2 * This file is part of UBIFS.
4 * Copyright (C) 2006-2008 Nokia Corporation.
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published by
8 * the Free Software Foundation.
10 * This program is distributed in the hope that it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
15 * You should have received a copy of the GNU General Public License along with
16 * this program; if not, write to the Free Software Foundation, Inc., 51
17 * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
19 * Author: Adrian Hunter
25 * An orphan is an inode number whose inode node has been committed to the index
26 * with a link count of zero. That happens when an open file is deleted
27 * (unlinked) and then a commit is run. In the normal course of events the inode
28 * would be deleted when the file is closed. However in the case of an unclean
29 * unmount, orphans need to be accounted for. After an unclean unmount, the
30 * orphans' inodes must be deleted which means either scanning the entire index
31 * looking for them, or keeping a list on flash somewhere. This unit implements
32 * the latter approach.
34 * The orphan area is a fixed number of LEBs situated between the LPT area and
35 * the main area. The number of orphan area LEBs is specified when the file
36 * system is created. The minimum number is 1. The size of the orphan area
37 * should be so that it can hold the maximum number of orphans that are expected
38 * to ever exist at one time.
40 * The number of orphans that can fit in a LEB is:
42 * (c->leb_size - UBIFS_ORPH_NODE_SZ) / sizeof(__le64)
44 * For example: a 15872 byte LEB can fit 1980 orphans so 1 LEB may be enough.
46 * Orphans are accumulated in a rb-tree. When an inode's link count drops to
47 * zero, the inode number is added to the rb-tree. It is removed from the tree
48 * when the inode is deleted. Any new orphans that are in the orphan tree when
49 * the commit is run, are written to the orphan area in 1 or more orph nodes.
50 * If the orphan area is full, it is consolidated to make space. There is
51 * always enough space because validation prevents the user from creating more
52 * than the maximum number of orphans allowed.
55 #ifdef CONFIG_UBIFS_FS_DEBUG
56 static int dbg_check_orphans(struct ubifs_info
*c
);
58 #define dbg_check_orphans(c) 0
62 * ubifs_add_orphan - add an orphan.
63 * @c: UBIFS file-system description object
64 * @inum: orphan inode number
66 * Add an orphan. This function is called when an inodes link count drops to
69 int ubifs_add_orphan(struct ubifs_info
*c
, ino_t inum
)
71 struct ubifs_orphan
*orphan
, *o
;
72 struct rb_node
**p
, *parent
= NULL
;
74 orphan
= kzalloc(sizeof(struct ubifs_orphan
), GFP_NOFS
);
80 spin_lock(&c
->orphan_lock
);
81 if (c
->tot_orphans
>= c
->max_orphans
) {
82 spin_unlock(&c
->orphan_lock
);
86 p
= &c
->orph_tree
.rb_node
;
89 o
= rb_entry(parent
, struct ubifs_orphan
, rb
);
92 else if (inum
> o
->inum
)
95 dbg_err("orphaned twice");
96 spin_unlock(&c
->orphan_lock
);
103 rb_link_node(&orphan
->rb
, parent
, p
);
104 rb_insert_color(&orphan
->rb
, &c
->orph_tree
);
105 list_add_tail(&orphan
->list
, &c
->orph_list
);
106 list_add_tail(&orphan
->new_list
, &c
->orph_new
);
107 spin_unlock(&c
->orphan_lock
);
108 dbg_gen("ino %lu", inum
);
113 * ubifs_delete_orphan - delete an orphan.
114 * @c: UBIFS file-system description object
115 * @inum: orphan inode number
117 * Delete an orphan. This function is called when an inode is deleted.
