[PATCH] knfsd: SUNRPC: Support IPv6 addresses in svc_tcp_accept
[linux-2.6/mini2440.git] / net / sunrpc / svcsock.c
blob72831b8a58fb84f4f875d3e7dff5aef0b4fbab18
1 /*
2 * linux/net/sunrpc/svcsock.c
4 * These are the RPC server socket internals.
6 * The server scheduling algorithm does not always distribute the load
7 * evenly when servicing a single client. May need to modify the
8 * svc_sock_enqueue procedure...
10 * TCP support is largely untested and may be a little slow. The problem
11 * is that we currently do two separate recvfrom's, one for the 4-byte
12 * record length, and the second for the actual record. This could possibly
13 * be improved by always reading a minimum size of around 100 bytes and
14 * tucking any superfluous bytes away in a temporary store. Still, that
15 * leaves write requests out in the rain. An alternative may be to peek at
16 * the first skb in the queue, and if it matches the next TCP sequence
17 * number, to extract the record marker. Yuck.
19 * Copyright (C) 1995, 1996 Olaf Kirch <okir@monad.swb.de>
22 #include <linux/sched.h>
23 #include <linux/errno.h>
24 #include <linux/fcntl.h>
25 #include <linux/net.h>
26 #include <linux/in.h>
27 #include <linux/inet.h>
28 #include <linux/udp.h>
29 #include <linux/tcp.h>
30 #include <linux/unistd.h>
31 #include <linux/slab.h>
32 #include <linux/netdevice.h>
33 #include <linux/skbuff.h>
34 #include <linux/file.h>
35 #include <linux/freezer.h>
36 #include <net/sock.h>
37 #include <net/checksum.h>
38 #include <net/ip.h>
39 #include <net/ipv6.h>
40 #include <net/tcp_states.h>
41 #include <asm/uaccess.h>
42 #include <asm/ioctls.h>
44 #include <linux/sunrpc/types.h>
45 #include <linux/sunrpc/clnt.h>
46 #include <linux/sunrpc/xdr.h>
47 #include <linux/sunrpc/svcsock.h>
48 #include <linux/sunrpc/stats.h>
50 /* SMP locking strategy:
52 * svc_pool->sp_lock protects most of the fields of that pool.
53 * svc_serv->sv_lock protects sv_tempsocks, sv_permsocks, sv_tmpcnt.
54 * when both need to be taken (rare), svc_serv->sv_lock is first.
55 * BKL protects svc_serv->sv_nrthread.
56 * svc_sock->sk_defer_lock protects the svc_sock->sk_deferred list
57 * svc_sock->sk_flags.SK_BUSY prevents a svc_sock being enqueued multiply.
59 * Some flags can be set to certain values at any time
60 * providing that certain rules are followed:
62 * SK_CONN, SK_DATA, can be set or cleared at any time.
63 * after a set, svc_sock_enqueue must be called.
64 * after a clear, the socket must be read/accepted
65 * if this succeeds, it must be set again.
66 * SK_CLOSE can set at any time. It is never cleared.
67 * sk_inuse contains a bias of '1' until SK_DEAD is set.
68 * so when sk_inuse hits zero, we know the socket is dead
69 * and no-one is using it.
70 * SK_DEAD can only be set while SK_BUSY is held which ensures
71 * no other thread will be using the socket or will try to
72 * set SK_DEAD.
76 #define RPCDBG_FACILITY RPCDBG_SVCSOCK
79 static struct svc_sock *svc_setup_socket(struct svc_serv *, struct socket *,
80 int *errp, int flags);
81 static void svc_delete_socket(struct svc_sock *svsk);
82 static void svc_udp_data_ready(struct sock *, int);
83 static int svc_udp_recvfrom(struct svc_rqst *);
84 static int svc_udp_sendto(struct svc_rqst *);
86 static struct svc_deferred_req *svc_deferred_dequeue(struct svc_sock *svsk);
87 static int svc_deferred_recv(struct svc_rqst *rqstp);
88 static struct cache_deferred_req *svc_defer(struct cache_req *req);
90 /* apparently the "standard" is that clients close
91 * idle connections after 5 minutes, servers after
92 * 6 minutes
93 * http://www.connectathon.org/talks96/nfstcp.pdf
95 static int svc_conn_age_period = 6*60;
97 #ifdef CONFIG_DEBUG_LOCK_ALLOC
98 static struct lock_class_key svc_key[2];
99 static struct lock_class_key svc_slock_key[2];
101 static inline void svc_reclassify_socket(struct socket *sock)
103 struct sock *sk = sock->sk;
104 BUG_ON(sk->sk_lock.owner != NULL);
105 switch (sk->sk_family) {
106 case AF_INET:
107 sock_lock_init_class_and_name(sk, "slock-AF_INET-NFSD",
108 &svc_slock_key[0], "sk_lock-AF_INET-NFSD", &svc_key[0]);
109 break;
111 case AF_INET6:
112 sock_lock_init_class_and_name(sk, "slock-AF_INET6-NFSD",
113 &svc_slock_key[1], "sk_lock-AF_INET6-NFSD", &svc_key[1]);
114 break;
116 default:
117 BUG();
120 #else
121 static inline void svc_reclassify_socket(struct socket *sock)
124 #endif
126 static char *__svc_print_addr(struct sockaddr *addr, char *buf, size_t len)
128 switch (addr->sa_family) {
129 case AF_INET:
130 snprintf(buf, len, "%u.%u.%u.%u, port=%u",
131 NIPQUAD(((struct sockaddr_in *) addr)->sin_addr),
132 htons(((struct sockaddr_in *) addr)->sin_port));
133 break;
134 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
135 case AF_INET6:
136 snprintf(buf, len, "%x:%x:%x:%x:%x:%x:%x:%x, port=%u",
137 NIP6(((struct sockaddr_in6 *) addr)->sin6_addr),
138 htons(((struct sockaddr_in6 *) addr)->sin6_port));
139 break;
140 #endif
141 default:
142 snprintf(buf, len, "unknown address type: %d", addr->sa_family);
143 break;
145 return buf;
149 * svc_print_addr - Format rq_addr field for printing
150 * @rqstp: svc_rqst struct containing address to print
151 * @buf: target buffer for formatted address
152 * @len: length of target buffer
155 char *svc_print_addr(struct svc_rqst *rqstp, char *buf, size_t len)
157 return __svc_print_addr(svc_addr(rqstp), buf, len);
159 EXPORT_SYMBOL_GPL(svc_print_addr);
162 * Queue up an idle server thread. Must have pool->sp_lock held.
163 * Note: this is really a stack rather than a queue, so that we only
164 * use as many different threads as we need, and the rest don't pollute
165 * the cache.
167 static inline void
168 svc_thread_enqueue(struct svc_pool *pool, struct svc_rqst *rqstp)
170 list_add(&rqstp->rq_list, &pool->sp_threads);
174 * Dequeue an nfsd thread. Must have pool->sp_lock held.
176 static inline void
177 svc_thread_dequeue(struct svc_pool *pool, struct svc_rqst *rqstp)
179 list_del(&rqstp->rq_list);
183 * Release an skbuff after use
185 static inline void
186 svc_release_skb(struct svc_rqst *rqstp)
188 struct sk_buff *skb = rqstp->rq_skbuff;
189 struct svc_deferred_req *dr = rqstp->rq_deferred;
191 if (skb) {
192 rqstp->rq_skbuff = NULL;
194 dprintk("svc: service %p, releasing skb %p\n", rqstp, skb);
195 skb_free_datagram(rqstp->rq_sock->sk_sk, skb);
197 if (dr) {
198 rqstp->rq_deferred = NULL;
199 kfree(dr);
204 * Any space to write?
206 static inline unsigned long
207 svc_sock_wspace(struct svc_sock *svsk)
209 int wspace;
211 if (svsk->sk_sock->type == SOCK_STREAM)
212 wspace = sk_stream_wspace(svsk->sk_sk);
213 else
214 wspace = sock_wspace(svsk->sk_sk);
216 return wspace;
220 * Queue up a socket with data pending. If there are idle nfsd
221 * processes, wake 'em up.
