[CPUFREQ] Re-enable cpufreq suspend and resume code
[linux-2.6/mini2440.git] / drivers / net / via-rhine.c
blob934f7671650a8dd3aa0c049fc85001177c3542b7
1 /* via-rhine.c: A Linux Ethernet device driver for VIA Rhine family chips. */
2 /*
3 Written 1998-2001 by Donald Becker.
5 Current Maintainer: Roger Luethi <rl@hellgate.ch>
7 This software may be used and distributed according to the terms of
8 the GNU General Public License (GPL), incorporated herein by reference.
9 Drivers based on or derived from this code fall under the GPL and must
10 retain the authorship, copyright and license notice. This file is not
11 a complete program and may only be used when the entire operating
12 system is licensed under the GPL.
14 This driver is designed for the VIA VT86C100A Rhine-I.
15 It also works with the Rhine-II (6102) and Rhine-III (6105/6105L/6105LOM
16 and management NIC 6105M).
18 The author may be reached as becker@scyld.com, or C/O
19 Scyld Computing Corporation
20 410 Severn Ave., Suite 210
21 Annapolis MD 21403
24 This driver contains some changes from the original Donald Becker
25 version. He may or may not be interested in bug reports on this
26 code. You can find his versions at:
27 http://www.scyld.com/network/via-rhine.html
28 [link no longer provides useful info -jgarzik]
32 #define DRV_NAME "via-rhine"
33 #define DRV_VERSION "1.4.3"
34 #define DRV_RELDATE "2007-03-06"
37 /* A few user-configurable values.
38 These may be modified when a driver module is loaded. */
40 static int debug = 1; /* 1 normal messages, 0 quiet .. 7 verbose. */
41 static int max_interrupt_work = 20;
43 /* Set the copy breakpoint for the copy-only-tiny-frames scheme.
44 Setting to > 1518 effectively disables this feature. */
45 #if defined(__alpha__) || defined(__arm__) || defined(__hppa__) \
46 || defined(CONFIG_SPARC) || defined(__ia64__) \
47 || defined(__sh__) || defined(__mips__)
48 static int rx_copybreak = 1518;
49 #else
50 static int rx_copybreak;
51 #endif
53 /* Work-around for broken BIOSes: they are unable to get the chip back out of
54 power state D3 so PXE booting fails. bootparam(7): via-rhine.avoid_D3=1 */
55 static int avoid_D3;
58 * In case you are looking for 'options[]' or 'full_duplex[]', they
59 * are gone. Use ethtool(8) instead.
62 /* Maximum number of multicast addresses to filter (vs. rx-all-multicast).
63 The Rhine has a 64 element 8390-like hash table. */
64 static const int multicast_filter_limit = 32;
67 /* Operational parameters that are set at compile time. */
69 /* Keep the ring sizes a power of two for compile efficiency.
70 The compiler will convert <unsigned>'%'<2^N> into a bit mask.
71 Making the Tx ring too large decreases the effectiveness of channel
72 bonding and packet priority.
73 There are no ill effects from too-large receive rings. */
74 #define TX_RING_SIZE 16
75 #define TX_QUEUE_LEN 10 /* Limit ring entries actually used. */
76 #define RX_RING_SIZE 64
78 /* Operational parameters that usually are not changed. */
80 /* Time in jiffies before concluding the transmitter is hung. */
81 #define TX_TIMEOUT (2*HZ)
83 #define PKT_BUF_SZ 1536 /* Size of each temporary Rx buffer.*/
85 #include <linux/module.h>
86 #include <linux/moduleparam.h>
87 #include <linux/kernel.h>
88 #include <linux/string.h>
89 #include <linux/timer.h>
90 #include <linux/errno.h>
91 #include <linux/ioport.h>
92 #include <linux/slab.h>
93 #include <linux/interrupt.h>
94 #include <linux/pci.h>
95 #include <linux/dma-mapping.h>
96 #include <linux/netdevice.h>
97 #include <linux/etherdevice.h>
98 #include <linux/skbuff.h>
99 #include <linux/init.h>
100 #include <linux/delay.h>
101 #include <linux/mii.h>
102 #include <linux/ethtool.h>
103 #include <linux/crc32.h>
104 #include <linux/bitops.h>
105 #include <asm/processor.h> /* Processor type for cache alignment. */
106 #include <asm/io.h>
107 #include <asm/irq.h>
108 #include <asm/uaccess.h>
109 #include <linux/dmi.h>
111 /* These identify the driver base version and may not be removed. */
112 static const char version[] __devinitconst =
113 KERN_INFO DRV_NAME ".c:v1.10-LK" DRV_VERSION " " DRV_RELDATE
114 " Written by Donald Becker\n";
116 /* This driver was written to use PCI memory space. Some early versions
117 of the Rhine may only work correctly with I/O space accesses. */
118 #ifdef CONFIG_VIA_RHINE_MMIO
119 #define USE_MMIO
120 #else
121 #endif
123 MODULE_AUTHOR("Donald Becker <becker@scyld.com>");
124 MODULE_DESCRIPTION("VIA Rhine PCI Fast Ethernet driver");
125 MODULE_LICENSE("GPL");
127 module_param(max_interrupt_work, int, 0);
128 module_param(debug, int, 0);
129 module_param(rx_copybreak, int, 0);
130 module_param(avoid_D3, bool, 0);
131 MODULE_PARM_DESC(max_interrupt_work, "VIA Rhine maximum events handled per interrupt");
132 MODULE_PARM_DESC(debug, "VIA Rhine debug level (0-7)");
133 MODULE_PARM_DESC(rx_copybreak, "VIA Rhine copy breakpoint for copy-only-tiny-frames");
134 MODULE_PARM_DESC(avoid_D3, "Avoid power state D3 (work-around for broken BIOSes)");
137 Theory of Operation
139 I. Board Compatibility
141 This driver is designed for the VIA 86c100A Rhine-II PCI Fast Ethernet
142 controller.
144 II. Board-specific settings
146 Boards with this chip are functional only in a bus-master PCI slot.
148 Many operational settings are loaded from the EEPROM to the Config word at
149 offset 0x78. For most of these settings, this driver assumes that they are
150 correct.
151 If this driver is compiled to use PCI memory space operations the EEPROM
152 must be configured to enable memory ops.
154 III. Driver operation
156 IIIa. Ring buffers
158 This driver uses two statically allocated fixed-size descriptor lists
159 formed into rings by a branch from the final descriptor to the beginning of
160 the list. The ring sizes are set at compile time by RX/TX_RING_SIZE.
162 IIIb/c. Transmit/Receive Structure
164 This driver attempts to use a zero-copy receive and transmit scheme.
166 Alas, all data buffers are required to start on a 32 bit boundary, so
167 the driver must often copy transmit packets into bounce buffers.
169 The driver allocates full frame size skbuffs for the Rx ring buffers at
170 open() time and passes the skb->data field to the chip as receive data
171 buffers. When an incoming frame is less than RX_COPYBREAK bytes long,
172 a fresh skbuff is allocated and the frame is copied to the new skbuff.
173 When the incoming frame is larger, the skbuff is passed directly up the
174 protocol stack. Buffers consumed this way are replaced by newly allocated
175 skbuffs in the last phase of rhine_rx().
177 The RX_COPYBREAK value is chosen to trade-off the memory wasted by
178 using a full-sized skbuff for small frames vs. the copying costs of larger
179 frames. New boards are typically used in generously configured machines
180 and the underfilled buffers have negligible impact compared to the benefit of
181 a single allocation size, so the default value of zero results in never
182 copying packets. When copying is done, the cost is usually mitigated by using
183 a combined copy/checksum routine. Copying also preloads the cache, which is
184 most useful with small frames.
186 Since the VIA chips are only able to transfer data to buffers on 32 bit
187 boundaries, the IP header at offset 14 in an ethernet frame isn't
188 longword aligned for further processing. Copying these unaligned buffers
189 has the beneficial effect of 16-byte aligning the IP header.
191 IIId. Synchronization
193 The driver runs as two independent, single-threaded flows of control. One
194 is the send-packet routine, which enforces single-threaded use by the
195 netdev_priv(dev)->lock spinlock. The other thread is the interrupt handler,
196 which is single threaded by the hardware and interrupt handling software.
198 The send packet thread has partial control over the Tx ring. It locks the
199 netdev_priv(dev)->lock whenever it's queuing a Tx packet. If the next slot in
200 the ring is not available it stops the transmit queue by
201 calling netif_stop_queue.
203 The interrupt handler has exclusive control over the Rx ring and records stats
204 from the Tx ring. After reaping the stats, it marks the Tx queue entry as
205 empty by incrementing the dirty_tx mark. If at least half of the entries in
206 the Rx ring are available the transmit queue is woken up if it was stopped.
208 IV. Notes
210 IVb. References
212 Preliminary VT86C100A manual from http://www.via.com.tw/
213 http://www.scyld.com/expert/100mbps.html
214 http://www.scyld.com/expert/NWay.html
215 ftp://ftp.via.com.tw/public/lan/Products/NIC/VT86C100A/Datasheet/VT86C100A03.pdf
216 ftp://ftp.via.com.tw/public/lan/Products/NIC/VT6102/Datasheet/VT6102_021.PDF
219 IVc. Errata
221 The VT86C100A manual is not reliable information.
222 The 3043 chip does not handle unaligned transmit or receive buffers, resulting
223 in significant performance degradation for bounce buffer copies on transmit
224 and unaligned IP headers on receive.
225 The chip does not pad to minimum transmit length.
230 /* This table drives the PCI probe routines. It's mostly boilerplate in all
231 of the drivers, and will likely be provided by some future kernel.
232 Note the matching code -- the first table entry matchs all 56** cards but
233 second only the 1234 card.
