1 /************************************************************************
2 * s2io.c: A Linux PCI-X Ethernet driver for Neterion 10GbE Server NIC
3 * Copyright(c) 2002-2007 Neterion Inc.
5 * This software may be used and distributed according to the terms of
6 * the GNU General Public License (GPL), incorporated herein by reference.
7 * Drivers based on or derived from this code fall under the GPL and must
8 * retain the authorship, copyright and license notice. This file is not
9 * a complete program and may only be used when the entire operating
10 * system is licensed under the GPL.
11 * See the file COPYING in this distribution for more information.
14 * Jeff Garzik : For pointing out the improper error condition
15 * check in the s2io_xmit routine and also some
16 * issues in the Tx watch dog function. Also for
17 * patiently answering all those innumerable
18 * questions regaring the 2.6 porting issues.
19 * Stephen Hemminger : Providing proper 2.6 porting mechanism for some
20 * macros available only in 2.6 Kernel.
21 * Francois Romieu : For pointing out all code part that were
22 * deprecated and also styling related comments.
23 * Grant Grundler : For helping me get rid of some Architecture
25 * Christopher Hellwig : Some more 2.6 specific issues in the driver.
27 * The module loadable parameters that are supported by the driver and a brief
28 * explaination of all the variables.
30 * rx_ring_num : This can be used to program the number of receive rings used
32 * rx_ring_sz: This defines the number of receive blocks each ring can have.
33 * This is also an array of size 8.
34 * rx_ring_mode: This defines the operation mode of all 8 rings. The valid
36 * tx_fifo_num: This defines the number of Tx FIFOs thats used int the driver.
37 * tx_fifo_len: This too is an array of 8. Each element defines the number of
38 * Tx descriptors that can be associated with each corresponding FIFO.
39 * intr_type: This defines the type of interrupt. The values can be 0(INTA),
40 * 2(MSI_X). Default value is '2(MSI_X)'
41 * lro_enable: Specifies whether to enable Large Receive Offload (LRO) or not.
42 * Possible values '1' for enable '0' for disable. Default is '0'
43 * lro_max_pkts: This parameter defines maximum number of packets can be
44 * aggregated as a single large packet
45 * napi: This parameter used to enable/disable NAPI (polling Rx)
46 * Possible values '1' for enable and '0' for disable. Default is '1'
47 * ufo: This parameter used to enable/disable UDP Fragmentation Offload(UFO)
48 * Possible values '1' for enable and '0' for disable. Default is '0'
49 * vlan_tag_strip: This can be used to enable or disable vlan stripping.
50 * Possible values '1' for enable , '0' for disable.
51 * Default is '2' - which means disable in promisc mode
52 * and enable in non-promiscuous mode.
53 * multiq: This parameter used to enable/disable MULTIQUEUE support.
54 * Possible values '1' for enable and '0' for disable. Default is '0'
55 ************************************************************************/
57 #include <linux/module.h>
58 #include <linux/types.h>
59 #include <linux/errno.h>
60 #include <linux/ioport.h>
61 #include <linux/pci.h>
62 #include <linux/dma-mapping.h>
63 #include <linux/kernel.h>
64 #include <linux/netdevice.h>
65 #include <linux/etherdevice.h>
66 #include <linux/skbuff.h>
67 #include <linux/init.h>
68 #include <linux/delay.h>
69 #include <linux/stddef.h>
70 #include <linux/ioctl.h>
71 #include <linux/timex.h>
72 #include <linux/ethtool.h>
73 #include <linux/workqueue.h>
74 #include <linux/if_vlan.h>
76 #include <linux/tcp.h>
79 #include <asm/system.h>
80 #include <asm/uaccess.h>
82 #include <asm/div64.h>
87 #include "s2io-regs.h"
89 #define DRV_VERSION "2.0.26.25"
91 /* S2io Driver name & version. */
92 static char s2io_driver_name
[] = "Neterion";
93 static char s2io_driver_version
[] = DRV_VERSION
;
95 static int rxd_size
[2] = {32,48};
96 static int rxd_count
[2] = {127,85};
98 static inline int RXD_IS_UP2DT(struct RxD_t
*rxdp
)
102 ret
= ((!(rxdp
->Control_1
& RXD_OWN_XENA
)) &&
103 (GET_RXD_MARKER(rxdp
->Control_2
) != THE_RXD_MARK
));
109 * Cards with following subsystem_id have a link state indication
110 * problem, 600B, 600C, 600D, 640B, 640C and 640D.
111 * macro below identifies these cards given the subsystem_id.
113 #define CARDS_WITH_FAULTY_LINK_INDICATORS(dev_type, subid) \
114 (dev_type == XFRAME_I_DEVICE) ? \
115 ((((subid >= 0x600B) && (subid <= 0x600D)) || \
116 ((subid >= 0x640B) && (subid <= 0x640D))) ? 1 : 0) : 0
118 #define LINK_IS_UP(val64) (!(val64 & (ADAPTER_STATUS_RMAC_REMOTE_FAULT | \
119 ADAPTER_STATUS_RMAC_LOCAL_FAULT)))
121 static inline int is_s2io_card_up(const struct s2io_nic
* sp
)
123 return test_bit(__S2IO_STATE_CARD_UP
, &sp
->state
);
126 /* Ethtool related variables and Macros. */
127 static char s2io_gstrings
[][ETH_GSTRING_LEN
] = {
128 "Register test\t(offline)",
129 "Eeprom test\t(offline)",
130 "Link test\t(online)",
131 "RLDRAM test\t(offline)",
132 "BIST Test\t(offline)"
135 static char ethtool_xena_stats_keys
[][ETH_GSTRING_LEN
] = {
137 {"tmac_data_octets"},
141 {"tmac_pause_ctrl_frms"},
145 {"tmac_any_err_frms"},
146 {"tmac_ttl_less_fb_octets"},
147 {"tmac_vld_ip_octets"},
155 {"rmac_data_octets"},
156 {"rmac_fcs_err_frms"},
158 {"rmac_vld_mcst_frms"},
159 {"rmac_vld_bcst_frms"},
160 {"rmac_in_rng_len_err_frms"},
161 {"rmac_out_rng_len_err_frms"},
163 {"rmac_pause_ctrl_frms"},
164 {"rmac_unsup_ctrl_frms"},
166 {"rmac_accepted_ucst_frms"},
167 {"rmac_accepted_nucst_frms"},
168 {"rmac_discarded_frms"},
169 {"rmac_drop_events"},
170 {"rmac_ttl_less_fb_octets"},
172 {"rmac_usized_frms"},
173 {"rmac_osized_frms"},
175 {"rmac_jabber_frms"},
176 {"rmac_ttl_64_frms"},
177 {"rmac_ttl_65_127_frms"},
178 {"rmac_ttl_128_255_frms"},
179 {"rmac_ttl_256_511_frms"},
180 {"rmac_ttl_512_1023_frms"},
181 {"rmac_ttl_1024_1518_frms"},
189 {"rmac_err_drp_udp"},
190 {"rmac_xgmii_err_sym"},
208 {"rmac_xgmii_data_err_cnt"},
209 {"rmac_xgmii_ctrl_err_cnt"},
210 {"rmac_accepted_ip"},
214 {"new_rd_req_rtry_cnt"},
216 {"wr_rtry_rd_ack_cnt"},
219 {"new_wr_req_rtry_cnt"},
222 {"rd_rtry_wr_ack_cnt"},
232 static char ethtool_enhanced_stats_keys
[][ETH_GSTRING_LEN
] = {
233 {"rmac_ttl_1519_4095_frms"},
234 {"rmac_ttl_4096_8191_frms"},
235 {"rmac_ttl_8192_max_frms"},
236 {"rmac_ttl_gt_max_frms"},
237 {"rmac_osized_alt_frms"},
238 {"rmac_jabber_alt_frms"},
239 {"rmac_gt_max_alt_frms"},
241 {"rmac_len_discard"},
242 {"rmac_fcs_discard"},
245 {"rmac_red_discard"},
246 {"rmac_rts_discard"},
247 {"rmac_ingm_full_discard"},
251 static char ethtool_driver_stats_keys
[][ETH_GSTRING_LEN
] = {
252 {"\n DRIVER STATISTICS"},
253 {"single_bit_ecc_errs"},
254 {"double_bit_ecc_errs"},
267 {"alarm_transceiver_temp_high"},
268 {"alarm_transceiver_temp_low"},
269 {"alarm_laser_bias_current_high"},
270 {"alarm_laser_bias_current_low"},
271 {"alarm_laser_output_power_high"},
272 {"alarm_laser_output_power_low"},
273 {"warn_transceiver_temp_high"},
274 {"warn_transceiver_temp_low"},
275 {"warn_laser_bias_current_high"},
276 {"warn_laser_bias_current_low"},
277 {"warn_laser_output_power_high"},
278 {"warn_laser_output_power_low"},
279 {"lro_aggregated_pkts"},
280 {"lro_flush_both_count"},
281 {"lro_out_of_sequence_pkts"},
282 {"lro_flush_due_to_max_pkts"},
283 {"lro_avg_aggr_pkts"},
284 {"mem_alloc_fail_cnt"},
285 {"pci_map_fail_cnt"},
286 {"watchdog_timer_cnt"},
293 {"tx_tcode_buf_abort_cnt"},
294 {"tx_tcode_desc_abort_cnt"},
295 {"tx_tcode_parity_err_cnt"},
296 {"tx_tcode_link_loss_cnt"},
297 {"tx_tcode_list_proc_err_cnt"},
298 {"rx_tcode_parity_err_cnt"},
299 {"rx_tcode_abort_cnt"},
300 {"rx_tcode_parity_abort_cnt"},
301 {"rx_tcode_rda_fail_cnt"},
302 {"rx_tcode_unkn_prot_cnt"},
303 {"rx_tcode_fcs_err_cnt"},
304 {"rx_tcode_buf_size_err_cnt"},
305 {"rx_tcode_rxd_corrupt_cnt"},
306 {"rx_tcode_unkn_err_cnt"},
314 {"mac_tmac_err_cnt"},
315 {"mac_rmac_err_cnt"},
316 {"xgxs_txgxs_err_cnt"},
317 {"xgxs_rxgxs_err_cnt"},
319 {"prc_pcix_err_cnt"},
326 #define S2IO_XENA_STAT_LEN ARRAY_SIZE(ethtool_xena_stats_keys)
327 #define S2IO_ENHANCED_STAT_LEN ARRAY_SIZE(ethtool_enhanced_stats_keys)
328 #define S2IO_DRIVER_STAT_LEN ARRAY_SIZE(ethtool_driver_stats_keys)
330 #define XFRAME_I_STAT_LEN (S2IO_XENA_STAT_LEN + S2IO_DRIVER_STAT_LEN )
331 #define XFRAME_II_STAT_LEN (XFRAME_I_STAT_LEN + S2IO_ENHANCED_STAT_LEN )
333 #define XFRAME_I_STAT_STRINGS_LEN ( XFRAME_I_STAT_LEN * ETH_GSTRING_LEN )
334 #define XFRAME_II_STAT_STRINGS_LEN ( XFRAME_II_STAT_LEN * ETH_GSTRING_LEN )
336 #define S2IO_TEST_LEN ARRAY_SIZE(s2io_gstrings)
337 #define S2IO_STRINGS_LEN S2IO_TEST_LEN * ETH_GSTRING_LEN
339 #define S2IO_TIMER_CONF(timer, handle, arg, exp) \
340 init_timer(&timer); \
341 timer.function = handle; \
342 timer.data = (unsigned long) arg; \
343 mod_timer(&timer, (jiffies + exp)) \
345 /* copy mac addr to def_mac_addr array */
346 static void do_s2io_copy_mac_addr(struct s2io_nic
*sp
, int offset
, u64 mac_addr
)
348 sp
->def_mac_addr
[offset
].mac_addr
[5] = (u8
) (mac_addr
);
349 sp
->def_mac_addr
[offset
].mac_addr
[4] = (u8
) (mac_addr
>> 8);
350 sp
->def_mac_addr
[offset
].mac_addr
[3] = (u8
) (mac_addr
>> 16);
351 sp
->def_mac_addr
[offset
].mac_addr
[2] = (u8
) (mac_addr
>> 24);
352 sp
->def_mac_addr
[offset
].mac_addr
[1] = (u8
) (mac_addr
>> 32);
353 sp
->def_mac_addr
[offset
].mac_addr
[0] = (u8
) (mac_addr
>> 40);
356 static void s2io_vlan_rx_register(struct net_device
*dev
,
357 struct vlan_group
*grp
)
360 struct s2io_nic
*nic
= dev
->priv
;
361 unsigned long flags
[MAX_TX_FIFOS
];
362 struct mac_info
*mac_control
= &nic
->mac_control
;
363 struct config_param
*config
= &nic
->config
;
365 for (i
= 0; i
< config
->tx_fifo_num
; i
++)
366 spin_lock_irqsave(&mac_control
->fifos
[i
].tx_lock
, flags
[i
]);
369 for (i
= config
->tx_fifo_num
- 1; i
>= 0; i
--)
370 spin_unlock_irqrestore(&mac_control
->fifos
[i
].tx_lock
,
374 /* A flag indicating whether 'RX_PA_CFG_STRIP_VLAN_TAG' bit is set or not */
375 static int vlan_strip_flag
;
377 /* Unregister the vlan */
378 static void s2io_vlan_rx_kill_vid(struct net_device
*dev
, unsigned long vid
)
381 struct s2io_nic
*nic
= dev
->priv
;
382 unsigned long flags
[MAX_TX_FIFOS
];
383 struct mac_info
*mac_control
= &nic
->mac_control
;
384 struct config_param
*config
= &nic
->config
;
386 for (i
= 0; i
< config
->tx_fifo_num
; i
++)
387 spin_lock_irqsave(&mac_control
->fifos
[i
].tx_lock
, flags
[i
]);
390 vlan_group_set_device(nic
->vlgrp
, vid
, NULL
);
392 for (i
= config
->tx_fifo_num
- 1; i
>= 0; i
--)
393 spin_unlock_irqrestore(&mac_control
->fifos
[i
].tx_lock
,
398 * Constants to be programmed into the Xena's registers, to configure
403 static const u64 herc_act_dtx_cfg
[] = {
405 0x8000051536750000ULL
, 0x80000515367500E0ULL
,
407 0x8000051536750004ULL
, 0x80000515367500E4ULL
,
409 0x80010515003F0000ULL
, 0x80010515003F00E0ULL
,
411 0x80010515003F0004ULL
, 0x80010515003F00E4ULL
,
413 0x801205150D440000ULL
, 0x801205150D4400E0ULL
,
415 0x801205150D440004ULL
, 0x801205150D4400E4ULL
,
417 0x80020515F2100000ULL
, 0x80020515F21000E0ULL
,
419 0x80020515F2100004ULL
, 0x80020515F21000E4ULL
,
424 static const u64 xena_dtx_cfg
[] = {
426 0x8000051500000000ULL
, 0x80000515000000E0ULL
,
428 0x80000515D9350004ULL
, 0x80000515D93500E4ULL
,
430 0x8001051500000000ULL
, 0x80010515000000E0ULL
,
432 0x80010515001E0004ULL
, 0x80010515001E00E4ULL
,
434 0x8002051500000000ULL
, 0x80020515000000E0ULL
,
436 0x80020515F2100004ULL
, 0x80020515F21000E4ULL
,
441 * Constants for Fixing the MacAddress problem seen mostly on
444 static const u64 fix_mac
[] = {
445 0x0060000000000000ULL
, 0x0060600000000000ULL
,
446 0x0040600000000000ULL
, 0x0000600000000000ULL
,
447 0x0020600000000000ULL
, 0x0060600000000000ULL
,
448 0x0020600000000000ULL
, 0x0060600000000000ULL
,
449 0x0020600000000000ULL
, 0x0060600000000000ULL
,
450 0x0020600000000000ULL
, 0x0060600000000000ULL
,
451 0x0020600000000000ULL
, 0x0060600000000000ULL
,
452 0x0020600000000000ULL
, 0x0060600000000000ULL
,
453 0x0020600000000000ULL
, 0x0060600000000000ULL
,
454 0x0020600000000000ULL
, 0x0060600000000000ULL
,
455 0x0020600000000000ULL
, 0x0060600000000000ULL
,
456 0x0020600000000000ULL
, 0x0060600000000000ULL
,
457 0x0020600000000000ULL
, 0x0000600000000000ULL
,
458 0x0040600000000000ULL
, 0x0060600000000000ULL
,
462 MODULE_LICENSE("GPL");
463 MODULE_VERSION(DRV_VERSION
);
466 /* Module Loadable parameters. */
467 S2IO_PARM_INT(tx_fifo_num
, FIFO_DEFAULT_NUM
);
468 S2IO_PARM_INT(rx_ring_num
, 1);
469 S2IO_PARM_INT(multiq
, 0);
470 S2IO_PARM_INT(rx_ring_mode
, 1);
471 S2IO_PARM_INT(use_continuous_tx_intrs
, 1);
472 S2IO_PARM_INT(rmac_pause_time
, 0x100);
473 S2IO_PARM_INT(mc_pause_threshold_q0q3
, 187);
474 S2IO_PARM_INT(mc_pause_threshold_q4q7
, 187);
475 S2IO_PARM_INT(shared_splits
, 0);
476 S2IO_PARM_INT(tmac_util_period
, 5);
477 S2IO_PARM_INT(rmac_util_period
, 5);
478 S2IO_PARM_INT(l3l4hdr_size
, 128);
479 /* 0 is no steering, 1 is Priority steering, 2 is Default steering */
480 S2IO_PARM_INT(tx_steering_type
, TX_DEFAULT_STEERING
);
481 /* Frequency of Rx desc syncs expressed as power of 2 */
482 S2IO_PARM_INT(rxsync_frequency
, 3);
483 /* Interrupt type. Values can be 0(INTA), 2(MSI_X) */
484 S2IO_PARM_INT(intr_type
, 2);
485 /* Large receive offload feature */
486 static unsigned int lro_enable
;
487 module_param_named(lro
, lro_enable
, uint
, 0);
489 /* Max pkts to be aggregated by LRO at one time. If not specified,
490 * aggregation happens until we hit max IP pkt size(64K)
492 S2IO_PARM_INT(lro_max_pkts
, 0xFFFF);
493 S2IO_PARM_INT(indicate_max_pkts
, 0);
495 S2IO_PARM_INT(napi
, 1);
496 S2IO_PARM_INT(ufo
, 0);
497 S2IO_PARM_INT(vlan_tag_strip
, NO_STRIP_IN_PROMISC
);
499 static unsigned int tx_fifo_len
[MAX_TX_FIFOS
] =
500 {DEFAULT_FIFO_0_LEN
, [1 ...(MAX_TX_FIFOS
- 1)] = DEFAULT_FIFO_1_7_LEN
};
501 static unsigned int rx_ring_sz
[MAX_RX_RINGS
] =
502 {[0 ...(MAX_RX_RINGS
- 1)] = SMALL_BLK_CNT
};
503 static unsigned int rts_frm_len
[MAX_RX_RINGS
] =
504 {[0 ...(MAX_RX_RINGS
- 1)] = 0 };
506 module_param_array(tx_fifo_len
, uint
, NULL
, 0);
507 module_param_array(rx_ring_sz
, uint
, NULL
, 0);
508 module_param_array(rts_frm_len
, uint
, NULL
, 0);
512 * This table lists all the devices that this driver supports.
514 static struct pci_device_id s2io_tbl
[] __devinitdata
= {
515 {PCI_VENDOR_ID_S2IO
, PCI_DEVICE_ID_S2IO_WIN
,
516 PCI_ANY_ID
, PCI_ANY_ID
},
517 {PCI_VENDOR_ID_S2IO
, PCI_DEVICE_ID_S2IO_UNI
,
518 PCI_ANY_ID
, PCI_ANY_ID
},
519 {PCI_VENDOR_ID_S2IO
, PCI_DEVICE_ID_HERC_WIN
,
520 PCI_ANY_ID
, PCI_ANY_ID
},
521 {PCI_VENDOR_ID_S2IO
, PCI_DEVICE_ID_HERC_UNI
,
522 PCI_ANY_ID
, PCI_ANY_ID
},
526 MODULE_DEVICE_TABLE(pci
, s2io_tbl
);
528 static struct pci_error_handlers s2io_err_handler
= {
529 .error_detected
= s2io_io_error_detected
,
530 .slot_reset
= s2io_io_slot_reset
,
531 .resume
= s2io_io_resume
,
534 static struct pci_driver s2io_driver
= {
536 .id_table
= s2io_tbl
,
537 .probe
= s2io_init_nic
,
538 .remove
= __devexit_p(s2io_rem_nic
),
539 .err_handler
= &s2io_err_handler
,
542 /* A simplifier macro used both by init and free shared_mem Fns(). */
543 #define TXD_MEM_PAGE_CNT(len, per_each) ((len+per_each - 1) / per_each)
545 /* netqueue manipulation helper functions */
546 static inline void s2io_stop_all_tx_queue(struct s2io_nic
*sp
)
548 if (!sp
->config
.multiq
) {
551 for (i
= 0; i
< sp
->config
.tx_fifo_num
; i
++)
552 sp
->mac_control
.fifos
[i
].queue_state
= FIFO_QUEUE_STOP
;
554 netif_tx_stop_all_queues(sp
->dev
);
557 static inline void s2io_stop_tx_queue(struct s2io_nic
*sp
, int fifo_no
)
559 if (!sp
->config
.multiq
)
560 sp
->mac_control
.fifos
[fifo_no
].queue_state
=
563 netif_tx_stop_all_queues(sp
->dev
);
566 static inline void s2io_start_all_tx_queue(struct s2io_nic
*sp
)
568 if (!sp
->config
.multiq
) {
571 for (i
= 0; i
< sp
->config
.tx_fifo_num
; i
++)
572 sp
->mac_control
.fifos
[i
].queue_state
= FIFO_QUEUE_START
;
574 netif_tx_start_all_queues(sp
->dev
);
577 static inline void s2io_start_tx_queue(struct s2io_nic
*sp
, int fifo_no
)
579 if (!sp
->config
.multiq
)
580 sp
->mac_control
.fifos
[fifo_no
].queue_state
=
583 netif_tx_start_all_queues(sp
->dev
);
586 static inline void s2io_wake_all_tx_queue(struct s2io_nic
*sp
)
588 if (!sp
->config
.multiq
) {
591 for (i
= 0; i
< sp
->config
.tx_fifo_num
; i
++)
592 sp
->mac_control
.fifos
[i
].queue_state
= FIFO_QUEUE_START
;
594 netif_tx_wake_all_queues(sp
->dev
);
597 static inline void s2io_wake_tx_queue(
598 struct fifo_info
*fifo
, int cnt
, u8 multiq
)
602 if (cnt
&& __netif_subqueue_stopped(fifo
->dev
, fifo
->fifo_no
))
603 netif_wake_subqueue(fifo
->dev
, fifo
->fifo_no
);
604 } else if (cnt
&& (fifo
->queue_state
== FIFO_QUEUE_STOP
)) {
605 if (netif_queue_stopped(fifo
->dev
)) {
606 fifo
->queue_state
= FIFO_QUEUE_START
;
607 netif_wake_queue(fifo
->dev
);
613 * init_shared_mem - Allocation and Initialization of Memory
614 * @nic: Device private variable.
615 * Description: The function allocates all the memory areas shared
616 * between the NIC and the driver. This includes Tx descriptors,
617 * Rx descriptors and the statistics block.
620 static int init_shared_mem(struct s2io_nic
*nic
)
623 void *tmp_v_addr
, *tmp_v_addr_next
;
624 dma_addr_t tmp_p_addr
, tmp_p_addr_next
;
625 struct RxD_block
*pre_rxd_blk
= NULL
;
627 int lst_size
, lst_per_page
;
628 struct net_device
*dev
= nic
->dev
;
632 struct mac_info
*mac_control
;
633 struct config_param
*config
;
634 unsigned long long mem_allocated
= 0;
636 mac_control
= &nic
->mac_control
;
637 config
= &nic
->config
;
640 /* Allocation and initialization of TXDLs in FIOFs */
642 for (i
= 0; i
< config
->tx_fifo_num
; i
++) {
643 size
+= config
->tx_cfg
[i
].fifo_len
;
645 if (size
> MAX_AVAILABLE_TXDS
) {
646 DBG_PRINT(ERR_DBG
, "s2io: Requested TxDs too high, ");
647 DBG_PRINT(ERR_DBG
, "Requested: %d, max supported: 8192\n", size
);
652 for (i
= 0; i
< config
->tx_fifo_num
; i
++) {
653 size
= config
->tx_cfg
[i
].fifo_len
;
655 * Legal values are from 2 to 8192
658 DBG_PRINT(ERR_DBG
, "s2io: Invalid fifo len (%d)", size
);
659 DBG_PRINT(ERR_DBG
, "for fifo %d\n", i
);
660 DBG_PRINT(ERR_DBG
, "s2io: Legal values for fifo len"
666 lst_size
= (sizeof(struct TxD
) * config
->max_txds
);
667 lst_per_page
= PAGE_SIZE
/ lst_size
;
669 for (i
= 0; i
< config
->tx_fifo_num
; i
++) {
670 int fifo_len
= config
->tx_cfg
[i
].fifo_len
;
671 int list_holder_size
= fifo_len
* sizeof(struct list_info_hold
);
672 mac_control
->fifos
[i
].list_info
= kzalloc(list_holder_size
,
674 if (!mac_control
->fifos
[i
].list_info
) {
676 "Malloc failed for list_info\n");
679 mem_allocated
+= list_holder_size
;
681 for (i
= 0; i
< config
->tx_fifo_num
; i
++) {
682 int page_num
= TXD_MEM_PAGE_CNT(config
->tx_cfg
[i
].fifo_len
,
684 mac_control
->fifos
[i
].tx_curr_put_info
.offset
= 0;
685 mac_control
->fifos
[i
].tx_curr_put_info
.fifo_len
=
686 config
->tx_cfg
[i
].fifo_len
- 1;
687 mac_control
->fifos
[i
].tx_curr_get_info
.offset
= 0;
688 mac_control
->fifos
[i
].tx_curr_get_info
.fifo_len
=
689 config
->tx_cfg
[i
].fifo_len
- 1;
690 mac_control
->fifos
[i
].fifo_no
= i
;
691 mac_control
->fifos
[i
].nic
= nic
;
692 mac_control
->fifos
[i
].max_txds
= MAX_SKB_FRAGS
+ 2;
693 mac_control
->fifos
[i
].dev
= dev
;
695 for (j
= 0; j
< page_num
; j
++) {
699 tmp_v
= pci_alloc_consistent(nic
->pdev
,
703 "pci_alloc_consistent ");
704 DBG_PRINT(INFO_DBG
, "failed for TxDL\n");
707 /* If we got a zero DMA address(can happen on
708 * certain platforms like PPC), reallocate.
709 * Store virtual address of page we don't want,
713 mac_control
->zerodma_virt_addr
= tmp_v
;
715 "%s: Zero DMA address for TxDL. ", dev
->name
);
717 "Virtual address %p\n", tmp_v
);
718 tmp_v
= pci_alloc_consistent(nic
->pdev
,
722 "pci_alloc_consistent ");
723 DBG_PRINT(INFO_DBG
, "failed for TxDL\n");
726 mem_allocated
+= PAGE_SIZE
;
728 while (k
< lst_per_page
) {
729 int l
= (j
* lst_per_page
) + k
;
730 if (l
== config
->tx_cfg
[i
].fifo_len
)
732 mac_control
->fifos
[i
].list_info
[l
].list_virt_addr
=
733 tmp_v
+ (k
* lst_size
);
734 mac_control
->fifos
[i
].list_info
[l
].list_phy_addr
=
735 tmp_p
+ (k
* lst_size
);
741 for (i
= 0; i
< config
->tx_fifo_num
; i
++) {
742 size
= config
->tx_cfg
[i
].fifo_len
;
743 mac_control
->fifos
[i
].ufo_in_band_v
744 = kcalloc(size
, sizeof(u64
), GFP_KERNEL
);
745 if (!mac_control
->fifos
[i
].ufo_in_band_v
)
747 mem_allocated
+= (size
* sizeof(u64
));
750 /* Allocation and initialization of RXDs in Rings */
752 for (i
= 0; i
< config
->rx_ring_num
; i
++) {
753 if (config
->rx_cfg
[i
].num_rxd
%
754 (rxd_count
[nic
->rxd_mode
] + 1)) {
755 DBG_PRINT(ERR_DBG
, "%s: RxD count of ", dev
->name
);
756 DBG_PRINT(ERR_DBG
, "Ring%d is not a multiple of ",
758 DBG_PRINT(ERR_DBG
, "RxDs per Block");
761 size
+= config
->rx_cfg
[i
].num_rxd
;
762 mac_control
->rings
[i
].block_count
=
763 config
->rx_cfg
[i
].num_rxd
/
764 (rxd_count
[nic
->rxd_mode
] + 1 );
765 mac_control
->rings
[i
].pkt_cnt
= config
->rx_cfg
[i
].num_rxd
-
766 mac_control
->rings
[i
].block_count
;
768 if (nic
->rxd_mode
== RXD_MODE_1
)
769 size
= (size
* (sizeof(struct RxD1
)));
771 size
= (size
* (sizeof(struct RxD3
)));
773 for (i
= 0; i
< config
->rx_ring_num
; i
++) {
774 mac_control
->rings
[i
].rx_curr_get_info
.block_index
= 0;
775 mac_control
->rings
[i
].rx_curr_get_info
.offset
= 0;
776 mac_control
->rings
[i
].rx_curr_get_info
.ring_len
=
777 config
->rx_cfg
[i
].num_rxd
- 1;
778 mac_control
->rings
[i
].rx_curr_put_info
.block_index
= 0;
779 mac_control
->rings
[i
].rx_curr_put_info
.offset
= 0;
780 mac_control
->rings
[i
].rx_curr_put_info
.ring_len
=
781 config
->rx_cfg
[i
].num_rxd
- 1;
782 mac_control
->rings
[i
].nic
= nic
;
783 mac_control
->rings
[i
].ring_no
= i
;
784 mac_control
->rings
[i
].lro
= lro_enable
;
786 blk_cnt
= config
->rx_cfg
[i
].num_rxd
/
787 (rxd_count
[nic
->rxd_mode
] + 1);
788 /* Allocating all the Rx blocks */
789 for (j
= 0; j
< blk_cnt
; j
++) {
790 struct rx_block_info
*rx_blocks
;
793 rx_blocks
= &mac_control
->rings
[i
].rx_blocks
[j
];
794 size
= SIZE_OF_BLOCK
; //size is always page size
795 tmp_v_addr
= pci_alloc_consistent(nic
->pdev
, size
,
797 if (tmp_v_addr
== NULL
) {
799 * In case of failure, free_shared_mem()
800 * is called, which should free any
801 * memory that was alloced till the
804 rx_blocks
->block_virt_addr
= tmp_v_addr
;
807 mem_allocated
+= size
;
808 memset(tmp_v_addr
, 0, size
);
809 rx_blocks
->block_virt_addr
= tmp_v_addr
;
810 rx_blocks
->block_dma_addr
= tmp_p_addr
;
811 rx_blocks
->rxds
= kmalloc(sizeof(struct rxd_info
)*
812 rxd_count
[nic
->rxd_mode
],
814 if (!rx_blocks
->rxds
)
817 (sizeof(struct rxd_info
)* rxd_count
[nic
->rxd_mode
]);
818 for (l
=0; l
<rxd_count
[nic
->rxd_mode
];l
++) {
819 rx_blocks
->rxds
[l
].virt_addr
=
820 rx_blocks
->block_virt_addr
+
821 (rxd_size
[nic
->rxd_mode
] * l
);
822 rx_blocks
->rxds
[l
].dma_addr
=
823 rx_blocks
->block_dma_addr
+
824 (rxd_size
[nic
->rxd_mode
] * l
);
827 /* Interlinking all Rx Blocks */
828 for (j
= 0; j
< blk_cnt
; j
++) {
830 mac_control
->rings
[i
].rx_blocks
[j
].block_virt_addr
;
832 mac_control
->rings
[i
].rx_blocks
[(j
+ 1) %
833 blk_cnt
].block_virt_addr
;
835 mac_control
->rings
[i
].rx_blocks
[j
].block_dma_addr
;
837 mac_control
->rings
[i
].rx_blocks
[(j
+ 1) %
838 blk_cnt
].block_dma_addr
;
840 pre_rxd_blk
= (struct RxD_block
*) tmp_v_addr
;
841 pre_rxd_blk
->reserved_2_pNext_RxD_block
=
842 (unsigned long) tmp_v_addr_next
;
843 pre_rxd_blk
->pNext_RxD_Blk_physical
=
844 (u64
) tmp_p_addr_next
;
847 if (nic
->rxd_mode
== RXD_MODE_3B
) {
849 * Allocation of Storages for buffer addresses in 2BUFF mode
850 * and the buffers as well.
852 for (i
= 0; i
< config
->rx_ring_num
; i
++) {
853 blk_cnt
= config
->rx_cfg
[i
].num_rxd
/
854 (rxd_count
[nic
->rxd_mode
]+ 1);
855 mac_control
->rings
[i
].ba
=
856 kmalloc((sizeof(struct buffAdd
*) * blk_cnt
),
858 if (!mac_control
->rings
[i
].ba
)
860 mem_allocated
+=(sizeof(struct buffAdd
*) * blk_cnt
);
861 for (j
= 0; j
< blk_cnt
; j
++) {
863 mac_control
->rings
[i
].ba
[j
] =
864 kmalloc((sizeof(struct buffAdd
) *
865 (rxd_count
[nic
->rxd_mode
] + 1)),
867 if (!mac_control
->rings
[i
].ba
[j
])
869 mem_allocated
+= (sizeof(struct buffAdd
) * \
870 (rxd_count
[nic
->rxd_mode
] + 1));
871 while (k
!= rxd_count
[nic
->rxd_mode
]) {
872 ba
= &mac_control
->rings
[i
].ba
[j
][k
];
874 ba
->ba_0_org
= (void *) kmalloc
875 (BUF0_LEN
+ ALIGN_SIZE
, GFP_KERNEL
);
879 (BUF0_LEN
+ ALIGN_SIZE
);
880 tmp
= (unsigned long)ba
->ba_0_org
;
882 tmp
&= ~((unsigned long) ALIGN_SIZE
);
883 ba
->ba_0
= (void *) tmp
;
885 ba
->ba_1_org
= (void *) kmalloc
886 (BUF1_LEN
+ ALIGN_SIZE
, GFP_KERNEL
);
890 += (BUF1_LEN
+ ALIGN_SIZE
);
891 tmp
= (unsigned long) ba
->ba_1_org
;
893 tmp
&= ~((unsigned long) ALIGN_SIZE
);
894 ba
->ba_1
= (void *) tmp
;
901 /* Allocation and initialization of Statistics block */
902 size
= sizeof(struct stat_block
);
903 mac_control
->stats_mem
= pci_alloc_consistent
904 (nic
->pdev
, size
, &mac_control
->stats_mem_phy
);
906 if (!mac_control
->stats_mem
) {
908 * In case of failure, free_shared_mem() is called, which
909 * should free any memory that was alloced till the
914 mem_allocated
+= size
;
915 mac_control
->stats_mem_sz
= size
;
917 tmp_v_addr
= mac_control
->stats_mem
;
918 mac_control
->stats_info
= (struct stat_block
*) tmp_v_addr
;
919 memset(tmp_v_addr
, 0, size
);
920 DBG_PRINT(INIT_DBG
, "%s:Ring Mem PHY: 0x%llx\n", dev
->name
,
921 (unsigned long long) tmp_p_addr
);
922 mac_control
->stats_info
->sw_stat
.mem_allocated
+= mem_allocated
;
927 * free_shared_mem - Free the allocated Memory
928 * @nic: Device private variable.
929 * Description: This function is to free all memory locations allocated by
930 * the init_shared_mem() function and return it to the kernel.
933 static void free_shared_mem(struct s2io_nic
*nic
)
935 int i
, j
, blk_cnt
, size
;
937 dma_addr_t tmp_p_addr
;
938 struct mac_info
*mac_control
;
939 struct config_param
*config
;
940 int lst_size
, lst_per_page
;
941 struct net_device
*dev
;
949 mac_control
= &nic
->mac_control
;
950 config
= &nic
->config
;
952 lst_size
= (sizeof(struct TxD
) * config
->max_txds
);
953 lst_per_page
= PAGE_SIZE
/ lst_size
;
955 for (i
= 0; i
< config
->tx_fifo_num
; i
++) {
956 page_num
= TXD_MEM_PAGE_CNT(config
->tx_cfg
[i
].fifo_len
,
958 for (j
= 0; j
< page_num
; j
++) {
959 int mem_blks
= (j
* lst_per_page
);
960 if (!mac_control
->fifos
[i
].list_info
)
962 if (!mac_control
->fifos
[i
].list_info
[mem_blks
].
965 pci_free_consistent(nic
->pdev
, PAGE_SIZE
,
966 mac_control
->fifos
[i
].
969 mac_control
->fifos
[i
].
972 nic
->mac_control
.stats_info
->sw_stat
.mem_freed
975 /* If we got a zero DMA address during allocation,
978 if (mac_control
->zerodma_virt_addr
) {
979 pci_free_consistent(nic
->pdev
, PAGE_SIZE
,
980 mac_control
->zerodma_virt_addr
,
983 "%s: Freeing TxDL with zero DMA addr. ",
985 DBG_PRINT(INIT_DBG
, "Virtual address %p\n",
986 mac_control
->zerodma_virt_addr
);
987 nic
->mac_control
.stats_info
->sw_stat
.mem_freed
990 kfree(mac_control
->fifos
[i
].list_info
);
991 nic
->mac_control
.stats_info
->sw_stat
.mem_freed
+=
992 (nic
->config
.tx_cfg
[i
].fifo_len
*sizeof(struct list_info_hold
));
995 size
= SIZE_OF_BLOCK
;
996 for (i
= 0; i
< config
->rx_ring_num
; i
++) {
997 blk_cnt
= mac_control
->rings
[i
].block_count
;
998 for (j
= 0; j
< blk_cnt
; j
++) {
999 tmp_v_addr
= mac_control
->rings
[i
].rx_blocks
[j
].
1001 tmp_p_addr
= mac_control
->rings
[i
].rx_blocks
[j
].
