4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * demand-loading started 01.12.91 - seems it is high on the list of
9 * things wanted, and it should be easy to implement. - Linus
13 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
14 * pages started 02.12.91, seems to work. - Linus.
16 * Tested sharing by executing about 30 /bin/sh: under the old kernel it
17 * would have taken more than the 6M I have free, but it worked well as
20 * Also corrected some "invalidate()"s - I wasn't doing enough of them.
24 * Real VM (paging to/from disk) started 18.12.91. Much more work and
25 * thought has to go into this. Oh, well..
26 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why.
27 * Found it. Everything seems to work now.
28 * 20.12.91 - Ok, making the swap-device changeable like the root.
32 * 05.04.94 - Multi-page memory management added for v1.1.
33 * Idea by Alex Bligh (alex@cconcepts.co.uk)
35 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG
36 * (Gerhard.Wichert@pdb.siemens.de)
38 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
41 #include <linux/kernel_stat.h>
43 #include <linux/hugetlb.h>
44 #include <linux/mman.h>
45 #include <linux/swap.h>
46 #include <linux/highmem.h>
47 #include <linux/pagemap.h>
48 #include <linux/rmap.h>
49 #include <linux/module.h>
50 #include <linux/init.h>
52 #include <asm/pgalloc.h>
53 #include <asm/uaccess.h>
55 #include <asm/tlbflush.h>
56 #include <asm/pgtable.h>
58 #include <linux/swapops.h>
59 #include <linux/elf.h>
61 #ifndef CONFIG_NEED_MULTIPLE_NODES
62 /* use the per-pgdat data instead for discontigmem - mbligh */
63 unsigned long max_mapnr
;
66 EXPORT_SYMBOL(max_mapnr
);
67 EXPORT_SYMBOL(mem_map
);
70 unsigned long num_physpages
;
72 * A number of key systems in x86 including ioremap() rely on the assumption
73 * that high_memory defines the upper bound on direct map memory, then end
74 * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and
75 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
79 unsigned long vmalloc_earlyreserve
;
81 EXPORT_SYMBOL(num_physpages
);
82 EXPORT_SYMBOL(high_memory
);
83 EXPORT_SYMBOL(vmalloc_earlyreserve
);
86 * If a p?d_bad entry is found while walking page tables, report
87 * the error, before resetting entry to p?d_none. Usually (but
88 * very seldom) called out from the p?d_none_or_clear_bad macros.
91 void pgd_clear_bad(pgd_t
*pgd
)
97 void pud_clear_bad(pud_t
*pud
)
103 void pmd_clear_bad(pmd_t
*pmd
)
110 * Note: this doesn't free the actual pages themselves. That
111 * has been handled earlier when unmapping all the memory regions.
113 static void free_pte_range(struct mmu_gather
*tlb
, pmd_t
*pmd
)
115 struct page
*page
= pmd_page(*pmd
);
117 pte_lock_deinit(page
);
118 pte_free_tlb(tlb
, page
);
119 dec_page_state(nr_page_table_pages
);
123 static inline void free_pmd_range(struct mmu_gather
*tlb
, pud_t
*pud
,
124 unsigned long addr
, unsigned long end
,
125 unsigned long floor
, unsigned long ceiling
)
132 pmd
= pmd_offset(pud
, addr
);
134 next
= pmd_addr_end(addr
, end
);
135 if (pmd_none_or_clear_bad(pmd
))
137 free_pte_range(tlb
, pmd
);
138 } while (pmd
++, addr
= next
, addr
!= end
);
148 if (end
- 1 > ceiling
- 1)
151 pmd
= pmd_offset(pud
, start
);
153 pmd_free_tlb(tlb
, pmd
);
156 static inline void free_pud_range(struct mmu_gather
*tlb
, pgd_t
*pgd
,
157 unsigned long addr
, unsigned long end
,
158 unsigned long floor
, unsigned long ceiling
)
165 pud
= pud_offset(pgd
, addr
);
167 next
= pud_addr_end(addr
, end
);
168 if (pud_none_or_clear_bad(pud
))
170 free_pmd_range(tlb
, pud
, addr
, next
, floor
, ceiling
);
171 } while (pud
++, addr
= next
, addr
!= end
);
177 ceiling
&= PGDIR_MASK
;
181 if (end
- 1 > ceiling
- 1)
184 pud
= pud_offset(pgd
, start
);
186 pud_free_tlb(tlb
, pud
);
190 * This function frees user-level page tables of a process.
192 * Must be called with pagetable lock held.
194 void free_pgd_range(struct mmu_gather
**tlb
,
195 unsigned long addr
, unsigned long end
,
196 unsigned long floor
, unsigned long ceiling
)
203 * The next few lines have given us lots of grief...
205 * Why are we testing PMD* at this top level? Because often
206 * there will be no work to do at all, and we'd prefer not to
207 * go all the way down to the bottom just to discover that.
209 * Why all these "- 1"s? Because 0 represents both the bottom
210 * of the address space and the top of it (using -1 for the
211 * top wouldn't help much: the masks would do the wrong thing).
212 * The rule is that addr 0 and floor 0 refer to the bottom of
213 * the address space, but end 0 and ceiling 0 refer to the top
214 * Comparisons need to use "end - 1" and "ceiling - 1" (though
215 * that end 0 case should be mythical).
217 * Wherever addr is brought up or ceiling brought down, we must
218 * be careful to reject "the opposite 0" before it confuses the
219 * subsequent tests. But what about where end is brought down
220 * by PMD_SIZE below? no, end can't go down to 0 there.
222 * Whereas we round start (addr) and ceiling down, by different
223 * masks at different levels, in order to test whether a table
224 * now has no other vmas using it, so can be freed, we don't
225 * bother to round floor or end up - the tests don't need that.
239 if (end
- 1 > ceiling
- 1)
245 pgd
= pgd_offset((*tlb
)->mm
, addr
);
247 next
= pgd_addr_end(addr
, end
);
248 if (pgd_none_or_clear_bad(pgd
))
250 free_pud_range(*tlb
, pgd
, addr
, next
, floor
, ceiling
);
251 } while (pgd
++, addr
= next
, addr
!= end
);
254 flush_tlb_pgtables((*tlb
)->mm
, start
, end
);
257 void free_pgtables(struct mmu_gather
**tlb
, struct vm_area_struct
*vma
,
258 unsigned long floor
, unsigned long ceiling
)
261 struct vm_area_struct
*next
= vma
->vm_next
;
262 unsigned long addr
= vma
->vm_start
;
265 * Hide vma from rmap and vmtruncate before freeing pgtables
267 anon_vma_unlink(vma
);
268 unlink_file_vma(vma
);
270 if (is_hugepage_only_range(vma
->vm_mm
, addr
, HPAGE_SIZE
)) {
271 hugetlb_free_pgd_range(tlb
, addr
, vma
->vm_end
,
272 floor
, next
? next
->vm_start
: ceiling
);
275 * Optimization: gather nearby vmas into one call down
277 while (next
&& next
->vm_start
<= vma
->vm_end
+ PMD_SIZE
278 && !is_hugepage_only_range(vma
->vm_mm
, next
->vm_start
,
282 anon_vma_unlink(vma
);
283 unlink_file_vma(vma
);
285 free_pgd_range(tlb
, addr
, vma
->vm_end
,
286 floor
, next
? next
->vm_start
: ceiling
);
292 int __pte_alloc(struct mm_struct
*mm
, pmd_t
*pmd
, unsigned long address
)
294 struct page
*new = pte_alloc_one(mm
, address
);
299 spin_lock(&mm
->page_table_lock
);
300 if (pmd_present(*pmd
)) { /* Another has populated it */
301 pte_lock_deinit(new);
305 inc_page_state(nr_page_table_pages
);
306 pmd_populate(mm
, pmd
, new);
308 spin_unlock(&mm
->page_table_lock
);
312 int __pte_alloc_kernel(pmd_t
*pmd
, unsigned long address
)
314 pte_t
*new = pte_alloc_one_kernel(&init_mm
, address
);
318 spin_lock(&init_mm
.page_table_lock
);
319 if (pmd_present(*pmd
)) /* Another has populated it */
320 pte_free_kernel(new);
322 pmd_populate_kernel(&init_mm
, pmd
, new);
323 spin_unlock(&init_mm
.page_table_lock
);
327 static inline void add_mm_rss(struct mm_struct
*mm
, int file_rss
, int anon_rss
)
330 add_mm_counter(mm
, file_rss
, file_rss
);
332 add_mm_counter(mm
, anon_rss
, anon_rss
);
336 * This function is called to print an error when a bad pte
337 * is found. For example, we might have a PFN-mapped pte in
338 * a region that doesn't allow it.
340 * The calling function must still handle the error.
342 void print_bad_pte(struct vm_area_struct
*vma
, pte_t pte
, unsigned long vaddr
)
344 printk(KERN_ERR
"Bad pte = %08llx, process = %s, "
345 "vm_flags = %lx, vaddr = %lx\n",
346 (long long)pte_val(pte
),
347 (vma
->vm_mm
== current
->mm
? current
->comm
: "???"),
348 vma
->vm_flags
, vaddr
);
352 static inline int is_cow_mapping(unsigned int flags
)
354 return (flags
& (VM_SHARED
| VM_MAYWRITE
)) == VM_MAYWRITE
;
358 * This function gets the "struct page" associated with a pte.
360 * NOTE! Some mappings do not have "struct pages". A raw PFN mapping
361 * will have each page table entry just pointing to a raw page frame
362 * number, and as far as the VM layer is concerned, those do not have
363 * pages associated with them - even if the PFN might point to memory
364 * that otherwise is perfectly fine and has a "struct page".
