ALSA: Add support for mechanical jack insertion
[linux-2.6/mini2440.git] / kernel / sched_rt.c
blob1113157b20581b07cbcdf325d4d3428cdd7cd288
1 /*
2 * Real-Time Scheduling Class (mapped to the SCHED_FIFO and SCHED_RR
3 * policies)
4 */
6 #ifdef CONFIG_SMP
8 static inline int rt_overloaded(struct rq *rq)
10 return atomic_read(&rq->rd->rto_count);
13 static inline void rt_set_overload(struct rq *rq)
15 if (!rq->online)
16 return;
18 cpu_set(rq->cpu, rq->rd->rto_mask);
20 * Make sure the mask is visible before we set
21 * the overload count. That is checked to determine
22 * if we should look at the mask. It would be a shame
23 * if we looked at the mask, but the mask was not
24 * updated yet.
26 wmb();
27 atomic_inc(&rq->rd->rto_count);
30 static inline void rt_clear_overload(struct rq *rq)
32 if (!rq->online)
33 return;
35 /* the order here really doesn't matter */
36 atomic_dec(&rq->rd->rto_count);
37 cpu_clear(rq->cpu, rq->rd->rto_mask);
40 static void update_rt_migration(struct rq *rq)
42 if (rq->rt.rt_nr_migratory && (rq->rt.rt_nr_running > 1)) {
43 if (!rq->rt.overloaded) {
44 rt_set_overload(rq);
45 rq->rt.overloaded = 1;
47 } else if (rq->rt.overloaded) {
48 rt_clear_overload(rq);
49 rq->rt.overloaded = 0;
52 #endif /* CONFIG_SMP */
54 static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se)
56 return container_of(rt_se, struct task_struct, rt);
59 static inline int on_rt_rq(struct sched_rt_entity *rt_se)
61 return !list_empty(&rt_se->run_list);
64 #ifdef CONFIG_RT_GROUP_SCHED
66 static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
68 if (!rt_rq->tg)
69 return RUNTIME_INF;
71 return rt_rq->rt_runtime;
74 static inline u64 sched_rt_period(struct rt_rq *rt_rq)
76 return ktime_to_ns(rt_rq->tg->rt_bandwidth.rt_period);
79 #define for_each_leaf_rt_rq(rt_rq, rq) \
80 list_for_each_entry(rt_rq, &rq->leaf_rt_rq_list, leaf_rt_rq_list)
82 static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
84 return rt_rq->rq;
87 static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
89 return rt_se->rt_rq;
92 #define for_each_sched_rt_entity(rt_se) \
93 for (; rt_se; rt_se = rt_se->parent)
95 static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
97 return rt_se->my_q;
100 static void enqueue_rt_entity(struct sched_rt_entity *rt_se);
101 static void dequeue_rt_entity(struct sched_rt_entity *rt_se);
103 static void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
105 struct sched_rt_entity *rt_se = rt_rq->rt_se;
107 if (rt_se && !on_rt_rq(rt_se) && rt_rq->rt_nr_running) {
108 struct task_struct *curr = rq_of_rt_rq(rt_rq)->curr;
110 enqueue_rt_entity(rt_se);
111 if (rt_rq->highest_prio < curr->prio)
112 resched_task(curr);
116 static void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
118 struct sched_rt_entity *rt_se = rt_rq->rt_se;
120 if (rt_se && on_rt_rq(rt_se))
121 dequeue_rt_entity(rt_se);
124 static inline int rt_rq_throttled(struct rt_rq *rt_rq)
126 return rt_rq->rt_throttled && !rt_rq->rt_nr_boosted;
129 static int rt_se_boosted(struct sched_rt_entity *rt_se)
131 struct rt_rq *rt_rq = group_rt_rq(rt_se);
132 struct task_struct *p;
134 if (rt_rq)
135 return !!rt_rq->rt_nr_boosted;
137 p = rt_task_of(rt_se);
138 return p->prio != p->normal_prio;
141 #ifdef CONFIG_SMP
142 static inline cpumask_t sched_rt_period_mask(void)
144 return cpu_rq(smp_processor_id())->rd->span;
146 #else
147 static inline cpumask_t sched_rt_period_mask(void)
149 return cpu_online_map;
151 #endif
153 static inline
154 struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
156 return container_of(rt_b, struct task_group, rt_bandwidth)->rt_rq[cpu];
159 static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
161 return &rt_rq->tg->rt_bandwidth;
164 #else /* !CONFIG_RT_GROUP_SCHED */
166 static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
168 return rt_rq->rt_runtime;
171 static inline u64 sched_rt_period(struct rt_rq *rt_rq)
173 return ktime_to_ns(def_rt_bandwidth.rt_period);
176 #define for_each_leaf_rt_rq(rt_rq, rq) \
177 for (rt_rq = &rq->rt; rt_rq; rt_rq = NULL)
179 static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
181 return container_of(rt_rq, struct rq, rt);
184 static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
186 struct task_struct *p = rt_task_of(rt_se);
187 struct rq *rq = task_rq(p);
189 return &rq->rt;
192 #define for_each_sched_rt_entity(rt_se) \
193 for (; rt_se; rt_se = NULL)
195 static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
197 return NULL;
200 static inline void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
202 if (rt_rq->rt_nr_running)
203 resched_task(rq_of_rt_rq(rt_rq)->curr);
