MAINTAINERS: update wireless.h path
[linux-2.6/mini2440.git] / fs / namespace.c
blob2dd333b0fe7f660a623abcfbec06dfa459720d80
1 /*
2 * linux/fs/namespace.c
4 * (C) Copyright Al Viro 2000, 2001
5 * Released under GPL v2.
7 * Based on code from fs/super.c, copyright Linus Torvalds and others.
8 * Heavily rewritten.
9 */
11 #include <linux/syscalls.h>
12 #include <linux/slab.h>
13 #include <linux/sched.h>
14 #include <linux/smp_lock.h>
15 #include <linux/init.h>
16 #include <linux/kernel.h>
17 #include <linux/acct.h>
18 #include <linux/capability.h>
19 #include <linux/cpumask.h>
20 #include <linux/module.h>
21 #include <linux/sysfs.h>
22 #include <linux/seq_file.h>
23 #include <linux/mnt_namespace.h>
24 #include <linux/namei.h>
25 #include <linux/security.h>
26 #include <linux/mount.h>
27 #include <linux/ramfs.h>
28 #include <linux/log2.h>
29 #include <linux/idr.h>
30 #include <linux/fs_struct.h>
31 #include <asm/uaccess.h>
32 #include <asm/unistd.h>
33 #include "pnode.h"
34 #include "internal.h"
36 #define HASH_SHIFT ilog2(PAGE_SIZE / sizeof(struct list_head))
37 #define HASH_SIZE (1UL << HASH_SHIFT)
39 /* spinlock for vfsmount related operations, inplace of dcache_lock */
40 __cacheline_aligned_in_smp DEFINE_SPINLOCK(vfsmount_lock);
42 static int event;
43 static DEFINE_IDA(mnt_id_ida);
44 static DEFINE_IDA(mnt_group_ida);
46 static struct list_head *mount_hashtable __read_mostly;
47 static struct kmem_cache *mnt_cache __read_mostly;
48 static struct rw_semaphore namespace_sem;
50 /* /sys/fs */
51 struct kobject *fs_kobj;
52 EXPORT_SYMBOL_GPL(fs_kobj);
54 static inline unsigned long hash(struct vfsmount *mnt, struct dentry *dentry)
56 unsigned long tmp = ((unsigned long)mnt / L1_CACHE_BYTES);
57 tmp += ((unsigned long)dentry / L1_CACHE_BYTES);
58 tmp = tmp + (tmp >> HASH_SHIFT);
59 return tmp & (HASH_SIZE - 1);
62 #define MNT_WRITER_UNDERFLOW_LIMIT -(1<<16)
64 /* allocation is serialized by namespace_sem */
65 static int mnt_alloc_id(struct vfsmount *mnt)
67 int res;
69 retry:
70 ida_pre_get(&mnt_id_ida, GFP_KERNEL);
71 spin_lock(&vfsmount_lock);
72 res = ida_get_new(&mnt_id_ida, &mnt->mnt_id);
73 spin_unlock(&vfsmount_lock);
74 if (res == -EAGAIN)
75 goto retry;
77 return res;
80 static void mnt_free_id(struct vfsmount *mnt)
82 spin_lock(&vfsmount_lock);
83 ida_remove(&mnt_id_ida, mnt->mnt_id);
84 spin_unlock(&vfsmount_lock);
88 * Allocate a new peer group ID
90 * mnt_group_ida is protected by namespace_sem
92 static int mnt_alloc_group_id(struct vfsmount *mnt)
94 if (!ida_pre_get(&mnt_group_ida, GFP_KERNEL))
95 return -ENOMEM;
97 return ida_get_new_above(&mnt_group_ida, 1, &mnt->mnt_group_id);
101 * Release a peer group ID
103 void mnt_release_group_id(struct vfsmount *mnt)
105 ida_remove(&mnt_group_ida, mnt->mnt_group_id);
106 mnt->mnt_group_id = 0;
109 struct vfsmount *alloc_vfsmnt(const char *name)
111 struct vfsmount *mnt = kmem_cache_zalloc(mnt_cache, GFP_KERNEL);
112 if (mnt) {
113 int err;
115 err = mnt_alloc_id(mnt);
116 if (err)
117 goto out_free_cache;
119 if (name) {
120 mnt->mnt_devname = kstrdup(name, GFP_KERNEL);
121 if (!mnt->mnt_devname)
122 goto out_free_id;
125 atomic_set(&mnt->mnt_count, 1);
126 INIT_LIST_HEAD(&mnt->mnt_hash);
127 INIT_LIST_HEAD(&mnt->mnt_child);
128 INIT_LIST_HEAD(&mnt->mnt_mounts);
129 INIT_LIST_HEAD(&mnt->mnt_list);
130 INIT_LIST_HEAD(&mnt->mnt_expire);
131 INIT_LIST_HEAD(&mnt->mnt_share);
132 INIT_LIST_HEAD(&mnt->mnt_slave_list);
133 INIT_LIST_HEAD(&mnt->mnt_slave);
134 #ifdef CONFIG_SMP
135 mnt->mnt_writers = alloc_percpu(int);
136 if (!mnt->mnt_writers)
137 goto out_free_devname;
138 #else
139 mnt->mnt_writers = 0;
140 #endif
142 return mnt;
144 #ifdef CONFIG_SMP
145 out_free_devname:
146 kfree(mnt->mnt_devname);
147 #endif
148 out_free_id:
149 mnt_free_id(mnt);
150 out_free_cache:
151 kmem_cache_free(mnt_cache, mnt);
152 return NULL;
156 * Most r/o checks on a fs are for operations that take
157 * discrete amounts of time, like a write() or unlink().