224 static void
225 svc_sock_enqueue(struct svc_sock *svsk)
227 struct svc_serv *serv = svsk->sk_server;
228 struct svc_pool *pool;
229 struct svc_rqst *rqstp;
230 int cpu;
232 if (!(svsk->sk_flags &
233 ( (1<<SK_CONN)|(1<<SK_DATA)|(1<<SK_CLOSE)|(1<<SK_DEFERRED)) ))
234 return;
235 if (test_bit(SK_DEAD, &svsk->sk_flags))
236 return;
238 cpu = get_cpu();
239 pool = svc_pool_for_cpu(svsk->sk_server, cpu);
240 put_cpu();
242 spin_lock_bh(&pool->sp_lock);
244 if (!list_empty(&pool->sp_threads) &&
245 !list_empty(&pool->sp_sockets))
246 printk(KERN_ERR
247 "svc_sock_enqueue: threads and sockets both waiting??\n");
249 if (test_bit(SK_DEAD, &svsk->sk_flags)) {
250 /* Don't enqueue dead sockets */
251 dprintk("svc: socket %p is dead, not enqueued\n", svsk->sk_sk);
252 goto out_unlock;
255 /* Mark socket as busy. It will remain in this state until the
256 * server has processed all pending data and put the socket back
257 * on the idle list. We update SK_BUSY atomically because
258 * it also guards against trying to enqueue the svc_sock twice.
260 if (test_and_set_bit(SK_BUSY, &svsk->sk_flags)) {
261 /* Don't enqueue socket while already enqueued */
262 dprintk("svc: socket %p busy, not enqueued\n", svsk->sk_sk);
263 goto out_unlock;
265 BUG_ON(svsk->sk_pool != NULL);
266 svsk->sk_pool = pool;
268 set_bit(SOCK_NOSPACE, &svsk->sk_sock->flags);
269 if (((atomic_read(&svsk->sk_reserved) + serv->sv_max_mesg)*2
270 > svc_sock_wspace(svsk))
271 && !test_bit(SK_CLOSE, &svsk->sk_flags)
272 && !test_bit(SK_CONN, &svsk->sk_flags)) {
273 /* Don't enqueue while not enough space for reply */
274 dprintk("svc: socket %p no space, %d*2 > %ld, not enqueued\n",
275 svsk->sk_sk, atomic_read(&svsk->sk_reserved)+serv->sv_max_mesg,
276 svc_sock_wspace(svsk));
277 svsk->sk_pool = NULL;
278 clear_bit(SK_BUSY, &svsk->sk_flags);
279 goto out_unlock;
281 clear_bit(SOCK_NOSPACE, &svsk->sk_sock->flags);
284 if (!list_empty(&pool->sp_threads)) {
285 rqstp = list_entry(pool->sp_threads.next,
286 struct svc_rqst,
287 rq_list);
288 dprintk("svc: socket %p served by daemon %p\n",
289 svsk->sk_sk, rqstp);
290 svc_thread_dequeue(pool, rqstp);
291 if (rqstp->rq_sock)
292 printk(KERN_ERR
293 "svc_sock_enqueue: server %p, rq_sock=%p!\n",
294 rqstp, rqstp->rq_sock);
295 rqstp->rq_sock = svsk;
296 atomic_inc(&svsk->sk_inuse);
297 rqstp->rq_reserved = serv->sv_max_mesg;
298 atomic_add(rqstp->rq_reserved, &svsk->sk_reserved);
299 BUG_ON(svsk->sk_pool != pool);
300 wake_up(&rqstp->rq_wait);
301 } else {
302 dprintk("svc: socket %p put into queue\n", svsk->sk_sk);
303 list_add_tail(&svsk->sk_ready, &pool->sp_sockets);
304 BUG_ON(svsk->sk_pool != pool);
307 out_unlock:
308 spin_unlock_bh(&pool->sp_lock);
312 * Dequeue the first socket. Must be called with the pool->sp_lock held.
314 static inline struct svc_sock *
315 svc_sock_dequeue(struct svc_pool *pool)
317 struct svc_sock *svsk;
319 if (list_empty(&pool->sp_sockets))
320 return NULL;
322 svsk = list_entry(pool->sp_sockets.next,
323 struct svc_sock, sk_ready);
324 list_del_init(&svsk->sk_ready);
326 dprintk("svc: socket %p dequeued, inuse=%d\n",
327 svsk->sk_sk, atomic_read(&svsk->sk_inuse));
329 return svsk;
333 * Having read something from a socket, check whether it
334 * needs to be re-enqueued.
335 * Note: SK_DATA only gets cleared when a read-attempt finds
336 * no (or insufficient) data.
338 static inline void
339 svc_sock_received(struct svc_sock *svsk)
341 svsk->sk_pool = NULL;
342 clear_bit(SK_BUSY, &svsk->sk_flags);
343 svc_sock_enqueue(svsk);
348 * svc_reserve - change the space reserved for the reply to a request.
349 * @rqstp: The request in question
350 * @space: new max space to reserve
352 * Each request reserves some space on the output queue of the socket
353 * to make sure the reply fits. This function reduces that reserved
354 * space to be the amount of space used already, plus @space.
357 void svc_reserve(struct svc_rqst *rqstp, int space)
359 space += rqstp->rq_res.head[0].iov_len;
361 if (space < rqstp->rq_reserved) {
362 struct svc_sock *svsk = rqstp->rq_sock;
363 atomic_sub((rqstp->rq_reserved - space), &svsk->sk_reserved);
364 rqstp->rq_reserved = space;
366 svc_sock_enqueue(svsk);
371 * Release a socket after use.
373 static inline void
374 svc_sock_put(struct svc_sock *svsk)
376 if (atomic_dec_and_test(&svsk->sk_inuse)) {
377 BUG_ON(! test_bit(SK_DEAD, &svsk->sk_flags));
379 dprintk("svc: releasing dead socket\n");
380 if (svsk->sk_sock->file)
381 sockfd_put(svsk->sk_sock);
382 else
383 sock_release(svsk->sk_sock);
384 if (svsk->sk_info_authunix != NULL)
385 svcauth_unix_info_release(svsk->sk_info_authunix);
386 kfree(svsk);
390 static void
391 svc_sock_release(struct svc_rqst *rqstp)
393 struct svc_sock *svsk = rqstp->rq_sock;
395 svc_release_skb(rqstp);
397 svc_free_res_pages(rqstp);
398 rqstp->rq_res.page_len = 0;
399 rqstp->rq_res.page_base = 0;
402 /* Reset response buffer and release
403 * the reservation.
404 * But first, check that enough space was reserved
405 * for the reply, otherwise we have a bug!
407 if ((rqstp->rq_res.len) > rqstp->rq_reserved)
408 printk(KERN_ERR "RPC request reserved %d but used %d\n",
409 rqstp->rq_reserved,
410 rqstp->rq_res.len);
412 rqstp->rq_res.head[0].iov_len = 0;
413 svc_reserve(rqstp, 0);
414 rqstp->rq_sock = NULL;
416 svc_sock_put(svsk);
420 * External function to wake up a server waiting for data
421 * This really only makes sense for services like lockd
422 * which have exactly one thread anyway.
