MAINTAINERS: update wireless.h path
[linux-2.6/mini2440.git] / mm / vmalloc.c
blobf8189a4b3e135e4c4158bb80082a49434fcb54af
1 /*
2 * linux/mm/vmalloc.c
4 * Copyright (C) 1993 Linus Torvalds
5 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
6 * SMP-safe vmalloc/vfree/ioremap, Tigran Aivazian <tigran@veritas.com>, May 2000
7 * Major rework to support vmap/vunmap, Christoph Hellwig, SGI, August 2002
8 * Numa awareness, Christoph Lameter, SGI, June 2005
9 */
11 #include <linux/vmalloc.h>
12 #include <linux/mm.h>
13 #include <linux/module.h>
14 #include <linux/highmem.h>
15 #include <linux/slab.h>
16 #include <linux/spinlock.h>
17 #include <linux/interrupt.h>
18 #include <linux/proc_fs.h>
19 #include <linux/seq_file.h>
20 #include <linux/debugobjects.h>
21 #include <linux/kallsyms.h>
22 #include <linux/list.h>
23 #include <linux/rbtree.h>
24 #include <linux/radix-tree.h>
25 #include <linux/rcupdate.h>
26 #include <linux/pfn.h>
27 #include <linux/kmemleak.h>
29 #include <asm/atomic.h>
30 #include <asm/uaccess.h>
31 #include <asm/tlbflush.h>
34 /*** Page table manipulation functions ***/
36 static void vunmap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end)
38 pte_t *pte;
40 pte = pte_offset_kernel(pmd, addr);
41 do {
42 pte_t ptent = ptep_get_and_clear(&init_mm, addr, pte);
43 WARN_ON(!pte_none(ptent) && !pte_present(ptent));
44 } while (pte++, addr += PAGE_SIZE, addr != end);
47 static void vunmap_pmd_range(pud_t *pud, unsigned long addr, unsigned long end)
49 pmd_t *pmd;
50 unsigned long next;
52 pmd = pmd_offset(pud, addr);
53 do {
54 next = pmd_addr_end(addr, end);
55 if (pmd_none_or_clear_bad(pmd))
56 continue;
57 vunmap_pte_range(pmd, addr, next);
58 } while (pmd++, addr = next, addr != end);
61 static void vunmap_pud_range(pgd_t *pgd, unsigned long addr, unsigned long end)
63 pud_t *pud;
64 unsigned long next;
66 pud = pud_offset(pgd, addr);
67 do {
68 next = pud_addr_end(addr, end);
69 if (pud_none_or_clear_bad(pud))
70 continue;
71 vunmap_pmd_range(pud, addr, next);
72 } while (pud++, addr = next, addr != end);
75 static void vunmap_page_range(unsigned long addr, unsigned long end)
77 pgd_t *pgd;
78 unsigned long next;
80 BUG_ON(addr >= end);
81 pgd = pgd_offset_k(addr);
82 do {
83 next = pgd_addr_end(addr, end);
84 if (pgd_none_or_clear_bad(pgd))
85 continue;
86 vunmap_pud_range(pgd, addr, next);
87 } while (pgd++, addr = next, addr != end);
90 static int vmap_pte_range(pmd_t *pmd, unsigned long addr,
91 unsigned long end, pgprot_t prot, struct page **pages, int *nr)
93 pte_t *pte;
96 * nr is a running index into the array which helps higher level
97 * callers keep track of where we're up to.
100 pte = pte_alloc_kernel(pmd, addr);
101 if (!pte)
102 return -ENOMEM;
103 do {
104 struct page *page = pages[*nr];
106 if (WARN_ON(!pte_none(*pte)))
107 return -EBUSY;
108 if (WARN_ON(!page))
109 return -ENOMEM;
110 set_pte_at(&init_mm, addr, pte, mk_pte(page, prot));
111 (*nr)++;
112 } while (pte++, addr += PAGE_SIZE, addr != end);
113 return 0;
116 static int vmap_pmd_range(pud_t *pud, unsigned long addr,
117 unsigned long end, pgprot_t prot, struct page **pages, int *nr)
119 pmd_t *pmd;
120 unsigned long next;
122 pmd = pmd_alloc(&init_mm, pud, addr);
123 if (!pmd)
124 return -ENOMEM;
125 do {
126 next = pmd_addr_end(addr, end);
127 if (vmap_pte_range(pmd, addr, next, prot, pages, nr))
128 return -ENOMEM;
129 } while (pmd++, addr = next, addr != end);
130 return 0;
133 static int vmap_pud_range(pgd_t *pgd, unsigned long addr,
134 unsigned long end, pgprot_t prot, struct page **pages, int *nr)
136 pud_t *pud;
137 unsigned long next;
139 pud = pud_alloc(&init_mm, pgd, addr);
140 if (!pud)
141 return -ENOMEM;
142 do {
143 next = pud_addr_end(addr, end);
144 if (vmap_pmd_range(pud, addr, next, prot, pages, nr))
145 return -ENOMEM;
146 } while (pud++, addr = next, addr != end);
147 return 0;
151 * Set up page tables in kva (addr, end). The ptes shall have prot "prot", and
152 * will have pfns corresponding to the "pages" array.
154 * Ie. pte at addr+N*PAGE_SIZE shall point to pfn corresponding to pages[N]
156 static int vmap_page_range_noflush(unsigned long start, unsigned long end,
157 pgprot_t prot, struct page **pages)
159 pgd_t *pgd;
160 unsigned long next;
161 unsigned long addr = start;
162 int err = 0;
163 int nr = 0;
165 BUG_ON(addr >= end);
166 pgd = pgd_offset_k(addr);
167 do {
168 next = pgd_addr_end(addr, end);
169 err = vmap_pud_range(pgd, addr, next, prot, pages, &nr);
170 if (err)
171 break;
172 } while (pgd++, addr = next, addr != end);
174 if (unlikely(err))
175 return err;
176 return nr;
179 static int vmap_page_range(unsigned long start, unsigned long end,
180 pgprot_t prot, struct page **pages)
182 int ret;
184 ret = vmap_page_range_noflush(start, end, prot, pages);
185 flush_cache_vmap(start, end);
186 return ret;
189 static inline int is_vmalloc_or_module_addr(const void *x)
192 * ARM, x86-64 and sparc64 put modules in a special place,
193 * and fall back on vmalloc() if that fails. Others
194 * just put it in the vmalloc space.
196 #if defined(CONFIG_MODULES) && defined(MODULES_VADDR)
197 unsigned long addr = (unsigned long)x;
198 if (addr >= MODULES_VADDR && addr < MODULES_END)
199 return 1;
200 #endif
201 return is_vmalloc_addr(x);
205 * Walk a vmap address to the struct page it maps.
207 struct page *vmalloc_to_page(const void *vmalloc_addr)
209 unsigned long addr = (unsigned long) vmalloc_addr;
210 struct page *page = NULL;
211 pgd_t *pgd = pgd_offset_k(addr);
214 * XXX we might need to change this if we add VIRTUAL_BUG_ON for
215 * architectures that do not vmalloc module space
217 VIRTUAL_BUG_ON(!is_vmalloc_or_module_addr(vmalloc_addr));
219 if (!pgd_none(*pgd)) {
220 pud_t *pud = pud_offset(pgd, addr);
221 if (!pud_none(*pud)) {
222 pmd_t *pmd = pmd_offset(pud, addr);
223 if (!pmd_none(*pmd)) {
224 pte_t *ptep, pte;
226 ptep = pte_offset_map(pmd, addr);
227 pte = *ptep;
228 if (pte_present(pte))
229 page = pte_page(pte);
230 pte_unmap(ptep);
234 return page;
236 EXPORT_SYMBOL(vmalloc_to_page);
239 * Map a vmalloc()-space virtual address to the physical page frame number.