236 enum rhine_revs {
237 VT86C100A = 0x00,
238 VTunknown0 = 0x20,
239 VT6102 = 0x40,
240 VT8231 = 0x50, /* Integrated MAC */
241 VT8233 = 0x60, /* Integrated MAC */
242 VT8235 = 0x74, /* Integrated MAC */
243 VT8237 = 0x78, /* Integrated MAC */
244 VTunknown1 = 0x7C,
245 VT6105 = 0x80,
246 VT6105_B0 = 0x83,
247 VT6105L = 0x8A,
248 VT6107 = 0x8C,
249 VTunknown2 = 0x8E,
250 VT6105M = 0x90, /* Management adapter */
253 enum rhine_quirks {
254 rqWOL = 0x0001, /* Wake-On-LAN support */
255 rqForceReset = 0x0002,
256 rq6patterns = 0x0040, /* 6 instead of 4 patterns for WOL */
257 rqStatusWBRace = 0x0080, /* Tx Status Writeback Error possible */
258 rqRhineI = 0x0100, /* See comment below */
261 * rqRhineI: VT86C100A (aka Rhine-I) uses different bits to enable
262 * MMIO as well as for the collision counter and the Tx FIFO underflow
263 * indicator. In addition, Tx and Rx buffers need to 4 byte aligned.
266 /* Beware of PCI posted writes */
267 #define IOSYNC do { ioread8(ioaddr + StationAddr); } while (0)
269 static const struct pci_device_id rhine_pci_tbl[] = {
270 { 0x1106, 0x3043, PCI_ANY_ID, PCI_ANY_ID, }, /* VT86C100A */
271 { 0x1106, 0x3065, PCI_ANY_ID, PCI_ANY_ID, }, /* VT6102 */
272 { 0x1106, 0x3106, PCI_ANY_ID, PCI_ANY_ID, }, /* 6105{,L,LOM} */
273 { 0x1106, 0x3053, PCI_ANY_ID, PCI_ANY_ID, }, /* VT6105M */
274 { } /* terminate list */
276 MODULE_DEVICE_TABLE(pci, rhine_pci_tbl);
279 /* Offsets to the device registers. */
280 enum register_offsets {
281 StationAddr=0x00, RxConfig=0x06, TxConfig=0x07, ChipCmd=0x08,
282 ChipCmd1=0x09,
283 IntrStatus=0x0C, IntrEnable=0x0E,
284 MulticastFilter0=0x10, MulticastFilter1=0x14,
285 RxRingPtr=0x18, TxRingPtr=0x1C, GFIFOTest=0x54,
286 MIIPhyAddr=0x6C, MIIStatus=0x6D, PCIBusConfig=0x6E,
287 MIICmd=0x70, MIIRegAddr=0x71, MIIData=0x72, MACRegEEcsr=0x74,
288 ConfigA=0x78, ConfigB=0x79, ConfigC=0x7A, ConfigD=0x7B,
289 RxMissed=0x7C, RxCRCErrs=0x7E, MiscCmd=0x81,
290 StickyHW=0x83, IntrStatus2=0x84,
291 WOLcrSet=0xA0, PwcfgSet=0xA1, WOLcgSet=0xA3, WOLcrClr=0xA4,
292 WOLcrClr1=0xA6, WOLcgClr=0xA7,
293 PwrcsrSet=0xA8, PwrcsrSet1=0xA9, PwrcsrClr=0xAC, PwrcsrClr1=0xAD,
296 /* Bits in ConfigD */
297 enum backoff_bits {
298 BackOptional=0x01, BackModify=0x02,
299 BackCaptureEffect=0x04, BackRandom=0x08
302 #ifdef USE_MMIO
303 /* Registers we check that mmio and reg are the same. */
304 static const int mmio_verify_registers[] = {
305 RxConfig, TxConfig, IntrEnable, ConfigA, ConfigB, ConfigC, ConfigD,
308 #endif
310 /* Bits in the interrupt status/mask registers. */
311 enum intr_status_bits {
312 IntrRxDone=0x0001, IntrRxErr=0x0004, IntrRxEmpty=0x0020,
313 IntrTxDone=0x0002, IntrTxError=0x0008, IntrTxUnderrun=0x0210,
314 IntrPCIErr=0x0040,
315 IntrStatsMax=0x0080, IntrRxEarly=0x0100,
316 IntrRxOverflow=0x0400, IntrRxDropped=0x0800, IntrRxNoBuf=0x1000,
317 IntrTxAborted=0x2000, IntrLinkChange=0x4000,
318 IntrRxWakeUp=0x8000,
319 IntrNormalSummary=0x0003, IntrAbnormalSummary=0xC260,
320 IntrTxDescRace=0x080000, /* mapped from IntrStatus2 */
321 IntrTxErrSummary=0x082218,
324 /* Bits in WOLcrSet/WOLcrClr and PwrcsrSet/PwrcsrClr */
325 enum wol_bits {
326 WOLucast = 0x10,
327 WOLmagic = 0x20,
328 WOLbmcast = 0x30,
329 WOLlnkon = 0x40,
330 WOLlnkoff = 0x80,
333 /* The Rx and Tx buffer descriptors. */
334 struct rx_desc {
335 __le32 rx_status;
336 __le32 desc_length; /* Chain flag, Buffer/frame length */
337 __le32 addr;
338 __le32 next_desc;
340 struct tx_desc {
341 __le32 tx_status;
342 __le32 desc_length; /* Chain flag, Tx Config, Frame length */
343 __le32 addr;
344 __le32 next_desc;
347 /* Initial value for tx_desc.desc_length, Buffer size goes to bits 0-10 */
348 #define TXDESC 0x00e08000
350 enum rx_status_bits {
351 RxOK=0x8000, RxWholePkt=0x0300, RxErr=0x008F
354 /* Bits in *_desc.*_status */
355 enum desc_status_bits {
356 DescOwn=0x80000000
359 /* Bits in ChipCmd. */
360 enum chip_cmd_bits {
361 CmdInit=0x01, CmdStart=0x02, CmdStop=0x04, CmdRxOn=0x08,
362 CmdTxOn=0x10, Cmd1TxDemand=0x20, CmdRxDemand=0x40,
363 Cmd1EarlyRx=0x01, Cmd1EarlyTx=0x02, Cmd1FDuplex=0x04,
364 Cmd1NoTxPoll=0x08, Cmd1Reset=0x80,
367 struct rhine_private {
368 /* Descriptor rings */
369 struct rx_desc *rx_ring;
370 struct tx_desc *tx_ring;
371 dma_addr_t rx_ring_dma;
372 dma_addr_t tx_ring_dma;
374 /* The addresses of receive-in-place skbuffs. */
375 struct sk_buff *rx_skbuff[RX_RING_SIZE];
376 dma_addr_t rx_skbuff_dma[RX_RING_SIZE];
378 /* The saved address of a sent-in-place packet/buffer, for later free(). */
379 struct sk_buff *tx_skbuff[TX_RING_SIZE];
380 dma_addr_t tx_skbuff_dma[TX_RING_SIZE];
382 /* Tx bounce buffers (Rhine-I only) */
383 unsigned char *tx_buf[TX_RING_SIZE];
384 unsigned char *tx_bufs;
385 dma_addr_t tx_bufs_dma;
387 struct pci_dev *pdev;
388 long pioaddr;
389 struct net_device *dev;
390 struct napi_struct napi;
391 spinlock_t lock;
393 /* Frequently used values: keep some adjacent for cache effect. */
394 u32 quirks;
395 struct rx_desc *rx_head_desc;
396 unsigned int cur_rx, dirty_rx; /* Producer/consumer ring indices */
397 unsigned int cur_tx, dirty_tx;
398 unsigned int rx_buf_sz; /* Based on MTU+slack. */
399 u8 wolopts;
401 u8 tx_thresh, rx_thresh;
403 struct mii_if_info mii_if;
404 void __iomem *base;
407 static int mdio_read(struct net_device *dev, int phy_id, int location);
408 static void mdio_write(struct net_device *dev, int phy_id, int location, int value);
409 static int rhine_open(struct net_device *dev);
410 static void rhine_tx_timeout(struct net_device *dev);
411 static int rhine_start_tx(struct sk_buff *skb, struct net_device *dev);
412 static irqreturn_t rhine_interrupt(int irq, void *dev_instance);
413 static void rhine_tx(struct net_device *dev);
414 static int rhine_rx(struct net_device *dev, int limit);
415 static void rhine_error(struct net_device *dev, int intr_status);
416 static void rhine_set_rx_mode(struct net_device *dev);
417 static struct net_device_stats *rhine_get_stats(struct net_device *dev);
418 static int netdev_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
419 static const struct ethtool_ops netdev_ethtool_ops;
420 static int rhine_close(struct net_device *dev);
421 static void rhine_shutdown (struct pci_dev *pdev);
423 #define RHINE_WAIT_FOR(condition) do { \
424 int i=1024; \
425 while (!(condition) && --i) \
427 if (debug > 1 && i < 512) \
428 printk(KERN_INFO "%s: %4d cycles used @ %s:%d\n", \
429 DRV_NAME, 1024-i, __func__, __LINE__); \
430 } while(0)
432 static inline u32 get_intr_status(struct net_device *dev)
434 struct rhine_private *rp = netdev_priv(dev);
435 void __iomem *ioaddr = rp->base;
436 u32 intr_status;
438 intr_status = ioread16(ioaddr + IntrStatus);
439 /* On Rhine-II, Bit 3 indicates Tx descriptor write-back race. */
440 if (rp->quirks & rqStatusWBRace)
441 intr_status |= ioread8(ioaddr + IntrStatus2) << 16;
442 return intr_status;
446 * Get power related registers into sane state.
447 * Notify user about past WOL event.