119 void ubifs_delete_orphan(struct ubifs_info
*c
, ino_t inum
)
121 struct ubifs_orphan
*o
;
124 spin_lock(&c
->orphan_lock
);
125 p
= c
->orph_tree
.rb_node
;
127 o
= rb_entry(p
, struct ubifs_orphan
, rb
);
130 else if (inum
> o
->inum
)
134 spin_unlock(&c
->orphan_lock
);
135 dbg_gen("deleted twice ino %lu", inum
);
139 o
->dnext
= c
->orph_dnext
;
141 spin_unlock(&c
->orphan_lock
);
142 dbg_gen("delete later ino %lu", inum
);
145 rb_erase(p
, &c
->orph_tree
);
149 list_del(&o
->new_list
);
152 spin_unlock(&c
->orphan_lock
);
154 dbg_gen("inum %lu", inum
);
158 spin_unlock(&c
->orphan_lock
);
159 dbg_err("missing orphan ino %lu", inum
);
164 * ubifs_orphan_start_commit - start commit of orphans.
165 * @c: UBIFS file-system description object
167 * Start commit of orphans.
169 int ubifs_orphan_start_commit(struct ubifs_info
*c
)
171 struct ubifs_orphan
*orphan
, **last
;
173 spin_lock(&c
->orphan_lock
);
174 last
= &c
->orph_cnext
;
175 list_for_each_entry(orphan
, &c
->orph_new
, new_list
) {
176 ubifs_assert(orphan
->new);
179 last
= &orphan
->cnext
;
181 *last
= orphan
->cnext
;
182 c
->cmt_orphans
= c
->new_orphans
;
184 dbg_cmt("%d orphans to commit", c
->cmt_orphans
);
185 INIT_LIST_HEAD(&c
->orph_new
);
186 if (c
->tot_orphans
== 0)
190 spin_unlock(&c
->orphan_lock
);
195 * avail_orphs - calculate available space.
196 * @c: UBIFS file-system description object
198 * This function returns the number of orphans that can be written in the
201 static int avail_orphs(struct ubifs_info
*c
)
203 int avail_lebs
, avail
, gap
;
205 avail_lebs
= c
->orph_lebs
- (c
->ohead_lnum
- c
->orph_first
) - 1;
207 ((c
->leb_size
- UBIFS_ORPH_NODE_SZ
) / sizeof(__le64
));
208 gap
= c
->leb_size
- c
->ohead_offs
;
209 if (gap
>= UBIFS_ORPH_NODE_SZ
+ sizeof(__le64
))
210 avail
+= (gap
- UBIFS_ORPH_NODE_SZ
) / sizeof(__le64
);
215 * tot_avail_orphs - calculate total space.
216 * @c: UBIFS file-system description object
218 * This function returns the number of orphans that can be written in half
219 * the total space. That leaves half the space for adding new orphans.
221 static int tot_avail_orphs(struct ubifs_info
*c
)
223 int avail_lebs
, avail
;
225 avail_lebs
= c
->orph_lebs
;
227 ((c
->leb_size
- UBIFS_ORPH_NODE_SZ
) / sizeof(__le64
));
232 * do_write_orph_node - write a node
233 * @c: UBIFS file-system description object
234 * @len: length of node
235 * @atomic: write atomically
237 * This function writes a node to the orphan head from the orphan buffer. If
238 * %atomic is not zero, then the write is done atomically. On success, %0 is
239 * returned, otherwise a negative error code is returned.