206 static inline void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
210 static inline int rt_rq_throttled(struct rt_rq *rt_rq)
212 return rt_rq->rt_throttled;
215 static inline cpumask_t sched_rt_period_mask(void)
217 return cpu_online_map;
220 static inline
221 struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
223 return &cpu_rq(cpu)->rt;
226 static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
228 return &def_rt_bandwidth;
231 #endif /* CONFIG_RT_GROUP_SCHED */
233 #ifdef CONFIG_SMP
234 static int do_balance_runtime(struct rt_rq *rt_rq)
236 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
237 struct root_domain *rd = cpu_rq(smp_processor_id())->rd;
238 int i, weight, more = 0;
239 u64 rt_period;
241 weight = cpus_weight(rd->span);
243 spin_lock(&rt_b->rt_runtime_lock);
244 rt_period = ktime_to_ns(rt_b->rt_period);
245 for_each_cpu_mask_nr(i, rd->span) {
246 struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
247 s64 diff;
249 if (iter == rt_rq)
250 continue;
252 spin_lock(&iter->rt_runtime_lock);
253 if (iter->rt_runtime == RUNTIME_INF)
254 goto next;
256 diff = iter->rt_runtime - iter->rt_time;
257 if (diff > 0) {
258 diff = div_u64((u64)diff, weight);
259 if (rt_rq->rt_runtime + diff > rt_period)
260 diff = rt_period - rt_rq->rt_runtime;
261 iter->rt_runtime -= diff;
262 rt_rq->rt_runtime += diff;
263 more = 1;
264 if (rt_rq->rt_runtime == rt_period) {
265 spin_unlock(&iter->rt_runtime_lock);
266 break;
269 next:
270 spin_unlock(&iter->rt_runtime_lock);
272 spin_unlock(&rt_b->rt_runtime_lock);
274 return more;
277 static void __disable_runtime(struct rq *rq)
279 struct root_domain *rd = rq->rd;
280 struct rt_rq *rt_rq;
282 if (unlikely(!scheduler_running))
283 return;
285 for_each_leaf_rt_rq(rt_rq, rq) {
286 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
287 s64 want;
288 int i;
290 spin_lock(&rt_b->rt_runtime_lock);
291 spin_lock(&rt_rq->rt_runtime_lock);
292 if (rt_rq->rt_runtime == RUNTIME_INF ||
293 rt_rq->rt_runtime == rt_b->rt_runtime)
294 goto balanced;
295 spin_unlock(&rt_rq->rt_runtime_lock);
297 want = rt_b->rt_runtime - rt_rq->rt_runtime;
299 for_each_cpu_mask(i, rd->span) {
300 struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
301 s64 diff;
303 if (iter == rt_rq || iter->rt_runtime == RUNTIME_INF)
304 continue;
306 spin_lock(&iter->rt_runtime_lock);
307 if (want > 0) {
308 diff = min_t(s64, iter->rt_runtime, want);
309 iter->rt_runtime -= diff;
310 want -= diff;
311 } else {
312 iter->rt_runtime -= want;
313 want -= want;
315 spin_unlock(&iter->rt_runtime_lock);
317 if (!want)
318 break;
321 spin_lock(&rt_rq->rt_runtime_lock);
322 BUG_ON(want);
323 balanced:
324 rt_rq->rt_runtime = RUNTIME_INF;
325 spin_unlock(&rt_rq->rt_runtime_lock);
326 spin_unlock(&rt_b->rt_runtime_lock);
330 static void disable_runtime(struct rq *rq)
332 unsigned long flags;
334 spin_lock_irqsave(&rq->lock, flags);
335 __disable_runtime(rq);
336 spin_unlock_irqrestore(&rq->lock, flags);
339 static void __enable_runtime(struct rq *rq)
341 struct rt_rq *rt_rq;
343 if (unlikely(!scheduler_running))
344 return;
346 for_each_leaf_rt_rq(rt_rq, rq) {
347 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
349 spin_lock(&rt_b->rt_runtime_lock);
350 spin_lock(&rt_rq->rt_runtime_lock);
351 rt_rq->rt_runtime = rt_b->rt_runtime;
352 rt_rq->rt_time = 0;
353 rt_rq->rt_throttled = 0;
354 spin_unlock(&rt_rq->rt_runtime_lock);
355 spin_unlock(&rt_b->rt_runtime_lock);
359 static void enable_runtime(struct rq *rq)
361 unsigned long flags;
363 spin_lock_irqsave(&rq->lock, flags);
364 __enable_runtime(rq);
365 spin_unlock_irqrestore(&rq->lock, flags);
368 static int balance_runtime(struct rt_rq *rt_rq)
370 int more = 0;
372 if (rt_rq->rt_time > rt_rq->rt_runtime) {
373 spin_unlock(&rt_rq->rt_runtime_lock);
374 more = do_balance_runtime(rt_rq);
375 spin_lock(&rt_rq->rt_runtime_lock);
378 return more;
380 #else /* !CONFIG_SMP */
381 static inline int balance_runtime(struct rt_rq *rt_rq)
383 return 0;
385 #endif /* CONFIG_SMP */
387 static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun)
389 int i, idle = 1;
390 cpumask_t span;
392 if (rt_b->rt_runtime == RUNTIME_INF)
393 return 1;
395 span = sched_rt_period_mask();
396 for_each_cpu_mask(i, span) {
397 int enqueue = 0;
398 struct rt_rq *rt_rq = sched_rt_period_rt_rq(rt_b, i);
399 struct rq *rq = rq_of_rt_rq(rt_rq);
401 spin_lock(&rq->lock);
402 if (rt_rq->rt_time) {
403 u64 runtime;
405 spin_lock(&rt_rq->rt_runtime_lock);
406 if (rt_rq->rt_throttled)
407 balance_runtime(rt_rq);
408 runtime = rt_rq->rt_runtime;
409 rt_rq->rt_time -= min(rt_rq->rt_time, overrun*runtime);
