAL;
1697 if (pr->flags.power == 0) {
1698 return -EINVAL;
1701 dev->cpu = pr->id;
1702 for (i = 0; i < CPUIDLE_STATE_MAX; i++) {
1703 dev->states[i].name[0] = '\0';
1704 dev->states[i].desc[0] = '\0';
1707 for (i = 1; i < ACPI_PROCESSOR_MAX_POWER && i <= max_cstate; i++) {
1708 cx = &pr->power.states[i];
1709 state = &dev->states[count];
1711 if (!cx->valid)
1712 continue;
1714 #ifdef CONFIG_HOTPLUG_CPU
1715 if ((cx->type != ACPI_STATE_C1) && (num_online_cpus() > 1) &&
1716 !pr->flags.has_cst &&
1717 !(acpi_gbl_FADT.flags & ACPI_FADT_C2_MP_SUPPORTED))
1718 continue;
1719 #endif
1720 cpuidle_set_statedata(state, cx);
1722 snprintf(state->name, CPUIDLE_NAME_LEN, "C%d", i);
1723 strncpy(state->desc, cx->desc, CPUIDLE_DESC_LEN);
1724 state->exit_latency = cx->latency;
1725 state->target_residency = cx->latency * latency_factor;
1726 state->power_usage = cx->power;
1728 state->flags = 0;
1729 switch (cx->type) {
1730 case ACPI_STATE_C1:
1731 state->flags |= CPUIDLE_FLAG_SHALLOW;
1732 if (cx->entry_method == ACPI_CSTATE_FFH)
1733 state->flags |= CPUIDLE_FLAG_TIME_VALID;
1735 state->enter = acpi_idle_enter_c1;
1736 dev->safe_state = state;
1737 break;
1739 case ACPI_STATE_C2:
1740 state->flags |= CPUIDLE_FLAG_BALANCED;
1741 state->flags |= CPUIDLE_FLAG_TIME_VALID;
1742 state->enter = acpi_idle_enter_simple;
1743 dev->safe_state = state;
1744 break;
1746 case ACPI_STATE_C3:
1747 state->flags |= CPUIDLE_FLAG_DEEP;
1748 state->flags |= CPUIDLE_FLAG_TIME_VALID;
1749 state->flags |= CPUIDLE_FLAG_CHECK_BM;
1750 state->enter = pr->flags.bm_check ?
1751 acpi_idle_enter_bm :
1752 acpi_idle_enter_simple;
1753 break;
1756 count++;
1757 if (count == CPUIDLE_STATE_MAX)
1758 break;
1761 dev->state_count = count;
1763 if (!count)
1764 return -EINVAL;
1766 return 0;
1769 int acpi_processor_cst_has_changed(struct acpi_processor *pr)
1771 int ret = 0;
1773 if (boot_option_idle_override)
1774 return 0;
1776 if (!pr)
1777 return -EINVAL;
1779 if (nocst) {
1780 return -ENODEV;
1783 if (!pr->flags.power_setup_done)
1784 return -ENODEV;
1786 cpuidle_pause_and_lock();
1787 cpuidle_disable_device(&pr->power.dev);
1788 acpi_processor_get_power_info(pr);
1789 if (pr->flags.power) {
1790 acpi_processor_setup_cpuidle(pr);
1791 ret = cpuidle_enable_device(&pr->power.dev);
1793 cpuidle_resume_and_unlock();
1795 return ret;
1798 #endif /* CONFIG_CPU_IDLE */
1800 int __cpuinit acpi_processor_power_init(struct acpi_processor *pr,
1801 struct acpi_device *device)
1803 acpi_status status = 0;
1804 static int first_run;
1805 struct proc_dir_entry *entry = NULL;
1806 unsigned int i;
1808 if (boot_option_idle_override)
1809 return 0;
1811 if (!first_run) {
1812 if (idle_halt) {
1814 * When the boot option of "idle=halt" is added, halt
1815 * is used for CPU IDLE.
1816 * In such case C2/C3 is meaningless. So the max_cstate
1817 * is set to one.
1819 max_cstate = 1;
1821 dmi_check_system(processor_power_dmi_table);
1822 max_cstate = acpi_processor_cstate_check(max_cstate);
1823 if (max_cstate < ACPI_C_STATES_MAX)
1824 printk(KERN_NOTICE
1825 "ACPI: processor limited to max C-state %d\n",
1826 max_cstate);
1827 first_run++;
1828 #if !defined(CONFIG_CPU_IDLE) && defined(CONFIG_SMP)
1829 pm_qos_add_notifier(PM_QOS_CPU_DMA_LATENCY,
1830 &acpi_processor_latency_notifier);
1831 #endif
1834 if (!pr)
1835 return -EINVAL;
1837 if (acpi_gbl_FADT.cst_control && !nocst) {
1838 status =
1839 acpi_os_write_port(acpi_gbl_FADT.smi_command, acpi_gbl_FADT.cst_control, 8);
1840 if (ACPI_FAILURE(status)) {
1841 ACPI_EXCEPTION((AE_INFO, status,
1842 "Notifying BIOS of _CST ability failed"));
1846 acpi_processor_get_power_info(pr);
1847 pr->flags.power_setup_done = 1;
1850 * Install the idle handler if processor power management is supported.
1851 * Note that we use previously set idle handler will be used on
1852 * platforms that only support C1.
1854 if (pr->flags.power) {
1855 #ifdef CONFIG_CPU_IDLE
1856 acpi_processor_setup_cpuidle(pr);
1857 if (cpuidle_register_device(&pr->power.dev))
1858 return -EIO;
1859 #endif
1861 printk(KERN_INFO PREFIX "CPU%d (power states:", pr->id);
1862 for (i = 1; i <= pr->power.count; i++)
1863 if (pr->power.states[i].valid)
1864 printk(" C%d[C%d]", i,
1865 pr->power.states[i].type);
1866 printk(")\n");
1868 #ifndef CONFIG_CPU_IDLE
1869 if (pr->id == 0) {
1870 pm_idle_save = pm_idle;
1871 pm_idle = acpi_processor_idle;
1873 #endif
1876 /* 'power' [R] */
1877 entry = proc_create_data(ACPI_PROCESSOR_FILE_POWER,
1878 S_IRUGO, acpi_device_dir(device),
1879 &acpi_processor_power_fops,
1880 acpi_driver_data(device));
1881 if (!entry)
1882 return -EIO;
1883 return 0;
1886 int acpi_processor_power_exit(struct acpi_processor *pr,
1887 struct acpi_device *device)
1889 if (boot_option_idle_override)
1890 return 0;
1892 #ifdef CONFIG_CPU_IDLE
1893 cpuidle_unregister_device(&pr->power.dev);
1894 #endif
1895 pr->flags.power_setup_done = 0;
1897 if (acpi_device_dir(device))
1898 remove_proc_entry(ACPI_PROCESSOR_FILE_POWER,
1899 acpi_device_dir(device));
1901 #ifndef CONFIG_CPU_IDLE
1903 /* Unregister the idle handler when processor #0 is removed. */
1904 if (pr->id == 0) {
1905 if (pm_idle_save)
1906 pm_idle = pm_idle_save;
1909 * We are about to unload the current idle thread pm callback
1910 * (pm_idle), Wait for all processors to update cached/local
1911 * copies of pm_idle before proceeding.
1913 cpu_idle_wait();
1914 #ifdef CONFIG_SMP
1915 pm_qos_remove_notifier(PM_QOS_CPU_DMA_LATENCY,
1916 &acpi_processor_latency_notifier);
1917 #endif
1919 #endif
1921 return 0;