424 void
425 svc_wake_up(struct svc_serv *serv)
427 struct svc_rqst *rqstp;
428 unsigned int i;
429 struct svc_pool *pool;
431 for (i = 0; i < serv->sv_nrpools; i++) {
432 pool = &serv->sv_pools[i];
434 spin_lock_bh(&pool->sp_lock);
435 if (!list_empty(&pool->sp_threads)) {
436 rqstp = list_entry(pool->sp_threads.next,
437 struct svc_rqst,
438 rq_list);
439 dprintk("svc: daemon %p woken up.\n", rqstp);
441 svc_thread_dequeue(pool, rqstp);
442 rqstp->rq_sock = NULL;
444 wake_up(&rqstp->rq_wait);
446 spin_unlock_bh(&pool->sp_lock);
450 union svc_pktinfo_u {
451 struct in_pktinfo pkti;
452 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
453 struct in6_pktinfo pkti6;
454 #endif
457 static void svc_set_cmsg_data(struct svc_rqst *rqstp, struct cmsghdr *cmh)
459 switch (rqstp->rq_sock->sk_sk->sk_family) {
460 case AF_INET: {
461 struct in_pktinfo *pki = CMSG_DATA(cmh);
463 cmh->cmsg_level = SOL_IP;
464 cmh->cmsg_type = IP_PKTINFO;
465 pki->ipi_ifindex = 0;
466 pki->ipi_spec_dst.s_addr = rqstp->rq_daddr.addr.s_addr;
467 cmh->cmsg_len = CMSG_LEN(sizeof(*pki));
469 break;
470 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
471 case AF_INET6: {
472 struct in6_pktinfo *pki = CMSG_DATA(cmh);
474 cmh->cmsg_level = SOL_IPV6;
475 cmh->cmsg_type = IPV6_PKTINFO;
476 pki->ipi6_ifindex = 0;
477 ipv6_addr_copy(&pki->ipi6_addr,
478 &rqstp->rq_daddr.addr6);
479 cmh->cmsg_len = CMSG_LEN(sizeof(*pki));
481 break;
482 #endif
484 return;
488 * Generic sendto routine
490 static int
491 svc_sendto(struct svc_rqst *rqstp, struct xdr_buf *xdr)
493 struct svc_sock *svsk = rqstp->rq_sock;
494 struct socket *sock = svsk->sk_sock;
495 int slen;
496 char buffer[CMSG_SPACE(sizeof(union svc_pktinfo_u))];
497 struct cmsghdr *cmh = (struct cmsghdr *)buffer;
498 int len = 0;
499 int result;
500 int size;
501 struct page **ppage = xdr->pages;
502 size_t base = xdr->page_base;
503 unsigned int pglen = xdr->page_len;
504 unsigned int flags = MSG_MORE;
505 char buf[RPC_MAX_ADDRBUFLEN];
507 slen = xdr->len;
509 if (rqstp->rq_prot == IPPROTO_UDP) {
510 struct msghdr msg = {
511 .msg_name = &rqstp->rq_addr,
512 .msg_namelen = rqstp->rq_addrlen,
513 .msg_control = cmh,
514 .msg_controllen = sizeof(buffer),
515 .msg_flags = MSG_MORE,
518 svc_set_cmsg_data(rqstp, cmh);
520 if (sock_sendmsg(sock, &msg, 0) < 0)
521 goto out;
524 /* send head */
525 if (slen == xdr->head[0].iov_len)
526 flags = 0;
527 len = kernel_sendpage(sock, rqstp->rq_respages[0], 0,
528 xdr->head[0].iov_len, flags);
529 if (len != xdr->head[0].iov_len)
530 goto out;
531 slen -= xdr->head[0].iov_len;
532 if (slen == 0)
533 goto out;
535 /* send page data */
536 size = PAGE_SIZE - base < pglen ? PAGE_SIZE - base : pglen;
537 while (pglen > 0) {
538 if (slen == size)
539 flags = 0;
540 result = kernel_sendpage(sock, *ppage, base, size, flags);
541 if (result > 0)
542 len += result;
543 if (result != size)
544 goto out;
545 slen -= size;
546 pglen -= size;
547 size = PAGE_SIZE < pglen ? PAGE_SIZE : pglen;
548 base = 0;
549 ppage++;
551 /* send tail */
552 if (xdr->tail[0].iov_len) {
553 result = kernel_sendpage(sock, rqstp->rq_respages[0],
554 ((unsigned long)xdr->tail[0].iov_base)
555 & (PAGE_SIZE-1),
556 xdr->tail[0].iov_len, 0);
558 if (result > 0)
559 len += result;
561 out:
562 dprintk("svc: socket %p sendto([%p %Zu... ], %d) = %d (addr %s)\n",
563 rqstp->rq_sock, xdr->head[0].iov_base, xdr->head[0].iov_len,
564 xdr->len, len, svc_print_addr(rqstp, buf, sizeof(buf)));
566 return len;
570 * Report socket names for nfsdfs
572 static int one_sock_name(char *buf, struct svc_sock *svsk)
574 int len;
576 switch(svsk->sk_sk->sk_family) {
577 case AF_INET:
578 len = sprintf(buf, "ipv4 %s %u.%u.%u.%u %d\n",
579 svsk->sk_sk->sk_protocol==IPPROTO_UDP?
580 "udp" : "tcp",
581 NIPQUAD(inet_sk(svsk->sk_sk)->rcv_saddr),
582 inet_sk(svsk->sk_sk)->num);
583 break;
584 default:
585 len = sprintf(buf, "*unknown-%d*\n",
586 svsk->sk_sk->sk_family);
588 return len;
592 svc_sock_names(char *buf, struct svc_serv *serv, char *toclose)
594 struct svc_sock *svsk, *closesk = NULL;
595 int len = 0;
597 if (!serv)
598 return 0;
599 spin_lock_bh(&serv->sv_lock);
600 list_for_each_entry(svsk, &serv->sv_permsocks, sk_list) {
601 int onelen = one_sock_name(buf+len, svsk);
602 if (toclose && strcmp(toclose, buf+len) == 0)
603 closesk = svsk;
604 else
605 len += onelen;
607 spin_unlock_bh(&serv->sv_lock);
608 if (closesk)
609 /* Should unregister with portmap, but you cannot
610 * unregister just one protocol...
612 svc_close_socket(closesk);
613 else if (toclose)
614 return -ENOENT;
615 return len;
617 EXPORT_SYMBOL(svc_sock_names);
620 * Check input queue length
622 static int
623 svc_recv_available(struct svc_sock *svsk)
625 struct socket *sock = svsk->sk_sock;
626 int avail, err;
628 err = kernel_sock_ioctl(sock, TIOCINQ, (unsigned long) &avail);
630 return (err >= 0)? avail : err;
634 * Generic recvfrom routine.
636 static int
637 svc_recvfrom(struct svc_rqst *rqstp, struct kvec *iov, int nr, int buflen)
639 struct svc_sock *svsk = rqstp->rq_sock;
640 struct msghdr msg = {
641 .msg_flags = MSG_DONTWAIT,
643 int len;
645 len = kernel_recvmsg(svsk->sk_sock, &msg, iov, nr, buflen,
646 msg.msg_flags);
648 /* sock_recvmsg doesn't fill in the name/namelen, so we must..
650 memcpy(&rqstp->rq_addr, &svsk->sk_remote, svsk->sk_remotelen);
651 rqstp->rq_addrlen = svsk->sk_remotelen;
653 dprintk("svc: socket %p recvfrom(%p, %Zu) = %d\n",
654 svsk, iov[0].iov_base, iov[0].iov_len, len);
656 return len;
660 * Set socket snd and rcv buffer lengths
662 static inline void
663 svc_sock_setbufsize(struct socket *sock, unsigned int snd, unsigned int rcv)
665 #if 0
666 mm_segment_t oldfs;
667 oldfs = get_fs(); set_fs(KERNEL_DS);
668 sock_setsockopt(sock, SOL_SOCKET, SO_SNDBUF,
669 (char*)&snd, sizeof(snd));
670 sock_setsockopt(sock, SOL_SOCKET, SO_RCVBUF,
671 (char*)&rcv, sizeof(rcv));
672 #else
673 /* sock_setsockopt limits use to sysctl_?mem_max,
674 * which isn't acceptable. Until that is made conditional
675 * on not having CAP_SYS_RESOURCE or similar, we go direct...
676 * DaveM said I could!
678 lock_sock(sock->sk);
679 sock->sk->sk_sndbuf = snd * 2;
680 sock->sk->sk_rcvbuf = rcv * 2;
681 sock->sk->sk_userlocks |= SOCK_SNDBUF_LOCK|SOCK_RCVBUF_LOCK;
682 release_sock(sock->sk);
683 #endif
686 * INET callback when data has been received on the socket.
688 static void
689 svc_udp_data_ready(struct sock *sk, int count)
691 struct svc_sock *svsk = (struct svc_sock *)sk->sk_user_data;
693 if (svsk) {
694 dprintk("svc: socket %p(inet %p), count=%d, busy=%d\n",
695 svsk, sk, count, test_bit(SK_BUSY, &svsk->sk_flags));
696 set_bit(SK_DATA, &svsk->sk_flags);
697 svc_sock_enqueue(svsk);
699 if (sk->sk_sleep && waitqueue_active(sk->sk_sleep))
700 wake_up_interruptible(sk->sk_sleep);
704 * INET callback when space is newly available on the socket.
706 static void
707 svc_write_space(struct sock *sk)
709 struct svc_sock *svsk = (struct svc_sock *)(sk->sk_user_data);
711 if (svsk) {
712 dprintk("svc: socket %p(inet %p), write_space busy=%d\n",
713 svsk, sk, test_bit(SK_BUSY, &svsk->sk_flags));
714 svc_sock_enqueue(svsk);
717 if (sk->sk_sleep && waitqueue_active(sk->sk_sleep)) {
718 dprintk("RPC svc_write_space: someone sleeping on %p\n",
719 svsk);
720 wake_up_interruptible(sk->sk_sleep);
725 * Receive a datagram from a UDP socket.
727 static int
728 svc_udp_recvfrom(struct svc_rqst *rqstp)
730 struct sockaddr_in *sin = svc_addr_in(rqstp);
731 struct svc_sock *svsk = rqstp->rq_sock;
732 struct svc_serv *serv = svsk->sk_server;
733 struct sk_buff *skb;
734 int err, len;
736 if (test_and_clear_bit(SK_CHNGBUF, &svsk->sk_flags))
737 /* udp sockets need large rcvbuf as all pending
738 * requests are still in that buffer. sndbuf must
739 * also be large enough that there is enough space
740 * for one reply per thread. We count all threads
741 * rather than threads in a particular pool, which
742 * provides an upper bound on the number of threads
743 * which will access the socket.