410 if (rt_rq->rt_throttled && rt_rq->rt_time < runtime) {
411 rt_rq->rt_throttled = 0;
412 enqueue = 1;
414 if (rt_rq->rt_time || rt_rq->rt_nr_running)
415 idle = 0;
416 spin_unlock(&rt_rq->rt_runtime_lock);
417 } else if (rt_rq->rt_nr_running)
418 idle = 0;
420 if (enqueue)
421 sched_rt_rq_enqueue(rt_rq);
422 spin_unlock(&rq->lock);
425 return idle;
428 static inline int rt_se_prio(struct sched_rt_entity *rt_se)
430 #ifdef CONFIG_RT_GROUP_SCHED
431 struct rt_rq *rt_rq = group_rt_rq(rt_se);
433 if (rt_rq)
434 return rt_rq->highest_prio;
435 #endif
437 return rt_task_of(rt_se)->prio;
440 static int sched_rt_runtime_exceeded(struct rt_rq *rt_rq)
442 u64 runtime = sched_rt_runtime(rt_rq);
444 if (rt_rq->rt_throttled)
445 return rt_rq_throttled(rt_rq);
447 if (sched_rt_runtime(rt_rq) >= sched_rt_period(rt_rq))
448 return 0;
450 balance_runtime(rt_rq);
451 runtime = sched_rt_runtime(rt_rq);
452 if (runtime == RUNTIME_INF)
453 return 0;
455 if (rt_rq->rt_time > runtime) {
456 rt_rq->rt_throttled = 1;
457 if (rt_rq_throttled(rt_rq)) {
458 sched_rt_rq_dequeue(rt_rq);
459 return 1;
463 return 0;
467 * Update the current task's runtime statistics. Skip current tasks that
468 * are not in our scheduling class.
470 static void update_curr_rt(struct rq *rq)
472 struct task_struct *curr = rq->curr;
473 struct sched_rt_entity *rt_se = &curr->rt;
474 struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
475 u64 delta_exec;
477 if (!task_has_rt_policy(curr))
478 return;
480 delta_exec = rq->clock - curr->se.exec_start;
481 if (unlikely((s64)delta_exec < 0))
482 delta_exec = 0;
484 schedstat_set(curr->se.exec_max, max(curr->se.exec_max, delta_exec));
486 curr->se.sum_exec_runtime += delta_exec;
487 curr->se.exec_start = rq->clock;
488 cpuacct_charge(curr, delta_exec);
490 for_each_sched_rt_entity(rt_se) {
491 rt_rq = rt_rq_of_se(rt_se);
493 spin_lock(&rt_rq->rt_runtime_lock);
494 if (sched_rt_runtime(rt_rq) != RUNTIME_INF) {
495 rt_rq->rt_time += delta_exec;
496 if (sched_rt_runtime_exceeded(rt_rq))
497 resched_task(curr);
499 spin_unlock(&rt_rq->rt_runtime_lock);
503 static inline
504 void inc_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
506 WARN_ON(!rt_prio(rt_se_prio(rt_se)));
507 rt_rq->rt_nr_running++;
508 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
509 if (rt_se_prio(rt_se) < rt_rq->highest_prio) {
510 #ifdef CONFIG_SMP
511 struct rq *rq = rq_of_rt_rq(rt_rq);
512 #endif
514 rt_rq->highest_prio = rt_se_prio(rt_se);
515 #ifdef CONFIG_SMP
516 if (rq->online)
517 cpupri_set(&rq->rd->cpupri, rq->cpu,
518 rt_se_prio(rt_se));
519 #endif
521 #endif
522 #ifdef CONFIG_SMP
523 if (rt_se->nr_cpus_allowed > 1) {
524 struct rq *rq = rq_of_rt_rq(rt_rq);
526 rq->rt.rt_nr_migratory++;
529 update_rt_migration(rq_of_rt_rq(rt_rq));
530 #endif
531 #ifdef CONFIG_RT_GROUP_SCHED
532 if (rt_se_boosted(rt_se))
533 rt_rq->rt_nr_boosted++;
535 if (rt_rq->tg)
536 start_rt_bandwidth(&rt_rq->tg->rt_bandwidth);
537 #else
538 start_rt_bandwidth(&def_rt_bandwidth);
539 #endif
542 static inline
543 void dec_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
545 #ifdef CONFIG_SMP
546 int highest_prio = rt_rq->highest_prio;
547 #endif
549 WARN_ON(!rt_prio(rt_se_prio(rt_se)));
550 WARN_ON(!rt_rq->rt_nr_running);
551 rt_rq->rt_nr_running--;
552 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
553 if (rt_rq->rt_nr_running) {
554 struct rt_prio_array *array;
556 WARN_ON(rt_se_prio(rt_se) < rt_rq->highest_prio);
557 if (rt_se_prio(rt_se) == rt_rq->highest_prio) {
558 /* recalculate */
559 array = &rt_rq->active;
560 rt_rq->highest_prio =
561 sched_find_first_bit(array->bitmap);
562 } /* otherwise leave rq->highest prio alone */
563 } else
564 rt_rq->highest_prio = MAX_RT_PRIO;
565 #endif
566 #ifdef CONFIG_SMP
567 if (rt_se->nr_cpus_allowed > 1) {
568 struct rq *rq = rq_of_rt_rq(rt_rq);
569 rq->rt.rt_nr_migratory--;
572 if (rt_rq->highest_prio != highest_prio) {
573 struct rq *rq = rq_of_rt_rq(rt_rq);
575 if (rq->online)
576 cpupri_set(&rq->rd->cpupri, rq->cpu,
577 rt_rq->highest_prio);
580 update_rt_migration(rq_of_rt_rq(rt_rq));
581 #endif /* CONFIG_SMP */
582 #ifdef CONFIG_RT_GROUP_SCHED
583 if (rt_se_boosted(rt_se))
584 rt_rq->rt_nr_boosted--;
586 WARN_ON(!rt_rq->rt_nr_running && rt_rq->rt_nr_boosted);
587 #endif
590 static void __enqueue_rt_entity(struct sched_rt_entity *rt_se)
592 struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
593 struct rt_prio_array *array = &rt_rq->active;
594 struct rt_rq *group_rq = group_rt_rq(rt_se);
595 struct list_head *queue = array->queue + rt_se_prio(rt_se);
598 * Don't enqueue the group if its throttled, or when empty.