1003 if (tmp_v_addr
== NULL
)
1005 pci_free_consistent(nic
->pdev
, size
,
1006 tmp_v_addr
, tmp_p_addr
);
1007 nic
->mac_control
.stats_info
->sw_stat
.mem_freed
+= size
;
1008 kfree(mac_control
->rings
[i
].rx_blocks
[j
].rxds
);
1009 nic
->mac_control
.stats_info
->sw_stat
.mem_freed
+=
1010 ( sizeof(struct rxd_info
)* rxd_count
[nic
->rxd_mode
]);
1014 if (nic
->rxd_mode
== RXD_MODE_3B
) {
1015 /* Freeing buffer storage addresses in 2BUFF mode. */
1016 for (i
= 0; i
< config
->rx_ring_num
; i
++) {
1017 blk_cnt
= config
->rx_cfg
[i
].num_rxd
/
1018 (rxd_count
[nic
->rxd_mode
] + 1);
1019 for (j
= 0; j
< blk_cnt
; j
++) {
1021 if (!mac_control
->rings
[i
].ba
[j
])
1023 while (k
!= rxd_count
[nic
->rxd_mode
]) {
1024 struct buffAdd
*ba
=
1025 &mac_control
->rings
[i
].ba
[j
][k
];
1026 kfree(ba
->ba_0_org
);
1027 nic
->mac_control
.stats_info
->sw_stat
.\
1028 mem_freed
+= (BUF0_LEN
+ ALIGN_SIZE
);
1029 kfree(ba
->ba_1_org
);
1030 nic
->mac_control
.stats_info
->sw_stat
.\
1031 mem_freed
+= (BUF1_LEN
+ ALIGN_SIZE
);
1034 kfree(mac_control
->rings
[i
].ba
[j
]);
1035 nic
->mac_control
.stats_info
->sw_stat
.mem_freed
+=
1036 (sizeof(struct buffAdd
) *
1037 (rxd_count
[nic
->rxd_mode
] + 1));
1039 kfree(mac_control
->rings
[i
].ba
);
1040 nic
->mac_control
.stats_info
->sw_stat
.mem_freed
+=
1041 (sizeof(struct buffAdd
*) * blk_cnt
);
1045 for (i
= 0; i
< nic
->config
.tx_fifo_num
; i
++) {
1046 if (mac_control
->fifos
[i
].ufo_in_band_v
) {
1047 nic
->mac_control
.stats_info
->sw_stat
.mem_freed
1048 += (config
->tx_cfg
[i
].fifo_len
* sizeof(u64
));
1049 kfree(mac_control
->fifos
[i
].ufo_in_band_v
);
1053 if (mac_control
->stats_mem
) {
1054 nic
->mac_control
.stats_info
->sw_stat
.mem_freed
+=
1055 mac_control
->stats_mem_sz
;
1056 pci_free_consistent(nic
->pdev
,
1057 mac_control
->stats_mem_sz
,
1058 mac_control
->stats_mem
,
1059 mac_control
->stats_mem_phy
);
1064 * s2io_verify_pci_mode -
1067 static int s2io_verify_pci_mode(struct s2io_nic
*nic
)
1069 struct XENA_dev_config __iomem
*bar0
= nic
->bar0
;
1070 register u64 val64
= 0;
1073 val64
= readq(&bar0
->pci_mode
);
1074 mode
= (u8
)GET_PCI_MODE(val64
);
1076 if ( val64
& PCI_MODE_UNKNOWN_MODE
)
1077 return -1; /* Unknown PCI mode */
1081 #define NEC_VENID 0x1033
1082 #define NEC_DEVID 0x0125
1083 static int s2io_on_nec_bridge(struct pci_dev
*s2io_pdev
)
1085 struct pci_dev
*tdev
= NULL
;
1086 while ((tdev
= pci_get_device(PCI_ANY_ID
, PCI_ANY_ID
, tdev
)) != NULL
) {
1087 if (tdev
->vendor
== NEC_VENID
&& tdev
->device
== NEC_DEVID
) {
1088 if (tdev
->bus
== s2io_pdev
->bus
->parent
) {
1097 static int bus_speed
[8] = {33, 133, 133, 200, 266, 133, 200, 266};
1099 * s2io_print_pci_mode -
1101 static int s2io_print_pci_mode(struct s2io_nic
*nic
)
1103 struct XENA_dev_config __iomem
*bar0
= nic
->bar0
;
1104 register u64 val64
= 0;
1106 struct config_param
*config
= &nic
->config
;
1108 val64
= readq(&bar0
->pci_mode
);
1109 mode
= (u8
)GET_PCI_MODE(val64
);
1111 if ( val64
& PCI_MODE_UNKNOWN_MODE
)
1112 return -1; /* Unknown PCI mode */
1114 config
->bus_speed
= bus_speed
[mode
];
1116 if (s2io_on_nec_bridge(nic
->pdev
)) {
1117 DBG_PRINT(ERR_DBG
, "%s: Device is on PCI-E bus\n",
1122 if (val64
& PCI_MODE_32_BITS
) {
1123 DBG_PRINT(ERR_DBG
, "%s: Device is on 32 bit ", nic
->dev
->name
);
1125 DBG_PRINT(ERR_DBG
, "%s: Device is on 64 bit ", nic
->dev
->name
);
1129 case PCI_MODE_PCI_33
:
1130 DBG_PRINT(ERR_DBG
, "33MHz PCI bus\n");
1132 case PCI_MODE_PCI_66
:
1133 DBG_PRINT(ERR_DBG
, "66MHz PCI bus\n");
1135 case PCI_MODE_PCIX_M1_66
:
1136 DBG_PRINT(ERR_DBG
, "66MHz PCIX(M1) bus\n");
1138 case PCI_MODE_PCIX_M1_100
:
1139 DBG_PRINT(ERR_DBG
, "100MHz PCIX(M1) bus\n");
1141 case PCI_MODE_PCIX_M1_133
:
1142 DBG_PRINT(ERR_DBG
, "133MHz PCIX(M1) bus\n");
1144 case PCI_MODE_PCIX_M2_66
:
1145 DBG_PRINT(ERR_DBG
, "133MHz PCIX(M2) bus\n");
1147 case PCI_MODE_PCIX_M2_100
:
1148 DBG_PRINT(ERR_DBG
, "200MHz PCIX(M2) bus\n");
1150 case PCI_MODE_PCIX_M2_133
:
1151 DBG_PRINT(ERR_DBG
, "266MHz PCIX(M2) bus\n");
1154 return -1; /* Unsupported bus speed */
1161 * init_tti - Initialization transmit traffic interrupt scheme
1162 * @nic: device private variable
1163 * @link: link status (UP/DOWN) used to enable/disable continuous
1164 * transmit interrupts
1165 * Description: The function configures transmit traffic interrupts
1166 * Return Value: SUCCESS on success and
1170 static int init_tti(struct s2io_nic
*nic
, int link
)
1172 struct XENA_dev_config __iomem
*bar0
= nic
->bar0
;
1173 register u64 val64
= 0;
1175 struct config_param
*config
;
1177 config
= &nic
->config
;
1179 for (i
= 0; i
< config
->tx_fifo_num
; i
++) {
1181 * TTI Initialization. Default Tx timer gets us about
1182 * 250 interrupts per sec. Continuous interrupts are enabled
1185 if (nic
->device_type
== XFRAME_II_DEVICE
) {
1186 int count
= (nic
->config
.bus_speed
* 125)/2;
1187 val64
= TTI_DATA1_MEM_TX_TIMER_VAL(count
);
1189 val64
= TTI_DATA1_MEM_TX_TIMER_VAL(0x2078);
1191 val64
|= TTI_DATA1_MEM_TX_URNG_A(0xA) |
1192 TTI_DATA1_MEM_TX_URNG_B(0x10) |
1193 TTI_DATA1_MEM_TX_URNG_C(0x30) |
1194 TTI_DATA1_MEM_TX_TIMER_AC_EN
;
1196 if (use_continuous_tx_intrs
&& (link
== LINK_UP
))
1197 val64
|= TTI_DATA1_MEM_TX_TIMER_CI_EN
;
1198 writeq(val64
, &bar0
->tti_data1_mem
);
1200 if (nic
->config
.intr_type
== MSI_X
) {
1201 val64
= TTI_DATA2_MEM_TX_UFC_A(0x10) |
1202 TTI_DATA2_MEM_TX_UFC_B(0x100) |
1203 TTI_DATA2_MEM_TX_UFC_C(0x200) |
1204 TTI_DATA2_MEM_TX_UFC_D(0x300);
1206 if ((nic
->config
.tx_steering_type
==
1207 TX_DEFAULT_STEERING
) &&
1208 (config
->tx_fifo_num
> 1) &&
1209 (i
>= nic
->udp_fifo_idx
) &&
1210 (i
< (nic
->udp_fifo_idx
+
1211 nic
->total_udp_fifos
)))
1212 val64
= TTI_DATA2_MEM_TX_UFC_A(0x50) |
1213 TTI_DATA2_MEM_TX_UFC_B(0x80) |
1214 TTI_DATA2_MEM_TX_UFC_C(0x100) |
1215 TTI_DATA2_MEM_TX_UFC_D(0x120);
1217 val64
= TTI_DATA2_MEM_TX_UFC_A(0x10) |
1218 TTI_DATA2_MEM_TX_UFC_B(0x20) |
1219 TTI_DATA2_MEM_TX_UFC_C(0x40) |
1220 TTI_DATA2_MEM_TX_UFC_D(0x80);
1223 writeq(val64
, &bar0
->tti_data2_mem
);
1225 val64
= TTI_CMD_MEM_WE
| TTI_CMD_MEM_STROBE_NEW_CMD
|
1226 TTI_CMD_MEM_OFFSET(i
);
1227 writeq(val64
, &bar0
->tti_command_mem
);
1229 if (wait_for_cmd_complete(&bar0
->tti_command_mem
,
1230 TTI_CMD_MEM_STROBE_NEW_CMD
, S2IO_BIT_RESET
) != SUCCESS
)
1238 * init_nic - Initialization of hardware
1239 * @nic: device private variable
1240 * Description: The function sequentially configures every block
1241 * of the H/W from their reset values.
1242 * Return Value: SUCCESS on success and
1243 * '-1' on failure (endian settings incorrect).
1246 static int init_nic(struct s2io_nic
*nic
)
1248 struct XENA_dev_config __iomem
*bar0
= nic
->bar0
;
1249 struct net_device
*dev
= nic
->dev
;
1250 register u64 val64
= 0;
1254 struct mac_info
*mac_control
;
1255 struct config_param
*config
;
1257 unsigned long long mem_share
;
1260 mac_control
= &nic
->mac_control
;
1261 config
= &nic
->config
;
1263 /* to set the swapper controle on the card */
1264 if(s2io_set_swapper(nic
)) {
1265 DBG_PRINT(ERR_DBG
,"ERROR: Setting Swapper failed\n");
1270 * Herc requires EOI to be removed from reset before XGXS, so..
1272 if (nic
->device_type
& XFRAME_II_DEVICE
) {
1273 val64
= 0xA500000000ULL
;
1274 writeq(val64
, &bar0
->sw_reset
);
1276 val64
= readq(&bar0
->sw_reset
);
1279 /* Remove XGXS from reset state */
1281 writeq(val64
, &bar0
->sw_reset
);
1283 val64
= readq(&bar0
->sw_reset
);
1285 /* Ensure that it's safe to access registers by checking
1286 * RIC_RUNNING bit is reset. Check is valid only for XframeII.
1288 if (nic
->device_type
== XFRAME_II_DEVICE
) {
1289 for (i
= 0; i
< 50; i
++) {
1290 val64
= readq(&bar0
->adapter_status
);
1291 if (!(val64
& ADAPTER_STATUS_RIC_RUNNING
))
1299 /* Enable Receiving broadcasts */
1300 add
= &bar0
->mac_cfg
;
1301 val64
= readq(&bar0
->mac_cfg
);
1302 val64
|= MAC_RMAC_BCAST_ENABLE
;
1303 writeq(RMAC_CFG_KEY(0x4C0D), &bar0
->rmac_cfg_key
);
1304 writel((u32
) val64
, add
);
1305 writeq(RMAC_CFG_KEY(0x4C0D), &bar0
->rmac_cfg_key
);
1306 writel((u32
) (val64
>> 32), (add
+ 4));
1308 /* Read registers in all blocks */
1309 val64
= readq(&bar0
->mac_int_mask
);
1310 val64
= readq(&bar0
->mc_int_mask
);
1311 val64
= readq(&bar0
->xgxs_int_mask
);
1315 writeq(vBIT(val64
, 2, 14), &bar0
->rmac_max_pyld_len
);
1317 if (nic
->device_type
& XFRAME_II_DEVICE
) {
1318 while (herc_act_dtx_cfg
[dtx_cnt
] != END_SIGN
) {
1319 SPECIAL_REG_WRITE(herc_act_dtx_cfg
[dtx_cnt
],
1320 &bar0
->dtx_control
, UF
);
1322 msleep(1); /* Necessary!! */
1326 while (xena_dtx_cfg
[dtx_cnt
] != END_SIGN
) {
1327 SPECIAL_REG_WRITE(xena_dtx_cfg
[dtx_cnt
],
1328 &bar0
->dtx_control
, UF
);
1329 val64
= readq(&bar0
->dtx_control
);
1334 /* Tx DMA Initialization */
1336 writeq(val64
, &bar0
->tx_fifo_partition_0
);
1337 writeq(val64
, &bar0
->tx_fifo_partition_1
);
1338 writeq(val64
, &bar0
->tx_fifo_partition_2
);
1339 writeq(val64
, &bar0
->tx_fifo_partition_3
);
1342 for (i
= 0, j
= 0; i
< config
->tx_fifo_num
; i
++) {
1344 vBIT(config
->tx_cfg
[i
].fifo_len
- 1, ((j
* 32) + 19),
1345 13) | vBIT(config
->tx_cfg
[i
].fifo_priority
,
1348 if (i
== (config
->tx_fifo_num
- 1)) {
1355 writeq(val64
, &bar0
->tx_fifo_partition_0
);
1360 writeq(val64
, &bar0
->tx_fifo_partition_1
);
1365 writeq(val64
, &bar0
->tx_fifo_partition_2
);
1370 writeq(val64
, &bar0
->tx_fifo_partition_3
);
1381 * Disable 4 PCCs for Xena1, 2 and 3 as per H/W bug
1382 * SXE-008 TRANSMIT DMA ARBITRATION ISSUE.
1384 if ((nic
->device_type
== XFRAME_I_DEVICE
) &&
1385 (nic
->pdev
->revision
< 4))
1386 writeq(PCC_ENABLE_FOUR
, &bar0
->pcc_enable
);
1388 val64
= readq(&bar0
->tx_fifo_partition_0
);
1389 DBG_PRINT(INIT_DBG
, "Fifo partition at: 0x%p is: 0x%llx\n",
1390 &bar0
->tx_fifo_partition_0
, (unsigned long long) val64
);
1393 * Initialization of Tx_PA_CONFIG register to ignore packet
1394 * integrity checking.
1396 val64
= readq(&bar0
->tx_pa_cfg
);
1397 val64
|= TX_PA_CFG_IGNORE_FRM_ERR
| TX_PA_CFG_IGNORE_SNAP_OUI
|
1398 TX_PA_CFG_IGNORE_LLC_CTRL
| TX_PA_CFG_IGNORE_L2_ERR
;
1399 writeq(val64
, &bar0
->tx_pa_cfg
);
1401 /* Rx DMA intialization. */
1403 for (i
= 0; i
< config
->rx_ring_num
; i
++) {
1405 vBIT(config
->rx_cfg
[i
].ring_priority
, (5 + (i
* 8)),
1408 writeq(val64
, &bar0
->rx_queue_priority
);
1411 * Allocating equal share of memory to all the
1415 if (nic
->device_type
& XFRAME_II_DEVICE
)
1420 for (i
= 0; i
< config
->rx_ring_num
; i
++) {
1423 mem_share
= (mem_size
/ config
->rx_ring_num
+
1424 mem_size
% config
->rx_ring_num
);
1425 val64
|= RX_QUEUE_CFG_Q0_SZ(mem_share
);
1428 mem_share
= (mem_size
/ config
->rx_ring_num
);
1429 val64
|= RX_QUEUE_CFG_Q1_SZ(mem_share
);
1432 mem_share
= (mem_size
/ config
->rx_ring_num
);
1433 val64
|= RX_QUEUE_CFG_Q2_SZ(mem_share
);
1436 mem_share
= (mem_size
/ config
->rx_ring_num
);
1437 val64
|= RX_QUEUE_CFG_Q3_SZ(mem_share
);
1440 mem_share
= (mem_size
/ config
->rx_ring_num
);
1441 val64
|= RX_QUEUE_CFG_Q4_SZ(mem_share
);
1444 mem_share
= (mem_size
/ config
->rx_ring_num
);
1445 val64
|= RX_QUEUE_CFG_Q5_SZ(mem_share
);
1448 mem_share
= (mem_size
/ config
->rx_ring_num
);
1449 val64
|= RX_QUEUE_CFG_Q6_SZ(mem_share
);
1452 mem_share
= (mem_size
/ config
->rx_ring_num
);
1453 val64
|= RX_QUEUE_CFG_Q7_SZ(mem_share
);
1457 writeq(val64
, &bar0
->rx_queue_cfg
);
1460 * Filling Tx round robin registers
1461 * as per the number of FIFOs for equal scheduling priority
1463 switch (config
->tx_fifo_num
) {
1466 writeq(val64
, &bar0
->tx_w_round_robin_0
);
1467 writeq(val64
, &bar0
->tx_w_round_robin_1
);
1468 writeq(val64
, &bar0
->tx_w_round_robin_2
);
1469 writeq(val64
, &bar0
->tx_w_round_robin_3
);
1470 writeq(val64
, &bar0
->tx_w_round_robin_4
);
1473 val64
= 0x0001000100010001ULL
;
1474 writeq(val64
, &bar0
->tx_w_round_robin_0
);
1475 writeq(val64
, &bar0
->tx_w_round_robin_1
);
1476 writeq(val64
, &bar0
->tx_w_round_robin_2
);
1477 writeq(val64
, &bar0
->tx_w_round_robin_3
);
1478 val64
= 0x0001000100000000ULL
;
1479 writeq(val64
, &bar0
->tx_w_round_robin_4
);
1482 val64
= 0x0001020001020001ULL
;
1483 writeq(val64
, &bar0
->tx_w_round_robin_0
);
1484 val64
= 0x0200010200010200ULL
;
1485 writeq(val64
, &bar0
->tx_w_round_robin_1
);
1486 val64
= 0x0102000102000102ULL
;
1487 writeq(val64
, &bar0
->tx_w_round_robin_2
);
1488 val64
= 0x0001020001020001ULL
;
1489 writeq(val64
, &bar0
->tx_w_round_robin_3
);
1490 val64
= 0x0200010200000000ULL
;
1491 writeq(val64
, &bar0
->tx_w_round_robin_4
);
1494 val64
= 0x0001020300010203ULL
;
1495 writeq(val64
, &bar0
->tx_w_round_robin_0
);
1496 writeq(val64
, &bar0
->tx_w_round_robin_1
);
1497 writeq(val64
, &bar0
->tx_w_round_robin_2
);
1498 writeq(val64
, &bar0
->tx_w_round_robin_3
);
1499 val64
= 0x0001020300000000ULL
;
1500 writeq(val64
, &bar0
->tx_w_round_robin_4
);
1503 val64
= 0x0001020304000102ULL
;
1504 writeq(val64
, &bar0
->tx_w_round_robin_0
);
1505 val64
= 0x0304000102030400ULL
;
1506 writeq(val64
, &bar0
->tx_w_round_robin_1
);
1507 val64
= 0x0102030400010203ULL
;
1508 writeq(val64
, &bar0
->tx_w_round_robin_2
);
1509 val64
= 0x0400010203040001ULL
;
1510 writeq(val64
, &bar0
->tx_w_round_robin_3
);
1511 val64
= 0x0203040000000000ULL
;
1512 writeq(val64
, &bar0
->tx_w_round_robin_4
);
1515 val64
= 0x0001020304050001ULL
;
1516 writeq(val64
, &bar0
->tx_w_round_robin_0
);
1517 val64
= 0x0203040500010203ULL
;
1518 writeq(val64
, &bar0
->tx_w_round_robin_1
);
1519 val64
= 0x0405000102030405ULL
;
1520 writeq(val64
, &bar0
->tx_w_round_robin_2
);
1521 val64
= 0x0001020304050001ULL
;
1522 writeq(val64
, &bar0
->tx_w_round_robin_3
);
1523 val64
= 0x0203040500000000ULL
;
1524 writeq(val64
, &bar0
->tx_w_round_robin_4
);
1527 val64
= 0x0001020304050600ULL
;
1528 writeq(val64
, &bar0
->tx_w_round_robin_0
);
1529 val64
= 0x0102030405060001ULL
;
1530 writeq(val64
, &bar0
->tx_w_round_robin_1
);
1531 val64
= 0x0203040506000102ULL
;
1532 writeq(val64
, &bar0
->tx_w_round_robin_2
);
1533 val64
= 0x0304050600010203ULL
;
1534 writeq(val64
, &bar0
->tx_w_round_robin_3
);
1535 val64
= 0x0405060000000000ULL
;
1536 writeq(val64
, &bar0
->tx_w_round_robin_4
);
1539 val64
= 0x0001020304050607ULL
;
1540 writeq(val64
, &bar0
->tx_w_round_robin_0
);
1541 writeq(val64
, &bar0
->tx_w_round_robin_1
);
1542 writeq(val64
, &bar0
->tx_w_round_robin_2
);
1543 writeq(val64
, &bar0
->tx_w_round_robin_3
);
1544 val64
= 0x0001020300000000ULL
;
1545 writeq(val64
, &bar0
->tx_w_round_robin_4
);
1549 /* Enable all configured Tx FIFO partitions */
1550 val64
= readq(&bar0
->tx_fifo_partition_0
);
1551 val64
|= (TX_FIFO_PARTITION_EN
);
1552 writeq(val64
, &bar0
->tx_fifo_partition_0
);
1554 /* Filling the Rx round robin registers as per the
1555 * number of Rings and steering based on QoS with
1558 switch (config
->rx_ring_num
) {
1561 writeq(val64
, &bar0
->rx_w_round_robin_0
);
1562 writeq(val64
, &bar0
->rx_w_round_robin_1
);
1563 writeq(val64
, &bar0
->rx_w_round_robin_2
);
1564 writeq(val64
, &bar0
->rx_w_round_robin_3
);
1565 writeq(val64
, &bar0
->rx_w_round_robin_4
);
1567 val64
= 0x8080808080808080ULL
;
1568 writeq(val64
, &bar0
->rts_qos_steering
);
1571 val64
= 0x0001000100010001ULL
;
1572 writeq(val64
, &bar0
->rx_w_round_robin_0
);
1573 writeq(val64
, &bar0
->rx_w_round_robin_1
);
1574 writeq(val64
, &bar0
->rx_w_round_robin_2
);
1575 writeq(val64
, &bar0
->rx_w_round_robin_3
);
1576 val64
= 0x0001000100000000ULL
;
1577 writeq(val64
, &bar0
->rx_w_round_robin_4
);
1579 val64
= 0x8080808040404040ULL
;
1580 writeq(val64
, &bar0
->rts_qos_steering
);
1583 val64
= 0x0001020001020001ULL
;
1584 writeq(val64
, &bar0
->rx_w_round_robin_0
);
1585 val64
= 0x0200010200010200ULL
;
1586 writeq(val64
, &bar0
->rx_w_round_robin_1
);
1587 val64
= 0x0102000102000102ULL
;
1588 writeq(val64
, &bar0
->rx_w_round_robin_2
);
1589 val64
= 0x0001020001020001ULL
;
1590 writeq(val64
, &bar0
->rx_w_round_robin_3
);
1591 val64
= 0x0200010200000000ULL
;
1592 writeq(val64
, &bar0
->rx_w_round_robin_4
);
1594 val64
= 0x8080804040402020ULL
;
1595 writeq(val64
, &bar0
->rts_qos_steering
);
1598 val64
= 0x0001020300010203ULL
;
1599 writeq(val64
, &bar0
->rx_w_round_robin_0
);
1600 writeq(val64
, &bar0
->rx_w_round_robin_1
);
1601 writeq(val64
, &bar0
->rx_w_round_robin_2
);
1602 writeq(val64
, &bar0
->rx_w_round_robin_3
);
1603 val64
= 0x0001020300000000ULL
;
1604 writeq(val64
, &bar0
->rx_w_round_robin_4
);
1606 val64
= 0x8080404020201010ULL
;
1607 writeq(val64
, &bar0
->rts_qos_steering
);
1610 val64
= 0x0001020304000102ULL
;
1611 writeq(val64
, &bar0
->rx_w_round_robin_0
);
1612 val64
= 0x0304000102030400ULL
;
1613 writeq(val64
, &bar0
->rx_w_round_robin_1
);
1614 val64
= 0x0102030400010203ULL
;
1615 writeq(val64
, &bar0
->rx_w_round_robin_2
);
1616 val64
= 0x0400010203040001ULL
;
1617 writeq(val64
, &bar0
->rx_w_round_robin_3
);
1618 val64
= 0x0203040000000000ULL
;
1619 writeq(val64
, &bar0
->rx_w_round_robin_4
);
1621 val64
= 0x8080404020201008ULL
;
1622 writeq(val64
, &bar0
->rts_qos_steering
);
1625 val64
= 0x0001020304050001ULL
;
1626 writeq(val64
, &bar0
->rx_w_round_robin_0
);
1627 val64
= 0x0203040500010203ULL
;
1628 writeq(val64
, &bar0
->rx_w_round_robin_1
);
1629 val64
= 0x0405000102030405ULL
;
1630 writeq(val64
, &bar0
->rx_w_round_robin_2
);
1631 val64
= 0x0001020304050001ULL
;
1632 writeq(val64
, &bar0
->rx_w_round_robin_3
);
1633 val64
= 0x0203040500000000ULL
;
1634 writeq(val64
, &bar0
->rx_w_round_robin_4
);
1636 val64
= 0x8080404020100804ULL
;
1637 writeq(val64
, &bar0
->rts_qos_steering
);
1640 val64
= 0x0001020304050600ULL
;
1641 writeq(val64
, &bar0
->rx_w_round_robin_0
);
1642 val64
= 0x0102030405060001ULL
;
1643 writeq(val64
, &bar0
->rx_w_round_robin_1
);
1644 val64
= 0x0203040506000102ULL
;
1645 writeq(val64
, &bar0
->rx_w_round_robin_2
);
1646 val64
= 0x0304050600010203ULL
;
1647 writeq(val64
, &bar0
->rx_w_round_robin_3
);
1648 val64
= 0x0405060000000000ULL
;
1649 writeq(val64
, &bar0
->rx_w_round_robin_4
);
1651 val64
= 0x8080402010080402ULL
;
1652 writeq(val64
, &bar0
->rts_qos_steering
);
1655 val64
= 0x0001020304050607ULL
;
1656 writeq(val64
, &bar0
->rx_w_round_robin_0
);
1657 writeq(val64
, &bar0
->rx_w_round_robin_1
);
1658 writeq(val64
, &bar0
->rx_w_round_robin_2
);
1659 writeq(val64
, &bar0
->rx_w_round_robin_3
);
1660 val64
= 0x0001020300000000ULL
;
1661 writeq(val64
, &bar0
->rx_w_round_robin_4
);
1663 val64
= 0x8040201008040201ULL
;
1664 writeq(val64
, &bar0
->rts_qos_steering
);
1670 for (i
= 0; i
< 8; i
++)
1671 writeq(val64
, &bar0
->rts_frm_len_n
[i
]);
1673 /* Set the default rts frame length for the rings configured */
1674 val64
= MAC_RTS_FRM_LEN_SET(dev
->mtu
+22);
1675 for (i
= 0 ; i
< config
->rx_ring_num
; i
++)
1676 writeq(val64
, &bar0
->rts_frm_len_n
[i
]);
1678 /* Set the frame length for the configured rings
1679 * desired by the user
1681 for (i
= 0; i
< config
->rx_ring_num
; i
++) {
1682 /* If rts_frm_len[i] == 0 then it is assumed that user not
1683 * specified frame length steering.
1684 * If the user provides the frame length then program
1685 * the rts_frm_len register for those values or else
1686 * leave it as it is.
1688 if (rts_frm_len
[i
] != 0) {
1689 writeq(MAC_RTS_FRM_LEN_SET(rts_frm_len
[i
]),
1690 &bar0
->rts_frm_len_n
[i
]);
1694 /* Disable differentiated services steering logic */
1695 for (i
= 0; i
< 64; i
++) {
1696 if (rts_ds_steer(nic
, i
, 0) == FAILURE
) {
1697 DBG_PRINT(ERR_DBG
, "%s: failed rts ds steering",
1699 DBG_PRINT(ERR_DBG
, "set on codepoint %d\n", i
);
1704 /* Program statistics memory */
1705 writeq(mac_control
->stats_mem_phy
, &bar0
->stat_addr
);
1707 if (nic
->device_type
== XFRAME_II_DEVICE
) {
1708 val64
= STAT_BC(0x320);
1709 writeq(val64
, &bar0
->stat_byte_cnt
);
1713 * Initializing the sampling rate for the device to calculate the
1714 * bandwidth utilization.
1716 val64
= MAC_TX_LINK_UTIL_VAL(tmac_util_period
) |
1717 MAC_RX_LINK_UTIL_VAL(rmac_util_period
);
1718 writeq(val64
, &bar0
->mac_link_util
);
1721 * Initializing the Transmit and Receive Traffic Interrupt
1725 /* Initialize TTI */
1726 if (SUCCESS
!= init_tti(nic
, nic
->last_link_state
))
1729 /* RTI Initialization */
1730 if (nic
->device_type
== XFRAME_II_DEVICE
) {
1732 * Programmed to generate Apprx 500 Intrs per
1735 int count
= (nic
->config
.bus_speed
* 125)/4;
1736 val64
= RTI_DATA1_MEM_RX_TIMER_VAL(count
);
1738 val64
= RTI_DATA1_MEM_RX_TIMER_VAL(0xFFF);
1739 val64
|= RTI_DATA1_MEM_RX_URNG_A(0xA) |
1740 RTI_DATA1_MEM_RX_URNG_B(0x10) |
1741 RTI_DATA1_MEM_RX_URNG_C(0x30) | RTI_DATA1_MEM_RX_TIMER_AC_EN
;
1743 writeq(val64
, &bar0
->rti_data1_mem
);
1745 val64
= RTI_DATA2_MEM_RX_UFC_A(0x1) |
1746 RTI_DATA2_MEM_RX_UFC_B(0x2) ;
1747 if (nic
->config
.intr_type
== MSI_X
)
1748 val64
|= (RTI_DATA2_MEM_RX_UFC_C(0x20) | \
1749 RTI_DATA2_MEM_RX_UFC_D(0x40));
1751 val64
|= (RTI_DATA2_MEM_RX_UFC_C(0x40) | \
1752 RTI_DATA2_MEM_RX_UFC_D(0x80));
1753 writeq(val64
, &bar0
->rti_data2_mem
);
1755 for (i
= 0; i
< config
->rx_ring_num
; i
++) {
1756 val64
= RTI_CMD_MEM_WE
| RTI_CMD_MEM_STROBE_NEW_CMD
1757 | RTI_CMD_MEM_OFFSET(i
);
1758 writeq(val64
, &bar0
->rti_command_mem
);
1761 * Once the operation completes, the Strobe bit of the
1762 * command register will be reset. We poll for this
1763 * particular condition. We wait for a maximum of 500ms
1764 * for the operation to complete, if it's not complete
1765 * by then we return error.
1769 val64
= readq(&bar0
->rti_command_mem
);
1770 if (!(val64
& RTI_CMD_MEM_STROBE_NEW_CMD
))
1774 DBG_PRINT(ERR_DBG
, "%s: RTI init Failed\n",
1784 * Initializing proper values as Pause threshold into all
1785 * the 8 Queues on Rx side.
1787 writeq(0xffbbffbbffbbffbbULL
, &bar0
->mc_pause_thresh_q0q3
);
1788 writeq(0xffbbffbbffbbffbbULL
, &bar0
->mc_pause_thresh_q4q7
);
1790 /* Disable RMAC PAD STRIPPING */
1791 add
= &bar0
->mac_cfg
;
1792 val64
= readq(&bar0
->mac_cfg
);
1793 val64
&= ~(MAC_CFG_RMAC_STRIP_PAD
);
1794 writeq(RMAC_CFG_KEY(0x4C0D), &bar0
->rmac_cfg_key
);
1795 writel((u32
) (val64
), add
);
1796 writeq(RMAC_CFG_KEY(0x4C0D), &bar0
->rmac_cfg_key
);
1797 writel((u32
) (val64
>> 32), (add
+ 4));
1798 val64
= readq(&bar0
->mac_cfg
);
1800 /* Enable FCS stripping by adapter */
1801 add
= &bar0
->mac_cfg
;
1802 val64
= readq(&bar0
->mac_cfg
);
1803 val64
|= MAC_CFG_RMAC_STRIP_FCS
;
1804 if (nic
->device_type
== XFRAME_II_DEVICE
)
1805 writeq(val64
, &bar0
->mac_cfg
);
1807 writeq(RMAC_CFG_KEY(0x4C0D), &bar0
->rmac_cfg_key
);
1808 writel((u32
) (val64
), add
);
1809 writeq(RMAC_CFG_KEY(0x4C0D), &bar0
->rmac_cfg_key
);
1810 writel((u32
) (val64
>> 32), (add
+ 4));
1814 * Set the time value to be inserted in the pause frame
1815 * generated by xena.
1817 val64
= readq(&bar0
->rmac_pause_cfg
);
1818 val64
&= ~(RMAC_PAUSE_HG_PTIME(0xffff));
1819 val64
|= RMAC_PAUSE_HG_PTIME(nic
->mac_control
.rmac_pause_time
);
1820 writeq(val64
, &bar0
->rmac_pause_cfg
);
1823 * Set the Threshold Limit for Generating the pause frame
1824 * If the amount of data in any Queue exceeds ratio of
1825 * (mac_control.mc_pause_threshold_q0q3 or q4q7)/256
1826 * pause frame is generated
1829 for (i
= 0; i
< 4; i
++) {
1831 (((u64
) 0xFF00 | nic
->mac_control
.
1832 mc_pause_threshold_q0q3
)
1835 writeq(val64
, &bar0
->mc_pause_thresh_q0q3
);
1838 for (i
= 0; i
< 4; i
++) {
1840 (((u64
) 0xFF00 | nic
->mac_control
.
1841 mc_pause_threshold_q4q7
)
1844 writeq(val64
, &bar0
->mc_pause_thresh_q4q7
);
1847 * TxDMA will stop Read request if the number of read split has
1848 * exceeded the limit pointed by shared_splits
1850 val64
= readq(&bar0
->pic_control
);
1851 val64
|= PIC_CNTL_SHARED_SPLITS(shared_splits
);
1852 writeq(val64
, &bar0
->pic_control
);
1854 if (nic
->config
.bus_speed
== 266) {
1855 writeq(TXREQTO_VAL(0x7f) | TXREQTO_EN
, &bar0
->txreqtimeout
);
1856 writeq(0x0, &bar0
->read_retry_delay
);
1857 writeq(0x0, &bar0
->write_retry_delay
);
1861 * Programming the Herc to split every write transaction
1862 * that does not start on an ADB to reduce disconnects.
1864 if (nic
->device_type
== XFRAME_II_DEVICE
) {
1865 val64
= FAULT_BEHAVIOUR
| EXT_REQ_EN
|
1866 MISC_LINK_STABILITY_PRD(3);
1867 writeq(val64
, &bar0
->misc_control
);
1868 val64
= readq(&bar0
->pic_control2
);
1869 val64
&= ~(s2BIT(13)|s2BIT(14)|s2BIT(15));
1870 writeq(val64
, &bar0
->pic_control2
);
1872 if (strstr(nic
->product_name
, "CX4")) {
1873 val64
= TMAC_AVG_IPG(0x17);
1874 writeq(val64
, &bar0
->tmac_avg_ipg
);
1879 #define LINK_UP_DOWN_INTERRUPT 1
1880 #define MAC_RMAC_ERR_TIMER 2
1882 static int s2io_link_fault_indication(struct s2io_nic
*nic
)
1884 if (nic
->device_type
== XFRAME_II_DEVICE
)
1885 return LINK_UP_DOWN_INTERRUPT
;
1887 return MAC_RMAC_ERR_TIMER
;
1891 * do_s2io_write_bits - update alarm bits in alarm register
1892 * @value: alarm bits
1893 * @flag: interrupt status
1894 * @addr: address value
1895 * Description: update alarm bits in alarm register
1899 static void do_s2io_write_bits(u64 value
, int flag
, void __iomem
*addr
)
1903 temp64
= readq(addr
);
1905 if(flag
== ENABLE_INTRS
)
1906 temp64
&= ~((u64
) value
);
1908 temp64
|= ((u64
) value
);
1909 writeq(temp64
, addr
);
1912 static void en_dis_err_alarms(struct s2io_nic
*nic
, u16 mask
, int flag
)
1914 struct XENA_dev_config __iomem
*bar0
= nic
->bar0
;
1915 register u64 gen_int_mask
= 0;
1918 writeq(DISABLE_ALL_INTRS
, &bar0
->general_int_mask
);
1919 if (mask
& TX_DMA_INTR
) {
1921 gen_int_mask
|= TXDMA_INT_M
;
1923 do_s2io_write_bits(TXDMA_TDA_INT
| TXDMA_PFC_INT
|
1924 TXDMA_PCC_INT
| TXDMA_TTI_INT
|
1925 TXDMA_LSO_INT
| TXDMA_TPA_INT
|
1926 TXDMA_SM_INT
, flag
, &bar0
->txdma_int_mask
);
1928 do_s2io_write_bits(PFC_ECC_DB_ERR
| PFC_SM_ERR_ALARM
|
1929 PFC_MISC_0_ERR
| PFC_MISC_1_ERR
|
1930 PFC_PCIX_ERR
| PFC_ECC_SG_ERR
, flag
,
1931 &bar0
->pfc_err_mask
);
1933 do_s2io_write_bits(TDA_Fn_ECC_DB_ERR
| TDA_SM0_ERR_ALARM
|
1934 TDA_SM1_ERR_ALARM
| TDA_Fn_ECC_SG_ERR
|
1935 TDA_PCIX_ERR
, flag
, &bar0
->tda_err_mask
);
1937 do_s2io_write_bits(PCC_FB_ECC_DB_ERR
| PCC_TXB_ECC_DB_ERR
|
1938 PCC_SM_ERR_ALARM
| PCC_WR_ERR_ALARM
|
1939 PCC_N_SERR
| PCC_6_COF_OV_ERR
|
1940 PCC_7_COF_OV_ERR
| PCC_6_LSO_OV_ERR
|
1941 PCC_7_LSO_OV_ERR
| PCC_FB_ECC_SG_ERR
|
1942 PCC_TXB_ECC_SG_ERR
, flag
, &bar0
->pcc_err_mask
);
1944 do_s2io_write_bits(TTI_SM_ERR_ALARM
| TTI_ECC_SG_ERR
|
1945 TTI_ECC_DB_ERR
, flag
, &bar0
->tti_err_mask
);
1947 do_s2io_write_bits(LSO6_ABORT
| LSO7_ABORT
|
1948 LSO6_SM_ERR_ALARM
| LSO7_SM_ERR_ALARM
|
1949 LSO6_SEND_OFLOW
| LSO7_SEND_OFLOW
,
1950 flag
, &bar0
->lso_err_mask
);
1952 do_s2io_write_bits(TPA_SM_ERR_ALARM
| TPA_TX_FRM_DROP
,
1953 flag
, &bar0
->tpa_err_mask
);
1955 do_s2io_write_bits(SM_SM_ERR_ALARM
, flag
, &bar0
->sm_err_mask
);
1959 if (mask
& TX_MAC_INTR
) {
1960 gen_int_mask
|= TXMAC_INT_M
;
1961 do_s2io_write_bits(MAC_INT_STATUS_TMAC_INT
, flag
,
1962 &bar0
->mac_int_mask
);
1963 do_s2io_write_bits(TMAC_TX_BUF_OVRN
| TMAC_TX_SM_ERR
|
1964 TMAC_ECC_SG_ERR
| TMAC_ECC_DB_ERR
|
1965 TMAC_DESC_ECC_SG_ERR
| TMAC_DESC_ECC_DB_ERR
,
1966 flag
, &bar0
->mac_tmac_err_mask
);
1969 if (mask
& TX_XGXS_INTR
) {
1970 gen_int_mask
|= TXXGXS_INT_M
;
1971 do_s2io_write_bits(XGXS_INT_STATUS_TXGXS
, flag
,
1972 &bar0
->xgxs_int_mask
);
1973 do_s2io_write_bits(TXGXS_ESTORE_UFLOW
| TXGXS_TX_SM_ERR
|
1974 TXGXS_ECC_SG_ERR
| TXGXS_ECC_DB_ERR
,
1975 flag
, &bar0
->xgxs_txgxs_err_mask
);
1978 if (mask
& RX_DMA_INTR
) {
1979 gen_int_mask
|= RXDMA_INT_M
;
1980 do_s2io_write_bits(RXDMA_INT_RC_INT_M
| RXDMA_INT_RPA_INT_M
|
1981 RXDMA_INT_RDA_INT_M
| RXDMA_INT_RTI_INT_M
,
1982 flag
, &bar0
->rxdma_int_mask
);
1983 do_s2io_write_bits(RC_PRCn_ECC_DB_ERR
| RC_FTC_ECC_DB_ERR
|
1984 RC_PRCn_SM_ERR_ALARM
| RC_FTC_SM_ERR_ALARM
|
1985 RC_PRCn_ECC_SG_ERR
| RC_FTC_ECC_SG_ERR
|
1986 RC_RDA_FAIL_WR_Rn
, flag
, &bar0
->rc_err_mask
);
1987 do_s2io_write_bits(PRC_PCI_AB_RD_Rn
| PRC_PCI_AB_WR_Rn
|
1988 PRC_PCI_AB_F_WR_Rn
| PRC_PCI_DP_RD_Rn
|
1989 PRC_PCI_DP_WR_Rn
| PRC_PCI_DP_F_WR_Rn
, flag
,
1990 &bar0
->prc_pcix_err_mask
);
1991 do_s2io_write_bits(RPA_SM_ERR_ALARM
| RPA_CREDIT_ERR
|
1992 RPA_ECC_SG_ERR
| RPA_ECC_DB_ERR
, flag
,
1993 &bar0
->rpa_err_mask
);
1994 do_s2io_write_bits(RDA_RXDn_ECC_DB_ERR
| RDA_FRM_ECC_DB_N_AERR
|
1995 RDA_SM1_ERR_ALARM
| RDA_SM0_ERR_ALARM
|
1996 RDA_RXD_ECC_DB_SERR
| RDA_RXDn_ECC_SG_ERR
|
1997 RDA_FRM_ECC_SG_ERR
| RDA_MISC_ERR
|RDA_PCIX_ERR
,
1998 flag
, &bar0
->rda_err_mask
);
1999 do_s2io_write_bits(RTI_SM_ERR_ALARM
|
2000 RTI_ECC_SG_ERR
| RTI_ECC_DB_ERR
,
2001 flag
, &bar0
->rti_err_mask
);
2004 if (mask
& RX_MAC_INTR
) {
2005 gen_int_mask
|= RXMAC_INT_M
;
2006 do_s2io_write_bits(MAC_INT_STATUS_RMAC_INT
, flag
,
2007 &bar0
->mac_int_mask
);
2008 interruptible
= RMAC_RX_BUFF_OVRN
| RMAC_RX_SM_ERR
|
2009 RMAC_UNUSED_INT
| RMAC_SINGLE_ECC_ERR
|
2010 RMAC_DOUBLE_ECC_ERR
;
2011 if (s2io_link_fault_indication(nic
) == MAC_RMAC_ERR_TIMER
)
2012 interruptible
|= RMAC_LINK_STATE_CHANGE_INT
;
2013 do_s2io_write_bits(interruptible
,
2014 flag
, &bar0
->mac_rmac_err_mask
);
2017 if (mask
& RX_XGXS_INTR
)
2019 gen_int_mask
|= RXXGXS_INT_M
;
2020 do_s2io_write_bits(XGXS_INT_STATUS_RXGXS
, flag
,
2021 &bar0
->xgxs_int_mask
);
2022 do_s2io_write_bits(RXGXS_ESTORE_OFLOW
| RXGXS_RX_SM_ERR
, flag
,
2023 &bar0
->xgxs_rxgxs_err_mask
);
2026 if (mask
& MC_INTR
) {
2027 gen_int_mask
|= MC_INT_M
;
2028 do_s2io_write_bits(MC_INT_MASK_MC_INT
, flag
, &bar0
->mc_int_mask
);
2029 do_s2io_write_bits(MC_ERR_REG_SM_ERR
| MC_ERR_REG_ECC_ALL_SNG
|
2030 MC_ERR_REG_ECC_ALL_DBL
| PLL_LOCK_N
, flag
,
2031 &bar0
->mc_err_mask
);
2033 nic
->general_int_mask
= gen_int_mask
;
2035 /* Remove this line when alarm interrupts are enabled */
2036 nic
->general_int_mask
= 0;
2039 * en_dis_able_nic_intrs - Enable or Disable the interrupts
2040 * @nic: device private variable,
2041 * @mask: A mask indicating which Intr block must be modified and,
2042 * @flag: A flag indicating whether to enable or disable the Intrs.
2043 * Description: This function will either disable or enable the interrupts
2044 * depending on the flag argument. The mask argument can be used to
2045 * enable/disable any Intr block.
2046 * Return Value: NONE.
2049 static void en_dis_able_nic_intrs(struct s2io_nic
*nic
, u16 mask
, int flag
)
2051 struct XENA_dev_config __iomem
*bar0
= nic
->bar0
;
2052 register u64 temp64
= 0, intr_mask
= 0;
2054 intr_mask
= nic
->general_int_mask
;
2056 /* Top level interrupt classification */
2057 /* PIC Interrupts */
2058 if (mask
& TX_PIC_INTR
) {
2059 /* Enable PIC Intrs in the general intr mask register */
2060 intr_mask
|= TXPIC_INT_M
;
2061 if (flag
== ENABLE_INTRS
) {
2063 * If Hercules adapter enable GPIO otherwise
2064 * disable all PCIX, Flash, MDIO, IIC and GPIO
2065 * interrupts for now.