449 static void rhine_power_init(struct net_device *dev)
451 struct rhine_private *rp = netdev_priv(dev);
452 void __iomem *ioaddr = rp->base;
453 u16 wolstat;
455 if (rp->quirks & rqWOL) {
456 /* Make sure chip is in power state D0 */
457 iowrite8(ioread8(ioaddr + StickyHW) & 0xFC, ioaddr + StickyHW);
459 /* Disable "force PME-enable" */
460 iowrite8(0x80, ioaddr + WOLcgClr);
462 /* Clear power-event config bits (WOL) */
463 iowrite8(0xFF, ioaddr + WOLcrClr);
464 /* More recent cards can manage two additional patterns */
465 if (rp->quirks & rq6patterns)
466 iowrite8(0x03, ioaddr + WOLcrClr1);
468 /* Save power-event status bits */
469 wolstat = ioread8(ioaddr + PwrcsrSet);
470 if (rp->quirks & rq6patterns)
471 wolstat |= (ioread8(ioaddr + PwrcsrSet1) & 0x03) << 8;
473 /* Clear power-event status bits */
474 iowrite8(0xFF, ioaddr + PwrcsrClr);
475 if (rp->quirks & rq6patterns)
476 iowrite8(0x03, ioaddr + PwrcsrClr1);
478 if (wolstat) {
479 char *reason;
480 switch (wolstat) {
481 case WOLmagic:
482 reason = "Magic packet";
483 break;
484 case WOLlnkon:
485 reason = "Link went up";
486 break;
487 case WOLlnkoff:
488 reason = "Link went down";
489 break;
490 case WOLucast:
491 reason = "Unicast packet";
492 break;
493 case WOLbmcast:
494 reason = "Multicast/broadcast packet";
495 break;
496 default:
497 reason = "Unknown";
499 printk(KERN_INFO "%s: Woke system up. Reason: %s.\n",
500 DRV_NAME, reason);
505 static void rhine_chip_reset(struct net_device *dev)
507 struct rhine_private *rp = netdev_priv(dev);
508 void __iomem *ioaddr = rp->base;
510 iowrite8(Cmd1Reset, ioaddr + ChipCmd1);
511 IOSYNC;
513 if (ioread8(ioaddr + ChipCmd1) & Cmd1Reset) {
514 printk(KERN_INFO "%s: Reset not complete yet. "
515 "Trying harder.\n", DRV_NAME);
517 /* Force reset */
518 if (rp->quirks & rqForceReset)
519 iowrite8(0x40, ioaddr + MiscCmd);
521 /* Reset can take somewhat longer (rare) */
522 RHINE_WAIT_FOR(!(ioread8(ioaddr + ChipCmd1) & Cmd1Reset));
525 if (debug > 1)
526 printk(KERN_INFO "%s: Reset %s.\n", dev->name,
527 (ioread8(ioaddr + ChipCmd1) & Cmd1Reset) ?
528 "failed" : "succeeded");
531 #ifdef USE_MMIO
532 static void enable_mmio(long pioaddr, u32 quirks)
534 int n;
535 if (quirks & rqRhineI) {
536 /* More recent docs say that this bit is reserved ... */
537 n = inb(pioaddr + ConfigA) | 0x20;
538 outb(n, pioaddr + ConfigA);
539 } else {
540 n = inb(pioaddr + ConfigD) | 0x80;
541 outb(n, pioaddr + ConfigD);
544 #endif
547 * Loads bytes 0x00-0x05, 0x6E-0x6F, 0x78-0x7B from EEPROM
548 * (plus 0x6C for Rhine-I/II)
550 static void __devinit rhine_reload_eeprom(long pioaddr, struct net_device *dev)
552 struct rhine_private *rp = netdev_priv(dev);
553 void __iomem *ioaddr = rp->base;
555 outb(0x20, pioaddr + MACRegEEcsr);
556 RHINE_WAIT_FOR(!(inb(pioaddr + MACRegEEcsr) & 0x20));
558 #ifdef USE_MMIO
560 * Reloading from EEPROM overwrites ConfigA-D, so we must re-enable
561 * MMIO. If reloading EEPROM was done first this could be avoided, but
562 * it is not known if that still works with the "win98-reboot" problem.
564 enable_mmio(pioaddr, rp->quirks);
565 #endif
567 /* Turn off EEPROM-controlled wake-up (magic packet) */
568 if (rp->quirks & rqWOL)
569 iowrite8(ioread8(ioaddr + ConfigA) & 0xFC, ioaddr + ConfigA);
573 #ifdef CONFIG_NET_POLL_CONTROLLER
574 static void rhine_poll(struct net_device *dev)
576 disable_irq(dev->irq);
577 rhine_interrupt(dev->irq, (void *)dev);
578 enable_irq(dev->irq);
580 #endif
582 static int rhine_napipoll(struct napi_struct *napi, int budget)
584 struct rhine_private *rp = container_of(napi, struct rhine_private, napi);
585 struct net_device *dev = rp->dev;
586 void __iomem *ioaddr = rp->base;
587 int work_done;
589 work_done = rhine_rx(dev, budget);
591 if (work_done < budget) {
592 napi_complete(napi);
594 iowrite16(IntrRxDone | IntrRxErr | IntrRxEmpty| IntrRxOverflow |
595 IntrRxDropped | IntrRxNoBuf | IntrTxAborted |
596 IntrTxDone | IntrTxError | IntrTxUnderrun |
597 IntrPCIErr | IntrStatsMax | IntrLinkChange,
598 ioaddr + IntrEnable);
600 return work_done;
603 static void __devinit rhine_hw_init(struct net_device *dev, long pioaddr)
605 struct rhine_private *rp = netdev_priv(dev);
607 /* Reset the chip to erase previous misconfiguration. */
608 rhine_chip_reset(dev);
610 /* Rhine-I needs extra time to recuperate before EEPROM reload */
611 if (rp->quirks & rqRhineI)
612 msleep(5);
614 /* Reload EEPROM controlled bytes cleared by soft reset */
615 rhine_reload_eeprom(pioaddr, dev);
618 static const struct net_device_ops rhine_netdev_ops = {
619 .ndo_open = rhine_open,
620 .ndo_stop = rhine_close,
621 .ndo_start_xmit = rhine_start_tx,
622 .ndo_get_stats = rhine_get_stats,
623 .ndo_set_multicast_list = rhine_set_rx_mode,
624 .ndo_change_mtu = eth_change_mtu,
625 .ndo_validate_addr = eth_validate_addr,
626 .ndo_set_mac_address = eth_mac_addr,
627 .ndo_do_ioctl = netdev_ioctl,
628 .ndo_tx_timeout = rhine_tx_timeout,
629 #ifdef CONFIG_NET_POLL_CONTROLLER
630 .ndo_poll_controller = rhine_poll,
631 #endif
634 static int __devinit rhine_init_one(struct pci_dev *pdev,
635 const struct pci_device_id *ent)
637 struct net_device *dev;
638 struct rhine_private *rp;
639 int i, rc;
640 u32 quirks;
641 long pioaddr;
642 long memaddr;
643 void __iomem *ioaddr;
644 int io_size, phy_id;
645 const char *name;
646 #ifdef USE_MMIO
647 int bar = 1;
648 #else
649 int bar = 0;
650 #endif
652 /* when built into the kernel, we only print version if device is found */
653 #ifndef MODULE
654 static int printed_version;
655 if (!printed_version++)
656 printk(version);
657 #endif
659 io_size = 256;
660 phy_id = 0;
661 quirks = 0;
662 name = "Rhine";
663 if (pdev->revision < VTunknown0) {
664 quirks = rqRhineI;
665 io_size = 128;
667 else if (pdev->revision >= VT6102) {
668 quirks = rqWOL | rqForceReset;
669 if (pdev->revision < VT6105) {
670 name = "Rhine II";
671 quirks |= rqStatusWBRace; /* Rhine-II exclusive */
673 else {
674 phy_id = 1; /* Integrated PHY, phy_id fixed to 1 */
675 if (pdev->revision >= VT6105_B0)
676 quirks |= rq6patterns;
677 if (pdev->revision < VT6105M)
678 name = "Rhine III";
679 else
680 name = "Rhine III (Management Adapter)";
684 rc = pci_enable_device(pdev);
685 if (rc)
686 goto err_out;
688 /* this should always be supported */
689 rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
690 if (rc) {
691 printk(KERN_ERR "32-bit PCI DMA addresses not supported by "
692 "the card!?\n");
693 goto err_out;
696 /* sanity check */
697 if ((pci_resource_len(pdev, 0) < io_size) ||
698 (pci_resource_len(pdev, 1) < io_size)) {
699 rc = -EIO;
700 printk(KERN_ERR "Insufficient PCI resources, aborting\n");
701 goto err_out;
704 pioaddr = pci_resource_start(pdev, 0);
705 memaddr = pci_resource_start(pdev, 1);
707 pci_set_master(pdev);
709 dev = alloc_etherdev(sizeof(struct rhine_private));
710 if (!dev) {
711 rc = -ENOMEM;
712 printk(KERN_ERR "alloc_etherdev failed\n");
713 goto err_out;
715 SET_NETDEV_DEV(dev, &pdev->dev);
717 rp = netdev_priv(dev);
718 rp->dev = dev;
719 rp->quirks = quirks;
720 rp->pioaddr = pioaddr;
721 rp->pdev = pdev;
723 rc = pci_request_regions(pdev, DRV_NAME);
724 if (rc)
725 goto err_out_free_netdev;
727 ioaddr = pci_iomap(pdev, bar, io_size);
728 if (!ioaddr) {
729 rc = -EIO;
730 printk(KERN_ERR "ioremap failed for device %s, region 0x%X "
731 "@ 0x%lX\n", pci_name(pdev), io_size, memaddr);
732 goto err_out_free_res;
735 #ifdef USE_MMIO
736 enable_mmio(pioaddr, quirks);
738 /* Check that selected MMIO registers match the PIO ones */
739 i = 0;
740 while (mmio_verify_registers[i]) {
741 int reg = mmio_verify_registers[i++];
742 unsigned char a = inb(pioaddr+reg);
743 unsigned char b = readb(ioaddr+reg);
744 if (a != b) {
745 rc = -EIO;