599 * The latter is a consequence of the former when a child group
600 * get throttled and the current group doesn't have any other
601 * active members.
603 if (group_rq && (rt_rq_throttled(group_rq) || !group_rq->rt_nr_running))
604 return;
606 list_add_tail(&rt_se->run_list, queue);
607 __set_bit(rt_se_prio(rt_se), array->bitmap);
609 inc_rt_tasks(rt_se, rt_rq);
612 static void __dequeue_rt_entity(struct sched_rt_entity *rt_se)
614 struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
615 struct rt_prio_array *array = &rt_rq->active;
617 list_del_init(&rt_se->run_list);
618 if (list_empty(array->queue + rt_se_prio(rt_se)))
619 __clear_bit(rt_se_prio(rt_se), array->bitmap);
621 dec_rt_tasks(rt_se, rt_rq);
625 * Because the prio of an upper entry depends on the lower
626 * entries, we must remove entries top - down.
628 static void dequeue_rt_stack(struct sched_rt_entity *rt_se)
630 struct sched_rt_entity *back = NULL;
632 for_each_sched_rt_entity(rt_se) {
633 rt_se->back = back;
634 back = rt_se;
637 for (rt_se = back; rt_se; rt_se = rt_se->back) {
638 if (on_rt_rq(rt_se))
639 __dequeue_rt_entity(rt_se);
643 static void enqueue_rt_entity(struct sched_rt_entity *rt_se)
645 dequeue_rt_stack(rt_se);
646 for_each_sched_rt_entity(rt_se)
647 __enqueue_rt_entity(rt_se);
650 static void dequeue_rt_entity(struct sched_rt_entity *rt_se)
652 dequeue_rt_stack(rt_se);
654 for_each_sched_rt_entity(rt_se) {
655 struct rt_rq *rt_rq = group_rt_rq(rt_se);
657 if (rt_rq && rt_rq->rt_nr_running)
658 __enqueue_rt_entity(rt_se);
663 * Adding/removing a task to/from a priority array:
665 static void enqueue_task_rt(struct rq *rq, struct task_struct *p, int wakeup)
667 struct sched_rt_entity *rt_se = &p->rt;
669 if (wakeup)
670 rt_se->timeout = 0;
672 enqueue_rt_entity(rt_se);
674 inc_cpu_load(rq, p->se.load.weight);
677 static void dequeue_task_rt(struct rq *rq, struct task_struct *p, int sleep)
679 struct sched_rt_entity *rt_se = &p->rt;
681 update_curr_rt(rq);
682 dequeue_rt_entity(rt_se);
684 dec_cpu_load(rq, p->se.load.weight);
688 * Put task to the end of the run list without the overhead of dequeue
689 * followed by enqueue.
691 static void
692 requeue_rt_entity(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se, int head)
694 if (on_rt_rq(rt_se)) {
695 struct rt_prio_array *array = &rt_rq->active;
696 struct list_head *queue = array->queue + rt_se_prio(rt_se);
698 if (head)
699 list_move(&rt_se->run_list, queue);
700 else
701 list_move_tail(&rt_se->run_list, queue);
705 static void requeue_task_rt(struct rq *rq, struct task_struct *p, int head)
707 struct sched_rt_entity *rt_se = &p->rt;
708 struct rt_rq *rt_rq;
710 for_each_sched_rt_entity(rt_se) {
711 rt_rq = rt_rq_of_se(rt_se);
712 requeue_rt_entity(rt_rq, rt_se, head);
716 static void yield_task_rt(struct rq *rq)
718 requeue_task_rt(rq, rq->curr, 0);
721 #ifdef CONFIG_SMP
722 static int find_lowest_rq(struct task_struct *task);
724 static int select_task_rq_rt(struct task_struct *p, int sync)
726 struct rq *rq = task_rq(p);
729 * If the current task is an RT task, then
730 * try to see if we can wake this RT task up on another
731 * runqueue. Otherwise simply start this RT task
732 * on its current runqueue.
734 * We want to avoid overloading runqueues. Even if
735 * the RT task is of higher priority than the current RT task.
736 * RT tasks behave differently than other tasks. If
737 * one gets preempted, we try to push it off to another queue.
738 * So trying to keep a preempting RT task on the same
739 * cache hot CPU will force the running RT task to
740 * a cold CPU. So we waste all the cache for the lower
741 * RT task in hopes of saving some of a RT task
742 * that is just being woken and probably will have
743 * cold cache anyway.