241 static int do_write_orph_node(struct ubifs_info
*c
, int len
, int atomic
)
246 ubifs_assert(c
->ohead_offs
== 0);
247 ubifs_prepare_node(c
, c
->orph_buf
, len
, 1);
248 len
= ALIGN(len
, c
->min_io_size
);
249 err
= ubifs_leb_change(c
, c
->ohead_lnum
, c
->orph_buf
, len
,
252 if (c
->ohead_offs
== 0) {
253 /* Ensure LEB has been unmapped */
254 err
= ubifs_leb_unmap(c
, c
->ohead_lnum
);
258 err
= ubifs_write_node(c
, c
->orph_buf
, len
, c
->ohead_lnum
,
259 c
->ohead_offs
, UBI_SHORTTERM
);
265 * write_orph_node - write an orph node
266 * @c: UBIFS file-system description object
267 * @atomic: write atomically
269 * This function builds an orph node from the cnext list and writes it to the
270 * orphan head. On success, %0 is returned, otherwise a negative error code
273 static int write_orph_node(struct ubifs_info
*c
, int atomic
)
275 struct ubifs_orphan
*orphan
, *cnext
;
276 struct ubifs_orph_node
*orph
;
277 int gap
, err
, len
, cnt
, i
;
279 ubifs_assert(c
->cmt_orphans
> 0);
280 gap
= c
->leb_size
- c
->ohead_offs
;
281 if (gap
< UBIFS_ORPH_NODE_SZ
+ sizeof(__le64
)) {
285 if (c
->ohead_lnum
> c
->orph_last
) {
287 * We limit the number of orphans so that this should
290 ubifs_err("out of space in orphan area");
294 cnt
= (gap
- UBIFS_ORPH_NODE_SZ
) / sizeof(__le64
);
295 if (cnt
> c
->cmt_orphans
)
296 cnt
= c
->cmt_orphans
;
297 len
= UBIFS_ORPH_NODE_SZ
+ cnt
* sizeof(__le64
);
298 ubifs_assert(c
->orph_buf
);
300 orph
->ch
.node_type
= UBIFS_ORPH_NODE
;
301 spin_lock(&c
->orphan_lock
);
302 cnext
= c
->orph_cnext
;
303 for (i
= 0; i
< cnt
; i
++) {
305 orph
->inos
[i
] = cpu_to_le64(orphan
->inum
);
306 cnext
= orphan
->cnext
;
307 orphan
->cnext
= NULL
;
309 c
->orph_cnext
= cnext
;
310 c
->cmt_orphans
-= cnt
;
311 spin_unlock(&c
->orphan_lock
);
313 orph
->cmt_no
= cpu_to_le64(c
->cmt_no
+ 1);
315 /* Mark the last node of the commit */
316 orph
->cmt_no
= cpu_to_le64((c
->cmt_no
+ 1) | (1ULL << 63));
317 ubifs_assert(c
->ohead_offs
+ len
<= c
->leb_size
);
318 ubifs_assert(c
->ohead_lnum
>= c
->orph_first
);
319 ubifs_assert(c
->ohead_lnum
<= c
->orph_last
);
320 err
= do_write_orph_node(c
, len
, atomic
);
321 c
->ohead_offs
+= ALIGN(len
, c
->min_io_size
);
322 c
->ohead_offs
= ALIGN(c
->ohead_offs
, 8);
327 * write_orph_nodes - write orph nodes until there are no more to commit
328 * @c: UBIFS file-system description object
329 * @atomic: write atomically
331 * This function writes orph nodes for all the orphans to commit. On success,
332 * %0 is returned, otherwise a negative error code is returned.
334 static int write_orph_nodes(struct ubifs_info
*c
, int atomic
)
338 while (c
->cmt_orphans
> 0) {
339 err
= write_orph_node(c
, atomic
);
346 /* Unmap any unused LEBs after consolidation */
347 lnum
= c
->ohead_lnum
+ 1;
348 for (lnum
= c
->ohead_lnum
+ 1; lnum
<= c
->orph_last
; lnum
++) {
349 err
= ubifs_leb_unmap(c
, lnum
);
358 * consolidate - consolidate the orphan area.
359 * @c: UBIFS file-system description object
361 * This function enables consolidation by putting all the orphans into the list
362 * to commit. The list is in the order that the orphans were added, and the
363 * LEBs are written atomically in order, so at no time can orphans be lost by
364 * an unclean unmount.
366 * This function returns %0 on success and a negative error code on failure.