745 svc_sock_setbufsize(svsk->sk_sock,
746 (serv->sv_nrthreads+3) * serv->sv_max_mesg,
747 (serv->sv_nrthreads+3) * serv->sv_max_mesg);
749 if ((rqstp->rq_deferred = svc_deferred_dequeue(svsk))) {
750 svc_sock_received(svsk);
751 return svc_deferred_recv(rqstp);
754 if (test_bit(SK_CLOSE, &svsk->sk_flags)) {
755 svc_delete_socket(svsk);
756 return 0;
759 clear_bit(SK_DATA, &svsk->sk_flags);
760 while ((skb = skb_recv_datagram(svsk->sk_sk, 0, 1, &err)) == NULL) {
761 if (err == -EAGAIN) {
762 svc_sock_received(svsk);
763 return err;
765 /* possibly an icmp error */
766 dprintk("svc: recvfrom returned error %d\n", -err);
768 if (skb->tstamp.off_sec == 0) {
769 struct timeval tv;
771 tv.tv_sec = xtime.tv_sec;
772 tv.tv_usec = xtime.tv_nsec / NSEC_PER_USEC;
773 skb_set_timestamp(skb, &tv);
774 /* Don't enable netstamp, sunrpc doesn't
775 need that much accuracy */
777 skb_get_timestamp(skb, &svsk->sk_sk->sk_stamp);
778 set_bit(SK_DATA, &svsk->sk_flags); /* there may be more data... */
781 * Maybe more packets - kick another thread ASAP.
783 svc_sock_received(svsk);
785 len = skb->len - sizeof(struct udphdr);
786 rqstp->rq_arg.len = len;
788 rqstp->rq_prot = IPPROTO_UDP;
790 /* Get sender address */
791 sin->sin_family = AF_INET;
792 sin->sin_port = skb->h.uh->source;
793 sin->sin_addr.s_addr = skb->nh.iph->saddr;
794 rqstp->rq_addrlen = sizeof(struct sockaddr_in);
796 /* Remember which interface received this request */
797 rqstp->rq_daddr.addr.s_addr = skb->nh.iph->daddr;
799 if (skb_is_nonlinear(skb)) {
800 /* we have to copy */
801 local_bh_disable();
802 if (csum_partial_copy_to_xdr(&rqstp->rq_arg, skb)) {
803 local_bh_enable();
804 /* checksum error */
805 skb_free_datagram(svsk->sk_sk, skb);
806 return 0;
808 local_bh_enable();
809 skb_free_datagram(svsk->sk_sk, skb);
810 } else {
811 /* we can use it in-place */
812 rqstp->rq_arg.head[0].iov_base = skb->data + sizeof(struct udphdr);
813 rqstp->rq_arg.head[0].iov_len = len;
814 if (skb_checksum_complete(skb)) {
815 skb_free_datagram(svsk->sk_sk, skb);
816 return 0;
818 rqstp->rq_skbuff = skb;
821 rqstp->rq_arg.page_base = 0;
822 if (len <= rqstp->rq_arg.head[0].iov_len) {
823 rqstp->rq_arg.head[0].iov_len = len;
824 rqstp->rq_arg.page_len = 0;
825 rqstp->rq_respages = rqstp->rq_pages+1;
826 } else {
827 rqstp->rq_arg.page_len = len - rqstp->rq_arg.head[0].iov_len;
828 rqstp->rq_respages = rqstp->rq_pages + 1 +
829 (rqstp->rq_arg.page_len + PAGE_SIZE - 1)/ PAGE_SIZE;
832 if (serv->sv_stats)
833 serv->sv_stats->netudpcnt++;
835 return len;
838 static int
839 svc_udp_sendto(struct svc_rqst *rqstp)
841 int error;
843 error = svc_sendto(rqstp, &rqstp->rq_res);
844 if (error == -ECONNREFUSED)
845 /* ICMP error on earlier request. */
846 error = svc_sendto(rqstp, &rqstp->rq_res);
848 return error;
851 static void
852 svc_udp_init(struct svc_sock *svsk)
854 svsk->sk_sk->sk_data_ready = svc_udp_data_ready;
855 svsk->sk_sk->sk_write_space = svc_write_space;
856 svsk->sk_recvfrom = svc_udp_recvfrom;
857 svsk->sk_sendto = svc_udp_sendto;
859 /* initialise setting must have enough space to
860 * receive and respond to one request.
861 * svc_udp_recvfrom will re-adjust if necessary
863 svc_sock_setbufsize(svsk->sk_sock,
864 3 * svsk->sk_server->sv_max_mesg,
865 3 * svsk->sk_server->sv_max_mesg);
867 set_bit(SK_DATA, &svsk->sk_flags); /* might have come in before data_ready set up */
868 set_bit(SK_CHNGBUF, &svsk->sk_flags);
872 * A data_ready event on a listening socket means there's a connection
873 * pending. Do not use state_change as a substitute for it.
875 static void
876 svc_tcp_listen_data_ready(struct sock *sk, int count_unused)
878 struct svc_sock *svsk = (struct svc_sock *)sk->sk_user_data;
880 dprintk("svc: socket %p TCP (listen) state change %d\n",
881 sk, sk->sk_state);
884 * This callback may called twice when a new connection
885 * is established as a child socket inherits everything
886 * from a parent LISTEN socket.
887 * 1) data_ready method of the parent socket will be called
888 * when one of child sockets become ESTABLISHED.
889 * 2) data_ready method of the child socket may be called
890 * when it receives data before the socket is accepted.
891 * In case of 2, we should ignore it silently.
893 if (sk->sk_state == TCP_LISTEN) {
894 if (svsk) {
895 set_bit(SK_CONN, &svsk->sk_flags);
896 svc_sock_enqueue(svsk);
897 } else
898 printk("svc: socket %p: no user data\n", sk);
901 if (sk->sk_sleep && waitqueue_active(sk->sk_sleep))
902 wake_up_interruptible_all(sk->sk_sleep);
906 * A state change on a connected socket means it's dying or dead.
908 static void
909 svc_tcp_state_change(struct sock *sk)
911 struct svc_sock *svsk = (struct svc_sock *)sk->sk_user_data;
913 dprintk("svc: socket %p TCP (connected) state change %d (svsk %p)\n",
914 sk, sk->sk_state, sk->sk_user_data);
916 if (!svsk)
917 printk("svc: socket %p: no user data\n", sk);
918 else {
919 set_bit(SK_CLOSE, &svsk->sk_flags);
920 svc_sock_enqueue(svsk);
922 if (sk->sk_sleep && waitqueue_active(sk->sk_sleep))
923 wake_up_interruptible_all(sk->sk_sleep);
926 static void
927 svc_tcp_data_ready(struct sock *sk, int count)
929 struct svc_sock *svsk = (struct svc_sock *)sk->sk_user_data;
931 dprintk("svc: socket %p TCP data ready (svsk %p)\n",
932 sk, sk->sk_user_data);
933 if (svsk) {
934 set_bit(SK_DATA, &svsk->sk_flags);
935 svc_sock_enqueue(svsk);
937 if (sk->sk_sleep && waitqueue_active(sk->sk_sleep))
938 wake_up_interruptible(sk->sk_sleep);
941 static inline int svc_port_is_privileged(struct sockaddr *sin)
943 switch (sin->sa_family) {
944 case AF_INET:
945 return ntohs(((struct sockaddr_in *)sin)->sin_port)
946 < PROT_SOCK;
947 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
948 case AF_INET6:
949 return ntohs(((struct sockaddr_in6 *)sin)->sin6_port)
950 < PROT_SOCK;
951 #endif
952 default:
953 return 0;
958 * Accept a TCP connection
960 static void
961 svc_tcp_accept(struct svc_sock *svsk)
963 struct sockaddr_storage addr;
964 struct sockaddr *sin = (struct sockaddr *) &addr;
965 struct svc_serv *serv = svsk->sk_server;
966 struct socket *sock = svsk->sk_sock;
967 struct socket *newsock;
968 struct svc_sock *newsvsk;
969 int err, slen;
970 char buf[RPC_MAX_ADDRBUFLEN];
972 dprintk("svc: tcp_accept %p sock %p\n", svsk, sock);
973 if (!sock)
974 return;
976 clear_bit(SK_CONN, &svsk->sk_flags);
977 err = kernel_accept(sock, &newsock, O_NONBLOCK);
978 if (err < 0) {
979 if (err == -ENOMEM)
980 printk(KERN_WARNING "%s: no more sockets!\n",
981 serv->sv_name);
982 else if (err != -EAGAIN && net_ratelimit())
983 printk(KERN_WARNING "%s: accept failed (err %d)!\n",
984 serv->sv_name, -err);
985 return;
988 set_bit(SK_CONN, &svsk->sk_flags);
989 svc_sock_enqueue(svsk);
991 err = kernel_getpeername(newsock, sin, &slen);
992 if (err < 0) {
993 if (net_ratelimit())
994 printk(KERN_WARNING "%s: peername failed (err %d)!\n",
995 serv->sv_name, -err);
996 goto failed; /* aborted connection or whatever */
999 /* Ideally, we would want to reject connections from unauthorized
1000 * hosts here, but when we get encryption, the IP of the host won't
1001 * tell us anything. For now just warn about unpriv connections.