746 printk(KERN_ERR "MMIO do not match PIO [%02x] "
747 "(%02x != %02x)\n", reg, a, b);
748 goto err_out_unmap;
751 #endif /* USE_MMIO */
753 dev->base_addr = (unsigned long)ioaddr;
754 rp->base = ioaddr;
756 /* Get chip registers into a sane state */
757 rhine_power_init(dev);
758 rhine_hw_init(dev, pioaddr);
760 for (i = 0; i < 6; i++)
761 dev->dev_addr[i] = ioread8(ioaddr + StationAddr + i);
762 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
764 if (!is_valid_ether_addr(dev->perm_addr)) {
765 rc = -EIO;
766 printk(KERN_ERR "Invalid MAC address\n");
767 goto err_out_unmap;
770 /* For Rhine-I/II, phy_id is loaded from EEPROM */
771 if (!phy_id)
772 phy_id = ioread8(ioaddr + 0x6C);
774 dev->irq = pdev->irq;
776 spin_lock_init(&rp->lock);
777 rp->mii_if.dev = dev;
778 rp->mii_if.mdio_read = mdio_read;
779 rp->mii_if.mdio_write = mdio_write;
780 rp->mii_if.phy_id_mask = 0x1f;
781 rp->mii_if.reg_num_mask = 0x1f;
783 /* The chip-specific entries in the device structure. */
784 dev->netdev_ops = &rhine_netdev_ops;
785 dev->ethtool_ops = &netdev_ethtool_ops,
786 dev->watchdog_timeo = TX_TIMEOUT;
788 netif_napi_add(dev, &rp->napi, rhine_napipoll, 64);
790 if (rp->quirks & rqRhineI)
791 dev->features |= NETIF_F_SG|NETIF_F_HW_CSUM;
793 /* dev->name not defined before register_netdev()! */
794 rc = register_netdev(dev);
795 if (rc)
796 goto err_out_unmap;
798 printk(KERN_INFO "%s: VIA %s at 0x%lx, %pM, IRQ %d.\n",
799 dev->name, name,
800 #ifdef USE_MMIO
801 memaddr,
802 #else
803 (long)ioaddr,
804 #endif
805 dev->dev_addr, pdev->irq);
807 pci_set_drvdata(pdev, dev);
810 u16 mii_cmd;
811 int mii_status = mdio_read(dev, phy_id, 1);
812 mii_cmd = mdio_read(dev, phy_id, MII_BMCR) & ~BMCR_ISOLATE;
813 mdio_write(dev, phy_id, MII_BMCR, mii_cmd);
814 if (mii_status != 0xffff && mii_status != 0x0000) {
815 rp->mii_if.advertising = mdio_read(dev, phy_id, 4);
816 printk(KERN_INFO "%s: MII PHY found at address "
817 "%d, status 0x%4.4x advertising %4.4x "
818 "Link %4.4x.\n", dev->name, phy_id,
819 mii_status, rp->mii_if.advertising,
820 mdio_read(dev, phy_id, 5));
822 /* set IFF_RUNNING */
823 if (mii_status & BMSR_LSTATUS)
824 netif_carrier_on(dev);
825 else
826 netif_carrier_off(dev);
830 rp->mii_if.phy_id = phy_id;
831 if (debug > 1 && avoid_D3)
832 printk(KERN_INFO "%s: No D3 power state at shutdown.\n",
833 dev->name);
835 return 0;
837 err_out_unmap:
838 pci_iounmap(pdev, ioaddr);
839 err_out_free_res:
840 pci_release_regions(pdev);
841 err_out_free_netdev:
842 free_netdev(dev);
843 err_out:
844 return rc;
847 static int alloc_ring(struct net_device* dev)
849 struct rhine_private *rp = netdev_priv(dev);
850 void *ring;
851 dma_addr_t ring_dma;
853 ring = pci_alloc_consistent(rp->pdev,
854 RX_RING_SIZE * sizeof(struct rx_desc) +
855 TX_RING_SIZE * sizeof(struct tx_desc),
856 &ring_dma);
857 if (!ring) {
858 printk(KERN_ERR "Could not allocate DMA memory.\n");
859 return -ENOMEM;
861 if (rp->quirks & rqRhineI) {
862 rp->tx_bufs = pci_alloc_consistent(rp->pdev,
863 PKT_BUF_SZ * TX_RING_SIZE,
864 &rp->tx_bufs_dma);
865 if (rp->tx_bufs == NULL) {
866 pci_free_consistent(rp->pdev,
867 RX_RING_SIZE * sizeof(struct rx_desc) +
868 TX_RING_SIZE * sizeof(struct tx_desc),
869 ring, ring_dma);
870 return -ENOMEM;
874 rp->rx_ring = ring;
875 rp->tx_ring = ring + RX_RING_SIZE * sizeof(struct rx_desc);
876 rp->rx_ring_dma = ring_dma;
877 rp->tx_ring_dma = ring_dma + RX_RING_SIZE * sizeof(struct rx_desc);
879 return 0;
882 static void free_ring(struct net_device* dev)
884 struct rhine_private *rp = netdev_priv(dev);
886 pci_free_consistent(rp->pdev,
887 RX_RING_SIZE * sizeof(struct rx_desc) +
888 TX_RING_SIZE * sizeof(struct tx_desc),
889 rp->rx_ring, rp->rx_ring_dma);
890 rp->tx_ring = NULL;
892 if (rp->tx_bufs)
893 pci_free_consistent(rp->pdev, PKT_BUF_SZ * TX_RING_SIZE,
894 rp->tx_bufs, rp->tx_bufs_dma);
896 rp->tx_bufs = NULL;
900 static void alloc_rbufs(struct net_device *dev)
902 struct rhine_private *rp = netdev_priv(dev);
903 dma_addr_t next;
904 int i;
906 rp->dirty_rx = rp->cur_rx = 0;
908 rp->rx_buf_sz = (dev->mtu <= 1500 ? PKT_BUF_SZ : dev->mtu + 32);
909 rp->rx_head_desc = &rp->rx_ring[0];
910 next = rp->rx_ring_dma;
912 /* Init the ring entries */
913 for (i = 0; i < RX_RING_SIZE; i++) {
914 rp->rx_ring[i].rx_status = 0;
915 rp->rx_ring[i].desc_length = cpu_to_le32(rp->rx_buf_sz);
916 next += sizeof(struct rx_desc);
917 rp->rx_ring[i].next_desc = cpu_to_le32(next);
918 rp->rx_skbuff[i] = NULL;
920 /* Mark the last entry as wrapping the ring. */
921 rp->rx_ring[i-1].next_desc = cpu_to_le32(rp->rx_ring_dma);
923 /* Fill in the Rx buffers. Handle allocation failure gracefully. */
924 for (i = 0; i < RX_RING_SIZE; i++) {
925 struct sk_buff *skb = netdev_alloc_skb(dev, rp->rx_buf_sz);
926 rp->rx_skbuff[i] = skb;
927 if (skb == NULL)
928 break;
929 skb->dev = dev; /* Mark as being used by this device. */
931 rp->rx_skbuff_dma[i] =
932 pci_map_single(rp->pdev, skb->data, rp->rx_buf_sz,
933 PCI_DMA_FROMDEVICE);
935 rp->rx_ring[i].addr = cpu_to_le32(rp->rx_skbuff_dma[i]);
936 rp->rx_ring[i].rx_status = cpu_to_le32(DescOwn);
938 rp->dirty_rx = (unsigned int)(i - RX_RING_SIZE);
941 static void free_rbufs(struct net_device* dev)
943 struct rhine_private *rp = netdev_priv(dev);
944 int i;
946 /* Free all the skbuffs in the Rx queue. */
947 for (i = 0; i < RX_RING_SIZE; i++) {
948 rp->rx_ring[i].rx_status = 0;
949 rp->rx_ring[i].addr = cpu_to_le32(0xBADF00D0); /* An invalid address. */
950 if (rp->rx_skbuff[i]) {
951 pci_unmap_single(rp->pdev,
952 rp->rx_skbuff_dma[i],
953 rp->rx_buf_sz, PCI_DMA_FROMDEVICE);
954 dev_kfree_skb(rp->rx_skbuff[i]);
956 rp->rx_skbuff[i] = NULL;
960 static void alloc_tbufs(struct net_device* dev)
962 struct rhine_private *rp = netdev_priv(dev);
963 dma_addr_t next;
964 int i;
966 rp->dirty_tx = rp->cur_tx = 0;
967 next = rp->tx_ring_dma;
968 for (i = 0; i < TX_RING_SIZE; i++) {
969 rp->tx_skbuff[i] = NULL;
970 rp->tx_ring[i].tx_status = 0;
971 rp->tx_ring[i].desc_length = cpu_to_le32(TXDESC);
972 next += sizeof(struct tx_desc);
973 rp->tx_ring[i].next_desc = cpu_to_le32(next);
974 if (rp->quirks & rqRhineI)
975 rp->tx_buf[i] = &rp->tx_bufs[i * PKT_BUF_SZ];
977 rp->tx_ring[i-1].next_desc = cpu_to_le32(rp->tx_ring_dma);
981 static void free_tbufs(struct net_device* dev)
983 struct rhine_private *rp = netdev_priv(dev);
984 int i;
986 for (i = 0; i < TX_RING_SIZE; i++) {
987 rp->tx_ring[i].tx_status = 0;
988 rp->tx_ring[i].desc_length = cpu_to_le32(TXDESC);
989 rp->tx_ring[i].addr = cpu_to_le32(0xBADF00D0); /* An invalid address. */
990 if (rp->tx_skbuff[i]) {
991 if (rp->tx_skbuff_dma[i]) {
992 pci_unmap_single(rp->pdev,
993 rp->tx_skbuff_dma[i],
994 rp->tx_skbuff[i]->len,
995 PCI_DMA_TODEVICE);
997 dev_kfree_skb(rp->tx_skbuff[i]);
999 rp->tx_skbuff[i] = NULL;
1000 rp->tx_buf[i] = NULL;
1004 static void rhine_check_media(struct net_device *dev, unsigned int init_media)
1006 struct rhine_private *rp = netdev_priv(dev);
1007 void __iomem *ioaddr = rp->base;
1009 mii_check_media(&rp->mii_if, debug, init_media);
1011 if (rp->mii_if.full_duplex)
1012 iowrite8(ioread8(ioaddr + ChipCmd1) | Cmd1FDuplex,
1013 ioaddr + ChipCmd1);
1014 else
1015 iowrite8(ioread8(ioaddr + ChipCmd1) & ~Cmd1FDuplex,
1016 ioaddr + ChipCmd1);
1017 if (debug > 1)
1018 printk(KERN_INFO "%s: force_media %d, carrier %d\n", dev->name,
1019 rp->mii_if.force_media, netif_carrier_ok(dev));
1022 /* Called after status of force_media possibly changed */
1023 static void rhine_set_carrier(struct mii_if_info *mii)
1025 if (mii->force_media) {
1026 /* autoneg is off: Link is always assumed to be up */
1027 if (!netif_carrier_ok(mii->dev))
1028 netif_carrier_on(mii->dev);
1030 else /* Let MMI library update carrier status */