2068 if (s2io_link_fault_indication(nic
) ==
2069 LINK_UP_DOWN_INTERRUPT
) {
2070 do_s2io_write_bits(PIC_INT_GPIO
, flag
,
2071 &bar0
->pic_int_mask
);
2072 do_s2io_write_bits(GPIO_INT_MASK_LINK_UP
, flag
,
2073 &bar0
->gpio_int_mask
);
2075 writeq(DISABLE_ALL_INTRS
, &bar0
->pic_int_mask
);
2076 } else if (flag
== DISABLE_INTRS
) {
2078 * Disable PIC Intrs in the general
2079 * intr mask register
2081 writeq(DISABLE_ALL_INTRS
, &bar0
->pic_int_mask
);
2085 /* Tx traffic interrupts */
2086 if (mask
& TX_TRAFFIC_INTR
) {
2087 intr_mask
|= TXTRAFFIC_INT_M
;
2088 if (flag
== ENABLE_INTRS
) {
2090 * Enable all the Tx side interrupts
2091 * writing 0 Enables all 64 TX interrupt levels
2093 writeq(0x0, &bar0
->tx_traffic_mask
);
2094 } else if (flag
== DISABLE_INTRS
) {
2096 * Disable Tx Traffic Intrs in the general intr mask
2099 writeq(DISABLE_ALL_INTRS
, &bar0
->tx_traffic_mask
);
2103 /* Rx traffic interrupts */
2104 if (mask
& RX_TRAFFIC_INTR
) {
2105 intr_mask
|= RXTRAFFIC_INT_M
;
2106 if (flag
== ENABLE_INTRS
) {
2107 /* writing 0 Enables all 8 RX interrupt levels */
2108 writeq(0x0, &bar0
->rx_traffic_mask
);
2109 } else if (flag
== DISABLE_INTRS
) {
2111 * Disable Rx Traffic Intrs in the general intr mask
2114 writeq(DISABLE_ALL_INTRS
, &bar0
->rx_traffic_mask
);
2118 temp64
= readq(&bar0
->general_int_mask
);
2119 if (flag
== ENABLE_INTRS
)
2120 temp64
&= ~((u64
) intr_mask
);
2122 temp64
= DISABLE_ALL_INTRS
;
2123 writeq(temp64
, &bar0
->general_int_mask
);
2125 nic
->general_int_mask
= readq(&bar0
->general_int_mask
);
2129 * verify_pcc_quiescent- Checks for PCC quiescent state
2130 * Return: 1 If PCC is quiescence
2131 * 0 If PCC is not quiescence
2133 static int verify_pcc_quiescent(struct s2io_nic
*sp
, int flag
)
2136 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
2137 u64 val64
= readq(&bar0
->adapter_status
);
2139 herc
= (sp
->device_type
== XFRAME_II_DEVICE
);
2141 if (flag
== FALSE
) {
2142 if ((!herc
&& (sp
->pdev
->revision
>= 4)) || herc
) {
2143 if (!(val64
& ADAPTER_STATUS_RMAC_PCC_IDLE
))
2146 if (!(val64
& ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE
))
2150 if ((!herc
&& (sp
->pdev
->revision
>= 4)) || herc
) {
2151 if (((val64
& ADAPTER_STATUS_RMAC_PCC_IDLE
) ==
2152 ADAPTER_STATUS_RMAC_PCC_IDLE
))
2155 if (((val64
& ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE
) ==
2156 ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE
))
2164 * verify_xena_quiescence - Checks whether the H/W is ready
2165 * Description: Returns whether the H/W is ready to go or not. Depending
2166 * on whether adapter enable bit was written or not the comparison
2167 * differs and the calling function passes the input argument flag to
2169 * Return: 1 If xena is quiescence
2170 * 0 If Xena is not quiescence
2173 static int verify_xena_quiescence(struct s2io_nic
*sp
)
2176 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
2177 u64 val64
= readq(&bar0
->adapter_status
);
2178 mode
= s2io_verify_pci_mode(sp
);
2180 if (!(val64
& ADAPTER_STATUS_TDMA_READY
)) {
2181 DBG_PRINT(ERR_DBG
, "%s", "TDMA is not ready!");
2184 if (!(val64
& ADAPTER_STATUS_RDMA_READY
)) {
2185 DBG_PRINT(ERR_DBG
, "%s", "RDMA is not ready!");
2188 if (!(val64
& ADAPTER_STATUS_PFC_READY
)) {
2189 DBG_PRINT(ERR_DBG
, "%s", "PFC is not ready!");
2192 if (!(val64
& ADAPTER_STATUS_TMAC_BUF_EMPTY
)) {
2193 DBG_PRINT(ERR_DBG
, "%s", "TMAC BUF is not empty!");
2196 if (!(val64
& ADAPTER_STATUS_PIC_QUIESCENT
)) {
2197 DBG_PRINT(ERR_DBG
, "%s", "PIC is not QUIESCENT!");
2200 if (!(val64
& ADAPTER_STATUS_MC_DRAM_READY
)) {
2201 DBG_PRINT(ERR_DBG
, "%s", "MC_DRAM is not ready!");
2204 if (!(val64
& ADAPTER_STATUS_MC_QUEUES_READY
)) {
2205 DBG_PRINT(ERR_DBG
, "%s", "MC_QUEUES is not ready!");
2208 if (!(val64
& ADAPTER_STATUS_M_PLL_LOCK
)) {
2209 DBG_PRINT(ERR_DBG
, "%s", "M_PLL is not locked!");
2214 * In PCI 33 mode, the P_PLL is not used, and therefore,
2215 * the the P_PLL_LOCK bit in the adapter_status register will
2218 if (!(val64
& ADAPTER_STATUS_P_PLL_LOCK
) &&
2219 sp
->device_type
== XFRAME_II_DEVICE
&& mode
!=
2221 DBG_PRINT(ERR_DBG
, "%s", "P_PLL is not locked!");
2224 if (!((val64
& ADAPTER_STATUS_RC_PRC_QUIESCENT
) ==
2225 ADAPTER_STATUS_RC_PRC_QUIESCENT
)) {
2226 DBG_PRINT(ERR_DBG
, "%s", "RC_PRC is not QUIESCENT!");
2233 * fix_mac_address - Fix for Mac addr problem on Alpha platforms
2234 * @sp: Pointer to device specifc structure
2236 * New procedure to clear mac address reading problems on Alpha platforms
2240 static void fix_mac_address(struct s2io_nic
* sp
)
2242 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
2246 while (fix_mac
[i
] != END_SIGN
) {
2247 writeq(fix_mac
[i
++], &bar0
->gpio_control
);
2249 val64
= readq(&bar0
->gpio_control
);
2254 * start_nic - Turns the device on
2255 * @nic : device private variable.
2257 * This function actually turns the device on. Before this function is
2258 * called,all Registers are configured from their reset states
2259 * and shared memory is allocated but the NIC is still quiescent. On
2260 * calling this function, the device interrupts are cleared and the NIC is
2261 * literally switched on by writing into the adapter control register.
2263 * SUCCESS on success and -1 on failure.
2266 static int start_nic(struct s2io_nic
*nic
)
2268 struct XENA_dev_config __iomem
*bar0
= nic
->bar0
;
2269 struct net_device
*dev
= nic
->dev
;
2270 register u64 val64
= 0;
2272 struct mac_info
*mac_control
;
2273 struct config_param
*config
;
2275 mac_control
= &nic
->mac_control
;
2276 config
= &nic
->config
;
2278 /* PRC Initialization and configuration */
2279 for (i
= 0; i
< config
->rx_ring_num
; i
++) {
2280 writeq((u64
) mac_control
->rings
[i
].rx_blocks
[0].block_dma_addr
,
2281 &bar0
->prc_rxd0_n
[i
]);
2283 val64
= readq(&bar0
->prc_ctrl_n
[i
]);
2284 if (nic
->rxd_mode
== RXD_MODE_1
)
2285 val64
|= PRC_CTRL_RC_ENABLED
;
2287 val64
|= PRC_CTRL_RC_ENABLED
| PRC_CTRL_RING_MODE_3
;
2288 if (nic
->device_type
== XFRAME_II_DEVICE
)
2289 val64
|= PRC_CTRL_GROUP_READS
;
2290 val64
&= ~PRC_CTRL_RXD_BACKOFF_INTERVAL(0xFFFFFF);
2291 val64
|= PRC_CTRL_RXD_BACKOFF_INTERVAL(0x1000);
2292 writeq(val64
, &bar0
->prc_ctrl_n
[i
]);
2295 if (nic
->rxd_mode
== RXD_MODE_3B
) {
2296 /* Enabling 2 buffer mode by writing into Rx_pa_cfg reg. */
2297 val64
= readq(&bar0
->rx_pa_cfg
);
2298 val64
|= RX_PA_CFG_IGNORE_L2_ERR
;
2299 writeq(val64
, &bar0
->rx_pa_cfg
);
2302 if (vlan_tag_strip
== 0) {
2303 val64
= readq(&bar0
->rx_pa_cfg
);
2304 val64
&= ~RX_PA_CFG_STRIP_VLAN_TAG
;
2305 writeq(val64
, &bar0
->rx_pa_cfg
);
2306 vlan_strip_flag
= 0;
2310 * Enabling MC-RLDRAM. After enabling the device, we timeout
2311 * for around 100ms, which is approximately the time required
2312 * for the device to be ready for operation.
2314 val64
= readq(&bar0
->mc_rldram_mrs
);
2315 val64
|= MC_RLDRAM_QUEUE_SIZE_ENABLE
| MC_RLDRAM_MRS_ENABLE
;
2316 SPECIAL_REG_WRITE(val64
, &bar0
->mc_rldram_mrs
, UF
);
2317 val64
= readq(&bar0
->mc_rldram_mrs
);
2319 msleep(100); /* Delay by around 100 ms. */
2321 /* Enabling ECC Protection. */
2322 val64
= readq(&bar0
->adapter_control
);
2323 val64
&= ~ADAPTER_ECC_EN
;
2324 writeq(val64
, &bar0
->adapter_control
);
2327 * Verify if the device is ready to be enabled, if so enable
2330 val64
= readq(&bar0
->adapter_status
);
2331 if (!verify_xena_quiescence(nic
)) {
2332 DBG_PRINT(ERR_DBG
, "%s: device is not ready, ", dev
->name
);
2333 DBG_PRINT(ERR_DBG
, "Adapter status reads: 0x%llx\n",
2334 (unsigned long long) val64
);
2339 * With some switches, link might be already up at this point.
2340 * Because of this weird behavior, when we enable laser,
2341 * we may not get link. We need to handle this. We cannot
2342 * figure out which switch is misbehaving. So we are forced to
2343 * make a global change.
2346 /* Enabling Laser. */
2347 val64
= readq(&bar0
->adapter_control
);
2348 val64
|= ADAPTER_EOI_TX_ON
;
2349 writeq(val64
, &bar0
->adapter_control
);
2351 if (s2io_link_fault_indication(nic
) == MAC_RMAC_ERR_TIMER
) {
2353 * Dont see link state interrupts initally on some switches,
2354 * so directly scheduling the link state task here.
2356 schedule_work(&nic
->set_link_task
);
2358 /* SXE-002: Initialize link and activity LED */
2359 subid
= nic
->pdev
->subsystem_device
;
2360 if (((subid
& 0xFF) >= 0x07) &&
2361 (nic
->device_type
== XFRAME_I_DEVICE
)) {
2362 val64
= readq(&bar0
->gpio_control
);
2363 val64
|= 0x0000800000000000ULL
;
2364 writeq(val64
, &bar0
->gpio_control
);
2365 val64
= 0x0411040400000000ULL
;
2366 writeq(val64
, (void __iomem
*)bar0
+ 0x2700);
2372 * s2io_txdl_getskb - Get the skb from txdl, unmap and return skb
2374 static struct sk_buff
*s2io_txdl_getskb(struct fifo_info
*fifo_data
, struct \
2375 TxD
*txdlp
, int get_off
)
2377 struct s2io_nic
*nic
= fifo_data
->nic
;
2378 struct sk_buff
*skb
;
2383 if (txds
->Host_Control
== (u64
)(long)fifo_data
->ufo_in_band_v
) {
2384 pci_unmap_single(nic
->pdev
, (dma_addr_t
)
2385 txds
->Buffer_Pointer
, sizeof(u64
),
2390 skb
= (struct sk_buff
*) ((unsigned long)
2391 txds
->Host_Control
);
2393 memset(txdlp
, 0, (sizeof(struct TxD
) * fifo_data
->max_txds
));
2396 pci_unmap_single(nic
->pdev
, (dma_addr_t
)
2397 txds
->Buffer_Pointer
,
2398 skb
->len
- skb
->data_len
,
2400 frg_cnt
= skb_shinfo(skb
)->nr_frags
;
2403 for (j
= 0; j
< frg_cnt
; j
++, txds
++) {
2404 skb_frag_t
*frag
= &skb_shinfo(skb
)->frags
[j
];
2405 if (!txds
->Buffer_Pointer
)
2407 pci_unmap_page(nic
->pdev
, (dma_addr_t
)
2408 txds
->Buffer_Pointer
,
2409 frag
->size
, PCI_DMA_TODEVICE
);
2412 memset(txdlp
,0, (sizeof(struct TxD
) * fifo_data
->max_txds
));
2417 * free_tx_buffers - Free all queued Tx buffers
2418 * @nic : device private variable.
2420 * Free all queued Tx buffers.
2421 * Return Value: void
2424 static void free_tx_buffers(struct s2io_nic
*nic
)
2426 struct net_device
*dev
= nic
->dev
;
2427 struct sk_buff
*skb
;
2430 struct mac_info
*mac_control
;
2431 struct config_param
*config
;
2434 mac_control
= &nic
->mac_control
;
2435 config
= &nic
->config
;
2437 for (i
= 0; i
< config
->tx_fifo_num
; i
++) {
2438 unsigned long flags
;
2439 spin_lock_irqsave(&mac_control
->fifos
[i
].tx_lock
, flags
);
2440 for (j
= 0; j
< config
->tx_cfg
[i
].fifo_len
; j
++) {
2441 txdp
= (struct TxD
*) \
2442 mac_control
->fifos
[i
].list_info
[j
].list_virt_addr
;
2443 skb
= s2io_txdl_getskb(&mac_control
->fifos
[i
], txdp
, j
);
2445 nic
->mac_control
.stats_info
->sw_stat
.mem_freed
2452 "%s:forcibly freeing %d skbs on FIFO%d\n",
2454 mac_control
->fifos
[i
].tx_curr_get_info
.offset
= 0;
2455 mac_control
->fifos
[i
].tx_curr_put_info
.offset
= 0;
2456 spin_unlock_irqrestore(&mac_control
->fifos
[i
].tx_lock
, flags
);
2461 * stop_nic - To stop the nic
2462 * @nic ; device private variable.
2464 * This function does exactly the opposite of what the start_nic()
2465 * function does. This function is called to stop the device.
2470 static void stop_nic(struct s2io_nic
*nic
)
2472 struct XENA_dev_config __iomem
*bar0
= nic
->bar0
;
2473 register u64 val64
= 0;
2475 struct mac_info
*mac_control
;
2476 struct config_param
*config
;
2478 mac_control
= &nic
->mac_control
;
2479 config
= &nic
->config
;
2481 /* Disable all interrupts */
2482 en_dis_err_alarms(nic
, ENA_ALL_INTRS
, DISABLE_INTRS
);
2483 interruptible
= TX_TRAFFIC_INTR
| RX_TRAFFIC_INTR
;
2484 interruptible
|= TX_PIC_INTR
;
2485 en_dis_able_nic_intrs(nic
, interruptible
, DISABLE_INTRS
);
2487 /* Clearing Adapter_En bit of ADAPTER_CONTROL Register */
2488 val64
= readq(&bar0
->adapter_control
);
2489 val64
&= ~(ADAPTER_CNTL_EN
);
2490 writeq(val64
, &bar0
->adapter_control
);
2494 * fill_rx_buffers - Allocates the Rx side skbs
2495 * @ring_info: per ring structure
2496 * @from_card_up: If this is true, we will map the buffer to get
2497 * the dma address for buf0 and buf1 to give it to the card.
2498 * Else we will sync the already mapped buffer to give it to the card.
2500 * The function allocates Rx side skbs and puts the physical
2501 * address of these buffers into the RxD buffer pointers, so that the NIC
2502 * can DMA the received frame into these locations.
2503 * The NIC supports 3 receive modes, viz
2505 * 2. three buffer and
2506 * 3. Five buffer modes.
2507 * Each mode defines how many fragments the received frame will be split
2508 * up into by the NIC. The frame is split into L3 header, L4 Header,
2509 * L4 payload in three buffer mode and in 5 buffer mode, L4 payload itself
2510 * is split into 3 fragments. As of now only single buffer mode is
2513 * SUCCESS on success or an appropriate -ve value on failure.
2516 static int fill_rx_buffers(struct ring_info
*ring
, int from_card_up
)
2518 struct sk_buff
*skb
;
2520 int off
, size
, block_no
, block_no1
;
2525 struct RxD_t
*first_rxdp
= NULL
;
2526 u64 Buffer0_ptr
= 0, Buffer1_ptr
= 0;
2530 struct swStat
*stats
= &ring
->nic
->mac_control
.stats_info
->sw_stat
;
2532 alloc_cnt
= ring
->pkt_cnt
- ring
->rx_bufs_left
;
2534 block_no1
= ring
->rx_curr_get_info
.block_index
;
2535 while (alloc_tab
< alloc_cnt
) {
2536 block_no
= ring
->rx_curr_put_info
.block_index
;
2538 off
= ring
->rx_curr_put_info
.offset
;
2540 rxdp
= ring
->rx_blocks
[block_no
].rxds
[off
].virt_addr
;
2542 rxd_index
= off
+ 1;
2544 rxd_index
+= (block_no
* ring
->rxd_count
);
2546 if ((block_no
== block_no1
) &&
2547 (off
== ring
->rx_curr_get_info
.offset
) &&
2548 (rxdp
->Host_Control
)) {
2549 DBG_PRINT(INTR_DBG
, "%s: Get and Put",
2551 DBG_PRINT(INTR_DBG
, " info equated\n");
2554 if (off
&& (off
== ring
->rxd_count
)) {
2555 ring
->rx_curr_put_info
.block_index
++;
2556 if (ring
->rx_curr_put_info
.block_index
==
2558 ring
->rx_curr_put_info
.block_index
= 0;
2559 block_no
= ring
->rx_curr_put_info
.block_index
;
2561 ring
->rx_curr_put_info
.offset
= off
;
2562 rxdp
= ring
->rx_blocks
[block_no
].block_virt_addr
;
2563 DBG_PRINT(INTR_DBG
, "%s: Next block at: %p\n",
2564 ring
->dev
->name
, rxdp
);
2568 if ((rxdp
->Control_1
& RXD_OWN_XENA
) &&
2569 ((ring
->rxd_mode
== RXD_MODE_3B
) &&
2570 (rxdp
->Control_2
& s2BIT(0)))) {
2571 ring
->rx_curr_put_info
.offset
= off
;
2574 /* calculate size of skb based on ring mode */
2575 size
= ring
->mtu
+ HEADER_ETHERNET_II_802_3_SIZE
+
2576 HEADER_802_2_SIZE
+ HEADER_SNAP_SIZE
;
2577 if (ring
->rxd_mode
== RXD_MODE_1
)
2578 size
+= NET_IP_ALIGN
;
2580 size
= ring
->mtu
+ ALIGN_SIZE
+ BUF0_LEN
+ 4;
2583 skb
= dev_alloc_skb(size
);
2585 DBG_PRINT(INFO_DBG
, "%s: Out of ", ring
->dev
->name
);
2586 DBG_PRINT(INFO_DBG
, "memory to allocate SKBs\n");
2589 first_rxdp
->Control_1
|= RXD_OWN_XENA
;
2591 stats
->mem_alloc_fail_cnt
++;
2595 stats
->mem_allocated
+= skb
->truesize
;
2597 if (ring
->rxd_mode
== RXD_MODE_1
) {
2598 /* 1 buffer mode - normal operation mode */
2599 rxdp1
= (struct RxD1
*)rxdp
;
2600 memset(rxdp
, 0, sizeof(struct RxD1
));
2601 skb_reserve(skb
, NET_IP_ALIGN
);
2602 rxdp1
->Buffer0_ptr
= pci_map_single
2603 (ring
->pdev
, skb
->data
, size
- NET_IP_ALIGN
,
2604 PCI_DMA_FROMDEVICE
);
2605 if(pci_dma_mapping_error(rxdp1
->Buffer0_ptr
))
2606 goto pci_map_failed
;
2609 SET_BUFFER0_SIZE_1(size
- NET_IP_ALIGN
);
2610 rxdp
->Host_Control
= (unsigned long) (skb
);
2611 } else if (ring
->rxd_mode
== RXD_MODE_3B
) {
2614 * 2 buffer mode provides 128
2615 * byte aligned receive buffers.
2618 rxdp3
= (struct RxD3
*)rxdp
;
2619 /* save buffer pointers to avoid frequent dma mapping */
2620 Buffer0_ptr
= rxdp3
->Buffer0_ptr
;
2621 Buffer1_ptr
= rxdp3
->Buffer1_ptr
;
2622 memset(rxdp
, 0, sizeof(struct RxD3
));
2623 /* restore the buffer pointers for dma sync*/
2624 rxdp3
->Buffer0_ptr
= Buffer0_ptr
;
2625 rxdp3
->Buffer1_ptr
= Buffer1_ptr
;
2627 ba
= &ring
->ba
[block_no
][off
];
2628 skb_reserve(skb
, BUF0_LEN
);
2629 tmp
= (u64
)(unsigned long) skb
->data
;
2632 skb
->data
= (void *) (unsigned long)tmp
;
2633 skb_reset_tail_pointer(skb
);
2636 rxdp3
->Buffer0_ptr
=
2637 pci_map_single(ring
->pdev
, ba
->ba_0
,
2638 BUF0_LEN
, PCI_DMA_FROMDEVICE
);
2639 if (pci_dma_mapping_error(rxdp3
->Buffer0_ptr
))
2640 goto pci_map_failed
;
2642 pci_dma_sync_single_for_device(ring
->pdev
,
2643 (dma_addr_t
) rxdp3
->Buffer0_ptr
,
2644 BUF0_LEN
, PCI_DMA_FROMDEVICE
);
2646 rxdp
->Control_2
= SET_BUFFER0_SIZE_3(BUF0_LEN
);
2647 if (ring
->rxd_mode
== RXD_MODE_3B
) {
2648 /* Two buffer mode */
2651 * Buffer2 will have L3/L4 header plus
2654 rxdp3
->Buffer2_ptr
= pci_map_single
2655 (ring
->pdev
, skb
->data
, ring
->mtu
+ 4,
2656 PCI_DMA_FROMDEVICE
);
2658 if (pci_dma_mapping_error(rxdp3
->Buffer2_ptr
))
2659 goto pci_map_failed
;
2662 rxdp3
->Buffer1_ptr
=
2663 pci_map_single(ring
->pdev
,
2665 PCI_DMA_FROMDEVICE
);
2667 if (pci_dma_mapping_error
2668 (rxdp3
->Buffer1_ptr
)) {
2671 (dma_addr_t
)(unsigned long)
2674 PCI_DMA_FROMDEVICE
);
2675 goto pci_map_failed
;
2678 rxdp
->Control_2
|= SET_BUFFER1_SIZE_3(1);
2679 rxdp
->Control_2
|= SET_BUFFER2_SIZE_3
2682 rxdp
->Control_2
|= s2BIT(0);
2683 rxdp
->Host_Control
= (unsigned long) (skb
);
2685 if (alloc_tab
& ((1 << rxsync_frequency
) - 1))
2686 rxdp
->Control_1
|= RXD_OWN_XENA
;
2688 if (off
== (ring
->rxd_count
+ 1))
2690 ring
->rx_curr_put_info
.offset
= off
;
2692 rxdp
->Control_2
|= SET_RXD_MARKER
;
2693 if (!(alloc_tab
& ((1 << rxsync_frequency
) - 1))) {
2696 first_rxdp
->Control_1
|= RXD_OWN_XENA
;
2700 ring
->rx_bufs_left
+= 1;
2705 /* Transfer ownership of first descriptor to adapter just before
2706 * exiting. Before that, use memory barrier so that ownership
2707 * and other fields are seen by adapter correctly.
2711 first_rxdp
->Control_1
|= RXD_OWN_XENA
;
2716 stats
->pci_map_fail_cnt
++;
2717 stats
->mem_freed
+= skb
->truesize
;
2718 dev_kfree_skb_irq(skb
);
2722 static void free_rxd_blk(struct s2io_nic
*sp
, int ring_no
, int blk
)
2724 struct net_device
*dev
= sp
->dev
;
2726 struct sk_buff
*skb
;
2728 struct mac_info
*mac_control
;
2733 mac_control
= &sp
->mac_control
;
2734 for (j
= 0 ; j
< rxd_count
[sp
->rxd_mode
]; j
++) {
2735 rxdp
= mac_control
->rings
[ring_no
].
2736 rx_blocks
[blk
].rxds
[j
].virt_addr
;
2737 skb
= (struct sk_buff
*)
2738 ((unsigned long) rxdp
->Host_Control
);
2742 if (sp
->rxd_mode
== RXD_MODE_1
) {
2743 rxdp1
= (struct RxD1
*)rxdp
;
2744 pci_unmap_single(sp
->pdev
, (dma_addr_t
)
2747 HEADER_ETHERNET_II_802_3_SIZE
2748 + HEADER_802_2_SIZE
+
2750 PCI_DMA_FROMDEVICE
);
2751 memset(rxdp
, 0, sizeof(struct RxD1
));
2752 } else if(sp
->rxd_mode
== RXD_MODE_3B
) {
2753 rxdp3
= (struct RxD3
*)rxdp
;
2754 ba
= &mac_control
->rings
[ring_no
].
2756 pci_unmap_single(sp
->pdev
, (dma_addr_t
)
2759 PCI_DMA_FROMDEVICE
);
2760 pci_unmap_single(sp
->pdev
, (dma_addr_t
)
2763 PCI_DMA_FROMDEVICE
);
2764 pci_unmap_single(sp
->pdev
, (dma_addr_t
)
2767 PCI_DMA_FROMDEVICE
);
2768 memset(rxdp
, 0, sizeof(struct RxD3
));
2770 sp
->mac_control
.stats_info
->sw_stat
.mem_freed
+= skb
->truesize
;
2772 mac_control
->rings
[ring_no
].rx_bufs_left
-= 1;
2777 * free_rx_buffers - Frees all Rx buffers
2778 * @sp: device private variable.
2780 * This function will free all Rx buffers allocated by host.
2785 static void free_rx_buffers(struct s2io_nic
*sp
)
2787 struct net_device
*dev
= sp
->dev
;
2788 int i
, blk
= 0, buf_cnt
= 0;
2789 struct mac_info
*mac_control
;
2790 struct config_param
*config
;
2792 mac_control
= &sp
->mac_control
;
2793 config
= &sp
->config
;
2795 for (i
= 0; i
< config
->rx_ring_num
; i
++) {
2796 for (blk
= 0; blk
< rx_ring_sz
[i
]; blk
++)
2797 free_rxd_blk(sp
,i
,blk
);
2799 mac_control
->rings
[i
].rx_curr_put_info
.block_index
= 0;
2800 mac_control
->rings
[i
].rx_curr_get_info
.block_index
= 0;
2801 mac_control
->rings
[i
].rx_curr_put_info
.offset
= 0;
2802 mac_control
->rings
[i
].rx_curr_get_info
.offset
= 0;
2803 mac_control
->rings
[i
].rx_bufs_left
= 0;
2804 DBG_PRINT(INIT_DBG
, "%s:Freed 0x%x Rx Buffers on ring%d\n",
2805 dev
->name
, buf_cnt
, i
);
2809 static int s2io_chk_rx_buffers(struct ring_info
*ring
)
2811 if (fill_rx_buffers(ring
, 0) == -ENOMEM
) {
2812 DBG_PRINT(INFO_DBG
, "%s:Out of memory", ring
->dev
->name
);
2813 DBG_PRINT(INFO_DBG
, " in Rx Intr!!\n");
2819 * s2io_poll - Rx interrupt handler for NAPI support
2820 * @napi : pointer to the napi structure.
2821 * @budget : The number of packets that were budgeted to be processed
2822 * during one pass through the 'Poll" function.
2824 * Comes into picture only if NAPI support has been incorporated. It does
2825 * the same thing that rx_intr_handler does, but not in a interrupt context
2826 * also It will process only a given number of packets.
2828 * 0 on success and 1 if there are No Rx packets to be processed.
2831 static int s2io_poll_msix(struct napi_struct
*napi
, int budget
)
2833 struct ring_info
*ring
= container_of(napi
, struct ring_info
, napi
);
2834 struct net_device
*dev
= ring
->dev
;
2835 struct config_param
*config
;
2836 struct mac_info
*mac_control
;
2837 int pkts_processed
= 0;
2838 u8 __iomem
*addr
= NULL
;
2840 struct s2io_nic
*nic
= dev
->priv
;
2841 struct XENA_dev_config __iomem
*bar0
= nic
->bar0
;
2842 int budget_org
= budget
;
2844 config
= &nic
->config
;
2845 mac_control
= &nic
->mac_control
;
2847 if (unlikely(!is_s2io_card_up(nic
)))
2850 pkts_processed
= rx_intr_handler(ring
, budget
);
2851 s2io_chk_rx_buffers(ring
);
2853 if (pkts_processed
< budget_org
) {
2854 netif_rx_complete(dev
, napi
);
2855 /*Re Enable MSI-Rx Vector*/
2856 addr
= (u8 __iomem
*)&bar0
->xmsi_mask_reg
;
2857 addr
+= 7 - ring
->ring_no
;
2858 val8
= (ring
->ring_no
== 0) ? 0x3f : 0xbf;
2862 return pkts_processed
;
2864 static int s2io_poll_inta(struct napi_struct
*napi
, int budget
)
2866 struct s2io_nic
*nic
= container_of(napi
, struct s2io_nic
, napi
);
2867 struct ring_info
*ring
;
2868 struct net_device
*dev
= nic
->dev
;
2869 struct config_param
*config
;
2870 struct mac_info
*mac_control
;
2871 int pkts_processed
= 0;
2872 int ring_pkts_processed
, i
;
2873 struct XENA_dev_config __iomem
*bar0
= nic
->bar0
;
2874 int budget_org
= budget
;
2876 config
= &nic
->config
;
2877 mac_control
= &nic
->mac_control
;
2879 if (unlikely(!is_s2io_card_up(nic
)))
2882 for (i
= 0; i
< config
->rx_ring_num
; i
++) {
2883 ring
= &mac_control
->rings
[i
];
2884 ring_pkts_processed
= rx_intr_handler(ring
, budget
);
2885 s2io_chk_rx_buffers(ring
);
2886 pkts_processed
+= ring_pkts_processed
;
2887 budget
-= ring_pkts_processed
;
2891 if (pkts_processed
< budget_org
) {
2892 netif_rx_complete(dev
, napi
);
2893 /* Re enable the Rx interrupts for the ring */
2894 writeq(0, &bar0
->rx_traffic_mask
);
2895 readl(&bar0
->rx_traffic_mask
);
2897 return pkts_processed
;
2900 #ifdef CONFIG_NET_POLL_CONTROLLER
2902 * s2io_netpoll - netpoll event handler entry point
2903 * @dev : pointer to the device structure.
2905 * This function will be called by upper layer to check for events on the
2906 * interface in situations where interrupts are disabled. It is used for
2907 * specific in-kernel networking tasks, such as remote consoles and kernel
2908 * debugging over the network (example netdump in RedHat).
2910 static void s2io_netpoll(struct net_device
*dev
)
2912 struct s2io_nic
*nic
= dev
->priv
;
2913 struct mac_info
*mac_control
;
2914 struct config_param
*config
;
2915 struct XENA_dev_config __iomem
*bar0
= nic
->bar0
;
2916 u64 val64
= 0xFFFFFFFFFFFFFFFFULL
;
2919 if (pci_channel_offline(nic
->pdev
))
2922 disable_irq(dev
->irq
);
2924 mac_control
= &nic
->mac_control
;
2925 config
= &nic
->config
;
2927 writeq(val64
, &bar0
->rx_traffic_int
);
2928 writeq(val64
, &bar0
->tx_traffic_int
);
2930 /* we need to free up the transmitted skbufs or else netpoll will
2931 * run out of skbs and will fail and eventually netpoll application such
2932 * as netdump will fail.
2934 for (i
= 0; i
< config
->tx_fifo_num
; i
++)
2935 tx_intr_handler(&mac_control
->fifos
[i
]);
2937 /* check for received packet and indicate up to network */
2938 for (i
= 0; i
< config
->rx_ring_num
; i
++)
2939 rx_intr_handler(&mac_control
->rings
[i
], 0);
2941 for (i
= 0; i
< config
->rx_ring_num
; i
++) {
2942 if (fill_rx_buffers(&mac_control
->rings
[i
], 0) == -ENOMEM
) {
2943 DBG_PRINT(INFO_DBG
, "%s:Out of memory", dev
->name
);
2944 DBG_PRINT(INFO_DBG
, " in Rx Netpoll!!\n");
2948 enable_irq(dev
->irq
);
2954 * rx_intr_handler - Rx interrupt handler
2955 * @ring_info: per ring structure.
2956 * @budget: budget for napi processing.
2958 * If the interrupt is because of a received frame or if the
2959 * receive ring contains fresh as yet un-processed frames,this function is
2960 * called. It picks out the RxD at which place the last Rx processing had
2961 * stopped and sends the skb to the OSM's Rx handler and then increments
2964 * No. of napi packets processed.
2966 static int rx_intr_handler(struct ring_info
*ring_data
, int budget
)
2968 int get_block
, put_block
;
2969 struct rx_curr_get_info get_info
, put_info
;
2971 struct sk_buff
*skb
;
2972 int pkt_cnt
= 0, napi_pkts
= 0;
2977 get_info
= ring_data
->rx_curr_get_info
;
2978 get_block
= get_info
.block_index
;
2979 memcpy(&put_info
, &ring_data
->rx_curr_put_info
, sizeof(put_info
));
2980 put_block
= put_info
.block_index
;
2981 rxdp
= ring_data
->rx_blocks
[get_block
].rxds
[get_info
.offset
].virt_addr
;
2983 while (RXD_IS_UP2DT(rxdp
)) {
2985 * If your are next to put index then it's
2986 * FIFO full condition
2988 if ((get_block
== put_block
) &&
2989 (get_info
.offset
+ 1) == put_info
.offset
) {
2990 DBG_PRINT(INTR_DBG
, "%s: Ring Full\n",
2991 ring_data
->dev
->name
);
2994 skb
= (struct sk_buff
*) ((unsigned long)rxdp
->Host_Control
);
2996 DBG_PRINT(ERR_DBG
, "%s: The skb is ",
2997 ring_data
->dev
->name
);
2998 DBG_PRINT(ERR_DBG
, "Null in Rx Intr\n");
3001 if (ring_data
->rxd_mode
== RXD_MODE_1
) {
3002 rxdp1
= (struct RxD1
*)rxdp
;
3003 pci_unmap_single(ring_data
->pdev
, (dma_addr_t
)
3006 HEADER_ETHERNET_II_802_3_SIZE
+
3009 PCI_DMA_FROMDEVICE
);
3010 } else if (ring_data
->rxd_mode
== RXD_MODE_3B
) {
3011 rxdp3
= (struct RxD3
*)rxdp
;
3012 pci_dma_sync_single_for_cpu(ring_data
->pdev
, (dma_addr_t
)
3014 BUF0_LEN
, PCI_DMA_FROMDEVICE
);
3015 pci_unmap_single(ring_data
->pdev
, (dma_addr_t
)
3018 PCI_DMA_FROMDEVICE
);
3020 prefetch(skb
->data
);
3021 rx_osm_handler(ring_data
, rxdp
);
3023 ring_data
->rx_curr_get_info
.offset
= get_info
.offset
;
3024 rxdp
= ring_data
->rx_blocks
[get_block
].
3025 rxds
[get_info
.offset
].virt_addr
;
3026 if (get_info
.offset
== rxd_count
[ring_data
->rxd_mode
]) {
3027 get_info
.offset
= 0;
3028 ring_data
->rx_curr_get_info
.offset
= get_info
.offset
;
3030 if (get_block
== ring_data
->block_count
)
3032 ring_data
->rx_curr_get_info
.block_index
= get_block
;
3033 rxdp
= ring_data
->rx_blocks
[get_block
].block_virt_addr
;
3036 if (ring_data
->nic
->config
.napi
) {
3043 if ((indicate_max_pkts
) && (pkt_cnt
> indicate_max_pkts
))
3046 if (ring_data
->lro
) {
3047 /* Clear all LRO sessions before exiting */
3048 for (i
=0; i
<MAX_LRO_SESSIONS
; i
++) {
3049 struct lro
*lro
= &ring_data
->lro0_n
[i
];
3051 update_L3L4_header(ring_data
->nic
, lro
);
3052 queue_rx_frame(lro
->parent
, lro
->vlan_tag
);
3053 clear_lro_session(lro
);
3061 * tx_intr_handler - Transmit interrupt handler
3062 * @nic : device private variable
3064 * If an interrupt was raised to indicate DMA complete of the
3065 * Tx packet, this function is called. It identifies the last TxD
3066 * whose buffer was freed and frees all skbs whose data have already
3067 * DMA'ed into the NICs internal memory.
3072 static void tx_intr_handler(struct fifo_info
*fifo_data
)
3074 struct s2io_nic
*nic
= fifo_data
->nic
;
3075 struct tx_curr_get_info get_info
, put_info
;
3076 struct sk_buff
*skb
= NULL
;
3079 unsigned long flags
= 0;
3082 if (!spin_trylock_irqsave(&fifo_data
->tx_lock
, flags
))
3085 get_info
= fifo_data
->tx_curr_get_info
;
3086 memcpy(&put_info
, &fifo_data
->tx_curr_put_info
, sizeof(put_info
));
3087 txdlp
= (struct TxD
*) fifo_data
->list_info
[get_info
.offset
].
3089 while ((!(txdlp
->Control_1
& TXD_LIST_OWN_XENA
)) &&
3090 (get_info
.offset
!= put_info
.offset
) &&
3091 (txdlp
->Host_Control
)) {
3092 /* Check for TxD errors */
3093 if (txdlp
->Control_1
& TXD_T_CODE
) {
3094 unsigned long long err
;
3095 err
= txdlp
->Control_1
& TXD_T_CODE
;
3097 nic
->mac_control
.stats_info
->sw_stat
.
3101 /* update t_code statistics */
3102 err_mask
= err
>> 48;
3105 nic
->mac_control
.stats_info
->sw_stat
.
3110 nic
->mac_control
.stats_info
->sw_stat
.
3111 tx_desc_abort_cnt
++;
3115 nic
->mac_control
.stats_info
->sw_stat
.
3116 tx_parity_err_cnt
++;
3120 nic
->mac_control
.stats_info
->sw_stat
.
3125 nic
->mac_control
.stats_info
->sw_stat
.