1003 if (!svc_port_is_privileged(sin)) {
1004 dprintk(KERN_WARNING
1005 "%s: connect from unprivileged port: %s\n",
1006 serv->sv_name,
1007 __svc_print_addr(sin, buf, sizeof(buf)));
1009 dprintk("%s: connect from %s\n", serv->sv_name,
1010 __svc_print_addr(sin, buf, sizeof(buf)));
1012 /* make sure that a write doesn't block forever when
1013 * low on memory
1015 newsock->sk->sk_sndtimeo = HZ*30;
1017 if (!(newsvsk = svc_setup_socket(serv, newsock, &err,
1018 (SVC_SOCK_ANONYMOUS | SVC_SOCK_TEMPORARY))))
1019 goto failed;
1020 memcpy(&newsvsk->sk_remote, sin, slen);
1021 newsvsk->sk_remotelen = slen;
1023 svc_sock_received(newsvsk);
1025 /* make sure that we don't have too many active connections.
1026 * If we have, something must be dropped.
1028 * There's no point in trying to do random drop here for
1029 * DoS prevention. The NFS clients does 1 reconnect in 15
1030 * seconds. An attacker can easily beat that.
1032 * The only somewhat efficient mechanism would be if drop
1033 * old connections from the same IP first. But right now
1034 * we don't even record the client IP in svc_sock.
1036 if (serv->sv_tmpcnt > (serv->sv_nrthreads+3)*20) {
1037 struct svc_sock *svsk = NULL;
1038 spin_lock_bh(&serv->sv_lock);
1039 if (!list_empty(&serv->sv_tempsocks)) {
1040 if (net_ratelimit()) {
1041 /* Try to help the admin */
1042 printk(KERN_NOTICE "%s: too many open TCP "
1043 "sockets, consider increasing the "
1044 "number of nfsd threads\n",
1045 serv->sv_name);
1046 printk(KERN_NOTICE
1047 "%s: last TCP connect from %s\n",
1048 serv->sv_name, buf);
1051 * Always select the oldest socket. It's not fair,
1052 * but so is life
1054 svsk = list_entry(serv->sv_tempsocks.prev,
1055 struct svc_sock,
1056 sk_list);
1057 set_bit(SK_CLOSE, &svsk->sk_flags);
1058 atomic_inc(&svsk->sk_inuse);
1060 spin_unlock_bh(&serv->sv_lock);
1062 if (svsk) {
1063 svc_sock_enqueue(svsk);
1064 svc_sock_put(svsk);
1069 if (serv->sv_stats)
1070 serv->sv_stats->nettcpconn++;
1072 return;
1074 failed:
1075 sock_release(newsock);
1076 return;
1080 * Receive data from a TCP socket.
1082 static int
1083 svc_tcp_recvfrom(struct svc_rqst *rqstp)
1085 struct svc_sock *svsk = rqstp->rq_sock;
1086 struct svc_serv *serv = svsk->sk_server;
1087 int len;
1088 struct kvec *vec;
1089 int pnum, vlen;
1091 dprintk("svc: tcp_recv %p data %d conn %d close %d\n",
1092 svsk, test_bit(SK_DATA, &svsk->sk_flags),
1093 test_bit(SK_CONN, &svsk->sk_flags),
1094 test_bit(SK_CLOSE, &svsk->sk_flags));
1096 if ((rqstp->rq_deferred = svc_deferred_dequeue(svsk))) {
1097 svc_sock_received(svsk);
1098 return svc_deferred_recv(rqstp);
1101 if (test_bit(SK_CLOSE, &svsk->sk_flags)) {
1102 svc_delete_socket(svsk);
1103 return 0;
1106 if (svsk->sk_sk->sk_state == TCP_LISTEN) {
1107 svc_tcp_accept(svsk);
1108 svc_sock_received(svsk);
1109 return 0;
1112 if (test_and_clear_bit(SK_CHNGBUF, &svsk->sk_flags))
1113 /* sndbuf needs to have room for one request
1114 * per thread, otherwise we can stall even when the
1115 * network isn't a bottleneck.
1117 * We count all threads rather than threads in a
1118 * particular pool, which provides an upper bound
1119 * on the number of threads which will access the socket.
1121 * rcvbuf just needs to be able to hold a few requests.
1122 * Normally they will be removed from the queue
1123 * as soon a a complete request arrives.
1125 svc_sock_setbufsize(svsk->sk_sock,
1126 (serv->sv_nrthreads+3) * serv->sv_max_mesg,
1127 3 * serv->sv_max_mesg);
1129 clear_bit(SK_DATA, &svsk->sk_flags);
1131 /* Receive data. If we haven't got the record length yet, get
1132 * the next four bytes. Otherwise try to gobble up as much as
1133 * possible up to the complete record length.
1135 if (svsk->sk_tcplen < 4) {
1136 unsigned long want = 4 - svsk->sk_tcplen;
1137 struct kvec iov;
1139 iov.iov_base = ((char *) &svsk->sk_reclen) + svsk->sk_tcplen;
1140 iov.iov_len = want;
1141 if ((len = svc_recvfrom(rqstp, &iov, 1, want)) < 0)
1142 goto error;
1143 svsk->sk_tcplen += len;
1145 if (len < want) {
1146 dprintk("svc: short recvfrom while reading record length (%d of %lu)\n",
1147 len, want);
1148 svc_sock_received(svsk);
1149 return -EAGAIN; /* record header not complete */
1152 svsk->sk_reclen = ntohl(svsk->sk_reclen);
1153 if (!(svsk->sk_reclen & 0x80000000)) {
1154 /* FIXME: technically, a record can be fragmented,
1155 * and non-terminal fragments will not have the top
1156 * bit set in the fragment length header.
1157 * But apparently no known nfs clients send fragmented
1158 * records. */
1159 if (net_ratelimit())
1160 printk(KERN_NOTICE "RPC: bad TCP reclen 0x%08lx"
1161 " (non-terminal)\n",
1162 (unsigned long) svsk->sk_reclen);
1163 goto err_delete;
1165 svsk->sk_reclen &= 0x7fffffff;
1166 dprintk("svc: TCP record, %d bytes\n", svsk->sk_reclen);
1167 if (svsk->sk_reclen > serv->sv_max_mesg) {
1168 if (net_ratelimit())
1169 printk(KERN_NOTICE "RPC: bad TCP reclen 0x%08lx"
1170 " (large)\n",
1171 (unsigned long) svsk->sk_reclen);
1172 goto err_delete;
1176 /* Check whether enough data is available */
1177 len = svc_recv_available(svsk);
1178 if (len < 0)
1179 goto error;
1181 if (len < svsk->sk_reclen) {
1182 dprintk("svc: incomplete TCP record (%d of %d)\n",
1183 len, svsk->sk_reclen);
1184 svc_sock_received(svsk);
1185 return -EAGAIN; /* record not complete */
1187 len = svsk->sk_reclen;
1188 set_bit(SK_DATA, &svsk->sk_flags);
1190 vec = rqstp->rq_vec;
1191 vec[0] = rqstp->rq_arg.head[0];
1192 vlen = PAGE_SIZE;
1193 pnum = 1;
1194 while (vlen < len) {
1195 vec[pnum].iov_base = page_address(rqstp->rq_pages[pnum]);
1196 vec[pnum].iov_len = PAGE_SIZE;
1197 pnum++;
1198 vlen += PAGE_SIZE;
1200 rqstp->rq_respages = &rqstp->rq_pages[pnum];
1202 /* Now receive data */
1203 len = svc_recvfrom(rqstp, vec, pnum, len);
1204 if (len < 0)
1205 goto error;
1207 dprintk("svc: TCP complete record (%d bytes)\n", len);
1208 rqstp->rq_arg.len = len;
1209 rqstp->rq_arg.page_base = 0;
1210 if (len <= rqstp->rq_arg.head[0].iov_len) {
1211 rqstp->rq_arg.head[0].iov_len = len;
1212 rqstp->rq_arg.page_len = 0;
1213 } else {
1214 rqstp->rq_arg.page_len = len - rqstp->rq_arg.head[0].iov_len;
1217 rqstp->rq_skbuff = NULL;
1218 rqstp->rq_prot = IPPROTO_TCP;
1220 /* Reset TCP read info */
1221 svsk->sk_reclen = 0;
1222 svsk->sk_tcplen = 0;
1224 svc_sock_received(svsk);
1225 if (serv->sv_stats)
1226 serv->sv_stats->nettcpcnt++;
1228 return len;
1230 err_delete:
1231 svc_delete_socket(svsk);
1232 return -EAGAIN;
1234 error:
1235 if (len == -EAGAIN) {
1236 dprintk("RPC: TCP recvfrom got EAGAIN\n");
1237 svc_sock_received(svsk);
1238 } else {
1239 printk(KERN_NOTICE "%s: recvfrom returned errno %d\n",
1240 svsk->sk_server->sv_name, -len);
1241 goto err_delete;
1244 return len;
1248 * Send out data on TCP socket.