1031 rhine_check_media(mii->dev, 0);
1032 if (debug > 1)
1033 printk(KERN_INFO "%s: force_media %d, carrier %d\n",
1034 mii->dev->name, mii->force_media,
1035 netif_carrier_ok(mii->dev));
1038 static void init_registers(struct net_device *dev)
1040 struct rhine_private *rp = netdev_priv(dev);
1041 void __iomem *ioaddr = rp->base;
1042 int i;
1044 for (i = 0; i < 6; i++)
1045 iowrite8(dev->dev_addr[i], ioaddr + StationAddr + i);
1047 /* Initialize other registers. */
1048 iowrite16(0x0006, ioaddr + PCIBusConfig); /* Tune configuration??? */
1049 /* Configure initial FIFO thresholds. */
1050 iowrite8(0x20, ioaddr + TxConfig);
1051 rp->tx_thresh = 0x20;
1052 rp->rx_thresh = 0x60; /* Written in rhine_set_rx_mode(). */
1054 iowrite32(rp->rx_ring_dma, ioaddr + RxRingPtr);
1055 iowrite32(rp->tx_ring_dma, ioaddr + TxRingPtr);
1057 rhine_set_rx_mode(dev);
1059 napi_enable(&rp->napi);
1061 /* Enable interrupts by setting the interrupt mask. */
1062 iowrite16(IntrRxDone | IntrRxErr | IntrRxEmpty| IntrRxOverflow |
1063 IntrRxDropped | IntrRxNoBuf | IntrTxAborted |
1064 IntrTxDone | IntrTxError | IntrTxUnderrun |
1065 IntrPCIErr | IntrStatsMax | IntrLinkChange,
1066 ioaddr + IntrEnable);
1068 iowrite16(CmdStart | CmdTxOn | CmdRxOn | (Cmd1NoTxPoll << 8),
1069 ioaddr + ChipCmd);
1070 rhine_check_media(dev, 1);
1073 /* Enable MII link status auto-polling (required for IntrLinkChange) */
1074 static void rhine_enable_linkmon(void __iomem *ioaddr)
1076 iowrite8(0, ioaddr + MIICmd);
1077 iowrite8(MII_BMSR, ioaddr + MIIRegAddr);
1078 iowrite8(0x80, ioaddr + MIICmd);
1080 RHINE_WAIT_FOR((ioread8(ioaddr + MIIRegAddr) & 0x20));
1082 iowrite8(MII_BMSR | 0x40, ioaddr + MIIRegAddr);
1085 /* Disable MII link status auto-polling (required for MDIO access) */
1086 static void rhine_disable_linkmon(void __iomem *ioaddr, u32 quirks)
1088 iowrite8(0, ioaddr + MIICmd);
1090 if (quirks & rqRhineI) {
1091 iowrite8(0x01, ioaddr + MIIRegAddr); // MII_BMSR
1093 /* Can be called from ISR. Evil. */
1094 mdelay(1);
1096 /* 0x80 must be set immediately before turning it off */
1097 iowrite8(0x80, ioaddr + MIICmd);
1099 RHINE_WAIT_FOR(ioread8(ioaddr + MIIRegAddr) & 0x20);
1101 /* Heh. Now clear 0x80 again. */
1102 iowrite8(0, ioaddr + MIICmd);
1104 else
1105 RHINE_WAIT_FOR(ioread8(ioaddr + MIIRegAddr) & 0x80);
1108 /* Read and write over the MII Management Data I/O (MDIO) interface. */
1110 static int mdio_read(struct net_device *dev, int phy_id, int regnum)
1112 struct rhine_private *rp = netdev_priv(dev);
1113 void __iomem *ioaddr = rp->base;
1114 int result;
1116 rhine_disable_linkmon(ioaddr, rp->quirks);
1118 /* rhine_disable_linkmon already cleared MIICmd */
1119 iowrite8(phy_id, ioaddr + MIIPhyAddr);
1120 iowrite8(regnum, ioaddr + MIIRegAddr);
1121 iowrite8(0x40, ioaddr + MIICmd); /* Trigger read */
1122 RHINE_WAIT_FOR(!(ioread8(ioaddr + MIICmd) & 0x40));
1123 result = ioread16(ioaddr + MIIData);
1125 rhine_enable_linkmon(ioaddr);
1126 return result;
1129 static void mdio_write(struct net_device *dev, int phy_id, int regnum, int value)
1131 struct rhine_private *rp = netdev_priv(dev);
1132 void __iomem *ioaddr = rp->base;
1134 rhine_disable_linkmon(ioaddr, rp->quirks);
1136 /* rhine_disable_linkmon already cleared MIICmd */
1137 iowrite8(phy_id, ioaddr + MIIPhyAddr);
1138 iowrite8(regnum, ioaddr + MIIRegAddr);
1139 iowrite16(value, ioaddr + MIIData);
1140 iowrite8(0x20, ioaddr + MIICmd); /* Trigger write */
1141 RHINE_WAIT_FOR(!(ioread8(ioaddr + MIICmd) & 0x20));
1143 rhine_enable_linkmon(ioaddr);
1146 static int rhine_open(struct net_device *dev)
1148 struct rhine_private *rp = netdev_priv(dev);
1149 void __iomem *ioaddr = rp->base;
1150 int rc;
1152 rc = request_irq(rp->pdev->irq, &rhine_interrupt, IRQF_SHARED, dev->name,
1153 dev);
1154 if (rc)
1155 return rc;
1157 if (debug > 1)
1158 printk(KERN_DEBUG "%s: rhine_open() irq %d.\n",
1159 dev->name, rp->pdev->irq);
1161 rc = alloc_ring(dev);
1162 if (rc) {
1163 free_irq(rp->pdev->irq, dev);
1164 return rc;
1166 alloc_rbufs(dev);
1167 alloc_tbufs(dev);
1168 rhine_chip_reset(dev);
1169 init_registers(dev);
1170 if (debug > 2)
1171 printk(KERN_DEBUG "%s: Done rhine_open(), status %4.4x "
1172 "MII status: %4.4x.\n",
1173 dev->name, ioread16(ioaddr + ChipCmd),
1174 mdio_read(dev, rp->mii_if.phy_id, MII_BMSR));
1176 netif_start_queue(dev);
1178 return 0;
1181 static void rhine_tx_timeout(struct net_device *dev)
1183 struct rhine_private *rp = netdev_priv(dev);
1184 void __iomem *ioaddr = rp->base;
1186 printk(KERN_WARNING "%s: Transmit timed out, status %4.4x, PHY status "
1187 "%4.4x, resetting...\n",
1188 dev->name, ioread16(ioaddr + IntrStatus),
1189 mdio_read(dev, rp->mii_if.phy_id, MII_BMSR));
1191 /* protect against concurrent rx interrupts */
1192 disable_irq(rp->pdev->irq);
1194 napi_disable(&rp->napi);
1196 spin_lock(&rp->lock);
1198 /* clear all descriptors */
1199 free_tbufs(dev);
1200 free_rbufs(dev);
1201 alloc_tbufs(dev);
1202 alloc_rbufs(dev);
1204 /* Reinitialize the hardware. */
1205 rhine_chip_reset(dev);
1206 init_registers(dev);
1208 spin_unlock(&rp->lock);
1209 enable_irq(rp->pdev->irq);
1211 dev->trans_start = jiffies;
1212 dev->stats.tx_errors++;
1213 netif_wake_queue(dev);
1216 static int rhine_start_tx(struct sk_buff *skb, struct net_device *dev)
1218 struct rhine_private *rp = netdev_priv(dev);
1219 void __iomem *ioaddr = rp->base;
1220 unsigned entry;
1221 unsigned long flags;
1223 /* Caution: the write order is important here, set the field
1224 with the "ownership" bits last. */
1226 /* Calculate the next Tx descriptor entry. */
1227 entry = rp->cur_tx % TX_RING_SIZE;
1229 if (skb_padto(skb, ETH_ZLEN))
1230 return 0;
1232 rp->tx_skbuff[entry] = skb;
1234 if ((rp->quirks & rqRhineI) &&
1235 (((unsigned long)skb->data & 3) || skb_shinfo(skb)->nr_frags != 0 || skb->ip_summed == CHECKSUM_PARTIAL)) {
1236 /* Must use alignment buffer. */
1237 if (skb->len > PKT_BUF_SZ) {
1238 /* packet too long, drop it */
1239 dev_kfree_skb(skb);
1240 rp->tx_skbuff[entry] = NULL;
1241 dev->stats.tx_dropped++;
1242 return 0;
1245 /* Padding is not copied and so must be redone. */
1246 skb_copy_and_csum_dev(skb, rp->tx_buf[entry]);
1247 if (skb->len < ETH_ZLEN)
1248 memset(rp->tx_buf[entry] + skb->len, 0,
1249 ETH_ZLEN - skb->len);
1250 rp->tx_skbuff_dma[entry] = 0;
1251 rp->tx_ring[entry].addr = cpu_to_le32(rp->tx_bufs_dma +
1252 (rp->tx_buf[entry] -
1253 rp->tx_bufs));
1254 } else {
1255 rp->tx_skbuff_dma[entry] =
1256 pci_map_single(rp->pdev, skb->data, skb->len,
1257 PCI_DMA_TODEVICE);
1258 rp->tx_ring[entry].addr = cpu_to_le32(rp->tx_skbuff_dma[entry]);
1261 rp->tx_ring[entry].desc_length =
1262 cpu_to_le32(TXDESC | (skb->len >= ETH_ZLEN ? skb->len : ETH_ZLEN));
1264 /* lock eth irq */
1265 spin_lock_irqsave(&rp->lock, flags);
1266 wmb();
1267 rp->tx_ring[entry].tx_status = cpu_to_le32(DescOwn);
1268 wmb();
1270 rp->cur_tx++;
1272 /* Non-x86 Todo: explicitly flush cache lines here. */
1274 /* Wake the potentially-idle transmit channel */
1275 iowrite8(ioread8(ioaddr + ChipCmd1) | Cmd1TxDemand,
1276 ioaddr + ChipCmd1);
1277 IOSYNC;
1279 if (rp->cur_tx == rp->dirty_tx + TX_QUEUE_LEN)
1280 netif_stop_queue(dev);
1282 dev->trans_start = jiffies;
1284 spin_unlock_irqrestore(&rp->lock, flags);
1286 if (debug > 4) {
1287 printk(KERN_DEBUG "%s: Transmit frame #%d queued in slot %d.\n",
1288 dev->name, rp->cur_tx-1, entry);
1290 return 0;
1293 /* The interrupt handler does all of the Rx thread work and cleans up
1294 after the Tx thread. */
1295 static irqreturn_t rhine_interrupt(int irq, void *dev_instance)
1297 struct net_device *dev = dev_instance;
1298 struct rhine_private *rp = netdev_priv(dev);
1299 void __iomem *ioaddr = rp->base;
1300 u32 intr_status;
1301 int boguscnt = max_interrupt_work;