3126 tx_list_proc_err_cnt
++;
3131 skb
= s2io_txdl_getskb(fifo_data
, txdlp
, get_info
.offset
);
3133 spin_unlock_irqrestore(&fifo_data
->tx_lock
, flags
);
3134 DBG_PRINT(ERR_DBG
, "%s: Null skb ",
3136 DBG_PRINT(ERR_DBG
, "in Tx Free Intr\n");
3141 /* Updating the statistics block */
3142 nic
->stats
.tx_bytes
+= skb
->len
;
3143 nic
->mac_control
.stats_info
->sw_stat
.mem_freed
+= skb
->truesize
;
3144 dev_kfree_skb_irq(skb
);
3147 if (get_info
.offset
== get_info
.fifo_len
+ 1)
3148 get_info
.offset
= 0;
3149 txdlp
= (struct TxD
*) fifo_data
->list_info
3150 [get_info
.offset
].list_virt_addr
;
3151 fifo_data
->tx_curr_get_info
.offset
=
3155 s2io_wake_tx_queue(fifo_data
, pkt_cnt
, nic
->config
.multiq
);
3157 spin_unlock_irqrestore(&fifo_data
->tx_lock
, flags
);
3161 * s2io_mdio_write - Function to write in to MDIO registers
3162 * @mmd_type : MMD type value (PMA/PMD/WIS/PCS/PHYXS)
3163 * @addr : address value
3164 * @value : data value
3165 * @dev : pointer to net_device structure
3167 * This function is used to write values to the MDIO registers
3170 static void s2io_mdio_write(u32 mmd_type
, u64 addr
, u16 value
, struct net_device
*dev
)
3173 struct s2io_nic
*sp
= dev
->priv
;
3174 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
3176 //address transaction
3177 val64
= val64
| MDIO_MMD_INDX_ADDR(addr
)
3178 | MDIO_MMD_DEV_ADDR(mmd_type
)
3179 | MDIO_MMS_PRT_ADDR(0x0);
3180 writeq(val64
, &bar0
->mdio_control
);
3181 val64
= val64
| MDIO_CTRL_START_TRANS(0xE);
3182 writeq(val64
, &bar0
->mdio_control
);
3187 val64
= val64
| MDIO_MMD_INDX_ADDR(addr
)
3188 | MDIO_MMD_DEV_ADDR(mmd_type
)
3189 | MDIO_MMS_PRT_ADDR(0x0)
3190 | MDIO_MDIO_DATA(value
)
3191 | MDIO_OP(MDIO_OP_WRITE_TRANS
);
3192 writeq(val64
, &bar0
->mdio_control
);
3193 val64
= val64
| MDIO_CTRL_START_TRANS(0xE);
3194 writeq(val64
, &bar0
->mdio_control
);
3198 val64
= val64
| MDIO_MMD_INDX_ADDR(addr
)
3199 | MDIO_MMD_DEV_ADDR(mmd_type
)
3200 | MDIO_MMS_PRT_ADDR(0x0)
3201 | MDIO_OP(MDIO_OP_READ_TRANS
);
3202 writeq(val64
, &bar0
->mdio_control
);
3203 val64
= val64
| MDIO_CTRL_START_TRANS(0xE);
3204 writeq(val64
, &bar0
->mdio_control
);
3210 * s2io_mdio_read - Function to write in to MDIO registers
3211 * @mmd_type : MMD type value (PMA/PMD/WIS/PCS/PHYXS)
3212 * @addr : address value
3213 * @dev : pointer to net_device structure
3215 * This function is used to read values to the MDIO registers
3218 static u64
s2io_mdio_read(u32 mmd_type
, u64 addr
, struct net_device
*dev
)
3222 struct s2io_nic
*sp
= dev
->priv
;
3223 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
3225 /* address transaction */
3226 val64
= val64
| MDIO_MMD_INDX_ADDR(addr
)
3227 | MDIO_MMD_DEV_ADDR(mmd_type
)
3228 | MDIO_MMS_PRT_ADDR(0x0);
3229 writeq(val64
, &bar0
->mdio_control
);
3230 val64
= val64
| MDIO_CTRL_START_TRANS(0xE);
3231 writeq(val64
, &bar0
->mdio_control
);
3234 /* Data transaction */
3236 val64
= val64
| MDIO_MMD_INDX_ADDR(addr
)
3237 | MDIO_MMD_DEV_ADDR(mmd_type
)
3238 | MDIO_MMS_PRT_ADDR(0x0)
3239 | MDIO_OP(MDIO_OP_READ_TRANS
);
3240 writeq(val64
, &bar0
->mdio_control
);
3241 val64
= val64
| MDIO_CTRL_START_TRANS(0xE);
3242 writeq(val64
, &bar0
->mdio_control
);
3245 /* Read the value from regs */
3246 rval64
= readq(&bar0
->mdio_control
);
3247 rval64
= rval64
& 0xFFFF0000;
3248 rval64
= rval64
>> 16;
3252 * s2io_chk_xpak_counter - Function to check the status of the xpak counters
3253 * @counter : couter value to be updated
3254 * @flag : flag to indicate the status
3255 * @type : counter type
3257 * This function is to check the status of the xpak counters value
3261 static void s2io_chk_xpak_counter(u64
*counter
, u64
* regs_stat
, u32 index
, u16 flag
, u16 type
)
3266 for(i
= 0; i
<index
; i
++)
3271 *counter
= *counter
+ 1;
3272 val64
= *regs_stat
& mask
;
3273 val64
= val64
>> (index
* 0x2);
3280 DBG_PRINT(ERR_DBG
, "Take Xframe NIC out of "
3281 "service. Excessive temperatures may "
3282 "result in premature transceiver "
3286 DBG_PRINT(ERR_DBG
, "Take Xframe NIC out of "
3287 "service Excessive bias currents may "
3288 "indicate imminent laser diode "
3292 DBG_PRINT(ERR_DBG
, "Take Xframe NIC out of "
3293 "service Excessive laser output "
3294 "power may saturate far-end "
3298 DBG_PRINT(ERR_DBG
, "Incorrect XPAK Alarm "
3303 val64
= val64
<< (index
* 0x2);
3304 *regs_stat
= (*regs_stat
& (~mask
)) | (val64
);
3307 *regs_stat
= *regs_stat
& (~mask
);
3312 * s2io_updt_xpak_counter - Function to update the xpak counters
3313 * @dev : pointer to net_device struct
3315 * This function is to upate the status of the xpak counters value
3318 static void s2io_updt_xpak_counter(struct net_device
*dev
)
3326 struct s2io_nic
*sp
= dev
->priv
;
3327 struct stat_block
*stat_info
= sp
->mac_control
.stats_info
;
3329 /* Check the communication with the MDIO slave */
3332 val64
= s2io_mdio_read(MDIO_MMD_PMA_DEV_ADDR
, addr
, dev
);
3333 if((val64
== 0xFFFF) || (val64
== 0x0000))
3335 DBG_PRINT(ERR_DBG
, "ERR: MDIO slave access failed - "
3336 "Returned %llx\n", (unsigned long long)val64
);
3340 /* Check for the expecte value of 2040 at PMA address 0x0000 */
3343 DBG_PRINT(ERR_DBG
, "Incorrect value at PMA address 0x0000 - ");
3344 DBG_PRINT(ERR_DBG
, "Returned: %llx- Expected: 0x2040\n",
3345 (unsigned long long)val64
);
3349 /* Loading the DOM register to MDIO register */
3351 s2io_mdio_write(MDIO_MMD_PMA_DEV_ADDR
, addr
, val16
, dev
);
3352 val64
= s2io_mdio_read(MDIO_MMD_PMA_DEV_ADDR
, addr
, dev
);
3354 /* Reading the Alarm flags */
3357 val64
= s2io_mdio_read(MDIO_MMD_PMA_DEV_ADDR
, addr
, dev
);
3359 flag
= CHECKBIT(val64
, 0x7);
3361 s2io_chk_xpak_counter(&stat_info
->xpak_stat
.alarm_transceiver_temp_high
,
3362 &stat_info
->xpak_stat
.xpak_regs_stat
,
3365 if(CHECKBIT(val64
, 0x6))
3366 stat_info
->xpak_stat
.alarm_transceiver_temp_low
++;
3368 flag
= CHECKBIT(val64
, 0x3);
3370 s2io_chk_xpak_counter(&stat_info
->xpak_stat
.alarm_laser_bias_current_high
,
3371 &stat_info
->xpak_stat
.xpak_regs_stat
,
3374 if(CHECKBIT(val64
, 0x2))
3375 stat_info
->xpak_stat
.alarm_laser_bias_current_low
++;
3377 flag
= CHECKBIT(val64
, 0x1);
3379 s2io_chk_xpak_counter(&stat_info
->xpak_stat
.alarm_laser_output_power_high
,
3380 &stat_info
->xpak_stat
.xpak_regs_stat
,
3383 if(CHECKBIT(val64
, 0x0))
3384 stat_info
->xpak_stat
.alarm_laser_output_power_low
++;
3386 /* Reading the Warning flags */
3389 val64
= s2io_mdio_read(MDIO_MMD_PMA_DEV_ADDR
, addr
, dev
);
3391 if(CHECKBIT(val64
, 0x7))
3392 stat_info
->xpak_stat
.warn_transceiver_temp_high
++;
3394 if(CHECKBIT(val64
, 0x6))
3395 stat_info
->xpak_stat
.warn_transceiver_temp_low
++;
3397 if(CHECKBIT(val64
, 0x3))
3398 stat_info
->xpak_stat
.warn_laser_bias_current_high
++;
3400 if(CHECKBIT(val64
, 0x2))
3401 stat_info
->xpak_stat
.warn_laser_bias_current_low
++;
3403 if(CHECKBIT(val64
, 0x1))
3404 stat_info
->xpak_stat
.warn_laser_output_power_high
++;
3406 if(CHECKBIT(val64
, 0x0))
3407 stat_info
->xpak_stat
.warn_laser_output_power_low
++;
3411 * wait_for_cmd_complete - waits for a command to complete.
3412 * @sp : private member of the device structure, which is a pointer to the
3413 * s2io_nic structure.
3414 * Description: Function that waits for a command to Write into RMAC
3415 * ADDR DATA registers to be completed and returns either success or
3416 * error depending on whether the command was complete or not.
3418 * SUCCESS on success and FAILURE on failure.
3421 static int wait_for_cmd_complete(void __iomem
*addr
, u64 busy_bit
,
3424 int ret
= FAILURE
, cnt
= 0, delay
= 1;
3427 if ((bit_state
!= S2IO_BIT_RESET
) && (bit_state
!= S2IO_BIT_SET
))
3431 val64
= readq(addr
);
3432 if (bit_state
== S2IO_BIT_RESET
) {
3433 if (!(val64
& busy_bit
)) {
3438 if (!(val64
& busy_bit
)) {
3455 * check_pci_device_id - Checks if the device id is supported
3457 * Description: Function to check if the pci device id is supported by driver.
3458 * Return value: Actual device id if supported else PCI_ANY_ID
3460 static u16
check_pci_device_id(u16 id
)
3463 case PCI_DEVICE_ID_HERC_WIN
:
3464 case PCI_DEVICE_ID_HERC_UNI
:
3465 return XFRAME_II_DEVICE
;
3466 case PCI_DEVICE_ID_S2IO_UNI
:
3467 case PCI_DEVICE_ID_S2IO_WIN
:
3468 return XFRAME_I_DEVICE
;
3475 * s2io_reset - Resets the card.
3476 * @sp : private member of the device structure.
3477 * Description: Function to Reset the card. This function then also
3478 * restores the previously saved PCI configuration space registers as
3479 * the card reset also resets the configuration space.
3484 static void s2io_reset(struct s2io_nic
* sp
)
3486 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
3491 unsigned long long up_cnt
, down_cnt
, up_time
, down_time
, reset_cnt
;
3492 unsigned long long mem_alloc_cnt
, mem_free_cnt
, watchdog_cnt
;
3494 DBG_PRINT(INIT_DBG
,"%s - Resetting XFrame card %s\n",
3495 __FUNCTION__
, sp
->dev
->name
);
3497 /* Back up the PCI-X CMD reg, dont want to lose MMRBC, OST settings */
3498 pci_read_config_word(sp
->pdev
, PCIX_COMMAND_REGISTER
, &(pci_cmd
));
3500 val64
= SW_RESET_ALL
;
3501 writeq(val64
, &bar0
->sw_reset
);
3502 if (strstr(sp
->product_name
, "CX4")) {
3506 for (i
= 0; i
< S2IO_MAX_PCI_CONFIG_SPACE_REINIT
; i
++) {
3508 /* Restore the PCI state saved during initialization. */
3509 pci_restore_state(sp
->pdev
);
3510 pci_read_config_word(sp
->pdev
, 0x2, &val16
);
3511 if (check_pci_device_id(val16
) != (u16
)PCI_ANY_ID
)
3516 if (check_pci_device_id(val16
) == (u16
)PCI_ANY_ID
) {
3517 DBG_PRINT(ERR_DBG
,"%s SW_Reset failed!\n", __FUNCTION__
);
3520 pci_write_config_word(sp
->pdev
, PCIX_COMMAND_REGISTER
, pci_cmd
);
3524 /* Set swapper to enable I/O register access */
3525 s2io_set_swapper(sp
);
3527 /* restore mac_addr entries */
3528 do_s2io_restore_unicast_mc(sp
);
3530 /* Restore the MSIX table entries from local variables */
3531 restore_xmsi_data(sp
);
3533 /* Clear certain PCI/PCI-X fields after reset */
3534 if (sp
->device_type
== XFRAME_II_DEVICE
) {
3535 /* Clear "detected parity error" bit */
3536 pci_write_config_word(sp
->pdev
, PCI_STATUS
, 0x8000);
3538 /* Clearing PCIX Ecc status register */
3539 pci_write_config_dword(sp
->pdev
, 0x68, 0x7C);
3541 /* Clearing PCI_STATUS error reflected here */
3542 writeq(s2BIT(62), &bar0
->txpic_int_reg
);
3545 /* Reset device statistics maintained by OS */
3546 memset(&sp
->stats
, 0, sizeof (struct net_device_stats
));
3548 up_cnt
= sp
->mac_control
.stats_info
->sw_stat
.link_up_cnt
;
3549 down_cnt
= sp
->mac_control
.stats_info
->sw_stat
.link_down_cnt
;
3550 up_time
= sp
->mac_control
.stats_info
->sw_stat
.link_up_time
;
3551 down_time
= sp
->mac_control
.stats_info
->sw_stat
.link_down_time
;
3552 reset_cnt
= sp
->mac_control
.stats_info
->sw_stat
.soft_reset_cnt
;
3553 mem_alloc_cnt
= sp
->mac_control
.stats_info
->sw_stat
.mem_allocated
;
3554 mem_free_cnt
= sp
->mac_control
.stats_info
->sw_stat
.mem_freed
;
3555 watchdog_cnt
= sp
->mac_control
.stats_info
->sw_stat
.watchdog_timer_cnt
;
3556 /* save link up/down time/cnt, reset/memory/watchdog cnt */
3557 memset(sp
->mac_control
.stats_info
, 0, sizeof(struct stat_block
));
3558 /* restore link up/down time/cnt, reset/memory/watchdog cnt */
3559 sp
->mac_control
.stats_info
->sw_stat
.link_up_cnt
= up_cnt
;
3560 sp
->mac_control
.stats_info
->sw_stat
.link_down_cnt
= down_cnt
;
3561 sp
->mac_control
.stats_info
->sw_stat
.link_up_time
= up_time
;
3562 sp
->mac_control
.stats_info
->sw_stat
.link_down_time
= down_time
;
3563 sp
->mac_control
.stats_info
->sw_stat
.soft_reset_cnt
= reset_cnt
;
3564 sp
->mac_control
.stats_info
->sw_stat
.mem_allocated
= mem_alloc_cnt
;
3565 sp
->mac_control
.stats_info
->sw_stat
.mem_freed
= mem_free_cnt
;
3566 sp
->mac_control
.stats_info
->sw_stat
.watchdog_timer_cnt
= watchdog_cnt
;
3568 /* SXE-002: Configure link and activity LED to turn it off */
3569 subid
= sp
->pdev
->subsystem_device
;
3570 if (((subid
& 0xFF) >= 0x07) &&
3571 (sp
->device_type
== XFRAME_I_DEVICE
)) {
3572 val64
= readq(&bar0
->gpio_control
);
3573 val64
|= 0x0000800000000000ULL
;
3574 writeq(val64
, &bar0
->gpio_control
);
3575 val64
= 0x0411040400000000ULL
;
3576 writeq(val64
, (void __iomem
*)bar0
+ 0x2700);
3580 * Clear spurious ECC interrupts that would have occured on
3581 * XFRAME II cards after reset.
3583 if (sp
->device_type
== XFRAME_II_DEVICE
) {
3584 val64
= readq(&bar0
->pcc_err_reg
);
3585 writeq(val64
, &bar0
->pcc_err_reg
);
3588 sp
->device_enabled_once
= FALSE
;
3592 * s2io_set_swapper - to set the swapper controle on the card
3593 * @sp : private member of the device structure,
3594 * pointer to the s2io_nic structure.
3595 * Description: Function to set the swapper control on the card
3596 * correctly depending on the 'endianness' of the system.
3598 * SUCCESS on success and FAILURE on failure.
3601 static int s2io_set_swapper(struct s2io_nic
* sp
)
3603 struct net_device
*dev
= sp
->dev
;
3604 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
3605 u64 val64
, valt
, valr
;
3608 * Set proper endian settings and verify the same by reading
3609 * the PIF Feed-back register.
3612 val64
= readq(&bar0
->pif_rd_swapper_fb
);
3613 if (val64
!= 0x0123456789ABCDEFULL
) {
3615 u64 value
[] = { 0xC30000C3C30000C3ULL
, /* FE=1, SE=1 */
3616 0x8100008181000081ULL
, /* FE=1, SE=0 */
3617 0x4200004242000042ULL
, /* FE=0, SE=1 */
3618 0}; /* FE=0, SE=0 */
3621 writeq(value
[i
], &bar0
->swapper_ctrl
);
3622 val64
= readq(&bar0
->pif_rd_swapper_fb
);
3623 if (val64
== 0x0123456789ABCDEFULL
)
3628 DBG_PRINT(ERR_DBG
, "%s: Endian settings are wrong, ",
3630 DBG_PRINT(ERR_DBG
, "feedback read %llx\n",
3631 (unsigned long long) val64
);
3636 valr
= readq(&bar0
->swapper_ctrl
);
3639 valt
= 0x0123456789ABCDEFULL
;
3640 writeq(valt
, &bar0
->xmsi_address
);
3641 val64
= readq(&bar0
->xmsi_address
);
3645 u64 value
[] = { 0x00C3C30000C3C300ULL
, /* FE=1, SE=1 */
3646 0x0081810000818100ULL
, /* FE=1, SE=0 */
3647 0x0042420000424200ULL
, /* FE=0, SE=1 */
3648 0}; /* FE=0, SE=0 */
3651 writeq((value
[i
] | valr
), &bar0
->swapper_ctrl
);
3652 writeq(valt
, &bar0
->xmsi_address
);
3653 val64
= readq(&bar0
->xmsi_address
);
3659 unsigned long long x
= val64
;
3660 DBG_PRINT(ERR_DBG
, "Write failed, Xmsi_addr ");
3661 DBG_PRINT(ERR_DBG
, "reads:0x%llx\n", x
);
3665 val64
= readq(&bar0
->swapper_ctrl
);
3666 val64
&= 0xFFFF000000000000ULL
;
3670 * The device by default set to a big endian format, so a
3671 * big endian driver need not set anything.
3673 val64
|= (SWAPPER_CTRL_TXP_FE
|
3674 SWAPPER_CTRL_TXP_SE
|
3675 SWAPPER_CTRL_TXD_R_FE
|
3676 SWAPPER_CTRL_TXD_W_FE
|
3677 SWAPPER_CTRL_TXF_R_FE
|
3678 SWAPPER_CTRL_RXD_R_FE
|
3679 SWAPPER_CTRL_RXD_W_FE
|
3680 SWAPPER_CTRL_RXF_W_FE
|
3681 SWAPPER_CTRL_XMSI_FE
|
3682 SWAPPER_CTRL_STATS_FE
| SWAPPER_CTRL_STATS_SE
);
3683 if (sp
->config
.intr_type
== INTA
)
3684 val64
|= SWAPPER_CTRL_XMSI_SE
;
3685 writeq(val64
, &bar0
->swapper_ctrl
);
3688 * Initially we enable all bits to make it accessible by the
3689 * driver, then we selectively enable only those bits that
3692 val64
|= (SWAPPER_CTRL_TXP_FE
|
3693 SWAPPER_CTRL_TXP_SE
|
3694 SWAPPER_CTRL_TXD_R_FE
|
3695 SWAPPER_CTRL_TXD_R_SE
|
3696 SWAPPER_CTRL_TXD_W_FE
|
3697 SWAPPER_CTRL_TXD_W_SE
|
3698 SWAPPER_CTRL_TXF_R_FE
|
3699 SWAPPER_CTRL_RXD_R_FE
|
3700 SWAPPER_CTRL_RXD_R_SE
|
3701 SWAPPER_CTRL_RXD_W_FE
|
3702 SWAPPER_CTRL_RXD_W_SE
|
3703 SWAPPER_CTRL_RXF_W_FE
|
3704 SWAPPER_CTRL_XMSI_FE
|
3705 SWAPPER_CTRL_STATS_FE
| SWAPPER_CTRL_STATS_SE
);
3706 if (sp
->config
.intr_type
== INTA
)
3707 val64
|= SWAPPER_CTRL_XMSI_SE
;
3708 writeq(val64
, &bar0
->swapper_ctrl
);
3710 val64
= readq(&bar0
->swapper_ctrl
);
3713 * Verifying if endian settings are accurate by reading a
3714 * feedback register.
3716 val64
= readq(&bar0
->pif_rd_swapper_fb
);
3717 if (val64
!= 0x0123456789ABCDEFULL
) {
3718 /* Endian settings are incorrect, calls for another dekko. */
3719 DBG_PRINT(ERR_DBG
, "%s: Endian settings are wrong, ",
3721 DBG_PRINT(ERR_DBG
, "feedback read %llx\n",
3722 (unsigned long long) val64
);
3729 static int wait_for_msix_trans(struct s2io_nic
*nic
, int i
)
3731 struct XENA_dev_config __iomem
*bar0
= nic
->bar0
;
3733 int ret
= 0, cnt
= 0;
3736 val64
= readq(&bar0
->xmsi_access
);
3737 if (!(val64
& s2BIT(15)))
3743 DBG_PRINT(ERR_DBG
, "XMSI # %d Access failed\n", i
);
3750 static void restore_xmsi_data(struct s2io_nic
*nic
)
3752 struct XENA_dev_config __iomem
*bar0
= nic
->bar0
;
3757 if (nic
->device_type
== XFRAME_I_DEVICE
)
3760 for (i
=0; i
< MAX_REQUESTED_MSI_X
; i
++) {
3761 msix_index
= (i
) ? ((i
-1) * 8 + 1): 0;
3762 writeq(nic
->msix_info
[i
].addr
, &bar0
->xmsi_address
);
3763 writeq(nic
->msix_info
[i
].data
, &bar0
->xmsi_data
);
3764 val64
= (s2BIT(7) | s2BIT(15) | vBIT(msix_index
, 26, 6));
3765 writeq(val64
, &bar0
->xmsi_access
);
3766 if (wait_for_msix_trans(nic
, msix_index
)) {
3767 DBG_PRINT(ERR_DBG
, "failed in %s\n", __FUNCTION__
);
3773 static void store_xmsi_data(struct s2io_nic
*nic
)
3775 struct XENA_dev_config __iomem
*bar0
= nic
->bar0
;
3776 u64 val64
, addr
, data
;
3779 if (nic
->device_type
== XFRAME_I_DEVICE
)
3782 /* Store and display */
3783 for (i
=0; i
< MAX_REQUESTED_MSI_X
; i
++) {
3784 msix_index
= (i
) ? ((i
-1) * 8 + 1): 0;
3785 val64
= (s2BIT(15) | vBIT(msix_index
, 26, 6));
3786 writeq(val64
, &bar0
->xmsi_access
);
3787 if (wait_for_msix_trans(nic
, msix_index
)) {
3788 DBG_PRINT(ERR_DBG
, "failed in %s\n", __FUNCTION__
);
3791 addr
= readq(&bar0
->xmsi_address
);
3792 data
= readq(&bar0
->xmsi_data
);
3794 nic
->msix_info
[i
].addr
= addr
;
3795 nic
->msix_info
[i
].data
= data
;
3800 static int s2io_enable_msi_x(struct s2io_nic
*nic
)
3802 struct XENA_dev_config __iomem
*bar0
= nic
->bar0
;
3804 u16 msi_control
; /* Temp variable */
3805 int ret
, i
, j
, msix_indx
= 1;
3807 nic
->entries
= kmalloc(nic
->num_entries
* sizeof(struct msix_entry
),
3809 if (!nic
->entries
) {
3810 DBG_PRINT(INFO_DBG
, "%s: Memory allocation failed\n", \
3812 nic
->mac_control
.stats_info
->sw_stat
.mem_alloc_fail_cnt
++;
3815 nic
->mac_control
.stats_info
->sw_stat
.mem_allocated
3816 += (nic
->num_entries
* sizeof(struct msix_entry
));
3818 memset(nic
->entries
, 0, nic
->num_entries
* sizeof(struct msix_entry
));
3821 kmalloc(nic
->num_entries
* sizeof(struct s2io_msix_entry
),
3823 if (!nic
->s2io_entries
) {
3824 DBG_PRINT(INFO_DBG
, "%s: Memory allocation failed\n",
3826 nic
->mac_control
.stats_info
->sw_stat
.mem_alloc_fail_cnt
++;
3827 kfree(nic
->entries
);
3828 nic
->mac_control
.stats_info
->sw_stat
.mem_freed
3829 += (nic
->num_entries
* sizeof(struct msix_entry
));
3832 nic
->mac_control
.stats_info
->sw_stat
.mem_allocated
3833 += (nic
->num_entries
* sizeof(struct s2io_msix_entry
));
3834 memset(nic
->s2io_entries
, 0,
3835 nic
->num_entries
* sizeof(struct s2io_msix_entry
));
3837 nic
->entries
[0].entry
= 0;
3838 nic
->s2io_entries
[0].entry
= 0;
3839 nic
->s2io_entries
[0].in_use
= MSIX_FLG
;
3840 nic
->s2io_entries
[0].type
= MSIX_ALARM_TYPE
;
3841 nic
->s2io_entries
[0].arg
= &nic
->mac_control
.fifos
;
3843 for (i
= 1; i
< nic
->num_entries
; i
++) {
3844 nic
->entries
[i
].entry
= ((i
- 1) * 8) + 1;
3845 nic
->s2io_entries
[i
].entry
= ((i
- 1) * 8) + 1;
3846 nic
->s2io_entries
[i
].arg
= NULL
;
3847 nic
->s2io_entries
[i
].in_use
= 0;
3850 rx_mat
= readq(&bar0
->rx_mat
);
3851 for (j
= 0; j
< nic
->config
.rx_ring_num
; j
++) {
3852 rx_mat
|= RX_MAT_SET(j
, msix_indx
);
3853 nic
->s2io_entries
[j
+1].arg
= &nic
->mac_control
.rings
[j
];
3854 nic
->s2io_entries
[j
+1].type
= MSIX_RING_TYPE
;
3855 nic
->s2io_entries
[j
+1].in_use
= MSIX_FLG
;
3858 writeq(rx_mat
, &bar0
->rx_mat
);
3859 readq(&bar0
->rx_mat
);
3861 ret
= pci_enable_msix(nic
->pdev
, nic
->entries
, nic
->num_entries
);
3862 /* We fail init if error or we get less vectors than min required */
3864 DBG_PRINT(ERR_DBG
, "%s: Enabling MSIX failed\n", nic
->dev
->name
);
3865 kfree(nic
->entries
);
3866 nic
->mac_control
.stats_info
->sw_stat
.mem_freed
3867 += (nic
->num_entries
* sizeof(struct msix_entry
));
3868 kfree(nic
->s2io_entries
);
3869 nic
->mac_control
.stats_info
->sw_stat
.mem_freed
3870 += (nic
->num_entries
* sizeof(struct s2io_msix_entry
));
3871 nic
->entries
= NULL
;
3872 nic
->s2io_entries
= NULL
;
3877 * To enable MSI-X, MSI also needs to be enabled, due to a bug
3878 * in the herc NIC. (Temp change, needs to be removed later)
3880 pci_read_config_word(nic
->pdev
, 0x42, &msi_control
);
3881 msi_control
|= 0x1; /* Enable MSI */
3882 pci_write_config_word(nic
->pdev
, 0x42, msi_control
);
3887 /* Handle software interrupt used during MSI(X) test */
3888 static irqreturn_t
s2io_test_intr(int irq
, void *dev_id
)
3890 struct s2io_nic
*sp
= dev_id
;
3892 sp
->msi_detected
= 1;
3893 wake_up(&sp
->msi_wait
);
3898 /* Test interrupt path by forcing a a software IRQ */
3899 static int s2io_test_msi(struct s2io_nic
*sp
)
3901 struct pci_dev
*pdev
= sp
->pdev
;
3902 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
3906 err
= request_irq(sp
->entries
[1].vector
, s2io_test_intr
, 0,
3909 DBG_PRINT(ERR_DBG
, "%s: PCI %s: cannot assign irq %d\n",
3910 sp
->dev
->name
, pci_name(pdev
), pdev
->irq
);
3914 init_waitqueue_head (&sp
->msi_wait
);
3915 sp
->msi_detected
= 0;
3917 saved64
= val64
= readq(&bar0
->scheduled_int_ctrl
);
3918 val64
|= SCHED_INT_CTRL_ONE_SHOT
;
3919 val64
|= SCHED_INT_CTRL_TIMER_EN
;
3920 val64
|= SCHED_INT_CTRL_INT2MSI(1);
3921 writeq(val64
, &bar0
->scheduled_int_ctrl
);
3923 wait_event_timeout(sp
->msi_wait
, sp
->msi_detected
, HZ
/10);
3925 if (!sp
->msi_detected
) {
3926 /* MSI(X) test failed, go back to INTx mode */
3927 DBG_PRINT(ERR_DBG
, "%s: PCI %s: No interrupt was generated "
3928 "using MSI(X) during test\n", sp
->dev
->name
,
3934 free_irq(sp
->entries
[1].vector
, sp
);
3936 writeq(saved64
, &bar0
->scheduled_int_ctrl
);
3941 static void remove_msix_isr(struct s2io_nic
*sp
)
3946 for (i
= 0; i
< sp
->num_entries
; i
++) {
3947 if (sp
->s2io_entries
[i
].in_use
==
3948 MSIX_REGISTERED_SUCCESS
) {
3949 int vector
= sp
->entries
[i
].vector
;
3950 void *arg
= sp
->s2io_entries
[i
].arg
;
3951 free_irq(vector
, arg
);
3956 kfree(sp
->s2io_entries
);
3958 sp
->s2io_entries
= NULL
;
3960 pci_read_config_word(sp
->pdev
, 0x42, &msi_control
);
3961 msi_control
&= 0xFFFE; /* Disable MSI */
3962 pci_write_config_word(sp
->pdev
, 0x42, msi_control
);
3964 pci_disable_msix(sp
->pdev
);
3967 static void remove_inta_isr(struct s2io_nic
*sp
)
3969 struct net_device
*dev
= sp
->dev
;
3971 free_irq(sp
->pdev
->irq
, dev
);
3974 /* ********************************************************* *
3975 * Functions defined below concern the OS part of the driver *
3976 * ********************************************************* */
3979 * s2io_open - open entry point of the driver
3980 * @dev : pointer to the device structure.
3982 * This function is the open entry point of the driver. It mainly calls a
3983 * function to allocate Rx buffers and inserts them into the buffer
3984 * descriptors and then enables the Rx part of the NIC.
3986 * 0 on success and an appropriate (-)ve integer as defined in errno.h
3990 static int s2io_open(struct net_device
*dev
)
3992 struct s2io_nic
*sp
= dev
->priv
;
3996 * Make sure you have link off by default every time
3997 * Nic is initialized
3999 netif_carrier_off(dev
);
4000 sp
->last_link_state
= 0;
4002 /* Initialize H/W and enable interrupts */
4003 err
= s2io_card_up(sp
);
4005 DBG_PRINT(ERR_DBG
, "%s: H/W initialization failed\n",
4007 goto hw_init_failed
;
4010 if (do_s2io_prog_unicast(dev
, dev
->dev_addr
) == FAILURE
) {
4011 DBG_PRINT(ERR_DBG
, "Set Mac Address Failed\n");
4014 goto hw_init_failed
;
4016 s2io_start_all_tx_queue(sp
);
4020 if (sp
->config
.intr_type
== MSI_X
) {
4023 sp
->mac_control
.stats_info
->sw_stat
.mem_freed
4024 += (sp
->num_entries
* sizeof(struct msix_entry
));
4026 if (sp
->s2io_entries
) {
4027 kfree(sp
->s2io_entries
);
4028 sp
->mac_control
.stats_info
->sw_stat
.mem_freed
4029 += (sp
->num_entries
* sizeof(struct s2io_msix_entry
));
4036 * s2io_close -close entry point of the driver
4037 * @dev : device pointer.
4039 * This is the stop entry point of the driver. It needs to undo exactly
4040 * whatever was done by the open entry point,thus it's usually referred to
4041 * as the close function.Among other things this function mainly stops the
4042 * Rx side of the NIC and frees all the Rx buffers in the Rx rings.
4044 * 0 on success and an appropriate (-)ve integer as defined in errno.h
4048 static int s2io_close(struct net_device
*dev
)
4050 struct s2io_nic
*sp
= dev
->priv
;
4051 struct config_param
*config
= &sp
->config
;
4055 /* Return if the device is already closed *
4056 * Can happen when s2io_card_up failed in change_mtu *
4058 if (!is_s2io_card_up(sp
))
4061 s2io_stop_all_tx_queue(sp
);
4062 /* delete all populated mac entries */
4063 for (offset
= 1; offset
< config
->max_mc_addr
; offset
++) {
4064 tmp64
= do_s2io_read_unicast_mc(sp
, offset
);
4065 if (tmp64
!= S2IO_DISABLE_MAC_ENTRY
)
4066 do_s2io_delete_unicast_mc(sp
, tmp64
);
4075 * s2io_xmit - Tx entry point of te driver
4076 * @skb : the socket buffer containing the Tx data.
4077 * @dev : device pointer.
4079 * This function is the Tx entry point of the driver. S2IO NIC supports
4080 * certain protocol assist features on Tx side, namely CSO, S/G, LSO.
4081 * NOTE: when device cant queue the pkt,just the trans_start variable will
4084 * 0 on success & 1 on failure.
4087 static int s2io_xmit(struct sk_buff
*skb
, struct net_device
*dev
)
4089 struct s2io_nic
*sp
= dev
->priv
;
4090 u16 frg_cnt
, frg_len
, i
, queue
, queue_len
, put_off
, get_off
;
4093 struct TxFIFO_element __iomem
*tx_fifo
;
4094 unsigned long flags
= 0;
4096 struct fifo_info
*fifo
= NULL
;
4097 struct mac_info
*mac_control
;
4098 struct config_param
*config
;
4099 int do_spin_lock
= 1;
4101 int enable_per_list_interrupt
= 0;
4102 struct swStat
*stats
= &sp
->mac_control
.stats_info
->sw_stat
;
4104 mac_control
= &sp
->mac_control
;
4105 config
= &sp
->config
;
4107 DBG_PRINT(TX_DBG
, "%s: In Neterion Tx routine\n", dev
->name
);
4109 if (unlikely(skb
->len
<= 0)) {
4110 DBG_PRINT(TX_DBG
, "%s:Buffer has no data..\n", dev
->name
);
4111 dev_kfree_skb_any(skb
);
4115 if (!is_s2io_card_up(sp
)) {
4116 DBG_PRINT(TX_DBG
, "%s: Card going down for reset\n",
4123 if (sp
->vlgrp
&& vlan_tx_tag_present(skb
))
4124 vlan_tag
= vlan_tx_tag_get(skb
);
4125 if (sp
->config
.tx_steering_type
== TX_DEFAULT_STEERING
) {
4126 if (skb
->protocol
== htons(ETH_P_IP
)) {
4131 if ((ip
->frag_off
& htons(IP_OFFSET
|IP_MF
)) == 0) {
4132 th
= (struct tcphdr
*)(((unsigned char *)ip
) +
4135 if (ip
->protocol
== IPPROTO_TCP
) {
4136 queue_len
= sp
->total_tcp_fifos
;
4137 queue
= (ntohs(th
->source
) +
4139 sp
->fifo_selector
[queue_len
- 1];
4140 if (queue
>= queue_len
)
4141 queue
= queue_len
- 1;
4142 } else if (ip
->protocol
== IPPROTO_UDP
) {
4143 queue_len
= sp
->total_udp_fifos
;
4144 queue
= (ntohs(th
->source
) +
4146 sp
->fifo_selector
[queue_len
- 1];
4147 if (queue
>= queue_len
)
4148 queue
= queue_len
- 1;
4149 queue
+= sp
->udp_fifo_idx
;
4150 if (skb
->len
> 1024)
4151 enable_per_list_interrupt
= 1;
4156 } else if (sp
->config
.tx_steering_type
== TX_PRIORITY_STEERING
)
4157 /* get fifo number based on skb->priority value */
4158 queue
= config
->fifo_mapping
4159 [skb
->priority
& (MAX_TX_FIFOS
- 1)];
4160 fifo
= &mac_control
->fifos
[queue
];
4163 spin_lock_irqsave(&fifo
->tx_lock
, flags
);
4165 if (unlikely(!spin_trylock_irqsave(&fifo
->tx_lock
, flags
)))
4166 return NETDEV_TX_LOCKED
;
4169 if (sp
->config
.multiq
) {
4170 if (__netif_subqueue_stopped(dev
, fifo
->fifo_no
)) {
4171 spin_unlock_irqrestore(&fifo
->tx_lock
, flags
);
4172 return NETDEV_TX_BUSY
;
4174 } else if (unlikely(fifo
->queue_state
== FIFO_QUEUE_STOP
)) {
4175 if (netif_queue_stopped(dev
)) {
4176 spin_unlock_irqrestore(&fifo
->tx_lock
, flags
);
4177 return NETDEV_TX_BUSY
;
4181 put_off
= (u16
) fifo
->tx_curr_put_info
.offset
;
4182 get_off
= (u16
) fifo
->tx_curr_get_info
.offset
;
4183 txdp
= (struct TxD
*) fifo
->list_info
[put_off
].list_virt_addr
;
4185 queue_len
= fifo
->tx_curr_put_info
.fifo_len
+ 1;
4186 /* Avoid "put" pointer going beyond "get" pointer */
4187 if (txdp
->Host_Control
||
4188 ((put_off
+1) == queue_len
? 0 : (put_off
+1)) == get_off
) {
4189 DBG_PRINT(TX_DBG
, "Error in xmit, No free TXDs.\n");
4190 s2io_stop_tx_queue(sp
, fifo
->fifo_no
);
4192 spin_unlock_irqrestore(&fifo
->tx_lock
, flags
);
4196 offload_type
= s2io_offload_type(skb
);
4197 if (offload_type
& (SKB_GSO_TCPV4
| SKB_GSO_TCPV6
)) {
4198 txdp
->Control_1
|= TXD_TCP_LSO_EN
;
4199 txdp
->Control_1
|= TXD_TCP_LSO_MSS(s2io_tcp_mss(skb
));
4201 if (skb
->ip_summed
== CHECKSUM_PARTIAL
) {
4203 (TXD_TX_CKO_IPV4_EN
| TXD_TX_CKO_TCP_EN
|
4206 txdp
->Control_1
|= TXD_GATHER_CODE_FIRST
;
4207 txdp
->Control_1
|= TXD_LIST_OWN_XENA
;
4208 txdp
->Control_2
|= TXD_INT_NUMBER(fifo
->fifo_no
);
4209 if (enable_per_list_interrupt
)
4210 if (put_off
& (queue_len
>> 5))
4211 txdp
->Control_2
|= TXD_INT_TYPE_PER_LIST
;
4213 txdp
->Control_2
|= TXD_VLAN_ENABLE
;
4214 txdp
->Control_2
|= TXD_VLAN_TAG(vlan_tag
);
4217 frg_len
= skb
->len
- skb
->data_len
;
4218 if (offload_type
== SKB_GSO_UDP
) {
4221 ufo_size
= s2io_udp_mss(skb
);
4223 txdp
->Control_1
|= TXD_UFO_EN
;
4224 txdp
->Control_1
|= TXD_UFO_MSS(ufo_size
);
4225 txdp
->Control_1
|= TXD_BUFFER0_SIZE(8);
4227 /* both variants do cpu_to_be64(be32_to_cpu(...)) */
4228 fifo
->ufo_in_band_v
[put_off
] =
4229 (__force u64
)skb_shinfo(skb
)->ip6_frag_id
;
4231 fifo
->ufo_in_band_v
[put_off
] =
4232 (__force u64
)skb_shinfo(skb
)->ip6_frag_id
<< 32;
4234 txdp
->Host_Control
= (unsigned long)fifo
->ufo_in_band_v
;
4235 txdp
->Buffer_Pointer
= pci_map_single(sp
->pdev
,
4236 fifo
->ufo_in_band_v
,
4237 sizeof(u64
), PCI_DMA_TODEVICE
);
4238 if (pci_dma_mapping_error(txdp
->Buffer_Pointer
))
4239 goto pci_map_failed
;
4243 txdp
->Buffer_Pointer
= pci_map_single
4244 (sp
->pdev
, skb
->data
, frg_len
, PCI_DMA_TODEVICE
);
4245 if (pci_dma_mapping_error(txdp
->Buffer_Pointer
))
4246 goto pci_map_failed
;
4248 txdp
->Host_Control
= (unsigned long) skb
;
4249 txdp
->Control_1
|= TXD_BUFFER0_SIZE(frg_len
);
4250 if (offload_type
== SKB_GSO_UDP
)
4251 txdp
->Control_1
|= TXD_UFO_EN
;
4253 frg_cnt
= skb_shinfo(skb
)->nr_frags
;
4254 /* For fragmented SKB. */
4255 for (i
= 0; i
< frg_cnt
; i
++) {
4256 skb_frag_t
*frag
= &skb_shinfo(skb
)->frags
[i
];
4257 /* A '0' length fragment will be ignored */
4261 txdp
->Buffer_Pointer
= (u64
) pci_map_page
4262 (sp
->pdev
, frag
->page
, frag
->page_offset
,
4263 frag
->size
, PCI_DMA_TODEVICE
);
4264 txdp
->Control_1
= TXD_BUFFER0_SIZE(frag
->size
);
4265 if (offload_type
== SKB_GSO_UDP
)
4266 txdp
->Control_1
|= TXD_UFO_EN
;
4268 txdp
->Control_1
|= TXD_GATHER_CODE_LAST
;
4270 if (offload_type
== SKB_GSO_UDP
)
4271 frg_cnt
++; /* as Txd0 was used for inband header */
4273 tx_fifo
= mac_control
->tx_FIFO_start
[queue
];
4274 val64
= fifo
->list_info
[put_off
].list_phy_addr
;
4275 writeq(val64
, &tx_fifo
->TxDL_Pointer
);
4277 val64
= (TX_FIFO_LAST_TXD_NUM(frg_cnt
) | TX_FIFO_FIRST_LIST
|
4280 val64
|= TX_FIFO_SPECIAL_FUNC
;
4282 writeq(val64
, &tx_fifo
->List_Control
);
4287 if (put_off
== fifo
->tx_curr_put_info
.fifo_len
+ 1)
4289 fifo
->tx_curr_put_info
.offset
= put_off
;
4291 /* Avoid "put" pointer going beyond "get" pointer */
4292 if (((put_off
+1) == queue_len
? 0 : (put_off
+1)) == get_off
) {
4293 sp
->mac_control
.stats_info
->sw_stat
.fifo_full_cnt
++;
4295 "No free TxDs for xmit, Put: 0x%x Get:0x%x\n",
4297 s2io_stop_tx_queue(sp
, fifo
->fifo_no
);
4299 mac_control
->stats_info
->sw_stat
.mem_allocated
+= skb
->truesize
;
4300 dev
->trans_start
= jiffies
;
4301 spin_unlock_irqrestore(&fifo
->tx_lock
, flags
);
4303 if (sp
->config
.intr_type
== MSI_X
)
4304 tx_intr_handler(fifo
);
4308 stats
->pci_map_fail_cnt
++;
4309 s2io_stop_tx_queue(sp
, fifo
->fifo_no
);
4310 stats
->mem_freed
+= skb
->truesize
;
4312 spin_unlock_irqrestore(&fifo
->tx_lock
, flags
);
4317 s2io_alarm_handle(unsigned long data
)
4319 struct s2io_nic
*sp
= (struct s2io_nic
*)data
;
4320 struct net_device
*dev
= sp
->dev
;
4322 s2io_handle_errors(dev
);
4323 mod_timer(&sp
->alarm_timer
, jiffies
+ HZ
/ 2);
4326 static irqreturn_t
s2io_msix_ring_handle(int irq
, void *dev_id
)
4328 struct ring_info
*ring
= (struct ring_info
*)dev_id
;
4329 struct s2io_nic
*sp
= ring
->nic
;
4330 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
4331 struct net_device
*dev
= sp
->dev
;
4333 if (unlikely(!is_s2io_card_up(sp
)))
4336 if (sp
->config
.napi
) {
4337 u8 __iomem
*addr
= NULL
;
4340 addr
= (u8 __iomem
*)&bar0
->xmsi_mask_reg
;
4341 addr
+= (7 - ring
->ring_no
);
4342 val8
= (ring
->ring_no
== 0) ? 0x7f : 0xff;
4345 netif_rx_schedule(dev
, &ring
->napi
);
4347 rx_intr_handler(ring
, 0);
4348 s2io_chk_rx_buffers(ring
);
4354 static irqreturn_t
s2io_msix_fifo_handle(int irq
, void *dev_id
)
4357 struct fifo_info
*fifos
= (struct fifo_info
*)dev_id
;
4358 struct s2io_nic
*sp
= fifos
->nic
;
4359 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
4360 struct config_param
*config
= &sp
->config
;
4363 if (unlikely(!is_s2io_card_up(sp
)))
4366 reason
= readq(&bar0
->general_int_status
);
4367 if (unlikely(reason
== S2IO_MINUS_ONE
))
4368 /* Nothing much can be done. Get out */
4371 if (reason
& (GEN_INTR_TXPIC
| GEN_INTR_TXTRAFFIC
)) {
4372 writeq(S2IO_MINUS_ONE
, &bar0
->general_int_mask
);
4374 if (reason
& GEN_INTR_TXPIC
)
4375 s2io_txpic_intr_handle(sp
);
4377 if (reason
& GEN_INTR_TXTRAFFIC
)
4378 writeq(S2IO_MINUS_ONE
, &bar0
->tx_traffic_int
);
4380 for (i
= 0; i
< config
->tx_fifo_num
; i
++)
4381 tx_intr_handler(&fifos
[i
]);
4383 writeq(sp
->general_int_mask
, &bar0
->general_int_mask
);
4384 readl(&bar0
->general_int_status
);
4387 /* The interrupt was not raised by us */
4391 static void s2io_txpic_intr_handle(struct s2io_nic
*sp
)
4393 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
4396 val64
= readq(&bar0
->pic_int_status
);
4397 if (val64
& PIC_INT_GPIO
) {
4398 val64
= readq(&bar0
->gpio_int_reg
);
4399 if ((val64
& GPIO_INT_REG_LINK_DOWN
) &&
4400 (val64
& GPIO_INT_REG_LINK_UP
)) {
4402 * This is unstable state so clear both up/down
4403 * interrupt and adapter to re-evaluate the link state.