158 * We must keep track of when those operations start
159 * (for permission checks) and when they end, so that
160 * we can determine when writes are able to occur to
161 * a filesystem.
164 * __mnt_is_readonly: check whether a mount is read-only
165 * @mnt: the mount to check for its write status
167 * This shouldn't be used directly ouside of the VFS.
168 * It does not guarantee that the filesystem will stay
169 * r/w, just that it is right *now*. This can not and
170 * should not be used in place of IS_RDONLY(inode).
171 * mnt_want/drop_write() will _keep_ the filesystem
172 * r/w.
174 int __mnt_is_readonly(struct vfsmount *mnt)
176 if (mnt->mnt_flags & MNT_READONLY)
177 return 1;
178 if (mnt->mnt_sb->s_flags & MS_RDONLY)
179 return 1;
180 return 0;
182 EXPORT_SYMBOL_GPL(__mnt_is_readonly);
184 static inline void inc_mnt_writers(struct vfsmount *mnt)
186 #ifdef CONFIG_SMP
187 (*per_cpu_ptr(mnt->mnt_writers, smp_processor_id()))++;
188 #else
189 mnt->mnt_writers++;
190 #endif
193 static inline void dec_mnt_writers(struct vfsmount *mnt)
195 #ifdef CONFIG_SMP
196 (*per_cpu_ptr(mnt->mnt_writers, smp_processor_id()))--;
197 #else
198 mnt->mnt_writers--;
199 #endif
202 static unsigned int count_mnt_writers(struct vfsmount *mnt)
204 #ifdef CONFIG_SMP
205 unsigned int count = 0;
206 int cpu;
208 for_each_possible_cpu(cpu) {
209 count += *per_cpu_ptr(mnt->mnt_writers, cpu);
212 return count;
213 #else
214 return mnt->mnt_writers;
215 #endif
219 * Most r/o checks on a fs are for operations that take
220 * discrete amounts of time, like a write() or unlink().
221 * We must keep track of when those operations start
222 * (for permission checks) and when they end, so that
223 * we can determine when writes are able to occur to
224 * a filesystem.
227 * mnt_want_write - get write access to a mount
228 * @mnt: the mount on which to take a write
230 * This tells the low-level filesystem that a write is
231 * about to be performed to it, and makes sure that
232 * writes are allowed before returning success. When
233 * the write operation is finished, mnt_drop_write()
234 * must be called. This is effectively a refcount.
236 int mnt_want_write(struct vfsmount *mnt)
238 int ret = 0;
240 preempt_disable();
241 inc_mnt_writers(mnt);
243 * The store to inc_mnt_writers must be visible before we pass
244 * MNT_WRITE_HOLD loop below, so that the slowpath can see our
245 * incremented count after it has set MNT_WRITE_HOLD.
247 smp_mb();
248 while (mnt->mnt_flags & MNT_WRITE_HOLD)
249 cpu_relax();
251 * After the slowpath clears MNT_WRITE_HOLD, mnt_is_readonly will
252 * be set to match its requirements. So we must not load that until
253 * MNT_WRITE_HOLD is cleared.
255 smp_rmb();
256 if (__mnt_is_readonly(mnt)) {
257 dec_mnt_writers(mnt);
258 ret = -EROFS;
259 goto out;
261 out:
262 preempt_enable();
263 return ret;
265 EXPORT_SYMBOL_GPL(mnt_want_write);
268 * mnt_clone_write - get write access to a mount
269 * @mnt: the mount on which to take a write
271 * This is effectively like mnt_want_write, except
272 * it must only be used to take an extra write reference
273 * on a mountpoint that we already know has a write reference
274 * on it. This allows some optimisation.
276 * After finished, mnt_drop_write must be called as usual to
277 * drop the reference.
279 int mnt_clone_write(struct vfsmount *mnt)
281 /* superblock may be r/o */
282 if (__mnt_is_readonly(mnt))
283 return -EROFS;
284 preempt_disable();
285 inc_mnt_writers(mnt);
286 preempt_enable();
287 return 0;
289 EXPORT_SYMBOL_GPL(mnt_clone_write);
292 * mnt_want_write_file - get write access to a file's mount
293 * @file: the file who's mount on which to take a write
295 * This is like mnt_want_write, but it takes a file and can
296 * do some optimisations if the file is open for write already
298 int mnt_want_write_file(struct file *file)
300 if (!(file->f_mode & FMODE_WRITE))
301 return mnt_want_write(file->f_path.mnt);
302 else
303 return mnt_clone_write(file->f_path.mnt);
305 EXPORT_SYMBOL_GPL(mnt_want_write_file);
308 * mnt_drop_write - give up write access to a mount
309 * @mnt: the mount on which to give up write access
311 * Tells the low-level filesystem that we are done
312 * performing writes to it. Must be matched with
313 * mnt_want_write() call above.