368 static int consolidate(struct ubifs_info
*c
)
370 int tot_avail
= tot_avail_orphs(c
), err
= 0;
372 spin_lock(&c
->orphan_lock
);
373 dbg_cmt("there is space for %d orphans and there are %d",
374 tot_avail
, c
->tot_orphans
);
375 if (c
->tot_orphans
- c
->new_orphans
<= tot_avail
) {
376 struct ubifs_orphan
*orphan
, **last
;
379 /* Change the cnext list to include all non-new orphans */
380 last
= &c
->orph_cnext
;
381 list_for_each_entry(orphan
, &c
->orph_list
, list
) {
385 last
= &orphan
->cnext
;
388 *last
= orphan
->cnext
;
389 ubifs_assert(cnt
== c
->tot_orphans
- c
->new_orphans
);
390 c
->cmt_orphans
= cnt
;
391 c
->ohead_lnum
= c
->orph_first
;
395 * We limit the number of orphans so that this should
398 ubifs_err("out of space in orphan area");
401 spin_unlock(&c
->orphan_lock
);
406 * commit_orphans - commit orphans.
407 * @c: UBIFS file-system description object
409 * This function commits orphans to flash. On success, %0 is returned,
410 * otherwise a negative error code is returned.
412 static int commit_orphans(struct ubifs_info
*c
)
414 int avail
, atomic
= 0, err
;
416 ubifs_assert(c
->cmt_orphans
> 0);
417 avail
= avail_orphs(c
);
418 if (avail
< c
->cmt_orphans
) {
419 /* Not enough space to write new orphans, so consolidate */
420 err
= consolidate(c
);
425 err
= write_orph_nodes(c
, atomic
);
430 * erase_deleted - erase the orphans marked for deletion.
431 * @c: UBIFS file-system description object
433 * During commit, the orphans being committed cannot be deleted, so they are
434 * marked for deletion and deleted by this function. Also, the recovery
435 * adds killed orphans to the deletion list, and therefore they are deleted
438 static void erase_deleted(struct ubifs_info
*c
)
440 struct ubifs_orphan
*orphan
, *dnext
;
442 spin_lock(&c
->orphan_lock
);
443 dnext
= c
->orph_dnext
;
446 dnext
= orphan
->dnext
;
447 ubifs_assert(!orphan
->new);
448 rb_erase(&orphan
->rb
, &c
->orph_tree
);
449 list_del(&orphan
->list
);
451 dbg_gen("deleting orphan ino %lu", orphan
->inum
);
454 c
->orph_dnext
= NULL
;
455 spin_unlock(&c
->orphan_lock
);
459 * ubifs_orphan_end_commit - end commit of orphans.
460 * @c: UBIFS file-system description object
462 * End commit of orphans.
464 int ubifs_orphan_end_commit(struct ubifs_info
*c
)
468 if (c
->cmt_orphans
!= 0) {
469 err
= commit_orphans(c
);
474 err
= dbg_check_orphans(c
);
479 * clear_orphans - erase all LEBs used for orphans.
480 * @c: UBIFS file-system description object
482 * If recovery is not required, then the orphans from the previous session
483 * are not needed. This function locates the LEBs used to record
484 * orphans, and un-maps them.
486 static int clear_orphans(struct ubifs_info
*c
)
490 for (lnum
= c
->orph_first
; lnum
<= c
->orph_last
; lnum
++) {
491 err
= ubifs_leb_unmap(c
, lnum
);
495 c
->ohead_lnum
= c
->orph_first
;
501 * insert_dead_orphan - insert an orphan.