745 if (unlikely(rt_task(rq->curr)) &&
746 (p->rt.nr_cpus_allowed > 1)) {
747 int cpu = find_lowest_rq(p);
749 return (cpu == -1) ? task_cpu(p) : cpu;
753 * Otherwise, just let it ride on the affined RQ and the
754 * post-schedule router will push the preempted task away
756 return task_cpu(p);
759 static void check_preempt_equal_prio(struct rq *rq, struct task_struct *p)
761 cpumask_t mask;
763 if (rq->curr->rt.nr_cpus_allowed == 1)
764 return;
766 if (p->rt.nr_cpus_allowed != 1
767 && cpupri_find(&rq->rd->cpupri, p, &mask))
768 return;
770 if (!cpupri_find(&rq->rd->cpupri, rq->curr, &mask))
771 return;
774 * There appears to be other cpus that can accept
775 * current and none to run 'p', so lets reschedule
776 * to try and push current away:
778 requeue_task_rt(rq, p, 1);
779 resched_task(rq->curr);
782 #endif /* CONFIG_SMP */
785 * Preempt the current task with a newly woken task if needed:
787 static void check_preempt_curr_rt(struct rq *rq, struct task_struct *p)
789 if (p->prio < rq->curr->prio) {
790 resched_task(rq->curr);
791 return;
794 #ifdef CONFIG_SMP
796 * If:
798 * - the newly woken task is of equal priority to the current task
799 * - the newly woken task is non-migratable while current is migratable
800 * - current will be preempted on the next reschedule
802 * we should check to see if current can readily move to a different
803 * cpu. If so, we will reschedule to allow the push logic to try
804 * to move current somewhere else, making room for our non-migratable
805 * task.
807 if (p->prio == rq->curr->prio && !need_resched())
808 check_preempt_equal_prio(rq, p);
809 #endif
812 static struct sched_rt_entity *pick_next_rt_entity(struct rq *rq,
813 struct rt_rq *rt_rq)
815 struct rt_prio_array *array = &rt_rq->active;
816 struct sched_rt_entity *next = NULL;
817 struct list_head *queue;
818 int idx;
820 idx = sched_find_first_bit(array->bitmap);
821 BUG_ON(idx >= MAX_RT_PRIO);
823 queue = array->queue + idx;
824 next = list_entry(queue->next, struct sched_rt_entity, run_list);
826 return next;
829 static struct task_struct *pick_next_task_rt(struct rq *rq)
831 struct sched_rt_entity *rt_se;
832 struct task_struct *p;
833 struct rt_rq *rt_rq;
835 rt_rq = &rq->rt;
837 if (unlikely(!rt_rq->rt_nr_running))
838 return NULL;
840 if (rt_rq_throttled(rt_rq))
841 return NULL;
843 do {
844 rt_se = pick_next_rt_entity(rq, rt_rq);
845 BUG_ON(!rt_se);
846 rt_rq = group_rt_rq(rt_se);
847 } while (rt_rq);
849 p = rt_task_of(rt_se);
850 p->se.exec_start = rq->clock;
851 return p;
854 static void put_prev_task_rt(struct rq *rq, struct task_struct *p)
856 update_curr_rt(rq);
857 p->se.exec_start = 0;
860 #ifdef CONFIG_SMP
862 /* Only try algorithms three times */
863 #define RT_MAX_TRIES 3
865 static int double_lock_balance(struct rq *this_rq, struct rq *busiest);
866 static void double_unlock_balance(struct rq *this_rq, struct rq *busiest);
868 static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep);
870 static int pick_rt_task(struct rq *rq, struct task_struct *p, int cpu)
872 if (!task_running(rq, p) &&
873 (cpu < 0 || cpu_isset(cpu, p->cpus_allowed)) &&
874 (p->rt.nr_cpus_allowed > 1))
875 return 1;
876 return 0;
879 /* Return the second highest RT task, NULL otherwise */
880 static struct task_struct *pick_next_highest_task_rt(struct rq *rq, int cpu)
882 struct task_struct *next = NULL;
883 struct sched_rt_entity *rt_se;
884 struct rt_prio_array *array;
885 struct rt_rq *rt_rq;
886 int idx;
888 for_each_leaf_rt_rq(rt_rq, rq) {
889 array = &rt_rq->active;
890 idx = sched_find_first_bit(array->bitmap);
891 next_idx:
892 if (idx >= MAX_RT_PRIO)
893 continue;
894 if (next && next->prio < idx)
895 continue;
896 list_for_each_entry(rt_se, array->queue + idx, run_list) {
897 struct task_struct *p = rt_task_of(rt_se);
898 if (pick_rt_task(rq, p, cpu)) {
899 next = p;
900 break;
903 if (!next) {
904 idx = find_next_bit(array->bitmap, MAX_RT_PRIO, idx+1);
905 goto next_idx;
909 return next;
912 static DEFINE_PER_CPU(cpumask_t, local_cpu_mask);
914 static inline int pick_optimal_cpu(int this_cpu, cpumask_t *mask)
916 int first;
918 /* "this_cpu" is cheaper to preempt than a remote processor */
919 if ((this_cpu != -1) && cpu_isset(this_cpu, *mask))
920 return this_cpu;
922 first = first_cpu(*mask);
923 if (first != NR_CPUS)
924 return first;
926 return -1;
929 static int find_lowest_rq(struct task_struct *task)
931 struct sched_domain *sd;
932 cpumask_t *lowest_mask = &__get_cpu_var(local_cpu_mask);
933 int this_cpu = smp_processor_id();
934 int cpu = task_cpu(task);
936 if (task->rt.nr_cpus_allowed == 1)
937 return -1; /* No other targets possible */
939 if (!cpupri_find(&task_rq(task)->rd->cpupri, task, lowest_mask))
940 return -1; /* No targets found */
943 * Only consider CPUs that are usable for migration.
944 * I guess we might want to change cpupri_find() to ignore those
945 * in the first place.