241 unsigned long vmalloc_to_pfn(const void *vmalloc_addr)
243 return page_to_pfn(vmalloc_to_page(vmalloc_addr));
245 EXPORT_SYMBOL(vmalloc_to_pfn);
248 /*** Global kva allocator ***/
250 #define VM_LAZY_FREE 0x01
251 #define VM_LAZY_FREEING 0x02
252 #define VM_VM_AREA 0x04
254 struct vmap_area {
255 unsigned long va_start;
256 unsigned long va_end;
257 unsigned long flags;
258 struct rb_node rb_node; /* address sorted rbtree */
259 struct list_head list; /* address sorted list */
260 struct list_head purge_list; /* "lazy purge" list */
261 void *private;
262 struct rcu_head rcu_head;
265 static DEFINE_SPINLOCK(vmap_area_lock);
266 static struct rb_root vmap_area_root = RB_ROOT;
267 static LIST_HEAD(vmap_area_list);
269 static struct vmap_area *__find_vmap_area(unsigned long addr)
271 struct rb_node *n = vmap_area_root.rb_node;
273 while (n) {
274 struct vmap_area *va;
276 va = rb_entry(n, struct vmap_area, rb_node);
277 if (addr < va->va_start)
278 n = n->rb_left;
279 else if (addr > va->va_start)
280 n = n->rb_right;
281 else
282 return va;
285 return NULL;
288 static void __insert_vmap_area(struct vmap_area *va)
290 struct rb_node **p = &vmap_area_root.rb_node;
291 struct rb_node *parent = NULL;
292 struct rb_node *tmp;
294 while (*p) {
295 struct vmap_area *tmp;
297 parent = *p;
298 tmp = rb_entry(parent, struct vmap_area, rb_node);
299 if (va->va_start < tmp->va_end)
300 p = &(*p)->rb_left;
301 else if (va->va_end > tmp->va_start)
302 p = &(*p)->rb_right;
303 else
304 BUG();
307 rb_link_node(&va->rb_node, parent, p);
308 rb_insert_color(&va->rb_node, &vmap_area_root);
310 /* address-sort this list so it is usable like the vmlist */
311 tmp = rb_prev(&va->rb_node);
312 if (tmp) {
313 struct vmap_area *prev;
314 prev = rb_entry(tmp, struct vmap_area, rb_node);
315 list_add_rcu(&va->list, &prev->list);
316 } else
317 list_add_rcu(&va->list, &vmap_area_list);
320 static void purge_vmap_area_lazy(void);
323 * Allocate a region of KVA of the specified size and alignment, within the
324 * vstart and vend.
326 static struct vmap_area *alloc_vmap_area(unsigned long size,
327 unsigned long align,
328 unsigned long vstart, unsigned long vend,
329 int node, gfp_t gfp_mask)
331 struct vmap_area *va;
332 struct rb_node *n;
333 unsigned long addr;
334 int purged = 0;
336 BUG_ON(!size);
337 BUG_ON(size & ~PAGE_MASK);
339 va = kmalloc_node(sizeof(struct vmap_area),
340 gfp_mask & GFP_RECLAIM_MASK, node);
341 if (unlikely(!va))
342 return ERR_PTR(-ENOMEM);
344 retry:
345 addr = ALIGN(vstart, align);
347 spin_lock(&vmap_area_lock);
348 if (addr + size - 1 < addr)
349 goto overflow;
351 /* XXX: could have a last_hole cache */
352 n = vmap_area_root.rb_node;
353 if (n) {
354 struct vmap_area *first = NULL;
356 do {
357 struct vmap_area *tmp;
358 tmp = rb_entry(n, struct vmap_area, rb_node);
359 if (tmp->va_end >= addr) {
360 if (!first && tmp->va_start < addr + size)
361 first = tmp;
362 n = n->rb_left;
363 } else {
364 first = tmp;
365 n = n->rb_right;
367 } while (n);
369 if (!first)
370 goto found;
372 if (first->va_end < addr) {
373 n = rb_next(&first->rb_node);
374 if (n)
375 first = rb_entry(n, struct vmap_area, rb_node);
376 else
377 goto found;
380 while (addr + size > first->va_start && addr + size <= vend) {
381 addr = ALIGN(first->va_end + PAGE_SIZE, align);
382 if (addr + size - 1 < addr)
383 goto overflow;
385 n = rb_next(&first->rb_node);
386 if (n)
387 first = rb_entry(n, struct vmap_area, rb_node);
388 else
389 goto found;
392 found:
393 if (addr + size > vend) {
394 overflow:
395 spin_unlock(&vmap_area_lock);
396 if (!purged) {
397 purge_vmap_area_lazy();
398 purged = 1;
399 goto retry;
401 if (printk_ratelimit())
402 printk(KERN_WARNING
403 "vmap allocation for size %lu failed: "
404 "use vmalloc=<size> to increase size.\n", size);
405 kfree(va);
406 return ERR_PTR(-EBUSY);
409 BUG_ON(addr & (align-1));
411 va->va_start = addr;
412 va->va_end = addr + size;
413 va->flags = 0;
414 __insert_vmap_area(va);
415 spin_unlock(&vmap_area_lock);
417 return va;
420 static void rcu_free_va(struct rcu_head *head)
422 struct vmap_area *va = container_of(head, struct vmap_area, rcu_head);
424 kfree(va);
427 static void __free_vmap_area(struct vmap_area *va)
429 BUG_ON(RB_EMPTY_NODE(&va->rb_node));
430 rb_erase(&va->rb_node, &vmap_area_root);
431 RB_CLEAR_NODE(&va->rb_node);
432 list_del_rcu(&va->list);
434 call_rcu(&va->rcu_head, rcu_free_va);
438 * Free a region of KVA allocated by alloc_vmap_area
440 static void free_vmap_area(struct vmap_area *va)
442 spin_lock(&vmap_area_lock);
443 __free_vmap_area(va);
444 spin_unlock(&vmap_area_lock);
448 * Clear the pagetable entries of a given vmap_area
450 static void unmap_vmap_area(struct vmap_area *va)
452 vunmap_page_range(va->va_start, va->va_end);
455 static void vmap_debug_free_range(unsigned long start, unsigned long end)
458 * Unmap page tables and force a TLB flush immediately if
459 * CONFIG_DEBUG_PAGEALLOC is set. This catches use after free
460 * bugs similarly to those in linear kernel virtual address
461 * space after a page has been freed.
463 * All the lazy freeing logic is still retained, in order to
464 * minimise intrusiveness of this debugging feature.
466 * This is going to be *slow* (linear kernel virtual address
467 * debugging doesn't do a broadcast TLB flush so it is a lot
468 * faster).
470 #ifdef CONFIG_DEBUG_PAGEALLOC
471 vunmap_page_range(start, end);
472 flush_tlb_kernel_range(start, end);
473 #endif
477 * lazy_max_pages is the maximum amount of virtual address space we gather up
478 * before attempting to purge with a TLB flush.
480 * There is a tradeoff here: a larger number will cover more kernel page tables
481 * and take slightly longer to purge, but it will linearly reduce the number of
482 * global TLB flushes that must be performed. It would seem natural to scale
483 * this number up linearly with the number of CPUs (because vmapping activity
484 * could also scale linearly with the number of CPUs), however it is likely
485 * that in practice, workloads might be constrained in other ways that mean
486 * vmap activity will not scale linearly with CPUs. Also, I want to be
487 * conservative and not introduce a big latency on huge systems, so go with
488 * a less aggressive log scale. It will still be an improvement over the old
489 * code, and it will be simple to change the scale factor if we find that it
490 * becomes a problem on bigger systems.