366 * The way we recognize those mappings is through the rules set up
367 * by "remap_pfn_range()": the vma will have the VM_PFNMAP bit set,
368 * and the vm_pgoff will point to the first PFN mapped: thus every
369 * page that is a raw mapping will always honor the rule
371 * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
373 * and if that isn't true, the page has been COW'ed (in which case it
374 * _does_ have a "struct page" associated with it even if it is in a
377 struct page
*vm_normal_page(struct vm_area_struct
*vma
, unsigned long addr
, pte_t pte
)
379 unsigned long pfn
= pte_pfn(pte
);
381 if (vma
->vm_flags
& VM_PFNMAP
) {
382 unsigned long off
= (addr
- vma
->vm_start
) >> PAGE_SHIFT
;
383 if (pfn
== vma
->vm_pgoff
+ off
)
385 if (!is_cow_mapping(vma
->vm_flags
))
390 * Add some anal sanity checks for now. Eventually,
391 * we should just do "return pfn_to_page(pfn)", but
392 * in the meantime we check that we get a valid pfn,
393 * and that the resulting page looks ok.
395 * Remove this test eventually!
397 if (unlikely(!pfn_valid(pfn
))) {
398 print_bad_pte(vma
, pte
, addr
);
403 * NOTE! We still have PageReserved() pages in the page
406 * The PAGE_ZERO() pages and various VDSO mappings can
407 * cause them to exist.
409 return pfn_to_page(pfn
);
413 * copy one vm_area from one task to the other. Assumes the page tables
414 * already present in the new task to be cleared in the whole range
415 * covered by this vma.
419 copy_one_pte(struct mm_struct
*dst_mm
, struct mm_struct
*src_mm
,
420 pte_t
*dst_pte
, pte_t
*src_pte
, struct vm_area_struct
*vma
,
421 unsigned long addr
, int *rss
)
423 unsigned long vm_flags
= vma
->vm_flags
;
424 pte_t pte
= *src_pte
;
427 /* pte contains position in swap or file, so copy. */
428 if (unlikely(!pte_present(pte
))) {
429 if (!pte_file(pte
)) {
430 swap_duplicate(pte_to_swp_entry(pte
));
431 /* make sure dst_mm is on swapoff's mmlist. */
432 if (unlikely(list_empty(&dst_mm
->mmlist
))) {
433 spin_lock(&mmlist_lock
);
434 if (list_empty(&dst_mm
->mmlist
))
435 list_add(&dst_mm
->mmlist
,
437 spin_unlock(&mmlist_lock
);
444 * If it's a COW mapping, write protect it both
445 * in the parent and the child
447 if (is_cow_mapping(vm_flags
)) {
448 ptep_set_wrprotect(src_mm
, addr
, src_pte
);
453 * If it's a shared mapping, mark it clean in
456 if (vm_flags
& VM_SHARED
)
457 pte
= pte_mkclean(pte
);
458 pte
= pte_mkold(pte
);
460 page
= vm_normal_page(vma
, addr
, pte
);
464 rss
[!!PageAnon(page
)]++;
468 set_pte_at(dst_mm
, addr
, dst_pte
, pte
);
471 static int copy_pte_range(struct mm_struct
*dst_mm
, struct mm_struct
*src_mm
,
472 pmd_t
*dst_pmd
, pmd_t
*src_pmd
, struct vm_area_struct
*vma
,
473 unsigned long addr
, unsigned long end
)
475 pte_t
*src_pte
, *dst_pte
;
476 spinlock_t
*src_ptl
, *dst_ptl
;
482 dst_pte
= pte_alloc_map_lock(dst_mm
, dst_pmd
, addr
, &dst_ptl
);
485 src_pte
= pte_offset_map_nested(src_pmd
, addr
);
486 src_ptl
= pte_lockptr(src_mm
, src_pmd
);
491 * We are holding two locks at this point - either of them
492 * could generate latencies in another task on another CPU.
494 if (progress
>= 32) {
496 if (need_resched() ||
497 need_lockbreak(src_ptl
) ||
498 need_lockbreak(dst_ptl
))
501 if (pte_none(*src_pte
)) {
505 copy_one_pte(dst_mm
, src_mm
, dst_pte
, src_pte
, vma
, addr
, rss
);
507 } while (dst_pte
++, src_pte
++, addr
+= PAGE_SIZE
, addr
!= end
);
509 spin_unlock(src_ptl
);
510 pte_unmap_nested(src_pte
- 1);
511 add_mm_rss(dst_mm
, rss
[0], rss
[1]);
512 pte_unmap_unlock(dst_pte
- 1, dst_ptl
);
519 static inline int copy_pmd_range(struct mm_struct
*dst_mm
, struct mm_struct
*src_mm
,
520 pud_t
*dst_pud
, pud_t
*src_pud
, struct vm_area_struct
*vma
,
521 unsigned long addr
, unsigned long end
)
523 pmd_t
*src_pmd
, *dst_pmd
;
526 dst_pmd
= pmd_alloc(dst_mm
, dst_pud
, addr
);
529 src_pmd
= pmd_offset(src_pud
, addr
);
531 next
= pmd_addr_end(addr
, end
);
532 if (pmd_none_or_clear_bad(src_pmd
))
534 if (copy_pte_range(dst_mm
, src_mm
, dst_pmd
, src_pmd
,
537 } while (dst_pmd
++, src_pmd
++, addr
= next
, addr
!= end
);
541 static inline int copy_pud_range(struct mm_struct
*dst_mm
, struct mm_struct
*src_mm
,
542 pgd_t
*dst_pgd
, pgd_t
*src_pgd
, struct vm_area_struct
*vma
,
543 unsigned long addr
, unsigned long end
)
545 pud_t
*src_pud
, *dst_pud
;
548 dst_pud
= pud_alloc(dst_mm
, dst_pgd
, addr
);
551 src_pud
= pud_offset(src_pgd
, addr
);
553 next
= pud_addr_end(addr
, end
);
554 if (pud_none_or_clear_bad(src_pud
))
556 if (copy_pmd_range(dst_mm
, src_mm
, dst_pud
, src_pud
,
559 } while (dst_pud
++, src_pud
++, addr
= next
, addr
!= end
);
563 int copy_page_range(struct mm_struct
*dst_mm
, struct mm_struct
*src_mm
,
564 struct vm_area_struct
*vma
)
566 pgd_t
*src_pgd
, *dst_pgd
;
568 unsigned long addr
= vma
->vm_start
;
569 unsigned long end
= vma
->vm_end
;
572 * Don't copy ptes where a page fault will fill them correctly.
573 * Fork becomes much lighter when there are big shared or private
574 * readonly mappings. The tradeoff is that copy_page_range is more
575 * efficient than faulting.
577 if (!(vma
->vm_flags
& (VM_HUGETLB
|VM_NONLINEAR
|VM_PFNMAP
|VM_INSERTPAGE
))) {
582 if (is_vm_hugetlb_page(vma
))
583 return copy_hugetlb_page_range(dst_mm
, src_mm
, vma
);
585 dst_pgd
= pgd_offset(dst_mm
, addr
);
586 src_pgd
= pgd_offset(src_mm
, addr
);
588 next
= pgd_addr_end(addr
, end
);
589 if (pgd_none_or_clear_bad(src_pgd
))
591 if (copy_pud_range(dst_mm
, src_mm
, dst_pgd
, src_pgd
,
594 } while (dst_pgd
++, src_pgd
++, addr
= next
, addr
!= end
);
598 static unsigned long zap_pte_range(struct mmu_gather
*tlb
,
599 struct vm_area_struct
*vma
, pmd_t
*pmd
,
600 unsigned long addr
, unsigned long end
,
601 long *zap_work
, struct zap_details
*details
)
603 struct mm_struct
*mm
= tlb
->mm
;
609 pte
= pte_offset_map_lock(mm
, pmd
, addr
, &ptl
);
612 if (pte_none(ptent
)) {
616 if (pte_present(ptent
)) {
619 (*zap_work
) -= PAGE_SIZE
;
621 page
= vm_normal_page(vma
, addr
, ptent
);
622 if (unlikely(details
) && page
) {
624 * unmap_shared_mapping_pages() wants to
625 * invalidate cache without truncating:
626 * unmap shared but keep private pages.
628 if (details
->check_mapping
&&
629 details
->check_mapping
!= page
->mapping
)
632 * Each page->index must be checked when
633 * invalidating or truncating nonlinear.
635 if (details
->nonlinear_vma
&&
636 (page
->index
< details
->first_index
||
637 page
->index
> details
->last_index
))
640 ptent
= ptep_get_and_clear_full(mm
, addr
, pte
,
642 tlb_remove_tlb_entry(tlb
, pte
, addr
);
645 if (unlikely(details
) && details
->nonlinear_vma
646 && linear_page_index(details
->nonlinear_vma
,
647 addr
) != page
->index
)
648 set_pte_at(mm
, addr
, pte
,
649 pgoff_to_pte(page
->index
));
653 if (pte_dirty(ptent
))
654 set_page_dirty(page
);
655 if (pte_young(ptent
))
656 mark_page_accessed(page
);
659 page_remove_rmap(page
);
660 tlb_remove_page(tlb
, page
);
664 * If details->check_mapping, we leave swap entries;
665 * if details->nonlinear_vma, we leave file entries.