4405 val64
|= GPIO_INT_REG_LINK_DOWN
;
4406 val64
|= GPIO_INT_REG_LINK_UP
;
4407 writeq(val64
, &bar0
->gpio_int_reg
);
4408 val64
= readq(&bar0
->gpio_int_mask
);
4409 val64
&= ~(GPIO_INT_MASK_LINK_UP
|
4410 GPIO_INT_MASK_LINK_DOWN
);
4411 writeq(val64
, &bar0
->gpio_int_mask
);
4413 else if (val64
& GPIO_INT_REG_LINK_UP
) {
4414 val64
= readq(&bar0
->adapter_status
);
4415 /* Enable Adapter */
4416 val64
= readq(&bar0
->adapter_control
);
4417 val64
|= ADAPTER_CNTL_EN
;
4418 writeq(val64
, &bar0
->adapter_control
);
4419 val64
|= ADAPTER_LED_ON
;
4420 writeq(val64
, &bar0
->adapter_control
);
4421 if (!sp
->device_enabled_once
)
4422 sp
->device_enabled_once
= 1;
4424 s2io_link(sp
, LINK_UP
);
4426 * unmask link down interrupt and mask link-up
4429 val64
= readq(&bar0
->gpio_int_mask
);
4430 val64
&= ~GPIO_INT_MASK_LINK_DOWN
;
4431 val64
|= GPIO_INT_MASK_LINK_UP
;
4432 writeq(val64
, &bar0
->gpio_int_mask
);
4434 }else if (val64
& GPIO_INT_REG_LINK_DOWN
) {
4435 val64
= readq(&bar0
->adapter_status
);
4436 s2io_link(sp
, LINK_DOWN
);
4437 /* Link is down so unmaks link up interrupt */
4438 val64
= readq(&bar0
->gpio_int_mask
);
4439 val64
&= ~GPIO_INT_MASK_LINK_UP
;
4440 val64
|= GPIO_INT_MASK_LINK_DOWN
;
4441 writeq(val64
, &bar0
->gpio_int_mask
);
4444 val64
= readq(&bar0
->adapter_control
);
4445 val64
= val64
&(~ADAPTER_LED_ON
);
4446 writeq(val64
, &bar0
->adapter_control
);
4449 val64
= readq(&bar0
->gpio_int_mask
);
4453 * do_s2io_chk_alarm_bit - Check for alarm and incrment the counter
4454 * @value: alarm bits
4455 * @addr: address value
4456 * @cnt: counter variable
4457 * Description: Check for alarm and increment the counter
4459 * 1 - if alarm bit set
4460 * 0 - if alarm bit is not set
4462 static int do_s2io_chk_alarm_bit(u64 value
, void __iomem
* addr
,
4463 unsigned long long *cnt
)
4466 val64
= readq(addr
);
4467 if ( val64
& value
) {
4468 writeq(val64
, addr
);
4477 * s2io_handle_errors - Xframe error indication handler
4478 * @nic: device private variable
4479 * Description: Handle alarms such as loss of link, single or
4480 * double ECC errors, critical and serious errors.
4484 static void s2io_handle_errors(void * dev_id
)
4486 struct net_device
*dev
= (struct net_device
*) dev_id
;
4487 struct s2io_nic
*sp
= dev
->priv
;
4488 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
4489 u64 temp64
= 0,val64
=0;
4492 struct swStat
*sw_stat
= &sp
->mac_control
.stats_info
->sw_stat
;
4493 struct xpakStat
*stats
= &sp
->mac_control
.stats_info
->xpak_stat
;
4495 if (!is_s2io_card_up(sp
))
4498 if (pci_channel_offline(sp
->pdev
))
4501 memset(&sw_stat
->ring_full_cnt
, 0,
4502 sizeof(sw_stat
->ring_full_cnt
));
4504 /* Handling the XPAK counters update */
4505 if(stats
->xpak_timer_count
< 72000) {
4506 /* waiting for an hour */
4507 stats
->xpak_timer_count
++;
4509 s2io_updt_xpak_counter(dev
);
4510 /* reset the count to zero */
4511 stats
->xpak_timer_count
= 0;
4514 /* Handling link status change error Intr */
4515 if (s2io_link_fault_indication(sp
) == MAC_RMAC_ERR_TIMER
) {
4516 val64
= readq(&bar0
->mac_rmac_err_reg
);
4517 writeq(val64
, &bar0
->mac_rmac_err_reg
);
4518 if (val64
& RMAC_LINK_STATE_CHANGE_INT
)
4519 schedule_work(&sp
->set_link_task
);
4522 /* In case of a serious error, the device will be Reset. */
4523 if (do_s2io_chk_alarm_bit(SERR_SOURCE_ANY
, &bar0
->serr_source
,
4524 &sw_stat
->serious_err_cnt
))
4527 /* Check for data parity error */
4528 if (do_s2io_chk_alarm_bit(GPIO_INT_REG_DP_ERR_INT
, &bar0
->gpio_int_reg
,
4529 &sw_stat
->parity_err_cnt
))
4532 /* Check for ring full counter */
4533 if (sp
->device_type
== XFRAME_II_DEVICE
) {
4534 val64
= readq(&bar0
->ring_bump_counter1
);
4535 for (i
=0; i
<4; i
++) {
4536 temp64
= ( val64
& vBIT(0xFFFF,(i
*16),16));
4537 temp64
>>= 64 - ((i
+1)*16);
4538 sw_stat
->ring_full_cnt
[i
] += temp64
;
4541 val64
= readq(&bar0
->ring_bump_counter2
);
4542 for (i
=0; i
<4; i
++) {
4543 temp64
= ( val64
& vBIT(0xFFFF,(i
*16),16));
4544 temp64
>>= 64 - ((i
+1)*16);
4545 sw_stat
->ring_full_cnt
[i
+4] += temp64
;
4549 val64
= readq(&bar0
->txdma_int_status
);
4550 /*check for pfc_err*/
4551 if (val64
& TXDMA_PFC_INT
) {
4552 if (do_s2io_chk_alarm_bit(PFC_ECC_DB_ERR
| PFC_SM_ERR_ALARM
|
4553 PFC_MISC_0_ERR
| PFC_MISC_1_ERR
|
4554 PFC_PCIX_ERR
, &bar0
->pfc_err_reg
,
4555 &sw_stat
->pfc_err_cnt
))
4557 do_s2io_chk_alarm_bit(PFC_ECC_SG_ERR
, &bar0
->pfc_err_reg
,
4558 &sw_stat
->pfc_err_cnt
);
4561 /*check for tda_err*/
4562 if (val64
& TXDMA_TDA_INT
) {
4563 if(do_s2io_chk_alarm_bit(TDA_Fn_ECC_DB_ERR
| TDA_SM0_ERR_ALARM
|
4564 TDA_SM1_ERR_ALARM
, &bar0
->tda_err_reg
,
4565 &sw_stat
->tda_err_cnt
))
4567 do_s2io_chk_alarm_bit(TDA_Fn_ECC_SG_ERR
| TDA_PCIX_ERR
,
4568 &bar0
->tda_err_reg
, &sw_stat
->tda_err_cnt
);
4570 /*check for pcc_err*/
4571 if (val64
& TXDMA_PCC_INT
) {
4572 if (do_s2io_chk_alarm_bit(PCC_SM_ERR_ALARM
| PCC_WR_ERR_ALARM
4573 | PCC_N_SERR
| PCC_6_COF_OV_ERR
4574 | PCC_7_COF_OV_ERR
| PCC_6_LSO_OV_ERR
4575 | PCC_7_LSO_OV_ERR
| PCC_FB_ECC_DB_ERR
4576 | PCC_TXB_ECC_DB_ERR
, &bar0
->pcc_err_reg
,
4577 &sw_stat
->pcc_err_cnt
))
4579 do_s2io_chk_alarm_bit(PCC_FB_ECC_SG_ERR
| PCC_TXB_ECC_SG_ERR
,
4580 &bar0
->pcc_err_reg
, &sw_stat
->pcc_err_cnt
);
4583 /*check for tti_err*/
4584 if (val64
& TXDMA_TTI_INT
) {
4585 if (do_s2io_chk_alarm_bit(TTI_SM_ERR_ALARM
, &bar0
->tti_err_reg
,
4586 &sw_stat
->tti_err_cnt
))
4588 do_s2io_chk_alarm_bit(TTI_ECC_SG_ERR
| TTI_ECC_DB_ERR
,
4589 &bar0
->tti_err_reg
, &sw_stat
->tti_err_cnt
);
4592 /*check for lso_err*/
4593 if (val64
& TXDMA_LSO_INT
) {
4594 if (do_s2io_chk_alarm_bit(LSO6_ABORT
| LSO7_ABORT
4595 | LSO6_SM_ERR_ALARM
| LSO7_SM_ERR_ALARM
,
4596 &bar0
->lso_err_reg
, &sw_stat
->lso_err_cnt
))
4598 do_s2io_chk_alarm_bit(LSO6_SEND_OFLOW
| LSO7_SEND_OFLOW
,
4599 &bar0
->lso_err_reg
, &sw_stat
->lso_err_cnt
);
4602 /*check for tpa_err*/
4603 if (val64
& TXDMA_TPA_INT
) {
4604 if (do_s2io_chk_alarm_bit(TPA_SM_ERR_ALARM
, &bar0
->tpa_err_reg
,
4605 &sw_stat
->tpa_err_cnt
))
4607 do_s2io_chk_alarm_bit(TPA_TX_FRM_DROP
, &bar0
->tpa_err_reg
,
4608 &sw_stat
->tpa_err_cnt
);
4611 /*check for sm_err*/
4612 if (val64
& TXDMA_SM_INT
) {
4613 if (do_s2io_chk_alarm_bit(SM_SM_ERR_ALARM
, &bar0
->sm_err_reg
,
4614 &sw_stat
->sm_err_cnt
))
4618 val64
= readq(&bar0
->mac_int_status
);
4619 if (val64
& MAC_INT_STATUS_TMAC_INT
) {
4620 if (do_s2io_chk_alarm_bit(TMAC_TX_BUF_OVRN
| TMAC_TX_SM_ERR
,
4621 &bar0
->mac_tmac_err_reg
,
4622 &sw_stat
->mac_tmac_err_cnt
))
4624 do_s2io_chk_alarm_bit(TMAC_ECC_SG_ERR
| TMAC_ECC_DB_ERR
4625 | TMAC_DESC_ECC_SG_ERR
| TMAC_DESC_ECC_DB_ERR
,
4626 &bar0
->mac_tmac_err_reg
,
4627 &sw_stat
->mac_tmac_err_cnt
);
4630 val64
= readq(&bar0
->xgxs_int_status
);
4631 if (val64
& XGXS_INT_STATUS_TXGXS
) {
4632 if (do_s2io_chk_alarm_bit(TXGXS_ESTORE_UFLOW
| TXGXS_TX_SM_ERR
,
4633 &bar0
->xgxs_txgxs_err_reg
,
4634 &sw_stat
->xgxs_txgxs_err_cnt
))
4636 do_s2io_chk_alarm_bit(TXGXS_ECC_SG_ERR
| TXGXS_ECC_DB_ERR
,
4637 &bar0
->xgxs_txgxs_err_reg
,
4638 &sw_stat
->xgxs_txgxs_err_cnt
);
4641 val64
= readq(&bar0
->rxdma_int_status
);
4642 if (val64
& RXDMA_INT_RC_INT_M
) {
4643 if (do_s2io_chk_alarm_bit(RC_PRCn_ECC_DB_ERR
| RC_FTC_ECC_DB_ERR
4644 | RC_PRCn_SM_ERR_ALARM
|RC_FTC_SM_ERR_ALARM
,
4645 &bar0
->rc_err_reg
, &sw_stat
->rc_err_cnt
))
4647 do_s2io_chk_alarm_bit(RC_PRCn_ECC_SG_ERR
| RC_FTC_ECC_SG_ERR
4648 | RC_RDA_FAIL_WR_Rn
, &bar0
->rc_err_reg
,
4649 &sw_stat
->rc_err_cnt
);
4650 if (do_s2io_chk_alarm_bit(PRC_PCI_AB_RD_Rn
| PRC_PCI_AB_WR_Rn
4651 | PRC_PCI_AB_F_WR_Rn
, &bar0
->prc_pcix_err_reg
,
4652 &sw_stat
->prc_pcix_err_cnt
))
4654 do_s2io_chk_alarm_bit(PRC_PCI_DP_RD_Rn
| PRC_PCI_DP_WR_Rn
4655 | PRC_PCI_DP_F_WR_Rn
, &bar0
->prc_pcix_err_reg
,
4656 &sw_stat
->prc_pcix_err_cnt
);
4659 if (val64
& RXDMA_INT_RPA_INT_M
) {
4660 if (do_s2io_chk_alarm_bit(RPA_SM_ERR_ALARM
| RPA_CREDIT_ERR
,
4661 &bar0
->rpa_err_reg
, &sw_stat
->rpa_err_cnt
))
4663 do_s2io_chk_alarm_bit(RPA_ECC_SG_ERR
| RPA_ECC_DB_ERR
,
4664 &bar0
->rpa_err_reg
, &sw_stat
->rpa_err_cnt
);
4667 if (val64
& RXDMA_INT_RDA_INT_M
) {
4668 if (do_s2io_chk_alarm_bit(RDA_RXDn_ECC_DB_ERR
4669 | RDA_FRM_ECC_DB_N_AERR
| RDA_SM1_ERR_ALARM
4670 | RDA_SM0_ERR_ALARM
| RDA_RXD_ECC_DB_SERR
,
4671 &bar0
->rda_err_reg
, &sw_stat
->rda_err_cnt
))
4673 do_s2io_chk_alarm_bit(RDA_RXDn_ECC_SG_ERR
| RDA_FRM_ECC_SG_ERR
4674 | RDA_MISC_ERR
| RDA_PCIX_ERR
,
4675 &bar0
->rda_err_reg
, &sw_stat
->rda_err_cnt
);
4678 if (val64
& RXDMA_INT_RTI_INT_M
) {
4679 if (do_s2io_chk_alarm_bit(RTI_SM_ERR_ALARM
, &bar0
->rti_err_reg
,
4680 &sw_stat
->rti_err_cnt
))
4682 do_s2io_chk_alarm_bit(RTI_ECC_SG_ERR
| RTI_ECC_DB_ERR
,
4683 &bar0
->rti_err_reg
, &sw_stat
->rti_err_cnt
);
4686 val64
= readq(&bar0
->mac_int_status
);
4687 if (val64
& MAC_INT_STATUS_RMAC_INT
) {
4688 if (do_s2io_chk_alarm_bit(RMAC_RX_BUFF_OVRN
| RMAC_RX_SM_ERR
,
4689 &bar0
->mac_rmac_err_reg
,
4690 &sw_stat
->mac_rmac_err_cnt
))
4692 do_s2io_chk_alarm_bit(RMAC_UNUSED_INT
|RMAC_SINGLE_ECC_ERR
|
4693 RMAC_DOUBLE_ECC_ERR
, &bar0
->mac_rmac_err_reg
,
4694 &sw_stat
->mac_rmac_err_cnt
);
4697 val64
= readq(&bar0
->xgxs_int_status
);
4698 if (val64
& XGXS_INT_STATUS_RXGXS
) {
4699 if (do_s2io_chk_alarm_bit(RXGXS_ESTORE_OFLOW
| RXGXS_RX_SM_ERR
,
4700 &bar0
->xgxs_rxgxs_err_reg
,
4701 &sw_stat
->xgxs_rxgxs_err_cnt
))
4705 val64
= readq(&bar0
->mc_int_status
);
4706 if(val64
& MC_INT_STATUS_MC_INT
) {
4707 if (do_s2io_chk_alarm_bit(MC_ERR_REG_SM_ERR
, &bar0
->mc_err_reg
,
4708 &sw_stat
->mc_err_cnt
))
4711 /* Handling Ecc errors */
4712 if (val64
& (MC_ERR_REG_ECC_ALL_SNG
| MC_ERR_REG_ECC_ALL_DBL
)) {
4713 writeq(val64
, &bar0
->mc_err_reg
);
4714 if (val64
& MC_ERR_REG_ECC_ALL_DBL
) {
4715 sw_stat
->double_ecc_errs
++;
4716 if (sp
->device_type
!= XFRAME_II_DEVICE
) {
4718 * Reset XframeI only if critical error
4721 (MC_ERR_REG_MIRI_ECC_DB_ERR_0
|
4722 MC_ERR_REG_MIRI_ECC_DB_ERR_1
))
4726 sw_stat
->single_ecc_errs
++;
4732 s2io_stop_all_tx_queue(sp
);
4733 schedule_work(&sp
->rst_timer_task
);
4734 sw_stat
->soft_reset_cnt
++;
4739 * s2io_isr - ISR handler of the device .
4740 * @irq: the irq of the device.
4741 * @dev_id: a void pointer to the dev structure of the NIC.
4742 * Description: This function is the ISR handler of the device. It
4743 * identifies the reason for the interrupt and calls the relevant
4744 * service routines. As a contongency measure, this ISR allocates the
4745 * recv buffers, if their numbers are below the panic value which is
4746 * presently set to 25% of the original number of rcv buffers allocated.
4748 * IRQ_HANDLED: will be returned if IRQ was handled by this routine
4749 * IRQ_NONE: will be returned if interrupt is not from our device
4751 static irqreturn_t
s2io_isr(int irq
, void *dev_id
)
4753 struct net_device
*dev
= (struct net_device
*) dev_id
;
4754 struct s2io_nic
*sp
= dev
->priv
;
4755 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
4758 struct mac_info
*mac_control
;
4759 struct config_param
*config
;
4761 /* Pretend we handled any irq's from a disconnected card */
4762 if (pci_channel_offline(sp
->pdev
))
4765 if (!is_s2io_card_up(sp
))
4768 mac_control
= &sp
->mac_control
;
4769 config
= &sp
->config
;
4772 * Identify the cause for interrupt and call the appropriate
4773 * interrupt handler. Causes for the interrupt could be;
4778 reason
= readq(&bar0
->general_int_status
);
4780 if (unlikely(reason
== S2IO_MINUS_ONE
) ) {
4781 /* Nothing much can be done. Get out */
4785 if (reason
& (GEN_INTR_RXTRAFFIC
|
4786 GEN_INTR_TXTRAFFIC
| GEN_INTR_TXPIC
))
4788 writeq(S2IO_MINUS_ONE
, &bar0
->general_int_mask
);
4791 if (reason
& GEN_INTR_RXTRAFFIC
) {
4792 netif_rx_schedule(dev
, &sp
->napi
);
4793 writeq(S2IO_MINUS_ONE
, &bar0
->rx_traffic_mask
);
4794 writeq(S2IO_MINUS_ONE
, &bar0
->rx_traffic_int
);
4795 readl(&bar0
->rx_traffic_int
);
4799 * rx_traffic_int reg is an R1 register, writing all 1's
4800 * will ensure that the actual interrupt causing bit
4801 * get's cleared and hence a read can be avoided.
4803 if (reason
& GEN_INTR_RXTRAFFIC
)
4804 writeq(S2IO_MINUS_ONE
, &bar0
->rx_traffic_int
);
4806 for (i
= 0; i
< config
->rx_ring_num
; i
++)
4807 rx_intr_handler(&mac_control
->rings
[i
], 0);
4811 * tx_traffic_int reg is an R1 register, writing all 1's
4812 * will ensure that the actual interrupt causing bit get's
4813 * cleared and hence a read can be avoided.
4815 if (reason
& GEN_INTR_TXTRAFFIC
)
4816 writeq(S2IO_MINUS_ONE
, &bar0
->tx_traffic_int
);
4818 for (i
= 0; i
< config
->tx_fifo_num
; i
++)
4819 tx_intr_handler(&mac_control
->fifos
[i
]);
4821 if (reason
& GEN_INTR_TXPIC
)
4822 s2io_txpic_intr_handle(sp
);
4825 * Reallocate the buffers from the interrupt handler itself.
4827 if (!config
->napi
) {
4828 for (i
= 0; i
< config
->rx_ring_num
; i
++)
4829 s2io_chk_rx_buffers(&mac_control
->rings
[i
]);
4831 writeq(sp
->general_int_mask
, &bar0
->general_int_mask
);
4832 readl(&bar0
->general_int_status
);
4838 /* The interrupt was not raised by us */
4848 static void s2io_updt_stats(struct s2io_nic
*sp
)
4850 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
4854 if (is_s2io_card_up(sp
)) {
4855 /* Apprx 30us on a 133 MHz bus */
4856 val64
= SET_UPDT_CLICKS(10) |
4857 STAT_CFG_ONE_SHOT_EN
| STAT_CFG_STAT_EN
;
4858 writeq(val64
, &bar0
->stat_cfg
);
4861 val64
= readq(&bar0
->stat_cfg
);
4862 if (!(val64
& s2BIT(0)))
4866 break; /* Updt failed */
4872 * s2io_get_stats - Updates the device statistics structure.
4873 * @dev : pointer to the device structure.
4875 * This function updates the device statistics structure in the s2io_nic
4876 * structure and returns a pointer to the same.
4878 * pointer to the updated net_device_stats structure.
4881 static struct net_device_stats
*s2io_get_stats(struct net_device
*dev
)
4883 struct s2io_nic
*sp
= dev
->priv
;
4884 struct mac_info
*mac_control
;
4885 struct config_param
*config
;
4889 mac_control
= &sp
->mac_control
;
4890 config
= &sp
->config
;
4892 /* Configure Stats for immediate updt */
4893 s2io_updt_stats(sp
);
4895 sp
->stats
.tx_packets
=
4896 le32_to_cpu(mac_control
->stats_info
->tmac_frms
);
4897 sp
->stats
.tx_errors
=
4898 le32_to_cpu(mac_control
->stats_info
->tmac_any_err_frms
);
4899 sp
->stats
.rx_errors
=
4900 le64_to_cpu(mac_control
->stats_info
->rmac_drop_frms
);
4901 sp
->stats
.multicast
=
4902 le32_to_cpu(mac_control
->stats_info
->rmac_vld_mcst_frms
);
4903 sp
->stats
.rx_length_errors
=
4904 le64_to_cpu(mac_control
->stats_info
->rmac_long_frms
);
4906 /* collect per-ring rx_packets and rx_bytes */
4907 sp
->stats
.rx_packets
= sp
->stats
.rx_bytes
= 0;
4908 for (i
= 0; i
< config
->rx_ring_num
; i
++) {
4909 sp
->stats
.rx_packets
+= mac_control
->rings
[i
].rx_packets
;
4910 sp
->stats
.rx_bytes
+= mac_control
->rings
[i
].rx_bytes
;
4913 return (&sp
->stats
);
4917 * s2io_set_multicast - entry point for multicast address enable/disable.
4918 * @dev : pointer to the device structure
4920 * This function is a driver entry point which gets called by the kernel
4921 * whenever multicast addresses must be enabled/disabled. This also gets
4922 * called to set/reset promiscuous mode. Depending on the deivce flag, we
4923 * determine, if multicast address must be enabled or if promiscuous mode
4924 * is to be disabled etc.
4929 static void s2io_set_multicast(struct net_device
*dev
)
4932 struct dev_mc_list
*mclist
;
4933 struct s2io_nic
*sp
= dev
->priv
;
4934 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
4935 u64 val64
= 0, multi_mac
= 0x010203040506ULL
, mask
=
4937 u64 dis_addr
= S2IO_DISABLE_MAC_ENTRY
, mac_addr
= 0;
4939 struct config_param
*config
= &sp
->config
;
4941 if ((dev
->flags
& IFF_ALLMULTI
) && (!sp
->m_cast_flg
)) {
4942 /* Enable all Multicast addresses */
4943 writeq(RMAC_ADDR_DATA0_MEM_ADDR(multi_mac
),
4944 &bar0
->rmac_addr_data0_mem
);
4945 writeq(RMAC_ADDR_DATA1_MEM_MASK(mask
),
4946 &bar0
->rmac_addr_data1_mem
);
4947 val64
= RMAC_ADDR_CMD_MEM_WE
|
4948 RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD
|
4949 RMAC_ADDR_CMD_MEM_OFFSET(config
->max_mc_addr
- 1);
4950 writeq(val64
, &bar0
->rmac_addr_cmd_mem
);
4951 /* Wait till command completes */
4952 wait_for_cmd_complete(&bar0
->rmac_addr_cmd_mem
,
4953 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING
,
4957 sp
->all_multi_pos
= config
->max_mc_addr
- 1;
4958 } else if ((dev
->flags
& IFF_ALLMULTI
) && (sp
->m_cast_flg
)) {
4959 /* Disable all Multicast addresses */
4960 writeq(RMAC_ADDR_DATA0_MEM_ADDR(dis_addr
),
4961 &bar0
->rmac_addr_data0_mem
);
4962 writeq(RMAC_ADDR_DATA1_MEM_MASK(0x0),
4963 &bar0
->rmac_addr_data1_mem
);
4964 val64
= RMAC_ADDR_CMD_MEM_WE
|
4965 RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD
|
4966 RMAC_ADDR_CMD_MEM_OFFSET(sp
->all_multi_pos
);
4967 writeq(val64
, &bar0
->rmac_addr_cmd_mem
);
4968 /* Wait till command completes */
4969 wait_for_cmd_complete(&bar0
->rmac_addr_cmd_mem
,
4970 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING
,
4974 sp
->all_multi_pos
= 0;
4977 if ((dev
->flags
& IFF_PROMISC
) && (!sp
->promisc_flg
)) {
4978 /* Put the NIC into promiscuous mode */
4979 add
= &bar0
->mac_cfg
;
4980 val64
= readq(&bar0
->mac_cfg
);
4981 val64
|= MAC_CFG_RMAC_PROM_ENABLE
;
4983 writeq(RMAC_CFG_KEY(0x4C0D), &bar0
->rmac_cfg_key
);
4984 writel((u32
) val64
, add
);
4985 writeq(RMAC_CFG_KEY(0x4C0D), &bar0
->rmac_cfg_key
);
4986 writel((u32
) (val64
>> 32), (add
+ 4));
4988 if (vlan_tag_strip
!= 1) {
4989 val64
= readq(&bar0
->rx_pa_cfg
);
4990 val64
&= ~RX_PA_CFG_STRIP_VLAN_TAG
;
4991 writeq(val64
, &bar0
->rx_pa_cfg
);
4992 vlan_strip_flag
= 0;
4995 val64
= readq(&bar0
->mac_cfg
);
4996 sp
->promisc_flg
= 1;
4997 DBG_PRINT(INFO_DBG
, "%s: entered promiscuous mode\n",
4999 } else if (!(dev
->flags
& IFF_PROMISC
) && (sp
->promisc_flg
)) {
5000 /* Remove the NIC from promiscuous mode */
5001 add
= &bar0
->mac_cfg
;
5002 val64
= readq(&bar0
->mac_cfg
);
5003 val64
&= ~MAC_CFG_RMAC_PROM_ENABLE
;
5005 writeq(RMAC_CFG_KEY(0x4C0D), &bar0
->rmac_cfg_key
);
5006 writel((u32
) val64
, add
);
5007 writeq(RMAC_CFG_KEY(0x4C0D), &bar0
->rmac_cfg_key
);
5008 writel((u32
) (val64
>> 32), (add
+ 4));
5010 if (vlan_tag_strip
!= 0) {
5011 val64
= readq(&bar0
->rx_pa_cfg
);
5012 val64
|= RX_PA_CFG_STRIP_VLAN_TAG
;
5013 writeq(val64
, &bar0
->rx_pa_cfg
);
5014 vlan_strip_flag
= 1;
5017 val64
= readq(&bar0
->mac_cfg
);
5018 sp
->promisc_flg
= 0;
5019 DBG_PRINT(INFO_DBG
, "%s: left promiscuous mode\n",
5023 /* Update individual M_CAST address list */
5024 if ((!sp
->m_cast_flg
) && dev
->mc_count
) {
5026 (config
->max_mc_addr
- config
->max_mac_addr
)) {
5027 DBG_PRINT(ERR_DBG
, "%s: No more Rx filters ",
5029 DBG_PRINT(ERR_DBG
, "can be added, please enable ");
5030 DBG_PRINT(ERR_DBG
, "ALL_MULTI instead\n");
5034 prev_cnt
= sp
->mc_addr_count
;
5035 sp
->mc_addr_count
= dev
->mc_count
;
5037 /* Clear out the previous list of Mc in the H/W. */
5038 for (i
= 0; i
< prev_cnt
; i
++) {
5039 writeq(RMAC_ADDR_DATA0_MEM_ADDR(dis_addr
),
5040 &bar0
->rmac_addr_data0_mem
);
5041 writeq(RMAC_ADDR_DATA1_MEM_MASK(0ULL),
5042 &bar0
->rmac_addr_data1_mem
);
5043 val64
= RMAC_ADDR_CMD_MEM_WE
|
5044 RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD
|
5045 RMAC_ADDR_CMD_MEM_OFFSET
5046 (config
->mc_start_offset
+ i
);
5047 writeq(val64
, &bar0
->rmac_addr_cmd_mem
);
5049 /* Wait for command completes */
5050 if (wait_for_cmd_complete(&bar0
->rmac_addr_cmd_mem
,
5051 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING
,
5053 DBG_PRINT(ERR_DBG
, "%s: Adding ",
5055 DBG_PRINT(ERR_DBG
, "Multicasts failed\n");
5060 /* Create the new Rx filter list and update the same in H/W. */
5061 for (i
= 0, mclist
= dev
->mc_list
; i
< dev
->mc_count
;
5062 i
++, mclist
= mclist
->next
) {
5063 memcpy(sp
->usr_addrs
[i
].addr
, mclist
->dmi_addr
,
5066 for (j
= 0; j
< ETH_ALEN
; j
++) {
5067 mac_addr
|= mclist
->dmi_addr
[j
];
5071 writeq(RMAC_ADDR_DATA0_MEM_ADDR(mac_addr
),
5072 &bar0
->rmac_addr_data0_mem
);
5073 writeq(RMAC_ADDR_DATA1_MEM_MASK(0ULL),
5074 &bar0
->rmac_addr_data1_mem
);
5075 val64
= RMAC_ADDR_CMD_MEM_WE
|
5076 RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD
|
5077 RMAC_ADDR_CMD_MEM_OFFSET
5078 (i
+ config
->mc_start_offset
);
5079 writeq(val64
, &bar0
->rmac_addr_cmd_mem
);
5081 /* Wait for command completes */
5082 if (wait_for_cmd_complete(&bar0
->rmac_addr_cmd_mem
,
5083 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING
,
5085 DBG_PRINT(ERR_DBG
, "%s: Adding ",
5087 DBG_PRINT(ERR_DBG
, "Multicasts failed\n");
5094 /* read from CAM unicast & multicast addresses and store it in
5095 * def_mac_addr structure
5097 void do_s2io_store_unicast_mc(struct s2io_nic
*sp
)
5101 struct config_param
*config
= &sp
->config
;
5103 /* store unicast & multicast mac addresses */
5104 for (offset
= 0; offset
< config
->max_mc_addr
; offset
++) {
5105 mac_addr
= do_s2io_read_unicast_mc(sp
, offset
);
5106 /* if read fails disable the entry */
5107 if (mac_addr
== FAILURE
)
5108 mac_addr
= S2IO_DISABLE_MAC_ENTRY
;
5109 do_s2io_copy_mac_addr(sp
, offset
, mac_addr
);
5113 /* restore unicast & multicast MAC to CAM from def_mac_addr structure */
5114 static void do_s2io_restore_unicast_mc(struct s2io_nic
*sp
)
5117 struct config_param
*config
= &sp
->config
;
5118 /* restore unicast mac address */
5119 for (offset
= 0; offset
< config
->max_mac_addr
; offset
++)
5120 do_s2io_prog_unicast(sp
->dev
,
5121 sp
->def_mac_addr
[offset
].mac_addr
);
5123 /* restore multicast mac address */
5124 for (offset
= config
->mc_start_offset
;
5125 offset
< config
->max_mc_addr
; offset
++)
5126 do_s2io_add_mc(sp
, sp
->def_mac_addr
[offset
].mac_addr
);
5129 /* add a multicast MAC address to CAM */
5130 static int do_s2io_add_mc(struct s2io_nic
*sp
, u8
*addr
)
5134 struct config_param
*config
= &sp
->config
;
5136 for (i
= 0; i
< ETH_ALEN
; i
++) {
5138 mac_addr
|= addr
[i
];
5140 if ((0ULL == mac_addr
) || (mac_addr
== S2IO_DISABLE_MAC_ENTRY
))
5143 /* check if the multicast mac already preset in CAM */
5144 for (i
= config
->mc_start_offset
; i
< config
->max_mc_addr
; i
++) {
5146 tmp64
= do_s2io_read_unicast_mc(sp
, i
);
5147 if (tmp64
== S2IO_DISABLE_MAC_ENTRY
) /* CAM entry is empty */
5150 if (tmp64
== mac_addr
)
5153 if (i
== config
->max_mc_addr
) {
5155 "CAM full no space left for multicast MAC\n");
5158 /* Update the internal structure with this new mac address */
5159 do_s2io_copy_mac_addr(sp
, i
, mac_addr
);
5161 return (do_s2io_add_mac(sp
, mac_addr
, i
));
5164 /* add MAC address to CAM */
5165 static int do_s2io_add_mac(struct s2io_nic
*sp
, u64 addr
, int off
)
5168 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
5170 writeq(RMAC_ADDR_DATA0_MEM_ADDR(addr
),
5171 &bar0
->rmac_addr_data0_mem
);
5174 RMAC_ADDR_CMD_MEM_WE
| RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD
|
5175 RMAC_ADDR_CMD_MEM_OFFSET(off
);
5176 writeq(val64
, &bar0
->rmac_addr_cmd_mem
);
5178 /* Wait till command completes */
5179 if (wait_for_cmd_complete(&bar0
->rmac_addr_cmd_mem
,
5180 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING
,
5182 DBG_PRINT(INFO_DBG
, "do_s2io_add_mac failed\n");
5187 /* deletes a specified unicast/multicast mac entry from CAM */
5188 static int do_s2io_delete_unicast_mc(struct s2io_nic
*sp
, u64 addr
)
5191 u64 dis_addr
= S2IO_DISABLE_MAC_ENTRY
, tmp64
;
5192 struct config_param
*config
= &sp
->config
;
5195 offset
< config
->max_mc_addr
; offset
++) {
5196 tmp64
= do_s2io_read_unicast_mc(sp
, offset
);
5197 if (tmp64
== addr
) {
5198 /* disable the entry by writing 0xffffffffffffULL */
5199 if (do_s2io_add_mac(sp
, dis_addr
, offset
) == FAILURE
)
5201 /* store the new mac list from CAM */
5202 do_s2io_store_unicast_mc(sp
);
5206 DBG_PRINT(ERR_DBG
, "MAC address 0x%llx not found in CAM\n",
5207 (unsigned long long)addr
);
5211 /* read mac entries from CAM */
5212 static u64
do_s2io_read_unicast_mc(struct s2io_nic
*sp
, int offset
)
5214 u64 tmp64
= 0xffffffffffff0000ULL
, val64
;
5215 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
5219 RMAC_ADDR_CMD_MEM_RD
| RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD
|
5220 RMAC_ADDR_CMD_MEM_OFFSET(offset
);
5221 writeq(val64
, &bar0
->rmac_addr_cmd_mem
);
5223 /* Wait till command completes */
5224 if (wait_for_cmd_complete(&bar0
->rmac_addr_cmd_mem
,
5225 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING
,
5227 DBG_PRINT(INFO_DBG
, "do_s2io_read_unicast_mc failed\n");
5230 tmp64
= readq(&bar0
->rmac_addr_data0_mem
);
5231 return (tmp64
>> 16);
5235 * s2io_set_mac_addr driver entry point
5238 static int s2io_set_mac_addr(struct net_device
*dev
, void *p
)
5240 struct sockaddr
*addr
= p
;
5242 if (!is_valid_ether_addr(addr
->sa_data
))
5245 memcpy(dev
->dev_addr
, addr
->sa_data
, dev
->addr_len
);
5247 /* store the MAC address in CAM */
5248 return (do_s2io_prog_unicast(dev
, dev
->dev_addr
));
5251 * do_s2io_prog_unicast - Programs the Xframe mac address
5252 * @dev : pointer to the device structure.
5253 * @addr: a uchar pointer to the new mac address which is to be set.
5254 * Description : This procedure will program the Xframe to receive
5255 * frames with new Mac Address
5256 * Return value: SUCCESS on success and an appropriate (-)ve integer
5257 * as defined in errno.h file on failure.
5260 static int do_s2io_prog_unicast(struct net_device
*dev
, u8
*addr
)
5262 struct s2io_nic
*sp
= dev
->priv
;
5263 register u64 mac_addr
= 0, perm_addr
= 0;
5266 struct config_param
*config
= &sp
->config
;
5269 * Set the new MAC address as the new unicast filter and reflect this
5270 * change on the device address registered with the OS. It will be
5273 for (i
= 0; i
< ETH_ALEN
; i
++) {
5275 mac_addr
|= addr
[i
];
5277 perm_addr
|= sp
->def_mac_addr
[0].mac_addr
[i
];
5280 /* check if the dev_addr is different than perm_addr */
5281 if (mac_addr
== perm_addr
)
5284 /* check if the mac already preset in CAM */
5285 for (i
= 1; i
< config
->max_mac_addr
; i
++) {
5286 tmp64
= do_s2io_read_unicast_mc(sp
, i
);
5287 if (tmp64
== S2IO_DISABLE_MAC_ENTRY
) /* CAM entry is empty */
5290 if (tmp64
== mac_addr
) {
5292 "MAC addr:0x%llx already present in CAM\n",
5293 (unsigned long long)mac_addr
);
5297 if (i
== config
->max_mac_addr
) {
5298 DBG_PRINT(ERR_DBG
, "CAM full no space left for Unicast MAC\n");
5301 /* Update the internal structure with this new mac address */
5302 do_s2io_copy_mac_addr(sp
, i
, mac_addr
);
5303 return (do_s2io_add_mac(sp
, mac_addr
, i
));
5307 * s2io_ethtool_sset - Sets different link parameters.
5308 * @sp : private member of the device structure, which is a pointer to the * s2io_nic structure.
5309 * @info: pointer to the structure with parameters given by ethtool to set
5312 * The function sets different link parameters provided by the user onto
5318 static int s2io_ethtool_sset(struct net_device
*dev
,
5319 struct ethtool_cmd
*info
)
5321 struct s2io_nic
*sp
= dev
->priv
;
5322 if ((info
->autoneg
== AUTONEG_ENABLE
) ||
5323 (info
->speed
!= SPEED_10000
) || (info
->duplex
!= DUPLEX_FULL
))
5326 s2io_close(sp
->dev
);
5334 * s2io_ethtol_gset - Return link specific information.
5335 * @sp : private member of the device structure, pointer to the
5336 * s2io_nic structure.
5337 * @info : pointer to the structure with parameters given by ethtool
5338 * to return link information.
5340 * Returns link specific information like speed, duplex etc.. to ethtool.
5342 * return 0 on success.
5345 static int s2io_ethtool_gset(struct net_device
*dev
, struct ethtool_cmd
*info
)
5347 struct s2io_nic
*sp
= dev
->priv
;
5348 info
->supported
= (SUPPORTED_10000baseT_Full
| SUPPORTED_FIBRE
);
5349 info
->advertising
= (SUPPORTED_10000baseT_Full
| SUPPORTED_FIBRE
);
5350 info
->port
= PORT_FIBRE
;
5352 /* info->transceiver */
5353 info
->transceiver
= XCVR_EXTERNAL
;
5355 if (netif_carrier_ok(sp
->dev
)) {
5356 info
->speed
= 10000;
5357 info
->duplex
= DUPLEX_FULL
;
5363 info
->autoneg
= AUTONEG_DISABLE
;
5368 * s2io_ethtool_gdrvinfo - Returns driver specific information.
5369 * @sp : private member of the device structure, which is a pointer to the
5370 * s2io_nic structure.
5371 * @info : pointer to the structure with parameters given by ethtool to
5372 * return driver information.
5374 * Returns driver specefic information like name, version etc.. to ethtool.
5379 static void s2io_ethtool_gdrvinfo(struct net_device
*dev
,
5380 struct ethtool_drvinfo
*info
)
5382 struct s2io_nic
*sp
= dev
->priv
;
5384 strncpy(info
->driver
, s2io_driver_name
, sizeof(info
->driver
));
5385 strncpy(info
->version
, s2io_driver_version
, sizeof(info
->version
));
5386 strncpy(info
->fw_version
, "", sizeof(info
->fw_version
));
5387 strncpy(info
->bus_info
, pci_name(sp
->pdev
), sizeof(info
->bus_info
));
5388 info
->regdump_len
= XENA_REG_SPACE
;
5389 info
->eedump_len
= XENA_EEPROM_SPACE
;
5393 * s2io_ethtool_gregs - dumps the entire space of Xfame into the buffer.
5394 * @sp: private member of the device structure, which is a pointer to the
5395 * s2io_nic structure.
5396 * @regs : pointer to the structure with parameters given by ethtool for
5397 * dumping the registers.
5398 * @reg_space: The input argumnet into which all the registers are dumped.