947 cpus_and(*lowest_mask, *lowest_mask, cpu_active_map);
950 * At this point we have built a mask of cpus representing the
951 * lowest priority tasks in the system. Now we want to elect
952 * the best one based on our affinity and topology.
954 * We prioritize the last cpu that the task executed on since
955 * it is most likely cache-hot in that location.
957 if (cpu_isset(cpu, *lowest_mask))
958 return cpu;
961 * Otherwise, we consult the sched_domains span maps to figure
962 * out which cpu is logically closest to our hot cache data.
964 if (this_cpu == cpu)
965 this_cpu = -1; /* Skip this_cpu opt if the same */
967 for_each_domain(cpu, sd) {
968 if (sd->flags & SD_WAKE_AFFINE) {
969 cpumask_t domain_mask;
970 int best_cpu;
972 cpus_and(domain_mask, sd->span, *lowest_mask);
974 best_cpu = pick_optimal_cpu(this_cpu,
975 &domain_mask);
976 if (best_cpu != -1)
977 return best_cpu;
982 * And finally, if there were no matches within the domains
983 * just give the caller *something* to work with from the compatible
984 * locations.
986 return pick_optimal_cpu(this_cpu, lowest_mask);
989 /* Will lock the rq it finds */
990 static struct rq *find_lock_lowest_rq(struct task_struct *task, struct rq *rq)
992 struct rq *lowest_rq = NULL;
993 int tries;
994 int cpu;
996 for (tries = 0; tries < RT_MAX_TRIES; tries++) {
997 cpu = find_lowest_rq(task);
999 if ((cpu == -1) || (cpu == rq->cpu))
1000 break;
1002 lowest_rq = cpu_rq(cpu);
1004 /* if the prio of this runqueue changed, try again */
1005 if (double_lock_balance(rq, lowest_rq)) {
1007 * We had to unlock the run queue. In
1008 * the mean time, task could have
1009 * migrated already or had its affinity changed.
1010 * Also make sure that it wasn't scheduled on its rq.
1012 if (unlikely(task_rq(task) != rq ||
1013 !cpu_isset(lowest_rq->cpu,
1014 task->cpus_allowed) ||
1015 task_running(rq, task) ||
1016 !task->se.on_rq)) {
1018 spin_unlock(&lowest_rq->lock);
1019 lowest_rq = NULL;
1020 break;
1024 /* If this rq is still suitable use it. */
1025 if (lowest_rq->rt.highest_prio > task->prio)
1026 break;
1028 /* try again */
1029 double_unlock_balance(rq, lowest_rq);
1030 lowest_rq = NULL;
1033 return lowest_rq;
1037 * If the current CPU has more than one RT task, see if the non
1038 * running task can migrate over to a CPU that is running a task
1039 * of lesser priority.
1041 static int push_rt_task(struct rq *rq)
1043 struct task_struct *next_task;
1044 struct rq *lowest_rq;
1045 int ret = 0;
1046 int paranoid = RT_MAX_TRIES;
1048 if (!rq->rt.overloaded)
1049 return 0;
1051 next_task = pick_next_highest_task_rt(rq, -1);
1052 if (!next_task)
1053 return 0;
1055 retry:
1056 if (unlikely(next_task == rq->curr)) {
1057 WARN_ON(1);
1058 return 0;
1062 * It's possible that the next_task slipped in of
1063 * higher priority than current. If that's the case
1064 * just reschedule current.
1066 if (unlikely(next_task->prio < rq->curr->prio)) {
1067 resched_task(rq->curr);
1068 return 0;
1071 /* We might release rq lock */
1072 get_task_struct(next_task);
1074 /* find_lock_lowest_rq locks the rq if found */
1075 lowest_rq = find_lock_lowest_rq(next_task, rq);
1076 if (!lowest_rq) {
1077 struct task_struct *task;
1079 * find lock_lowest_rq releases rq->lock
1080 * so it is possible that next_task has changed.
1081 * If it has, then try again.
1083 task = pick_next_highest_task_rt(rq, -1);
1084 if (unlikely(task != next_task) && task && paranoid--) {
1085 put_task_struct(next_task);
1086 next_task = task;
1087 goto retry;
1089 goto out;
1092 deactivate_task(rq, next_task, 0);
1093 set_task_cpu(next_task, lowest_rq->cpu);
1094 activate_task(lowest_rq, next_task, 0);
1096 resched_task(lowest_rq->curr);
1098 double_unlock_balance(rq, lowest_rq);
1100 ret = 1;
1101 out:
1102 put_task_struct(next_task);
1104 return ret;
1108 * TODO: Currently we just use the second highest prio task on
1109 * the queue, and stop when it can't migrate (or there's
1110 * no more RT tasks). There may be a case where a lower
1111 * priority RT task has a different affinity than the
1112 * higher RT task. In this case the lower RT task could
1113 * possibly be able to migrate where as the higher priority
1114 * RT task could not. We currently ignore this issue.
1115 * Enhancements are welcome!
1117 static void push_rt_tasks(struct rq *rq)
1119 /* push_rt_task will return true if it moved an RT */
1120 while (push_rt_task(rq))
1124 static int pull_rt_task(struct rq *this_rq)
1126 int this_cpu = this_rq->cpu, ret = 0, cpu;
1127 struct task_struct *p, *next;
1128 struct rq *src_rq;
1130 if (likely(!rt_overloaded(this_rq)))
1131 return 0;
1133 next = pick_next_task_rt(this_rq);
1135 for_each_cpu_mask_nr(cpu, this_rq->rd->rto_mask) {
1136 if (this_cpu == cpu)
1137 continue;
1139 src_rq = cpu_rq(cpu);
1141 * We can potentially drop this_rq's lock in
1142 * double_lock_balance, and another CPU could
1143 * steal our next task - hence we must cause
1144 * the caller to recalculate the next task
1145 * in that case:
1147 if (double_lock_balance(this_rq, src_rq)) {
1148 struct task_struct *old_next = next;
1150 next = pick_next_task_rt(this_rq);
1151 if (next != old_next)
1152 ret = 1;
1156 * Are there still pullable RT tasks?
