Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/jmorris...
[linux-2.6/mini2440.git] / drivers / net / tehuti.c
blob3c2679cd196bdd7da13ab94e4dfb085cc4e57a62
1 /*
2 * Tehuti Networks(R) Network Driver
3 * ethtool interface implementation
4 * Copyright (C) 2007 Tehuti Networks Ltd. All rights reserved
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
13 * RX HW/SW interaction overview
14 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
15 * There are 2 types of RX communication channels betwean driver and NIC.
16 * 1) RX Free Fifo - RXF - holds descriptors of empty buffers to accept incoming
17 * traffic. This Fifo is filled by SW and is readen by HW. Each descriptor holds
18 * info about buffer's location, size and ID. An ID field is used to identify a
19 * buffer when it's returned with data via RXD Fifo (see below)
20 * 2) RX Data Fifo - RXD - holds descriptors of full buffers. This Fifo is
21 * filled by HW and is readen by SW. Each descriptor holds status and ID.
22 * HW pops descriptor from RXF Fifo, stores ID, fills buffer with incoming data,
23 * via dma moves it into host memory, builds new RXD descriptor with same ID,
24 * pushes it into RXD Fifo and raises interrupt to indicate new RX data.
26 * Current NIC configuration (registers + firmware) makes NIC use 2 RXF Fifos.
27 * One holds 1.5K packets and another - 26K packets. Depending on incoming
28 * packet size, HW desides on a RXF Fifo to pop buffer from. When packet is
29 * filled with data, HW builds new RXD descriptor for it and push it into single
30 * RXD Fifo.
32 * RX SW Data Structures
33 * ~~~~~~~~~~~~~~~~~~~~~
34 * skb db - used to keep track of all skbs owned by SW and their dma addresses.
35 * For RX case, ownership lasts from allocating new empty skb for RXF until
36 * accepting full skb from RXD and passing it to OS. Each RXF Fifo has its own
37 * skb db. Implemented as array with bitmask.
38 * fifo - keeps info about fifo's size and location, relevant HW registers,
39 * usage and skb db. Each RXD and RXF Fifo has its own fifo structure.
40 * Implemented as simple struct.
42 * RX SW Execution Flow
43 * ~~~~~~~~~~~~~~~~~~~~
44 * Upon initialization (ifconfig up) driver creates RX fifos and initializes
45 * relevant registers. At the end of init phase, driver enables interrupts.
46 * NIC sees that there is no RXF buffers and raises
47 * RD_INTR interrupt, isr fills skbs and Rx begins.
48 * Driver has two receive operation modes:
49 * NAPI - interrupt-driven mixed with polling
50 * interrupt-driven only
52 * Interrupt-driven only flow is following. When buffer is ready, HW raises
53 * interrupt and isr is called. isr collects all available packets
54 * (bdx_rx_receive), refills skbs (bdx_rx_alloc_skbs) and exit.
56 * Rx buffer allocation note
57 * ~~~~~~~~~~~~~~~~~~~~~~~~~
58 * Driver cares to feed such amount of RxF descriptors that respective amount of
59 * RxD descriptors can not fill entire RxD fifo. The main reason is lack of
60 * overflow check in Bordeaux for RxD fifo free/used size.
61 * FIXME: this is NOT fully implemented, more work should be done
65 #include "tehuti.h"
67 static struct pci_device_id __devinitdata bdx_pci_tbl[] = {
68 {0x1FC9, 0x3009, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0},
69 {0x1FC9, 0x3010, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0},
70 {0x1FC9, 0x3014, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0},
71 {0}
74 MODULE_DEVICE_TABLE(pci, bdx_pci_tbl);
76 /* Definitions needed by ISR or NAPI functions */
77 static void bdx_rx_alloc_skbs(struct bdx_priv *priv, struct rxf_fifo *f);
78 static void bdx_tx_cleanup(struct bdx_priv *priv);
79 static int bdx_rx_receive(struct bdx_priv *priv, struct rxd_fifo *f, int budget);
81 /* Definitions needed by FW loading */
82 static void bdx_tx_push_desc_safe(struct bdx_priv *priv, void *data, int size);
84 /* Definitions needed by hw_start */
85 static int bdx_tx_init(struct bdx_priv *priv);
86 static int bdx_rx_init(struct bdx_priv *priv);
88 /* Definitions needed by bdx_close */
89 static void bdx_rx_free(struct bdx_priv *priv);
90 static void bdx_tx_free(struct bdx_priv *priv);
92 /* Definitions needed by bdx_probe */
93 static void bdx_ethtool_ops(struct net_device *netdev);
95 /*************************************************************************
96 * Print Info *
97 *************************************************************************/
99 static void print_hw_id(struct pci_dev *pdev)
101 struct pci_nic *nic = pci_get_drvdata(pdev);
102 u16 pci_link_status = 0;
103 u16 pci_ctrl = 0;
105 pci_read_config_word(pdev, PCI_LINK_STATUS_REG, &pci_link_status);
106 pci_read_config_word(pdev, PCI_DEV_CTRL_REG, &pci_ctrl);
108 printk(KERN_INFO "tehuti: %s%s\n", BDX_NIC_NAME,
109 nic->port_num == 1 ? "" : ", 2-Port");
110 printk(KERN_INFO
111 "tehuti: srom 0x%x fpga %d build %u lane# %d"
112 " max_pl 0x%x mrrs 0x%x\n",
113 readl(nic->regs + SROM_VER), readl(nic->regs + FPGA_VER) & 0xFFF,
114 readl(nic->regs + FPGA_SEED),
115 GET_LINK_STATUS_LANES(pci_link_status),
116 GET_DEV_CTRL_MAXPL(pci_ctrl), GET_DEV_CTRL_MRRS(pci_ctrl));
119 static void print_fw_id(struct pci_nic *nic)
121 printk(KERN_INFO "tehuti: fw 0x%x\n", readl(nic->regs + FW_VER));
124 static void print_eth_id(struct net_device *ndev)
126 printk(KERN_INFO "%s: %s, Port %c\n", ndev->name, BDX_NIC_NAME,
127 (ndev->if_port == 0) ? 'A' : 'B');
131 /*************************************************************************
132 * Code *
133 *************************************************************************/
135 #define bdx_enable_interrupts(priv) \
136 do { WRITE_REG(priv, regIMR, IR_RUN); } while (0)
137 #define bdx_disable_interrupts(priv) \
138 do { WRITE_REG(priv, regIMR, 0); } while (0)
140 /* bdx_fifo_init
141 * create TX/RX descriptor fifo for host-NIC communication.
142 * 1K extra space is allocated at the end of the fifo to simplify
143 * processing of descriptors that wraps around fifo's end
144 * @priv - NIC private structure
145 * @f - fifo to initialize
146 * @fsz_type - fifo size type: 0-4KB, 1-8KB, 2-16KB, 3-32KB
147 * @reg_XXX - offsets of registers relative to base address
149 * Returns 0 on success, negative value on failure
152 static int
153 bdx_fifo_init(struct bdx_priv *priv, struct fifo *f, int fsz_type,
154 u16 reg_CFG0, u16 reg_CFG1, u16 reg_RPTR, u16 reg_WPTR)
156 u16 memsz = FIFO_SIZE * (1 << fsz_type);
158 memset(f, 0, sizeof(struct fifo));
159 /* pci_alloc_consistent gives us 4k-aligned memory */
160 f->va = pci_alloc_consistent(priv->pdev,
161 memsz + FIFO_EXTRA_SPACE, &f->da);
162 if (!f->va) {
163 ERR("pci_alloc_consistent failed\n");
164 RET(-ENOMEM);
166 f->reg_CFG0 = reg_CFG0;
167 f->reg_CFG1 = reg_CFG1;
168 f->reg_RPTR = reg_RPTR;
169 f->reg_WPTR = reg_WPTR;
170 f->rptr = 0;
171 f->wptr = 0;
172 f->memsz = memsz;
173 f->size_mask = memsz - 1;
174 WRITE_REG(priv, reg_CFG0, (u32) ((f->da & TX_RX_CFG0_BASE) | fsz_type));
175 WRITE_REG(priv, reg_CFG1, H32_64(f->da));
177 RET(0);
180 /* bdx_fifo_free - free all resources used by fifo
181 * @priv - NIC private structure
182 * @f - fifo to release
184 static void bdx_fifo_free(struct bdx_priv *priv, struct fifo *f)
186 ENTER;
187 if (f->va) {
188 pci_free_consistent(priv->pdev,
189 f->memsz + FIFO_EXTRA_SPACE, f->va, f->da);
190 f->va = NULL;
192 RET();
196 * bdx_link_changed - notifies OS about hw link state.
197 * @bdx_priv - hw adapter structure
199 static void bdx_link_changed(struct bdx_priv *priv)
201 u32 link = READ_REG(priv, regMAC_LNK_STAT) & MAC_LINK_STAT;
203 if (!link) {
204 if (netif_carrier_ok(priv->ndev)) {
205 netif_stop_queue(priv->ndev);
206 netif_carrier_off(priv->ndev);
207 ERR("%s: Link Down\n", priv->ndev->name);
209 } else {
210 if (!netif_carrier_ok(priv->ndev)) {
211 netif_wake_queue(priv->ndev);
212 netif_carrier_on(priv->ndev);
213 ERR("%s: Link Up\n", priv->ndev->name);
218 static void bdx_isr_extra(struct bdx_priv *priv, u32 isr)
220 if (isr & IR_RX_FREE_0) {
221 bdx_rx_alloc_skbs(priv, &priv->rxf_fifo0);
222 DBG("RX_FREE_0\n");
225 if (isr & IR_LNKCHG0)
226 bdx_link_changed(priv);
228 if (isr & IR_PCIE_LINK)
229 ERR("%s: PCI-E Link Fault\n", priv->ndev->name);
231 if (isr & IR_PCIE_TOUT)
232 ERR("%s: PCI-E Time Out\n", priv->ndev->name);
236 /* bdx_isr - Interrupt Service Routine for Bordeaux NIC
237 * @irq - interrupt number
238 * @ndev - network device
239 * @regs - CPU registers
241 * Return IRQ_NONE if it was not our interrupt, IRQ_HANDLED - otherwise
243 * It reads ISR register to know interrupt reasons, and proceed them one by one.
244 * Reasons of interest are:
245 * RX_DESC - new packet has arrived and RXD fifo holds its descriptor
246 * RX_FREE - number of free Rx buffers in RXF fifo gets low
247 * TX_FREE - packet was transmited and RXF fifo holds its descriptor
250 static irqreturn_t bdx_isr_napi(int irq, void *dev)
252 struct net_device *ndev = dev;
253 struct bdx_priv *priv = netdev_priv(ndev);
254 u32 isr;
256 ENTER;
257 isr = (READ_REG(priv, regISR) & IR_RUN);
258 if (unlikely(!isr)) {
259 bdx_enable_interrupts(priv);
260 return IRQ_NONE; /* Not our interrupt */
263 if (isr & IR_EXTRA)
264 bdx_isr_extra(priv, isr);
266 if (isr & (IR_RX_DESC_0 | IR_TX_FREE_0)) {
267 if (likely(napi_schedule_prep(&priv->napi))) {
268 __napi_schedule(&priv->napi);
269 RET(IRQ_HANDLED);
270 } else {
271 /* NOTE: we get here if intr has slipped into window
272 * between these lines in bdx_poll:
273 * bdx_enable_interrupts(priv);
274 * return 0;
275 * currently intrs are disabled (since we read ISR),
276 * and we have failed to register next poll.
277 * so we read the regs to trigger chip
278 * and allow further interupts. */
279 READ_REG(priv, regTXF_WPTR_0);
280 READ_REG(priv, regRXD_WPTR_0);
284 bdx_enable_interrupts(priv);
285 RET(IRQ_HANDLED);
288 static int bdx_poll(struct napi_struct *napi, int budget)
290 struct bdx_priv *priv = container_of(napi, struct bdx_priv, napi);
291 int work_done;
293 ENTER;
294 bdx_tx_cleanup(priv);
295 work_done = bdx_rx_receive(priv, &priv->rxd_fifo0, budget);
296 if ((work_done < budget) ||
297 (priv->napi_stop++ >= 30)) {
298 DBG("rx poll is done. backing to isr-driven\n");
300 /* from time to time we exit to let NAPI layer release
301 * device lock and allow waiting tasks (eg rmmod) to advance) */
302 priv->napi_stop = 0;
304 napi_complete(napi);
305 bdx_enable_interrupts(priv);
307 return work_done;
310 /* bdx_fw_load - loads firmware to NIC
311 * @priv - NIC private structure
312 * Firmware is loaded via TXD fifo, so it must be initialized first.