492 static unsigned long lazy_max_pages(void)
494 unsigned int log;
496 log = fls(num_online_cpus());
498 return log * (32UL * 1024 * 1024 / PAGE_SIZE);
501 static atomic_t vmap_lazy_nr = ATOMIC_INIT(0);
504 * Purges all lazily-freed vmap areas.
506 * If sync is 0 then don't purge if there is already a purge in progress.
507 * If force_flush is 1, then flush kernel TLBs between *start and *end even
508 * if we found no lazy vmap areas to unmap (callers can use this to optimise
509 * their own TLB flushing).
510 * Returns with *start = min(*start, lowest purged address)
511 * *end = max(*end, highest purged address)
513 static void __purge_vmap_area_lazy(unsigned long *start, unsigned long *end,
514 int sync, int force_flush)
516 static DEFINE_SPINLOCK(purge_lock);
517 LIST_HEAD(valist);
518 struct vmap_area *va;
519 struct vmap_area *n_va;
520 int nr = 0;
523 * If sync is 0 but force_flush is 1, we'll go sync anyway but callers
524 * should not expect such behaviour. This just simplifies locking for
525 * the case that isn't actually used at the moment anyway.
527 if (!sync && !force_flush) {
528 if (!spin_trylock(&purge_lock))
529 return;
530 } else
531 spin_lock(&purge_lock);
533 rcu_read_lock();
534 list_for_each_entry_rcu(va, &vmap_area_list, list) {
535 if (va->flags & VM_LAZY_FREE) {
536 if (va->va_start < *start)
537 *start = va->va_start;
538 if (va->va_end > *end)
539 *end = va->va_end;
540 nr += (va->va_end - va->va_start) >> PAGE_SHIFT;
541 unmap_vmap_area(va);
542 list_add_tail(&va->purge_list, &valist);
543 va->flags |= VM_LAZY_FREEING;
544 va->flags &= ~VM_LAZY_FREE;
547 rcu_read_unlock();
549 if (nr) {
550 BUG_ON(nr > atomic_read(&vmap_lazy_nr));
551 atomic_sub(nr, &vmap_lazy_nr);
554 if (nr || force_flush)
555 flush_tlb_kernel_range(*start, *end);
557 if (nr) {
558 spin_lock(&vmap_area_lock);
559 list_for_each_entry_safe(va, n_va, &valist, purge_list)
560 __free_vmap_area(va);
561 spin_unlock(&vmap_area_lock);
563 spin_unlock(&purge_lock);
567 * Kick off a purge of the outstanding lazy areas. Don't bother if somebody
568 * is already purging.
570 static void try_purge_vmap_area_lazy(void)
572 unsigned long start = ULONG_MAX, end = 0;
574 __purge_vmap_area_lazy(&start, &end, 0, 0);
578 * Kick off a purge of the outstanding lazy areas.
580 static void purge_vmap_area_lazy(void)
582 unsigned long start = ULONG_MAX, end = 0;
584 __purge_vmap_area_lazy(&start, &end, 1, 0);
588 * Free and unmap a vmap area, caller ensuring flush_cache_vunmap had been
589 * called for the correct range previously.
591 static void free_unmap_vmap_area_noflush(struct vmap_area *va)
593 va->flags |= VM_LAZY_FREE;
594 atomic_add((va->va_end - va->va_start) >> PAGE_SHIFT, &vmap_lazy_nr);
595 if (unlikely(atomic_read(&vmap_lazy_nr) > lazy_max_pages()))
596 try_purge_vmap_area_lazy();
600 * Free and unmap a vmap area
602 static void free_unmap_vmap_area(struct vmap_area *va)
604 flush_cache_vunmap(va->va_start, va->va_end);
605 free_unmap_vmap_area_noflush(va);
608 static struct vmap_area *find_vmap_area(unsigned long addr)
610 struct vmap_area *va;
612 spin_lock(&vmap_area_lock);
613 va = __find_vmap_area(addr);
614 spin_unlock(&vmap_area_lock);
616 return va;
619 static void free_unmap_vmap_area_addr(unsigned long addr)
621 struct vmap_area *va;
623 va = find_vmap_area(addr);
624 BUG_ON(!va);
625 free_unmap_vmap_area(va);
629 /*** Per cpu kva allocator ***/
632 * vmap space is limited especially on 32 bit architectures. Ensure there is
633 * room for at least 16 percpu vmap blocks per CPU.
636 * If we had a constant VMALLOC_START and VMALLOC_END, we'd like to be able
637 * to #define VMALLOC_SPACE (VMALLOC_END-VMALLOC_START). Guess
638 * instead (we just need a rough idea)
640 #if BITS_PER_LONG == 32
641 #define VMALLOC_SPACE (128UL*1024*1024)
642 #else
643 #define VMALLOC_SPACE (128UL*1024*1024*1024)
644 #endif
646 #define VMALLOC_PAGES (VMALLOC_SPACE / PAGE_SIZE)
647 #define VMAP_MAX_ALLOC BITS_PER_LONG /* 256K with 4K pages */
648 #define VMAP_BBMAP_BITS_MAX 1024 /* 4MB with 4K pages */
649 #define VMAP_BBMAP_BITS_MIN (VMAP_MAX_ALLOC*2)
650 #define VMAP_MIN(x, y) ((x) < (y) ? (x) : (y)) /* can't use min() */
651 #define VMAP_MAX(x, y) ((x) > (y) ? (x) : (y)) /* can't use max() */
652 #define VMAP_BBMAP_BITS VMAP_MIN(VMAP_BBMAP_BITS_MAX, \
653 VMAP_MAX(VMAP_BBMAP_BITS_MIN, \
654 VMALLOC_PAGES / NR_CPUS / 16))
656 #define VMAP_BLOCK_SIZE (VMAP_BBMAP_BITS * PAGE_SIZE)
658 static bool vmap_initialized __read_mostly = false;
660 struct vmap_block_queue {
661 spinlock_t lock;
662 struct list_head free;
663 struct list_head dirty;
664 unsigned int nr_dirty;
667 struct vmap_block {
668 spinlock_t lock;
669 struct vmap_area *va;
670 struct vmap_block_queue *vbq;
671 unsigned long free, dirty;
672 DECLARE_BITMAP(alloc_map, VMAP_BBMAP_BITS);
673 DECLARE_BITMAP(dirty_map, VMAP_BBMAP_BITS);
674 union {
675 struct list_head free_list;
676 struct rcu_head rcu_head;
680 /* Queue of free and dirty vmap blocks, for allocation and flushing purposes */
681 static DEFINE_PER_CPU(struct vmap_block_queue, vmap_block_queue);
684 * Radix tree of vmap blocks, indexed by address, to quickly find a vmap block
685 * in the free path. Could get rid of this if we change the API to return a
686 * "cookie" from alloc, to be passed to free. But no big deal yet.
688 static DEFINE_SPINLOCK(vmap_block_tree_lock);
689 static RADIX_TREE(vmap_block_tree, GFP_ATOMIC);
692 * We should probably have a fallback mechanism to allocate virtual memory
693 * out of partially filled vmap blocks. However vmap block sizing should be
694 * fairly reasonable according to the vmalloc size, so it shouldn't be a
695 * big problem.