1158 if (src_rq->rt.rt_nr_running <= 1)
1159 goto skip;
1161 p = pick_next_highest_task_rt(src_rq, this_cpu);
1164 * Do we have an RT task that preempts
1165 * the to-be-scheduled task?
1167 if (p && (!next || (p->prio < next->prio))) {
1168 WARN_ON(p == src_rq->curr);
1169 WARN_ON(!p->se.on_rq);
1172 * There's a chance that p is higher in priority
1173 * than what's currently running on its cpu.
1174 * This is just that p is wakeing up and hasn't
1175 * had a chance to schedule. We only pull
1176 * p if it is lower in priority than the
1177 * current task on the run queue or
1178 * this_rq next task is lower in prio than
1179 * the current task on that rq.
1181 if (p->prio < src_rq->curr->prio ||
1182 (next && next->prio < src_rq->curr->prio))
1183 goto skip;
1185 ret = 1;
1187 deactivate_task(src_rq, p, 0);
1188 set_task_cpu(p, this_cpu);
1189 activate_task(this_rq, p, 0);
1191 * We continue with the search, just in
1192 * case there's an even higher prio task
1193 * in another runqueue. (low likelyhood
1194 * but possible)
1196 * Update next so that we won't pick a task
1197 * on another cpu with a priority lower (or equal)
1198 * than the one we just picked.
1200 next = p;
1203 skip:
1204 double_unlock_balance(this_rq, src_rq);
1207 return ret;
1210 static void pre_schedule_rt(struct rq *rq, struct task_struct *prev)
1212 /* Try to pull RT tasks here if we lower this rq's prio */
1213 if (unlikely(rt_task(prev)) && rq->rt.highest_prio > prev->prio)
1214 pull_rt_task(rq);
1217 static void post_schedule_rt(struct rq *rq)
1220 * If we have more than one rt_task queued, then
1221 * see if we can push the other rt_tasks off to other CPUS.
1222 * Note we may release the rq lock, and since
1223 * the lock was owned by prev, we need to release it
1224 * first via finish_lock_switch and then reaquire it here.
1226 if (unlikely(rq->rt.overloaded)) {
1227 spin_lock_irq(&rq->lock);
1228 push_rt_tasks(rq);
1229 spin_unlock_irq(&rq->lock);
1234 * If we are not running and we are not going to reschedule soon, we should
1235 * try to push tasks away now
1237 static void task_wake_up_rt(struct rq *rq, struct task_struct *p)
1239 if (!task_running(rq, p) &&
1240 !test_tsk_need_resched(rq->curr) &&
1241 rq->rt.overloaded)
1242 push_rt_tasks(rq);
1245 static unsigned long
1246 load_balance_rt(struct rq *this_rq, int this_cpu, struct rq *busiest,
1247 unsigned long max_load_move,
1248 struct sched_domain *sd, enum cpu_idle_type idle,
1249 int *all_pinned, int *this_best_prio)
1251 /* don't touch RT tasks */
1252 return 0;
1255 static int
1256 move_one_task_rt(struct rq *this_rq, int this_cpu, struct rq *busiest,
1257 struct sched_domain *sd, enum cpu_idle_type idle)
1259 /* don't touch RT tasks */
1260 return 0;
1263 static void set_cpus_allowed_rt(struct task_struct *p,
1264 const cpumask_t *new_mask)
1266 int weight = cpus_weight(*new_mask);
1268 BUG_ON(!rt_task(p));
1271 * Update the migration status of the RQ if we have an RT task
1272 * which is running AND changing its weight value.
1274 if (p->se.on_rq && (weight != p->rt.nr_cpus_allowed)) {
1275 struct rq *rq = task_rq(p);
1277 if ((p->rt.nr_cpus_allowed <= 1) && (weight > 1)) {
1278 rq->rt.rt_nr_migratory++;
1279 } else if ((p->rt.nr_cpus_allowed > 1) && (weight <= 1)) {
1280 BUG_ON(!rq->rt.rt_nr_migratory);
1281 rq->rt.rt_nr_migratory--;
1284 update_rt_migration(rq);
1287 p->cpus_allowed = *new_mask;
1288 p->rt.nr_cpus_allowed = weight;
1291 /* Assumes rq->lock is held */
1292 static void rq_online_rt(struct rq *rq)
1294 if (rq->rt.overloaded)
1295 rt_set_overload(rq);
1297 __enable_runtime(rq);
1299 cpupri_set(&rq->rd->cpupri, rq->cpu, rq->rt.highest_prio);
1302 /* Assumes rq->lock is held */
1303 static void rq_offline_rt(struct rq *rq)
1305 if (rq->rt.overloaded)
1306 rt_clear_overload(rq);
1308 __disable_runtime(rq);
1310 cpupri_set(&rq->rd->cpupri, rq->cpu, CPUPRI_INVALID);
1314 * When switch from the rt queue, we bring ourselves to a position
1315 * that we might want to pull RT tasks from other runqueues.
1317 static void switched_from_rt(struct rq *rq, struct task_struct *p,
1318 int running)
1321 * If there are other RT tasks then we will reschedule
1322 * and the scheduling of the other RT tasks will handle
1323 * the balancing. But if we are the last RT task
1324 * we may need to handle the pulling of RT tasks
1325 * now.