315 void mnt_drop_write(struct vfsmount *mnt)
317 preempt_disable();
318 dec_mnt_writers(mnt);
319 preempt_enable();
321 EXPORT_SYMBOL_GPL(mnt_drop_write);
323 static int mnt_make_readonly(struct vfsmount *mnt)
325 int ret = 0;
327 spin_lock(&vfsmount_lock);
328 mnt->mnt_flags |= MNT_WRITE_HOLD;
330 * After storing MNT_WRITE_HOLD, we'll read the counters. This store
331 * should be visible before we do.
333 smp_mb();
336 * With writers on hold, if this value is zero, then there are
337 * definitely no active writers (although held writers may subsequently
338 * increment the count, they'll have to wait, and decrement it after
339 * seeing MNT_READONLY).
341 * It is OK to have counter incremented on one CPU and decremented on
342 * another: the sum will add up correctly. The danger would be when we
343 * sum up each counter, if we read a counter before it is incremented,
344 * but then read another CPU's count which it has been subsequently
345 * decremented from -- we would see more decrements than we should.
346 * MNT_WRITE_HOLD protects against this scenario, because
347 * mnt_want_write first increments count, then smp_mb, then spins on
348 * MNT_WRITE_HOLD, so it can't be decremented by another CPU while
349 * we're counting up here.
351 if (count_mnt_writers(mnt) > 0)
352 ret = -EBUSY;
353 else
354 mnt->mnt_flags |= MNT_READONLY;
356 * MNT_READONLY must become visible before ~MNT_WRITE_HOLD, so writers
357 * that become unheld will see MNT_READONLY.
359 smp_wmb();
360 mnt->mnt_flags &= ~MNT_WRITE_HOLD;
361 spin_unlock(&vfsmount_lock);
362 return ret;
365 static void __mnt_unmake_readonly(struct vfsmount *mnt)
367 spin_lock(&vfsmount_lock);
368 mnt->mnt_flags &= ~MNT_READONLY;
369 spin_unlock(&vfsmount_lock);
372 void simple_set_mnt(struct vfsmount *mnt, struct super_block *sb)
374 mnt->mnt_sb = sb;
375 mnt->mnt_root = dget(sb->s_root);
378 EXPORT_SYMBOL(simple_set_mnt);
380 void free_vfsmnt(struct vfsmount *mnt)
382 kfree(mnt->mnt_devname);
383 mnt_free_id(mnt);
384 #ifdef CONFIG_SMP
385 free_percpu(mnt->mnt_writers);
386 #endif
387 kmem_cache_free(mnt_cache, mnt);
391 * find the first or last mount at @dentry on vfsmount @mnt depending on
392 * @dir. If @dir is set return the first mount else return the last mount.
394 struct vfsmount *__lookup_mnt(struct vfsmount *mnt, struct dentry *dentry,
395 int dir)
397 struct list_head *head = mount_hashtable + hash(mnt, dentry);
398 struct list_head *tmp = head;
399 struct vfsmount *p, *found = NULL;
401 for (;;) {
402 tmp = dir ? tmp->next : tmp->prev;
403 p = NULL;
404 if (tmp == head)
405 break;
406 p = list_entry(tmp, struct vfsmount, mnt_hash);
407 if (p->mnt_parent == mnt && p->mnt_mountpoint == dentry) {
408 found = p;
409 break;
412 return found;
416 * lookup_mnt increments the ref count before returning
417 * the vfsmount struct.
419 struct vfsmount *lookup_mnt(struct path *path)
421 struct vfsmount *child_mnt;
422 spin_lock(&vfsmount_lock);
423 if ((child_mnt = __lookup_mnt(path->mnt, path->dentry, 1)))
424 mntget(child_mnt);
425 spin_unlock(&vfsmount_lock);
426 return child_mnt;
429 static inline int check_mnt(struct vfsmount *mnt)
431 return mnt->mnt_ns == current->nsproxy->mnt_ns;
434 static void touch_mnt_namespace(struct mnt_namespace *ns)
436 if (ns) {
437 ns->event = ++event;
438 wake_up_interruptible(&ns->poll);
442 static void __touch_mnt_namespace(struct mnt_namespace *ns)
444 if (ns && ns->event != event) {
445 ns->event = event;
446 wake_up_interruptible(&ns->poll);
450 static void detach_mnt(struct vfsmount *mnt, struct path *old_path)
452 old_path->dentry = mnt->mnt_mountpoint;