313 * Firware must be loaded once per NIC not per PCI device provided by NIC (NIC
314 * can have few of them). So all drivers use semaphore register to choose one
315 * that will actually load FW to NIC.
318 static int bdx_fw_load(struct bdx_priv *priv)
320 const struct firmware *fw = NULL;
321 int master, i;
322 int rc;
324 ENTER;
325 master = READ_REG(priv, regINIT_SEMAPHORE);
326 if (!READ_REG(priv, regINIT_STATUS) && master) {
327 rc = request_firmware(&fw, "tehuti/firmware.bin", &priv->pdev->dev);
328 if (rc)
329 goto out;
330 bdx_tx_push_desc_safe(priv, (char *)fw->data, fw->size);
331 mdelay(100);
333 for (i = 0; i < 200; i++) {
334 if (READ_REG(priv, regINIT_STATUS)) {
335 rc = 0;
336 goto out;
338 mdelay(2);
340 rc = -EIO;
341 out:
342 if (master)
343 WRITE_REG(priv, regINIT_SEMAPHORE, 1);
344 if (fw)
345 release_firmware(fw);
347 if (rc) {
348 ERR("%s: firmware loading failed\n", priv->ndev->name);
349 if (rc == -EIO)
350 DBG("VPC = 0x%x VIC = 0x%x INIT_STATUS = 0x%x i=%d\n",
351 READ_REG(priv, regVPC),
352 READ_REG(priv, regVIC),
353 READ_REG(priv, regINIT_STATUS), i);
354 RET(rc);
355 } else {
356 DBG("%s: firmware loading success\n", priv->ndev->name);
357 RET(0);
361 static void bdx_restore_mac(struct net_device *ndev, struct bdx_priv *priv)
363 u32 val;
365 ENTER;
366 DBG("mac0=%x mac1=%x mac2=%x\n",
367 READ_REG(priv, regUNC_MAC0_A),
368 READ_REG(priv, regUNC_MAC1_A), READ_REG(priv, regUNC_MAC2_A));
370 val = (ndev->dev_addr[0] << 8) | (ndev->dev_addr[1]);
371 WRITE_REG(priv, regUNC_MAC2_A, val);
372 val = (ndev->dev_addr[2] << 8) | (ndev->dev_addr[3]);
373 WRITE_REG(priv, regUNC_MAC1_A, val);
374 val = (ndev->dev_addr[4] << 8) | (ndev->dev_addr[5]);
375 WRITE_REG(priv, regUNC_MAC0_A, val);
377 DBG("mac0=%x mac1=%x mac2=%x\n",
378 READ_REG(priv, regUNC_MAC0_A),
379 READ_REG(priv, regUNC_MAC1_A), READ_REG(priv, regUNC_MAC2_A));
380 RET();
383 /* bdx_hw_start - inits registers and starts HW's Rx and Tx engines
384 * @priv - NIC private structure
386 static int bdx_hw_start(struct bdx_priv *priv)
388 int rc = -EIO;
389 struct net_device *ndev = priv->ndev;
391 ENTER;
392 bdx_link_changed(priv);
394 /* 10G overall max length (vlan, eth&ip header, ip payload, crc) */
395 WRITE_REG(priv, regFRM_LENGTH, 0X3FE0);
396 WRITE_REG(priv, regPAUSE_QUANT, 0x96);
397 WRITE_REG(priv, regRX_FIFO_SECTION, 0x800010);
398 WRITE_REG(priv, regTX_FIFO_SECTION, 0xE00010);
399 WRITE_REG(priv, regRX_FULLNESS, 0);
400 WRITE_REG(priv, regTX_FULLNESS, 0);
401 WRITE_REG(priv, regCTRLST,
402 regCTRLST_BASE | regCTRLST_RX_ENA | regCTRLST_TX_ENA);
404 WRITE_REG(priv, regVGLB, 0);
405 WRITE_REG(priv, regMAX_FRAME_A,
406 priv->rxf_fifo0.m.pktsz & MAX_FRAME_AB_VAL);
408 DBG("RDINTCM=%08x\n", priv->rdintcm); /*NOTE: test script uses this */
409 WRITE_REG(priv, regRDINTCM0, priv->rdintcm);
410 WRITE_REG(priv, regRDINTCM2, 0); /*cpu_to_le32(rcm.val)); */
412 DBG("TDINTCM=%08x\n", priv->tdintcm); /*NOTE: test script uses this */
413 WRITE_REG(priv, regTDINTCM0, priv->tdintcm); /* old val = 0x300064 */
415 /* Enable timer interrupt once in 2 secs. */
416 /*WRITE_REG(priv, regGTMR0, ((GTMR_SEC * 2) & GTMR_DATA)); */
417 bdx_restore_mac(priv->ndev, priv);
419 WRITE_REG(priv, regGMAC_RXF_A, GMAC_RX_FILTER_OSEN |
420 GMAC_RX_FILTER_AM | GMAC_RX_FILTER_AB);
422 #define BDX_IRQ_TYPE ((priv->nic->irq_type == IRQ_MSI)?0:IRQF_SHARED)
423 if ((rc = request_irq(priv->pdev->irq, &bdx_isr_napi, BDX_IRQ_TYPE,
424 ndev->name, ndev)))
425 goto err_irq;
426 bdx_enable_interrupts(priv);
428 RET(0);
430 err_irq:
431 RET(rc);
434 static void bdx_hw_stop(struct bdx_priv *priv)
436 ENTER;
437 bdx_disable_interrupts(priv);
438 free_irq(priv->pdev->irq, priv->ndev);
440 netif_carrier_off(priv->ndev);
441 netif_stop_queue(priv->ndev);
443 RET();
446 static int bdx_hw_reset_direct(void __iomem *regs)
448 u32 val, i;
449 ENTER;
451 /* reset sequences: read, write 1, read, write 0 */
452 val = readl(regs + regCLKPLL);
453 writel((val | CLKPLL_SFTRST) + 0x8, regs + regCLKPLL);
454 udelay(50);
455 val = readl(regs + regCLKPLL);
456 writel(val & ~CLKPLL_SFTRST, regs + regCLKPLL);
458 /* check that the PLLs are locked and reset ended */
459 for (i = 0; i < 70; i++, mdelay(10))
460 if ((readl(regs + regCLKPLL) & CLKPLL_LKD) == CLKPLL_LKD) {
461 /* do any PCI-E read transaction */
462 readl(regs + regRXD_CFG0_0);
463 return 0;
465 ERR("tehuti: HW reset failed\n");
466 return 1; /* failure */
469 static int bdx_hw_reset(struct bdx_priv *priv)
471 u32 val, i;
472 ENTER;
474 if (priv->port == 0) {
475 /* reset sequences: read, write 1, read, write 0 */
476 val = READ_REG(priv, regCLKPLL);
477 WRITE_REG(priv, regCLKPLL, (val | CLKPLL_SFTRST) + 0x8);
478 udelay(50);
479 val = READ_REG(priv, regCLKPLL);
480 WRITE_REG(priv, regCLKPLL, val & ~CLKPLL_SFTRST);
482 /* check that the PLLs are locked and reset ended */
483 for (i = 0; i < 70; i++, mdelay(10))
484 if ((READ_REG(priv, regCLKPLL) & CLKPLL_LKD) == CLKPLL_LKD) {
485 /* do any PCI-E read transaction */
486 READ_REG(priv, regRXD_CFG0_0);
487 return 0;
489 ERR("tehuti: HW reset failed\n");
490 return 1; /* failure */
493 static int bdx_sw_reset(struct bdx_priv *priv)
495 int i;
497 ENTER;
498 /* 1. load MAC (obsolete) */
499 /* 2. disable Rx (and Tx) */
500 WRITE_REG(priv, regGMAC_RXF_A, 0);
501 mdelay(100);
502 /* 3. disable port */
503 WRITE_REG(priv, regDIS_PORT, 1);
504 /* 4. disable queue */
505 WRITE_REG(priv, regDIS_QU, 1);
506 /* 5. wait until hw is disabled */
507 for (i = 0; i < 50; i++) {
508 if (READ_REG(priv, regRST_PORT) & 1)
509 break;
510 mdelay(10);
512 if (i == 50)
513 ERR("%s: SW reset timeout. continuing anyway\n",
514 priv->ndev->name);
516 /* 6. disable intrs */
517 WRITE_REG(priv, regRDINTCM0, 0);
518 WRITE_REG(priv, regTDINTCM0, 0);
519 WRITE_REG(priv, regIMR, 0);
520 READ_REG(priv, regISR);
522 /* 7. reset queue */
523 WRITE_REG(priv, regRST_QU, 1);
524 /* 8. reset port */
525 WRITE_REG(priv, regRST_PORT, 1);
526 /* 9. zero all read and write pointers */
527 for (i = regTXD_WPTR_0; i <= regTXF_RPTR_3; i += 0x10)
528 DBG("%x = %x\n", i, READ_REG(priv, i) & TXF_WPTR_WR_PTR);
529 for (i = regTXD_WPTR_0; i <= regTXF_RPTR_3; i += 0x10)
530 WRITE_REG(priv, i, 0);
531 /* 10. unseet port disable */
532 WRITE_REG(priv, regDIS_PORT, 0);
533 /* 11. unset queue disable */
534 WRITE_REG(priv, regDIS_QU, 0);
535 /* 12. unset queue reset */
536 WRITE_REG(priv, regRST_QU, 0);
537 /* 13. unset port reset */
538 WRITE_REG(priv, regRST_PORT, 0);
539 /* 14. enable Rx */
540 /* skiped. will be done later */
541 /* 15. save MAC (obsolete) */
542 for (i = regTXD_WPTR_0; i <= regTXF_RPTR_3; i += 0x10)
543 DBG("%x = %x\n", i, READ_REG(priv, i) & TXF_WPTR_WR_PTR);
545 RET(0);
548 /* bdx_reset - performs right type of reset depending on hw type */
549 static int bdx_reset(struct bdx_priv *priv)
551 ENTER;
552 RET((priv->pdev->device == 0x3009)
553 ? bdx_hw_reset(priv)
554 : bdx_sw_reset(priv));
558 * bdx_close - Disables a network interface
559 * @netdev: network interface device structure
561 * Returns 0, this is not allowed to fail
563 * The close entry point is called when an interface is de-activated
564 * by the OS. The hardware is still under the drivers control, but
565 * needs to be disabled. A global MAC reset is issued to stop the
566 * hardware, and all transmit and receive resources are freed.
568 static int bdx_close(struct net_device *ndev)
570 struct bdx_priv *priv = NULL;
572 ENTER;
573 priv = netdev_priv(ndev);
575 napi_disable(&priv->napi);
577 bdx_reset(priv);
578 bdx_hw_stop(priv);
579 bdx_rx_free(priv);
580 bdx_tx_free(priv);
581 RET(0);
585 * bdx_open - Called when a network interface is made active
586 * @netdev: network interface device structure
588 * Returns 0 on success, negative value on failure
590 * The open entry point is called when a network interface is made
591 * active by the system (IFF_UP). At this point all resources needed
592 * for transmit and receive operations are allocated, the interrupt
593 * handler is registered with the OS, the watchdog timer is started,
594 * and the stack is notified that the interface is ready.
596 static int bdx_open(struct net_device *ndev)
598 struct bdx_priv *priv;
599 int rc;
601 ENTER;
602 priv = netdev_priv(ndev);
603 bdx_reset(priv);
604 if (netif_running(ndev))
605 netif_stop_queue(priv->ndev);
607 if ((rc = bdx_tx_init(priv)))
608 goto err;
610 if ((rc = bdx_rx_init(priv)))
611 goto err;
613 if ((rc = bdx_fw_load(priv)))
614 goto err;
616 bdx_rx_alloc_skbs(priv, &priv->rxf_fifo0);
618 if ((rc = bdx_hw_start(priv)))
619 goto err;
621 napi_enable(&priv->napi);
623 print_fw_id(priv->nic);
625 RET(0);
627 err:
628 bdx_close(ndev);
629 RET(rc);
632 static int bdx_range_check(struct bdx_priv *priv, u32 offset)
634 return (offset > (u32) (BDX_REGS_SIZE / priv->nic->port_num)) ?