502 * @c: UBIFS file-system description object
503 * @inum: orphan inode number
505 * This function is a helper to the 'do_kill_orphans()' function. The orphan
506 * must be kept until the next commit, so it is added to the rb-tree and the
509 static int insert_dead_orphan(struct ubifs_info
*c
, ino_t inum
)
511 struct ubifs_orphan
*orphan
, *o
;
512 struct rb_node
**p
, *parent
= NULL
;
514 orphan
= kzalloc(sizeof(struct ubifs_orphan
), GFP_KERNEL
);
519 p
= &c
->orph_tree
.rb_node
;
522 o
= rb_entry(parent
, struct ubifs_orphan
, rb
);
525 else if (inum
> o
->inum
)
528 /* Already added - no problem */
534 rb_link_node(&orphan
->rb
, parent
, p
);
535 rb_insert_color(&orphan
->rb
, &c
->orph_tree
);
536 list_add_tail(&orphan
->list
, &c
->orph_list
);
537 orphan
->dnext
= c
->orph_dnext
;
538 c
->orph_dnext
= orphan
;
539 dbg_mnt("ino %lu, new %d, tot %d",
540 inum
, c
->new_orphans
, c
->tot_orphans
);
545 * do_kill_orphans - remove orphan inodes from the index.
546 * @c: UBIFS file-system description object
548 * @last_cmt_no: cmt_no of last orph node read is passed and returned here
549 * @outofdate: whether the LEB is out of date is returned here
550 * @last_flagged: whether the end orph node is encountered
552 * This function is a helper to the 'kill_orphans()' function. It goes through
553 * every orphan node in a LEB and for every inode number recorded, removes
554 * all keys for that inode from the TNC.
556 static int do_kill_orphans(struct ubifs_info
*c
, struct ubifs_scan_leb
*sleb
,
557 unsigned long long *last_cmt_no
, int *outofdate
,
560 struct ubifs_scan_node
*snod
;
561 struct ubifs_orph_node
*orph
;
562 unsigned long long cmt_no
;
564 int i
, n
, err
, first
= 1;
566 list_for_each_entry(snod
, &sleb
->nodes
, list
) {
567 if (snod
->type
!= UBIFS_ORPH_NODE
) {
568 ubifs_err("invalid node type %d in orphan area at "
569 "%d:%d", snod
->type
, sleb
->lnum
, snod
->offs
);
570 dbg_dump_node(c
, snod
->node
);
576 /* Check commit number */
577 cmt_no
= le64_to_cpu(orph
->cmt_no
) & LLONG_MAX
;
579 * The commit number on the master node may be less, because
580 * of a failed commit. If there are several failed commits in a
581 * row, the commit number written on orph nodes will continue to
582 * increase (because the commit number is adjusted here) even
583 * though the commit number on the master node stays the same
584 * because the master node has not been re-written.
586 if (cmt_no
> c
->cmt_no
)
588 if (cmt_no
< *last_cmt_no
&& *last_flagged
) {
590 * The last orph node had a higher commit number and was
591 * flagged as the last written for that commit number.
592 * That makes this orph node, out of date.
595 ubifs_err("out of order commit number %llu in "
596 "orphan node at %d:%d",
597 cmt_no
, sleb
->lnum
, snod
->offs
);
598 dbg_dump_node(c
, snod
->node
);
601 dbg_rcvry("out of date LEB %d", sleb
->lnum
);
609 n
= (le32_to_cpu(orph
->ch
.len
) - UBIFS_ORPH_NODE_SZ
) >> 3;
610 for (i
= 0; i
< n
; i
++) {
611 inum
= le64_to_cpu(orph
->inos
[i
]);
612 dbg_rcvry("deleting orphaned inode %lu", inum
);
613 err
= ubifs_tnc_remove_ino(c
, inum
);
616 err
= insert_dead_orphan(c
, inum
);
621 *last_cmt_no
= cmt_no
;
622 if (le64_to_cpu(orph
->cmt_no
) & (1ULL << 63)) {
623 dbg_rcvry("last orph node for commit %llu at %d:%d",
624 cmt_no
, sleb
->lnum
, snod
->offs
);
634 * kill_orphans - remove all orphan inodes from the index.
635 * @c: UBIFS file-system description object
637 * If recovery is required, then orphan inodes recorded during the previous
638 * session (which ended with an unclean unmount) must be deleted from the index.