453 old_path->mnt = mnt->mnt_parent;
454 mnt->mnt_parent = mnt;
455 mnt->mnt_mountpoint = mnt->mnt_root;
456 list_del_init(&mnt->mnt_child);
457 list_del_init(&mnt->mnt_hash);
458 old_path->dentry->d_mounted--;
461 void mnt_set_mountpoint(struct vfsmount *mnt, struct dentry *dentry,
462 struct vfsmount *child_mnt)
464 child_mnt->mnt_parent = mntget(mnt);
465 child_mnt->mnt_mountpoint = dget(dentry);
466 dentry->d_mounted++;
469 static void attach_mnt(struct vfsmount *mnt, struct path *path)
471 mnt_set_mountpoint(path->mnt, path->dentry, mnt);
472 list_add_tail(&mnt->mnt_hash, mount_hashtable +
473 hash(path->mnt, path->dentry));
474 list_add_tail(&mnt->mnt_child, &path->mnt->mnt_mounts);
478 * the caller must hold vfsmount_lock
480 static void commit_tree(struct vfsmount *mnt)
482 struct vfsmount *parent = mnt->mnt_parent;
483 struct vfsmount *m;
484 LIST_HEAD(head);
485 struct mnt_namespace *n = parent->mnt_ns;
487 BUG_ON(parent == mnt);
489 list_add_tail(&head, &mnt->mnt_list);
490 list_for_each_entry(m, &head, mnt_list)
491 m->mnt_ns = n;
492 list_splice(&head, n->list.prev);
494 list_add_tail(&mnt->mnt_hash, mount_hashtable +
495 hash(parent, mnt->mnt_mountpoint));
496 list_add_tail(&mnt->mnt_child, &parent->mnt_mounts);
497 touch_mnt_namespace(n);
500 static struct vfsmount *next_mnt(struct vfsmount *p, struct vfsmount *root)
502 struct list_head *next = p->mnt_mounts.next;
503 if (next == &p->mnt_mounts) {
504 while (1) {
505 if (p == root)
506 return NULL;
507 next = p->mnt_child.next;
508 if (next != &p->mnt_parent->mnt_mounts)
509 break;
510 p = p->mnt_parent;
513 return list_entry(next, struct vfsmount, mnt_child);
516 static struct vfsmount *skip_mnt_tree(struct vfsmount *p)
518 struct list_head *prev = p->mnt_mounts.prev;
519 while (prev != &p->mnt_mounts) {
520 p = list_entry(prev, struct vfsmount, mnt_child);
521 prev = p->mnt_mounts.prev;
523 return p;
526 static struct vfsmount *clone_mnt(struct vfsmount *old, struct dentry *root,
527 int flag)
529 struct super_block *sb = old->mnt_sb;
530 struct vfsmount *mnt = alloc_vfsmnt(old->mnt_devname);
532 if (mnt) {
533 if (flag & (CL_SLAVE | CL_PRIVATE))
534 mnt->mnt_group_id = 0; /* not a peer of original */
535 else
536 mnt->mnt_group_id = old->mnt_group_id;
538 if ((flag & CL_MAKE_SHARED) && !mnt->mnt_group_id) {
539 int err = mnt_alloc_group_id(mnt);
540 if (err)
541 goto out_free;
544 mnt->mnt_flags = old->mnt_flags;
545 atomic_inc(&sb->s_active);
546 mnt->mnt_sb = sb;
547 mnt->mnt_root = dget(root);
548 mnt->mnt_mountpoint = mnt->mnt_root;
549 mnt->mnt_parent = mnt;
551 if (flag & CL_SLAVE) {
552 list_add(&mnt->mnt_slave, &old->mnt_slave_list);
553 mnt->mnt_master = old;
554 CLEAR_MNT_SHARED(mnt);
555 } else if (!(flag & CL_PRIVATE)) {
556 if ((flag & CL_PROPAGATION) || IS_MNT_SHARED(old))
557 list_add(&mnt->mnt_share, &old->mnt_share);
558 if (IS_MNT_SLAVE(old))
559 list_add(&mnt->mnt_slave, &old->mnt_slave);
560 mnt->mnt_master = old->mnt_master;
562 if (flag & CL_MAKE_SHARED)
563 set_mnt_shared(mnt);
565 /* stick the duplicate mount on the same expiry list
566 * as the original if that was on one */
567 if (flag & CL_EXPIRE) {
568 if (!list_empty(&old->mnt_expire))
569 list_add(&mnt->mnt_expire, &old->mnt_expire);
572 return mnt;
574 out_free:
575 free_vfsmnt(mnt);
576 return NULL;
579 static inline void __mntput(struct vfsmount *mnt)
581 struct super_block *sb = mnt->mnt_sb;
583 * This probably indicates that somebody messed
584 * up a mnt_want/drop_write() pair. If this
585 * happens, the filesystem was probably unable
586 * to make r/w->r/o transitions.