635 -EINVAL : 0;
638 static int bdx_ioctl_priv(struct net_device *ndev, struct ifreq *ifr, int cmd)
640 struct bdx_priv *priv = netdev_priv(ndev);
641 u32 data[3];
642 int error;
644 ENTER;
646 DBG("jiffies=%ld cmd=%d\n", jiffies, cmd);
647 if (cmd != SIOCDEVPRIVATE) {
648 error = copy_from_user(data, ifr->ifr_data, sizeof(data));
649 if (error) {
650 ERR("cant copy from user\n");
651 RET(error);
653 DBG("%d 0x%x 0x%x\n", data[0], data[1], data[2]);
656 if (!capable(CAP_SYS_RAWIO))
657 return -EPERM;
659 switch (data[0]) {
661 case BDX_OP_READ:
662 error = bdx_range_check(priv, data[1]);
663 if (error < 0)
664 return error;
665 data[2] = READ_REG(priv, data[1]);
666 DBG("read_reg(0x%x)=0x%x (dec %d)\n", data[1], data[2],
667 data[2]);
668 error = copy_to_user(ifr->ifr_data, data, sizeof(data));
669 if (error)
670 RET(error);
671 break;
673 case BDX_OP_WRITE:
674 error = bdx_range_check(priv, data[1]);
675 if (error < 0)
676 return error;
677 WRITE_REG(priv, data[1], data[2]);
678 DBG("write_reg(0x%x, 0x%x)\n", data[1], data[2]);
679 break;
681 default:
682 RET(-EOPNOTSUPP);
684 return 0;
687 static int bdx_ioctl(struct net_device *ndev, struct ifreq *ifr, int cmd)
689 ENTER;
690 if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))
691 RET(bdx_ioctl_priv(ndev, ifr, cmd));
692 else
693 RET(-EOPNOTSUPP);
697 * __bdx_vlan_rx_vid - private helper for adding/killing VLAN vid
698 * by passing VLAN filter table to hardware
699 * @ndev network device
700 * @vid VLAN vid
701 * @op add or kill operation
703 static void __bdx_vlan_rx_vid(struct net_device *ndev, uint16_t vid, int enable)
705 struct bdx_priv *priv = netdev_priv(ndev);
706 u32 reg, bit, val;
708 ENTER;
709 DBG2("vid=%d value=%d\n", (int)vid, enable);
710 if (unlikely(vid >= 4096)) {
711 ERR("tehuti: invalid VID: %u (> 4096)\n", vid);
712 RET();
714 reg = regVLAN_0 + (vid / 32) * 4;
715 bit = 1 << vid % 32;
716 val = READ_REG(priv, reg);
717 DBG2("reg=%x, val=%x, bit=%d\n", reg, val, bit);
718 if (enable)
719 val |= bit;
720 else
721 val &= ~bit;
722 DBG2("new val %x\n", val);
723 WRITE_REG(priv, reg, val);
724 RET();
728 * bdx_vlan_rx_add_vid - kernel hook for adding VLAN vid to hw filtering table
729 * @ndev network device
730 * @vid VLAN vid to add
732 static void bdx_vlan_rx_add_vid(struct net_device *ndev, uint16_t vid)
734 __bdx_vlan_rx_vid(ndev, vid, 1);
738 * bdx_vlan_rx_kill_vid - kernel hook for killing VLAN vid in hw filtering table
739 * @ndev network device
740 * @vid VLAN vid to kill
742 static void bdx_vlan_rx_kill_vid(struct net_device *ndev, unsigned short vid)
744 __bdx_vlan_rx_vid(ndev, vid, 0);
748 * bdx_vlan_rx_register - kernel hook for adding VLAN group
749 * @ndev network device
750 * @grp VLAN group
752 static void
753 bdx_vlan_rx_register(struct net_device *ndev, struct vlan_group *grp)
755 struct bdx_priv *priv = netdev_priv(ndev);
757 ENTER;
758 DBG("device='%s', group='%p'\n", ndev->name, grp);
759 priv->vlgrp = grp;
760 RET();
764 * bdx_change_mtu - Change the Maximum Transfer Unit
765 * @netdev: network interface device structure
766 * @new_mtu: new value for maximum frame size
768 * Returns 0 on success, negative on failure
770 static int bdx_change_mtu(struct net_device *ndev, int new_mtu)
772 ENTER;
774 if (new_mtu == ndev->mtu)
775 RET(0);
777 /* enforce minimum frame size */
778 if (new_mtu < ETH_ZLEN) {
779 ERR("%s: %s mtu %d is less then minimal %d\n",
780 BDX_DRV_NAME, ndev->name, new_mtu, ETH_ZLEN);
781 RET(-EINVAL);
784 ndev->mtu = new_mtu;
785 if (netif_running(ndev)) {
786 bdx_close(ndev);
787 bdx_open(ndev);
789 RET(0);
792 static void bdx_setmulti(struct net_device *ndev)
794 struct bdx_priv *priv = netdev_priv(ndev);
796 u32 rxf_val =
797 GMAC_RX_FILTER_AM | GMAC_RX_FILTER_AB | GMAC_RX_FILTER_OSEN;
798 int i;
800 ENTER;
801 /* IMF - imperfect (hash) rx multicat filter */
802 /* PMF - perfect rx multicat filter */
804 /* FIXME: RXE(OFF) */
805 if (ndev->flags & IFF_PROMISC) {
806 rxf_val |= GMAC_RX_FILTER_PRM;
807 } else if (ndev->flags & IFF_ALLMULTI) {
808 /* set IMF to accept all multicast frmaes */
809 for (i = 0; i < MAC_MCST_HASH_NUM; i++)
810 WRITE_REG(priv, regRX_MCST_HASH0 + i * 4, ~0);
811 } else if (ndev->mc_count) {
812 u8 hash;
813 struct dev_mc_list *mclist;
814 u32 reg, val;
816 /* set IMF to deny all multicast frames */
817 for (i = 0; i < MAC_MCST_HASH_NUM; i++)
818 WRITE_REG(priv, regRX_MCST_HASH0 + i * 4, 0);
819 /* set PMF to deny all multicast frames */
820 for (i = 0; i < MAC_MCST_NUM; i++) {
821 WRITE_REG(priv, regRX_MAC_MCST0 + i * 8, 0);
822 WRITE_REG(priv, regRX_MAC_MCST1 + i * 8, 0);
825 /* use PMF to accept first MAC_MCST_NUM (15) addresses */
826 /* TBD: sort addreses and write them in ascending order
827 * into RX_MAC_MCST regs. we skip this phase now and accept ALL
828 * multicast frames throu IMF */
829 mclist = ndev->mc_list;
831 /* accept the rest of addresses throu IMF */
832 for (; mclist; mclist = mclist->next) {
833 hash = 0;
834 for (i = 0; i < ETH_ALEN; i++)
835 hash ^= mclist->dmi_addr[i];
836 reg = regRX_MCST_HASH0 + ((hash >> 5) << 2);
837 val = READ_REG(priv, reg);
838 val |= (1 << (hash % 32));
839 WRITE_REG(priv, reg, val);
842 } else {
843 DBG("only own mac %d\n", ndev->mc_count);
844 rxf_val |= GMAC_RX_FILTER_AB;
846 WRITE_REG(priv, regGMAC_RXF_A, rxf_val);
847 /* enable RX */
848 /* FIXME: RXE(ON) */
849 RET();
852 static int bdx_set_mac(struct net_device *ndev, void *p)
854 struct bdx_priv *priv = netdev_priv(ndev);
855 struct sockaddr *addr = p;
857 ENTER;
859 if (netif_running(dev))
860 return -EBUSY
862 memcpy(ndev->dev_addr, addr->sa_data, ndev->addr_len);
863 bdx_restore_mac(ndev, priv);
864 RET(0);
867 static int bdx_read_mac(struct bdx_priv *priv)
869 u16 macAddress[3], i;
870 ENTER;
872 macAddress[2] = READ_REG(priv, regUNC_MAC0_A);
873 macAddress[2] = READ_REG(priv, regUNC_MAC0_A);
874 macAddress[1] = READ_REG(priv, regUNC_MAC1_A);
875 macAddress[1] = READ_REG(priv, regUNC_MAC1_A);
876 macAddress[0] = READ_REG(priv, regUNC_MAC2_A);
877 macAddress[0] = READ_REG(priv, regUNC_MAC2_A);
878 for (i = 0; i < 3; i++) {
879 priv->ndev->dev_addr[i * 2 + 1] = macAddress[i];
880 priv->ndev->dev_addr[i * 2] = macAddress[i] >> 8;
882 RET(0);
885 static u64 bdx_read_l2stat(struct bdx_priv *priv, int reg)
887 u64 val;
889 val = READ_REG(priv, reg);
890 val |= ((u64) READ_REG(priv, reg + 8)) << 32;
891 return val;
894 /*Do the statistics-update work*/
895 static void bdx_update_stats(struct bdx_priv *priv)
897 struct bdx_stats *stats = &priv->hw_stats;
898 u64 *stats_vector = (u64 *) stats;
899 int i;
900 int addr;
902 /*Fill HW structure */
903 addr = 0x7200;
904 /*First 12 statistics - 0x7200 - 0x72B0 */
905 for (i = 0; i < 12; i++) {
906 stats_vector[i] = bdx_read_l2stat(priv, addr);
907 addr += 0x10;
909 BDX_ASSERT(addr != 0x72C0);
910 /* 0x72C0-0x72E0 RSRV */
911 addr = 0x72F0;
912 for (; i < 16; i++) {
913 stats_vector[i] = bdx_read_l2stat(priv, addr);
914 addr += 0x10;
916 BDX_ASSERT(addr != 0x7330);
917 /* 0x7330-0x7360 RSRV */
918 addr = 0x7370;
919 for (; i < 19; i++) {
920 stats_vector[i] = bdx_read_l2stat(priv, addr);
921 addr += 0x10;
923 BDX_ASSERT(addr != 0x73A0);
924 /* 0x73A0-0x73B0 RSRV */
925 addr = 0x73C0;
926 for (; i < 23; i++) {
927 stats_vector[i] = bdx_read_l2stat(priv, addr);
928 addr += 0x10;
930 BDX_ASSERT(addr != 0x7400);
931 BDX_ASSERT((sizeof(struct bdx_stats) / sizeof(u64)) != i);
934 static struct net_device_stats *bdx_get_stats(struct net_device *ndev)
936 struct bdx_priv *priv = netdev_priv(ndev);
937 struct net_device_stats *net_stat = &priv->net_stats;
938 return net_stat;
941 static void print_rxdd(struct rxd_desc *rxdd, u32 rxd_val1, u16 len,
942 u16 rxd_vlan);
943 static void print_rxfd(struct rxf_desc *rxfd);
945 /*************************************************************************
946 * Rx DB *
947 *************************************************************************/
949 static void bdx_rxdb_destroy(struct rxdb *db)
951 vfree(db);
954 static struct rxdb *bdx_rxdb_create(int nelem)
956 struct rxdb *db;
957 int i;
959 db = vmalloc(sizeof(struct rxdb)
960 + (nelem * sizeof(int))
961 + (nelem * sizeof(struct rx_map)));
962 if (likely(db != NULL)) {
963 db->stack = (int *)(db + 1);
964 db->elems = (void *)(db->stack + nelem);
965 db->nelem = nelem;
966 db->top = nelem;
967 for (i = 0; i < nelem; i++)
968 db->stack[i] = nelem - i - 1; /* to make first allocs
969 close to db struct*/
972 return db;
975 static inline int bdx_rxdb_alloc_elem(struct rxdb *db)
977 BDX_ASSERT(db->top <= 0);
978 return db->stack[--(db->top)];
981 static inline void *bdx_rxdb_addr_elem(struct rxdb *db, int n)
983 BDX_ASSERT((n < 0) || (n >= db->nelem));
984 return db->elems + n;
987 static inline int bdx_rxdb_available(struct rxdb *db)
989 return db->top;
992 static inline void bdx_rxdb_free_elem(struct rxdb *db, int n)
994 BDX_ASSERT((n >= db->nelem) || (n < 0));
995 db->stack[(db->top)++] = n;
998 /*************************************************************************
999 * Rx Init *
1000 *************************************************************************/
1002 /* bdx_rx_init - initialize RX all related HW and SW resources
1003 * @priv - NIC private structure
1005 * Returns 0 on success, negative value on failure
1007 * It creates rxf and rxd fifos, update relevant HW registers, preallocate
1008 * skb for rx. It assumes that Rx is desabled in HW
1009 * funcs are grouped for better cache usage
1011 * RxD fifo is smaller than RxF fifo by design. Upon high load, RxD will be
1012 * filled and packets will be dropped by nic without getting into host or
1013 * cousing interrupt. Anyway, in that condition, host has no chance to proccess
1014 * all packets, but dropping in nic is cheaper, since it takes 0 cpu cycles
1017 /* TBD: ensure proper packet size */
1019 static int bdx_rx_init(struct bdx_priv *priv)
1021 ENTER;
1023 if (bdx_fifo_init(priv, &priv->rxd_fifo0.m, priv->rxd_size,
1024 regRXD_CFG0_0, regRXD_CFG1_0,
1025 regRXD_RPTR_0, regRXD_WPTR_0))
1026 goto err_mem;
1027 if (bdx_fifo_init(priv, &priv->rxf_fifo0.m, priv->rxf_size,
1028 regRXF_CFG0_0, regRXF_CFG1_0,
1029 regRXF_RPTR_0, regRXF_WPTR_0))
1030 goto err_mem;
1031 if (!