1302 int handled = 0;
1304 while ((intr_status = get_intr_status(dev))) {
1305 handled = 1;
1307 /* Acknowledge all of the current interrupt sources ASAP. */
1308 if (intr_status & IntrTxDescRace)
1309 iowrite8(0x08, ioaddr + IntrStatus2);
1310 iowrite16(intr_status & 0xffff, ioaddr + IntrStatus);
1311 IOSYNC;
1313 if (debug > 4)
1314 printk(KERN_DEBUG "%s: Interrupt, status %8.8x.\n",
1315 dev->name, intr_status);
1317 if (intr_status & (IntrRxDone | IntrRxErr | IntrRxDropped |
1318 IntrRxWakeUp | IntrRxEmpty | IntrRxNoBuf)) {
1319 iowrite16(IntrTxAborted |
1320 IntrTxDone | IntrTxError | IntrTxUnderrun |
1321 IntrPCIErr | IntrStatsMax | IntrLinkChange,
1322 ioaddr + IntrEnable);
1324 napi_schedule(&rp->napi);
1327 if (intr_status & (IntrTxErrSummary | IntrTxDone)) {
1328 if (intr_status & IntrTxErrSummary) {
1329 /* Avoid scavenging before Tx engine turned off */
1330 RHINE_WAIT_FOR(!(ioread8(ioaddr+ChipCmd) & CmdTxOn));
1331 if (debug > 2 &&
1332 ioread8(ioaddr+ChipCmd) & CmdTxOn)
1333 printk(KERN_WARNING "%s: "
1334 "rhine_interrupt() Tx engine "
1335 "still on.\n", dev->name);
1337 rhine_tx(dev);
1340 /* Abnormal error summary/uncommon events handlers. */
1341 if (intr_status & (IntrPCIErr | IntrLinkChange |
1342 IntrStatsMax | IntrTxError | IntrTxAborted |
1343 IntrTxUnderrun | IntrTxDescRace))
1344 rhine_error(dev, intr_status);
1346 if (--boguscnt < 0) {
1347 printk(KERN_WARNING "%s: Too much work at interrupt, "
1348 "status=%#8.8x.\n",
1349 dev->name, intr_status);
1350 break;
1354 if (debug > 3)
1355 printk(KERN_DEBUG "%s: exiting interrupt, status=%8.8x.\n",
1356 dev->name, ioread16(ioaddr + IntrStatus));
1357 return IRQ_RETVAL(handled);
1360 /* This routine is logically part of the interrupt handler, but isolated
1361 for clarity. */
1362 static void rhine_tx(struct net_device *dev)
1364 struct rhine_private *rp = netdev_priv(dev);
1365 int txstatus = 0, entry = rp->dirty_tx % TX_RING_SIZE;
1367 spin_lock(&rp->lock);
1369 /* find and cleanup dirty tx descriptors */
1370 while (rp->dirty_tx != rp->cur_tx) {
1371 txstatus = le32_to_cpu(rp->tx_ring[entry].tx_status);
1372 if (debug > 6)
1373 printk(KERN_DEBUG "Tx scavenge %d status %8.8x.\n",
1374 entry, txstatus);
1375 if (txstatus & DescOwn)
1376 break;
1377 if (txstatus & 0x8000) {
1378 if (debug > 1)
1379 printk(KERN_DEBUG "%s: Transmit error, "
1380 "Tx status %8.8x.\n",
1381 dev->name, txstatus);
1382 dev->stats.tx_errors++;
1383 if (txstatus & 0x0400)
1384 dev->stats.tx_carrier_errors++;
1385 if (txstatus & 0x0200)
1386 dev->stats.tx_window_errors++;
1387 if (txstatus & 0x0100)
1388 dev->stats.tx_aborted_errors++;
1389 if (txstatus & 0x0080)
1390 dev->stats.tx_heartbeat_errors++;
1391 if (((rp->quirks & rqRhineI) && txstatus & 0x0002) ||
1392 (txstatus & 0x0800) || (txstatus & 0x1000)) {
1393 dev->stats.tx_fifo_errors++;
1394 rp->tx_ring[entry].tx_status = cpu_to_le32(DescOwn);
1395 break; /* Keep the skb - we try again */
1397 /* Transmitter restarted in 'abnormal' handler. */
1398 } else {
1399 if (rp->quirks & rqRhineI)
1400 dev->stats.collisions += (txstatus >> 3) & 0x0F;
1401 else
1402 dev->stats.collisions += txstatus & 0x0F;
1403 if (debug > 6)
1404 printk(KERN_DEBUG "collisions: %1.1x:%1.1x\n",
1405 (txstatus >> 3) & 0xF,
1406 txstatus & 0xF);
1407 dev->stats.tx_bytes += rp->tx_skbuff[entry]->len;
1408 dev->stats.tx_packets++;
1410 /* Free the original skb. */
1411 if (rp->tx_skbuff_dma[entry]) {
1412 pci_unmap_single(rp->pdev,
1413 rp->tx_skbuff_dma[entry],
1414 rp->tx_skbuff[entry]->len,
1415 PCI_DMA_TODEVICE);
1417 dev_kfree_skb_irq(rp->tx_skbuff[entry]);
1418 rp->tx_skbuff[entry] = NULL;
1419 entry = (++rp->dirty_tx) % TX_RING_SIZE;
1421 if ((rp->cur_tx - rp->dirty_tx) < TX_QUEUE_LEN - 4)
1422 netif_wake_queue(dev);
1424 spin_unlock(&rp->lock);
1427 /* Process up to limit frames from receive ring */
1428 static int rhine_rx(struct net_device *dev, int limit)
1430 struct rhine_private *rp = netdev_priv(dev);
1431 int count;
1432 int entry = rp->cur_rx % RX_RING_SIZE;
1434 if (debug > 4) {
1435 printk(KERN_DEBUG "%s: rhine_rx(), entry %d status %8.8x.\n",
1436 dev->name, entry,
1437 le32_to_cpu(rp->rx_head_desc->rx_status));
1440 /* If EOP is set on the next entry, it's a new packet. Send it up. */
1441 for (count = 0; count < limit; ++count) {
1442 struct rx_desc *desc = rp->rx_head_desc;
1443 u32 desc_status = le32_to_cpu(desc->rx_status);
1444 int data_size = desc_status >> 16;
1446 if (desc_status & DescOwn)
1447 break;
1449 if (debug > 4)
1450 printk(KERN_DEBUG "rhine_rx() status is %8.8x.\n",
1451 desc_status);
1453 if ((desc_status & (RxWholePkt | RxErr)) != RxWholePkt) {
1454 if ((desc_status & RxWholePkt) != RxWholePkt) {
1455 printk(KERN_WARNING "%s: Oversized Ethernet "
1456 "frame spanned multiple buffers, entry "
1457 "%#x length %d status %8.8x!\n",
1458 dev->name, entry, data_size,
1459 desc_status);
1460 printk(KERN_WARNING "%s: Oversized Ethernet "
1461 "frame %p vs %p.\n", dev->name,
1462 rp->rx_head_desc, &rp->rx_ring[entry]);
1463 dev->stats.rx_length_errors++;
1464 } else if (desc_status & RxErr) {
1465 /* There was a error. */
1466 if (debug > 2)
1467 printk(KERN_DEBUG "rhine_rx() Rx "
1468 "error was %8.8x.\n",
1469 desc_status);
1470 dev->stats.rx_errors++;
1471 if (desc_status & 0x0030)
1472 dev->stats.rx_length_errors++;
1473 if (desc_status & 0x0048)
1474 dev->stats.rx_fifo_errors++;
1475 if (desc_status & 0x0004)
1476 dev->stats.rx_frame_errors++;
1477 if (desc_status & 0x0002) {
1478 /* this can also be updated outside the interrupt handler */
1479 spin_lock(&rp->lock);
1480 dev->stats.rx_crc_errors++;
1481 spin_unlock(&rp->lock);
1484 } else {
1485 struct sk_buff *skb;
1486 /* Length should omit the CRC */
1487 int pkt_len = data_size - 4;
1489 /* Check if the packet is long enough to accept without
1490 copying to a minimally-sized skbuff. */
1491 if (pkt_len < rx_copybreak &&
1492 (skb = netdev_alloc_skb(dev, pkt_len + NET_IP_ALIGN)) != NULL) {
1493 skb_reserve(skb, NET_IP_ALIGN); /* 16 byte align the IP header */
1494 pci_dma_sync_single_for_cpu(rp->pdev,
1495 rp->rx_skbuff_dma[entry],
1496 rp->rx_buf_sz,
1497 PCI_DMA_FROMDEVICE);
1499 skb_copy_to_linear_data(skb,
1500 rp->rx_skbuff[entry]->data,
1501 pkt_len);
1502 skb_put(skb, pkt_len);
1503 pci_dma_sync_single_for_device(rp->pdev,
1504 rp->rx_skbuff_dma[entry],
1505 rp->rx_buf_sz,
1506 PCI_DMA_FROMDEVICE);
1507 } else {
1508 skb = rp->rx_skbuff[entry];
1509 if (skb == NULL) {
1510 printk(KERN_ERR "%s: Inconsistent Rx "
1511 "descriptor chain.\n",
1512 dev->name);
1513 break;
1515 rp->rx_skbuff[entry] = NULL;
1516 skb_put(skb, pkt_len);
1517 pci_unmap_single(rp->pdev,
1518 rp->rx_skbuff_dma[entry],
1519 rp->rx_buf_sz,
1520 PCI_DMA_FROMDEVICE);
1522 skb->protocol = eth_type_trans(skb, dev);
1523 netif_receive_skb(skb);
1524 dev->stats.rx_bytes += pkt_len;
1525 dev->stats.rx_packets++;
1527 entry = (++rp->cur_rx) % RX_RING_SIZE;
1528 rp->rx_head_desc = &rp->rx_ring[entry];
1531 /* Refill the Rx ring buffers. */
1532 for (; rp->cur_rx - rp->dirty_rx > 0; rp->dirty_rx++) {
1533 struct sk_buff *skb;
1534 entry = rp->dirty_rx % RX_RING_SIZE;
1535 if (rp->rx_skbuff[entry] == NULL) {
1536 skb = netdev_alloc_skb(dev, rp->rx_buf_sz);
1537 rp->rx_skbuff[entry] = skb;
1538 if (skb == NULL)
1539 break; /* Better luck next round. */
1540 skb->dev = dev; /* Mark as being used by this device. */
1541 rp->rx_skbuff_dma[entry] =
1542 pci_map_single(rp->pdev, skb->data,
1543 rp->rx_buf_sz,
1544 PCI_DMA_FROMDEVICE);
1545 rp->rx_ring[entry].addr = cpu_to_le32(rp->rx_skbuff_dma[entry]);
1547 rp->rx_ring[entry].rx_status = cpu_to_le32(DescOwn);
1550 return count;
1554 * Clears the "tally counters" for CRC errors and missed frames(?).