589 * atomic_dec_and_lock() used to deal with ->mnt_count decrements
590 * provides barriers, so count_mnt_writers() below is safe. AV
592 WARN_ON(count_mnt_writers(mnt));
593 dput(mnt->mnt_root);
594 free_vfsmnt(mnt);
595 deactivate_super(sb);
598 void mntput_no_expire(struct vfsmount *mnt)
600 repeat:
601 if (atomic_dec_and_lock(&mnt->mnt_count, &vfsmount_lock)) {
602 if (likely(!mnt->mnt_pinned)) {
603 spin_unlock(&vfsmount_lock);
604 __mntput(mnt);
605 return;
607 atomic_add(mnt->mnt_pinned + 1, &mnt->mnt_count);
608 mnt->mnt_pinned = 0;
609 spin_unlock(&vfsmount_lock);
610 acct_auto_close_mnt(mnt);
611 security_sb_umount_close(mnt);
612 goto repeat;
616 EXPORT_SYMBOL(mntput_no_expire);
618 void mnt_pin(struct vfsmount *mnt)
620 spin_lock(&vfsmount_lock);
621 mnt->mnt_pinned++;
622 spin_unlock(&vfsmount_lock);
625 EXPORT_SYMBOL(mnt_pin);
627 void mnt_unpin(struct vfsmount *mnt)
629 spin_lock(&vfsmount_lock);
630 if (mnt->mnt_pinned) {
631 atomic_inc(&mnt->mnt_count);
632 mnt->mnt_pinned--;
634 spin_unlock(&vfsmount_lock);
637 EXPORT_SYMBOL(mnt_unpin);
639 static inline void mangle(struct seq_file *m, const char *s)
641 seq_escape(m, s, " \t\n\\");
645 * Simple .show_options callback for filesystems which don't want to
646 * implement more complex mount option showing.
648 * See also save_mount_options().
650 int generic_show_options(struct seq_file *m, struct vfsmount *mnt)
652 const char *options;
654 rcu_read_lock();
655 options = rcu_dereference(mnt->mnt_sb->s_options);
657 if (options != NULL && options[0]) {
658 seq_putc(m, ',');
659 mangle(m, options);
661 rcu_read_unlock();
663 return 0;
665 EXPORT_SYMBOL(generic_show_options);
668 * If filesystem uses generic_show_options(), this function should be
669 * called from the fill_super() callback.
671 * The .remount_fs callback usually needs to be handled in a special
672 * way, to make sure, that previous options are not overwritten if the
673 * remount fails.
675 * Also note, that if the filesystem's .remount_fs function doesn't
676 * reset all options to their default value, but changes only newly
677 * given options, then the displayed options will not reflect reality
678 * any more.
680 void save_mount_options(struct super_block *sb, char *options)
682 BUG_ON(sb->s_options);
683 rcu_assign_pointer(sb->s_options, kstrdup(options, GFP_KERNEL));
685 EXPORT_SYMBOL(save_mount_options);
687 void replace_mount_options(struct super_block *sb, char *options)
689 char *old = sb->s_options;
690 rcu_assign_pointer(sb->s_options, options);
691 if (old) {
692 synchronize_rcu();
693 kfree(old);
696 EXPORT_SYMBOL(replace_mount_options);
698 #ifdef CONFIG_PROC_FS
699 /* iterator */
700 static void *m_start(struct seq_file *m, loff_t *pos)
702 struct proc_mounts *p = m->private;
704 down_read(&namespace_sem);
705 return seq_list_start(&p->ns->list, *pos);
708 static void *m_next(struct seq_file *m, void *v, loff_t *pos)
710 struct proc_mounts *p = m->private;
712 return seq_list_next(v, &p->ns->list, pos);
715 static void m_stop(struct seq_file *m, void *v)
717 up_read(&namespace_sem);
720 struct proc_fs_info {
721 int flag;
722 const char *str;
725 static int show_sb_opts(struct seq_file *m, struct super_block *sb)
727 static const struct proc_fs_info fs_info[] = {
728 { MS_SYNCHRONOUS, ",sync" },
729 { MS_DIRSYNC, ",dirsync" },
730 { MS_MANDLOCK, ",mand" },
731 { 0, NULL }
733 const struct proc_fs_info *fs_infop;
735 for (fs_infop = fs_info; fs_infop->flag; fs_infop++) {
736 if (sb->s_flags & fs_infop->flag)
737 seq_puts(m, fs_infop->str);
740 return security_sb_show_options(m, sb);
743 static void show_mnt_opts(struct seq_file *m, struct vfsmount *mnt)
745 static const struct proc_fs_info mnt_info[] = {
746 { MNT_NOSUID, ",nosuid" },
747 { MNT_NODEV, ",nodev" },
748 { MNT_NOEXEC, ",noexec" },
749 { MNT_NOATIME, ",noatime" },
750 { MNT_NODIRATIME, ",nodiratime" },
751 { MNT_RELATIME, ",relatime" },
752 { MNT_STRICTATIME, ",strictatime" },
753 { 0, NULL }
755 const struct proc_fs_info *fs_infop;
757 for (fs_infop = mnt_info; fs_infop->flag; fs_infop++) {
758 if (mnt->mnt_flags & fs_infop->flag)
759 seq_puts(m, fs_infop->str);
763 static void show_type(struct seq_file *m, struct super_block *sb)
765 mangle(m, sb->s_type->name);
766 if (sb->s_subtype && sb->s_subtype[0]) {
767 seq_putc(m, '.');
768 mangle(m, sb->s_subtype);
772 static int show_vfsmnt(struct seq_file *m, void *v)