1032 (priv->rxdb =
1033 bdx_rxdb_create(priv->rxf_fifo0.m.memsz /
1034 sizeof(struct rxf_desc))))
1035 goto err_mem;
1037 priv->rxf_fifo0.m.pktsz = priv->ndev->mtu + VLAN_ETH_HLEN;
1038 return 0;
1040 err_mem:
1041 ERR("%s: %s: Rx init failed\n", BDX_DRV_NAME, priv->ndev->name);
1042 return -ENOMEM;
1045 /* bdx_rx_free_skbs - frees and unmaps all skbs allocated for the fifo
1046 * @priv - NIC private structure
1047 * @f - RXF fifo
1049 static void bdx_rx_free_skbs(struct bdx_priv *priv, struct rxf_fifo *f)
1051 struct rx_map *dm;
1052 struct rxdb *db = priv->rxdb;
1053 u16 i;
1055 ENTER;
1056 DBG("total=%d free=%d busy=%d\n", db->nelem, bdx_rxdb_available(db),
1057 db->nelem - bdx_rxdb_available(db));
1058 while (bdx_rxdb_available(db) > 0) {
1059 i = bdx_rxdb_alloc_elem(db);
1060 dm = bdx_rxdb_addr_elem(db, i);
1061 dm->dma = 0;
1063 for (i = 0; i < db->nelem; i++) {
1064 dm = bdx_rxdb_addr_elem(db, i);
1065 if (dm->dma) {
1066 pci_unmap_single(priv->pdev,
1067 dm->dma, f->m.pktsz,
1068 PCI_DMA_FROMDEVICE);
1069 dev_kfree_skb(dm->skb);
1074 /* bdx_rx_free - release all Rx resources
1075 * @priv - NIC private structure
1076 * It assumes that Rx is desabled in HW
1078 static void bdx_rx_free(struct bdx_priv *priv)
1080 ENTER;
1081 if (priv->rxdb) {
1082 bdx_rx_free_skbs(priv, &priv->rxf_fifo0);
1083 bdx_rxdb_destroy(priv->rxdb);
1084 priv->rxdb = NULL;
1086 bdx_fifo_free(priv, &priv->rxf_fifo0.m);
1087 bdx_fifo_free(priv, &priv->rxd_fifo0.m);
1089 RET();
1092 /*************************************************************************
1093 * Rx Engine *
1094 *************************************************************************/
1096 /* bdx_rx_alloc_skbs - fill rxf fifo with new skbs
1097 * @priv - nic's private structure
1098 * @f - RXF fifo that needs skbs
1099 * It allocates skbs, build rxf descs and push it (rxf descr) into rxf fifo.
1100 * skb's virtual and physical addresses are stored in skb db.
1101 * To calculate free space, func uses cached values of RPTR and WPTR
1102 * When needed, it also updates RPTR and WPTR.
1105 /* TBD: do not update WPTR if no desc were written */
1107 static void bdx_rx_alloc_skbs(struct bdx_priv *priv, struct rxf_fifo *f)
1109 struct sk_buff *skb;
1110 struct rxf_desc *rxfd;
1111 struct rx_map *dm;
1112 int dno, delta, idx;
1113 struct rxdb *db = priv->rxdb;
1115 ENTER;
1116 dno = bdx_rxdb_available(db) - 1;
1117 while (dno > 0) {
1118 if (!(skb = dev_alloc_skb(f->m.pktsz + NET_IP_ALIGN))) {
1119 ERR("NO MEM: dev_alloc_skb failed\n");
1120 break;
1122 skb->dev = priv->ndev;
1123 skb_reserve(skb, NET_IP_ALIGN);
1125 idx = bdx_rxdb_alloc_elem(db);
1126 dm = bdx_rxdb_addr_elem(db, idx);
1127 dm->dma = pci_map_single(priv->pdev,
1128 skb->data, f->m.pktsz,
1129 PCI_DMA_FROMDEVICE);
1130 dm->skb = skb;
1131 rxfd = (struct rxf_desc *)(f->m.va + f->m.wptr);
1132 rxfd->info = CPU_CHIP_SWAP32(0x10003); /* INFO=1 BC=3 */
1133 rxfd->va_lo = idx;
1134 rxfd->pa_lo = CPU_CHIP_SWAP32(L32_64(dm->dma));
1135 rxfd->pa_hi = CPU_CHIP_SWAP32(H32_64(dm->dma));
1136 rxfd->len = CPU_CHIP_SWAP32(f->m.pktsz);
1137 print_rxfd(rxfd);
1139 f->m.wptr += sizeof(struct rxf_desc);
1140 delta = f->m.wptr - f->m.memsz;
1141 if (unlikely(delta >= 0)) {
1142 f->m.wptr = delta;
1143 if (delta > 0) {
1144 memcpy(f->m.va, f->m.va + f->m.memsz, delta);
1145 DBG("wrapped descriptor\n");
1148 dno--;
1150 /*TBD: to do - delayed rxf wptr like in txd */
1151 WRITE_REG(priv, f->m.reg_WPTR, f->m.wptr & TXF_WPTR_WR_PTR);
1152 RET();
1155 static inline void
1156 NETIF_RX_MUX(struct bdx_priv *priv, u32 rxd_val1, u16 rxd_vlan,
1157 struct sk_buff *skb)
1159 ENTER;
1160 DBG("rxdd->flags.bits.vtag=%d vlgrp=%p\n", GET_RXD_VTAG(rxd_val1),
1161 priv->vlgrp);
1162 if (priv->vlgrp && GET_RXD_VTAG(rxd_val1)) {
1163 DBG("%s: vlan rcv vlan '%x' vtag '%x', device name '%s'\n",
1164 priv->ndev->name,
1165 GET_RXD_VLAN_ID(rxd_vlan),
1166 GET_RXD_VTAG(rxd_val1),
1167 vlan_group_get_device(priv->vlgrp,
1168 GET_RXD_VLAN_ID(rxd_vlan))->name);
1169 /* NAPI variant of receive functions */
1170 vlan_hwaccel_receive_skb(skb, priv->vlgrp,
1171 GET_RXD_VLAN_TCI(rxd_vlan));
1172 } else {
1173 netif_receive_skb(skb);
1177 static void bdx_recycle_skb(struct bdx_priv *priv, struct rxd_desc *rxdd)
1179 struct rxf_desc *rxfd;
1180 struct rx_map *dm;
1181 struct rxf_fifo *f;
1182 struct rxdb *db;
1183 struct sk_buff *skb;
1184 int delta;
1186 ENTER;
1187 DBG("priv=%p rxdd=%p\n", priv, rxdd);
1188 f = &priv->rxf_fifo0;
1189 db = priv->rxdb;
1190 DBG("db=%p f=%p\n", db, f);
1191 dm = bdx_rxdb_addr_elem(db, rxdd->va_lo);
1192 DBG("dm=%p\n", dm);
1193 skb = dm->skb;
1194 rxfd = (struct rxf_desc *)(f->m.va + f->m.wptr);
1195 rxfd->info = CPU_CHIP_SWAP32(0x10003); /* INFO=1 BC=3 */
1196 rxfd->va_lo = rxdd->va_lo;
1197 rxfd->pa_lo = CPU_CHIP_SWAP32(L32_64(dm->dma));
1198 rxfd->pa_hi = CPU_CHIP_SWAP32(H32_64(dm->dma));
1199 rxfd->len = CPU_CHIP_SWAP32(f->m.pktsz);
1200 print_rxfd(rxfd);
1202 f->m.wptr += sizeof(struct rxf_desc);
1203 delta = f->m.wptr - f->m.memsz;
1204 if (unlikely(delta >= 0)) {
1205 f->m.wptr = delta;
1206 if (delta > 0) {
1207 memcpy(f->m.va, f->m.va + f->m.memsz, delta);
1208 DBG("wrapped descriptor\n");
1211 RET();
1214 /* bdx_rx_receive - recieves full packets from RXD fifo and pass them to OS
1215 * NOTE: a special treatment is given to non-continous descriptors
1216 * that start near the end, wraps around and continue at the beginning. a second
1217 * part is copied right after the first, and then descriptor is interpreted as
1218 * normal. fifo has an extra space to allow such operations
1219 * @priv - nic's private structure
1220 * @f - RXF fifo that needs skbs
1223 /* TBD: replace memcpy func call by explicite inline asm */
1225 static int bdx_rx_receive(struct bdx_priv *priv, struct rxd_fifo *f, int budget)
1227 struct sk_buff *skb, *skb2;
1228 struct rxd_desc *rxdd;
1229 struct rx_map *dm;
1230 struct rxf_fifo *rxf_fifo;
1231 int tmp_len, size;
1232 int done = 0;
1233 int max_done = BDX_MAX_RX_DONE;
1234 struct rxdb *db = NULL;
1235 /* Unmarshalled descriptor - copy of descriptor in host order */
1236 u32 rxd_val1;
1237 u16 len;
1238 u16 rxd_vlan;
1240 ENTER;
1241 max_done = budget;
1243 f->m.wptr = READ_REG(priv, f->m.reg_WPTR) & TXF_WPTR_WR_PTR;
1245 size = f->m.wptr - f->m.rptr;
1246 if (size < 0)
1247 size = f->m.memsz + size; /* size is negative :-) */
1249 while (size > 0) {
1251 rxdd = (struct rxd_desc *)(f->m.va + f->m.rptr);
1252 rxd_val1 = CPU_CHIP_SWAP32(rxdd->rxd_val1);
1254 len = CPU_CHIP_SWAP16(rxdd->len);
1256 rxd_vlan = CPU_CHIP_SWAP16(rxdd->rxd_vlan);
1258 print_rxdd(rxdd, rxd_val1, len, rxd_vlan);
1260 tmp_len = GET_RXD_BC(rxd_val1) << 3;
1261 BDX_ASSERT(tmp_len <= 0);
1262 size -= tmp_len;
1263 if (size < 0) /* test for partially arrived descriptor */
1264 break;
1266 f->m.rptr += tmp_len;
1268 tmp_len = f->m.rptr - f->m.memsz;
1269 if (unlikely(tmp_len >= 0)) {
1270 f->m.rptr = tmp_len;
1271 if (tmp_len > 0) {
1272 DBG("wrapped desc rptr=%d tmp_len=%d\n",
1273 f->m.rptr, tmp_len);
1274 memcpy(f->m.va + f->m.memsz, f->m.va, tmp_len);
1278 if (unlikely(GET_RXD_ERR(rxd_val1))) {
1279 DBG("rxd_err = 0x%x\n", GET_RXD_ERR(rxd_val1));
1280 priv->net_stats.rx_errors++;
1281 bdx_recycle_skb(priv, rxdd);
1282 continue;
1285 rxf_fifo = &priv->rxf_fifo0;
1286 db = priv->rxdb;
1287 dm = bdx_rxdb_addr_elem(db, rxdd->va_lo);
1288 skb = dm->skb;
1290 if (len < BDX_COPYBREAK &&
1291 (skb2 = dev_alloc_skb(len + NET_IP_ALIGN))) {
1292 skb_reserve(skb2, NET_IP_ALIGN);
1293 /*skb_put(skb2, len); */
1294 pci_dma_sync_single_for_cpu(priv->pdev,
1295 dm->dma, rxf_fifo->m.pktsz,
1296 PCI_DMA_FROMDEVICE);
1297 memcpy(skb2->data, skb->data, len);
1298 bdx_recycle_skb(priv, rxdd);
1299 skb = skb2;
1300 } else {
1301 pci_unmap_single(priv->pdev,
1302 dm->dma, rxf_fifo->m.pktsz,
1303 PCI_DMA_FROMDEVICE);
1304 bdx_rxdb_free_elem(db, rxdd->va_lo);
1307 priv->net_stats.rx_bytes += len;
1309 skb_put(skb, len);
1310 skb->dev = priv->ndev;
1311 skb->ip_summed = CHECKSUM_UNNECESSARY;
1312 skb->protocol = eth_type_trans(skb, priv->ndev);
1314 /* Non-IP packets aren't checksum-offloaded */
1315 if (GET_RXD_PKT_ID(rxd_val1) == 0)
1316 skb->ip_summed = CHECKSUM_NONE;
1318 NETIF_RX_MUX(priv, rxd_val1, rxd_vlan, skb);
1320 if (++done >= max_done)
1321 break;
1324 priv->net_stats.rx_packets += done;
1326 /* FIXME: do smth to minimize pci accesses */
1327 WRITE_REG(priv, f->m.reg_RPTR, f->m.rptr & TXF_WPTR_WR_PTR);
1329 bdx_rx_alloc_skbs(priv, &priv->rxf_fifo0);
1331 RET(done);
1334 /*************************************************************************
1335 * Debug / Temprorary Code *
1336 *************************************************************************/
1337 static void print_rxdd(struct rxd_desc *rxdd, u32 rxd_val1, u16 len,
1338 u16 rxd_vlan)
1340 DBG("ERROR: rxdd bc %d rxfq %d to %d type %d err %d rxp %d "
1341 "pkt_id %d vtag %d len %d vlan_id %d cfi %d prio %d "
1342 "va_lo %d va_hi %d\n",
1343 GET_RXD_BC(rxd_val1), GET_RXD_RXFQ(rxd_val1), GET_RXD_TO(rxd_val1),
1344 GET_RXD_TYPE(rxd_val1), GET_RXD_ERR(rxd_val1),
1345 GET_RXD_RXP(rxd_val1), GET_RXD_PKT_ID(rxd_val1),
1346 GET_RXD_VTAG(rxd_val1), len, GET_RXD_VLAN_ID(rxd_vlan),
1347 GET_RXD_CFI(rxd_vlan), GET_RXD_PRIO(rxd_vlan), rxdd->va_lo,
1348 rxdd->va_hi);
1351 static void print_rxfd(struct rxf_desc *rxfd)
1353 DBG("=== RxF desc CHIP ORDER/ENDIANESS =============\n"
1354 "info 0x%x va_lo %u pa_lo 0x%x pa_hi 0x%x len 0x%x\n",
1355 rxfd->info, rxfd->va_lo, rxfd->pa_lo, rxfd->pa_hi, rxfd->len);
1359 * TX HW/SW interaction overview
1360 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
1361 * There are 2 types of TX communication channels betwean driver and NIC.