698 static unsigned long addr_to_vb_idx(unsigned long addr)
700 addr -= VMALLOC_START & ~(VMAP_BLOCK_SIZE-1);
701 addr /= VMAP_BLOCK_SIZE;
702 return addr;
705 static struct vmap_block *new_vmap_block(gfp_t gfp_mask)
707 struct vmap_block_queue *vbq;
708 struct vmap_block *vb;
709 struct vmap_area *va;
710 unsigned long vb_idx;
711 int node, err;
713 node = numa_node_id();
715 vb = kmalloc_node(sizeof(struct vmap_block),
716 gfp_mask & GFP_RECLAIM_MASK, node);
717 if (unlikely(!vb))
718 return ERR_PTR(-ENOMEM);
720 va = alloc_vmap_area(VMAP_BLOCK_SIZE, VMAP_BLOCK_SIZE,
721 VMALLOC_START, VMALLOC_END,
722 node, gfp_mask);
723 if (unlikely(IS_ERR(va))) {
724 kfree(vb);
725 return ERR_PTR(PTR_ERR(va));
728 err = radix_tree_preload(gfp_mask);
729 if (unlikely(err)) {
730 kfree(vb);
731 free_vmap_area(va);
732 return ERR_PTR(err);
735 spin_lock_init(&vb->lock);
736 vb->va = va;
737 vb->free = VMAP_BBMAP_BITS;
738 vb->dirty = 0;
739 bitmap_zero(vb->alloc_map, VMAP_BBMAP_BITS);
740 bitmap_zero(vb->dirty_map, VMAP_BBMAP_BITS);
741 INIT_LIST_HEAD(&vb->free_list);
743 vb_idx = addr_to_vb_idx(va->va_start);
744 spin_lock(&vmap_block_tree_lock);
745 err = radix_tree_insert(&vmap_block_tree, vb_idx, vb);
746 spin_unlock(&vmap_block_tree_lock);
747 BUG_ON(err);
748 radix_tree_preload_end();
750 vbq = &get_cpu_var(vmap_block_queue);
751 vb->vbq = vbq;
752 spin_lock(&vbq->lock);
753 list_add(&vb->free_list, &vbq->free);
754 spin_unlock(&vbq->lock);
755 put_cpu_var(vmap_cpu_blocks);
757 return vb;
760 static void rcu_free_vb(struct rcu_head *head)
762 struct vmap_block *vb = container_of(head, struct vmap_block, rcu_head);
764 kfree(vb);
767 static void free_vmap_block(struct vmap_block *vb)
769 struct vmap_block *tmp;
770 unsigned long vb_idx;
772 BUG_ON(!list_empty(&vb->free_list));
774 vb_idx = addr_to_vb_idx(vb->va->va_start);
775 spin_lock(&vmap_block_tree_lock);
776 tmp = radix_tree_delete(&vmap_block_tree, vb_idx);
777 spin_unlock(&vmap_block_tree_lock);
778 BUG_ON(tmp != vb);
780 free_unmap_vmap_area_noflush(vb->va);
781 call_rcu(&vb->rcu_head, rcu_free_vb);
784 static void *vb_alloc(unsigned long size, gfp_t gfp_mask)
786 struct vmap_block_queue *vbq;
787 struct vmap_block *vb;
788 unsigned long addr = 0;
789 unsigned int order;
791 BUG_ON(size & ~PAGE_MASK);
792 BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
793 order = get_order(size);
795 again:
796 rcu_read_lock();
797 vbq = &get_cpu_var(vmap_block_queue);
798 list_for_each_entry_rcu(vb, &vbq->free, free_list) {
799 int i;
801 spin_lock(&vb->lock);
802 i = bitmap_find_free_region(vb->alloc_map,
803 VMAP_BBMAP_BITS, order);
805 if (i >= 0) {
806 addr = vb->va->va_start + (i << PAGE_SHIFT);
807 BUG_ON(addr_to_vb_idx(addr) !=
808 addr_to_vb_idx(vb->va->va_start));
809 vb->free -= 1UL << order;
810 if (vb->free == 0) {
811 spin_lock(&vbq->lock);
812 list_del_init(&vb->free_list);
813 spin_unlock(&vbq->lock);
815 spin_unlock(&vb->lock);
816 break;
818 spin_unlock(&vb->lock);
820 put_cpu_var(vmap_cpu_blocks);
821 rcu_read_unlock();
823 if (!addr) {
824 vb = new_vmap_block(gfp_mask);
825 if (IS_ERR(vb))
826 return vb;
827 goto again;
830 return (void *)addr;
833 static void vb_free(const void *addr, unsigned long size)
835 unsigned long offset;
836 unsigned long vb_idx;
837 unsigned int order;
838 struct vmap_block *vb;
840 BUG_ON(size & ~PAGE_MASK);
841 BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
843 flush_cache_vunmap((unsigned long)addr, (unsigned long)addr + size);
845 order = get_order(size);
847 offset = (unsigned long)addr & (VMAP_BLOCK_SIZE - 1);
849 vb_idx = addr_to_vb_idx((unsigned long)addr);
850 rcu_read_lock();
851 vb = radix_tree_lookup(&vmap_block_tree, vb_idx);
852 rcu_read_unlock();
853 BUG_ON(!vb);
855 spin_lock(&vb->lock);
856 bitmap_allocate_region(vb->dirty_map, offset >> PAGE_SHIFT, order);
858 vb->dirty += 1UL << order;
859 if (vb->dirty == VMAP_BBMAP_BITS) {
860 BUG_ON(vb->free || !list_empty(&vb->free_list));
861 spin_unlock(&vb->lock);
862 free_vmap_block(vb);
863 } else
864 spin_unlock(&vb->lock);
868 * vm_unmap_aliases - unmap outstanding lazy aliases in the vmap layer
870 * The vmap/vmalloc layer lazily flushes kernel virtual mappings primarily
871 * to amortize TLB flushing overheads. What this means is that any page you
872 * have now, may, in a former life, have been mapped into kernel virtual
873 * address by the vmap layer and so there might be some CPUs with TLB entries
874 * still referencing that page (additional to the regular 1:1 kernel mapping).
876 * vm_unmap_aliases flushes all such lazy mappings. After it returns, we can
877 * be sure that none of the pages we have control over will have any aliases
878 * from the vmap layer.
880 void vm_unmap_aliases(void)
882 unsigned long start = ULONG_MAX, end = 0;
883 int cpu;
884 int flush = 0;
886 if (unlikely(!vmap_initialized))
887 return;
889 for_each_possible_cpu(cpu) {
890 struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
891 struct vmap_block *vb;
893 rcu_read_lock();
894 list_for_each_entry_rcu(vb, &vbq->free, free_list) {
895 int i;
897 spin_lock(&vb->lock);
898 i = find_first_bit(vb->dirty_map, VMAP_BBMAP_BITS);
899 while (i < VMAP_BBMAP_BITS) {
900 unsigned long s, e;
901 int j;
902 j = find_next_zero_bit(vb->dirty_map,
903 VMAP_BBMAP_BITS, i);
905 s = vb->va->va_start + (i << PAGE_SHIFT);
906 e = vb->va->va_start + (j << PAGE_SHIFT);
907 vunmap_page_range(s, e);
908 flush = 1;
910 if (s < start)
911 start = s;
912 if (e > end)
913 end = e;
915 i = j;
916 i = find_next_bit(vb->dirty_map,
917 VMAP_BBMAP_BITS, i);
919 spin_unlock(&vb->lock);
921 rcu_read_unlock();
924 __purge_vmap_area_lazy(&start, &end, 1, flush);
926 EXPORT_SYMBOL_GPL(vm_unmap_aliases);
929 * vm_unmap_ram - unmap linear kernel address space set up by vm_map_ram
930 * @mem: the pointer returned by vm_map_ram
931 * @count: the count passed to that vm_map_ram call (cannot unmap partial)
933 void vm_unmap_ram(const void *mem, unsigned int count)
935 unsigned long size = count << PAGE_SHIFT;
936 unsigned long addr = (unsigned long)mem;
938 BUG_ON(!addr);
939 BUG_ON(addr < VMALLOC_START);
940 BUG_ON(addr > VMALLOC_END);
941 BUG_ON(addr & (PAGE_SIZE-1));
943 debug_check_no_locks_freed(mem, size);
944 vmap_debug_free_range(addr, addr+size);
946 if (likely(count <= VMAP_MAX_ALLOC))
947 vb_free(mem, size);
948 else
949 free_unmap_vmap_area_addr(addr);
951 EXPORT_SYMBOL(vm_unmap_ram);
954 * vm_map_ram - map pages linearly into kernel virtual address (vmalloc space)
955 * @pages: an array of pointers to the pages to be mapped
956 * @count: number of pages
957 * @node: prefer to allocate data structures on this node
958 * @prot: memory protection to use. PAGE_KERNEL for regular RAM
960 * Returns: a pointer to the address that has been mapped, or %NULL on failure
962 void *vm_map_ram(struct page **pages, unsigned int count, int node, pgprot_t prot)
964 unsigned long size = count << PAGE_SHIFT;
965 unsigned long addr;
966 void *mem;
968 if (likely(count <= VMAP_MAX_ALLOC)) {
969 mem = vb_alloc(size, GFP_KERNEL);
970 if (IS_ERR(mem))
971 return NULL;
972 addr = (unsigned long)mem;
973 } else {
974 struct vmap_area *va;
975 va = alloc_vmap_area(size, PAGE_SIZE,
976 VMALLOC_START, VMALLOC_END, node, GFP_KERNEL);
977 if (IS_ERR(va))
978 return NULL;
980 addr = va->va_start;
981 mem = (void *)addr;
983 if (vmap_page_range(addr, addr + size, prot, pages) < 0) {
984 vm_unmap_ram(mem, count);
985 return NULL;
987 return mem;
989 EXPORT_SYMBOL(vm_map_ram);
992 * vm_area_register_early - register vmap area early during boot
993 * @vm: vm_struct to register
994 * @align: requested alignment
996 * This function is used to register kernel vm area before
997 * vmalloc_init() is called. @vm->size and @vm->flags should contain
998 * proper values on entry and other fields should be zero. On return,
999 * vm->addr contains the allocated address.