774 struct vfsmount *mnt = list_entry(v, struct vfsmount, mnt_list);
775 int err = 0;
776 struct path mnt_path = { .dentry = mnt->mnt_root, .mnt = mnt };
778 mangle(m, mnt->mnt_devname ? mnt->mnt_devname : "none");
779 seq_putc(m, ' ');
780 seq_path(m, &mnt_path, " \t\n\\");
781 seq_putc(m, ' ');
782 show_type(m, mnt->mnt_sb);
783 seq_puts(m, __mnt_is_readonly(mnt) ? " ro" : " rw");
784 err = show_sb_opts(m, mnt->mnt_sb);
785 if (err)
786 goto out;
787 show_mnt_opts(m, mnt);
788 if (mnt->mnt_sb->s_op->show_options)
789 err = mnt->mnt_sb->s_op->show_options(m, mnt);
790 seq_puts(m, " 0 0\n");
791 out:
792 return err;
795 const struct seq_operations mounts_op = {
796 .start = m_start,
797 .next = m_next,
798 .stop = m_stop,
799 .show = show_vfsmnt
802 static int show_mountinfo(struct seq_file *m, void *v)
804 struct proc_mounts *p = m->private;
805 struct vfsmount *mnt = list_entry(v, struct vfsmount, mnt_list);
806 struct super_block *sb = mnt->mnt_sb;
807 struct path mnt_path = { .dentry = mnt->mnt_root, .mnt = mnt };
808 struct path root = p->root;
809 int err = 0;
811 seq_printf(m, "%i %i %u:%u ", mnt->mnt_id, mnt->mnt_parent->mnt_id,
812 MAJOR(sb->s_dev), MINOR(sb->s_dev));
813 seq_dentry(m, mnt->mnt_root, " \t\n\\");
814 seq_putc(m, ' ');
815 seq_path_root(m, &mnt_path, &root, " \t\n\\");
816 if (root.mnt != p->root.mnt || root.dentry != p->root.dentry) {
818 * Mountpoint is outside root, discard that one. Ugly,
819 * but less so than trying to do that in iterator in a
820 * race-free way (due to renames).
822 return SEQ_SKIP;
824 seq_puts(m, mnt->mnt_flags & MNT_READONLY ? " ro" : " rw");
825 show_mnt_opts(m, mnt);
827 /* Tagged fields ("foo:X" or "bar") */
828 if (IS_MNT_SHARED(mnt))
829 seq_printf(m, " shared:%i", mnt->mnt_group_id);
830 if (IS_MNT_SLAVE(mnt)) {
831 int master = mnt->mnt_master->mnt_group_id;
832 int dom = get_dominating_id(mnt, &p->root);
833 seq_printf(m, " master:%i", master);
834 if (dom && dom != master)
835 seq_printf(m, " propagate_from:%i", dom);
837 if (IS_MNT_UNBINDABLE(mnt))
838 seq_puts(m, " unbindable");
840 /* Filesystem specific data */
841 seq_puts(m, " - ");
842 show_type(m, sb);
843 seq_putc(m, ' ');
844 mangle(m, mnt->mnt_devname ? mnt->mnt_devname : "none");
845 seq_puts(m, sb->s_flags & MS_RDONLY ? " ro" : " rw");
846 err = show_sb_opts(m, sb);
847 if (err)
848 goto out;
849 if (sb->s_op->show_options)
850 err = sb->s_op->show_options(m, mnt);
851 seq_putc(m, '\n');
852 out:
853 return err;
856 const struct seq_operations mountinfo_op = {
857 .start = m_start,
858 .next = m_next,
859 .stop = m_stop,
860 .show = show_mountinfo,
863 static int show_vfsstat(struct seq_file *m, void *v)
865 struct vfsmount *mnt = list_entry(v, struct vfsmount, mnt_list);
866 struct path mnt_path = { .dentry = mnt->mnt_root, .mnt = mnt };
867 int err = 0;
869 /* device */
870 if (mnt->mnt_devname) {
871 seq_puts(m, "device ");
872 mangle(m, mnt->mnt_devname);
873 } else
874 seq_puts(m, "no device");
876 /* mount point */
877 seq_puts(m, " mounted on ");
878 seq_path(m, &mnt_path, " \t\n\\");
879 seq_putc(m, ' ');
881 /* file system type */
882 seq_puts(m, "with fstype ");
883 show_type(m, mnt->mnt_sb);
885 /* optional statistics */
886 if (mnt->mnt_sb->s_op->show_stats) {
887 seq_putc(m, ' ');
888 err = mnt->mnt_sb->s_op->show_stats(m, mnt);
891 seq_putc(m, '\n');
892 return err;
895 const struct seq_operations mountstats_op = {
896 .start = m_start,
897 .next = m_next,
898 .stop = m_stop,
899 .show = show_vfsstat,
901 #endif /* CONFIG_PROC_FS */
904 * may_umount_tree - check if a mount tree is busy
905 * @mnt: root of mount tree
907 * This is called to check if a tree of mounts has any
908 * open files, pwds, chroots or sub mounts that are
909 * busy.
911 int may_umount_tree(struct vfsmount *mnt)
913 int actual_refs = 0;
914 int minimum_refs = 0;
915 struct vfsmount *p;
917 spin_lock(&vfsmount_lock);
918 for (p = mnt; p; p = next_mnt(p, mnt)) {
919 actual_refs += atomic_read(&p->mnt_count);
920 minimum_refs += 2;
922 spin_unlock(&vfsmount_lock);
924 if (actual_refs > minimum_refs)
925 return 0;
927 return 1;
930 EXPORT_SYMBOL(may_umount_tree);
933 * may_umount - check if a mount point is busy
934 * @mnt: root of mount
936 * This is called to check if a mount point has any
937 * open files, pwds, chroots or sub mounts. If the
938 * mount has sub mounts this will return busy
939 * regardless of whether the sub mounts are busy.