1362 * 1) TX Free Fifo - TXF - holds ack descriptors for sent packets
1363 * 2) TX Data Fifo - TXD - holds descriptors of full buffers.
1365 * Currently NIC supports TSO, checksuming and gather DMA
1366 * UFO and IP fragmentation is on the way
1368 * RX SW Data Structures
1369 * ~~~~~~~~~~~~~~~~~~~~~
1370 * txdb - used to keep track of all skbs owned by SW and their dma addresses.
1371 * For TX case, ownership lasts from geting packet via hard_xmit and until HW
1372 * acknowledges sent by TXF descriptors.
1373 * Implemented as cyclic buffer.
1374 * fifo - keeps info about fifo's size and location, relevant HW registers,
1375 * usage and skb db. Each RXD and RXF Fifo has its own fifo structure.
1376 * Implemented as simple struct.
1378 * TX SW Execution Flow
1379 * ~~~~~~~~~~~~~~~~~~~~
1380 * OS calls driver's hard_xmit method with packet to sent.
1381 * Driver creates DMA mappings, builds TXD descriptors and kicks HW
1382 * by updating TXD WPTR.
1383 * When packet is sent, HW write us TXF descriptor and SW frees original skb.
1384 * To prevent TXD fifo overflow without reading HW registers every time,
1385 * SW deploys "tx level" technique.
1386 * Upon strart up, tx level is initialized to TXD fifo length.
1387 * For every sent packet, SW gets its TXD descriptor sizei
1388 * (from precalculated array) and substructs it from tx level.
1389 * The size is also stored in txdb. When TXF ack arrives, SW fetch size of
1390 * original TXD descriptor from txdb and adds it to tx level.
1391 * When Tx level drops under some predefined treshhold, the driver
1392 * stops the TX queue. When TX level rises above that level,
1393 * the tx queue is enabled again.
1395 * This technique avoids eccessive reading of RPTR and WPTR registers.
1396 * As our benchmarks shows, it adds 1.5 Gbit/sec to NIS's throuput.
1399 /*************************************************************************
1400 * Tx DB *
1401 *************************************************************************/
1402 static inline int bdx_tx_db_size(struct txdb *db)
1404 int taken = db->wptr - db->rptr;
1405 if (taken < 0)
1406 taken = db->size + 1 + taken; /* (size + 1) equals memsz */
1408 return db->size - taken;
1411 /* __bdx_tx_ptr_next - helper function, increment read/write pointer + wrap
1412 * @d - tx data base
1413 * @ptr - read or write pointer
1415 static inline void __bdx_tx_db_ptr_next(struct txdb *db, struct tx_map **pptr)
1417 BDX_ASSERT(db == NULL || pptr == NULL); /* sanity */
1419 BDX_ASSERT(*pptr != db->rptr && /* expect either read */
1420 *pptr != db->wptr); /* or write pointer */
1422 BDX_ASSERT(*pptr < db->start || /* pointer has to be */
1423 *pptr >= db->end); /* in range */
1425 ++*pptr;
1426 if (unlikely(*pptr == db->end))
1427 *pptr = db->start;
1430 /* bdx_tx_db_inc_rptr - increment read pointer
1431 * @d - tx data base
1433 static inline void bdx_tx_db_inc_rptr(struct txdb *db)
1435 BDX_ASSERT(db->rptr == db->wptr); /* can't read from empty db */
1436 __bdx_tx_db_ptr_next(db, &db->rptr);
1439 /* bdx_tx_db_inc_rptr - increment write pointer
1440 * @d - tx data base
1442 static inline void bdx_tx_db_inc_wptr(struct txdb *db)
1444 __bdx_tx_db_ptr_next(db, &db->wptr);
1445 BDX_ASSERT(db->rptr == db->wptr); /* we can not get empty db as
1446 a result of write */
1449 /* bdx_tx_db_init - creates and initializes tx db
1450 * @d - tx data base
1451 * @sz_type - size of tx fifo
1452 * Returns 0 on success, error code otherwise
1454 static int bdx_tx_db_init(struct txdb *d, int sz_type)
1456 int memsz = FIFO_SIZE * (1 << (sz_type + 1));
1458 d->start = vmalloc(memsz);
1459 if (!d->start)
1460 return -ENOMEM;
1463 * In order to differentiate between db is empty and db is full
1464 * states at least one element should always be empty in order to
1465 * avoid rptr == wptr which means db is empty
1467 d->size = memsz / sizeof(struct tx_map) - 1;
1468 d->end = d->start + d->size + 1; /* just after last element */
1470 /* all dbs are created equally empty */
1471 d->rptr = d->start;
1472 d->wptr = d->start;
1474 return 0;
1477 /* bdx_tx_db_close - closes tx db and frees all memory
1478 * @d - tx data base
1480 static void bdx_tx_db_close(struct txdb *d)
1482 BDX_ASSERT(d == NULL);
1484 vfree(d->start);
1485 d->start = NULL;
1488 /*************************************************************************
1489 * Tx Engine *
1490 *************************************************************************/
1492 /* sizes of tx desc (including padding if needed) as function
1493 * of skb's frag number */
1494 static struct {
1495 u16 bytes;
1496 u16 qwords; /* qword = 64 bit */
1497 } txd_sizes[MAX_SKB_FRAGS + 1];
1499 /* txdb_map_skb - creates and stores dma mappings for skb's data blocks
1500 * @priv - NIC private structure
1501 * @skb - socket buffer to map
1503 * It makes dma mappings for skb's data blocks and writes them to PBL of
1504 * new tx descriptor. It also stores them in the tx db, so they could be
1505 * unmaped after data was sent. It is reponsibility of a caller to make
1506 * sure that there is enough space in the tx db. Last element holds pointer
1507 * to skb itself and marked with zero length
1509 static inline void
1510 bdx_tx_map_skb(struct bdx_priv *priv, struct sk_buff *skb,
1511 struct txd_desc *txdd)
1513 struct txdb *db = &priv->txdb;
1514 struct pbl *pbl = &txdd->pbl[0];
1515 int nr_frags = skb_shinfo(skb)->nr_frags;
1516 int i;
1518 db->wptr->len = skb->len - skb->data_len;
1519 db->wptr->addr.dma = pci_map_single(priv->pdev, skb->data,
1520 db->wptr->len, PCI_DMA_TODEVICE);
1521 pbl->len = CPU_CHIP_SWAP32(db->wptr->len);
1522 pbl->pa_lo = CPU_CHIP_SWAP32(L32_64(db->wptr->addr.dma));
1523 pbl->pa_hi = CPU_CHIP_SWAP32(H32_64(db->wptr->addr.dma));
1524 DBG("=== pbl len: 0x%x ================\n", pbl->len);
1525 DBG("=== pbl pa_lo: 0x%x ================\n", pbl->pa_lo);
1526 DBG("=== pbl pa_hi: 0x%x ================\n", pbl->pa_hi);
1527 bdx_tx_db_inc_wptr(db);
1529 for (i = 0; i < nr_frags; i++) {
1530 struct skb_frag_struct *frag;
1532 frag = &skb_shinfo(skb)->frags[i];
1533 db->wptr->len = frag->size;
1534 db->wptr->addr.dma =
1535 pci_map_page(priv->pdev, frag->page, frag->page_offset,
1536 frag->size, PCI_DMA_TODEVICE);
1538 pbl++;
1539 pbl->len = CPU_CHIP_SWAP32(db->wptr->len);
1540 pbl->pa_lo = CPU_CHIP_SWAP32(L32_64(db->wptr->addr.dma));
1541 pbl->pa_hi = CPU_CHIP_SWAP32(H32_64(db->wptr->addr.dma));
1542 bdx_tx_db_inc_wptr(db);
1545 /* add skb clean up info. */
1546 db->wptr->len = -txd_sizes[nr_frags].bytes;
1547 db->wptr->addr.skb = skb;
1548 bdx_tx_db_inc_wptr(db);
1551 /* init_txd_sizes - precalculate sizes of descriptors for skbs up to 16 frags
1552 * number of frags is used as index to fetch correct descriptors size,
1553 * instead of calculating it each time */
1554 static void __init init_txd_sizes(void)
1556 int i, lwords;
1558 /* 7 - is number of lwords in txd with one phys buffer
1559 * 3 - is number of lwords used for every additional phys buffer */
1560 for (i = 0; i < MAX_SKB_FRAGS + 1; i++) {
1561 lwords = 7 + (i * 3);
1562 if (lwords & 1)
1563 lwords++; /* pad it with 1 lword */
1564 txd_sizes[i].qwords = lwords >> 1;
1565 txd_sizes[i].bytes = lwords << 2;
1569 /* bdx_tx_init - initialize all Tx related stuff.