667 if (unlikely(details
))
669 if (!pte_file(ptent
))
670 free_swap_and_cache(pte_to_swp_entry(ptent
));
671 pte_clear_full(mm
, addr
, pte
, tlb
->fullmm
);
672 } while (pte
++, addr
+= PAGE_SIZE
, (addr
!= end
&& *zap_work
> 0));
674 add_mm_rss(mm
, file_rss
, anon_rss
);
675 pte_unmap_unlock(pte
- 1, ptl
);
680 static inline unsigned long zap_pmd_range(struct mmu_gather
*tlb
,
681 struct vm_area_struct
*vma
, pud_t
*pud
,
682 unsigned long addr
, unsigned long end
,
683 long *zap_work
, struct zap_details
*details
)
688 pmd
= pmd_offset(pud
, addr
);
690 next
= pmd_addr_end(addr
, end
);
691 if (pmd_none_or_clear_bad(pmd
)) {
695 next
= zap_pte_range(tlb
, vma
, pmd
, addr
, next
,
697 } while (pmd
++, addr
= next
, (addr
!= end
&& *zap_work
> 0));
702 static inline unsigned long zap_pud_range(struct mmu_gather
*tlb
,
703 struct vm_area_struct
*vma
, pgd_t
*pgd
,
704 unsigned long addr
, unsigned long end
,
705 long *zap_work
, struct zap_details
*details
)
710 pud
= pud_offset(pgd
, addr
);
712 next
= pud_addr_end(addr
, end
);
713 if (pud_none_or_clear_bad(pud
)) {
717 next
= zap_pmd_range(tlb
, vma
, pud
, addr
, next
,
719 } while (pud
++, addr
= next
, (addr
!= end
&& *zap_work
> 0));
724 static unsigned long unmap_page_range(struct mmu_gather
*tlb
,
725 struct vm_area_struct
*vma
,
726 unsigned long addr
, unsigned long end
,
727 long *zap_work
, struct zap_details
*details
)
732 if (details
&& !details
->check_mapping
&& !details
->nonlinear_vma
)
736 tlb_start_vma(tlb
, vma
);
737 pgd
= pgd_offset(vma
->vm_mm
, addr
);
739 next
= pgd_addr_end(addr
, end
);
740 if (pgd_none_or_clear_bad(pgd
)) {
744 next
= zap_pud_range(tlb
, vma
, pgd
, addr
, next
,
746 } while (pgd
++, addr
= next
, (addr
!= end
&& *zap_work
> 0));
747 tlb_end_vma(tlb
, vma
);
752 #ifdef CONFIG_PREEMPT
753 # define ZAP_BLOCK_SIZE (8 * PAGE_SIZE)
755 /* No preempt: go for improved straight-line efficiency */
756 # define ZAP_BLOCK_SIZE (1024 * PAGE_SIZE)
760 * unmap_vmas - unmap a range of memory covered by a list of vma's
761 * @tlbp: address of the caller's struct mmu_gather
762 * @vma: the starting vma
763 * @start_addr: virtual address at which to start unmapping
764 * @end_addr: virtual address at which to end unmapping
765 * @nr_accounted: Place number of unmapped pages in vm-accountable vma's here
766 * @details: details of nonlinear truncation or shared cache invalidation
768 * Returns the end address of the unmapping (restart addr if interrupted).
770 * Unmap all pages in the vma list.
772 * We aim to not hold locks for too long (for scheduling latency reasons).
773 * So zap pages in ZAP_BLOCK_SIZE bytecounts. This means we need to
774 * return the ending mmu_gather to the caller.
776 * Only addresses between `start' and `end' will be unmapped.
778 * The VMA list must be sorted in ascending virtual address order.
780 * unmap_vmas() assumes that the caller will flush the whole unmapped address
781 * range after unmap_vmas() returns. So the only responsibility here is to
782 * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
783 * drops the lock and schedules.
785 unsigned long unmap_vmas(struct mmu_gather
**tlbp
,
786 struct vm_area_struct
*vma
, unsigned long start_addr
,
787 unsigned long end_addr
, unsigned long *nr_accounted
,
788 struct zap_details
*details
)
790 long zap_work
= ZAP_BLOCK_SIZE
;
791 unsigned long tlb_start
= 0; /* For tlb_finish_mmu */
792 int tlb_start_valid
= 0;
793 unsigned long start
= start_addr
;
794 spinlock_t
*i_mmap_lock
= details
? details
->i_mmap_lock
: NULL
;
795 int fullmm
= (*tlbp
)->fullmm
;
797 for ( ; vma
&& vma
->vm_start
< end_addr
; vma
= vma
->vm_next
) {
800 start
= max(vma
->vm_start
, start_addr
);
801 if (start
>= vma
->vm_end
)
803 end
= min(vma
->vm_end
, end_addr
);
804 if (end
<= vma
->vm_start
)
807 if (vma
->vm_flags
& VM_ACCOUNT
)
808 *nr_accounted
+= (end
- start
) >> PAGE_SHIFT
;
810 while (start
!= end
) {
811 if (!tlb_start_valid
) {
816 if (unlikely(is_vm_hugetlb_page(vma
))) {
817 unmap_hugepage_range(vma
, start
, end
);
818 zap_work
-= (end
- start
) /
819 (HPAGE_SIZE
/ PAGE_SIZE
);
822 start
= unmap_page_range(*tlbp
, vma
,
823 start
, end
, &zap_work
, details
);
826 BUG_ON(start
!= end
);
830 tlb_finish_mmu(*tlbp
, tlb_start
, start
);
832 if (need_resched() ||
833 (i_mmap_lock
&& need_lockbreak(i_mmap_lock
))) {
841 *tlbp
= tlb_gather_mmu(vma
->vm_mm
, fullmm
);
843 zap_work
= ZAP_BLOCK_SIZE
;
847 return start
; /* which is now the end (or restart) address */
851 * zap_page_range - remove user pages in a given range
852 * @vma: vm_area_struct holding the applicable pages
853 * @address: starting address of pages to zap
854 * @size: number of bytes to zap
855 * @details: details of nonlinear truncation or shared cache invalidation
857 unsigned long zap_page_range(struct vm_area_struct
*vma
, unsigned long address
,
858 unsigned long size
, struct zap_details
*details
)
860 struct mm_struct
*mm
= vma
->vm_mm
;
861 struct mmu_gather
*tlb
;
862 unsigned long end
= address
+ size
;
863 unsigned long nr_accounted
= 0;
866 tlb
= tlb_gather_mmu(mm
, 0);
867 update_hiwater_rss(mm
);
868 end
= unmap_vmas(&tlb
, vma
, address
, end
, &nr_accounted
, details
);
870 tlb_finish_mmu(tlb
, address
, end
);
875 * Do a quick page-table lookup for a single page.
877 struct page
*follow_page(struct vm_area_struct
*vma
, unsigned long address
,
886 struct mm_struct
*mm
= vma
->vm_mm
;
888 page
= follow_huge_addr(mm
, address
, flags
& FOLL_WRITE
);
890 BUG_ON(flags
& FOLL_GET
);
895 pgd
= pgd_offset(mm
, address
);
896 if (pgd_none(*pgd
) || unlikely(pgd_bad(*pgd
)))
899 pud
= pud_offset(pgd
, address
);
900 if (pud_none(*pud
) || unlikely(pud_bad(*pud
)))
903 pmd
= pmd_offset(pud
, address
);
904 if (pmd_none(*pmd
) || unlikely(pmd_bad(*pmd
)))
907 if (pmd_huge(*pmd
)) {
908 BUG_ON(flags
& FOLL_GET
);
909 page
= follow_huge_pmd(mm
, address
, pmd
, flags
& FOLL_WRITE
);
913 ptep
= pte_offset_map_lock(mm
, pmd
, address
, &ptl
);
918 if (!pte_present(pte
))
920 if ((flags
& FOLL_WRITE
) && !pte_write(pte
))
922 page
= vm_normal_page(vma
, address
, pte
);
926 if (flags
& FOLL_GET
)
928 if (flags
& FOLL_TOUCH
) {
929 if ((flags
& FOLL_WRITE
) &&
930 !pte_dirty(pte
) && !PageDirty(page
))
931 set_page_dirty(page
);
932 mark_page_accessed(page
);
935 pte_unmap_unlock(ptep
, ptl
);
941 * When core dumping an enormous anonymous area that nobody
942 * has touched so far, we don't want to allocate page tables.
944 if (flags
& FOLL_ANON
) {
945 page
= ZERO_PAGE(address
);
946 if (flags
& FOLL_GET
)
948 BUG_ON(flags
& FOLL_WRITE
);
953 int get_user_pages(struct task_struct
*tsk
, struct mm_struct
*mm
,
954 unsigned long start
, int len
, int write
, int force
,
955 struct page
**pages
, struct vm_area_struct
**vmas
)
958 unsigned int vm_flags
;
961 * Require read or write permissions.
962 * If 'force' is set, we only require the "MAY" flags.