941 * Doesn't take quota and stuff into account. IOW, in some cases it will
942 * give false negatives. The main reason why it's here is that we need
943 * a non-destructive way to look for easily umountable filesystems.
945 int may_umount(struct vfsmount *mnt)
947 int ret = 1;
948 spin_lock(&vfsmount_lock);
949 if (propagate_mount_busy(mnt, 2))
950 ret = 0;
951 spin_unlock(&vfsmount_lock);
952 return ret;
955 EXPORT_SYMBOL(may_umount);
957 void release_mounts(struct list_head *head)
959 struct vfsmount *mnt;
960 while (!list_empty(head)) {
961 mnt = list_first_entry(head, struct vfsmount, mnt_hash);
962 list_del_init(&mnt->mnt_hash);
963 if (mnt->mnt_parent != mnt) {
964 struct dentry *dentry;
965 struct vfsmount *m;
966 spin_lock(&vfsmount_lock);
967 dentry = mnt->mnt_mountpoint;
968 m = mnt->mnt_parent;
969 mnt->mnt_mountpoint = mnt->mnt_root;
970 mnt->mnt_parent = mnt;
971 m->mnt_ghosts--;
972 spin_unlock(&vfsmount_lock);
973 dput(dentry);
974 mntput(m);
976 mntput(mnt);
980 void umount_tree(struct vfsmount *mnt, int propagate, struct list_head *kill)
982 struct vfsmount *p;
984 for (p = mnt; p; p = next_mnt(p, mnt))
985 list_move(&p->mnt_hash, kill);
987 if (propagate)
988 propagate_umount(kill);
990 list_for_each_entry(p, kill, mnt_hash) {
991 list_del_init(&p->mnt_expire);
992 list_del_init(&p->mnt_list);
993 __touch_mnt_namespace(p->mnt_ns);
994 p->mnt_ns = NULL;
995 list_del_init(&p->mnt_child);
996 if (p->mnt_parent != p) {
997 p->mnt_parent->mnt_ghosts++;
998 p->mnt_mountpoint->d_mounted--;
1000 change_mnt_propagation(p, MS_PRIVATE);
1004 static void shrink_submounts(struct vfsmount *mnt, struct list_head *umounts);
1006 static int do_umount(struct vfsmount *mnt, int flags)
1008 struct super_block *sb = mnt->mnt_sb;
1009 int retval;
1010 LIST_HEAD(umount_list);
1012 retval = security_sb_umount(mnt, flags);
1013 if (retval)
1014 return retval;
1017 * Allow userspace to request a mountpoint be expired rather than
1018 * unmounting unconditionally. Unmount only happens if:
1019 * (1) the mark is already set (the mark is cleared by mntput())
1020 * (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount]
1022 if (flags & MNT_EXPIRE) {
1023 if (mnt == current->fs->root.mnt ||
1024 flags & (MNT_FORCE | MNT_DETACH))
1025 return -EINVAL;
1027 if (atomic_read(&mnt->mnt_count) != 2)
1028 return -EBUSY;
1030 if (!xchg(&mnt->mnt_expiry_mark, 1))
1031 return -EAGAIN;
1035 * If we may have to abort operations to get out of this
1036 * mount, and they will themselves hold resources we must
1037 * allow the fs to do things. In the Unix tradition of
1038 * 'Gee thats tricky lets do it in userspace' the umount_begin
1039 * might fail to complete on the first run through as other tasks
1040 * must return, and the like. Thats for the mount program to worry
1041 * about for the moment.
1044 if (flags & MNT_FORCE && sb->s_op->umount_begin) {
1045 sb->s_op->umount_begin(sb);
1049 * No sense to grab the lock for this test, but test itself looks
1050 * somewhat bogus. Suggestions for better replacement?
1051 * Ho-hum... In principle, we might treat that as umount + switch
1052 * to rootfs. GC would eventually take care of the old vfsmount.
1053 * Actually it makes sense, especially if rootfs would contain a
1054 * /reboot - static binary that would close all descriptors and
1055 * call reboot(9). Then init(8) could umount root and exec /reboot.
1057 if (mnt == current->fs->root.mnt && !(flags & MNT_DETACH)) {
1059 * Special case for "unmounting" root ...
1060 * we just try to remount it readonly.
1062 down_write(&sb->s_umount);
1063 if (!(sb->s_flags & MS_RDONLY))
1064 retval = do_remount_sb(sb, MS_RDONLY, NULL, 0);
1065 up_write(&sb->s_umount);
1066 return retval;
1069 down_write(&namespace_sem);
1070 spin_lock(&vfsmount_lock);
1071 event++;
1073 if (!(flags & MNT_DETACH))
1074 shrink_submounts(mnt, &umount_list);
1076 retval = -EBUSY;
1077 if (flags & MNT_DETACH || !propagate_mount_busy(mnt, 2)) {
1078 if (!list_empty(&mnt->mnt_list))
1079 umount_tree(mnt, 1, &umount_list);
1080 retval = 0;
1082 spin_unlock(&vfsmount_lock);
1083 if (retval)
1084 security_sb_umount_busy(mnt);
1085 up_write(&namespace_sem);
1086 release_mounts(&umount_list);
1087 return retval;
1091 * Now umount can handle mount points as well as block devices.