1555 * It has been reported that some chips need a write of 0 to clear
1556 * these, for others the counters are set to 1 when written to and
1557 * instead cleared when read. So we clear them both ways ...
1559 static inline void clear_tally_counters(void __iomem *ioaddr)
1561 iowrite32(0, ioaddr + RxMissed);
1562 ioread16(ioaddr + RxCRCErrs);
1563 ioread16(ioaddr + RxMissed);
1566 static void rhine_restart_tx(struct net_device *dev) {
1567 struct rhine_private *rp = netdev_priv(dev);
1568 void __iomem *ioaddr = rp->base;
1569 int entry = rp->dirty_tx % TX_RING_SIZE;
1570 u32 intr_status;
1573 * If new errors occured, we need to sort them out before doing Tx.
1574 * In that case the ISR will be back here RSN anyway.
1576 intr_status = get_intr_status(dev);
1578 if ((intr_status & IntrTxErrSummary) == 0) {
1580 /* We know better than the chip where it should continue. */
1581 iowrite32(rp->tx_ring_dma + entry * sizeof(struct tx_desc),
1582 ioaddr + TxRingPtr);
1584 iowrite8(ioread8(ioaddr + ChipCmd) | CmdTxOn,
1585 ioaddr + ChipCmd);
1586 iowrite8(ioread8(ioaddr + ChipCmd1) | Cmd1TxDemand,
1587 ioaddr + ChipCmd1);
1588 IOSYNC;
1590 else {
1591 /* This should never happen */
1592 if (debug > 1)
1593 printk(KERN_WARNING "%s: rhine_restart_tx() "
1594 "Another error occured %8.8x.\n",
1595 dev->name, intr_status);
1600 static void rhine_error(struct net_device *dev, int intr_status)
1602 struct rhine_private *rp = netdev_priv(dev);
1603 void __iomem *ioaddr = rp->base;
1605 spin_lock(&rp->lock);
1607 if (intr_status & IntrLinkChange)
1608 rhine_check_media(dev, 0);
1609 if (intr_status & IntrStatsMax) {
1610 dev->stats.rx_crc_errors += ioread16(ioaddr + RxCRCErrs);
1611 dev->stats.rx_missed_errors += ioread16(ioaddr + RxMissed);
1612 clear_tally_counters(ioaddr);
1614 if (intr_status & IntrTxAborted) {
1615 if (debug > 1)
1616 printk(KERN_INFO "%s: Abort %8.8x, frame dropped.\n",
1617 dev->name, intr_status);
1619 if (intr_status & IntrTxUnderrun) {
1620 if (rp->tx_thresh < 0xE0)
1621 iowrite8(rp->tx_thresh += 0x20, ioaddr + TxConfig);
1622 if (debug > 1)
1623 printk(KERN_INFO "%s: Transmitter underrun, Tx "
1624 "threshold now %2.2x.\n",
1625 dev->name, rp->tx_thresh);
1627 if (intr_status & IntrTxDescRace) {
1628 if (debug > 2)
1629 printk(KERN_INFO "%s: Tx descriptor write-back race.\n",
1630 dev->name);
1632 if ((intr_status & IntrTxError) &&
1633 (intr_status & (IntrTxAborted |
1634 IntrTxUnderrun | IntrTxDescRace)) == 0) {
1635 if (rp->tx_thresh < 0xE0) {
1636 iowrite8(rp->tx_thresh += 0x20, ioaddr + TxConfig);
1638 if (debug > 1)
1639 printk(KERN_INFO "%s: Unspecified error. Tx "
1640 "threshold now %2.2x.\n",
1641 dev->name, rp->tx_thresh);
1643 if (intr_status & (IntrTxAborted | IntrTxUnderrun | IntrTxDescRace |
1644 IntrTxError))
1645 rhine_restart_tx(dev);
1647 if (intr_status & ~(IntrLinkChange | IntrStatsMax | IntrTxUnderrun |
1648 IntrTxError | IntrTxAborted | IntrNormalSummary |
1649 IntrTxDescRace)) {
1650 if (debug > 1)
1651 printk(KERN_ERR "%s: Something Wicked happened! "
1652 "%8.8x.\n", dev->name, intr_status);
1655 spin_unlock(&rp->lock);
1658 static struct net_device_stats *rhine_get_stats(struct net_device *dev)
1660 struct rhine_private *rp = netdev_priv(dev);
1661 void __iomem *ioaddr = rp->base;
1662 unsigned long flags;
1664 spin_lock_irqsave(&rp->lock, flags);
1665 dev->stats.rx_crc_errors += ioread16(ioaddr + RxCRCErrs);
1666 dev->stats.rx_missed_errors += ioread16(ioaddr + RxMissed);
1667 clear_tally_counters(ioaddr);
1668 spin_unlock_irqrestore(&rp->lock, flags);
1670 return &dev->stats;
1673 static void rhine_set_rx_mode(struct net_device *dev)
1675 struct rhine_private *rp = netdev_priv(dev);
1676 void __iomem *ioaddr = rp->base;
1677 u32 mc_filter[2]; /* Multicast hash filter */
1678 u8 rx_mode; /* Note: 0x02=accept runt, 0x01=accept errs */
1680 if (dev->flags & IFF_PROMISC) { /* Set promiscuous. */
1681 rx_mode = 0x1C;
1682 iowrite32(0xffffffff, ioaddr + MulticastFilter0);
1683 iowrite32(0xffffffff, ioaddr + MulticastFilter1);
1684 } else if ((dev->mc_count > multicast_filter_limit)
1685 || (dev->flags & IFF_ALLMULTI)) {
1686 /* Too many to match, or accept all multicasts. */
1687 iowrite32(0xffffffff, ioaddr + MulticastFilter0);
1688 iowrite32(0xffffffff, ioaddr + MulticastFilter1);
1689 rx_mode = 0x0C;
1690 } else {
1691 struct dev_mc_list *mclist;
1692 int i;
1693 memset(mc_filter, 0, sizeof(mc_filter));
1694 for (i = 0, mclist = dev->mc_list; mclist && i < dev->mc_count;
1695 i++, mclist = mclist->next) {
1696 int bit_nr = ether_crc(ETH_ALEN, mclist->dmi_addr) >> 26;
1698 mc_filter[bit_nr >> 5] |= 1 << (bit_nr & 31);
1700 iowrite32(mc_filter[0], ioaddr + MulticastFilter0);
1701 iowrite32(mc_filter[1], ioaddr + MulticastFilter1);
1702 rx_mode = 0x0C;
1704 iowrite8(rp->rx_thresh | rx_mode, ioaddr + RxConfig);
1707 static void netdev_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
1709 struct rhine_private *rp = netdev_priv(dev);
1711 strcpy(info->driver, DRV_NAME);
1712 strcpy(info->version, DRV_VERSION);
1713 strcpy(info->bus_info, pci_name(rp->pdev));
1716 static int netdev_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
1718 struct rhine_private *rp = netdev_priv(dev);
1719 int rc;
1721 spin_lock_irq(&rp->lock);
1722 rc = mii_ethtool_gset(&rp->mii_if, cmd);
1723 spin_unlock_irq(&rp->lock);
1725 return rc;
1728 static int netdev_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
1730 struct rhine_private *rp = netdev_priv(dev);
1731 int rc;
1733 spin_lock_irq(&rp->lock);
1734 rc = mii_ethtool_sset(&rp->mii_if, cmd);
1735 spin_unlock_irq(&rp->lock);
1736 rhine_set_carrier(&rp->mii_if);
1738 return rc;
1741 static int netdev_nway_reset(struct net_device *dev)
1743 struct rhine_private *rp = netdev_priv(dev);
1745 return mii_nway_restart(&rp->mii_if);
1748 static u32 netdev_get_link(struct net_device *dev)
1750 struct rhine_private *rp = netdev_priv(dev);
1752 return mii_link_ok(&rp->mii_if);
1755 static u32 netdev_get_msglevel(struct net_device *dev)
1757 return debug;
1760 static void netdev_set_msglevel(struct net_device *dev, u32 value)
1762 debug = value;
1765 static void rhine_get_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
1767 struct rhine_private *rp = netdev_priv(dev);
1769 if (!(rp->quirks & rqWOL))
1770 return;
1772 spin_lock_irq(&rp->lock);
1773 wol->supported = WAKE_PHY | WAKE_MAGIC |
1774 WAKE_UCAST | WAKE_MCAST | WAKE_BCAST; /* Untested */
1775 wol->wolopts = rp->wolopts;
1776 spin_unlock_irq(&rp->lock);
1779 static int rhine_set_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