5400 * Dumps the entire register space of xFrame NIC into the user given
5406 static void s2io_ethtool_gregs(struct net_device
*dev
,
5407 struct ethtool_regs
*regs
, void *space
)
5411 u8
*reg_space
= (u8
*) space
;
5412 struct s2io_nic
*sp
= dev
->priv
;
5414 regs
->len
= XENA_REG_SPACE
;
5415 regs
->version
= sp
->pdev
->subsystem_device
;
5417 for (i
= 0; i
< regs
->len
; i
+= 8) {
5418 reg
= readq(sp
->bar0
+ i
);
5419 memcpy((reg_space
+ i
), ®
, 8);
5424 * s2io_phy_id - timer function that alternates adapter LED.
5425 * @data : address of the private member of the device structure, which
5426 * is a pointer to the s2io_nic structure, provided as an u32.
5427 * Description: This is actually the timer function that alternates the
5428 * adapter LED bit of the adapter control bit to set/reset every time on
5429 * invocation. The timer is set for 1/2 a second, hence tha NIC blinks
5430 * once every second.
5432 static void s2io_phy_id(unsigned long data
)
5434 struct s2io_nic
*sp
= (struct s2io_nic
*) data
;
5435 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
5439 subid
= sp
->pdev
->subsystem_device
;
5440 if ((sp
->device_type
== XFRAME_II_DEVICE
) ||
5441 ((subid
& 0xFF) >= 0x07)) {
5442 val64
= readq(&bar0
->gpio_control
);
5443 val64
^= GPIO_CTRL_GPIO_0
;
5444 writeq(val64
, &bar0
->gpio_control
);
5446 val64
= readq(&bar0
->adapter_control
);
5447 val64
^= ADAPTER_LED_ON
;
5448 writeq(val64
, &bar0
->adapter_control
);
5451 mod_timer(&sp
->id_timer
, jiffies
+ HZ
/ 2);
5455 * s2io_ethtool_idnic - To physically identify the nic on the system.
5456 * @sp : private member of the device structure, which is a pointer to the
5457 * s2io_nic structure.
5458 * @id : pointer to the structure with identification parameters given by
5460 * Description: Used to physically identify the NIC on the system.
5461 * The Link LED will blink for a time specified by the user for
5463 * NOTE: The Link has to be Up to be able to blink the LED. Hence
5464 * identification is possible only if it's link is up.
5466 * int , returns 0 on success
5469 static int s2io_ethtool_idnic(struct net_device
*dev
, u32 data
)
5471 u64 val64
= 0, last_gpio_ctrl_val
;
5472 struct s2io_nic
*sp
= dev
->priv
;
5473 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
5476 subid
= sp
->pdev
->subsystem_device
;
5477 last_gpio_ctrl_val
= readq(&bar0
->gpio_control
);
5478 if ((sp
->device_type
== XFRAME_I_DEVICE
) &&
5479 ((subid
& 0xFF) < 0x07)) {
5480 val64
= readq(&bar0
->adapter_control
);
5481 if (!(val64
& ADAPTER_CNTL_EN
)) {
5483 "Adapter Link down, cannot blink LED\n");
5487 if (sp
->id_timer
.function
== NULL
) {
5488 init_timer(&sp
->id_timer
);
5489 sp
->id_timer
.function
= s2io_phy_id
;
5490 sp
->id_timer
.data
= (unsigned long) sp
;
5492 mod_timer(&sp
->id_timer
, jiffies
);
5494 msleep_interruptible(data
* HZ
);
5496 msleep_interruptible(MAX_FLICKER_TIME
);
5497 del_timer_sync(&sp
->id_timer
);
5499 if (CARDS_WITH_FAULTY_LINK_INDICATORS(sp
->device_type
, subid
)) {
5500 writeq(last_gpio_ctrl_val
, &bar0
->gpio_control
);
5501 last_gpio_ctrl_val
= readq(&bar0
->gpio_control
);
5507 static void s2io_ethtool_gringparam(struct net_device
*dev
,
5508 struct ethtool_ringparam
*ering
)
5510 struct s2io_nic
*sp
= dev
->priv
;
5511 int i
,tx_desc_count
=0,rx_desc_count
=0;
5513 if (sp
->rxd_mode
== RXD_MODE_1
)
5514 ering
->rx_max_pending
= MAX_RX_DESC_1
;
5515 else if (sp
->rxd_mode
== RXD_MODE_3B
)
5516 ering
->rx_max_pending
= MAX_RX_DESC_2
;
5518 ering
->tx_max_pending
= MAX_TX_DESC
;
5519 for (i
= 0 ; i
< sp
->config
.tx_fifo_num
; i
++)
5520 tx_desc_count
+= sp
->config
.tx_cfg
[i
].fifo_len
;
5522 DBG_PRINT(INFO_DBG
,"\nmax txds : %d\n",sp
->config
.max_txds
);
5523 ering
->tx_pending
= tx_desc_count
;
5525 for (i
= 0 ; i
< sp
->config
.rx_ring_num
; i
++)
5526 rx_desc_count
+= sp
->config
.rx_cfg
[i
].num_rxd
;
5528 ering
->rx_pending
= rx_desc_count
;
5530 ering
->rx_mini_max_pending
= 0;
5531 ering
->rx_mini_pending
= 0;
5532 if(sp
->rxd_mode
== RXD_MODE_1
)
5533 ering
->rx_jumbo_max_pending
= MAX_RX_DESC_1
;
5534 else if (sp
->rxd_mode
== RXD_MODE_3B
)
5535 ering
->rx_jumbo_max_pending
= MAX_RX_DESC_2
;
5536 ering
->rx_jumbo_pending
= rx_desc_count
;
5540 * s2io_ethtool_getpause_data -Pause frame frame generation and reception.
5541 * @sp : private member of the device structure, which is a pointer to the
5542 * s2io_nic structure.
5543 * @ep : pointer to the structure with pause parameters given by ethtool.
5545 * Returns the Pause frame generation and reception capability of the NIC.
5549 static void s2io_ethtool_getpause_data(struct net_device
*dev
,
5550 struct ethtool_pauseparam
*ep
)
5553 struct s2io_nic
*sp
= dev
->priv
;
5554 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
5556 val64
= readq(&bar0
->rmac_pause_cfg
);
5557 if (val64
& RMAC_PAUSE_GEN_ENABLE
)
5558 ep
->tx_pause
= TRUE
;
5559 if (val64
& RMAC_PAUSE_RX_ENABLE
)
5560 ep
->rx_pause
= TRUE
;
5561 ep
->autoneg
= FALSE
;
5565 * s2io_ethtool_setpause_data - set/reset pause frame generation.
5566 * @sp : private member of the device structure, which is a pointer to the
5567 * s2io_nic structure.
5568 * @ep : pointer to the structure with pause parameters given by ethtool.
5570 * It can be used to set or reset Pause frame generation or reception
5571 * support of the NIC.
5573 * int, returns 0 on Success
5576 static int s2io_ethtool_setpause_data(struct net_device
*dev
,
5577 struct ethtool_pauseparam
*ep
)
5580 struct s2io_nic
*sp
= dev
->priv
;
5581 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
5583 val64
= readq(&bar0
->rmac_pause_cfg
);
5585 val64
|= RMAC_PAUSE_GEN_ENABLE
;
5587 val64
&= ~RMAC_PAUSE_GEN_ENABLE
;
5589 val64
|= RMAC_PAUSE_RX_ENABLE
;
5591 val64
&= ~RMAC_PAUSE_RX_ENABLE
;
5592 writeq(val64
, &bar0
->rmac_pause_cfg
);
5597 * read_eeprom - reads 4 bytes of data from user given offset.
5598 * @sp : private member of the device structure, which is a pointer to the
5599 * s2io_nic structure.
5600 * @off : offset at which the data must be written
5601 * @data : Its an output parameter where the data read at the given
5604 * Will read 4 bytes of data from the user given offset and return the
5606 * NOTE: Will allow to read only part of the EEPROM visible through the
5609 * -1 on failure and 0 on success.
5612 #define S2IO_DEV_ID 5
5613 static int read_eeprom(struct s2io_nic
* sp
, int off
, u64
* data
)
5618 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
5620 if (sp
->device_type
== XFRAME_I_DEVICE
) {
5621 val64
= I2C_CONTROL_DEV_ID(S2IO_DEV_ID
) | I2C_CONTROL_ADDR(off
) |
5622 I2C_CONTROL_BYTE_CNT(0x3) | I2C_CONTROL_READ
|
5623 I2C_CONTROL_CNTL_START
;
5624 SPECIAL_REG_WRITE(val64
, &bar0
->i2c_control
, LF
);
5626 while (exit_cnt
< 5) {
5627 val64
= readq(&bar0
->i2c_control
);
5628 if (I2C_CONTROL_CNTL_END(val64
)) {
5629 *data
= I2C_CONTROL_GET_DATA(val64
);
5638 if (sp
->device_type
== XFRAME_II_DEVICE
) {
5639 val64
= SPI_CONTROL_KEY(0x9) | SPI_CONTROL_SEL1
|
5640 SPI_CONTROL_BYTECNT(0x3) |
5641 SPI_CONTROL_CMD(0x3) | SPI_CONTROL_ADDR(off
);
5642 SPECIAL_REG_WRITE(val64
, &bar0
->spi_control
, LF
);
5643 val64
|= SPI_CONTROL_REQ
;
5644 SPECIAL_REG_WRITE(val64
, &bar0
->spi_control
, LF
);
5645 while (exit_cnt
< 5) {
5646 val64
= readq(&bar0
->spi_control
);
5647 if (val64
& SPI_CONTROL_NACK
) {
5650 } else if (val64
& SPI_CONTROL_DONE
) {
5651 *data
= readq(&bar0
->spi_data
);
5664 * write_eeprom - actually writes the relevant part of the data value.
5665 * @sp : private member of the device structure, which is a pointer to the
5666 * s2io_nic structure.
5667 * @off : offset at which the data must be written
5668 * @data : The data that is to be written
5669 * @cnt : Number of bytes of the data that are actually to be written into
5670 * the Eeprom. (max of 3)
5672 * Actually writes the relevant part of the data value into the Eeprom
5673 * through the I2C bus.
5675 * 0 on success, -1 on failure.
5678 static int write_eeprom(struct s2io_nic
* sp
, int off
, u64 data
, int cnt
)
5680 int exit_cnt
= 0, ret
= -1;
5682 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
5684 if (sp
->device_type
== XFRAME_I_DEVICE
) {
5685 val64
= I2C_CONTROL_DEV_ID(S2IO_DEV_ID
) | I2C_CONTROL_ADDR(off
) |
5686 I2C_CONTROL_BYTE_CNT(cnt
) | I2C_CONTROL_SET_DATA((u32
)data
) |
5687 I2C_CONTROL_CNTL_START
;
5688 SPECIAL_REG_WRITE(val64
, &bar0
->i2c_control
, LF
);
5690 while (exit_cnt
< 5) {
5691 val64
= readq(&bar0
->i2c_control
);
5692 if (I2C_CONTROL_CNTL_END(val64
)) {
5693 if (!(val64
& I2C_CONTROL_NACK
))
5702 if (sp
->device_type
== XFRAME_II_DEVICE
) {
5703 int write_cnt
= (cnt
== 8) ? 0 : cnt
;
5704 writeq(SPI_DATA_WRITE(data
,(cnt
<<3)), &bar0
->spi_data
);
5706 val64
= SPI_CONTROL_KEY(0x9) | SPI_CONTROL_SEL1
|
5707 SPI_CONTROL_BYTECNT(write_cnt
) |
5708 SPI_CONTROL_CMD(0x2) | SPI_CONTROL_ADDR(off
);
5709 SPECIAL_REG_WRITE(val64
, &bar0
->spi_control
, LF
);
5710 val64
|= SPI_CONTROL_REQ
;
5711 SPECIAL_REG_WRITE(val64
, &bar0
->spi_control
, LF
);
5712 while (exit_cnt
< 5) {
5713 val64
= readq(&bar0
->spi_control
);
5714 if (val64
& SPI_CONTROL_NACK
) {
5717 } else if (val64
& SPI_CONTROL_DONE
) {
5727 static void s2io_vpd_read(struct s2io_nic
*nic
)
5731 int i
=0, cnt
, fail
= 0;
5732 int vpd_addr
= 0x80;
5734 if (nic
->device_type
== XFRAME_II_DEVICE
) {
5735 strcpy(nic
->product_name
, "Xframe II 10GbE network adapter");
5739 strcpy(nic
->product_name
, "Xframe I 10GbE network adapter");
5742 strcpy(nic
->serial_num
, "NOT AVAILABLE");
5744 vpd_data
= kmalloc(256, GFP_KERNEL
);
5746 nic
->mac_control
.stats_info
->sw_stat
.mem_alloc_fail_cnt
++;
5749 nic
->mac_control
.stats_info
->sw_stat
.mem_allocated
+= 256;
5751 for (i
= 0; i
< 256; i
+=4 ) {
5752 pci_write_config_byte(nic
->pdev
, (vpd_addr
+ 2), i
);
5753 pci_read_config_byte(nic
->pdev
, (vpd_addr
+ 2), &data
);
5754 pci_write_config_byte(nic
->pdev
, (vpd_addr
+ 3), 0);
5755 for (cnt
= 0; cnt
<5; cnt
++) {
5757 pci_read_config_byte(nic
->pdev
, (vpd_addr
+ 3), &data
);
5762 DBG_PRINT(ERR_DBG
, "Read of VPD data failed\n");
5766 pci_read_config_dword(nic
->pdev
, (vpd_addr
+ 4),
5767 (u32
*)&vpd_data
[i
]);
5771 /* read serial number of adapter */
5772 for (cnt
= 0; cnt
< 256; cnt
++) {
5773 if ((vpd_data
[cnt
] == 'S') &&
5774 (vpd_data
[cnt
+1] == 'N') &&
5775 (vpd_data
[cnt
+2] < VPD_STRING_LEN
)) {
5776 memset(nic
->serial_num
, 0, VPD_STRING_LEN
);
5777 memcpy(nic
->serial_num
, &vpd_data
[cnt
+ 3],
5784 if ((!fail
) && (vpd_data
[1] < VPD_STRING_LEN
)) {
5785 memset(nic
->product_name
, 0, vpd_data
[1]);
5786 memcpy(nic
->product_name
, &vpd_data
[3], vpd_data
[1]);
5789 nic
->mac_control
.stats_info
->sw_stat
.mem_freed
+= 256;
5793 * s2io_ethtool_geeprom - reads the value stored in the Eeprom.
5794 * @sp : private member of the device structure, which is a pointer to the * s2io_nic structure.
5795 * @eeprom : pointer to the user level structure provided by ethtool,
5796 * containing all relevant information.
5797 * @data_buf : user defined value to be written into Eeprom.
5798 * Description: Reads the values stored in the Eeprom at given offset
5799 * for a given length. Stores these values int the input argument data
5800 * buffer 'data_buf' and returns these to the caller (ethtool.)
5805 static int s2io_ethtool_geeprom(struct net_device
*dev
,
5806 struct ethtool_eeprom
*eeprom
, u8
* data_buf
)
5810 struct s2io_nic
*sp
= dev
->priv
;
5812 eeprom
->magic
= sp
->pdev
->vendor
| (sp
->pdev
->device
<< 16);
5814 if ((eeprom
->offset
+ eeprom
->len
) > (XENA_EEPROM_SPACE
))
5815 eeprom
->len
= XENA_EEPROM_SPACE
- eeprom
->offset
;
5817 for (i
= 0; i
< eeprom
->len
; i
+= 4) {
5818 if (read_eeprom(sp
, (eeprom
->offset
+ i
), &data
)) {
5819 DBG_PRINT(ERR_DBG
, "Read of EEPROM failed\n");
5823 memcpy((data_buf
+ i
), &valid
, 4);
5829 * s2io_ethtool_seeprom - tries to write the user provided value in Eeprom
5830 * @sp : private member of the device structure, which is a pointer to the
5831 * s2io_nic structure.
5832 * @eeprom : pointer to the user level structure provided by ethtool,
5833 * containing all relevant information.
5834 * @data_buf ; user defined value to be written into Eeprom.
5836 * Tries to write the user provided value in the Eeprom, at the offset
5837 * given by the user.
5839 * 0 on success, -EFAULT on failure.
5842 static int s2io_ethtool_seeprom(struct net_device
*dev
,
5843 struct ethtool_eeprom
*eeprom
,
5846 int len
= eeprom
->len
, cnt
= 0;
5847 u64 valid
= 0, data
;
5848 struct s2io_nic
*sp
= dev
->priv
;
5850 if (eeprom
->magic
!= (sp
->pdev
->vendor
| (sp
->pdev
->device
<< 16))) {
5852 "ETHTOOL_WRITE_EEPROM Err: Magic value ");
5853 DBG_PRINT(ERR_DBG
, "is wrong, Its not 0x%x\n",
5859 data
= (u32
) data_buf
[cnt
] & 0x000000FF;
5861 valid
= (u32
) (data
<< 24);
5865 if (write_eeprom(sp
, (eeprom
->offset
+ cnt
), valid
, 0)) {
5867 "ETHTOOL_WRITE_EEPROM Err: Cannot ");
5869 "write into the specified offset\n");
5880 * s2io_register_test - reads and writes into all clock domains.
5881 * @sp : private member of the device structure, which is a pointer to the
5882 * s2io_nic structure.
5883 * @data : variable that returns the result of each of the test conducted b
5886 * Read and write into all clock domains. The NIC has 3 clock domains,
5887 * see that registers in all the three regions are accessible.
5892 static int s2io_register_test(struct s2io_nic
* sp
, uint64_t * data
)
5894 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
5895 u64 val64
= 0, exp_val
;
5898 val64
= readq(&bar0
->pif_rd_swapper_fb
);
5899 if (val64
!= 0x123456789abcdefULL
) {
5901 DBG_PRINT(INFO_DBG
, "Read Test level 1 fails\n");
5904 val64
= readq(&bar0
->rmac_pause_cfg
);
5905 if (val64
!= 0xc000ffff00000000ULL
) {
5907 DBG_PRINT(INFO_DBG
, "Read Test level 2 fails\n");
5910 val64
= readq(&bar0
->rx_queue_cfg
);
5911 if (sp
->device_type
== XFRAME_II_DEVICE
)
5912 exp_val
= 0x0404040404040404ULL
;
5914 exp_val
= 0x0808080808080808ULL
;
5915 if (val64
!= exp_val
) {
5917 DBG_PRINT(INFO_DBG
, "Read Test level 3 fails\n");
5920 val64
= readq(&bar0
->xgxs_efifo_cfg
);
5921 if (val64
!= 0x000000001923141EULL
) {
5923 DBG_PRINT(INFO_DBG
, "Read Test level 4 fails\n");
5926 val64
= 0x5A5A5A5A5A5A5A5AULL
;
5927 writeq(val64
, &bar0
->xmsi_data
);
5928 val64
= readq(&bar0
->xmsi_data
);
5929 if (val64
!= 0x5A5A5A5A5A5A5A5AULL
) {
5931 DBG_PRINT(ERR_DBG
, "Write Test level 1 fails\n");
5934 val64
= 0xA5A5A5A5A5A5A5A5ULL
;
5935 writeq(val64
, &bar0
->xmsi_data
);
5936 val64
= readq(&bar0
->xmsi_data
);
5937 if (val64
!= 0xA5A5A5A5A5A5A5A5ULL
) {
5939 DBG_PRINT(ERR_DBG
, "Write Test level 2 fails\n");
5947 * s2io_eeprom_test - to verify that EEprom in the xena can be programmed.
5948 * @sp : private member of the device structure, which is a pointer to the
5949 * s2io_nic structure.
5950 * @data:variable that returns the result of each of the test conducted by
5953 * Verify that EEPROM in the xena can be programmed using I2C_CONTROL
5959 static int s2io_eeprom_test(struct s2io_nic
* sp
, uint64_t * data
)
5962 u64 ret_data
, org_4F0
, org_7F0
;
5963 u8 saved_4F0
= 0, saved_7F0
= 0;
5964 struct net_device
*dev
= sp
->dev
;
5966 /* Test Write Error at offset 0 */
5967 /* Note that SPI interface allows write access to all areas
5968 * of EEPROM. Hence doing all negative testing only for Xframe I.
5970 if (sp
->device_type
== XFRAME_I_DEVICE
)
5971 if (!write_eeprom(sp
, 0, 0, 3))
5974 /* Save current values at offsets 0x4F0 and 0x7F0 */
5975 if (!read_eeprom(sp
, 0x4F0, &org_4F0
))
5977 if (!read_eeprom(sp
, 0x7F0, &org_7F0
))
5980 /* Test Write at offset 4f0 */
5981 if (write_eeprom(sp
, 0x4F0, 0x012345, 3))
5983 if (read_eeprom(sp
, 0x4F0, &ret_data
))
5986 if (ret_data
!= 0x012345) {
5987 DBG_PRINT(ERR_DBG
, "%s: eeprom test error at offset 0x4F0. "
5988 "Data written %llx Data read %llx\n",
5989 dev
->name
, (unsigned long long)0x12345,
5990 (unsigned long long)ret_data
);
5994 /* Reset the EEPROM data go FFFF */
5995 write_eeprom(sp
, 0x4F0, 0xFFFFFF, 3);
5997 /* Test Write Request Error at offset 0x7c */
5998 if (sp
->device_type
== XFRAME_I_DEVICE
)
5999 if (!write_eeprom(sp
, 0x07C, 0, 3))
6002 /* Test Write Request at offset 0x7f0 */
6003 if (write_eeprom(sp
, 0x7F0, 0x012345, 3))
6005 if (read_eeprom(sp
, 0x7F0, &ret_data
))
6008 if (ret_data
!= 0x012345) {
6009 DBG_PRINT(ERR_DBG
, "%s: eeprom test error at offset 0x7F0. "
6010 "Data written %llx Data read %llx\n",
6011 dev
->name
, (unsigned long long)0x12345,
6012 (unsigned long long)ret_data
);
6016 /* Reset the EEPROM data go FFFF */
6017 write_eeprom(sp
, 0x7F0, 0xFFFFFF, 3);
6019 if (sp
->device_type
== XFRAME_I_DEVICE
) {
6020 /* Test Write Error at offset 0x80 */
6021 if (!write_eeprom(sp
, 0x080, 0, 3))
6024 /* Test Write Error at offset 0xfc */
6025 if (!write_eeprom(sp
, 0x0FC, 0, 3))
6028 /* Test Write Error at offset 0x100 */
6029 if (!write_eeprom(sp
, 0x100, 0, 3))
6032 /* Test Write Error at offset 4ec */
6033 if (!write_eeprom(sp
, 0x4EC, 0, 3))
6037 /* Restore values at offsets 0x4F0 and 0x7F0 */
6039 write_eeprom(sp
, 0x4F0, org_4F0
, 3);
6041 write_eeprom(sp
, 0x7F0, org_7F0
, 3);
6048 * s2io_bist_test - invokes the MemBist test of the card .
6049 * @sp : private member of the device structure, which is a pointer to the
6050 * s2io_nic structure.
6051 * @data:variable that returns the result of each of the test conducted by
6054 * This invokes the MemBist test of the card. We give around
6055 * 2 secs time for the Test to complete. If it's still not complete
6056 * within this peiod, we consider that the test failed.
6058 * 0 on success and -1 on failure.
6061 static int s2io_bist_test(struct s2io_nic
* sp
, uint64_t * data
)
6064 int cnt
= 0, ret
= -1;
6066 pci_read_config_byte(sp
->pdev
, PCI_BIST
, &bist
);
6067 bist
|= PCI_BIST_START
;
6068 pci_write_config_word(sp
->pdev
, PCI_BIST
, bist
);
6071 pci_read_config_byte(sp
->pdev
, PCI_BIST
, &bist
);
6072 if (!(bist
& PCI_BIST_START
)) {
6073 *data
= (bist
& PCI_BIST_CODE_MASK
);
6085 * s2io-link_test - verifies the link state of the nic
6086 * @sp ; private member of the device structure, which is a pointer to the
6087 * s2io_nic structure.
6088 * @data: variable that returns the result of each of the test conducted by
6091 * The function verifies the link state of the NIC and updates the input
6092 * argument 'data' appropriately.
6097 static int s2io_link_test(struct s2io_nic
* sp
, uint64_t * data
)
6099 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
6102 val64
= readq(&bar0
->adapter_status
);
6103 if(!(LINK_IS_UP(val64
)))
6112 * s2io_rldram_test - offline test for access to the RldRam chip on the NIC
6113 * @sp - private member of the device structure, which is a pointer to the
6114 * s2io_nic structure.
6115 * @data - variable that returns the result of each of the test
6116 * conducted by the driver.
6118 * This is one of the offline test that tests the read and write
6119 * access to the RldRam chip on the NIC.
6124 static int s2io_rldram_test(struct s2io_nic
* sp
, uint64_t * data
)
6126 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
6128 int cnt
, iteration
= 0, test_fail
= 0;
6130 val64
= readq(&bar0
->adapter_control
);
6131 val64
&= ~ADAPTER_ECC_EN
;
6132 writeq(val64
, &bar0
->adapter_control
);
6134 val64
= readq(&bar0
->mc_rldram_test_ctrl
);
6135 val64
|= MC_RLDRAM_TEST_MODE
;
6136 SPECIAL_REG_WRITE(val64
, &bar0
->mc_rldram_test_ctrl
, LF
);
6138 val64
= readq(&bar0
->mc_rldram_mrs
);
6139 val64
|= MC_RLDRAM_QUEUE_SIZE_ENABLE
;
6140 SPECIAL_REG_WRITE(val64
, &bar0
->mc_rldram_mrs
, UF
);
6142 val64
|= MC_RLDRAM_MRS_ENABLE
;
6143 SPECIAL_REG_WRITE(val64
, &bar0
->mc_rldram_mrs
, UF
);
6145 while (iteration
< 2) {
6146 val64
= 0x55555555aaaa0000ULL
;
6147 if (iteration
== 1) {
6148 val64
^= 0xFFFFFFFFFFFF0000ULL
;
6150 writeq(val64
, &bar0
->mc_rldram_test_d0
);
6152 val64
= 0xaaaa5a5555550000ULL
;
6153 if (iteration
== 1) {
6154 val64
^= 0xFFFFFFFFFFFF0000ULL
;
6156 writeq(val64
, &bar0
->mc_rldram_test_d1
);
6158 val64
= 0x55aaaaaaaa5a0000ULL
;
6159 if (iteration
== 1) {
6160 val64
^= 0xFFFFFFFFFFFF0000ULL
;
6162 writeq(val64
, &bar0
->mc_rldram_test_d2
);
6164 val64
= (u64
) (0x0000003ffffe0100ULL
);
6165 writeq(val64
, &bar0
->mc_rldram_test_add
);
6167 val64
= MC_RLDRAM_TEST_MODE
| MC_RLDRAM_TEST_WRITE
|
6169 SPECIAL_REG_WRITE(val64
, &bar0
->mc_rldram_test_ctrl
, LF
);
6171 for (cnt
= 0; cnt
< 5; cnt
++) {
6172 val64
= readq(&bar0
->mc_rldram_test_ctrl
);
6173 if (val64
& MC_RLDRAM_TEST_DONE
)
6181 val64
= MC_RLDRAM_TEST_MODE
| MC_RLDRAM_TEST_GO
;
6182 SPECIAL_REG_WRITE(val64
, &bar0
->mc_rldram_test_ctrl
, LF
);
6184 for (cnt
= 0; cnt
< 5; cnt
++) {
6185 val64
= readq(&bar0
->mc_rldram_test_ctrl
);
6186 if (val64
& MC_RLDRAM_TEST_DONE
)
6194 val64
= readq(&bar0
->mc_rldram_test_ctrl
);
6195 if (!(val64
& MC_RLDRAM_TEST_PASS
))
6203 /* Bring the adapter out of test mode */
6204 SPECIAL_REG_WRITE(0, &bar0
->mc_rldram_test_ctrl
, LF
);
6210 * s2io_ethtool_test - conducts 6 tsets to determine the health of card.
6211 * @sp : private member of the device structure, which is a pointer to the
6212 * s2io_nic structure.
6213 * @ethtest : pointer to a ethtool command specific structure that will be
6214 * returned to the user.
6215 * @data : variable that returns the result of each of the test
6216 * conducted by the driver.
6218 * This function conducts 6 tests ( 4 offline and 2 online) to determine
6219 * the health of the card.
6224 static void s2io_ethtool_test(struct net_device
*dev
,
6225 struct ethtool_test
*ethtest
,
6228 struct s2io_nic
*sp
= dev
->priv
;
6229 int orig_state
= netif_running(sp
->dev
);
6231 if (ethtest
->flags
== ETH_TEST_FL_OFFLINE
) {
6232 /* Offline Tests. */
6234 s2io_close(sp
->dev
);
6236 if (s2io_register_test(sp
, &data
[0]))
6237 ethtest
->flags
|= ETH_TEST_FL_FAILED
;
6241 if (s2io_rldram_test(sp
, &data
[3]))
6242 ethtest
->flags
|= ETH_TEST_FL_FAILED
;
6246 if (s2io_eeprom_test(sp
, &data
[1]))
6247 ethtest
->flags
|= ETH_TEST_FL_FAILED
;
6249 if (s2io_bist_test(sp
, &data
[4]))
6250 ethtest
->flags
|= ETH_TEST_FL_FAILED
;
6260 "%s: is not up, cannot run test\n",
6269 if (s2io_link_test(sp
, &data
[2]))
6270 ethtest
->flags
|= ETH_TEST_FL_FAILED
;
6279 static void s2io_get_ethtool_stats(struct net_device
*dev
,
6280 struct ethtool_stats
*estats
,
6284 struct s2io_nic
*sp
= dev
->priv
;
6285 struct stat_block
*stat_info
= sp
->mac_control
.stats_info
;
6287 s2io_updt_stats(sp
);
6289 (u64
)le32_to_cpu(stat_info
->tmac_frms_oflow
) << 32 |
6290 le32_to_cpu(stat_info
->tmac_frms
);
6292 (u64
)le32_to_cpu(stat_info
->tmac_data_octets_oflow
) << 32 |
6293 le32_to_cpu(stat_info
->tmac_data_octets
);
6294 tmp_stats
[i
++] = le64_to_cpu(stat_info
->tmac_drop_frms
);
6296 (u64
)le32_to_cpu(stat_info
->tmac_mcst_frms_oflow
) << 32 |
6297 le32_to_cpu(stat_info
->tmac_mcst_frms
);
6299 (u64
)le32_to_cpu(stat_info
->tmac_bcst_frms_oflow
) << 32 |
6300 le32_to_cpu(stat_info
->tmac_bcst_frms
);
6301 tmp_stats
[i
++] = le64_to_cpu(stat_info
->tmac_pause_ctrl_frms
);
6303 (u64
)le32_to_cpu(stat_info
->tmac_ttl_octets_oflow
) << 32 |
6304 le32_to_cpu(stat_info
->tmac_ttl_octets
);
6306 (u64
)le32_to_cpu(stat_info
->tmac_ucst_frms_oflow
) << 32 |
6307 le32_to_cpu(stat_info
->tmac_ucst_frms
);
6309 (u64
)le32_to_cpu(stat_info
->tmac_nucst_frms_oflow
) << 32 |
6310 le32_to_cpu(stat_info
->tmac_nucst_frms
);
6312 (u64
)le32_to_cpu(stat_info
->tmac_any_err_frms_oflow
) << 32 |
6313 le32_to_cpu(stat_info
->tmac_any_err_frms
);
6314 tmp_stats
[i
++] = le64_to_cpu(stat_info
->tmac_ttl_less_fb_octets
);
6315 tmp_stats
[i
++] = le64_to_cpu(stat_info
->tmac_vld_ip_octets
);
6317 (u64
)le32_to_cpu(stat_info
->tmac_vld_ip_oflow
) << 32 |
6318 le32_to_cpu(stat_info
->tmac_vld_ip
);
6320 (u64
)le32_to_cpu(stat_info
->tmac_drop_ip_oflow
) << 32 |
6321 le32_to_cpu(stat_info
->tmac_drop_ip
);
6323 (u64
)le32_to_cpu(stat_info
->tmac_icmp_oflow
) << 32 |
6324 le32_to_cpu(stat_info
->tmac_icmp
);
6326 (u64
)le32_to_cpu(stat_info
->tmac_rst_tcp_oflow
) << 32 |
6327 le32_to_cpu(stat_info
->tmac_rst_tcp
);
6328 tmp_stats
[i
++] = le64_to_cpu(stat_info
->tmac_tcp
);
6329 tmp_stats
[i
++] = (u64
)le32_to_cpu(stat_info
->tmac_udp_oflow
) << 32 |
6330 le32_to_cpu(stat_info
->tmac_udp
);
6332 (u64
)le32_to_cpu(stat_info
->rmac_vld_frms_oflow
) << 32 |
6333 le32_to_cpu(stat_info
->rmac_vld_frms
);
6335 (u64
)le32_to_cpu(stat_info
->rmac_data_octets_oflow
) << 32 |
6336 le32_to_cpu(stat_info
->rmac_data_octets
);
6337 tmp_stats
[i
++] = le64_to_cpu(stat_info
->rmac_fcs_err_frms
);
6338 tmp_stats
[i
++] = le64_to_cpu(stat_info
->rmac_drop_frms
);
6340 (u64
)le32_to_cpu(stat_info
->rmac_vld_mcst_frms_oflow
) << 32 |
6341 le32_to_cpu(stat_info
->rmac_vld_mcst_frms
);
6343 (u64
)le32_to_cpu(stat_info
->rmac_vld_bcst_frms_oflow
) << 32 |
6344 le32_to_cpu(stat_info
->rmac_vld_bcst_frms
);
6345 tmp_stats
[i
++] = le32_to_cpu(stat_info
->rmac_in_rng_len_err_frms
);
6346 tmp_stats
[i
++] = le32_to_cpu(stat_info
->rmac_out_rng_len_err_frms
);
6347 tmp_stats
[i
++] = le64_to_cpu(stat_info
->rmac_long_frms
);
6348 tmp_stats
[i
++] = le64_to_cpu(stat_info
->rmac_pause_ctrl_frms
);
6349 tmp_stats
[i
++] = le64_to_cpu(stat_info
->rmac_unsup_ctrl_frms
);
6351 (u64
)le32_to_cpu(stat_info
->rmac_ttl_octets_oflow
) << 32 |
6352 le32_to_cpu(stat_info
->rmac_ttl_octets
);
6354 (u64
)le32_to_cpu(stat_info
->rmac_accepted_ucst_frms_oflow
)
6355 << 32 | le32_to_cpu(stat_info
->rmac_accepted_ucst_frms
);
6357 (u64
)le32_to_cpu(stat_info
->rmac_accepted_nucst_frms_oflow
)
6358 << 32 | le32_to_cpu(stat_info
->rmac_accepted_nucst_frms
);
6360 (u64
)le32_to_cpu(stat_info
->rmac_discarded_frms_oflow
) << 32 |
6361 le32_to_cpu(stat_info
->rmac_discarded_frms
);
6363 (u64
)le32_to_cpu(stat_info
->rmac_drop_events_oflow
)
6364 << 32 | le32_to_cpu(stat_info
->rmac_drop_events
);
6365 tmp_stats
[i
++] = le64_to_cpu(stat_info
->rmac_ttl_less_fb_octets
);
6366 tmp_stats
[i
++] = le64_to_cpu(stat_info
->rmac_ttl_frms
);
6368 (u64
)le32_to_cpu(stat_info
->rmac_usized_frms_oflow
) << 32 |
6369 le32_to_cpu(stat_info
->rmac_usized_frms
);
6371 (u64
)le32_to_cpu(stat_info
->rmac_osized_frms_oflow
) << 32 |
6372 le32_to_cpu(stat_info
->rmac_osized_frms
);
6374 (u64
)le32_to_cpu(stat_info
->rmac_frag_frms_oflow
) << 32 |
6375 le32_to_cpu(stat_info
->rmac_frag_frms
);
6377 (u64
)le32_to_cpu(stat_info
->rmac_jabber_frms_oflow
) << 32 |
6378 le32_to_cpu(stat_info
->rmac_jabber_frms
);
6379 tmp_stats
[i
++] = le64_to_cpu(stat_info
->rmac_ttl_64_frms
);
6380 tmp_stats
[i
++] = le64_to_cpu(stat_info
->rmac_ttl_65_127_frms
);
6381 tmp_stats
[i
++] = le64_to_cpu(stat_info
->rmac_ttl_128_255_frms
);
6382 tmp_stats
[i
++] = le64_to_cpu(stat_info
->rmac_ttl_256_511_frms
);
6383 tmp_stats
[i
++] = le64_to_cpu(stat_info
->rmac_ttl_512_1023_frms
);
6384 tmp_stats
[i
++] = le64_to_cpu(stat_info
->rmac_ttl_1024_1518_frms
);
6386 (u64
)le32_to_cpu(stat_info
->rmac_ip_oflow
) << 32 |
6387 le32_to_cpu(stat_info
->rmac_ip
);
6388 tmp_stats
[i
++] = le64_to_cpu(stat_info
->rmac_ip_octets
);
6389 tmp_stats
[i
++] = le32_to_cpu(stat_info
->rmac_hdr_err_ip
);
6391 (u64
)le32_to_cpu(stat_info
->rmac_drop_ip_oflow
) << 32 |
6392 le32_to_cpu(stat_info
->rmac_drop_ip
);
6394 (u64
)le32_to_cpu(stat_info
->rmac_icmp_oflow
) << 32 |
6395 le32_to_cpu(stat_info
->rmac_icmp
);
6396 tmp_stats
[i
++] = le64_to_cpu(stat_info
->rmac_tcp
);
6398 (u64
)le32_to_cpu(stat_info
->rmac_udp_oflow
) << 32 |
6399 le32_to_cpu(stat_info
->rmac_udp
);
6401 (u64
)le32_to_cpu(stat_info
->rmac_err_drp_udp_oflow
) << 32 |
6402 le32_to_cpu(stat_info
->rmac_err_drp_udp
);
6403 tmp_stats
[i
++] = le64_to_cpu(stat_info
->rmac_xgmii_err_sym
);
6404 tmp_stats
[i
++] = le64_to_cpu(stat_info
->rmac_frms_q0
);
6405 tmp_stats
[i
++] = le64_to_cpu(stat_info
->rmac_frms_q1
);
6406 tmp_stats
[i
++] = le64_to_cpu(stat_info
->rmac_frms_q2
);
6407 tmp_stats
[i
++] = le64_to_cpu(stat_info
->rmac_frms_q3
);
6408 tmp_stats
[i
++] = le64_to_cpu(stat_info
->rmac_frms_q4
);
6409 tmp_stats
[i
++] = le64_to_cpu(stat_info
->rmac_frms_q5
);
6410 tmp_stats
[i
++] = le64_to_cpu(stat_info
->rmac_frms_q6
);
6411 tmp_stats
[i
++] = le64_to_cpu(stat_info
->rmac_frms_q7
);
6412 tmp_stats
[i
++] = le16_to_cpu(stat_info
->rmac_full_q0
);
6413 tmp_stats
[i
++] = le16_to_cpu(stat_info
->rmac_full_q1
);
6414 tmp_stats
[i
++] = le16_to_cpu(stat_info
->rmac_full_q2
);
6415 tmp_stats
[i
++] = le16_to_cpu(stat_info
->rmac_full_q3
);
6416 tmp_stats
[i
++] = le16_to_cpu(stat_info
->rmac_full_q4
);
6417 tmp_stats
[i
++] = le16_to_cpu(stat_info
->rmac_full_q5
);
6418 tmp_stats
[i
++] = le16_to_cpu(stat_info
->rmac_full_q6
);
6419 tmp_stats
[i
++] = le16_to_cpu(stat_info
->rmac_full_q7
);
6421 (u64
)le32_to_cpu(stat_info
->rmac_pause_cnt_oflow
) << 32 |
6422 le32_to_cpu(stat_info
->rmac_pause_cnt
);
6423 tmp_stats
[i
++] = le64_to_cpu(stat_info
->rmac_xgmii_data_err_cnt
);
6424 tmp_stats
[i
++] = le64_to_cpu(stat_info
->rmac_xgmii_ctrl_err_cnt
);
6426 (u64
)le32_to_cpu(stat_info
->rmac_accepted_ip_oflow
) << 32 |
6427 le32_to_cpu(stat_info
->rmac_accepted_ip
);
6428 tmp_stats
[i
++] = le32_to_cpu(stat_info
->rmac_err_tcp
);
6429 tmp_stats
[i
++] = le32_to_cpu(stat_info
->rd_req_cnt
);
6430 tmp_stats
[i
++] = le32_to_cpu(stat_info
->new_rd_req_cnt
);
6431 tmp_stats
[i
++] = le32_to_cpu(stat_info
->new_rd_req_rtry_cnt
);
6432 tmp_stats
[i
++] = le32_to_cpu(stat_info
->rd_rtry_cnt
);
6433 tmp_stats
[i
++] = le32_to_cpu(stat_info
->wr_rtry_rd_ack_cnt
);
6434 tmp_stats
[i
++] = le32_to_cpu(stat_info
->wr_req_cnt
);
6435 tmp_stats
[i
++] = le32_to_cpu(stat_info
->new_wr_req_cnt
);
6436 tmp_stats
[i
++] = le32_to_cpu(stat_info
->new_wr_req_rtry_cnt
);
6437 tmp_stats
[i
++] = le32_to_cpu(stat_info
->wr_rtry_cnt
);
6438 tmp_stats
[i
++] = le32_to_cpu(stat_info
->wr_disc_cnt
);
6439 tmp_stats
[i
++] = le32_to_cpu(stat_info
->rd_rtry_wr_ack_cnt
);
6440 tmp_stats
[i
++] = le32_to_cpu(stat_info
->txp_wr_cnt
);
6441 tmp_stats
[i
++] = le32_to_cpu(stat_info
->txd_rd_cnt
);
6442 tmp_stats
[i
++] = le32_to_cpu(stat_info
->txd_wr_cnt
);
6443 tmp_stats
[i
++] = le32_to_cpu(stat_info
->rxd_rd_cnt
);
6444 tmp_stats
[i
++] = le32_to_cpu(stat_info
->rxd_wr_cnt
);
6445 tmp_stats
[i
++] = le32_to_cpu(stat_info
->txf_rd_cnt
);
6446 tmp_stats
[i
++] = le32_to_cpu(stat_info
->rxf_wr_cnt
);
6448 /* Enhanced statistics exist only for Hercules */
6449 if(sp
->device_type
== XFRAME_II_DEVICE
) {
6451 le64_to_cpu(stat_info
->rmac_ttl_1519_4095_frms
);
6453 le64_to_cpu(stat_info
->rmac_ttl_4096_8191_frms
);
6455 le64_to_cpu(stat_info
->rmac_ttl_8192_max_frms
);
6456 tmp_stats
[i
++] = le64_to_cpu(stat_info
->rmac_ttl_gt_max_frms
);
6457 tmp_stats
[i
++] = le64_to_cpu(stat_info
->rmac_osized_alt_frms
);
6458 tmp_stats
[i
++] = le64_to_cpu(stat_info
->rmac_jabber_alt_frms
);
6459 tmp_stats
[i
++] = le64_to_cpu(stat_info
->rmac_gt_max_alt_frms
);
6460 tmp_stats
[i
++] = le64_to_cpu(stat_info
->rmac_vlan_frms
);
6461 tmp_stats
[i
++] = le32_to_cpu(stat_info
->rmac_len_discard
);
6462 tmp_stats
[i
++] = le32_to_cpu(stat_info
->rmac_fcs_discard
);
6463 tmp_stats
[i
++] = le32_to_cpu(stat_info
->rmac_pf_discard
);
6464 tmp_stats
[i
++] = le32_to_cpu(stat_info
->rmac_da_discard
);
6465 tmp_stats
[i
++] = le32_to_cpu(stat_info
->rmac_red_discard
);
6466 tmp_stats
[i
++] = le32_to_cpu(stat_info
->rmac_rts_discard
);
6467 tmp_stats
[i
++] = le32_to_cpu(stat_info
->rmac_ingm_full_discard
);
6468 tmp_stats
[i
++] = le32_to_cpu(stat_info
->link_fault_cnt
);
6472 tmp_stats
[i
++] = stat_info
->sw_stat
.single_ecc_errs
;
6473 tmp_stats
[i
++] = stat_info
->sw_stat
.double_ecc_errs
;
6474 tmp_stats
[i
++] = stat_info
->sw_stat
.parity_err_cnt
;
6475 tmp_stats
[i
++] = stat_info
->sw_stat
.serious_err_cnt
;
6476 tmp_stats
[i
++] = stat_info
->sw_stat
.soft_reset_cnt
;
6477 tmp_stats
[i
++] = stat_info
->sw_stat
.fifo_full_cnt
;
6478 for (k
= 0; k
< MAX_RX_RINGS
; k
++)
6479 tmp_stats
[i
++] = stat_info
->sw_stat
.ring_full_cnt
[k
];
6480 tmp_stats
[i
++] = stat_info
->xpak_stat
.alarm_transceiver_temp_high
;
6481 tmp_stats
[i
++] = stat_info
->xpak_stat
.alarm_transceiver_temp_low
;
6482 tmp_stats
[i
++] = stat_info
->xpak_stat
.alarm_laser_bias_current_high
;
6483 tmp_stats
[i
++] = stat_info
->xpak_stat
.alarm_laser_bias_current_low
;
6484 tmp_stats
[i
++] = stat_info
->xpak_stat
.alarm_laser_output_power_high
;
6485 tmp_stats
[i
++] = stat_info
->xpak_stat
.alarm_laser_output_power_low
;
6486 tmp_stats
[i
++] = stat_info
->xpak_stat
.warn_transceiver_temp_high
;
6487 tmp_stats
[i
++] = stat_info
->xpak_stat
.warn_transceiver_temp_low
;
6488 tmp_stats
[i
++] = stat_info
->xpak_stat
.warn_laser_bias_current_high
;
6489 tmp_stats
[i
++] = stat_info
->xpak_stat
.warn_laser_bias_current_low
;
6490 tmp_stats
[i
++] = stat_info
->xpak_stat
.warn_laser_output_power_high
;
6491 tmp_stats
[i
++] = stat_info
->xpak_stat
.warn_laser_output_power_low
;
6492 tmp_stats
[i
++] = stat_info
->sw_stat
.clubbed_frms_cnt
;
6493 tmp_stats
[i
++] = stat_info
->sw_stat
.sending_both
;
6494 tmp_stats
[i
++] = stat_info
->sw_stat
.outof_sequence_pkts
;
6495 tmp_stats
[i
++] = stat_info
->sw_stat
.flush_max_pkts
;
6496 if (stat_info
->sw_stat
.num_aggregations
) {
6497 u64 tmp
= stat_info
->sw_stat
.sum_avg_pkts_aggregated
;
6500 * Since 64-bit divide does not work on all platforms,
6501 * do repeated subtraction.