1250 static int
1251 svc_tcp_sendto(struct svc_rqst *rqstp)
1253 struct xdr_buf *xbufp = &rqstp->rq_res;
1254 int sent;
1255 __be32 reclen;
1257 /* Set up the first element of the reply kvec.
1258 * Any other kvecs that may be in use have been taken
1259 * care of by the server implementation itself.
1261 reclen = htonl(0x80000000|((xbufp->len ) - 4));
1262 memcpy(xbufp->head[0].iov_base, &reclen, 4);
1264 if (test_bit(SK_DEAD, &rqstp->rq_sock->sk_flags))
1265 return -ENOTCONN;
1267 sent = svc_sendto(rqstp, &rqstp->rq_res);
1268 if (sent != xbufp->len) {
1269 printk(KERN_NOTICE "rpc-srv/tcp: %s: %s %d when sending %d bytes - shutting down socket\n",
1270 rqstp->rq_sock->sk_server->sv_name,
1271 (sent<0)?"got error":"sent only",
1272 sent, xbufp->len);
1273 set_bit(SK_CLOSE, &rqstp->rq_sock->sk_flags);
1274 svc_sock_enqueue(rqstp->rq_sock);
1275 sent = -EAGAIN;
1277 return sent;
1280 static void
1281 svc_tcp_init(struct svc_sock *svsk)
1283 struct sock *sk = svsk->sk_sk;
1284 struct tcp_sock *tp = tcp_sk(sk);
1286 svsk->sk_recvfrom = svc_tcp_recvfrom;
1287 svsk->sk_sendto = svc_tcp_sendto;
1289 if (sk->sk_state == TCP_LISTEN) {
1290 dprintk("setting up TCP socket for listening\n");
1291 sk->sk_data_ready = svc_tcp_listen_data_ready;
1292 set_bit(SK_CONN, &svsk->sk_flags);
1293 } else {
1294 dprintk("setting up TCP socket for reading\n");
1295 sk->sk_state_change = svc_tcp_state_change;
1296 sk->sk_data_ready = svc_tcp_data_ready;
1297 sk->sk_write_space = svc_write_space;
1299 svsk->sk_reclen = 0;
1300 svsk->sk_tcplen = 0;
1302 tp->nonagle = 1; /* disable Nagle's algorithm */
1304 /* initialise setting must have enough space to
1305 * receive and respond to one request.
1306 * svc_tcp_recvfrom will re-adjust if necessary
1308 svc_sock_setbufsize(svsk->sk_sock,
1309 3 * svsk->sk_server->sv_max_mesg,
1310 3 * svsk->sk_server->sv_max_mesg);
1312 set_bit(SK_CHNGBUF, &svsk->sk_flags);
1313 set_bit(SK_DATA, &svsk->sk_flags);
1314 if (sk->sk_state != TCP_ESTABLISHED)
1315 set_bit(SK_CLOSE, &svsk->sk_flags);
1319 void
1320 svc_sock_update_bufs(struct svc_serv *serv)
1323 * The number of server threads has changed. Update
1324 * rcvbuf and sndbuf accordingly on all sockets
1326 struct list_head *le;
1328 spin_lock_bh(&serv->sv_lock);
1329 list_for_each(le, &serv->sv_permsocks) {
1330 struct svc_sock *svsk =
1331 list_entry(le, struct svc_sock, sk_list);
1332 set_bit(SK_CHNGBUF, &svsk->sk_flags);
1334 list_for_each(le, &serv->sv_tempsocks) {
1335 struct svc_sock *svsk =
1336 list_entry(le, struct svc_sock, sk_list);
1337 set_bit(SK_CHNGBUF, &svsk->sk_flags);
1339 spin_unlock_bh(&serv->sv_lock);
1343 * Receive the next request on any socket. This code is carefully
1344 * organised not to touch any cachelines in the shared svc_serv
1345 * structure, only cachelines in the local svc_pool.
1348 svc_recv(struct svc_rqst *rqstp, long timeout)
1350 struct svc_sock *svsk = NULL;
1351 struct svc_serv *serv = rqstp->rq_server;
1352 struct svc_pool *pool = rqstp->rq_pool;
1353 int len, i;
1354 int pages;
1355 struct xdr_buf *arg;
1356 DECLARE_WAITQUEUE(wait, current);
1358 dprintk("svc: server %p waiting for data (to = %ld)\n",
1359 rqstp, timeout);
1361 if (rqstp->rq_sock)
1362 printk(KERN_ERR
1363 "svc_recv: service %p, socket not NULL!\n",
1364 rqstp);
1365 if (waitqueue_active(&rqstp->rq_wait))
1366 printk(KERN_ERR
1367 "svc_recv: service %p, wait queue active!\n",
1368 rqstp);
1371 /* now allocate needed pages. If we get a failure, sleep briefly */
1372 pages = (serv->sv_max_mesg + PAGE_SIZE) / PAGE_SIZE;
1373 for (i=0; i < pages ; i++)
1374 while (rqstp->rq_pages[i] == NULL) {
1375 struct page *p = alloc_page(GFP_KERNEL);
1376 if (!p)
1377 schedule_timeout_uninterruptible(msecs_to_jiffies(500));
1378 rqstp->rq_pages[i] = p;
1380 rqstp->rq_pages[i++] = NULL; /* this might be seen in nfs_read_actor */
1381 BUG_ON(pages >= RPCSVC_MAXPAGES);
1383 /* Make arg->head point to first page and arg->pages point to rest */
1384 arg = &rqstp->rq_arg;
1385 arg->head[0].iov_base = page_address(rqstp->rq_pages[0]);
1386 arg->head[0].iov_len = PAGE_SIZE;
1387 arg->pages = rqstp->rq_pages + 1;
1388 arg->page_base = 0;
1389 /* save at least one page for response */
1390 arg->page_len = (pages-2)*PAGE_SIZE;
1391 arg->len = (pages-1)*PAGE_SIZE;
1392 arg->tail[0].iov_len = 0;
1394 try_to_freeze();
1395 cond_resched();
1396 if (signalled())
1397 return -EINTR;
1399 spin_lock_bh(&pool->sp_lock);
1400 if ((svsk = svc_sock_dequeue(pool)) != NULL) {
1401 rqstp->rq_sock = svsk;
1402 atomic_inc(&svsk->sk_inuse);
1403 rqstp->rq_reserved = serv->sv_max_mesg;
1404 atomic_add(rqstp->rq_reserved, &svsk->sk_reserved);
1405 } else {
1406 /* No data pending. Go to sleep */
1407 svc_thread_enqueue(pool, rqstp);
1410 * We have to be able to interrupt this wait
1411 * to bring down the daemons ...