1781 struct rhine_private *rp = netdev_priv(dev);
1782 u32 support = WAKE_PHY | WAKE_MAGIC |
1783 WAKE_UCAST | WAKE_MCAST | WAKE_BCAST; /* Untested */
1785 if (!(rp->quirks & rqWOL))
1786 return -EINVAL;
1788 if (wol->wolopts & ~support)
1789 return -EINVAL;
1791 spin_lock_irq(&rp->lock);
1792 rp->wolopts = wol->wolopts;
1793 spin_unlock_irq(&rp->lock);
1795 return 0;
1798 static const struct ethtool_ops netdev_ethtool_ops = {
1799 .get_drvinfo = netdev_get_drvinfo,
1800 .get_settings = netdev_get_settings,
1801 .set_settings = netdev_set_settings,
1802 .nway_reset = netdev_nway_reset,
1803 .get_link = netdev_get_link,
1804 .get_msglevel = netdev_get_msglevel,
1805 .set_msglevel = netdev_set_msglevel,
1806 .get_wol = rhine_get_wol,
1807 .set_wol = rhine_set_wol,
1810 static int netdev_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
1812 struct rhine_private *rp = netdev_priv(dev);
1813 int rc;
1815 if (!netif_running(dev))
1816 return -EINVAL;
1818 spin_lock_irq(&rp->lock);
1819 rc = generic_mii_ioctl(&rp->mii_if, if_mii(rq), cmd, NULL);
1820 spin_unlock_irq(&rp->lock);
1821 rhine_set_carrier(&rp->mii_if);
1823 return rc;
1826 static int rhine_close(struct net_device *dev)
1828 struct rhine_private *rp = netdev_priv(dev);
1829 void __iomem *ioaddr = rp->base;
1831 spin_lock_irq(&rp->lock);
1833 netif_stop_queue(dev);
1834 napi_disable(&rp->napi);
1836 if (debug > 1)
1837 printk(KERN_DEBUG "%s: Shutting down ethercard, "
1838 "status was %4.4x.\n",
1839 dev->name, ioread16(ioaddr + ChipCmd));
1841 /* Switch to loopback mode to avoid hardware races. */
1842 iowrite8(rp->tx_thresh | 0x02, ioaddr + TxConfig);
1844 /* Disable interrupts by clearing the interrupt mask. */
1845 iowrite16(0x0000, ioaddr + IntrEnable);
1847 /* Stop the chip's Tx and Rx processes. */
1848 iowrite16(CmdStop, ioaddr + ChipCmd);
1850 spin_unlock_irq(&rp->lock);
1852 free_irq(rp->pdev->irq, dev);
1853 free_rbufs(dev);
1854 free_tbufs(dev);
1855 free_ring(dev);
1857 return 0;
1861 static void __devexit rhine_remove_one(struct pci_dev *pdev)
1863 struct net_device *dev = pci_get_drvdata(pdev);
1864 struct rhine_private *rp = netdev_priv(dev);
1866 unregister_netdev(dev);
1868 pci_iounmap(pdev, rp->base);
1869 pci_release_regions(pdev);
1871 free_netdev(dev);
1872 pci_disable_device(pdev);
1873 pci_set_drvdata(pdev, NULL);
1876 static void rhine_shutdown (struct pci_dev *pdev)
1878 struct net_device *dev = pci_get_drvdata(pdev);
1879 struct rhine_private *rp = netdev_priv(dev);
1880 void __iomem *ioaddr = rp->base;
1882 if (!(rp->quirks & rqWOL))
1883 return; /* Nothing to do for non-WOL adapters */
1885 rhine_power_init(dev);
1887 /* Make sure we use pattern 0, 1 and not 4, 5 */
1888 if (rp->quirks & rq6patterns)
1889 iowrite8(0x04, ioaddr + WOLcgClr);
1891 if (rp->wolopts & WAKE_MAGIC) {
1892 iowrite8(WOLmagic, ioaddr + WOLcrSet);
1894 * Turn EEPROM-controlled wake-up back on -- some hardware may
1895 * not cooperate otherwise.
1897 iowrite8(ioread8(ioaddr + ConfigA) | 0x03, ioaddr + ConfigA);
1900 if (rp->wolopts & (WAKE_BCAST|WAKE_MCAST))
1901 iowrite8(WOLbmcast, ioaddr + WOLcgSet);
1903 if (rp->wolopts & WAKE_PHY)
1904 iowrite8(WOLlnkon | WOLlnkoff, ioaddr + WOLcrSet);
1906 if (rp->wolopts & WAKE_UCAST)
1907 iowrite8(WOLucast, ioaddr + WOLcrSet);
1909 if (rp->wolopts) {
1910 /* Enable legacy WOL (for old motherboards) */
1911 iowrite8(0x01, ioaddr + PwcfgSet);
1912 iowrite8(ioread8(ioaddr + StickyHW) | 0x04, ioaddr + StickyHW);
1915 /* Hit power state D3 (sleep) */
1916 if (!avoid_D3)
1917 iowrite8(ioread8(ioaddr + StickyHW) | 0x03, ioaddr + StickyHW);
1919 /* TODO: Check use of pci_enable_wake() */
1923 #ifdef CONFIG_PM
1924 static int rhine_suspend(struct pci_dev *pdev, pm_message_t state)
1926 struct net_device *dev = pci_get_drvdata(pdev);
1927 struct rhine_private *rp = netdev_priv(dev);
1928 unsigned long flags;
1930 if (!netif_running(dev))
1931 return 0;
1933 napi_disable(&rp->napi);
1935 netif_device_detach(dev);
1936 pci_save_state(pdev);
1938 spin_lock_irqsave(&rp->lock, flags);
1939 rhine_shutdown(pdev);
1940 spin_unlock_irqrestore(&rp->lock, flags);
1942 free_irq(dev->irq, dev);
1943 return 0;
1946 static int rhine_resume(struct pci_dev *pdev)
1948 struct net_device *dev = pci_get_drvdata(pdev);
1949 struct rhine_private *rp = netdev_priv(dev);
1950 unsigned long flags;
1951 int ret;
1953 if (!netif_running(dev))
1954 return 0;
1956 if (request_irq(dev->irq, rhine_interrupt, IRQF_SHARED, dev->name, dev))
1957 printk(KERN_ERR "via-rhine %s: request_irq failed\n", dev->name);
1959 ret = pci_set_power_state(pdev, PCI_D0);
1960 if (debug > 1)
1961 printk(KERN_INFO "%s: Entering power state D0 %s (%d).\n",
1962 dev->name, ret ? "failed" : "succeeded", ret);
1964 pci_restore_state(pdev);
1966 spin_lock_irqsave(&rp->lock, flags);
1967 #ifdef USE_MMIO
1968 enable_mmio(rp->pioaddr, rp->quirks);
1969 #endif
1970 rhine_power_init(dev);
1971 free_tbufs(dev);
1972 free_rbufs(dev);
1973 alloc_tbufs(dev);
1974 alloc_rbufs(dev);
1975 init_registers(dev);
1976 spin_unlock_irqrestore(&rp->lock, flags);
1978 netif_device_attach(dev);
1980 return 0;
1982 #endif /* CONFIG_PM */
1984 static struct pci_driver rhine_driver = {
1985 .name = DRV_NAME,
1986 .id_table = rhine_pci_tbl,
1987 .probe = rhine_init_one,
1988 .remove = __devexit_p(rhine_remove_one),
1989 #ifdef CONFIG_PM
1990 .suspend = rhine_suspend,
1991 .resume = rhine_resume,
1992 #endif /* CONFIG_PM */
1993 .shutdown = rhine_shutdown,
1996 static struct dmi_system_id __initdata rhine_dmi_table[] = {
1998 .ident = "EPIA-M",
1999 .matches = {
2000 DMI_MATCH(DMI_BIOS_VENDOR, "Award Software International, Inc."),
2001 DMI_MATCH(DMI_BIOS_VERSION, "6.00 PG"),
2005 .ident = "KV7",
2006 .matches = {
2007 DMI_MATCH(DMI_BIOS_VENDOR, "Phoenix Technologies, LTD"),
2008 DMI_MATCH(DMI_BIOS_VERSION, "6.00 PG"),
2011 { NULL }
2014 static int __init rhine_init(void)
2016 /* when a module, this is printed whether or not devices are found in probe */
2017 #ifdef MODULE
2018 printk(version);
2019 #endif
2020 if (dmi_check_system(rhine_dmi_table)) {
2021 /* these BIOSes fail at PXE boot if chip is in D3 */
2022 avoid_D3 = 1;
2023 printk(KERN_WARNING "%s: Broken BIOS detected, avoid_D3 "
2024 "enabled.\n",
2025 DRV_NAME);
2027 else if (avoid_D3)
2028 printk(KERN_INFO "%s: avoid_D3 set.\n", DRV_NAME);
2030 return pci_register_driver(&rhine_driver);
2034 static void __exit rhine_cleanup(void)
2036 pci_unregister_driver(&rhine_driver);
2040 module_init(rhine_init);
2041 module_exit(rhine_cleanup);