1327 if (!rq->rt.rt_nr_running)
1328 pull_rt_task(rq);
1330 #endif /* CONFIG_SMP */
1333 * When switching a task to RT, we may overload the runqueue
1334 * with RT tasks. In this case we try to push them off to
1335 * other runqueues.
1337 static void switched_to_rt(struct rq *rq, struct task_struct *p,
1338 int running)
1340 int check_resched = 1;
1343 * If we are already running, then there's nothing
1344 * that needs to be done. But if we are not running
1345 * we may need to preempt the current running task.
1346 * If that current running task is also an RT task
1347 * then see if we can move to another run queue.
1349 if (!running) {
1350 #ifdef CONFIG_SMP
1351 if (rq->rt.overloaded && push_rt_task(rq) &&
1352 /* Don't resched if we changed runqueues */
1353 rq != task_rq(p))
1354 check_resched = 0;
1355 #endif /* CONFIG_SMP */
1356 if (check_resched && p->prio < rq->curr->prio)
1357 resched_task(rq->curr);
1362 * Priority of the task has changed. This may cause
1363 * us to initiate a push or pull.
1365 static void prio_changed_rt(struct rq *rq, struct task_struct *p,
1366 int oldprio, int running)
1368 if (running) {
1369 #ifdef CONFIG_SMP
1371 * If our priority decreases while running, we
1372 * may need to pull tasks to this runqueue.
1374 if (oldprio < p->prio)
1375 pull_rt_task(rq);
1377 * If there's a higher priority task waiting to run
1378 * then reschedule. Note, the above pull_rt_task
1379 * can release the rq lock and p could migrate.
1380 * Only reschedule if p is still on the same runqueue.
1382 if (p->prio > rq->rt.highest_prio && rq->curr == p)
1383 resched_task(p);
1384 #else
1385 /* For UP simply resched on drop of prio */
1386 if (oldprio < p->prio)
1387 resched_task(p);
1388 #endif /* CONFIG_SMP */
1389 } else {
1391 * This task is not running, but if it is
1392 * greater than the current running task
1393 * then reschedule.
1395 if (p->prio < rq->curr->prio)
1396 resched_task(rq->curr);
1400 static void watchdog(struct rq *rq, struct task_struct *p)
1402 unsigned long soft, hard;
1404 if (!p->signal)
1405 return;
1407 soft = p->signal->rlim[RLIMIT_RTTIME].rlim_cur;
1408 hard = p->signal->rlim[RLIMIT_RTTIME].rlim_max;
1410 if (soft != RLIM_INFINITY) {
1411 unsigned long next;
1413 p->rt.timeout++;
1414 next = DIV_ROUND_UP(min(soft, hard), USEC_PER_SEC/HZ);
1415 if (p->rt.timeout > next)
1416 p->it_sched_expires = p->se.sum_exec_runtime;
1420 static void task_tick_rt(struct rq *rq, struct task_struct *p, int queued)
1422 update_curr_rt(rq);
1424 watchdog(rq, p);
1427 * RR tasks need a special form of timeslice management.
1428 * FIFO tasks have no timeslices.
1430 if (p->policy != SCHED_RR)
1431 return;
1433 if (--p->rt.time_slice)
1434 return;
1436 p->rt.time_slice = DEF_TIMESLICE;
1439 * Requeue to the end of queue if we are not the only element
1440 * on the queue:
1442 if (p->rt.run_list.prev != p->rt.run_list.next) {
1443 requeue_task_rt(rq, p, 0);
1444 set_tsk_need_resched(p);
1448 static void set_curr_task_rt(struct rq *rq)
1450 struct task_struct *p = rq->curr;
1452 p->se.exec_start = rq->clock;
1455 static const struct sched_class rt_sched_class = {
1456 .next = &fair_sched_class,
1457 .enqueue_task = enqueue_task_rt,
1458 .dequeue_task = dequeue_task_rt,
1459 .yield_task = yield_task_rt,
1460 #ifdef CONFIG_SMP
1461 .select_task_rq = select_task_rq_rt,
1462 #endif /* CONFIG_SMP */
1464 .check_preempt_curr = check_preempt_curr_rt,
1466 .pick_next_task = pick_next_task_rt,
1467 .put_prev_task = put_prev_task_rt,
1469 #ifdef CONFIG_SMP
1470 .load_balance = load_balance_rt,
1471 .move_one_task = move_one_task_rt,
1472 .set_cpus_allowed = set_cpus_allowed_rt,
1473 .rq_online = rq_online_rt,
1474 .rq_offline = rq_offline_rt,
1475 .pre_schedule = pre_schedule_rt,
1476 .post_schedule = post_schedule_rt,
1477 .task_wake_up = task_wake_up_rt,
1478 .switched_from = switched_from_rt,
1479 #endif
1481 .set_curr_task = set_curr_task_rt,
1482 .task_tick = task_tick_rt,
1484 .prio_changed = prio_changed_rt,
1485 .switched_to = switched_to_rt,
1488 #ifdef CONFIG_SCHED_DEBUG
1489 extern void print_rt_rq(struct seq_file *m, int cpu, struct rt_rq *rt_rq);
1491 static void print_rt_stats(struct seq_file *m, int cpu)
1493 struct rt_rq *rt_rq;
1495 rcu_read_lock();
1496 for_each_leaf_rt_rq(rt_rq, cpu_rq(cpu))
1497 print_rt_rq(m, cpu, rt_rq);
1498 rcu_read_unlock();
1500 #endif /* CONFIG_SCHED_DEBUG */