964 vm_flags
= write
? (VM_WRITE
| VM_MAYWRITE
) : (VM_READ
| VM_MAYREAD
);
965 vm_flags
&= force
? (VM_MAYREAD
| VM_MAYWRITE
) : (VM_READ
| VM_WRITE
);
969 struct vm_area_struct
*vma
;
970 unsigned int foll_flags
;
972 vma
= find_extend_vma(mm
, start
);
973 if (!vma
&& in_gate_area(tsk
, start
)) {
974 unsigned long pg
= start
& PAGE_MASK
;
975 struct vm_area_struct
*gate_vma
= get_gate_vma(tsk
);
980 if (write
) /* user gate pages are read-only */
981 return i
? : -EFAULT
;
983 pgd
= pgd_offset_k(pg
);
985 pgd
= pgd_offset_gate(mm
, pg
);
986 BUG_ON(pgd_none(*pgd
));
987 pud
= pud_offset(pgd
, pg
);
988 BUG_ON(pud_none(*pud
));
989 pmd
= pmd_offset(pud
, pg
);
991 return i
? : -EFAULT
;
992 pte
= pte_offset_map(pmd
, pg
);
993 if (pte_none(*pte
)) {
995 return i
? : -EFAULT
;
998 struct page
*page
= vm_normal_page(gate_vma
, start
, *pte
);
1012 if (!vma
|| (vma
->vm_flags
& (VM_IO
| VM_PFNMAP
))
1013 || !(vm_flags
& vma
->vm_flags
))
1014 return i
? : -EFAULT
;
1016 if (is_vm_hugetlb_page(vma
)) {
1017 i
= follow_hugetlb_page(mm
, vma
, pages
, vmas
,
1022 foll_flags
= FOLL_TOUCH
;
1024 foll_flags
|= FOLL_GET
;
1025 if (!write
&& !(vma
->vm_flags
& VM_LOCKED
) &&
1026 (!vma
->vm_ops
|| !vma
->vm_ops
->nopage
))
1027 foll_flags
|= FOLL_ANON
;
1033 foll_flags
|= FOLL_WRITE
;
1036 while (!(page
= follow_page(vma
, start
, foll_flags
))) {
1038 ret
= __handle_mm_fault(mm
, vma
, start
,
1039 foll_flags
& FOLL_WRITE
);
1041 * The VM_FAULT_WRITE bit tells us that do_wp_page has
1042 * broken COW when necessary, even if maybe_mkwrite
1043 * decided not to set pte_write. We can thus safely do
1044 * subsequent page lookups as if they were reads.
1046 if (ret
& VM_FAULT_WRITE
)
1047 foll_flags
&= ~FOLL_WRITE
;
1049 switch (ret
& ~VM_FAULT_WRITE
) {
1050 case VM_FAULT_MINOR
:
1053 case VM_FAULT_MAJOR
:
1056 case VM_FAULT_SIGBUS
:
1057 return i
? i
: -EFAULT
;
1059 return i
? i
: -ENOMEM
;
1066 flush_dcache_page(page
);
1073 } while (len
&& start
< vma
->vm_end
);
1077 EXPORT_SYMBOL(get_user_pages
);
1079 static int zeromap_pte_range(struct mm_struct
*mm
, pmd_t
*pmd
,
1080 unsigned long addr
, unsigned long end
, pgprot_t prot
)
1085 pte
= pte_alloc_map_lock(mm
, pmd
, addr
, &ptl
);
1089 struct page
*page
= ZERO_PAGE(addr
);
1090 pte_t zero_pte
= pte_wrprotect(mk_pte(page
, prot
));
1091 page_cache_get(page
);
1092 page_add_file_rmap(page
);
1093 inc_mm_counter(mm
, file_rss
);
1094 BUG_ON(!pte_none(*pte
));
1095 set_pte_at(mm
, addr
, pte
, zero_pte
);
1096 } while (pte
++, addr
+= PAGE_SIZE
, addr
!= end
);
1097 pte_unmap_unlock(pte
- 1, ptl
);
1101 static inline int zeromap_pmd_range(struct mm_struct
*mm
, pud_t
*pud
,
1102 unsigned long addr
, unsigned long end
, pgprot_t prot
)
1107 pmd
= pmd_alloc(mm
, pud
, addr
);
1111 next
= pmd_addr_end(addr
, end
);
1112 if (zeromap_pte_range(mm
, pmd
, addr
, next
, prot
))
1114 } while (pmd
++, addr
= next
, addr
!= end
);
1118 static inline int zeromap_pud_range(struct mm_struct
*mm
, pgd_t
*pgd
,
1119 unsigned long addr
, unsigned long end
, pgprot_t prot
)
1124 pud
= pud_alloc(mm
, pgd
, addr
);
1128 next
= pud_addr_end(addr
, end
);
1129 if (zeromap_pmd_range(mm
, pud
, addr
, next
, prot
))
1131 } while (pud
++, addr
= next
, addr
!= end
);
1135 int zeromap_page_range(struct vm_area_struct
*vma
,
1136 unsigned long addr
, unsigned long size
, pgprot_t prot
)
1140 unsigned long end
= addr
+ size
;
1141 struct mm_struct
*mm
= vma
->vm_mm
;
1144 BUG_ON(addr
>= end
);
1145 pgd
= pgd_offset(mm
, addr
);
1146 flush_cache_range(vma
, addr
, end
);
1148 next
= pgd_addr_end(addr
, end
);
1149 err
= zeromap_pud_range(mm
, pgd
, addr
, next
, prot
);
1152 } while (pgd
++, addr
= next
, addr
!= end
);
1156 pte_t
* fastcall
get_locked_pte(struct mm_struct
*mm
, unsigned long addr
, spinlock_t
**ptl
)
1158 pgd_t
* pgd
= pgd_offset(mm
, addr
);
1159 pud_t
* pud
= pud_alloc(mm
, pgd
, addr
);
1161 pmd_t
* pmd
= pmd_alloc(mm
, pud
, addr
);
1163 return pte_alloc_map_lock(mm
, pmd
, addr
, ptl
);
1169 * This is the old fallback for page remapping.
1171 * For historical reasons, it only allows reserved pages. Only
1172 * old drivers should use this, and they needed to mark their
1173 * pages reserved for the old functions anyway.
1175 static int insert_page(struct mm_struct
*mm
, unsigned long addr
, struct page
*page
, pgprot_t prot
)
1185 flush_dcache_page(page
);
1186 pte
= get_locked_pte(mm
, addr
, &ptl
);
1190 if (!pte_none(*pte
))
1193 /* Ok, finally just insert the thing.. */
1195 inc_mm_counter(mm
, file_rss
);
1196 page_add_file_rmap(page
);
1197 set_pte_at(mm
, addr
, pte
, mk_pte(page
, prot
));
1201 pte_unmap_unlock(pte
, ptl
);
1207 * This allows drivers to insert individual pages they've allocated
1210 * The page has to be a nice clean _individual_ kernel allocation.
1211 * If you allocate a compound page, you need to have marked it as
1212 * such (__GFP_COMP), or manually just split the page up yourself
1213 * (which is mainly an issue of doing "set_page_count(page, 1)" for
1214 * each sub-page, and then freeing them one by one when you free
1215 * them rather than freeing it as a compound page).
1217 * NOTE! Traditionally this was done with "remap_pfn_range()" which
1218 * took an arbitrary page protection parameter. This doesn't allow
1219 * that. Your vma protection will have to be set up correctly, which
1220 * means that if you want a shared writable mapping, you'd better
1221 * ask for a shared writable mapping!
1223 * The page does not need to be reserved.
1225 int vm_insert_page(struct vm_area_struct
*vma
, unsigned long addr
, struct page
*page
)
1227 if (addr
< vma
->vm_start
|| addr
>= vma
->vm_end
)
1229 if (!page_count(page
))
1231 vma
->vm_flags
|= VM_INSERTPAGE
;
1232 return insert_page(vma
->vm_mm
, addr
, page
, vma
->vm_page_prot
);
1234 EXPORT_SYMBOL(vm_insert_page
);
1237 * maps a range of physical memory into the requested pages. the old
1238 * mappings are removed. any references to nonexistent pages results
1239 * in null mappings (currently treated as "copy-on-access")
1241 static int remap_pte_range(struct mm_struct
*mm
, pmd_t
*pmd
,
1242 unsigned long addr
, unsigned long end
,
1243 unsigned long pfn
, pgprot_t prot
)
1248 pte
= pte_alloc_map_lock(mm
, pmd
, addr
, &ptl
);
1252 BUG_ON(!pte_none(*pte
));
1253 set_pte_at(mm
, addr
, pte
, pfn_pte(pfn
, prot
));
1255 } while (pte
++, addr
+= PAGE_SIZE
, addr
!= end
);
1256 pte_unmap_unlock(pte
- 1, ptl
);
1260 static inline int remap_pmd_range(struct mm_struct
*mm
, pud_t
*pud
,
1261 unsigned long addr
, unsigned long end
,
1262 unsigned long pfn
, pgprot_t prot
)
1267 pfn
-= addr
>> PAGE_SHIFT
;
1268 pmd
= pmd_alloc(mm
, pud
, addr
);
1272 next
= pmd_addr_end(addr
, end
);
1273 if (remap_pte_range(mm
, pmd
, addr
, next
,
1274 pfn
+ (addr
>> PAGE_SHIFT
), prot
))
1276 } while (pmd
++, addr
= next
, addr
!= end
);
1280 static inline int remap_pud_range(struct mm_struct
*mm
, pgd_t
*pgd
,
1281 unsigned long addr
, unsigned long end
,
1282 unsigned long pfn
, pgprot_t prot
)
1287 pfn
-= addr
>> PAGE_SHIFT
;
1288 pud
= pud_alloc(mm
, pgd
, addr
);
1292 next
= pud_addr_end(addr
, end
);
1293 if (remap_pmd_range(mm
, pud
, addr
, next
,
1294 pfn
+ (addr
>> PAGE_SHIFT
), prot
))
1296 } while (pud
++, addr
= next
, addr
!= end
);
1300 /* Note: this is only safe if the mm semaphore is held when called. */
1301 int remap_pfn_range(struct vm_area_struct
*vma
, unsigned long addr
,
1302 unsigned long pfn
, unsigned long size
, pgprot_t prot
)
1306 unsigned long end
= addr
+ PAGE_ALIGN(size
);
1307 struct mm_struct
*mm
= vma
->vm_mm
;
1311 * Physically remapped pages are special. Tell the
1312 * rest of the world about it:
1313 * VM_IO tells people not to look at these pages
1314 * (accesses can have side effects).