1001 * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
1003 void __init vm_area_register_early(struct vm_struct *vm, size_t align)
1005 static size_t vm_init_off __initdata;
1006 unsigned long addr;
1008 addr = ALIGN(VMALLOC_START + vm_init_off, align);
1009 vm_init_off = PFN_ALIGN(addr + vm->size) - VMALLOC_START;
1011 vm->addr = (void *)addr;
1013 vm->next = vmlist;
1014 vmlist = vm;
1017 void __init vmalloc_init(void)
1019 struct vmap_area *va;
1020 struct vm_struct *tmp;
1021 int i;
1023 for_each_possible_cpu(i) {
1024 struct vmap_block_queue *vbq;
1026 vbq = &per_cpu(vmap_block_queue, i);
1027 spin_lock_init(&vbq->lock);
1028 INIT_LIST_HEAD(&vbq->free);
1029 INIT_LIST_HEAD(&vbq->dirty);
1030 vbq->nr_dirty = 0;
1033 /* Import existing vmlist entries. */
1034 for (tmp = vmlist; tmp; tmp = tmp->next) {
1035 va = kzalloc(sizeof(struct vmap_area), GFP_NOWAIT);
1036 va->flags = tmp->flags | VM_VM_AREA;
1037 va->va_start = (unsigned long)tmp->addr;
1038 va->va_end = va->va_start + tmp->size;
1039 __insert_vmap_area(va);
1041 vmap_initialized = true;
1045 * map_kernel_range_noflush - map kernel VM area with the specified pages
1046 * @addr: start of the VM area to map
1047 * @size: size of the VM area to map
1048 * @prot: page protection flags to use
1049 * @pages: pages to map
1051 * Map PFN_UP(@size) pages at @addr. The VM area @addr and @size
1052 * specify should have been allocated using get_vm_area() and its
1053 * friends.
1055 * NOTE:
1056 * This function does NOT do any cache flushing. The caller is
1057 * responsible for calling flush_cache_vmap() on to-be-mapped areas
1058 * before calling this function.
1060 * RETURNS:
1061 * The number of pages mapped on success, -errno on failure.
1063 int map_kernel_range_noflush(unsigned long addr, unsigned long size,
1064 pgprot_t prot, struct page **pages)
1066 return vmap_page_range_noflush(addr, addr + size, prot, pages);
1070 * unmap_kernel_range_noflush - unmap kernel VM area
1071 * @addr: start of the VM area to unmap
1072 * @size: size of the VM area to unmap
1074 * Unmap PFN_UP(@size) pages at @addr. The VM area @addr and @size
1075 * specify should have been allocated using get_vm_area() and its
1076 * friends.
1078 * NOTE:
1079 * This function does NOT do any cache flushing. The caller is
1080 * responsible for calling flush_cache_vunmap() on to-be-mapped areas
1081 * before calling this function and flush_tlb_kernel_range() after.
1083 void unmap_kernel_range_noflush(unsigned long addr, unsigned long size)
1085 vunmap_page_range(addr, addr + size);
1089 * unmap_kernel_range - unmap kernel VM area and flush cache and TLB
1090 * @addr: start of the VM area to unmap
1091 * @size: size of the VM area to unmap
1093 * Similar to unmap_kernel_range_noflush() but flushes vcache before
1094 * the unmapping and tlb after.
1096 void unmap_kernel_range(unsigned long addr, unsigned long size)
1098 unsigned long end = addr + size;
1100 flush_cache_vunmap(addr, end);
1101 vunmap_page_range(addr, end);
1102 flush_tlb_kernel_range(addr, end);
1105 int map_vm_area(struct vm_struct *area, pgprot_t prot, struct page ***pages)
1107 unsigned long addr = (unsigned long)area->addr;
1108 unsigned long end = addr + area->size - PAGE_SIZE;
1109 int err;
1111 err = vmap_page_range(addr, end, prot, *pages);
1112 if (err > 0) {
1113 *pages += err;
1114 err = 0;
1117 return err;
1119 EXPORT_SYMBOL_GPL(map_vm_area);
1121 /*** Old vmalloc interfaces ***/
1122 DEFINE_RWLOCK(vmlist_lock);
1123 struct vm_struct *vmlist;
1125 static struct vm_struct *__get_vm_area_node(unsigned long size,
1126 unsigned long flags, unsigned long start, unsigned long end,
1127 int node, gfp_t gfp_mask, void *caller)
1129 static struct vmap_area *va;
1130 struct vm_struct *area;
1131 struct vm_struct *tmp, **p;
1132 unsigned long align = 1;
1134 BUG_ON(in_interrupt());
1135 if (flags & VM_IOREMAP) {
1136 int bit = fls(size);
1138 if (bit > IOREMAP_MAX_ORDER)
1139 bit = IOREMAP_MAX_ORDER;
1140 else if (bit < PAGE_SHIFT)
1141 bit = PAGE_SHIFT;
1143 align = 1ul << bit;
1146 size = PAGE_ALIGN(size);
1147 if (unlikely(!size))
1148 return NULL;
1150 area = kmalloc_node(sizeof(*area), gfp_mask & GFP_RECLAIM_MASK, node);
1151 if (unlikely(!area))
1152 return NULL;
1155 * We always allocate a guard page.