1570 * Namely, TXD and TXF fifos, database etc */
1571 static int bdx_tx_init(struct bdx_priv *priv)
1573 if (bdx_fifo_init(priv, &priv->txd_fifo0.m, priv->txd_size,
1574 regTXD_CFG0_0,
1575 regTXD_CFG1_0, regTXD_RPTR_0, regTXD_WPTR_0))
1576 goto err_mem;
1577 if (bdx_fifo_init(priv, &priv->txf_fifo0.m, priv->txf_size,
1578 regTXF_CFG0_0,
1579 regTXF_CFG1_0, regTXF_RPTR_0, regTXF_WPTR_0))
1580 goto err_mem;
1582 /* The TX db has to keep mappings for all packets sent (on TxD)
1583 * and not yet reclaimed (on TxF) */
1584 if (bdx_tx_db_init(&priv->txdb, max(priv->txd_size, priv->txf_size)))
1585 goto err_mem;
1587 priv->tx_level = BDX_MAX_TX_LEVEL;
1588 #ifdef BDX_DELAY_WPTR
1589 priv->tx_update_mark = priv->tx_level - 1024;
1590 #endif
1591 return 0;
1593 err_mem:
1594 ERR("tehuti: %s: Tx init failed\n", priv->ndev->name);
1595 return -ENOMEM;
1599 * bdx_tx_space - calculates avalable space in TX fifo
1600 * @priv - NIC private structure
1601 * Returns avaliable space in TX fifo in bytes
1603 static inline int bdx_tx_space(struct bdx_priv *priv)
1605 struct txd_fifo *f = &priv->txd_fifo0;
1606 int fsize;
1608 f->m.rptr = READ_REG(priv, f->m.reg_RPTR) & TXF_WPTR_WR_PTR;
1609 fsize = f->m.rptr - f->m.wptr;
1610 if (fsize <= 0)
1611 fsize = f->m.memsz + fsize;
1612 return (fsize);
1615 /* bdx_tx_transmit - send packet to NIC
1616 * @skb - packet to send
1617 * ndev - network device assigned to NIC
1618 * Return codes:
1619 * o NETDEV_TX_OK everything ok.
1620 * o NETDEV_TX_BUSY Cannot transmit packet, try later
1621 * Usually a bug, means queue start/stop flow control is broken in
1622 * the driver. Note: the driver must NOT put the skb in its DMA ring.
1623 * o NETDEV_TX_LOCKED Locking failed, please retry quickly.
1625 static int bdx_tx_transmit(struct sk_buff *skb, struct net_device *ndev)
1627 struct bdx_priv *priv = netdev_priv(ndev);
1628 struct txd_fifo *f = &priv->txd_fifo0;
1629 int txd_checksum = 7; /* full checksum */
1630 int txd_lgsnd = 0;
1631 int txd_vlan_id = 0;
1632 int txd_vtag = 0;
1633 int txd_mss = 0;
1635 int nr_frags = skb_shinfo(skb)->nr_frags;
1636 struct txd_desc *txdd;
1637 int len;
1638 unsigned long flags;
1640 ENTER;
1641 local_irq_save(flags);
1642 if (!spin_trylock(&priv->tx_lock)) {
1643 local_irq_restore(flags);
1644 DBG("%s[%s]: TX locked, returning NETDEV_TX_LOCKED\n",
1645 BDX_DRV_NAME, ndev->name);
1646 return NETDEV_TX_LOCKED;
1649 /* build tx descriptor */
1650 BDX_ASSERT(f->m.wptr >= f->m.memsz); /* started with valid wptr */
1651 txdd = (struct txd_desc *)(f->m.va + f->m.wptr);
1652 if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL))
1653 txd_checksum = 0;
1655 if (skb_shinfo(skb)->gso_size) {
1656 txd_mss = skb_shinfo(skb)->gso_size;
1657 txd_lgsnd = 1;
1658 DBG("skb %p skb len %d gso size = %d\n", skb, skb->len,
1659 txd_mss);
1662 if (vlan_tx_tag_present(skb)) {
1663 /*Cut VLAN ID to 12 bits */
1664 txd_vlan_id = vlan_tx_tag_get(skb) & BITS_MASK(12);
1665 txd_vtag = 1;
1668 txdd->length = CPU_CHIP_SWAP16(skb->len);
1669 txdd->mss = CPU_CHIP_SWAP16(txd_mss);
1670 txdd->txd_val1 =
1671 CPU_CHIP_SWAP32(TXD_W1_VAL
1672 (txd_sizes[nr_frags].qwords, txd_checksum, txd_vtag,
1673 txd_lgsnd, txd_vlan_id));
1674 DBG("=== TxD desc =====================\n");
1675 DBG("=== w1: 0x%x ================\n", txdd->txd_val1);
1676 DBG("=== w2: mss 0x%x len 0x%x\n", txdd->mss, txdd->length);
1678 bdx_tx_map_skb(priv, skb, txdd);
1680 /* increment TXD write pointer. In case of
1681 fifo wrapping copy reminder of the descriptor
1682 to the beginning */
1683 f->m.wptr += txd_sizes[nr_frags].bytes;
1684 len = f->m.wptr - f->m.memsz;
1685 if (unlikely(len >= 0)) {
1686 f->m.wptr = len;
1687 if (len > 0) {
1688 BDX_ASSERT(len > f->m.memsz);
1689 memcpy(f->m.va, f->m.va + f->m.memsz, len);
1692 BDX_ASSERT(f->m.wptr >= f->m.memsz); /* finished with valid wptr */
1694 priv->tx_level -= txd_sizes[nr_frags].bytes;
1695 BDX_ASSERT(priv->tx_level <= 0 || priv->tx_level > BDX_MAX_TX_LEVEL);
1696 #ifdef BDX_DELAY_WPTR
1697 if (priv->tx_level > priv->tx_update_mark) {
1698 /* Force memory writes to complete before letting h/w
1699 know there are new descriptors to fetch.
1700 (might be needed on platforms like IA64)
1701 wmb(); */
1702 WRITE_REG(priv, f->m.reg_WPTR, f->m.wptr & TXF_WPTR_WR_PTR);
1703 } else {
1704 if (priv->tx_noupd++ > BDX_NO_UPD_PACKETS) {
1705 priv->tx_noupd = 0;
1706 WRITE_REG(priv, f->m.reg_WPTR,
1707 f->m.wptr & TXF_WPTR_WR_PTR);
1710 #else
1711 /* Force memory writes to complete before letting h/w
1712 know there are new descriptors to fetch.
1713 (might be needed on platforms like IA64)
1714 wmb(); */
1715 WRITE_REG(priv, f->m.reg_WPTR, f->m.wptr & TXF_WPTR_WR_PTR);
1717 #endif
1718 #ifdef BDX_LLTX
1719 ndev->trans_start = jiffies; /* NETIF_F_LLTX driver :( */
1720 #endif
1721 priv->net_stats.tx_packets++;
1722 priv->net_stats.tx_bytes += skb->len;
1724 if (priv->tx_level < BDX_MIN_TX_LEVEL) {
1725 DBG("%s: %s: TX Q STOP level %d\n",
1726 BDX_DRV_NAME, ndev->name, priv->tx_level);
1727 netif_stop_queue(ndev);
1730 spin_unlock_irqrestore(&priv->tx_lock, flags);
1731 return NETDEV_TX_OK;
1734 /* bdx_tx_cleanup - clean TXF fifo, run in the context of IRQ.
1735 * @priv - bdx adapter
1736 * It scans TXF fifo for descriptors, frees DMA mappings and reports to OS
1737 * that those packets were sent
1739 static void bdx_tx_cleanup(struct bdx_priv *priv)
1741 struct txf_fifo *f = &priv->txf_fifo0;
1742 struct txdb *db = &priv->txdb;
1743 int tx_level = 0;
1745 ENTER;
1746 f->m.wptr = READ_REG(priv, f->m.reg_WPTR) & TXF_WPTR_MASK;
1747 BDX_ASSERT(f->m.rptr >= f->m.memsz); /* started with valid rptr */
1749 while (f->m.wptr != f->m.rptr) {
1750 f->m.rptr += BDX_TXF_DESC_SZ;
1751 f->m.rptr &= f->m.size_mask;
1753 /* unmap all the fragments */
1754 /* first has to come tx_maps containing dma */
1755 BDX_ASSERT(db->rptr->len == 0);
1756 do {
1757 BDX_ASSERT(db->rptr->addr.dma == 0);
1758 pci_unmap_page(priv->pdev, db->rptr->addr.dma,
1759 db->rptr->len, PCI_DMA_TODEVICE);
1760 bdx_tx_db_inc_rptr(db);
1761 } while (db->rptr->len > 0);
1762 tx_level -= db->rptr->len; /* '-' koz len is negative */
1764 /* now should come skb pointer - free it */
1765 dev_kfree_skb_irq(db->rptr->addr.skb);
1766 bdx_tx_db_inc_rptr(db);
1769 /* let h/w know which TXF descriptors were cleaned */
1770 BDX_ASSERT((f->m.wptr & TXF_WPTR_WR_PTR) >= f->m.memsz);
1771 WRITE_REG(priv, f->m.reg_RPTR, f->m.rptr & TXF_WPTR_WR_PTR);
1773 /* We reclaimed resources, so in case the Q is stopped by xmit callback,
1774 * we resume the transmition and use tx_lock to synchronize with xmit.*/
1775 spin_lock(&priv->tx_lock);
1776 priv->tx_level += tx_level;
1777 BDX_ASSERT(priv->tx_level <= 0 || priv->tx_level > BDX_MAX_TX_LEVEL);
1778 #ifdef BDX_DELAY_WPTR
1779 if (priv->tx_noupd) {
1780 priv->tx_noupd = 0;
1781 WRITE_REG(priv, priv->txd_fifo0.m.reg_WPTR,
1782 priv->txd_fifo0.m.wptr & TXF_WPTR_WR_PTR);
1784 #endif
1786 if (unlikely(netif_queue_stopped(priv->ndev)
1787 && netif_carrier_ok(priv->ndev)
1788 && (priv->tx_level >= BDX_MIN_TX_LEVEL))) {
1789 DBG("%s: %s: TX Q WAKE level %d\n",
1790 BDX_DRV_NAME, priv->ndev->name, priv->tx_level);
1791 netif_wake_queue(priv->ndev);
1793 spin_unlock(&priv->tx_lock);
1796 /* bdx_tx_free_skbs - frees all skbs from TXD fifo.
1797 * It gets called when OS stops this dev, eg upon "ifconfig down" or rmmod
1799 static void bdx_tx_free_skbs(struct bdx_priv *priv)
1801 struct txdb *db = &priv->txdb;
1803 ENTER;
1804 while (db->rptr != db->wptr) {
1805 if (likely(db->rptr->len))
1806 pci_unmap_page(priv->pdev, db->rptr->addr.dma,
1807 db->rptr->len, PCI_DMA_TODEVICE);
1808 else
1809 dev_kfree_skb(db->rptr->addr.skb);
1810 bdx_tx_db_inc_rptr(db);
1812 RET();
1815 /* bdx_tx_free - frees all Tx resources */
1816 static void bdx_tx_free(struct bdx_priv *priv)
1818 ENTER;
1819 bdx_tx_free_skbs(priv);
1820 bdx_fifo_free(priv, &priv->txd_fifo0.m);
1821 bdx_fifo_free(priv, &priv->txf_fifo0.m);
1822 bdx_tx_db_close(&priv->txdb);
1825 /* bdx_tx_push_desc - push descriptor to TxD fifo
1826 * @priv - NIC private structure
1827 * @data - desc's data
1828 * @size - desc's size
1830 * Pushes desc to TxD fifo and overlaps it if needed.
1831 * NOTE: this func does not check for available space. this is responsibility
1832 * of the caller. Neither does it check that data size is smaller than
1833 * fifo size.
1835 static void bdx_tx_push_desc(struct bdx_priv *priv, void *data, int size)
1837 struct txd_fifo *f = &priv->txd_fifo0;
1838 int i = f->m.memsz - f->m.wptr;
1840 if (size == 0)
1841 return;
1843 if (i > size) {
1844 memcpy(f->m.va + f->m.wptr, data, size);
1845 f->m.wptr += size;
1846 } else {
1847 memcpy(f->m.va + f->m.wptr, data, i);
1848 f->m.wptr = size - i;
1849 memcpy(f->m.va, data + i, f->m.wptr);
1851 WRITE_REG(priv, f->m.reg_WPTR, f->m.wptr & TXF_WPTR_WR_PTR);
1854 /* bdx_tx_push_desc_safe - push descriptor to TxD fifo in a safe way
1855 * @priv - NIC private structure
1856 * @data - desc's data
1857 * @size - desc's size
1859 * NOTE: this func does check for available space and, if neccessary, waits for
1860 * NIC to read existing data before writing new one.