1413 set_current_state(TASK_INTERRUPTIBLE);
1414 add_wait_queue(&rqstp->rq_wait, &wait);
1415 spin_unlock_bh(&pool->sp_lock);
1417 schedule_timeout(timeout);
1419 try_to_freeze();
1421 spin_lock_bh(&pool->sp_lock);
1422 remove_wait_queue(&rqstp->rq_wait, &wait);
1424 if (!(svsk = rqstp->rq_sock)) {
1425 svc_thread_dequeue(pool, rqstp);
1426 spin_unlock_bh(&pool->sp_lock);
1427 dprintk("svc: server %p, no data yet\n", rqstp);
1428 return signalled()? -EINTR : -EAGAIN;
1431 spin_unlock_bh(&pool->sp_lock);
1433 dprintk("svc: server %p, pool %u, socket %p, inuse=%d\n",
1434 rqstp, pool->sp_id, svsk, atomic_read(&svsk->sk_inuse));
1435 len = svsk->sk_recvfrom(rqstp);
1436 dprintk("svc: got len=%d\n", len);
1438 /* No data, incomplete (TCP) read, or accept() */
1439 if (len == 0 || len == -EAGAIN) {
1440 rqstp->rq_res.len = 0;
1441 svc_sock_release(rqstp);
1442 return -EAGAIN;
1444 svsk->sk_lastrecv = get_seconds();
1445 clear_bit(SK_OLD, &svsk->sk_flags);
1447 rqstp->rq_secure = svc_port_is_privileged(svc_addr(rqstp));
1448 rqstp->rq_chandle.defer = svc_defer;
1450 if (serv->sv_stats)
1451 serv->sv_stats->netcnt++;
1452 return len;
1456 * Drop request
1458 void
1459 svc_drop(struct svc_rqst *rqstp)
1461 dprintk("svc: socket %p dropped request\n", rqstp->rq_sock);
1462 svc_sock_release(rqstp);
1466 * Return reply to client.
1469 svc_send(struct svc_rqst *rqstp)
1471 struct svc_sock *svsk;
1472 int len;
1473 struct xdr_buf *xb;
1475 if ((svsk = rqstp->rq_sock) == NULL) {
1476 printk(KERN_WARNING "NULL socket pointer in %s:%d\n",
1477 __FILE__, __LINE__);
1478 return -EFAULT;
1481 /* release the receive skb before sending the reply */
1482 svc_release_skb(rqstp);
1484 /* calculate over-all length */
1485 xb = & rqstp->rq_res;
1486 xb->len = xb->head[0].iov_len +
1487 xb->page_len +
1488 xb->tail[0].iov_len;
1490 /* Grab svsk->sk_mutex to serialize outgoing data. */
1491 mutex_lock(&svsk->sk_mutex);
1492 if (test_bit(SK_DEAD, &svsk->sk_flags))
1493 len = -ENOTCONN;
1494 else
1495 len = svsk->sk_sendto(rqstp);
1496 mutex_unlock(&svsk->sk_mutex);
1497 svc_sock_release(rqstp);
1499 if (len == -ECONNREFUSED || len == -ENOTCONN || len == -EAGAIN)
1500 return 0;
1501 return len;
1505 * Timer function to close old temporary sockets, using
1506 * a mark-and-sweep algorithm.
1508 static void
1509 svc_age_temp_sockets(unsigned long closure)
1511 struct svc_serv *serv = (struct svc_serv *)closure;
1512 struct svc_sock *svsk;
1513 struct list_head *le, *next;
1514 LIST_HEAD(to_be_aged);
1516 dprintk("svc_age_temp_sockets\n");
1518 if (!spin_trylock_bh(&serv->sv_lock)) {
1519 /* busy, try again 1 sec later */
1520 dprintk("svc_age_temp_sockets: busy\n");
1521 mod_timer(&serv->sv_temptimer, jiffies + HZ);
1522 return;
1525 list_for_each_safe(le, next, &serv->sv_tempsocks) {
1526 svsk = list_entry(le, struct svc_sock, sk_list);
1528 if (!test_and_set_bit(SK_OLD, &svsk->sk_flags))
1529 continue;
1530 if (atomic_read(&svsk->sk_inuse) || test_bit(SK_BUSY, &svsk->sk_flags))
1531 continue;
1532 atomic_inc(&svsk->sk_inuse);
1533 list_move(le, &to_be_aged);
1534 set_bit(SK_CLOSE, &svsk->sk_flags);
1535 set_bit(SK_DETACHED, &svsk->sk_flags);
1537 spin_unlock_bh(&serv->sv_lock);
1539 while (!list_empty(&to_be_aged)) {
1540 le = to_be_aged.next;
1541 /* fiddling the sk_list node is safe 'cos we're SK_DETACHED */
1542 list_del_init(le);
1543 svsk = list_entry(le, struct svc_sock, sk_list);
1545 dprintk("queuing svsk %p for closing, %lu seconds old\n",
1546 svsk, get_seconds() - svsk->sk_lastrecv);
1548 /* a thread will dequeue and close it soon */
1549 svc_sock_enqueue(svsk);
1550 svc_sock_put(svsk);
1553 mod_timer(&serv->sv_temptimer, jiffies + svc_conn_age_period * HZ);
1557 * Initialize socket for RPC use and create svc_sock struct
1558 * XXX: May want to setsockopt SO_SNDBUF and SO_RCVBUF.
1560 static struct svc_sock *svc_setup_socket(struct svc_serv *serv,
1561 struct socket *sock,
1562 int *errp, int flags)
1564 struct svc_sock *svsk;
1565 struct sock *inet;
1566 int pmap_register = !(flags & SVC_SOCK_ANONYMOUS);
1567 int is_temporary = flags & SVC_SOCK_TEMPORARY;
1569 dprintk("svc: svc_setup_socket %p\n", sock);
1570 if (!(svsk = kzalloc(sizeof(*svsk), GFP_KERNEL))) {
1571 *errp = -ENOMEM;
1572 return NULL;
1575 inet = sock->sk;
1577 /* Register socket with portmapper */
1578 if (*errp >= 0 && pmap_register)
1579 *errp = svc_register(serv, inet->sk_protocol,
1580 ntohs(inet_sk(inet)->sport));
1582 if (*errp < 0) {
1583 kfree(svsk);
1584 return NULL;
1587 set_bit(SK_BUSY, &svsk->sk_flags);
1588 inet->sk_user_data = svsk;
1589 svsk->sk_sock = sock;
1590 svsk->sk_sk = inet;
1591 svsk->sk_ostate = inet->sk_state_change;
1592 svsk->sk_odata = inet->sk_data_ready;
1593 svsk->sk_owspace = inet->sk_write_space;
1594 svsk->sk_server = serv;
1595 atomic_set(&svsk->sk_inuse, 1);
1596 svsk->sk_lastrecv = get_seconds();
1597 spin_lock_init(&svsk->sk_defer_lock);
1598 INIT_LIST_HEAD(&svsk->sk_deferred);
1599 INIT_LIST_HEAD(&svsk->sk_ready);
1600 mutex_init(&svsk->sk_mutex);
1602 /* Initialize the socket */
1603 if (sock->type == SOCK_DGRAM)
1604 svc_udp_init(svsk);
1605 else
1606 svc_tcp_init(svsk);
1608 spin_lock_bh(&serv->sv_lock);
1609 if (is_temporary) {
1610 set_bit(SK_TEMP, &svsk->sk_flags);
1611 list_add(&svsk->sk_list, &serv->sv_tempsocks);
1612 serv->sv_tmpcnt++;
1613 if (serv->sv_temptimer.function == NULL) {
1614 /* setup timer to age temp sockets */
1615 setup_timer(&serv->sv_temptimer, svc_age_temp_sockets,
1616 (unsigned long)serv);
1617 mod_timer(&serv->sv_temptimer,
1618 jiffies + svc_conn_age_period * HZ);
1620 } else {
1621 clear_bit(SK_TEMP, &svsk->sk_flags);
1622 list_add(&svsk->sk_list, &serv->sv_permsocks);
1624 spin_unlock_bh(&serv->sv_lock);
1626 dprintk("svc: svc_setup_socket created %p (inet %p)\n",
1627 svsk, svsk->sk_sk);
1629 return svsk;
1632 int svc_addsock(struct svc_serv *serv,
1633 int fd,
1634 char *name_return,
1635 int *proto)
1637 int err = 0;
1638 struct socket *so = sockfd_lookup(fd, &err);
1639 struct svc_sock *svsk = NULL;
1641 if (!so)
1642 return err;
1643 if (so->sk->sk_family != AF_INET)
1644 err = -EAFNOSUPPORT;
1645 else if (so->sk->sk_protocol != IPPROTO_TCP &&
1646 so->sk->sk_protocol != IPPROTO_UDP)
1647 err = -EPROTONOSUPPORT;
1648 else if (so->state > SS_UNCONNECTED)
1649 err = -EISCONN;
1650 else {
1651 svsk = svc_setup_socket(serv, so, &err, SVC_SOCK_DEFAULTS);
1652 if (svsk) {
1653 svc_sock_received(svsk);
1654 err = 0;
1657 if (err) {
1658 sockfd_put(so);
1659 return err;
1661 if (proto) *proto = so->sk->sk_protocol;
1662 return one_sock_name(name_return, svsk);
1664 EXPORT_SYMBOL_GPL(svc_addsock);
1667 * Create socket for RPC service.