639 * This is done by updating the TNC, but since the index is not updated until
640 * the next commit, the LEBs where the orphan information is recorded are not
641 * erased until the next commit.
643 static int kill_orphans(struct ubifs_info
*c
)
645 unsigned long long last_cmt_no
= 0;
646 int lnum
, err
= 0, outofdate
= 0, last_flagged
= 0;
648 c
->ohead_lnum
= c
->orph_first
;
650 /* Check no-orphans flag and skip this if no orphans */
652 dbg_rcvry("no orphans");
656 * Orph nodes always start at c->orph_first and are written to each
657 * successive LEB in turn. Generally unused LEBs will have been unmapped
658 * but may contain out of date orph nodes if the unmap didn't go
659 * through. In addition, the last orph node written for each commit is
660 * marked (top bit of orph->cmt_no is set to 1). It is possible that
661 * there are orph nodes from the next commit (i.e. the commit did not
662 * complete successfully). In that case, no orphans will have been lost
663 * due to the way that orphans are written, and any orphans added will
664 * be valid orphans anyway and so can be deleted.
666 for (lnum
= c
->orph_first
; lnum
<= c
->orph_last
; lnum
++) {
667 struct ubifs_scan_leb
*sleb
;
669 dbg_rcvry("LEB %d", lnum
);
670 sleb
= ubifs_scan(c
, lnum
, 0, c
->sbuf
);
672 sleb
= ubifs_recover_leb(c
, lnum
, 0, c
->sbuf
, 0);
678 err
= do_kill_orphans(c
, sleb
, &last_cmt_no
, &outofdate
,
680 if (err
|| outofdate
) {
681 ubifs_scan_destroy(sleb
);
685 c
->ohead_lnum
= lnum
;
686 c
->ohead_offs
= sleb
->endpt
;
688 ubifs_scan_destroy(sleb
);
694 * ubifs_mount_orphans - delete orphan inodes and erase LEBs that recorded them.
695 * @c: UBIFS file-system description object
696 * @unclean: indicates recovery from unclean unmount
697 * @read_only: indicates read only mount
699 * This function is called when mounting to erase orphans from the previous
700 * session. If UBIFS was not unmounted cleanly, then the inodes recorded as
701 * orphans are deleted.
703 int ubifs_mount_orphans(struct ubifs_info
*c
, int unclean
, int read_only
)
707 c
->max_orphans
= tot_avail_orphs(c
);
710 c
->orph_buf
= vmalloc(c
->leb_size
);
716 err
= kill_orphans(c
);
718 err
= clear_orphans(c
);
723 #ifdef CONFIG_UBIFS_FS_DEBUG
725 struct check_orphan
{
731 unsigned long last_ino
;
732 unsigned long tot_inos
;
733 unsigned long missing
;
734 unsigned long long leaf_cnt
;
735 struct ubifs_ino_node
*node
;
739 static int dbg_find_orphan(struct ubifs_info
*c
, ino_t inum
)
741 struct ubifs_orphan
*o
;
744 spin_lock(&c
->orphan_lock
);
745 p
= c
->orph_tree
.rb_node
;
747 o
= rb_entry(p
, struct ubifs_orphan
, rb
);
750 else if (inum
> o
->inum
)
753 spin_unlock(&c
->orphan_lock
);
757 spin_unlock(&c
->orphan_lock
);
761 static int dbg_ins_check_orphan(struct rb_root
*root
, ino_t inum
)
763 struct check_orphan
*orphan
, *o
;
764 struct rb_node
**p
, *parent
= NULL
;
766 orphan
= kzalloc(sizeof(struct check_orphan
), GFP_NOFS