6503 while (tmp
>= stat_info
->sw_stat
.num_aggregations
) {
6504 tmp
-= stat_info
->sw_stat
.num_aggregations
;
6507 tmp_stats
[i
++] = count
;
6511 tmp_stats
[i
++] = stat_info
->sw_stat
.mem_alloc_fail_cnt
;
6512 tmp_stats
[i
++] = stat_info
->sw_stat
.pci_map_fail_cnt
;
6513 tmp_stats
[i
++] = stat_info
->sw_stat
.watchdog_timer_cnt
;
6514 tmp_stats
[i
++] = stat_info
->sw_stat
.mem_allocated
;
6515 tmp_stats
[i
++] = stat_info
->sw_stat
.mem_freed
;
6516 tmp_stats
[i
++] = stat_info
->sw_stat
.link_up_cnt
;
6517 tmp_stats
[i
++] = stat_info
->sw_stat
.link_down_cnt
;
6518 tmp_stats
[i
++] = stat_info
->sw_stat
.link_up_time
;
6519 tmp_stats
[i
++] = stat_info
->sw_stat
.link_down_time
;
6521 tmp_stats
[i
++] = stat_info
->sw_stat
.tx_buf_abort_cnt
;
6522 tmp_stats
[i
++] = stat_info
->sw_stat
.tx_desc_abort_cnt
;
6523 tmp_stats
[i
++] = stat_info
->sw_stat
.tx_parity_err_cnt
;
6524 tmp_stats
[i
++] = stat_info
->sw_stat
.tx_link_loss_cnt
;
6525 tmp_stats
[i
++] = stat_info
->sw_stat
.tx_list_proc_err_cnt
;
6527 tmp_stats
[i
++] = stat_info
->sw_stat
.rx_parity_err_cnt
;
6528 tmp_stats
[i
++] = stat_info
->sw_stat
.rx_abort_cnt
;
6529 tmp_stats
[i
++] = stat_info
->sw_stat
.rx_parity_abort_cnt
;
6530 tmp_stats
[i
++] = stat_info
->sw_stat
.rx_rda_fail_cnt
;
6531 tmp_stats
[i
++] = stat_info
->sw_stat
.rx_unkn_prot_cnt
;
6532 tmp_stats
[i
++] = stat_info
->sw_stat
.rx_fcs_err_cnt
;
6533 tmp_stats
[i
++] = stat_info
->sw_stat
.rx_buf_size_err_cnt
;
6534 tmp_stats
[i
++] = stat_info
->sw_stat
.rx_rxd_corrupt_cnt
;
6535 tmp_stats
[i
++] = stat_info
->sw_stat
.rx_unkn_err_cnt
;
6536 tmp_stats
[i
++] = stat_info
->sw_stat
.tda_err_cnt
;
6537 tmp_stats
[i
++] = stat_info
->sw_stat
.pfc_err_cnt
;
6538 tmp_stats
[i
++] = stat_info
->sw_stat
.pcc_err_cnt
;
6539 tmp_stats
[i
++] = stat_info
->sw_stat
.tti_err_cnt
;
6540 tmp_stats
[i
++] = stat_info
->sw_stat
.tpa_err_cnt
;
6541 tmp_stats
[i
++] = stat_info
->sw_stat
.sm_err_cnt
;
6542 tmp_stats
[i
++] = stat_info
->sw_stat
.lso_err_cnt
;
6543 tmp_stats
[i
++] = stat_info
->sw_stat
.mac_tmac_err_cnt
;
6544 tmp_stats
[i
++] = stat_info
->sw_stat
.mac_rmac_err_cnt
;
6545 tmp_stats
[i
++] = stat_info
->sw_stat
.xgxs_txgxs_err_cnt
;
6546 tmp_stats
[i
++] = stat_info
->sw_stat
.xgxs_rxgxs_err_cnt
;
6547 tmp_stats
[i
++] = stat_info
->sw_stat
.rc_err_cnt
;
6548 tmp_stats
[i
++] = stat_info
->sw_stat
.prc_pcix_err_cnt
;
6549 tmp_stats
[i
++] = stat_info
->sw_stat
.rpa_err_cnt
;
6550 tmp_stats
[i
++] = stat_info
->sw_stat
.rda_err_cnt
;
6551 tmp_stats
[i
++] = stat_info
->sw_stat
.rti_err_cnt
;
6552 tmp_stats
[i
++] = stat_info
->sw_stat
.mc_err_cnt
;
6555 static int s2io_ethtool_get_regs_len(struct net_device
*dev
)
6557 return (XENA_REG_SPACE
);
6561 static u32
s2io_ethtool_get_rx_csum(struct net_device
* dev
)
6563 struct s2io_nic
*sp
= dev
->priv
;
6565 return (sp
->rx_csum
);
6568 static int s2io_ethtool_set_rx_csum(struct net_device
*dev
, u32 data
)
6570 struct s2io_nic
*sp
= dev
->priv
;
6580 static int s2io_get_eeprom_len(struct net_device
*dev
)
6582 return (XENA_EEPROM_SPACE
);
6585 static int s2io_get_sset_count(struct net_device
*dev
, int sset
)
6587 struct s2io_nic
*sp
= dev
->priv
;
6591 return S2IO_TEST_LEN
;
6593 switch(sp
->device_type
) {
6594 case XFRAME_I_DEVICE
:
6595 return XFRAME_I_STAT_LEN
;
6596 case XFRAME_II_DEVICE
:
6597 return XFRAME_II_STAT_LEN
;
6606 static void s2io_ethtool_get_strings(struct net_device
*dev
,
6607 u32 stringset
, u8
* data
)
6610 struct s2io_nic
*sp
= dev
->priv
;
6612 switch (stringset
) {
6614 memcpy(data
, s2io_gstrings
, S2IO_STRINGS_LEN
);
6617 stat_size
= sizeof(ethtool_xena_stats_keys
);
6618 memcpy(data
, ðtool_xena_stats_keys
,stat_size
);
6619 if(sp
->device_type
== XFRAME_II_DEVICE
) {
6620 memcpy(data
+ stat_size
,
6621 ðtool_enhanced_stats_keys
,
6622 sizeof(ethtool_enhanced_stats_keys
));
6623 stat_size
+= sizeof(ethtool_enhanced_stats_keys
);
6626 memcpy(data
+ stat_size
, ðtool_driver_stats_keys
,
6627 sizeof(ethtool_driver_stats_keys
));
6631 static int s2io_ethtool_op_set_tx_csum(struct net_device
*dev
, u32 data
)
6634 dev
->features
|= NETIF_F_IP_CSUM
;
6636 dev
->features
&= ~NETIF_F_IP_CSUM
;
6641 static u32
s2io_ethtool_op_get_tso(struct net_device
*dev
)
6643 return (dev
->features
& NETIF_F_TSO
) != 0;
6645 static int s2io_ethtool_op_set_tso(struct net_device
*dev
, u32 data
)
6648 dev
->features
|= (NETIF_F_TSO
| NETIF_F_TSO6
);
6650 dev
->features
&= ~(NETIF_F_TSO
| NETIF_F_TSO6
);
6655 static const struct ethtool_ops netdev_ethtool_ops
= {
6656 .get_settings
= s2io_ethtool_gset
,
6657 .set_settings
= s2io_ethtool_sset
,
6658 .get_drvinfo
= s2io_ethtool_gdrvinfo
,
6659 .get_regs_len
= s2io_ethtool_get_regs_len
,
6660 .get_regs
= s2io_ethtool_gregs
,
6661 .get_link
= ethtool_op_get_link
,
6662 .get_eeprom_len
= s2io_get_eeprom_len
,
6663 .get_eeprom
= s2io_ethtool_geeprom
,
6664 .set_eeprom
= s2io_ethtool_seeprom
,
6665 .get_ringparam
= s2io_ethtool_gringparam
,
6666 .get_pauseparam
= s2io_ethtool_getpause_data
,
6667 .set_pauseparam
= s2io_ethtool_setpause_data
,
6668 .get_rx_csum
= s2io_ethtool_get_rx_csum
,
6669 .set_rx_csum
= s2io_ethtool_set_rx_csum
,
6670 .set_tx_csum
= s2io_ethtool_op_set_tx_csum
,
6671 .set_sg
= ethtool_op_set_sg
,
6672 .get_tso
= s2io_ethtool_op_get_tso
,
6673 .set_tso
= s2io_ethtool_op_set_tso
,
6674 .set_ufo
= ethtool_op_set_ufo
,
6675 .self_test
= s2io_ethtool_test
,
6676 .get_strings
= s2io_ethtool_get_strings
,
6677 .phys_id
= s2io_ethtool_idnic
,
6678 .get_ethtool_stats
= s2io_get_ethtool_stats
,
6679 .get_sset_count
= s2io_get_sset_count
,
6683 * s2io_ioctl - Entry point for the Ioctl
6684 * @dev : Device pointer.
6685 * @ifr : An IOCTL specefic structure, that can contain a pointer to
6686 * a proprietary structure used to pass information to the driver.
6687 * @cmd : This is used to distinguish between the different commands that
6688 * can be passed to the IOCTL functions.
6690 * Currently there are no special functionality supported in IOCTL, hence
6691 * function always return EOPNOTSUPPORTED
6694 static int s2io_ioctl(struct net_device
*dev
, struct ifreq
*rq
, int cmd
)
6700 * s2io_change_mtu - entry point to change MTU size for the device.
6701 * @dev : device pointer.
6702 * @new_mtu : the new MTU size for the device.
6703 * Description: A driver entry point to change MTU size for the device.
6704 * Before changing the MTU the device must be stopped.
6706 * 0 on success and an appropriate (-)ve integer as defined in errno.h
6710 static int s2io_change_mtu(struct net_device
*dev
, int new_mtu
)
6712 struct s2io_nic
*sp
= dev
->priv
;
6715 if ((new_mtu
< MIN_MTU
) || (new_mtu
> S2IO_JUMBO_SIZE
)) {
6716 DBG_PRINT(ERR_DBG
, "%s: MTU size is invalid.\n",
6722 if (netif_running(dev
)) {
6723 s2io_stop_all_tx_queue(sp
);
6725 ret
= s2io_card_up(sp
);
6727 DBG_PRINT(ERR_DBG
, "%s: Device bring up failed\n",
6731 s2io_wake_all_tx_queue(sp
);
6732 } else { /* Device is down */
6733 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
6734 u64 val64
= new_mtu
;
6736 writeq(vBIT(val64
, 2, 14), &bar0
->rmac_max_pyld_len
);
6743 * s2io_set_link - Set the LInk status
6744 * @data: long pointer to device private structue
6745 * Description: Sets the link status for the adapter
6748 static void s2io_set_link(struct work_struct
*work
)
6750 struct s2io_nic
*nic
= container_of(work
, struct s2io_nic
, set_link_task
);
6751 struct net_device
*dev
= nic
->dev
;
6752 struct XENA_dev_config __iomem
*bar0
= nic
->bar0
;
6758 if (!netif_running(dev
))
6761 if (test_and_set_bit(__S2IO_STATE_LINK_TASK
, &(nic
->state
))) {
6762 /* The card is being reset, no point doing anything */
6766 subid
= nic
->pdev
->subsystem_device
;
6767 if (s2io_link_fault_indication(nic
) == MAC_RMAC_ERR_TIMER
) {
6769 * Allow a small delay for the NICs self initiated
6770 * cleanup to complete.
6775 val64
= readq(&bar0
->adapter_status
);
6776 if (LINK_IS_UP(val64
)) {
6777 if (!(readq(&bar0
->adapter_control
) & ADAPTER_CNTL_EN
)) {
6778 if (verify_xena_quiescence(nic
)) {
6779 val64
= readq(&bar0
->adapter_control
);
6780 val64
|= ADAPTER_CNTL_EN
;
6781 writeq(val64
, &bar0
->adapter_control
);
6782 if (CARDS_WITH_FAULTY_LINK_INDICATORS(
6783 nic
->device_type
, subid
)) {
6784 val64
= readq(&bar0
->gpio_control
);
6785 val64
|= GPIO_CTRL_GPIO_0
;
6786 writeq(val64
, &bar0
->gpio_control
);
6787 val64
= readq(&bar0
->gpio_control
);
6789 val64
|= ADAPTER_LED_ON
;
6790 writeq(val64
, &bar0
->adapter_control
);
6792 nic
->device_enabled_once
= TRUE
;
6794 DBG_PRINT(ERR_DBG
, "%s: Error: ", dev
->name
);
6795 DBG_PRINT(ERR_DBG
, "device is not Quiescent\n");
6796 s2io_stop_all_tx_queue(nic
);
6799 val64
= readq(&bar0
->adapter_control
);
6800 val64
|= ADAPTER_LED_ON
;
6801 writeq(val64
, &bar0
->adapter_control
);
6802 s2io_link(nic
, LINK_UP
);
6804 if (CARDS_WITH_FAULTY_LINK_INDICATORS(nic
->device_type
,
6806 val64
= readq(&bar0
->gpio_control
);
6807 val64
&= ~GPIO_CTRL_GPIO_0
;
6808 writeq(val64
, &bar0
->gpio_control
);
6809 val64
= readq(&bar0
->gpio_control
);
6812 val64
= readq(&bar0
->adapter_control
);
6813 val64
= val64
&(~ADAPTER_LED_ON
);
6814 writeq(val64
, &bar0
->adapter_control
);
6815 s2io_link(nic
, LINK_DOWN
);
6817 clear_bit(__S2IO_STATE_LINK_TASK
, &(nic
->state
));
6823 static int set_rxd_buffer_pointer(struct s2io_nic
*sp
, struct RxD_t
*rxdp
,
6825 struct sk_buff
**skb
, u64
*temp0
, u64
*temp1
,
6826 u64
*temp2
, int size
)
6828 struct net_device
*dev
= sp
->dev
;
6829 struct swStat
*stats
= &sp
->mac_control
.stats_info
->sw_stat
;
6831 if ((sp
->rxd_mode
== RXD_MODE_1
) && (rxdp
->Host_Control
== 0)) {
6832 struct RxD1
*rxdp1
= (struct RxD1
*)rxdp
;
6835 DBG_PRINT(INFO_DBG
, "SKB is not NULL\n");
6837 * As Rx frame are not going to be processed,
6838 * using same mapped address for the Rxd
6841 rxdp1
->Buffer0_ptr
= *temp0
;
6843 *skb
= dev_alloc_skb(size
);
6845 DBG_PRINT(INFO_DBG
, "%s: Out of ", dev
->name
);
6846 DBG_PRINT(INFO_DBG
, "memory to allocate ");
6847 DBG_PRINT(INFO_DBG
, "1 buf mode SKBs\n");
6848 sp
->mac_control
.stats_info
->sw_stat
. \
6849 mem_alloc_fail_cnt
++;
6852 sp
->mac_control
.stats_info
->sw_stat
.mem_allocated
6853 += (*skb
)->truesize
;
6854 /* storing the mapped addr in a temp variable
6855 * such it will be used for next rxd whose
6856 * Host Control is NULL
6858 rxdp1
->Buffer0_ptr
= *temp0
=
6859 pci_map_single( sp
->pdev
, (*skb
)->data
,
6860 size
- NET_IP_ALIGN
,
6861 PCI_DMA_FROMDEVICE
);
6862 if (pci_dma_mapping_error(rxdp1
->Buffer0_ptr
))
6863 goto memalloc_failed
;
6864 rxdp
->Host_Control
= (unsigned long) (*skb
);
6866 } else if ((sp
->rxd_mode
== RXD_MODE_3B
) && (rxdp
->Host_Control
== 0)) {
6867 struct RxD3
*rxdp3
= (struct RxD3
*)rxdp
;
6868 /* Two buffer Mode */
6870 rxdp3
->Buffer2_ptr
= *temp2
;
6871 rxdp3
->Buffer0_ptr
= *temp0
;
6872 rxdp3
->Buffer1_ptr
= *temp1
;
6874 *skb
= dev_alloc_skb(size
);
6876 DBG_PRINT(INFO_DBG
, "%s: Out of ", dev
->name
);
6877 DBG_PRINT(INFO_DBG
, "memory to allocate ");
6878 DBG_PRINT(INFO_DBG
, "2 buf mode SKBs\n");
6879 sp
->mac_control
.stats_info
->sw_stat
. \
6880 mem_alloc_fail_cnt
++;
6883 sp
->mac_control
.stats_info
->sw_stat
.mem_allocated
6884 += (*skb
)->truesize
;
6885 rxdp3
->Buffer2_ptr
= *temp2
=
6886 pci_map_single(sp
->pdev
, (*skb
)->data
,
6888 PCI_DMA_FROMDEVICE
);
6889 if (pci_dma_mapping_error(rxdp3
->Buffer2_ptr
))
6890 goto memalloc_failed
;
6891 rxdp3
->Buffer0_ptr
= *temp0
=
6892 pci_map_single( sp
->pdev
, ba
->ba_0
, BUF0_LEN
,
6893 PCI_DMA_FROMDEVICE
);
6894 if (pci_dma_mapping_error(rxdp3
->Buffer0_ptr
)) {
6895 pci_unmap_single (sp
->pdev
,
6896 (dma_addr_t
)rxdp3
->Buffer2_ptr
,
6897 dev
->mtu
+ 4, PCI_DMA_FROMDEVICE
);
6898 goto memalloc_failed
;
6900 rxdp
->Host_Control
= (unsigned long) (*skb
);
6902 /* Buffer-1 will be dummy buffer not used */
6903 rxdp3
->Buffer1_ptr
= *temp1
=
6904 pci_map_single(sp
->pdev
, ba
->ba_1
, BUF1_LEN
,
6905 PCI_DMA_FROMDEVICE
);
6906 if (pci_dma_mapping_error(rxdp3
->Buffer1_ptr
)) {
6907 pci_unmap_single (sp
->pdev
,
6908 (dma_addr_t
)rxdp3
->Buffer0_ptr
,
6909 BUF0_LEN
, PCI_DMA_FROMDEVICE
);
6910 pci_unmap_single (sp
->pdev
,
6911 (dma_addr_t
)rxdp3
->Buffer2_ptr
,
6912 dev
->mtu
+ 4, PCI_DMA_FROMDEVICE
);
6913 goto memalloc_failed
;
6919 stats
->pci_map_fail_cnt
++;
6920 stats
->mem_freed
+= (*skb
)->truesize
;
6921 dev_kfree_skb(*skb
);
6925 static void set_rxd_buffer_size(struct s2io_nic
*sp
, struct RxD_t
*rxdp
,
6928 struct net_device
*dev
= sp
->dev
;
6929 if (sp
->rxd_mode
== RXD_MODE_1
) {
6930 rxdp
->Control_2
= SET_BUFFER0_SIZE_1( size
- NET_IP_ALIGN
);
6931 } else if (sp
->rxd_mode
== RXD_MODE_3B
) {
6932 rxdp
->Control_2
= SET_BUFFER0_SIZE_3(BUF0_LEN
);
6933 rxdp
->Control_2
|= SET_BUFFER1_SIZE_3(1);
6934 rxdp
->Control_2
|= SET_BUFFER2_SIZE_3( dev
->mtu
+ 4);
6938 static int rxd_owner_bit_reset(struct s2io_nic
*sp
)
6940 int i
, j
, k
, blk_cnt
= 0, size
;
6941 struct mac_info
* mac_control
= &sp
->mac_control
;
6942 struct config_param
*config
= &sp
->config
;
6943 struct net_device
*dev
= sp
->dev
;
6944 struct RxD_t
*rxdp
= NULL
;
6945 struct sk_buff
*skb
= NULL
;
6946 struct buffAdd
*ba
= NULL
;
6947 u64 temp0_64
= 0, temp1_64
= 0, temp2_64
= 0;
6949 /* Calculate the size based on ring mode */
6950 size
= dev
->mtu
+ HEADER_ETHERNET_II_802_3_SIZE
+
6951 HEADER_802_2_SIZE
+ HEADER_SNAP_SIZE
;
6952 if (sp
->rxd_mode
== RXD_MODE_1
)
6953 size
+= NET_IP_ALIGN
;
6954 else if (sp
->rxd_mode
== RXD_MODE_3B
)
6955 size
= dev
->mtu
+ ALIGN_SIZE
+ BUF0_LEN
+ 4;
6957 for (i
= 0; i
< config
->rx_ring_num
; i
++) {
6958 blk_cnt
= config
->rx_cfg
[i
].num_rxd
/
6959 (rxd_count
[sp
->rxd_mode
] +1);
6961 for (j
= 0; j
< blk_cnt
; j
++) {
6962 for (k
= 0; k
< rxd_count
[sp
->rxd_mode
]; k
++) {
6963 rxdp
= mac_control
->rings
[i
].
6964 rx_blocks
[j
].rxds
[k
].virt_addr
;
6965 if(sp
->rxd_mode
== RXD_MODE_3B
)
6966 ba
= &mac_control
->rings
[i
].ba
[j
][k
];
6967 if (set_rxd_buffer_pointer(sp
, rxdp
, ba
,
6968 &skb
,(u64
*)&temp0_64
,
6975 set_rxd_buffer_size(sp
, rxdp
, size
);
6977 /* flip the Ownership bit to Hardware */
6978 rxdp
->Control_1
|= RXD_OWN_XENA
;
6986 static int s2io_add_isr(struct s2io_nic
* sp
)
6989 struct net_device
*dev
= sp
->dev
;
6992 if (sp
->config
.intr_type
== MSI_X
)
6993 ret
= s2io_enable_msi_x(sp
);
6995 DBG_PRINT(ERR_DBG
, "%s: Defaulting to INTA\n", dev
->name
);
6996 sp
->config
.intr_type
= INTA
;
6999 /* Store the values of the MSIX table in the struct s2io_nic structure */
7000 store_xmsi_data(sp
);
7002 /* After proper initialization of H/W, register ISR */
7003 if (sp
->config
.intr_type
== MSI_X
) {
7004 int i
, msix_rx_cnt
= 0;
7006 for (i
= 0; i
< sp
->num_entries
; i
++) {
7007 if (sp
->s2io_entries
[i
].in_use
== MSIX_FLG
) {
7008 if (sp
->s2io_entries
[i
].type
==
7010 sprintf(sp
->desc
[i
], "%s:MSI-X-%d-RX",
7012 err
= request_irq(sp
->entries
[i
].vector
,
7013 s2io_msix_ring_handle
, 0,
7015 sp
->s2io_entries
[i
].arg
);
7016 } else if (sp
->s2io_entries
[i
].type
==
7018 sprintf(sp
->desc
[i
], "%s:MSI-X-%d-TX",
7020 err
= request_irq(sp
->entries
[i
].vector
,
7021 s2io_msix_fifo_handle
, 0,
7023 sp
->s2io_entries
[i
].arg
);
7026 /* if either data or addr is zero print it. */
7027 if (!(sp
->msix_info
[i
].addr
&&
7028 sp
->msix_info
[i
].data
)) {
7030 "%s @Addr:0x%llx Data:0x%llx\n",
7032 (unsigned long long)
7033 sp
->msix_info
[i
].addr
,
7034 (unsigned long long)
7035 ntohl(sp
->msix_info
[i
].data
));
7039 remove_msix_isr(sp
);
7042 "%s:MSI-X-%d registration "
7043 "failed\n", dev
->name
, i
);
7046 "%s: Defaulting to INTA\n",
7048 sp
->config
.intr_type
= INTA
;
7051 sp
->s2io_entries
[i
].in_use
=
7052 MSIX_REGISTERED_SUCCESS
;
7056 printk(KERN_INFO
"MSI-X-RX %d entries enabled\n",
7058 DBG_PRINT(INFO_DBG
, "MSI-X-TX entries enabled"
7059 " through alarm vector\n");
7062 if (sp
->config
.intr_type
== INTA
) {
7063 err
= request_irq((int) sp
->pdev
->irq
, s2io_isr
, IRQF_SHARED
,
7066 DBG_PRINT(ERR_DBG
, "%s: ISR registration failed\n",
7073 static void s2io_rem_isr(struct s2io_nic
* sp
)
7075 if (sp
->config
.intr_type
== MSI_X
)
7076 remove_msix_isr(sp
);
7078 remove_inta_isr(sp
);
7081 static void do_s2io_card_down(struct s2io_nic
* sp
, int do_io
)
7084 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
7085 register u64 val64
= 0;
7086 struct config_param
*config
;
7087 config
= &sp
->config
;
7089 if (!is_s2io_card_up(sp
))
7092 del_timer_sync(&sp
->alarm_timer
);
7093 /* If s2io_set_link task is executing, wait till it completes. */
7094 while (test_and_set_bit(__S2IO_STATE_LINK_TASK
, &(sp
->state
))) {
7097 clear_bit(__S2IO_STATE_CARD_UP
, &sp
->state
);
7100 if (sp
->config
.napi
) {
7102 if (config
->intr_type
== MSI_X
) {
7103 for (; off
< sp
->config
.rx_ring_num
; off
++)
7104 napi_disable(&sp
->mac_control
.rings
[off
].napi
);
7107 napi_disable(&sp
->napi
);
7110 /* disable Tx and Rx traffic on the NIC */
7116 /* stop the tx queue, indicate link down */
7117 s2io_link(sp
, LINK_DOWN
);
7119 /* Check if the device is Quiescent and then Reset the NIC */
7121 /* As per the HW requirement we need to replenish the
7122 * receive buffer to avoid the ring bump. Since there is
7123 * no intention of processing the Rx frame at this pointwe are
7124 * just settting the ownership bit of rxd in Each Rx
7125 * ring to HW and set the appropriate buffer size
7126 * based on the ring mode
7128 rxd_owner_bit_reset(sp
);
7130 val64
= readq(&bar0
->adapter_status
);
7131 if (verify_xena_quiescence(sp
)) {
7132 if(verify_pcc_quiescent(sp
, sp
->device_enabled_once
))
7140 "s2io_close:Device not Quiescent ");
7141 DBG_PRINT(ERR_DBG
, "adaper status reads 0x%llx\n",
7142 (unsigned long long) val64
);
7149 /* Free all Tx buffers */
7150 free_tx_buffers(sp
);
7152 /* Free all Rx buffers */
7153 free_rx_buffers(sp
);
7155 clear_bit(__S2IO_STATE_LINK_TASK
, &(sp
->state
));
7158 static void s2io_card_down(struct s2io_nic
* sp
)
7160 do_s2io_card_down(sp
, 1);
7163 static int s2io_card_up(struct s2io_nic
* sp
)
7166 struct mac_info
*mac_control
;
7167 struct config_param
*config
;
7168 struct net_device
*dev
= (struct net_device
*) sp
->dev
;
7171 /* Initialize the H/W I/O registers */
7174 DBG_PRINT(ERR_DBG
, "%s: H/W initialization failed\n",
7182 * Initializing the Rx buffers. For now we are considering only 1
7183 * Rx ring and initializing buffers into 30 Rx blocks
7185 mac_control
= &sp
->mac_control
;
7186 config
= &sp
->config
;
7188 for (i
= 0; i
< config
->rx_ring_num
; i
++) {
7189 mac_control
->rings
[i
].mtu
= dev
->mtu
;
7190 ret
= fill_rx_buffers(&mac_control
->rings
[i
], 1);
7192 DBG_PRINT(ERR_DBG
, "%s: Out of memory in Open\n",
7195 free_rx_buffers(sp
);
7198 DBG_PRINT(INFO_DBG
, "Buf in ring:%d is %d:\n", i
,
7199 mac_control
->rings
[i
].rx_bufs_left
);
7202 /* Initialise napi */
7205 if (config
->intr_type
== MSI_X
) {
7206 for (i
= 0; i
< sp
->config
.rx_ring_num
; i
++)
7207 napi_enable(&sp
->mac_control
.rings
[i
].napi
);
7209 napi_enable(&sp
->napi
);
7213 /* Maintain the state prior to the open */
7214 if (sp
->promisc_flg
)
7215 sp
->promisc_flg
= 0;
7216 if (sp
->m_cast_flg
) {
7218 sp
->all_multi_pos
= 0;
7221 /* Setting its receive mode */
7222 s2io_set_multicast(dev
);
7225 /* Initialize max aggregatable pkts per session based on MTU */
7226 sp
->lro_max_aggr_per_sess
= ((1<<16) - 1) / dev
->mtu
;
7227 /* Check if we can use(if specified) user provided value */
7228 if (lro_max_pkts
< sp
->lro_max_aggr_per_sess
)
7229 sp
->lro_max_aggr_per_sess
= lro_max_pkts
;
7232 /* Enable Rx Traffic and interrupts on the NIC */
7233 if (start_nic(sp
)) {
7234 DBG_PRINT(ERR_DBG
, "%s: Starting NIC failed\n", dev
->name
);
7236 free_rx_buffers(sp
);
7240 /* Add interrupt service routine */
7241 if (s2io_add_isr(sp
) != 0) {
7242 if (sp
->config
.intr_type
== MSI_X
)
7245 free_rx_buffers(sp
);
7249 S2IO_TIMER_CONF(sp
->alarm_timer
, s2io_alarm_handle
, sp
, (HZ
/2));
7251 set_bit(__S2IO_STATE_CARD_UP
, &sp
->state
);
7253 /* Enable select interrupts */
7254 en_dis_err_alarms(sp
, ENA_ALL_INTRS
, ENABLE_INTRS
);
7255 if (sp
->config
.intr_type
!= INTA
) {
7256 interruptible
= TX_TRAFFIC_INTR
| TX_PIC_INTR
;
7257 en_dis_able_nic_intrs(sp
, interruptible
, ENABLE_INTRS
);
7259 interruptible
= TX_TRAFFIC_INTR
| RX_TRAFFIC_INTR
;
7260 interruptible
|= TX_PIC_INTR
;
7261 en_dis_able_nic_intrs(sp
, interruptible
, ENABLE_INTRS
);
7268 * s2io_restart_nic - Resets the NIC.
7269 * @data : long pointer to the device private structure
7271 * This function is scheduled to be run by the s2io_tx_watchdog
7272 * function after 0.5 secs to reset the NIC. The idea is to reduce
7273 * the run time of the watch dog routine which is run holding a
7277 static void s2io_restart_nic(struct work_struct
*work
)
7279 struct s2io_nic
*sp
= container_of(work
, struct s2io_nic
, rst_timer_task
);
7280 struct net_device
*dev
= sp
->dev
;
7284 if (!netif_running(dev
))
7288 if (s2io_card_up(sp
)) {
7289 DBG_PRINT(ERR_DBG
, "%s: Device bring up failed\n",
7292 s2io_wake_all_tx_queue(sp
);
7293 DBG_PRINT(ERR_DBG
, "%s: was reset by Tx watchdog timer\n",
7300 * s2io_tx_watchdog - Watchdog for transmit side.
7301 * @dev : Pointer to net device structure
7303 * This function is triggered if the Tx Queue is stopped
7304 * for a pre-defined amount of time when the Interface is still up.
7305 * If the Interface is jammed in such a situation, the hardware is
7306 * reset (by s2io_close) and restarted again (by s2io_open) to
7307 * overcome any problem that might have been caused in the hardware.
7312 static void s2io_tx_watchdog(struct net_device
*dev
)
7314 struct s2io_nic
*sp
= dev
->priv
;
7316 if (netif_carrier_ok(dev
)) {
7317 sp
->mac_control
.stats_info
->sw_stat
.watchdog_timer_cnt
++;
7318 schedule_work(&sp
->rst_timer_task
);
7319 sp
->mac_control
.stats_info
->sw_stat
.soft_reset_cnt
++;
7324 * rx_osm_handler - To perform some OS related operations on SKB.
7325 * @sp: private member of the device structure,pointer to s2io_nic structure.
7326 * @skb : the socket buffer pointer.
7327 * @len : length of the packet
7328 * @cksum : FCS checksum of the frame.
7329 * @ring_no : the ring from which this RxD was extracted.
7331 * This function is called by the Rx interrupt serivce routine to perform
7332 * some OS related operations on the SKB before passing it to the upper
7333 * layers. It mainly checks if the checksum is OK, if so adds it to the
7334 * SKBs cksum variable, increments the Rx packet count and passes the SKB
7335 * to the upper layer. If the checksum is wrong, it increments the Rx
7336 * packet error count, frees the SKB and returns error.
7338 * SUCCESS on success and -1 on failure.
7340 static int rx_osm_handler(struct ring_info
*ring_data
, struct RxD_t
* rxdp
)
7342 struct s2io_nic
*sp
= ring_data
->nic
;
7343 struct net_device
*dev
= (struct net_device
*) ring_data
->dev
;
7344 struct sk_buff
*skb
= (struct sk_buff
*)
7345 ((unsigned long) rxdp
->Host_Control
);
7346 int ring_no
= ring_data
->ring_no
;
7347 u16 l3_csum
, l4_csum
;
7348 unsigned long long err
= rxdp
->Control_1
& RXD_T_CODE
;
7355 /* Check for parity error */
7357 sp
->mac_control
.stats_info
->sw_stat
.parity_err_cnt
++;
7359 err_mask
= err
>> 48;
7362 sp
->mac_control
.stats_info
->sw_stat
.
7363 rx_parity_err_cnt
++;
7367 sp
->mac_control
.stats_info
->sw_stat
.
7372 sp
->mac_control
.stats_info
->sw_stat
.
7373 rx_parity_abort_cnt
++;
7377 sp
->mac_control
.stats_info
->sw_stat
.
7382 sp
->mac_control
.stats_info
->sw_stat
.
7387 sp
->mac_control
.stats_info
->sw_stat
.
7392 sp
->mac_control
.stats_info
->sw_stat
.
7393 rx_buf_size_err_cnt
++;
7397 sp
->mac_control
.stats_info
->sw_stat
.
7398 rx_rxd_corrupt_cnt
++;
7402 sp
->mac_control
.stats_info
->sw_stat
.
7407 * Drop the packet if bad transfer code. Exception being
7408 * 0x5, which could be due to unsupported IPv6 extension header.
7409 * In this case, we let stack handle the packet.
7410 * Note that in this case, since checksum will be incorrect,
7411 * stack will validate the same.
7413 if (err_mask
!= 0x5) {
7414 DBG_PRINT(ERR_DBG
, "%s: Rx error Value: 0x%x\n",
7415 dev
->name
, err_mask
);
7416 sp
->stats
.rx_crc_errors
++;
7417 sp
->mac_control
.stats_info
->sw_stat
.mem_freed
7420 ring_data
->rx_bufs_left
-= 1;
7421 rxdp
->Host_Control
= 0;
7426 /* Updating statistics */
7427 ring_data
->rx_packets
++;
7428 rxdp
->Host_Control
= 0;
7429 if (sp
->rxd_mode
== RXD_MODE_1
) {
7430 int len
= RXD_GET_BUFFER0_SIZE_1(rxdp
->Control_2
);
7432 ring_data
->rx_bytes
+= len
;
7435 } else if (sp
->rxd_mode
== RXD_MODE_3B
) {
7436 int get_block
= ring_data
->rx_curr_get_info
.block_index
;
7437 int get_off
= ring_data
->rx_curr_get_info
.offset
;
7438 int buf0_len
= RXD_GET_BUFFER0_SIZE_3(rxdp
->Control_2
);
7439 int buf2_len
= RXD_GET_BUFFER2_SIZE_3(rxdp
->Control_2
);
7440 unsigned char *buff
= skb_push(skb
, buf0_len
);
7442 struct buffAdd
*ba
= &ring_data
->ba
[get_block
][get_off
];
7443 ring_data
->rx_bytes
+= buf0_len
+ buf2_len
;
7444 memcpy(buff
, ba
->ba_0
, buf0_len
);
7445 skb_put(skb
, buf2_len
);
7448 if ((rxdp
->Control_1
& TCP_OR_UDP_FRAME
) && ((!ring_data
->lro
) ||
7449 (ring_data
->lro
&& (!(rxdp
->Control_1
& RXD_FRAME_IP_FRAG
)))) &&
7451 l3_csum
= RXD_GET_L3_CKSUM(rxdp
->Control_1
);
7452 l4_csum
= RXD_GET_L4_CKSUM(rxdp
->Control_1
);
7453 if ((l3_csum
== L3_CKSUM_OK
) && (l4_csum
== L4_CKSUM_OK
)) {
7455 * NIC verifies if the Checksum of the received
7456 * frame is Ok or not and accordingly returns
7457 * a flag in the RxD.
7459 skb
->ip_summed
= CHECKSUM_UNNECESSARY
;
7460 if (ring_data
->lro
) {
7465 ret
= s2io_club_tcp_session(ring_data
,
7466 skb
->data
, &tcp
, &tcp_len
, &lro
,
7469 case 3: /* Begin anew */
7472 case 1: /* Aggregate */
7474 lro_append_pkt(sp
, lro
,
7478 case 4: /* Flush session */
7480 lro_append_pkt(sp
, lro
,
7482 queue_rx_frame(lro
->parent
,
7484 clear_lro_session(lro
);
7485 sp
->mac_control
.stats_info
->
7486 sw_stat
.flush_max_pkts
++;
7489 case 2: /* Flush both */
7490 lro
->parent
->data_len
=
7492 sp
->mac_control
.stats_info
->
7493 sw_stat
.sending_both
++;
7494 queue_rx_frame(lro
->parent
,
7496 clear_lro_session(lro
);
7498 case 0: /* sessions exceeded */
7499 case -1: /* non-TCP or not
7503 * First pkt in session not
7504 * L3/L4 aggregatable
7509 "%s: Samadhana!!\n",
7516 * Packet with erroneous checksum, let the
7517 * upper layers deal with it.
7519 skb
->ip_summed
= CHECKSUM_NONE
;
7522 skb
->ip_summed
= CHECKSUM_NONE
;
7524 sp
->mac_control
.stats_info
->sw_stat
.mem_freed
+= skb
->truesize
;
7526 queue_rx_frame(skb
, RXD_GET_VLAN_TAG(rxdp
->Control_2
));
7527 dev
->last_rx
= jiffies
;
7529 sp
->mac_control
.rings
[ring_no
].rx_bufs_left
-= 1;
7534 * s2io_link - stops/starts the Tx queue.
7535 * @sp : private member of the device structure, which is a pointer to the
7536 * s2io_nic structure.
7537 * @link : inidicates whether link is UP/DOWN.
7539 * This function stops/starts the Tx queue depending on whether the link
7540 * status of the NIC is is down or up. This is called by the Alarm
7541 * interrupt handler whenever a link change interrupt comes up.