1157 size += PAGE_SIZE;
1159 va = alloc_vmap_area(size, align, start, end, node, gfp_mask);
1160 if (IS_ERR(va)) {
1161 kfree(area);
1162 return NULL;
1165 area->flags = flags;
1166 area->addr = (void *)va->va_start;
1167 area->size = size;
1168 area->pages = NULL;
1169 area->nr_pages = 0;
1170 area->phys_addr = 0;
1171 area->caller = caller;
1172 va->private = area;
1173 va->flags |= VM_VM_AREA;
1175 write_lock(&vmlist_lock);
1176 for (p = &vmlist; (tmp = *p) != NULL; p = &tmp->next) {
1177 if (tmp->addr >= area->addr)
1178 break;
1180 area->next = *p;
1181 *p = area;
1182 write_unlock(&vmlist_lock);
1184 return area;
1187 struct vm_struct *__get_vm_area(unsigned long size, unsigned long flags,
1188 unsigned long start, unsigned long end)
1190 return __get_vm_area_node(size, flags, start, end, -1, GFP_KERNEL,
1191 __builtin_return_address(0));
1193 EXPORT_SYMBOL_GPL(__get_vm_area);
1195 struct vm_struct *__get_vm_area_caller(unsigned long size, unsigned long flags,
1196 unsigned long start, unsigned long end,
1197 void *caller)
1199 return __get_vm_area_node(size, flags, start, end, -1, GFP_KERNEL,
1200 caller);
1204 * get_vm_area - reserve a contiguous kernel virtual area
1205 * @size: size of the area
1206 * @flags: %VM_IOREMAP for I/O mappings or VM_ALLOC
1208 * Search an area of @size in the kernel virtual mapping area,
1209 * and reserved it for out purposes. Returns the area descriptor
1210 * on success or %NULL on failure.
1212 struct vm_struct *get_vm_area(unsigned long size, unsigned long flags)
1214 return __get_vm_area_node(size, flags, VMALLOC_START, VMALLOC_END,
1215 -1, GFP_KERNEL, __builtin_return_address(0));
1218 struct vm_struct *get_vm_area_caller(unsigned long size, unsigned long flags,
1219 void *caller)
1221 return __get_vm_area_node(size, flags, VMALLOC_START, VMALLOC_END,
1222 -1, GFP_KERNEL, caller);
1225 struct vm_struct *get_vm_area_node(unsigned long size, unsigned long flags,
1226 int node, gfp_t gfp_mask)
1228 return __get_vm_area_node(size, flags, VMALLOC_START, VMALLOC_END, node,
1229 gfp_mask, __builtin_return_address(0));
1232 static struct vm_struct *find_vm_area(const void *addr)
1234 struct vmap_area *va;
1236 va = find_vmap_area((unsigned long)addr);
1237 if (va && va->flags & VM_VM_AREA)
1238 return va->private;
1240 return NULL;
1244 * remove_vm_area - find and remove a continuous kernel virtual area
1245 * @addr: base address
1247 * Search for the kernel VM area starting at @addr, and remove it.
1248 * This function returns the found VM area, but using it is NOT safe
1249 * on SMP machines, except for its size or flags.
1251 struct vm_struct *remove_vm_area(const void *addr)
1253 struct vmap_area *va;
1255 va = find_vmap_area((unsigned long)addr);
1256 if (va && va->flags & VM_VM_AREA) {
1257 struct vm_struct *vm = va->private;
1258 struct vm_struct *tmp, **p;
1260 vmap_debug_free_range(va->va_start, va->va_end);
1261 free_unmap_vmap_area(va);
1262 vm->size -= PAGE_SIZE;
1264 write_lock(&vmlist_lock);
1265 for (p = &vmlist; (tmp = *p) != vm; p = &tmp->next)
1267 *p = tmp->next;
1268 write_unlock(&vmlist_lock);
1270 return vm;
1272 return NULL;
1275 static void __vunmap(const void *addr, int deallocate_pages)
1277 struct vm_struct *area;
1279 if (!addr)
1280 return;
1282 if ((PAGE_SIZE-1) & (unsigned long)addr) {
1283 WARN(1, KERN_ERR "Trying to vfree() bad address (%p)\n", addr);
1284 return;
1287 area = remove_vm_area(addr);
1288 if (unlikely(!area)) {
1289 WARN(1, KERN_ERR "Trying to vfree() nonexistent vm area (%p)\n",
1290 addr);
1291 return;
1294 debug_check_no_locks_freed(addr, area->size);
1295 debug_check_no_obj_freed(addr, area->size);
1297 if (deallocate_pages) {
1298 int i;
1300 for (i = 0; i < area->nr_pages; i++) {
1301 struct page *page = area->pages[i];
1303 BUG_ON(!page);
1304 __free_page(page);
1307 if (area->flags & VM_VPAGES)
1308 vfree(area->pages);
1309 else
1310 kfree(area->pages);
1313 kfree(area);
1314 return;
1318 * vfree - release memory allocated by vmalloc()
1319 * @addr: memory base address
1321 * Free the virtually continuous memory area starting at @addr, as
1322 * obtained from vmalloc(), vmalloc_32() or __vmalloc(). If @addr is
1323 * NULL, no operation is performed.
1325 * Must not be called in interrupt context.
1327 void vfree(const void *addr)
1329 BUG_ON(in_interrupt());
1331 kmemleak_free(addr);
1333 __vunmap(addr, 1);
1335 EXPORT_SYMBOL(vfree);
1338 * vunmap - release virtual mapping obtained by vmap()
1339 * @addr: memory base address
1341 * Free the virtually contiguous memory area starting at @addr,
1342 * which was created from the page array passed to vmap().
1344 * Must not be called in interrupt context.
1346 void vunmap(const void *addr)
1348 BUG_ON(in_interrupt());
1349 might_sleep();
1350 __vunmap(addr, 0);
1352 EXPORT_SYMBOL(vunmap);
1355 * vmap - map an array of pages into virtually contiguous space
1356 * @pages: array of page pointers
1357 * @count: number of pages to map
1358 * @flags: vm_area->flags
1359 * @prot: page protection for the mapping
1361 * Maps @count pages from @pages into contiguous kernel virtual
1362 * space.
1364 void *vmap(struct page **pages, unsigned int count,
1365 unsigned long flags, pgprot_t prot)
1367 struct vm_struct *area;
1369 might_sleep();
1371 if (count > num_physpages)
1372 return NULL;
1374 area = get_vm_area_caller((count << PAGE_SHIFT), flags,
1375 __builtin_return_address(0));
1376 if (!area)
1377 return NULL;
1379 if (map_vm_area(area, prot, &pages)) {
1380 vunmap(area->addr);
1381 return NULL;
1384 return area->addr;
1386 EXPORT_SYMBOL(vmap);
1388 static void *__vmalloc_node(unsigned long size, gfp_t gfp_mask, pgprot_t prot,
1389 int node, void *caller);
1390 static void *__vmalloc_area_node(struct vm_struct *area, gfp_t gfp_mask,
1391 pgprot_t prot, int node, void *caller)
1393 struct page **pages;
1394 unsigned int nr_pages, array_size, i;
1396 nr_pages = (area->size - PAGE_SIZE) >> PAGE_SHIFT;
1397 array_size = (nr_pages * sizeof(struct page *));
1399 area->nr_pages = nr_pages;
1400 /* Please note that the recursion is strictly bounded. */
1401 if (array_size > PAGE_SIZE) {
1402 pages = __vmalloc_node(array_size, gfp_mask | __GFP_ZERO,
1403 PAGE_KERNEL, node, caller);
1404 area->flags |= VM_VPAGES;
1405 } else {
1406 pages = kmalloc_node(array_size,
1407 (gfp_mask & GFP_RECLAIM_MASK) | __GFP_ZERO,
1408 node);
1410 area->pages = pages;
1411 area->caller = caller;
1412 if (!area->pages) {
1413 remove_vm_area(area->addr);
1414 kfree(area);
1415 return NULL;
1418 for (i = 0; i < area->nr_pages; i++) {
1419 struct page *page;
1421 if (node < 0)
1422 page = alloc_page(gfp_mask);
1423 else
1424 page = alloc_pages_node(node, gfp_mask, 0);
1426 if (unlikely(!page)) {
1427 /* Successfully allocated i pages, free them in __vunmap() */
1428 area->nr_pages = i;
1429 goto fail;
1431 area->pages[i] = page;
1434 if (map_vm_area(area, prot, &pages))
1435 goto fail;
1436 return area->addr;
1438 fail:
1439 vfree(area->addr);
1440 return NULL;
1443 void *__vmalloc_area(struct vm_struct *area, gfp_t gfp_mask, pgprot_t prot)
1445 void *addr = __vmalloc_area_node(area, gfp_mask, prot, -1,
1446 __builtin_return_address(0));
1449 * A ref_count = 3 is needed because the vm_struct and vmap_area
1450 * structures allocated in the __get_vm_area_node() function contain
1451 * references to the virtual address of the vmalloc'ed block.