1315 * VM_RESERVED is specified all over the place, because
1316 * in 2.4 it kept swapout's vma scan off this vma; but
1317 * in 2.6 the LRU scan won't even find its pages, so this
1318 * flag means no more than count its pages in reserved_vm,
1319 * and omit it from core dump, even when VM_IO turned off.
1320 * VM_PFNMAP tells the core MM that the base pages are just
1321 * raw PFN mappings, and do not have a "struct page" associated
1324 * There's a horrible special case to handle copy-on-write
1325 * behaviour that some programs depend on. We mark the "original"
1326 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
1328 if (is_cow_mapping(vma
->vm_flags
)) {
1329 if (addr
!= vma
->vm_start
|| end
!= vma
->vm_end
)
1331 vma
->vm_pgoff
= pfn
;
1334 vma
->vm_flags
|= VM_IO
| VM_RESERVED
| VM_PFNMAP
;
1336 BUG_ON(addr
>= end
);
1337 pfn
-= addr
>> PAGE_SHIFT
;
1338 pgd
= pgd_offset(mm
, addr
);
1339 flush_cache_range(vma
, addr
, end
);
1341 next
= pgd_addr_end(addr
, end
);
1342 err
= remap_pud_range(mm
, pgd
, addr
, next
,
1343 pfn
+ (addr
>> PAGE_SHIFT
), prot
);
1346 } while (pgd
++, addr
= next
, addr
!= end
);
1349 EXPORT_SYMBOL(remap_pfn_range
);
1352 * handle_pte_fault chooses page fault handler according to an entry
1353 * which was read non-atomically. Before making any commitment, on
1354 * those architectures or configurations (e.g. i386 with PAE) which
1355 * might give a mix of unmatched parts, do_swap_page and do_file_page
1356 * must check under lock before unmapping the pte and proceeding
1357 * (but do_wp_page is only called after already making such a check;
1358 * and do_anonymous_page and do_no_page can safely check later on).
1360 static inline int pte_unmap_same(struct mm_struct
*mm
, pmd_t
*pmd
,
1361 pte_t
*page_table
, pte_t orig_pte
)
1364 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
1365 if (sizeof(pte_t
) > sizeof(unsigned long)) {
1366 spinlock_t
*ptl
= pte_lockptr(mm
, pmd
);
1368 same
= pte_same(*page_table
, orig_pte
);
1372 pte_unmap(page_table
);
1377 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when
1378 * servicing faults for write access. In the normal case, do always want
1379 * pte_mkwrite. But get_user_pages can cause write faults for mappings
1380 * that do not have writing enabled, when used by access_process_vm.
1382 static inline pte_t
maybe_mkwrite(pte_t pte
, struct vm_area_struct
*vma
)
1384 if (likely(vma
->vm_flags
& VM_WRITE
))
1385 pte
= pte_mkwrite(pte
);
1389 static inline void cow_user_page(struct page
*dst
, struct page
*src
, unsigned long va
)
1392 * If the source page was a PFN mapping, we don't have
1393 * a "struct page" for it. We do a best-effort copy by
1394 * just copying from the original user address. If that
1395 * fails, we just zero-fill it. Live with it.
1397 if (unlikely(!src
)) {
1398 void *kaddr
= kmap_atomic(dst
, KM_USER0
);
1399 void __user
*uaddr
= (void __user
*)(va
& PAGE_MASK
);
1402 * This really shouldn't fail, because the page is there
1403 * in the page tables. But it might just be unreadable,
1404 * in which case we just give up and fill the result with
1407 if (__copy_from_user_inatomic(kaddr
, uaddr
, PAGE_SIZE
))
1408 memset(kaddr
, 0, PAGE_SIZE
);
1409 kunmap_atomic(kaddr
, KM_USER0
);
1413 copy_user_highpage(dst
, src
, va
);
1417 * This routine handles present pages, when users try to write
1418 * to a shared page. It is done by copying the page to a new address
1419 * and decrementing the shared-page counter for the old page.
1421 * Note that this routine assumes that the protection checks have been
1422 * done by the caller (the low-level page fault routine in most cases).
1423 * Thus we can safely just mark it writable once we've done any necessary
1426 * We also mark the page dirty at this point even though the page will
1427 * change only once the write actually happens. This avoids a few races,
1428 * and potentially makes it more efficient.
1430 * We enter with non-exclusive mmap_sem (to exclude vma changes,
1431 * but allow concurrent faults), with pte both mapped and locked.
1432 * We return with mmap_sem still held, but pte unmapped and unlocked.
1434 static int do_wp_page(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
1435 unsigned long address
, pte_t
*page_table
, pmd_t
*pmd
,
1436 spinlock_t
*ptl
, pte_t orig_pte
)
1438 struct page
*old_page
, *new_page
;
1440 int ret
= VM_FAULT_MINOR
;
1442 old_page
= vm_normal_page(vma
, address
, orig_pte
);
1446 if (PageAnon(old_page
) && !TestSetPageLocked(old_page
)) {
1447 int reuse
= can_share_swap_page(old_page
);
1448 unlock_page(old_page
);
1450 flush_cache_page(vma
, address
, pte_pfn(orig_pte
));
1451 entry
= pte_mkyoung(orig_pte
);
1452 entry
= maybe_mkwrite(pte_mkdirty(entry
), vma
);
1453 ptep_set_access_flags(vma
, address
, page_table
, entry
, 1);
1454 update_mmu_cache(vma
, address
, entry
);
1455 lazy_mmu_prot_update(entry
);
1456 ret
|= VM_FAULT_WRITE
;
1462 * Ok, we need to copy. Oh, well..
1464 page_cache_get(old_page
);
1466 pte_unmap_unlock(page_table
, ptl
);
1468 if (unlikely(anon_vma_prepare(vma
)))
1470 if (old_page
== ZERO_PAGE(address
)) {
1471 new_page
= alloc_zeroed_user_highpage(vma
, address
);
1475 new_page
= alloc_page_vma(GFP_HIGHUSER
, vma
, address
);
1478 cow_user_page(new_page
, old_page
, address
);
1482 * Re-check the pte - we dropped the lock
1484 page_table
= pte_offset_map_lock(mm
, pmd
, address
, &ptl
);
1485 if (likely(pte_same(*page_table
, orig_pte
))) {
1487 page_remove_rmap(old_page
);
1488 if (!PageAnon(old_page
)) {
1489 dec_mm_counter(mm
, file_rss
);
1490 inc_mm_counter(mm
, anon_rss
);
1493 inc_mm_counter(mm
, anon_rss
);
1494 flush_cache_page(vma
, address
, pte_pfn(orig_pte
));
1495 entry
= mk_pte(new_page
, vma
->vm_page_prot
);
1496 entry
= maybe_mkwrite(pte_mkdirty(entry
), vma
);
1497 ptep_establish(vma
, address
, page_table
, entry
);
1498 update_mmu_cache(vma
, address
, entry
);
1499 lazy_mmu_prot_update(entry
);
1500 lru_cache_add_active(new_page
);
1501 page_add_new_anon_rmap(new_page
, vma
, address
);
1503 /* Free the old page.. */
1504 new_page
= old_page
;
1505 ret
|= VM_FAULT_WRITE
;
1508 page_cache_release(new_page
);
1510 page_cache_release(old_page
);
1512 pte_unmap_unlock(page_table
, ptl
);
1516 page_cache_release(old_page
);
1517 return VM_FAULT_OOM
;
1521 * Helper functions for unmap_mapping_range().
1523 * __ Notes on dropping i_mmap_lock to reduce latency while unmapping __
1525 * We have to restart searching the prio_tree whenever we drop the lock,
1526 * since the iterator is only valid while the lock is held, and anyway
1527 * a later vma might be split and reinserted earlier while lock dropped.
1529 * The list of nonlinear vmas could be handled more efficiently, using
1530 * a placeholder, but handle it in the same way until a need is shown.
1531 * It is important to search the prio_tree before nonlinear list: a vma
1532 * may become nonlinear and be shifted from prio_tree to nonlinear list
1533 * while the lock is dropped; but never shifted from list to prio_tree.
1535 * In order to make forward progress despite restarting the search,
1536 * vm_truncate_count is used to mark a vma as now dealt with, so we can
1537 * quickly skip it next time around. Since the prio_tree search only
1538 * shows us those vmas affected by unmapping the range in question, we
1539 * can't efficiently keep all vmas in step with mapping->truncate_count:
1540 * so instead reset them all whenever it wraps back to 0 (then go to 1).
1541 * mapping->truncate_count and vma->vm_truncate_count are protected by
1544 * In order to make forward progress despite repeatedly restarting some
1545 * large vma, note the restart_addr from unmap_vmas when it breaks out:
1546 * and restart from that address when we reach that vma again. It might
1547 * have been split or merged, shrunk or extended, but never shifted: so
1548 * restart_addr remains valid so long as it remains in the vma's range.
1549 * unmap_mapping_range forces truncate_count to leap over page-aligned
1550 * values so we can save vma's restart_addr in its truncate_count field.