7546 static void s2io_link(struct s2io_nic
* sp
, int link
)
7548 struct net_device
*dev
= (struct net_device
*) sp
->dev
;
7550 if (link
!= sp
->last_link_state
) {
7552 if (link
== LINK_DOWN
) {
7553 DBG_PRINT(ERR_DBG
, "%s: Link down\n", dev
->name
);
7554 s2io_stop_all_tx_queue(sp
);
7555 netif_carrier_off(dev
);
7556 if(sp
->mac_control
.stats_info
->sw_stat
.link_up_cnt
)
7557 sp
->mac_control
.stats_info
->sw_stat
.link_up_time
=
7558 jiffies
- sp
->start_time
;
7559 sp
->mac_control
.stats_info
->sw_stat
.link_down_cnt
++;
7561 DBG_PRINT(ERR_DBG
, "%s: Link Up\n", dev
->name
);
7562 if (sp
->mac_control
.stats_info
->sw_stat
.link_down_cnt
)
7563 sp
->mac_control
.stats_info
->sw_stat
.link_down_time
=
7564 jiffies
- sp
->start_time
;
7565 sp
->mac_control
.stats_info
->sw_stat
.link_up_cnt
++;
7566 netif_carrier_on(dev
);
7567 s2io_wake_all_tx_queue(sp
);
7570 sp
->last_link_state
= link
;
7571 sp
->start_time
= jiffies
;
7575 * s2io_init_pci -Initialization of PCI and PCI-X configuration registers .
7576 * @sp : private member of the device structure, which is a pointer to the
7577 * s2io_nic structure.
7579 * This function initializes a few of the PCI and PCI-X configuration registers
7580 * with recommended values.
7585 static void s2io_init_pci(struct s2io_nic
* sp
)
7587 u16 pci_cmd
= 0, pcix_cmd
= 0;
7589 /* Enable Data Parity Error Recovery in PCI-X command register. */
7590 pci_read_config_word(sp
->pdev
, PCIX_COMMAND_REGISTER
,
7592 pci_write_config_word(sp
->pdev
, PCIX_COMMAND_REGISTER
,
7594 pci_read_config_word(sp
->pdev
, PCIX_COMMAND_REGISTER
,
7597 /* Set the PErr Response bit in PCI command register. */
7598 pci_read_config_word(sp
->pdev
, PCI_COMMAND
, &pci_cmd
);
7599 pci_write_config_word(sp
->pdev
, PCI_COMMAND
,
7600 (pci_cmd
| PCI_COMMAND_PARITY
));
7601 pci_read_config_word(sp
->pdev
, PCI_COMMAND
, &pci_cmd
);
7604 static int s2io_verify_parm(struct pci_dev
*pdev
, u8
*dev_intr_type
,
7607 if ((tx_fifo_num
> MAX_TX_FIFOS
) ||
7608 (tx_fifo_num
< 1)) {
7609 DBG_PRINT(ERR_DBG
, "s2io: Requested number of tx fifos "
7610 "(%d) not supported\n", tx_fifo_num
);
7612 if (tx_fifo_num
< 1)
7615 tx_fifo_num
= MAX_TX_FIFOS
;
7617 DBG_PRINT(ERR_DBG
, "s2io: Default to %d ", tx_fifo_num
);
7618 DBG_PRINT(ERR_DBG
, "tx fifos\n");
7622 *dev_multiq
= multiq
;
7624 if (tx_steering_type
&& (1 == tx_fifo_num
)) {
7625 if (tx_steering_type
!= TX_DEFAULT_STEERING
)
7627 "s2io: Tx steering is not supported with "
7628 "one fifo. Disabling Tx steering.\n");
7629 tx_steering_type
= NO_STEERING
;
7632 if ((tx_steering_type
< NO_STEERING
) ||
7633 (tx_steering_type
> TX_DEFAULT_STEERING
)) {
7634 DBG_PRINT(ERR_DBG
, "s2io: Requested transmit steering not "
7636 DBG_PRINT(ERR_DBG
, "s2io: Disabling transmit steering\n");
7637 tx_steering_type
= NO_STEERING
;
7640 if (rx_ring_num
> MAX_RX_RINGS
) {
7641 DBG_PRINT(ERR_DBG
, "s2io: Requested number of rx rings not "
7643 DBG_PRINT(ERR_DBG
, "s2io: Default to %d rx rings\n",
7645 rx_ring_num
= MAX_RX_RINGS
;
7648 if ((*dev_intr_type
!= INTA
) && (*dev_intr_type
!= MSI_X
)) {
7649 DBG_PRINT(ERR_DBG
, "s2io: Wrong intr_type requested. "
7650 "Defaulting to INTA\n");
7651 *dev_intr_type
= INTA
;
7654 if ((*dev_intr_type
== MSI_X
) &&
7655 ((pdev
->device
!= PCI_DEVICE_ID_HERC_WIN
) &&
7656 (pdev
->device
!= PCI_DEVICE_ID_HERC_UNI
))) {
7657 DBG_PRINT(ERR_DBG
, "s2io: Xframe I does not support MSI_X. "
7658 "Defaulting to INTA\n");
7659 *dev_intr_type
= INTA
;
7662 if ((rx_ring_mode
!= 1) && (rx_ring_mode
!= 2)) {
7663 DBG_PRINT(ERR_DBG
, "s2io: Requested ring mode not supported\n");
7664 DBG_PRINT(ERR_DBG
, "s2io: Defaulting to 1-buffer mode\n");
7671 * rts_ds_steer - Receive traffic steering based on IPv4 or IPv6 TOS
7672 * or Traffic class respectively.
7673 * @nic: device private variable
7674 * Description: The function configures the receive steering to
7675 * desired receive ring.
7676 * Return Value: SUCCESS on success and
7677 * '-1' on failure (endian settings incorrect).
7679 static int rts_ds_steer(struct s2io_nic
*nic
, u8 ds_codepoint
, u8 ring
)
7681 struct XENA_dev_config __iomem
*bar0
= nic
->bar0
;
7682 register u64 val64
= 0;
7684 if (ds_codepoint
> 63)
7687 val64
= RTS_DS_MEM_DATA(ring
);
7688 writeq(val64
, &bar0
->rts_ds_mem_data
);
7690 val64
= RTS_DS_MEM_CTRL_WE
|
7691 RTS_DS_MEM_CTRL_STROBE_NEW_CMD
|
7692 RTS_DS_MEM_CTRL_OFFSET(ds_codepoint
);
7694 writeq(val64
, &bar0
->rts_ds_mem_ctrl
);
7696 return wait_for_cmd_complete(&bar0
->rts_ds_mem_ctrl
,
7697 RTS_DS_MEM_CTRL_STROBE_CMD_BEING_EXECUTED
,
7702 * s2io_init_nic - Initialization of the adapter .
7703 * @pdev : structure containing the PCI related information of the device.
7704 * @pre: List of PCI devices supported by the driver listed in s2io_tbl.
7706 * The function initializes an adapter identified by the pci_dec structure.
7707 * All OS related initialization including memory and device structure and
7708 * initlaization of the device private variable is done. Also the swapper
7709 * control register is initialized to enable read and write into the I/O
7710 * registers of the device.
7712 * returns 0 on success and negative on failure.
7715 static int __devinit
7716 s2io_init_nic(struct pci_dev
*pdev
, const struct pci_device_id
*pre
)
7718 struct s2io_nic
*sp
;
7719 struct net_device
*dev
;
7721 int dma_flag
= FALSE
;
7722 u32 mac_up
, mac_down
;
7723 u64 val64
= 0, tmp64
= 0;
7724 struct XENA_dev_config __iomem
*bar0
= NULL
;
7726 struct mac_info
*mac_control
;
7727 struct config_param
*config
;
7729 u8 dev_intr_type
= intr_type
;
7731 DECLARE_MAC_BUF(mac
);
7733 ret
= s2io_verify_parm(pdev
, &dev_intr_type
, &dev_multiq
);
7737 if ((ret
= pci_enable_device(pdev
))) {
7739 "s2io_init_nic: pci_enable_device failed\n");
7743 if (!pci_set_dma_mask(pdev
, DMA_64BIT_MASK
)) {
7744 DBG_PRINT(INIT_DBG
, "s2io_init_nic: Using 64bit DMA\n");
7746 if (pci_set_consistent_dma_mask
7747 (pdev
, DMA_64BIT_MASK
)) {
7749 "Unable to obtain 64bit DMA for \
7750 consistent allocations\n");
7751 pci_disable_device(pdev
);
7754 } else if (!pci_set_dma_mask(pdev
, DMA_32BIT_MASK
)) {
7755 DBG_PRINT(INIT_DBG
, "s2io_init_nic: Using 32bit DMA\n");
7757 pci_disable_device(pdev
);
7760 if ((ret
= pci_request_regions(pdev
, s2io_driver_name
))) {
7761 DBG_PRINT(ERR_DBG
, "%s: Request Regions failed - %x \n", __FUNCTION__
, ret
);
7762 pci_disable_device(pdev
);
7766 dev
= alloc_etherdev_mq(sizeof(struct s2io_nic
), tx_fifo_num
);
7768 dev
= alloc_etherdev(sizeof(struct s2io_nic
));
7770 DBG_PRINT(ERR_DBG
, "Device allocation failed\n");
7771 pci_disable_device(pdev
);
7772 pci_release_regions(pdev
);
7776 pci_set_master(pdev
);
7777 pci_set_drvdata(pdev
, dev
);
7778 SET_NETDEV_DEV(dev
, &pdev
->dev
);
7780 /* Private member variable initialized to s2io NIC structure */
7782 memset(sp
, 0, sizeof(struct s2io_nic
));
7785 sp
->high_dma_flag
= dma_flag
;
7786 sp
->device_enabled_once
= FALSE
;
7787 if (rx_ring_mode
== 1)
7788 sp
->rxd_mode
= RXD_MODE_1
;
7789 if (rx_ring_mode
== 2)
7790 sp
->rxd_mode
= RXD_MODE_3B
;
7792 sp
->config
.intr_type
= dev_intr_type
;
7794 if ((pdev
->device
== PCI_DEVICE_ID_HERC_WIN
) ||
7795 (pdev
->device
== PCI_DEVICE_ID_HERC_UNI
))
7796 sp
->device_type
= XFRAME_II_DEVICE
;
7798 sp
->device_type
= XFRAME_I_DEVICE
;
7800 sp
->lro
= lro_enable
;
7802 /* Initialize some PCI/PCI-X fields of the NIC. */
7806 * Setting the device configuration parameters.
7807 * Most of these parameters can be specified by the user during
7808 * module insertion as they are module loadable parameters. If
7809 * these parameters are not not specified during load time, they
7810 * are initialized with default values.
7812 mac_control
= &sp
->mac_control
;
7813 config
= &sp
->config
;
7815 config
->napi
= napi
;
7816 config
->tx_steering_type
= tx_steering_type
;
7818 /* Tx side parameters. */
7819 if (config
->tx_steering_type
== TX_PRIORITY_STEERING
)
7820 config
->tx_fifo_num
= MAX_TX_FIFOS
;
7822 config
->tx_fifo_num
= tx_fifo_num
;
7824 /* Initialize the fifos used for tx steering */
7825 if (config
->tx_fifo_num
< 5) {
7826 if (config
->tx_fifo_num
== 1)
7827 sp
->total_tcp_fifos
= 1;
7829 sp
->total_tcp_fifos
= config
->tx_fifo_num
- 1;
7830 sp
->udp_fifo_idx
= config
->tx_fifo_num
- 1;
7831 sp
->total_udp_fifos
= 1;
7832 sp
->other_fifo_idx
= sp
->total_tcp_fifos
- 1;
7834 sp
->total_tcp_fifos
= (tx_fifo_num
- FIFO_UDP_MAX_NUM
-
7835 FIFO_OTHER_MAX_NUM
);
7836 sp
->udp_fifo_idx
= sp
->total_tcp_fifos
;
7837 sp
->total_udp_fifos
= FIFO_UDP_MAX_NUM
;
7838 sp
->other_fifo_idx
= sp
->udp_fifo_idx
+ FIFO_UDP_MAX_NUM
;
7841 config
->multiq
= dev_multiq
;
7842 for (i
= 0; i
< config
->tx_fifo_num
; i
++) {
7843 config
->tx_cfg
[i
].fifo_len
= tx_fifo_len
[i
];
7844 config
->tx_cfg
[i
].fifo_priority
= i
;
7847 /* mapping the QoS priority to the configured fifos */
7848 for (i
= 0; i
< MAX_TX_FIFOS
; i
++)
7849 config
->fifo_mapping
[i
] = fifo_map
[config
->tx_fifo_num
- 1][i
];
7851 /* map the hashing selector table to the configured fifos */
7852 for (i
= 0; i
< config
->tx_fifo_num
; i
++)
7853 sp
->fifo_selector
[i
] = fifo_selector
[i
];
7856 config
->tx_intr_type
= TXD_INT_TYPE_UTILZ
;
7857 for (i
= 0; i
< config
->tx_fifo_num
; i
++) {
7858 config
->tx_cfg
[i
].f_no_snoop
=
7859 (NO_SNOOP_TXD
| NO_SNOOP_TXD_BUFFER
);
7860 if (config
->tx_cfg
[i
].fifo_len
< 65) {
7861 config
->tx_intr_type
= TXD_INT_TYPE_PER_LIST
;
7865 /* + 2 because one Txd for skb->data and one Txd for UFO */
7866 config
->max_txds
= MAX_SKB_FRAGS
+ 2;
7868 /* Rx side parameters. */
7869 config
->rx_ring_num
= rx_ring_num
;
7870 for (i
= 0; i
< config
->rx_ring_num
; i
++) {
7871 config
->rx_cfg
[i
].num_rxd
= rx_ring_sz
[i
] *
7872 (rxd_count
[sp
->rxd_mode
] + 1);
7873 config
->rx_cfg
[i
].ring_priority
= i
;
7874 mac_control
->rings
[i
].rx_bufs_left
= 0;
7875 mac_control
->rings
[i
].rxd_mode
= sp
->rxd_mode
;
7876 mac_control
->rings
[i
].rxd_count
= rxd_count
[sp
->rxd_mode
];
7877 mac_control
->rings
[i
].pdev
= sp
->pdev
;
7878 mac_control
->rings
[i
].dev
= sp
->dev
;
7881 for (i
= 0; i
< rx_ring_num
; i
++) {
7882 config
->rx_cfg
[i
].ring_org
= RING_ORG_BUFF1
;
7883 config
->rx_cfg
[i
].f_no_snoop
=
7884 (NO_SNOOP_RXD
| NO_SNOOP_RXD_BUFFER
);
7887 /* Setting Mac Control parameters */
7888 mac_control
->rmac_pause_time
= rmac_pause_time
;
7889 mac_control
->mc_pause_threshold_q0q3
= mc_pause_threshold_q0q3
;
7890 mac_control
->mc_pause_threshold_q4q7
= mc_pause_threshold_q4q7
;
7893 /* initialize the shared memory used by the NIC and the host */
7894 if (init_shared_mem(sp
)) {
7895 DBG_PRINT(ERR_DBG
, "%s: Memory allocation failed\n",
7898 goto mem_alloc_failed
;
7901 sp
->bar0
= ioremap(pci_resource_start(pdev
, 0),
7902 pci_resource_len(pdev
, 0));
7904 DBG_PRINT(ERR_DBG
, "%s: Neterion: cannot remap io mem1\n",
7907 goto bar0_remap_failed
;
7910 sp
->bar1
= ioremap(pci_resource_start(pdev
, 2),
7911 pci_resource_len(pdev
, 2));
7913 DBG_PRINT(ERR_DBG
, "%s: Neterion: cannot remap io mem2\n",
7916 goto bar1_remap_failed
;
7919 dev
->irq
= pdev
->irq
;
7920 dev
->base_addr
= (unsigned long) sp
->bar0
;
7922 /* Initializing the BAR1 address as the start of the FIFO pointer. */
7923 for (j
= 0; j
< MAX_TX_FIFOS
; j
++) {
7924 mac_control
->tx_FIFO_start
[j
] = (struct TxFIFO_element __iomem
*)
7925 (sp
->bar1
+ (j
* 0x00020000));
7928 /* Driver entry points */
7929 dev
->open
= &s2io_open
;
7930 dev
->stop
= &s2io_close
;
7931 dev
->hard_start_xmit
= &s2io_xmit
;
7932 dev
->get_stats
= &s2io_get_stats
;
7933 dev
->set_multicast_list
= &s2io_set_multicast
;
7934 dev
->do_ioctl
= &s2io_ioctl
;
7935 dev
->set_mac_address
= &s2io_set_mac_addr
;
7936 dev
->change_mtu
= &s2io_change_mtu
;
7937 SET_ETHTOOL_OPS(dev
, &netdev_ethtool_ops
);
7938 dev
->features
|= NETIF_F_HW_VLAN_TX
| NETIF_F_HW_VLAN_RX
;
7939 dev
->vlan_rx_register
= s2io_vlan_rx_register
;
7940 dev
->vlan_rx_kill_vid
= (void *)s2io_vlan_rx_kill_vid
;
7943 * will use eth_mac_addr() for dev->set_mac_address
7944 * mac address will be set every time dev->open() is called
7946 #ifdef CONFIG_NET_POLL_CONTROLLER
7947 dev
->poll_controller
= s2io_netpoll
;
7950 dev
->features
|= NETIF_F_SG
| NETIF_F_IP_CSUM
;
7951 if (sp
->high_dma_flag
== TRUE
)
7952 dev
->features
|= NETIF_F_HIGHDMA
;
7953 dev
->features
|= NETIF_F_TSO
;
7954 dev
->features
|= NETIF_F_TSO6
;
7955 if ((sp
->device_type
& XFRAME_II_DEVICE
) && (ufo
)) {
7956 dev
->features
|= NETIF_F_UFO
;
7957 dev
->features
|= NETIF_F_HW_CSUM
;
7959 dev
->tx_timeout
= &s2io_tx_watchdog
;
7960 dev
->watchdog_timeo
= WATCH_DOG_TIMEOUT
;
7961 INIT_WORK(&sp
->rst_timer_task
, s2io_restart_nic
);
7962 INIT_WORK(&sp
->set_link_task
, s2io_set_link
);
7964 pci_save_state(sp
->pdev
);
7966 /* Setting swapper control on the NIC, for proper reset operation */
7967 if (s2io_set_swapper(sp
)) {
7968 DBG_PRINT(ERR_DBG
, "%s:swapper settings are wrong\n",
7971 goto set_swap_failed
;
7974 /* Verify if the Herc works on the slot its placed into */
7975 if (sp
->device_type
& XFRAME_II_DEVICE
) {
7976 mode
= s2io_verify_pci_mode(sp
);
7978 DBG_PRINT(ERR_DBG
, "%s: ", __FUNCTION__
);
7979 DBG_PRINT(ERR_DBG
, " Unsupported PCI bus mode\n");
7981 goto set_swap_failed
;
7985 if (sp
->config
.intr_type
== MSI_X
) {
7986 sp
->num_entries
= config
->rx_ring_num
+ 1;
7987 ret
= s2io_enable_msi_x(sp
);
7990 ret
= s2io_test_msi(sp
);
7991 /* rollback MSI-X, will re-enable during add_isr() */
7992 remove_msix_isr(sp
);
7997 "%s: MSI-X requested but failed to enable\n",
7999 sp
->config
.intr_type
= INTA
;
8003 if (config
->intr_type
== MSI_X
) {
8004 for (i
= 0; i
< config
->rx_ring_num
; i
++)
8005 netif_napi_add(dev
, &mac_control
->rings
[i
].napi
,
8006 s2io_poll_msix
, 64);
8008 netif_napi_add(dev
, &sp
->napi
, s2io_poll_inta
, 64);
8011 /* Not needed for Herc */
8012 if (sp
->device_type
& XFRAME_I_DEVICE
) {
8014 * Fix for all "FFs" MAC address problems observed on
8017 fix_mac_address(sp
);
8022 * MAC address initialization.
8023 * For now only one mac address will be read and used.
8026 val64
= RMAC_ADDR_CMD_MEM_RD
| RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD
|
8027 RMAC_ADDR_CMD_MEM_OFFSET(0 + S2IO_MAC_ADDR_START_OFFSET
);
8028 writeq(val64
, &bar0
->rmac_addr_cmd_mem
);
8029 wait_for_cmd_complete(&bar0
->rmac_addr_cmd_mem
,
8030 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING
, S2IO_BIT_RESET
);
8031 tmp64
= readq(&bar0
->rmac_addr_data0_mem
);
8032 mac_down
= (u32
) tmp64
;
8033 mac_up
= (u32
) (tmp64
>> 32);
8035 sp
->def_mac_addr
[0].mac_addr
[3] = (u8
) (mac_up
);
8036 sp
->def_mac_addr
[0].mac_addr
[2] = (u8
) (mac_up
>> 8);
8037 sp
->def_mac_addr
[0].mac_addr
[1] = (u8
) (mac_up
>> 16);
8038 sp
->def_mac_addr
[0].mac_addr
[0] = (u8
) (mac_up
>> 24);
8039 sp
->def_mac_addr
[0].mac_addr
[5] = (u8
) (mac_down
>> 16);
8040 sp
->def_mac_addr
[0].mac_addr
[4] = (u8
) (mac_down
>> 24);
8042 /* Set the factory defined MAC address initially */
8043 dev
->addr_len
= ETH_ALEN
;
8044 memcpy(dev
->dev_addr
, sp
->def_mac_addr
, ETH_ALEN
);
8045 memcpy(dev
->perm_addr
, dev
->dev_addr
, ETH_ALEN
);
8047 /* initialize number of multicast & unicast MAC entries variables */
8048 if (sp
->device_type
== XFRAME_I_DEVICE
) {
8049 config
->max_mc_addr
= S2IO_XENA_MAX_MC_ADDRESSES
;
8050 config
->max_mac_addr
= S2IO_XENA_MAX_MAC_ADDRESSES
;
8051 config
->mc_start_offset
= S2IO_XENA_MC_ADDR_START_OFFSET
;
8052 } else if (sp
->device_type
== XFRAME_II_DEVICE
) {
8053 config
->max_mc_addr
= S2IO_HERC_MAX_MC_ADDRESSES
;
8054 config
->max_mac_addr
= S2IO_HERC_MAX_MAC_ADDRESSES
;
8055 config
->mc_start_offset
= S2IO_HERC_MC_ADDR_START_OFFSET
;
8058 /* store mac addresses from CAM to s2io_nic structure */
8059 do_s2io_store_unicast_mc(sp
);
8061 /* Configure MSIX vector for number of rings configured plus one */
8062 if ((sp
->device_type
== XFRAME_II_DEVICE
) &&
8063 (config
->intr_type
== MSI_X
))
8064 sp
->num_entries
= config
->rx_ring_num
+ 1;
8066 /* Store the values of the MSIX table in the s2io_nic structure */
8067 store_xmsi_data(sp
);
8068 /* reset Nic and bring it to known state */
8072 * Initialize link state flags
8073 * and the card state parameter
8077 /* Initialize spinlocks */
8078 for (i
= 0; i
< sp
->config
.tx_fifo_num
; i
++)
8079 spin_lock_init(&mac_control
->fifos
[i
].tx_lock
);
8082 * SXE-002: Configure link and activity LED to init state
8085 subid
= sp
->pdev
->subsystem_device
;
8086 if ((subid
& 0xFF) >= 0x07) {
8087 val64
= readq(&bar0
->gpio_control
);
8088 val64
|= 0x0000800000000000ULL
;
8089 writeq(val64
, &bar0
->gpio_control
);
8090 val64
= 0x0411040400000000ULL
;
8091 writeq(val64
, (void __iomem
*) bar0
+ 0x2700);
8092 val64
= readq(&bar0
->gpio_control
);
8095 sp
->rx_csum
= 1; /* Rx chksum verify enabled by default */
8097 if (register_netdev(dev
)) {
8098 DBG_PRINT(ERR_DBG
, "Device registration failed\n");
8100 goto register_failed
;
8103 DBG_PRINT(ERR_DBG
, "Copyright(c) 2002-2007 Neterion Inc.\n");
8104 DBG_PRINT(ERR_DBG
, "%s: Neterion %s (rev %d)\n",dev
->name
,
8105 sp
->product_name
, pdev
->revision
);
8106 DBG_PRINT(ERR_DBG
, "%s: Driver version %s\n", dev
->name
,
8107 s2io_driver_version
);
8108 DBG_PRINT(ERR_DBG
, "%s: MAC ADDR: %s\n",
8109 dev
->name
, print_mac(mac
, dev
->dev_addr
));
8110 DBG_PRINT(ERR_DBG
, "SERIAL NUMBER: %s\n", sp
->serial_num
);
8111 if (sp
->device_type
& XFRAME_II_DEVICE
) {
8112 mode
= s2io_print_pci_mode(sp
);
8114 DBG_PRINT(ERR_DBG
, " Unsupported PCI bus mode\n");
8116 unregister_netdev(dev
);
8117 goto set_swap_failed
;
8120 switch(sp
->rxd_mode
) {
8122 DBG_PRINT(ERR_DBG
, "%s: 1-Buffer receive mode enabled\n",
8126 DBG_PRINT(ERR_DBG
, "%s: 2-Buffer receive mode enabled\n",
8131 switch (sp
->config
.napi
) {
8133 DBG_PRINT(ERR_DBG
, "%s: NAPI disabled\n", dev
->name
);
8136 DBG_PRINT(ERR_DBG
, "%s: NAPI enabled\n", dev
->name
);
8140 DBG_PRINT(ERR_DBG
, "%s: Using %d Tx fifo(s)\n", dev
->name
,
8141 sp
->config
.tx_fifo_num
);
8143 DBG_PRINT(ERR_DBG
, "%s: Using %d Rx ring(s)\n", dev
->name
,
8144 sp
->config
.rx_ring_num
);
8146 switch(sp
->config
.intr_type
) {
8148 DBG_PRINT(ERR_DBG
, "%s: Interrupt type INTA\n", dev
->name
);
8151 DBG_PRINT(ERR_DBG
, "%s: Interrupt type MSI-X\n", dev
->name
);
8154 if (sp
->config
.multiq
) {
8155 for (i
= 0; i
< sp
->config
.tx_fifo_num
; i
++)
8156 mac_control
->fifos
[i
].multiq
= config
->multiq
;
8157 DBG_PRINT(ERR_DBG
, "%s: Multiqueue support enabled\n",
8160 DBG_PRINT(ERR_DBG
, "%s: Multiqueue support disabled\n",
8163 switch (sp
->config
.tx_steering_type
) {
8165 DBG_PRINT(ERR_DBG
, "%s: No steering enabled for"
8166 " transmit\n", dev
->name
);
8168 case TX_PRIORITY_STEERING
:
8169 DBG_PRINT(ERR_DBG
, "%s: Priority steering enabled for"
8170 " transmit\n", dev
->name
);
8172 case TX_DEFAULT_STEERING
:
8173 DBG_PRINT(ERR_DBG
, "%s: Default steering enabled for"
8174 " transmit\n", dev
->name
);
8178 DBG_PRINT(ERR_DBG
, "%s: Large receive offload enabled\n",
8181 DBG_PRINT(ERR_DBG
, "%s: UDP Fragmentation Offload(UFO)"
8182 " enabled\n", dev
->name
);
8183 /* Initialize device name */
8184 sprintf(sp
->name
, "%s Neterion %s", dev
->name
, sp
->product_name
);
8187 * Make Link state as off at this point, when the Link change
8188 * interrupt comes the state will be automatically changed to
8191 netif_carrier_off(dev
);
8202 free_shared_mem(sp
);
8203 pci_disable_device(pdev
);
8204 pci_release_regions(pdev
);
8205 pci_set_drvdata(pdev
, NULL
);
8212 * s2io_rem_nic - Free the PCI device
8213 * @pdev: structure containing the PCI related information of the device.
8214 * Description: This function is called by the Pci subsystem to release a
8215 * PCI device and free up all resource held up by the device. This could
8216 * be in response to a Hot plug event or when the driver is to be removed
8220 static void __devexit
s2io_rem_nic(struct pci_dev
*pdev
)
8222 struct net_device
*dev
=
8223 (struct net_device
*) pci_get_drvdata(pdev
);
8224 struct s2io_nic
*sp
;
8227 DBG_PRINT(ERR_DBG
, "Driver Data is NULL!!\n");
8231 flush_scheduled_work();
8234 unregister_netdev(dev
);
8236 free_shared_mem(sp
);
8239 pci_release_regions(pdev
);
8240 pci_set_drvdata(pdev
, NULL
);
8242 pci_disable_device(pdev
);
8246 * s2io_starter - Entry point for the driver
8247 * Description: This function is the entry point for the driver. It verifies
8248 * the module loadable parameters and initializes PCI configuration space.
8251 static int __init
s2io_starter(void)
8253 return pci_register_driver(&s2io_driver
);
8257 * s2io_closer - Cleanup routine for the driver
8258 * Description: This function is the cleanup routine for the driver. It unregist * ers the driver.
8261 static __exit
void s2io_closer(void)
8263 pci_unregister_driver(&s2io_driver
);
8264 DBG_PRINT(INIT_DBG
, "cleanup done\n");
8267 module_init(s2io_starter
);
8268 module_exit(s2io_closer
);
8270 static int check_L2_lro_capable(u8
*buffer
, struct iphdr
**ip
,
8271 struct tcphdr
**tcp
, struct RxD_t
*rxdp
,
8272 struct s2io_nic
*sp
)
8275 u8 l2_type
= (u8
)((rxdp
->Control_1
>> 37) & 0x7), ip_len
;
8277 if (!(rxdp
->Control_1
& RXD_FRAME_PROTO_TCP
)) {
8278 DBG_PRINT(INIT_DBG
,"%s: Non-TCP frames not supported for LRO\n",
8283 /* Checking for DIX type or DIX type with VLAN */
8285 || (l2_type
== 4)) {
8286 ip_off
= HEADER_ETHERNET_II_802_3_SIZE
;
8288 * If vlan stripping is disabled and the frame is VLAN tagged,
8289 * shift the offset by the VLAN header size bytes.
8291 if ((!vlan_strip_flag
) &&
8292 (rxdp
->Control_1
& RXD_FRAME_VLAN_TAG
))
8293 ip_off
+= HEADER_VLAN_SIZE
;
8295 /* LLC, SNAP etc are considered non-mergeable */
8299 *ip
= (struct iphdr
*)((u8
*)buffer
+ ip_off
);
8300 ip_len
= (u8
)((*ip
)->ihl
);
8302 *tcp
= (struct tcphdr
*)((unsigned long)*ip
+ ip_len
);
8307 static int check_for_socket_match(struct lro
*lro
, struct iphdr
*ip
,
8310 DBG_PRINT(INFO_DBG
,"%s: Been here...\n", __FUNCTION__
);
8311 if ((lro
->iph
->saddr
!= ip
->saddr
) || (lro
->iph
->daddr
!= ip
->daddr
) ||
8312 (lro
->tcph
->source
!= tcp
->source
) || (lro
->tcph
->dest
!= tcp
->dest
))
8317 static inline int get_l4_pyld_length(struct iphdr
*ip
, struct tcphdr
*tcp
)
8319 return(ntohs(ip
->tot_len
) - (ip
->ihl
<< 2) - (tcp
->doff
<< 2));
8322 static void initiate_new_session(struct lro
*lro
, u8
*l2h
,
8323 struct iphdr
*ip
, struct tcphdr
*tcp
, u32 tcp_pyld_len
, u16 vlan_tag
)
8325 DBG_PRINT(INFO_DBG
,"%s: Been here...\n", __FUNCTION__
);
8329 lro
->tcp_next_seq
= tcp_pyld_len
+ ntohl(tcp
->seq
);
8330 lro
->tcp_ack
= tcp
->ack_seq
;
8332 lro
->total_len
= ntohs(ip
->tot_len
);
8334 lro
->vlan_tag
= vlan_tag
;
8336 * check if we saw TCP timestamp. Other consistency checks have
8337 * already been done.
8339 if (tcp
->doff
== 8) {
8341 ptr
= (__be32
*)(tcp
+1);
8343 lro
->cur_tsval
= ntohl(*(ptr
+1));
8344 lro
->cur_tsecr
= *(ptr
+2);
8349 static void update_L3L4_header(struct s2io_nic
*sp
, struct lro
*lro
)
8351 struct iphdr
*ip
= lro
->iph
;
8352 struct tcphdr
*tcp
= lro
->tcph
;
8354 struct stat_block
*statinfo
= sp
->mac_control
.stats_info
;
8355 DBG_PRINT(INFO_DBG
,"%s: Been here...\n", __FUNCTION__
);
8357 /* Update L3 header */
8358 ip
->tot_len
= htons(lro
->total_len
);
8360 nchk
= ip_fast_csum((u8
*)lro
->iph
, ip
->ihl
);
8363 /* Update L4 header */
8364 tcp
->ack_seq
= lro
->tcp_ack
;
8365 tcp
->window
= lro
->window
;
8367 /* Update tsecr field if this session has timestamps enabled */
8369 __be32
*ptr
= (__be32
*)(tcp
+ 1);
8370 *(ptr
+2) = lro
->cur_tsecr
;
8373 /* Update counters required for calculation of
8374 * average no. of packets aggregated.
8376 statinfo
->sw_stat
.sum_avg_pkts_aggregated
+= lro
->sg_num
;
8377 statinfo
->sw_stat
.num_aggregations
++;
8380 static void aggregate_new_rx(struct lro
*lro
, struct iphdr
*ip
,
8381 struct tcphdr
*tcp
, u32 l4_pyld
)
8383 DBG_PRINT(INFO_DBG
,"%s: Been here...\n", __FUNCTION__
);
8384 lro
->total_len
+= l4_pyld
;
8385 lro
->frags_len
+= l4_pyld
;
8386 lro
->tcp_next_seq
+= l4_pyld
;
8389 /* Update ack seq no. and window ad(from this pkt) in LRO object */
8390 lro
->tcp_ack
= tcp
->ack_seq
;
8391 lro
->window
= tcp
->window
;
8395 /* Update tsecr and tsval from this packet */
8396 ptr
= (__be32
*)(tcp
+1);
8397 lro
->cur_tsval
= ntohl(*(ptr
+1));
8398 lro
->cur_tsecr
= *(ptr
+ 2);
8402 static int verify_l3_l4_lro_capable(struct lro
*l_lro
, struct iphdr
*ip
,
8403 struct tcphdr
*tcp
, u32 tcp_pyld_len
)
8407 DBG_PRINT(INFO_DBG
,"%s: Been here...\n", __FUNCTION__
);
8409 if (!tcp_pyld_len
) {
8410 /* Runt frame or a pure ack */
8414 if (ip
->ihl
!= 5) /* IP has options */
8417 /* If we see CE codepoint in IP header, packet is not mergeable */
8418 if (INET_ECN_is_ce(ipv4_get_dsfield(ip
)))
8421 /* If we see ECE or CWR flags in TCP header, packet is not mergeable */
8422 if (tcp
->urg
|| tcp
->psh
|| tcp
->rst
|| tcp
->syn
|| tcp
->fin
||
8423 tcp
->ece
|| tcp
->cwr
|| !tcp
->ack
) {
8425 * Currently recognize only the ack control word and
8426 * any other control field being set would result in
8427 * flushing the LRO session
8433 * Allow only one TCP timestamp option. Don't aggregate if
8434 * any other options are detected.
8436 if (tcp
->doff
!= 5 && tcp
->doff
!= 8)
8439 if (tcp
->doff
== 8) {
8440 ptr
= (u8
*)(tcp
+ 1);
8441 while (*ptr
== TCPOPT_NOP
)
8443 if (*ptr
!= TCPOPT_TIMESTAMP
|| *(ptr
+1) != TCPOLEN_TIMESTAMP
)
8446 /* Ensure timestamp value increases monotonically */
8448 if (l_lro
->cur_tsval
> ntohl(*((__be32
*)(ptr
+2))))
8451 /* timestamp echo reply should be non-zero */
8452 if (*((__be32
*)(ptr
+6)) == 0)
8460 s2io_club_tcp_session(struct ring_info
*ring_data
, u8
*buffer
, u8
**tcp
,
8461 u32
*tcp_len
, struct lro
**lro
, struct RxD_t
*rxdp
,
8462 struct s2io_nic
*sp
)
8465 struct tcphdr
*tcph
;
8469 if (!(ret
= check_L2_lro_capable(buffer
, &ip
, (struct tcphdr
**)tcp
,
8471 DBG_PRINT(INFO_DBG
,"IP Saddr: %x Daddr: %x\n",
8472 ip
->saddr
, ip
->daddr
);
8476 vlan_tag
= RXD_GET_VLAN_TAG(rxdp
->Control_2
);
8477 tcph
= (struct tcphdr
*)*tcp
;
8478 *tcp_len
= get_l4_pyld_length(ip
, tcph
);
8479 for (i
=0; i
<MAX_LRO_SESSIONS
; i
++) {
8480 struct lro
*l_lro
= &ring_data
->lro0_n
[i
];
8481 if (l_lro
->in_use
) {
8482 if (check_for_socket_match(l_lro
, ip
, tcph
))
8484 /* Sock pair matched */
8487 if ((*lro
)->tcp_next_seq
!= ntohl(tcph
->seq
)) {
8488 DBG_PRINT(INFO_DBG
, "%s:Out of order. expected "
8489 "0x%x, actual 0x%x\n", __FUNCTION__
,
8490 (*lro
)->tcp_next_seq
,
8493 sp
->mac_control
.stats_info
->
8494 sw_stat
.outof_sequence_pkts
++;
8499 if (!verify_l3_l4_lro_capable(l_lro
, ip
, tcph
,*tcp_len
))
8500 ret
= 1; /* Aggregate */
8502 ret
= 2; /* Flush both */
8508 /* Before searching for available LRO objects,
8509 * check if the pkt is L3/L4 aggregatable. If not
8510 * don't create new LRO session. Just send this
8513 if (verify_l3_l4_lro_capable(NULL
, ip
, tcph
, *tcp_len
)) {
8517 for (i
=0; i
<MAX_LRO_SESSIONS
; i
++) {
8518 struct lro
*l_lro
= &ring_data
->lro0_n
[i
];
8519 if (!(l_lro
->in_use
)) {
8521 ret
= 3; /* Begin anew */
8527 if (ret
== 0) { /* sessions exceeded */
8528 DBG_PRINT(INFO_DBG
,"%s:All LRO sessions already in use\n",
8536 initiate_new_session(*lro
, buffer
, ip
, tcph
, *tcp_len
,
8540 update_L3L4_header(sp
, *lro
);
8543 aggregate_new_rx(*lro
, ip
, tcph
, *tcp_len
);
8544 if ((*lro
)->sg_num
== sp
->lro_max_aggr_per_sess
) {
8545 update_L3L4_header(sp
, *lro
);
8546 ret
= 4; /* Flush the LRO */
8550 DBG_PRINT(ERR_DBG
,"%s:Dont know, can't say!!\n",
8558 static void clear_lro_session(struct lro
*lro
)
8560 static u16 lro_struct_size
= sizeof(struct lro
);
8562 memset(lro
, 0, lro_struct_size
);
8565 static void queue_rx_frame(struct sk_buff
*skb
, u16 vlan_tag
)
8567 struct net_device
*dev
= skb
->dev
;
8568 struct s2io_nic
*sp
= dev
->priv
;
8570 skb
->protocol
= eth_type_trans(skb
, dev
);
8571 if (sp
->vlgrp
&& vlan_tag
8572 && (vlan_strip_flag
)) {
8573 /* Queueing the vlan frame to the upper layer */
8574 if (sp
->config
.napi
)
8575 vlan_hwaccel_receive_skb(skb
, sp
->vlgrp
, vlan_tag
);
8577 vlan_hwaccel_rx(skb
, sp
->vlgrp
, vlan_tag
);
8579 if (sp
->config
.napi
)
8580 netif_receive_skb(skb
);
8586 static void lro_append_pkt(struct s2io_nic
*sp
, struct lro
*lro
,
8587 struct sk_buff
*skb
,
8590 struct sk_buff
*first
= lro
->parent
;
8592 first
->len
+= tcp_len
;
8593 first
->data_len
= lro
->frags_len
;
8594 skb_pull(skb
, (skb
->len
- tcp_len
));
8595 if (skb_shinfo(first
)->frag_list
)
8596 lro
->last_frag
->next
= skb
;
8598 skb_shinfo(first
)->frag_list
= skb
;
8599 first
->truesize
+= skb
->truesize
;
8600 lro
->last_frag
= skb
;
8601 sp
->mac_control
.stats_info
->sw_stat
.clubbed_frms_cnt
++;
8606 * s2io_io_error_detected - called when PCI error is detected
8607 * @pdev: Pointer to PCI device
8608 * @state: The current pci connection state
8610 * This function is called after a PCI bus error affecting
8611 * this device has been detected.
8613 static pci_ers_result_t
s2io_io_error_detected(struct pci_dev
*pdev
,
8614 pci_channel_state_t state
)
8616 struct net_device
*netdev
= pci_get_drvdata(pdev
);
8617 struct s2io_nic
*sp
= netdev
->priv
;
8619 netif_device_detach(netdev
);
8621 if (netif_running(netdev
)) {
8622 /* Bring down the card, while avoiding PCI I/O */
8623 do_s2io_card_down(sp
, 0);
8625 pci_disable_device(pdev
);
8627 return PCI_ERS_RESULT_NEED_RESET
;
8631 * s2io_io_slot_reset - called after the pci bus has been reset.
8632 * @pdev: Pointer to PCI device
8634 * Restart the card from scratch, as if from a cold-boot.
8635 * At this point, the card has exprienced a hard reset,
8636 * followed by fixups by BIOS, and has its config space
8637 * set up identically to what it was at cold boot.
8639 static pci_ers_result_t
s2io_io_slot_reset(struct pci_dev
*pdev
)
8641 struct net_device
*netdev
= pci_get_drvdata(pdev
);
8642 struct s2io_nic
*sp
= netdev
->priv
;
8644 if (pci_enable_device(pdev
)) {
8645 printk(KERN_ERR
"s2io: "
8646 "Cannot re-enable PCI device after reset.\n");
8647 return PCI_ERS_RESULT_DISCONNECT
;
8650 pci_set_master(pdev
);
8653 return PCI_ERS_RESULT_RECOVERED
;
8657 * s2io_io_resume - called when traffic can start flowing again.
8658 * @pdev: Pointer to PCI device
8660 * This callback is called when the error recovery driver tells
8661 * us that its OK to resume normal operation.
8663 static void s2io_io_resume(struct pci_dev
*pdev
)
8665 struct net_device
*netdev
= pci_get_drvdata(pdev
);
8666 struct s2io_nic
*sp
= netdev
->priv
;
8668 if (netif_running(netdev
)) {
8669 if (s2io_card_up(sp
)) {
8670 printk(KERN_ERR
"s2io: "
8671 "Can't bring device back up after reset.\n");
8675 if (s2io_set_mac_addr(netdev
, netdev
->dev_addr
) == FAILURE
) {
8677 printk(KERN_ERR
"s2io: "
8678 "Can't resetore mac addr after reset.\n");
8683 netif_device_attach(netdev
);
8684 netif_tx_wake_all_queues(netdev
);