1453 kmemleak_alloc(addr, area->size - PAGE_SIZE, 3, gfp_mask);
1455 return addr;
1459 * __vmalloc_node - allocate virtually contiguous memory
1460 * @size: allocation size
1461 * @gfp_mask: flags for the page level allocator
1462 * @prot: protection mask for the allocated pages
1463 * @node: node to use for allocation or -1
1464 * @caller: caller's return address
1466 * Allocate enough pages to cover @size from the page level
1467 * allocator with @gfp_mask flags. Map them into contiguous
1468 * kernel virtual space, using a pagetable protection of @prot.
1470 static void *__vmalloc_node(unsigned long size, gfp_t gfp_mask, pgprot_t prot,
1471 int node, void *caller)
1473 struct vm_struct *area;
1474 void *addr;
1475 unsigned long real_size = size;
1477 size = PAGE_ALIGN(size);
1478 if (!size || (size >> PAGE_SHIFT) > num_physpages)
1479 return NULL;
1481 area = __get_vm_area_node(size, VM_ALLOC, VMALLOC_START, VMALLOC_END,
1482 node, gfp_mask, caller);
1484 if (!area)
1485 return NULL;
1487 addr = __vmalloc_area_node(area, gfp_mask, prot, node, caller);
1490 * A ref_count = 3 is needed because the vm_struct and vmap_area
1491 * structures allocated in the __get_vm_area_node() function contain
1492 * references to the virtual address of the vmalloc'ed block.
1494 kmemleak_alloc(addr, real_size, 3, gfp_mask);
1496 return addr;
1499 void *__vmalloc(unsigned long size, gfp_t gfp_mask, pgprot_t prot)
1501 return __vmalloc_node(size, gfp_mask, prot, -1,
1502 __builtin_return_address(0));
1504 EXPORT_SYMBOL(__vmalloc);
1507 * vmalloc - allocate virtually contiguous memory
1508 * @size: allocation size
1509 * Allocate enough pages to cover @size from the page level
1510 * allocator and map them into contiguous kernel virtual space.
1512 * For tight control over page level allocator and protection flags
1513 * use __vmalloc() instead.
1515 void *vmalloc(unsigned long size)
1517 return __vmalloc_node(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL,
1518 -1, __builtin_return_address(0));
1520 EXPORT_SYMBOL(vmalloc);
1523 * vmalloc_user - allocate zeroed virtually contiguous memory for userspace
1524 * @size: allocation size
1526 * The resulting memory area is zeroed so it can be mapped to userspace
1527 * without leaking data.
1529 void *vmalloc_user(unsigned long size)
1531 struct vm_struct *area;
1532 void *ret;
1534 ret = __vmalloc_node(size, GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO,
1535 PAGE_KERNEL, -1, __builtin_return_address(0));
1536 if (ret) {
1537 area = find_vm_area(ret);
1538 area->flags |= VM_USERMAP;
1540 return ret;
1542 EXPORT_SYMBOL(vmalloc_user);
1545 * vmalloc_node - allocate memory on a specific node
1546 * @size: allocation size
1547 * @node: numa node
1549 * Allocate enough pages to cover @size from the page level
1550 * allocator and map them into contiguous kernel virtual space.
1552 * For tight control over page level allocator and protection flags
1553 * use __vmalloc() instead.
1555 void *vmalloc_node(unsigned long size, int node)
1557 return __vmalloc_node(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL,
1558 node, __builtin_return_address(0));
1560 EXPORT_SYMBOL(vmalloc_node);
1562 #ifndef PAGE_KERNEL_EXEC
1563 # define PAGE_KERNEL_EXEC PAGE_KERNEL
1564 #endif
1567 * vmalloc_exec - allocate virtually contiguous, executable memory
1568 * @size: allocation size
1570 * Kernel-internal function to allocate enough pages to cover @size
1571 * the page level allocator and map them into contiguous and
1572 * executable kernel virtual space.
1574 * For tight control over page level allocator and protection flags
1575 * use __vmalloc() instead.
1578 void *vmalloc_exec(unsigned long size)
1580 return __vmalloc_node(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL_EXEC,
1581 -1, __builtin_return_address(0));
1584 #if defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA32)
1585 #define GFP_VMALLOC32 GFP_DMA32 | GFP_KERNEL
1586 #elif defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA)
1587 #define GFP_VMALLOC32 GFP_DMA | GFP_KERNEL
1588 #else
1589 #define GFP_VMALLOC32 GFP_KERNEL
1590 #endif
1593 * vmalloc_32 - allocate virtually contiguous memory (32bit addressable)
1594 * @size: allocation size
1596 * Allocate enough 32bit PA addressable pages to cover @size from the
1597 * page level allocator and map them into contiguous kernel virtual space.
1599 void *vmalloc_32(unsigned long size)
1601 return __vmalloc_node(size, GFP_VMALLOC32, PAGE_KERNEL,
1602 -1, __builtin_return_address(0));
1604 EXPORT_SYMBOL(vmalloc_32);
1607 * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory
1608 * @size: allocation size
1610 * The resulting memory area is 32bit addressable and zeroed so it can be
1611 * mapped to userspace without leaking data.
1613 void *vmalloc_32_user(unsigned long size)
1615 struct vm_struct *area;
1616 void *ret;
1618 ret = __vmalloc_node(size, GFP_VMALLOC32 | __GFP_ZERO, PAGE_KERNEL,
1619 -1, __builtin_return_address(0));
1620 if (ret) {
1621 area = find_vm_area(ret);
1622 area->flags |= VM_USERMAP;
1624 return ret;
1626 EXPORT_SYMBOL(vmalloc_32_user);
1628 long vread(char *buf, char *addr, unsigned long count)
1630 struct vm_struct *tmp;
1631 char *vaddr, *buf_start = buf;
1632 unsigned long n;
1634 /* Don't allow overflow */
1635 if ((unsigned long) addr + count < count)
1636 count = -(unsigned long) addr;
1638 read_lock(&vmlist_lock);
1639 for (tmp = vmlist; tmp; tmp = tmp->next) {
1640 vaddr = (char *) tmp->addr;
1641 if (addr >= vaddr + tmp->size - PAGE_SIZE)
1642 continue;
1643 while (addr < vaddr) {
1644 if (count == 0)
1645 goto finished;
1646 *buf = '\0';
1647 buf++;
1648 addr++;
1649 count--;
1651 n = vaddr + tmp->size - PAGE_SIZE - addr;
1652 do {
1653 if (count == 0)
1654 goto finished;
1655 *buf = *addr;
1656 buf++;
1657 addr++;
1658 count--;
1659 } while (--n > 0);
1661 finished:
1662 read_unlock(&vmlist_lock);
1663 return buf - buf_start;
1666 long vwrite(char *buf, char *addr, unsigned long count)
1668 struct vm_struct *tmp;
1669 char *vaddr, *buf_start = buf;
1670 unsigned long n;
1672 /* Don't allow overflow */
1673 if ((unsigned long) addr + count < count)
1674 count = -(unsigned long) addr;
1676 read_lock(&vmlist_lock);
1677 for (tmp = vmlist; tmp; tmp = tmp->next) {
1678 vaddr = (char *) tmp->addr;
1679 if (addr >= vaddr + tmp->size - PAGE_SIZE)
1680 continue;
1681 while (addr < vaddr) {
1682 if (count == 0)
1683 goto finished;
1684 buf++;
1685 addr++;
1686 count--;
1688 n = vaddr + tmp->size - PAGE_SIZE - addr;
1689 do {
1690 if (count == 0)
1691 goto finished;
1692 *addr = *buf;
1693 buf++;
1694 addr++;
1695 count--;
1696 } while (--n > 0);
1698 finished:
1699 read_unlock(&vmlist_lock);
1700 return buf - buf_start;
1704 * remap_vmalloc_range - map vmalloc pages to userspace
1705 * @vma: vma to cover (map full range of vma)
1706 * @addr: vmalloc memory
1707 * @pgoff: number of pages into addr before first page to map
1709 * Returns: 0 for success, -Exxx on failure
1711 * This function checks that addr is a valid vmalloc'ed area, and
1712 * that it is big enough to cover the vma. Will return failure if
1713 * that criteria isn't met.