1862 static void bdx_tx_push_desc_safe(struct bdx_priv *priv, void *data, int size)
1864 int timer = 0;
1865 ENTER;
1867 while (size > 0) {
1868 /* we substruct 8 because when fifo is full rptr == wptr
1869 which also means that fifo is empty, we can understand
1870 the difference, but could hw do the same ??? :) */
1871 int avail = bdx_tx_space(priv) - 8;
1872 if (avail <= 0) {
1873 if (timer++ > 300) { /* prevent endless loop */
1874 DBG("timeout while writing desc to TxD fifo\n");
1875 break;
1877 udelay(50); /* give hw a chance to clean fifo */
1878 continue;
1880 avail = MIN(avail, size);
1881 DBG("about to push %d bytes starting %p size %d\n", avail,
1882 data, size);
1883 bdx_tx_push_desc(priv, data, avail);
1884 size -= avail;
1885 data += avail;
1887 RET();
1890 static const struct net_device_ops bdx_netdev_ops = {
1891 .ndo_open = bdx_open,
1892 .ndo_stop = bdx_close,
1893 .ndo_start_xmit = bdx_tx_transmit,
1894 .ndo_validate_addr = eth_validate_addr,
1895 .ndo_do_ioctl = bdx_ioctl,
1896 .ndo_set_multicast_list = bdx_setmulti,
1897 .ndo_get_stats = bdx_get_stats,
1898 .ndo_change_mtu = bdx_change_mtu,
1899 .ndo_set_mac_address = bdx_set_mac,
1900 .ndo_vlan_rx_register = bdx_vlan_rx_register,
1901 .ndo_vlan_rx_add_vid = bdx_vlan_rx_add_vid,
1902 .ndo_vlan_rx_kill_vid = bdx_vlan_rx_kill_vid,
1906 * bdx_probe - Device Initialization Routine
1907 * @pdev: PCI device information struct
1908 * @ent: entry in bdx_pci_tbl
1910 * Returns 0 on success, negative on failure
1912 * bdx_probe initializes an adapter identified by a pci_dev structure.
1913 * The OS initialization, configuring of the adapter private structure,
1914 * and a hardware reset occur.
1916 * functions and their order used as explained in
1917 * /usr/src/linux/Documentation/DMA-{API,mapping}.txt
1921 /* TBD: netif_msg should be checked and implemented. I disable it for now */
1922 static int __devinit
1923 bdx_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
1925 struct net_device *ndev;
1926 struct bdx_priv *priv;
1927 int err, pci_using_dac, port;
1928 unsigned long pciaddr;
1929 u32 regionSize;
1930 struct pci_nic *nic;
1932 ENTER;
1934 nic = vmalloc(sizeof(*nic));
1935 if (!nic)
1936 RET(-ENOMEM);
1938 /************** pci *****************/
1939 if ((err = pci_enable_device(pdev))) /* it trigers interrupt, dunno why. */
1940 goto err_pci; /* it's not a problem though */
1942 if (!(err = pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) &&
1943 !(err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64)))) {
1944 pci_using_dac = 1;
1945 } else {
1946 if ((err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32))) ||
1947 (err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32)))) {
1948 printk(KERN_ERR "tehuti: No usable DMA configuration"
1949 ", aborting\n");
1950 goto err_dma;
1952 pci_using_dac = 0;
1955 if ((err = pci_request_regions(pdev, BDX_DRV_NAME)))
1956 goto err_dma;
1958 pci_set_master(pdev);
1960 pciaddr = pci_resource_start(pdev, 0);
1961 if (!pciaddr) {
1962 err = -EIO;
1963 ERR("tehuti: no MMIO resource\n");
1964 goto err_out_res;
1966 if ((regionSize = pci_resource_len(pdev, 0)) < BDX_REGS_SIZE) {
1967 err = -EIO;
1968 ERR("tehuti: MMIO resource (%x) too small\n", regionSize);
1969 goto err_out_res;
1972 nic->regs = ioremap(pciaddr, regionSize);
1973 if (!nic->regs) {
1974 err = -EIO;
1975 ERR("tehuti: ioremap failed\n");
1976 goto err_out_res;
1979 if (pdev->irq < 2) {
1980 err = -EIO;
1981 ERR("tehuti: invalid irq (%d)\n", pdev->irq);
1982 goto err_out_iomap;
1984 pci_set_drvdata(pdev, nic);
1986 if (pdev->device == 0x3014)
1987 nic->port_num = 2;
1988 else
1989 nic->port_num = 1;
1991 print_hw_id(pdev);
1993 bdx_hw_reset_direct(nic->regs);
1995 nic->irq_type = IRQ_INTX;
1996 #ifdef BDX_MSI
1997 if ((readl(nic->regs + FPGA_VER) & 0xFFF) >= 378) {
1998 if ((err = pci_enable_msi(pdev)))
1999 ERR("Tehuti: Can't eneble msi. error is %d\n", err);
2000 else
2001 nic->irq_type = IRQ_MSI;
2002 } else
2003 DBG("HW does not support MSI\n");
2004 #endif
2006 /************** netdev **************/
2007 for (port = 0; port < nic->port_num; port++) {
2008 if (!(ndev = alloc_etherdev(sizeof(struct bdx_priv)))) {
2009 err = -ENOMEM;
2010 printk(KERN_ERR "tehuti: alloc_etherdev failed\n");
2011 goto err_out_iomap;
2014 ndev->netdev_ops = &bdx_netdev_ops;
2015 ndev->tx_queue_len = BDX_NDEV_TXQ_LEN;
2017 bdx_ethtool_ops(ndev); /* ethtool interface */
2019 /* these fields are used for info purposes only
2020 * so we can have them same for all ports of the board */
2021 ndev->if_port = port;
2022 ndev->base_addr = pciaddr;
2023 ndev->mem_start = pciaddr;
2024 ndev->mem_end = pciaddr + regionSize;
2025 ndev->irq = pdev->irq;
2026 ndev->features = NETIF_F_IP_CSUM | NETIF_F_SG | NETIF_F_TSO
2027 | NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX |
2028 NETIF_F_HW_VLAN_FILTER
2029 /*| NETIF_F_FRAGLIST */
2032 if (pci_using_dac)
2033 ndev->features |= NETIF_F_HIGHDMA;
2035 /************** priv ****************/
2036 priv = nic->priv[port] = netdev_priv(ndev);
2038 memset(priv, 0, sizeof(struct bdx_priv));
2039 priv->pBdxRegs = nic->regs + port * 0x8000;
2040 priv->port = port;
2041 priv->pdev = pdev;
2042 priv->ndev = ndev;
2043 priv->nic = nic;
2044 priv->msg_enable = BDX_DEF_MSG_ENABLE;
2046 netif_napi_add(ndev, &priv->napi, bdx_poll, 64);
2048 if ((readl(nic->regs + FPGA_VER) & 0xFFF) == 308) {
2049 DBG("HW statistics not supported\n");
2050 priv->stats_flag = 0;
2051 } else {
2052 priv->stats_flag = 1;
2055 /* Initialize fifo sizes. */
2056 priv->txd_size = 2;
2057 priv->txf_size = 2;
2058 priv->rxd_size = 2;
2059 priv->rxf_size = 3;
2061 /* Initialize the initial coalescing registers. */
2062 priv->rdintcm = INT_REG_VAL(0x20, 1, 4, 12);
2063 priv->tdintcm = INT_REG_VAL(0x20, 1, 0, 12);
2065 /* ndev->xmit_lock spinlock is not used.
2066 * Private priv->tx_lock is used for synchronization
2067 * between transmit and TX irq cleanup. In addition
2068 * set multicast list callback has to use priv->tx_lock.
2070 #ifdef BDX_LLTX
2071 ndev->features |= NETIF_F_LLTX;
2072 #endif
2073 spin_lock_init(&priv->tx_lock);
2075 /*bdx_hw_reset(priv); */
2076 if (bdx_read_mac(priv)) {
2077 printk(KERN_ERR "tehuti: load MAC address failed\n");
2078 goto err_out_iomap;
2080 SET_NETDEV_DEV(ndev, &pdev->dev);
2081 if ((err = register_netdev(ndev))) {
2082 printk(KERN_ERR "tehuti: register_netdev failed\n");
2083 goto err_out_free;
2085 netif_carrier_off(ndev);
2086 netif_stop_queue(ndev);
2088 print_eth_id(ndev);
2090 RET(0);
2092 err_out_free:
2093 free_netdev(ndev);
2094 err_out_iomap:
2095 iounmap(nic->regs);
2096 err_out_res:
2097 pci_release_regions(pdev);
2098 err_dma:
2099 pci_disable_device(pdev);
2100 err_pci:
2101 vfree(nic);
2103 RET(err);
2106 /****************** Ethtool interface *********************/
2107 /* get strings for tests */
2108 static const char
2109 bdx_test_names[][ETH_GSTRING_LEN] = {
2110 "No tests defined"
2113 /* get strings for statistics counters */
2114 static const char
2115 bdx_stat_names[][ETH_GSTRING_LEN] = {
2116 "InUCast", /* 0x7200 */
2117 "InMCast", /* 0x7210 */
2118 "InBCast", /* 0x7220 */
2119 "InPkts", /* 0x7230 */
2120 "InErrors", /* 0x7240 */
2121 "InDropped", /* 0x7250 */
2122 "FrameTooLong", /* 0x7260 */
2123 "FrameSequenceErrors", /* 0x7270 */
2124 "InVLAN", /* 0x7280 */
2125 "InDroppedDFE", /* 0x7290 */
2126 "InDroppedIntFull", /* 0x72A0 */
2127 "InFrameAlignErrors", /* 0x72B0 */
2129 /* 0x72C0-0x72E0 RSRV */
2131 "OutUCast", /* 0x72F0 */
2132 "OutMCast", /* 0x7300 */
2133 "OutBCast", /* 0x7310 */
2134 "OutPkts", /* 0x7320 */
2136 /* 0x7330-0x7360 RSRV */
2138 "OutVLAN", /* 0x7370 */
2139 "InUCastOctects", /* 0x7380 */
2140 "OutUCastOctects", /* 0x7390 */
2142 /* 0x73A0-0x73B0 RSRV */
2144 "InBCastOctects", /* 0x73C0 */
2145 "OutBCastOctects", /* 0x73D0 */
2146 "InOctects", /* 0x73E0 */
2147 "OutOctects", /* 0x73F0 */
2151 * bdx_get_settings - get device-specific settings
2152 * @netdev
2153 * @ecmd
2155 static int bdx_get_settings(struct net_device *netdev, struct ethtool_cmd *ecmd)
2157 u32 rdintcm;
2158 u32 tdintcm;
2159 struct bdx_priv *priv = netdev_priv(netdev);
2161 rdintcm = priv->rdintcm;
2162 tdintcm = priv->tdintcm;
2164 ecmd->supported = (SUPPORTED_10000baseT_Full | SUPPORTED_FIBRE);
2165 ecmd->advertising = (ADVERTISED_10000baseT_Full | ADVERTISED_FIBRE);
2166 ecmd->speed = SPEED_10000;
2167 ecmd->duplex = DUPLEX_FULL;
2168 ecmd->port = PORT_FIBRE;
2169 ecmd->transceiver = XCVR_EXTERNAL; /* what does it mean? */
2170 ecmd->autoneg = AUTONEG_DISABLE;
2172 /* PCK_TH measures in multiples of FIFO bytes
2173 We translate to packets */
2174 ecmd->maxtxpkt =
2175 ((GET_PCK_TH(tdintcm) * PCK_TH_MULT) / BDX_TXF_DESC_SZ);
2176 ecmd->maxrxpkt =
2177 ((GET_PCK_TH(rdintcm) * PCK_TH_MULT) / sizeof(struct rxf_desc));
2179 return 0;
2183 * bdx_get_drvinfo - report driver information
2184 * @netdev
2185 * @drvinfo
2187 static void