1552 #define is_restart_addr(truncate_count) (!((truncate_count) & ~PAGE_MASK))
1554 static void reset_vma_truncate_counts(struct address_space
*mapping
)
1556 struct vm_area_struct
*vma
;
1557 struct prio_tree_iter iter
;
1559 vma_prio_tree_foreach(vma
, &iter
, &mapping
->i_mmap
, 0, ULONG_MAX
)
1560 vma
->vm_truncate_count
= 0;
1561 list_for_each_entry(vma
, &mapping
->i_mmap_nonlinear
, shared
.vm_set
.list
)
1562 vma
->vm_truncate_count
= 0;
1565 static int unmap_mapping_range_vma(struct vm_area_struct
*vma
,
1566 unsigned long start_addr
, unsigned long end_addr
,
1567 struct zap_details
*details
)
1569 unsigned long restart_addr
;
1573 restart_addr
= vma
->vm_truncate_count
;
1574 if (is_restart_addr(restart_addr
) && start_addr
< restart_addr
) {
1575 start_addr
= restart_addr
;
1576 if (start_addr
>= end_addr
) {
1577 /* Top of vma has been split off since last time */
1578 vma
->vm_truncate_count
= details
->truncate_count
;
1583 restart_addr
= zap_page_range(vma
, start_addr
,
1584 end_addr
- start_addr
, details
);
1585 need_break
= need_resched() ||
1586 need_lockbreak(details
->i_mmap_lock
);
1588 if (restart_addr
>= end_addr
) {
1589 /* We have now completed this vma: mark it so */
1590 vma
->vm_truncate_count
= details
->truncate_count
;
1594 /* Note restart_addr in vma's truncate_count field */
1595 vma
->vm_truncate_count
= restart_addr
;
1600 spin_unlock(details
->i_mmap_lock
);
1602 spin_lock(details
->i_mmap_lock
);
1606 static inline void unmap_mapping_range_tree(struct prio_tree_root
*root
,
1607 struct zap_details
*details
)
1609 struct vm_area_struct
*vma
;
1610 struct prio_tree_iter iter
;
1611 pgoff_t vba
, vea
, zba
, zea
;
1614 vma_prio_tree_foreach(vma
, &iter
, root
,
1615 details
->first_index
, details
->last_index
) {
1616 /* Skip quickly over those we have already dealt with */
1617 if (vma
->vm_truncate_count
== details
->truncate_count
)
1620 vba
= vma
->vm_pgoff
;
1621 vea
= vba
+ ((vma
->vm_end
- vma
->vm_start
) >> PAGE_SHIFT
) - 1;
1622 /* Assume for now that PAGE_CACHE_SHIFT == PAGE_SHIFT */
1623 zba
= details
->first_index
;
1626 zea
= details
->last_index
;
1630 if (unmap_mapping_range_vma(vma
,
1631 ((zba
- vba
) << PAGE_SHIFT
) + vma
->vm_start
,
1632 ((zea
- vba
+ 1) << PAGE_SHIFT
) + vma
->vm_start
,
1638 static inline void unmap_mapping_range_list(struct list_head
*head
,
1639 struct zap_details
*details
)
1641 struct vm_area_struct
*vma
;
1644 * In nonlinear VMAs there is no correspondence between virtual address
1645 * offset and file offset. So we must perform an exhaustive search
1646 * across *all* the pages in each nonlinear VMA, not just the pages
1647 * whose virtual address lies outside the file truncation point.
1650 list_for_each_entry(vma
, head
, shared
.vm_set
.list
) {
1651 /* Skip quickly over those we have already dealt with */
1652 if (vma
->vm_truncate_count
== details
->truncate_count
)
1654 details
->nonlinear_vma
= vma
;
1655 if (unmap_mapping_range_vma(vma
, vma
->vm_start
,
1656 vma
->vm_end
, details
) < 0)
1662 * unmap_mapping_range - unmap the portion of all mmaps
1663 * in the specified address_space corresponding to the specified
1664 * page range in the underlying file.
1665 * @mapping: the address space containing mmaps to be unmapped.
1666 * @holebegin: byte in first page to unmap, relative to the start of
1667 * the underlying file. This will be rounded down to a PAGE_SIZE
1668 * boundary. Note that this is different from vmtruncate(), which
1669 * must keep the partial page. In contrast, we must get rid of
1671 * @holelen: size of prospective hole in bytes. This will be rounded
1672 * up to a PAGE_SIZE boundary. A holelen of zero truncates to the
1674 * @even_cows: 1 when truncating a file, unmap even private COWed pages;
1675 * but 0 when invalidating pagecache, don't throw away private data.
1677 void unmap_mapping_range(struct address_space
*mapping
,
1678 loff_t
const holebegin
, loff_t
const holelen
, int even_cows
)
1680 struct zap_details details
;
1681 pgoff_t hba
= holebegin
>> PAGE_SHIFT
;
1682 pgoff_t hlen
= (holelen
+ PAGE_SIZE
- 1) >> PAGE_SHIFT
;
1684 /* Check for overflow. */
1685 if (sizeof(holelen
) > sizeof(hlen
)) {
1687 (holebegin
+ holelen
+ PAGE_SIZE
- 1) >> PAGE_SHIFT
;
1688 if (holeend
& ~(long long)ULONG_MAX
)
1689 hlen
= ULONG_MAX
- hba
+ 1;
1692 details
.check_mapping
= even_cows
? NULL
: mapping
;
1693 details
.nonlinear_vma
= NULL
;
1694 details
.first_index
= hba
;
1695 details
.last_index
= hba
+ hlen
- 1;
1696 if (details
.last_index
< details
.first_index
)
1697 details
.last_index
= ULONG_MAX
;
1698 details
.i_mmap_lock
= &mapping
->i_mmap_lock
;
1700 spin_lock(&mapping
->i_mmap_lock
);
1702 /* serialize i_size write against truncate_count write */
1704 /* Protect against page faults, and endless unmapping loops */
1705 mapping
->truncate_count
++;
1707 * For archs where spin_lock has inclusive semantics like ia64
1708 * this smp_mb() will prevent to read pagetable contents
1709 * before the truncate_count increment is visible to
1713 if (unlikely(is_restart_addr(mapping
->truncate_count
))) {
1714 if (mapping
->truncate_count
== 0)
1715 reset_vma_truncate_counts(mapping
);
1716 mapping
->truncate_count
++;
1718 details
.truncate_count
= mapping
->truncate_count
;
1720 if (unlikely(!prio_tree_empty(&mapping
->i_mmap
)))
1721 unmap_mapping_range_tree(&mapping
->i_mmap
, &details
);
1722 if (unlikely(!list_empty(&mapping
->i_mmap_nonlinear
)))
1723 unmap_mapping_range_list(&mapping
->i_mmap_nonlinear
, &details
);
1724 spin_unlock(&mapping
->i_mmap_lock
);
1726 EXPORT_SYMBOL(unmap_mapping_range
);
1729 * Handle all mappings that got truncated by a "truncate()"
1732 * NOTE! We have to be ready to update the memory sharing
1733 * between the file and the memory map for a potential last
1734 * incomplete page. Ugly, but necessary.
1736 int vmtruncate(struct inode
* inode
, loff_t offset
)
1738 struct address_space
*mapping
= inode
->i_mapping
;
1739 unsigned long limit
;
1741 if (inode
->i_size
< offset
)
1744 * truncation of in-use swapfiles is disallowed - it would cause
1745 * subsequent swapout to scribble on the now-freed blocks.
1747 if (IS_SWAPFILE(inode
))
1749 i_size_write(inode
, offset
);
1750 unmap_mapping_range(mapping
, offset
+ PAGE_SIZE
- 1, 0, 1);
1751 truncate_inode_pages(mapping
, offset
);
1755 limit
= current
->signal
->rlim
[RLIMIT_FSIZE
].rlim_cur
;
1756 if (limit
!= RLIM_INFINITY
&& offset
> limit
)
1758 if (offset
> inode
->i_sb
->s_maxbytes
)
1760 i_size_write(inode
, offset
);
1763 if (inode
->i_op
&& inode
->i_op
->truncate
)
1764 inode
->i_op
->truncate(inode
);
1767 send_sig(SIGXFSZ
, current
, 0);
1773 EXPORT_SYMBOL(vmtruncate
);
1775 int vmtruncate_range(struct inode
*inode
, loff_t offset
, loff_t end
)
1777 struct address_space
*mapping
= inode
->i_mapping
;
1780 * If the underlying filesystem is not going to provide
1781 * a way to truncate a range of blocks (punch a hole) -
1782 * we should return failure right now.
1784 if (!inode
->i_op
|| !inode
->i_op
->truncate_range
)
1787 mutex_lock(&inode
->i_mutex
);
1788 down_write(&inode
->i_alloc_sem
);
1789 unmap_mapping_range(mapping
, offset
, (end
- offset
), 1);
1790 truncate_inode_pages_range(mapping
, offset
, end
);
1791 inode
->i_op
->truncate_range(inode
, offset
, end
);
1792 up_write(&inode
->i_alloc_sem
);
1793 mutex_unlock(&inode
->i_mutex
);
1797 EXPORT_SYMBOL(vmtruncate_range
);
1800 * Primitive swap readahead code. We simply read an aligned block of
1801 * (1 << page_cluster) entries in the swap area. This method is chosen
1802 * because it doesn't cost us any seek time. We also make sure to queue
1803 * the 'original' request together with the readahead ones...
1805 * This has been extended to use the NUMA policies from the mm triggering
1808 * Caller must hold down_read on the vma->vm_mm if vma is not NULL.