1669 static int svc_create_socket(struct svc_serv *serv, int protocol,
1670 struct sockaddr_in *sin, int flags)
1672 struct svc_sock *svsk;
1673 struct socket *sock;
1674 int error;
1675 int type;
1676 char buf[RPC_MAX_ADDRBUFLEN];
1678 dprintk("svc: svc_create_socket(%s, %d, %s)\n",
1679 serv->sv_program->pg_name, protocol,
1680 __svc_print_addr((struct sockaddr *) sin, buf,
1681 sizeof(buf)));
1683 if (protocol != IPPROTO_UDP && protocol != IPPROTO_TCP) {
1684 printk(KERN_WARNING "svc: only UDP and TCP "
1685 "sockets supported\n");
1686 return -EINVAL;
1688 type = (protocol == IPPROTO_UDP)? SOCK_DGRAM : SOCK_STREAM;
1690 if ((error = sock_create_kern(PF_INET, type, protocol, &sock)) < 0)
1691 return error;
1693 svc_reclassify_socket(sock);
1695 if (type == SOCK_STREAM)
1696 sock->sk->sk_reuse = 1; /* allow address reuse */
1697 error = kernel_bind(sock, (struct sockaddr *) sin,
1698 sizeof(*sin));
1699 if (error < 0)
1700 goto bummer;
1702 if (protocol == IPPROTO_TCP) {
1703 if ((error = kernel_listen(sock, 64)) < 0)
1704 goto bummer;
1707 if ((svsk = svc_setup_socket(serv, sock, &error, flags)) != NULL) {
1708 svc_sock_received(svsk);
1709 return ntohs(inet_sk(svsk->sk_sk)->sport);
1712 bummer:
1713 dprintk("svc: svc_create_socket error = %d\n", -error);
1714 sock_release(sock);
1715 return error;
1719 * Remove a dead socket
1721 static void
1722 svc_delete_socket(struct svc_sock *svsk)
1724 struct svc_serv *serv;
1725 struct sock *sk;
1727 dprintk("svc: svc_delete_socket(%p)\n", svsk);
1729 serv = svsk->sk_server;
1730 sk = svsk->sk_sk;
1732 sk->sk_state_change = svsk->sk_ostate;
1733 sk->sk_data_ready = svsk->sk_odata;
1734 sk->sk_write_space = svsk->sk_owspace;
1736 spin_lock_bh(&serv->sv_lock);
1738 if (!test_and_set_bit(SK_DETACHED, &svsk->sk_flags))
1739 list_del_init(&svsk->sk_list);
1741 * We used to delete the svc_sock from whichever list
1742 * it's sk_ready node was on, but we don't actually
1743 * need to. This is because the only time we're called
1744 * while still attached to a queue, the queue itself
1745 * is about to be destroyed (in svc_destroy).
1747 if (!test_and_set_bit(SK_DEAD, &svsk->sk_flags)) {
1748 BUG_ON(atomic_read(&svsk->sk_inuse)<2);
1749 atomic_dec(&svsk->sk_inuse);
1750 if (test_bit(SK_TEMP, &svsk->sk_flags))
1751 serv->sv_tmpcnt--;
1754 spin_unlock_bh(&serv->sv_lock);
1757 void svc_close_socket(struct svc_sock *svsk)
1759 set_bit(SK_CLOSE, &svsk->sk_flags);
1760 if (test_and_set_bit(SK_BUSY, &svsk->sk_flags))
1761 /* someone else will have to effect the close */
1762 return;
1764 atomic_inc(&svsk->sk_inuse);
1765 svc_delete_socket(svsk);
1766 clear_bit(SK_BUSY, &svsk->sk_flags);
1767 svc_sock_put(svsk);
1771 * svc_makesock - Make a socket for nfsd and lockd
1772 * @serv: RPC server structure
1773 * @protocol: transport protocol to use
1774 * @port: port to use
1775 * @flags: requested socket characteristics
1778 int svc_makesock(struct svc_serv *serv, int protocol, unsigned short port,
1779 int flags)
1781 struct sockaddr_in sin = {
1782 .sin_family = AF_INET,
1783 .sin_addr.s_addr = INADDR_ANY,
1784 .sin_port = htons(port),
1787 dprintk("svc: creating socket proto = %d\n", protocol);
1788 return svc_create_socket(serv, protocol, &sin, flags);
1792 * Handle defer and revisit of requests
1795 static void svc_revisit(struct cache_deferred_req *dreq, int too_many)
1797 struct svc_deferred_req *dr = container_of(dreq, struct svc_deferred_req, handle);
1798 struct svc_sock *svsk;
1800 if (too_many) {
1801 svc_sock_put(dr->svsk);
1802 kfree(dr);
1803 return;
1805 dprintk("revisit queued\n");
1806 svsk = dr->svsk;
1807 dr->svsk = NULL;
1808 spin_lock_bh(&svsk->sk_defer_lock);
1809 list_add(&dr->handle.recent, &svsk->sk_deferred);
1810 spin_unlock_bh(&svsk->sk_defer_lock);
1811 set_bit(SK_DEFERRED, &svsk->sk_flags);
1812 svc_sock_enqueue(svsk);
1813 svc_sock_put(svsk);
1816 static struct cache_deferred_req *
1817 svc_defer(struct cache_req *req)
1819 struct svc_rqst *rqstp = container_of(req, struct svc_rqst, rq_chandle);
1820 int size = sizeof(struct svc_deferred_req) + (rqstp->rq_arg.len);
1821 struct svc_deferred_req *dr;
1823 if (rqstp->rq_arg.page_len)
1824 return NULL; /* if more than a page, give up FIXME */
1825 if (rqstp->rq_deferred) {
1826 dr = rqstp->rq_deferred;
1827 rqstp->rq_deferred = NULL;
1828 } else {
1829 int skip = rqstp->rq_arg.len - rqstp->rq_arg.head[0].iov_len;
1830 /* FIXME maybe discard if size too large */
1831 dr = kmalloc(size, GFP_KERNEL);
1832 if (dr == NULL)
1833 return NULL;
1835 dr->handle.owner = rqstp->rq_server;
1836 dr->prot = rqstp->rq_prot;
1837 memcpy(&dr->addr, &rqstp->rq_addr, rqstp->rq_addrlen);
1838 dr->addrlen = rqstp->rq_addrlen;
1839 dr->daddr = rqstp->rq_daddr;
1840 dr->argslen = rqstp->rq_arg.len >> 2;
1841 memcpy(dr->args, rqstp->rq_arg.head[0].iov_base-skip, dr->argslen<<2);
1843 atomic_inc(&rqstp->rq_sock->sk_inuse);
1844 dr->svsk = rqstp->rq_sock;
1846 dr->handle.revisit = svc_revisit;
1847 return &dr->handle;
1851 * recv data from a deferred request into an active one
1853 static int svc_deferred_recv(struct svc_rqst *rqstp)
1855 struct svc_deferred_req *dr = rqstp->rq_deferred;
1857 rqstp->rq_arg.head[0].iov_base = dr->args;
1858 rqstp->rq_arg.head[0].iov_len = dr->argslen<<2;
1859 rqstp->rq_arg.page_len = 0;
1860 rqstp->rq_arg.len = dr->argslen<<2;
1861 rqstp->rq_prot = dr->prot;
1862 memcpy(&rqstp->rq_addr, &dr->addr, dr->addrlen);
1863 rqstp->rq_addrlen = dr->addrlen;
1864 rqstp->rq_daddr = dr->daddr;
1865 rqstp->rq_respages = rqstp->rq_pages;
1866 return dr->argslen<<2;
1870 static struct svc_deferred_req *svc_deferred_dequeue(struct svc_sock *svsk)
1872 struct svc_deferred_req *dr = NULL;
1874 if (!test_bit(SK_DEFERRED, &svsk->sk_flags))
1875 return NULL;
1876 spin_lock_bh(&svsk->sk_defer_lock);
1877 clear_bit(SK_DEFERRED, &svsk->sk_flags);
1878 if (!list_empty(&svsk->sk_deferred)) {
1879 dr = list_entry(svsk->sk_deferred.next,
1880 struct svc_deferred_req,
1881 handle.recent);
1882 list_del_init(&dr->handle.recent);
1883 set_bit(SK_DEFERRED, &svsk->sk_flags);
1885 spin_unlock_bh(&svsk->sk_defer_lock);
1886 return dr;