1715 * Similar to remap_pfn_range() (see mm/memory.c)
1717 int remap_vmalloc_range(struct vm_area_struct *vma, void *addr,
1718 unsigned long pgoff)
1720 struct vm_struct *area;
1721 unsigned long uaddr = vma->vm_start;
1722 unsigned long usize = vma->vm_end - vma->vm_start;
1724 if ((PAGE_SIZE-1) & (unsigned long)addr)
1725 return -EINVAL;
1727 area = find_vm_area(addr);
1728 if (!area)
1729 return -EINVAL;
1731 if (!(area->flags & VM_USERMAP))
1732 return -EINVAL;
1734 if (usize + (pgoff << PAGE_SHIFT) > area->size - PAGE_SIZE)
1735 return -EINVAL;
1737 addr += pgoff << PAGE_SHIFT;
1738 do {
1739 struct page *page = vmalloc_to_page(addr);
1740 int ret;
1742 ret = vm_insert_page(vma, uaddr, page);
1743 if (ret)
1744 return ret;
1746 uaddr += PAGE_SIZE;
1747 addr += PAGE_SIZE;
1748 usize -= PAGE_SIZE;
1749 } while (usize > 0);
1751 /* Prevent "things" like memory migration? VM_flags need a cleanup... */
1752 vma->vm_flags |= VM_RESERVED;
1754 return 0;
1756 EXPORT_SYMBOL(remap_vmalloc_range);
1759 * Implement a stub for vmalloc_sync_all() if the architecture chose not to
1760 * have one.
1762 void __attribute__((weak)) vmalloc_sync_all(void)
1767 static int f(pte_t *pte, pgtable_t table, unsigned long addr, void *data)
1769 /* apply_to_page_range() does all the hard work. */
1770 return 0;
1774 * alloc_vm_area - allocate a range of kernel address space
1775 * @size: size of the area
1777 * Returns: NULL on failure, vm_struct on success
1779 * This function reserves a range of kernel address space, and
1780 * allocates pagetables to map that range. No actual mappings
1781 * are created. If the kernel address space is not shared
1782 * between processes, it syncs the pagetable across all
1783 * processes.
1785 struct vm_struct *alloc_vm_area(size_t size)
1787 struct vm_struct *area;
1789 area = get_vm_area_caller(size, VM_IOREMAP,
1790 __builtin_return_address(0));
1791 if (area == NULL)
1792 return NULL;
1795 * This ensures that page tables are constructed for this region
1796 * of kernel virtual address space and mapped into init_mm.
1798 if (apply_to_page_range(&init_mm, (unsigned long)area->addr,
1799 area->size, f, NULL)) {
1800 free_vm_area(area);
1801 return NULL;
1804 /* Make sure the pagetables are constructed in process kernel
1805 mappings */
1806 vmalloc_sync_all();
1808 return area;
1810 EXPORT_SYMBOL_GPL(alloc_vm_area);
1812 void free_vm_area(struct vm_struct *area)
1814 struct vm_struct *ret;
1815 ret = remove_vm_area(area->addr);
1816 BUG_ON(ret != area);
1817 kfree(area);
1819 EXPORT_SYMBOL_GPL(free_vm_area);
1822 #ifdef CONFIG_PROC_FS
1823 static void *s_start(struct seq_file *m, loff_t *pos)
1825 loff_t n = *pos;
1826 struct vm_struct *v;
1828 read_lock(&vmlist_lock);
1829 v = vmlist;
1830 while (n > 0 && v) {
1831 n--;
1832 v = v->next;
1834 if (!n)
1835 return v;
1837 return NULL;
1841 static void *s_next(struct seq_file *m, void *p, loff_t *pos)
1843 struct vm_struct *v = p;
1845 ++*pos;
1846 return v->next;
1849 static void s_stop(struct seq_file *m, void *p)
1851 read_unlock(&vmlist_lock);
1854 static void show_numa_info(struct seq_file *m, struct vm_struct *v)
1856 if (NUMA_BUILD) {
1857 unsigned int nr, *counters = m->private;
1859 if (!counters)
1860 return;
1862 memset(counters, 0, nr_node_ids * sizeof(unsigned int));
1864 for (nr = 0; nr < v->nr_pages; nr++)
1865 counters[page_to_nid(v->pages[nr])]++;
1867 for_each_node_state(nr, N_HIGH_MEMORY)
1868 if (counters[nr])
1869 seq_printf(m, " N%u=%u", nr, counters[nr]);
1873 static int s_show(struct seq_file *m, void *p)
1875 struct vm_struct *v = p;
1877 seq_printf(m, "0x%p-0x%p %7ld",
1878 v->addr, v->addr + v->size, v->size);
1880 if (v->caller) {
1881 char buff[KSYM_SYMBOL_LEN];
1883 seq_putc(m, ' ');
1884 sprint_symbol(buff, (unsigned long)v->caller);
1885 seq_puts(m, buff);
1888 if (v->nr_pages)
1889 seq_printf(m, " pages=%d", v->nr_pages);
1891 if (v->phys_addr)
1892 seq_printf(m, " phys=%lx", v->phys_addr);
1894 if (v->flags & VM_IOREMAP)
1895 seq_printf(m, " ioremap");
1897 if (v->flags & VM_ALLOC)
1898 seq_printf(m, " vmalloc");
1900 if (v->flags & VM_MAP)
1901 seq_printf(m, " vmap");
1903 if (v->flags & VM_USERMAP)
1904 seq_printf(m, " user");
1906 if (v->flags & VM_VPAGES)
1907 seq_printf(m, " vpages");
1909 show_numa_info(m, v);
1910 seq_putc(m, '\n');
1911 return 0;
1914 static const struct seq_operations vmalloc_op = {
1915 .start = s_start,
1916 .next = s_next,
1917 .stop = s_stop,
1918 .show = s_show,
1921 static int vmalloc_open(struct inode *inode, struct file *file)
1923 unsigned int *ptr = NULL;
1924 int ret;
1926 if (NUMA_BUILD)
1927 ptr = kmalloc(nr_node_ids * sizeof(unsigned int), GFP_KERNEL);
1928 ret = seq_open(file, &vmalloc_op);
1929 if (!ret) {
1930 struct seq_file *m = file->private_data;
1931 m->private = ptr;
1932 } else
1933 kfree(ptr);
1934 return ret;
1937 static const struct file_operations proc_vmalloc_operations = {
1938 .open = vmalloc_open,
1939 .read = seq_read,
1940 .llseek = seq_lseek,
1941 .release = seq_release_private,
1944 static int __init proc_vmalloc_init(void)
1946 proc_create("vmallocinfo", S_IRUSR, NULL, &proc_vmalloc_operations);
1947 return 0;
1949 module_init(proc_vmalloc_init);
1950 #endif