1810 void swapin_readahead(swp_entry_t entry
, unsigned long addr
,struct vm_area_struct
*vma
)
1813 struct vm_area_struct
*next_vma
= vma
? vma
->vm_next
: NULL
;
1816 struct page
*new_page
;
1817 unsigned long offset
;
1820 * Get the number of handles we should do readahead io to.
1822 num
= valid_swaphandles(entry
, &offset
);
1823 for (i
= 0; i
< num
; offset
++, i
++) {
1824 /* Ok, do the async read-ahead now */
1825 new_page
= read_swap_cache_async(swp_entry(swp_type(entry
),
1826 offset
), vma
, addr
);
1829 page_cache_release(new_page
);
1832 * Find the next applicable VMA for the NUMA policy.
1838 if (addr
>= vma
->vm_end
) {
1840 next_vma
= vma
? vma
->vm_next
: NULL
;
1842 if (vma
&& addr
< vma
->vm_start
)
1845 if (next_vma
&& addr
>= next_vma
->vm_start
) {
1847 next_vma
= vma
->vm_next
;
1852 lru_add_drain(); /* Push any new pages onto the LRU now */
1856 * We enter with non-exclusive mmap_sem (to exclude vma changes,
1857 * but allow concurrent faults), and pte mapped but not yet locked.
1858 * We return with mmap_sem still held, but pte unmapped and unlocked.
1860 static int do_swap_page(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
1861 unsigned long address
, pte_t
*page_table
, pmd_t
*pmd
,
1862 int write_access
, pte_t orig_pte
)
1868 int ret
= VM_FAULT_MINOR
;
1870 if (!pte_unmap_same(mm
, pmd
, page_table
, orig_pte
))
1873 entry
= pte_to_swp_entry(orig_pte
);
1874 page
= lookup_swap_cache(entry
);
1876 swapin_readahead(entry
, address
, vma
);
1877 page
= read_swap_cache_async(entry
, vma
, address
);
1880 * Back out if somebody else faulted in this pte
1881 * while we released the pte lock.
1883 page_table
= pte_offset_map_lock(mm
, pmd
, address
, &ptl
);
1884 if (likely(pte_same(*page_table
, orig_pte
)))
1889 /* Had to read the page from swap area: Major fault */
1890 ret
= VM_FAULT_MAJOR
;
1891 inc_page_state(pgmajfault
);
1895 mark_page_accessed(page
);
1899 * Back out if somebody else already faulted in this pte.
1901 page_table
= pte_offset_map_lock(mm
, pmd
, address
, &ptl
);
1902 if (unlikely(!pte_same(*page_table
, orig_pte
)))
1905 if (unlikely(!PageUptodate(page
))) {
1906 ret
= VM_FAULT_SIGBUS
;
1910 /* The page isn't present yet, go ahead with the fault. */
1912 inc_mm_counter(mm
, anon_rss
);
1913 pte
= mk_pte(page
, vma
->vm_page_prot
);
1914 if (write_access
&& can_share_swap_page(page
)) {
1915 pte
= maybe_mkwrite(pte_mkdirty(pte
), vma
);
1919 flush_icache_page(vma
, page
);
1920 set_pte_at(mm
, address
, page_table
, pte
);
1921 page_add_anon_rmap(page
, vma
, address
);
1925 remove_exclusive_swap_page(page
);
1929 if (do_wp_page(mm
, vma
, address
,
1930 page_table
, pmd
, ptl
, pte
) == VM_FAULT_OOM
)
1935 /* No need to invalidate - it was non-present before */
1936 update_mmu_cache(vma
, address
, pte
);
1937 lazy_mmu_prot_update(pte
);
1939 pte_unmap_unlock(page_table
, ptl
);
1943 pte_unmap_unlock(page_table
, ptl
);
1945 page_cache_release(page
);
1950 * We enter with non-exclusive mmap_sem (to exclude vma changes,
1951 * but allow concurrent faults), and pte mapped but not yet locked.
1952 * We return with mmap_sem still held, but pte unmapped and unlocked.
1954 static int do_anonymous_page(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
1955 unsigned long address
, pte_t
*page_table
, pmd_t
*pmd
,
1963 /* Allocate our own private page. */
1964 pte_unmap(page_table
);
1966 if (unlikely(anon_vma_prepare(vma
)))
1968 page
= alloc_zeroed_user_highpage(vma
, address
);
1972 entry
= mk_pte(page
, vma
->vm_page_prot
);
1973 entry
= maybe_mkwrite(pte_mkdirty(entry
), vma
);
1975 page_table
= pte_offset_map_lock(mm
, pmd
, address
, &ptl
);
1976 if (!pte_none(*page_table
))
1978 inc_mm_counter(mm
, anon_rss
);
1979 lru_cache_add_active(page
);
1980 page_add_new_anon_rmap(page
, vma
, address
);
1982 /* Map the ZERO_PAGE - vm_page_prot is readonly */
1983 page
= ZERO_PAGE(address
);
1984 page_cache_get(page
);
1985 entry
= mk_pte(page
, vma
->vm_page_prot
);
1987 ptl
= pte_lockptr(mm
, pmd
);
1989 if (!pte_none(*page_table
))
1991 inc_mm_counter(mm
, file_rss
);
1992 page_add_file_rmap(page
);
1995 set_pte_at(mm
, address
, page_table
, entry
);
1997 /* No need to invalidate - it was non-present before */
1998 update_mmu_cache(vma
, address
, entry
);
1999 lazy_mmu_prot_update(entry
);
2001 pte_unmap_unlock(page_table
, ptl
);
2002 return VM_FAULT_MINOR
;
2004 page_cache_release(page
);
2007 return VM_FAULT_OOM
;
2011 * do_no_page() tries to create a new page mapping. It aggressively
2012 * tries to share with existing pages, but makes a separate copy if
2013 * the "write_access" parameter is true in order to avoid the next
2016 * As this is called only for pages that do not currently exist, we
2017 * do not need to flush old virtual caches or the TLB.
2019 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2020 * but allow concurrent faults), and pte mapped but not yet locked.
2021 * We return with mmap_sem still held, but pte unmapped and unlocked.
2023 static int do_no_page(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
2024 unsigned long address
, pte_t
*page_table
, pmd_t
*pmd
,
2028 struct page
*new_page
;
2029 struct address_space
*mapping
= NULL
;
2031 unsigned int sequence
= 0;
2032 int ret
= VM_FAULT_MINOR
;
2035 pte_unmap(page_table
);
2036 BUG_ON(vma
->vm_flags
& VM_PFNMAP
);
2039 mapping
= vma
->vm_file
->f_mapping
;
2040 sequence
= mapping
->truncate_count
;
2041 smp_rmb(); /* serializes i_size against truncate_count */
2044 new_page
= vma
->vm_ops
->nopage(vma
, address
& PAGE_MASK
, &ret
);
2046 * No smp_rmb is needed here as long as there's a full
2047 * spin_lock/unlock sequence inside the ->nopage callback
2048 * (for the pagecache lookup) that acts as an implicit
2049 * smp_mb() and prevents the i_size read to happen
2050 * after the next truncate_count read.
2053 /* no page was available -- either SIGBUS or OOM */
2054 if (new_page
== NOPAGE_SIGBUS
)
2055 return VM_FAULT_SIGBUS
;
2056 if (new_page
== NOPAGE_OOM
)
2057 return VM_FAULT_OOM
;
2060 * Should we do an early C-O-W break?
2062 if (write_access
&& !(vma
->vm_flags
& VM_SHARED
)) {
2065 if (unlikely(anon_vma_prepare(vma
)))
2067 page
= alloc_page_vma(GFP_HIGHUSER
, vma
, address
);
2070 copy_user_highpage(page
, new_page
, address
);
2071 page_cache_release(new_page
);
2076 page_table
= pte_offset_map_lock(mm
, pmd
, address
, &ptl
);
2078 * For a file-backed vma, someone could have truncated or otherwise
2079 * invalidated this page. If unmap_mapping_range got called,
2080 * retry getting the page.
2082 if (mapping
&& unlikely(sequence
!= mapping
->truncate_count
)) {
2083 pte_unmap_unlock(page_table
, ptl
);
2084 page_cache_release(new_page
);
2086 sequence
= mapping
->truncate_count
;
2092 * This silly early PAGE_DIRTY setting removes a race
2093 * due to the bad i386 page protection. But it's valid
2094 * for other architectures too.
2096 * Note that if write_access is true, we either now have
2097 * an exclusive copy of the page, or this is a shared mapping,
2098 * so we can make it writable and dirty to avoid having to
2099 * handle that later.
2101 /* Only go through if we didn't race with anybody else... */
2102 if (pte_none(*page_table
)) {
2103 flush_icache_page(vma
, new_page
);
2104 entry
= mk_pte(new_page
, vma
->vm_page_prot
);
2106 entry
= maybe_mkwrite(pte_mkdirty(entry
), vma
);
2107 set_pte_at(mm
, address
, page_table
, entry
);
2109 inc_mm_counter(mm
, anon_rss
);
2110 lru_cache_add_active(new_page
);
2111 page_add_new_anon_rmap(new_page
, vma
, address
);
2113 inc_mm_counter(mm
, file_rss
);
2114 page_add_file_rmap(new_page
);
2117 /* One of our sibling threads was faster, back out. */
2118 page_cache_release(new_page
);
2122 /* no need to invalidate: a not-present page shouldn't be cached */
2123 update_mmu_cache(vma
, address
, entry
);
2124 lazy_mmu_prot_update(entry
);
2126 pte_unmap_unlock(page_table
, ptl
);
2129 page_cache_release(new_page
);
2130 return VM_FAULT_OOM
;
2134 * Fault of a previously existing named mapping. Repopulate the pte
2135 * from the encoded file_pte if possible. This enables swappable
2138 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2139 * but allow concurrent faults), and pte mapped but not yet locked.