);
774 o
= rb_entry(parent
, struct check_orphan
, rb
);
777 else if (inum
> o
->inum
)
784 rb_link_node(&orphan
->rb
, parent
, p
);
785 rb_insert_color(&orphan
->rb
, root
);
789 static int dbg_find_check_orphan(struct rb_root
*root
, ino_t inum
)
791 struct check_orphan
*o
;
796 o
= rb_entry(p
, struct check_orphan
, rb
);
799 else if (inum
> o
->inum
)
807 static void dbg_free_check_tree(struct rb_root
*root
)
809 struct rb_node
*this = root
->rb_node
;
810 struct check_orphan
*o
;
814 this = this->rb_left
;
816 } else if (this->rb_right
) {
817 this = this->rb_right
;
820 o
= rb_entry(this, struct check_orphan
, rb
);
821 this = rb_parent(this);
823 if (this->rb_left
== &o
->rb
)
824 this->rb_left
= NULL
;
826 this->rb_right
= NULL
;
832 static int dbg_orphan_check(struct ubifs_info
*c
, struct ubifs_zbranch
*zbr
,
835 struct check_info
*ci
= priv
;
839 inum
= key_inum(c
, &zbr
->key
);
840 if (inum
!= ci
->last_ino
) {
841 /* Lowest node type is the inode node, so it comes first */
842 if (key_type(c
, &zbr
->key
) != UBIFS_INO_KEY
)
843 ubifs_err("found orphan node ino %lu, type %d", inum
,
844 key_type(c
, &zbr
->key
));
847 err
= ubifs_tnc_read_node(c
, zbr
, ci
->node
);
849 ubifs_err("node read failed, error %d", err
);
852 if (ci
->node
->nlink
== 0)
853 /* Must be recorded as an orphan */
854 if (!dbg_find_check_orphan(&ci
->root
, inum
) &&
855 !dbg_find_orphan(c
, inum
)) {
856 ubifs_err("missing orphan, ino %lu", inum
);
864 static int dbg_read_orphans(struct check_info
*ci
, struct ubifs_scan_leb
*sleb
)
866 struct ubifs_scan_node
*snod
;
867 struct ubifs_orph_node
*orph
;
871 list_for_each_entry(snod
, &sleb
->nodes
, list
) {
873 if (snod
->type
!= UBIFS_ORPH_NODE
)
876 n
= (le32_to_cpu(orph
->ch
.len
) - UBIFS_ORPH_NODE_SZ
) >> 3;
877 for (i
= 0; i
< n
; i
++) {
878 inum
= le64_to_cpu(orph
->inos
[i
]);
879 err
= dbg_ins_check_orphan(&ci
->root
, inum
);
887 static int dbg_scan_orphans(struct ubifs_info
*c
, struct check_info
*ci
)
891 /* Check no-orphans flag and skip this if no orphans */
895 for (lnum
= c
->orph_first
; lnum
<= c
->orph_last
; lnum
++) {
896 struct ubifs_scan_leb
*sleb
;
898 sleb
= ubifs_scan(c
, lnum
, 0, c
->dbg_buf
);
904 err
= dbg_read_orphans(ci
, sleb
);
905 ubifs_scan_destroy(sleb
);
913 static int dbg_check_orphans(struct ubifs_info
*c
)
915 struct check_info ci
;
918 if (!(ubifs_chk_flags
& UBIFS_CHK_ORPH
))
926 ci
.node
= kmalloc(UBIFS_MAX_INO_NODE_SZ
, GFP_NOFS
);
928 ubifs_err("out of memory");
932 err
= dbg_scan_orphans(c
, &ci
);
936 err
= dbg_walk_index(c
, &dbg_orphan_check
, NULL
, &ci
);
938 ubifs_err("cannot scan TNC, error %d", err
);
943 ubifs_err("%lu missing orphan(s)", ci
.missing
);
948 dbg_cmt("last inode number is %lu", ci
.last_ino
);
949 dbg_cmt("total number of inodes is %lu", ci
.tot_inos
);
950 dbg_cmt("total number of leaf nodes is %llu", ci
.leaf_cnt
);
953 dbg_free_check_tree(&ci
.root
);
958 #endif /* CONFIG_UBIFS_FS_DEBUG */