2188 bdx_get_drvinfo(struct net_device *netdev, struct ethtool_drvinfo *drvinfo)
2190 struct bdx_priv *priv = netdev_priv(netdev);
2192 strlcat(drvinfo->driver, BDX_DRV_NAME, sizeof(drvinfo->driver));
2193 strlcat(drvinfo->version, BDX_DRV_VERSION, sizeof(drvinfo->version));
2194 strlcat(drvinfo->fw_version, "N/A", sizeof(drvinfo->fw_version));
2195 strlcat(drvinfo->bus_info, pci_name(priv->pdev),
2196 sizeof(drvinfo->bus_info));
2198 drvinfo->n_stats = ((priv->stats_flag) ? ARRAY_SIZE(bdx_stat_names) : 0);
2199 drvinfo->testinfo_len = 0;
2200 drvinfo->regdump_len = 0;
2201 drvinfo->eedump_len = 0;
2205 * bdx_get_rx_csum - report whether receive checksums are turned on or off
2206 * @netdev
2208 static u32 bdx_get_rx_csum(struct net_device *netdev)
2210 return 1; /* always on */
2214 * bdx_get_tx_csum - report whether transmit checksums are turned on or off
2215 * @netdev
2217 static u32 bdx_get_tx_csum(struct net_device *netdev)
2219 return (netdev->features & NETIF_F_IP_CSUM) != 0;
2223 * bdx_get_coalesce - get interrupt coalescing parameters
2224 * @netdev
2225 * @ecoal
2227 static int
2228 bdx_get_coalesce(struct net_device *netdev, struct ethtool_coalesce *ecoal)
2230 u32 rdintcm;
2231 u32 tdintcm;
2232 struct bdx_priv *priv = netdev_priv(netdev);
2234 rdintcm = priv->rdintcm;
2235 tdintcm = priv->tdintcm;
2237 /* PCK_TH measures in multiples of FIFO bytes
2238 We translate to packets */
2239 ecoal->rx_coalesce_usecs = GET_INT_COAL(rdintcm) * INT_COAL_MULT;
2240 ecoal->rx_max_coalesced_frames =
2241 ((GET_PCK_TH(rdintcm) * PCK_TH_MULT) / sizeof(struct rxf_desc));
2243 ecoal->tx_coalesce_usecs = GET_INT_COAL(tdintcm) * INT_COAL_MULT;
2244 ecoal->tx_max_coalesced_frames =
2245 ((GET_PCK_TH(tdintcm) * PCK_TH_MULT) / BDX_TXF_DESC_SZ);
2247 /* adaptive parameters ignored */
2248 return 0;
2252 * bdx_set_coalesce - set interrupt coalescing parameters
2253 * @netdev
2254 * @ecoal
2256 static int
2257 bdx_set_coalesce(struct net_device *netdev, struct ethtool_coalesce *ecoal)
2259 u32 rdintcm;
2260 u32 tdintcm;
2261 struct bdx_priv *priv = netdev_priv(netdev);
2262 int rx_coal;
2263 int tx_coal;
2264 int rx_max_coal;
2265 int tx_max_coal;
2267 /* Check for valid input */
2268 rx_coal = ecoal->rx_coalesce_usecs / INT_COAL_MULT;
2269 tx_coal = ecoal->tx_coalesce_usecs / INT_COAL_MULT;
2270 rx_max_coal = ecoal->rx_max_coalesced_frames;
2271 tx_max_coal = ecoal->tx_max_coalesced_frames;
2273 /* Translate from packets to multiples of FIFO bytes */
2274 rx_max_coal =
2275 (((rx_max_coal * sizeof(struct rxf_desc)) + PCK_TH_MULT - 1)
2276 / PCK_TH_MULT);
2277 tx_max_coal =
2278 (((tx_max_coal * BDX_TXF_DESC_SZ) + PCK_TH_MULT - 1)
2279 / PCK_TH_MULT);
2281 if ((rx_coal > 0x7FFF) || (tx_coal > 0x7FFF)
2282 || (rx_max_coal > 0xF) || (tx_max_coal > 0xF))
2283 return -EINVAL;
2285 rdintcm = INT_REG_VAL(rx_coal, GET_INT_COAL_RC(priv->rdintcm),
2286 GET_RXF_TH(priv->rdintcm), rx_max_coal);
2287 tdintcm = INT_REG_VAL(tx_coal, GET_INT_COAL_RC(priv->tdintcm), 0,
2288 tx_max_coal);
2290 priv->rdintcm = rdintcm;
2291 priv->tdintcm = tdintcm;
2293 WRITE_REG(priv, regRDINTCM0, rdintcm);
2294 WRITE_REG(priv, regTDINTCM0, tdintcm);
2296 return 0;
2299 /* Convert RX fifo size to number of pending packets */
2300 static inline int bdx_rx_fifo_size_to_packets(int rx_size)
2302 return ((FIFO_SIZE * (1 << rx_size)) / sizeof(struct rxf_desc));
2305 /* Convert TX fifo size to number of pending packets */
2306 static inline int bdx_tx_fifo_size_to_packets(int tx_size)
2308 return ((FIFO_SIZE * (1 << tx_size)) / BDX_TXF_DESC_SZ);
2312 * bdx_get_ringparam - report ring sizes
2313 * @netdev
2314 * @ring
2316 static void
2317 bdx_get_ringparam(struct net_device *netdev, struct ethtool_ringparam *ring)
2319 struct bdx_priv *priv = netdev_priv(netdev);
2321 /*max_pending - the maximum-sized FIFO we allow */
2322 ring->rx_max_pending = bdx_rx_fifo_size_to_packets(3);
2323 ring->tx_max_pending = bdx_tx_fifo_size_to_packets(3);
2324 ring->rx_pending = bdx_rx_fifo_size_to_packets(priv->rxf_size);
2325 ring->tx_pending = bdx_tx_fifo_size_to_packets(priv->txd_size);
2329 * bdx_set_ringparam - set ring sizes
2330 * @netdev
2331 * @ring
2333 static int
2334 bdx_set_ringparam(struct net_device *netdev, struct ethtool_ringparam *ring)
2336 struct bdx_priv *priv = netdev_priv(netdev);
2337 int rx_size = 0;
2338 int tx_size = 0;
2340 for (; rx_size < 4; rx_size++) {
2341 if (bdx_rx_fifo_size_to_packets(rx_size) >= ring->rx_pending)
2342 break;
2344 if (rx_size == 4)
2345 rx_size = 3;
2347 for (; tx_size < 4; tx_size++) {
2348 if (bdx_tx_fifo_size_to_packets(tx_size) >= ring->tx_pending)
2349 break;
2351 if (tx_size == 4)
2352 tx_size = 3;
2354 /*Is there anything to do? */
2355 if ((rx_size == priv->rxf_size)
2356 && (tx_size == priv->txd_size))
2357 return 0;
2359 priv->rxf_size = rx_size;
2360 if (rx_size > 1)
2361 priv->rxd_size = rx_size - 1;
2362 else
2363 priv->rxd_size = rx_size;
2365 priv->txf_size = priv->txd_size = tx_size;
2367 if (netif_running(netdev)) {
2368 bdx_close(netdev);
2369 bdx_open(netdev);
2371 return 0;
2375 * bdx_get_strings - return a set of strings that describe the requested objects
2376 * @netdev
2377 * @data
2379 static void bdx_get_strings(struct net_device *netdev, u32 stringset, u8 *data)
2381 switch (stringset) {
2382 case ETH_SS_TEST:
2383 memcpy(data, *bdx_test_names, sizeof(bdx_test_names));
2384 break;
2385 case ETH_SS_STATS:
2386 memcpy(data, *bdx_stat_names, sizeof(bdx_stat_names));
2387 break;
2392 * bdx_get_stats_count - return number of 64bit statistics counters
2393 * @netdev
2395 static int bdx_get_stats_count(struct net_device *netdev)
2397 struct bdx_priv *priv = netdev_priv(netdev);
2398 BDX_ASSERT(ARRAY_SIZE(bdx_stat_names)
2399 != sizeof(struct bdx_stats) / sizeof(u64));
2400 return ((priv->stats_flag) ? ARRAY_SIZE(bdx_stat_names) : 0);
2404 * bdx_get_ethtool_stats - return device's hardware L2 statistics
2405 * @netdev
2406 * @stats
2407 * @data
2409 static void bdx_get_ethtool_stats(struct net_device *netdev,
2410 struct ethtool_stats *stats, u64 *data)
2412 struct bdx_priv *priv = netdev_priv(netdev);
2414 if (priv->stats_flag) {
2416 /* Update stats from HW */
2417 bdx_update_stats(priv);
2419 /* Copy data to user buffer */
2420 memcpy(data, &priv->hw_stats, sizeof(priv->hw_stats));
2425 * bdx_ethtool_ops - ethtool interface implementation
2426 * @netdev
2428 static void bdx_ethtool_ops(struct net_device *netdev)
2430 static struct ethtool_ops bdx_ethtool_ops = {
2431 .get_settings = bdx_get_settings,
2432 .get_drvinfo = bdx_get_drvinfo,
2433 .get_link = ethtool_op_get_link,
2434 .get_coalesce = bdx_get_coalesce,
2435 .set_coalesce = bdx_set_coalesce,
2436 .get_ringparam = bdx_get_ringparam,
2437 .set_ringparam = bdx_set_ringparam,
2438 .get_rx_csum = bdx_get_rx_csum,
2439 .get_tx_csum = bdx_get_tx_csum,
2440 .get_sg = ethtool_op_get_sg,
2441 .get_tso = ethtool_op_get_tso,
2442 .get_strings = bdx_get_strings,
2443 .get_stats_count = bdx_get_stats_count,
2444 .get_ethtool_stats = bdx_get_ethtool_stats,
2447 SET_ETHTOOL_OPS(netdev, &bdx_ethtool_ops);
2451 * bdx_remove - Device Removal Routine
2452 * @pdev: PCI device information struct
2454 * bdx_remove is called by the PCI subsystem to alert the driver
2455 * that it should release a PCI device. The could be caused by a
2456 * Hot-Plug event, or because the driver is going to be removed from
2457 * memory.
2459 static void __devexit bdx_remove(struct pci_dev *pdev)
2461 struct pci_nic *nic = pci_get_drvdata(pdev);
2462 struct net_device *ndev;
2463 int port;
2465 for (port = 0; port < nic->port_num; port++) {
2466 ndev = nic->priv[port]->ndev;
2467 unregister_netdev(ndev);
2468 free_netdev(ndev);
2471 /*bdx_hw_reset_direct(nic->regs); */
2472 #ifdef BDX_MSI
2473 if (nic->irq_type == IRQ_MSI)
2474 pci_disable_msi(pdev);
2475 #endif
2477 iounmap(nic->regs);
2478 pci_release_regions(pdev);
2479 pci_disable_device(pdev);
2480 pci_set_drvdata(pdev, NULL);
2481 vfree(nic);
2483 RET();
2486 static struct pci_driver bdx_pci_driver = {
2487 .name = BDX_DRV_NAME,
2488 .id_table = bdx_pci_tbl,
2489 .probe = bdx_probe,
2490 .remove = __devexit_p(bdx_remove),
2494 * print_driver_id - print parameters of the driver build
2496 static void __init print_driver_id(void)
2498 printk(KERN_INFO "%s: %s, %s\n", BDX_DRV_NAME, BDX_DRV_DESC,
2499 BDX_DRV_VERSION);
2500 printk(KERN_INFO "%s: Options: hw_csum %s\n", BDX_DRV_NAME,
2501 BDX_MSI_STRING);
2504 static int __init bdx_module_init(void)
2506 ENTER;
2507 init_txd_sizes();
2508 print_driver_id();
2509 RET(pci_register_driver(&bdx_pci_driver));
2512 module_init(bdx_module_init);
2514 static void __exit bdx_module_exit(void)
2516 ENTER;
2517 pci_unregister_driver(&bdx_pci_driver);
2518 RET();
2521 module_exit(bdx_module_exit);
2523 MODULE_LICENSE("GPL");
2524 MODULE_AUTHOR(DRIVER_AUTHOR);
2525 MODULE_DESCRIPTION(BDX_DRV_DESC);
2526 MODULE_FIRMWARE("tehuti/firmware.bin");