2140 * We return with mmap_sem still held, but pte unmapped and unlocked.
2142 static int do_file_page(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
2143 unsigned long address
, pte_t
*page_table
, pmd_t
*pmd
,
2144 int write_access
, pte_t orig_pte
)
2149 if (!pte_unmap_same(mm
, pmd
, page_table
, orig_pte
))
2150 return VM_FAULT_MINOR
;
2152 if (unlikely(!(vma
->vm_flags
& VM_NONLINEAR
))) {
2154 * Page table corrupted: show pte and kill process.
2156 print_bad_pte(vma
, orig_pte
, address
);
2157 return VM_FAULT_OOM
;
2159 /* We can then assume vm->vm_ops && vma->vm_ops->populate */
2161 pgoff
= pte_to_pgoff(orig_pte
);
2162 err
= vma
->vm_ops
->populate(vma
, address
& PAGE_MASK
, PAGE_SIZE
,
2163 vma
->vm_page_prot
, pgoff
, 0);
2165 return VM_FAULT_OOM
;
2167 return VM_FAULT_SIGBUS
;
2168 return VM_FAULT_MAJOR
;
2172 * These routines also need to handle stuff like marking pages dirty
2173 * and/or accessed for architectures that don't do it in hardware (most
2174 * RISC architectures). The early dirtying is also good on the i386.
2176 * There is also a hook called "update_mmu_cache()" that architectures
2177 * with external mmu caches can use to update those (ie the Sparc or
2178 * PowerPC hashed page tables that act as extended TLBs).
2180 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2181 * but allow concurrent faults), and pte mapped but not yet locked.
2182 * We return with mmap_sem still held, but pte unmapped and unlocked.
2184 static inline int handle_pte_fault(struct mm_struct
*mm
,
2185 struct vm_area_struct
*vma
, unsigned long address
,
2186 pte_t
*pte
, pmd_t
*pmd
, int write_access
)
2192 old_entry
= entry
= *pte
;
2193 if (!pte_present(entry
)) {
2194 if (pte_none(entry
)) {
2195 if (!vma
->vm_ops
|| !vma
->vm_ops
->nopage
)
2196 return do_anonymous_page(mm
, vma
, address
,
2197 pte
, pmd
, write_access
);
2198 return do_no_page(mm
, vma
, address
,
2199 pte
, pmd
, write_access
);
2201 if (pte_file(entry
))
2202 return do_file_page(mm
, vma
, address
,
2203 pte
, pmd
, write_access
, entry
);
2204 return do_swap_page(mm
, vma
, address
,
2205 pte
, pmd
, write_access
, entry
);
2208 ptl
= pte_lockptr(mm
, pmd
);
2210 if (unlikely(!pte_same(*pte
, entry
)))
2213 if (!pte_write(entry
))
2214 return do_wp_page(mm
, vma
, address
,
2215 pte
, pmd
, ptl
, entry
);
2216 entry
= pte_mkdirty(entry
);
2218 entry
= pte_mkyoung(entry
);
2219 if (!pte_same(old_entry
, entry
)) {
2220 ptep_set_access_flags(vma
, address
, pte
, entry
, write_access
);
2221 update_mmu_cache(vma
, address
, entry
);
2222 lazy_mmu_prot_update(entry
);
2225 * This is needed only for protection faults but the arch code
2226 * is not yet telling us if this is a protection fault or not.
2227 * This still avoids useless tlb flushes for .text page faults
2231 flush_tlb_page(vma
, address
);
2234 pte_unmap_unlock(pte
, ptl
);
2235 return VM_FAULT_MINOR
;
2239 * By the time we get here, we already hold the mm semaphore
2241 int __handle_mm_fault(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
2242 unsigned long address
, int write_access
)
2249 __set_current_state(TASK_RUNNING
);
2251 inc_page_state(pgfault
);
2253 if (unlikely(is_vm_hugetlb_page(vma
)))
2254 return hugetlb_fault(mm
, vma
, address
, write_access
);
2256 pgd
= pgd_offset(mm
, address
);
2257 pud
= pud_alloc(mm
, pgd
, address
);
2259 return VM_FAULT_OOM
;
2260 pmd
= pmd_alloc(mm
, pud
, address
);
2262 return VM_FAULT_OOM
;
2263 pte
= pte_alloc_map(mm
, pmd
, address
);
2265 return VM_FAULT_OOM
;
2267 return handle_pte_fault(mm
, vma
, address
, pte
, pmd
, write_access
);
2270 EXPORT_SYMBOL_GPL(__handle_mm_fault
);
2272 #ifndef __PAGETABLE_PUD_FOLDED
2274 * Allocate page upper directory.
2275 * We've already handled the fast-path in-line.
2277 int __pud_alloc(struct mm_struct
*mm
, pgd_t
*pgd
, unsigned long address
)
2279 pud_t
*new = pud_alloc_one(mm
, address
);
2283 spin_lock(&mm
->page_table_lock
);
2284 if (pgd_present(*pgd
)) /* Another has populated it */
2287 pgd_populate(mm
, pgd
, new);
2288 spin_unlock(&mm
->page_table_lock
);
2292 /* Workaround for gcc 2.96 */
2293 int __pud_alloc(struct mm_struct
*mm
, pgd_t
*pgd
, unsigned long address
)
2297 #endif /* __PAGETABLE_PUD_FOLDED */
2299 #ifndef __PAGETABLE_PMD_FOLDED
2301 * Allocate page middle directory.
2302 * We've already handled the fast-path in-line.
2304 int __pmd_alloc(struct mm_struct
*mm
, pud_t
*pud
, unsigned long address
)
2306 pmd_t
*new = pmd_alloc_one(mm
, address
);
2310 spin_lock(&mm
->page_table_lock
);
2311 #ifndef __ARCH_HAS_4LEVEL_HACK
2312 if (pud_present(*pud
)) /* Another has populated it */
2315 pud_populate(mm
, pud
, new);
2317 if (pgd_present(*pud
)) /* Another has populated it */
2320 pgd_populate(mm
, pud
, new);
2321 #endif /* __ARCH_HAS_4LEVEL_HACK */
2322 spin_unlock(&mm
->page_table_lock
);
2326 /* Workaround for gcc 2.96 */
2327 int __pmd_alloc(struct mm_struct
*mm
, pud_t
*pud
, unsigned long address
)
2331 #endif /* __PAGETABLE_PMD_FOLDED */
2333 int make_pages_present(unsigned long addr
, unsigned long end
)
2335 int ret
, len
, write
;
2336 struct vm_area_struct
* vma
;
2338 vma
= find_vma(current
->mm
, addr
);
2341 write
= (vma
->vm_flags
& VM_WRITE
) != 0;
2344 if (end
> vma
->vm_end
)
2346 len
= (end
+PAGE_SIZE
-1)/PAGE_SIZE
-addr
/PAGE_SIZE
;
2347 ret
= get_user_pages(current
, current
->mm
, addr
,
2348 len
, write
, 0, NULL
, NULL
);
2351 return ret
== len
? 0 : -1;
2355 * Map a vmalloc()-space virtual address to the physical page.
2357 struct page
* vmalloc_to_page(void * vmalloc_addr
)
2359 unsigned long addr
= (unsigned long) vmalloc_addr
;
2360 struct page
*page
= NULL
;
2361 pgd_t
*pgd
= pgd_offset_k(addr
);
2366 if (!pgd_none(*pgd
)) {
2367 pud
= pud_offset(pgd
, addr
);
2368 if (!pud_none(*pud
)) {
2369 pmd
= pmd_offset(pud
, addr
);
2370 if (!pmd_none(*pmd
)) {
2371 ptep
= pte_offset_map(pmd
, addr
);
2373 if (pte_present(pte
))
2374 page
= pte_page(pte
);
2382 EXPORT_SYMBOL(vmalloc_to_page
);
2385 * Map a vmalloc()-space virtual address to the physical page frame number.
2387 unsigned long vmalloc_to_pfn(void * vmalloc_addr
)
2389 return page_to_pfn(vmalloc_to_page(vmalloc_addr
));
2392 EXPORT_SYMBOL(vmalloc_to_pfn
);
2394 #if !defined(__HAVE_ARCH_GATE_AREA)
2396 #if defined(AT_SYSINFO_EHDR)
2397 static struct vm_area_struct gate_vma
;
2399 static int __init
gate_vma_init(void)
2401 gate_vma
.vm_mm
= NULL
;
2402 gate_vma
.vm_start
= FIXADDR_USER_START
;
2403 gate_vma
.vm_end
= FIXADDR_USER_END
;
2404 gate_vma
.vm_page_prot
= PAGE_READONLY
;
2405 gate_vma
.vm_flags
= 0;
2408 __initcall(gate_vma_init
);
2411 struct vm_area_struct
*get_gate_vma(struct task_struct
*tsk
)
2413 #ifdef AT_SYSINFO_EHDR
2420 int in_gate_area_no_task(unsigned long addr
)
2422 #ifdef AT_SYSINFO_EHDR
2423 if ((addr
>= FIXADDR_USER_START
) && (addr
< FIXADDR_USER_END
))
2429 #endif /* __HAVE_ARCH_GATE_AREA */