1092 * This is important for filesystems which use unnamed block devices.
1094 * We now support a flag for forced unmount like the other 'big iron'
1095 * unixes. Our API is identical to OSF/1 to avoid making a mess of AMD
1098 SYSCALL_DEFINE2(umount, char __user *, name, int, flags)
1100 struct path path;
1101 int retval;
1103 retval = user_path(name, &path);
1104 if (retval)
1105 goto out;
1106 retval = -EINVAL;
1107 if (path.dentry != path.mnt->mnt_root)
1108 goto dput_and_out;
1109 if (!check_mnt(path.mnt))
1110 goto dput_and_out;
1112 retval = -EPERM;
1113 if (!capable(CAP_SYS_ADMIN))
1114 goto dput_and_out;
1116 retval = do_umount(path.mnt, flags);
1117 dput_and_out:
1118 /* we mustn't call path_put() as that would clear mnt_expiry_mark */
1119 dput(path.dentry);
1120 mntput_no_expire(path.mnt);
1121 out:
1122 return retval;
1125 #ifdef __ARCH_WANT_SYS_OLDUMOUNT
1128 * The 2.0 compatible umount. No flags.
1130 SYSCALL_DEFINE1(oldumount, char __user *, name)
1132 return sys_umount(name, 0);
1135 #endif
1137 static int mount_is_safe(struct path *path)
1139 if (capable(CAP_SYS_ADMIN))
1140 return 0;
1141 return -EPERM;
1142 #ifdef notyet
1143 if (S_ISLNK(path->dentry->d_inode->i_mode))
1144 return -EPERM;
1145 if (path->dentry->d_inode->i_mode & S_ISVTX) {
1146 if (current_uid() != path->dentry->d_inode->i_uid)
1147 return -EPERM;
1149 if (inode_permission(path->dentry->d_inode, MAY_WRITE))
1150 return -EPERM;
1151 return 0;
1152 #endif
1155 struct vfsmount *copy_tree(struct vfsmount *mnt, struct dentry *dentry,
1156 int flag)
1158 struct vfsmount *res, *p, *q, *r, *s;
1159 struct path path;
1161 if (!(flag & CL_COPY_ALL) && IS_MNT_UNBINDABLE(mnt))
1162 return NULL;
1164 res = q = clone_mnt(mnt, dentry, flag);
1165 if (!q)
1166 goto Enomem;
1167 q->mnt_mountpoint = mnt->mnt_mountpoint;
1169 p = mnt;
1170 list_for_each_entry(r, &mnt->mnt_mounts, mnt_child) {
1171 if (!is_subdir(r->mnt_mountpoint, dentry))
1172 continue;
1174 for (s = r; s; s = next_mnt(s, r)) {
1175 if (!(flag & CL_COPY_ALL) && IS_MNT_UNBINDABLE(s)) {
1176 s = skip_mnt_tree(s);
1177 continue;
1179 while (p != s->mnt_parent) {
1180 p = p->mnt_parent;
1181 q = q->mnt_parent;
1183 p = s;
1184 path.mnt = q;
1185 path.dentry = p->mnt_mountpoint;
1186 q = clone_mnt(p, p->mnt_root, flag);
1187 if (!q)
1188 goto Enomem;
1189 spin_lock(&vfsmount_lock);
1190 list_add_tail(&q->mnt_list, &res->mnt_list);
1191 attach_mnt(q, &path);
1192 spin_unlock(&vfsmount_lock);
1195 return res;
1196 Enomem:
1197 if (res) {
1198 LIST_HEAD(umount_list);
1199 spin_lock(&vfsmount_lock);
1200 umount_tree(res, 0, &umount_list);
1201 spin_unlock(&vfsmount_lock);
1202 release_mounts(&umount_list);
1204 return NULL;
1207 struct vfsmount *collect_mounts(struct path *path)
1209 struct vfsmount *tree;
1210 down_write(&namespace_sem);
1211 tree = copy_tree(path->mnt, path->dentry, CL_COPY_ALL | CL_PRIVATE);
1212 up_write(&namespace_sem);
1213 return tree;
1216 void drop_collected_mounts(struct vfsmount *mnt)
1218 LIST_HEAD(umount_list);
1219 down_write(&namespace_sem);
1220 spin_lock(&vfsmount_lock);
1221 umount_tree(mnt, 0, &umount_list);
1222 spin_unlock(&vfsmount_lock);
1223 up_write(&namespace_sem);
1224 release_mounts(&umount_list);
1227 static void cleanup_group_ids(struct vfsmount *mnt, struct vfsmount *end)
1229 struct vfsmount *p;
1231 for (p = mnt; p != end; p = next_mnt(p, mnt)) {
1232 if (p->mnt_group_id && !IS_MNT_SHARED(p))
1233 mnt_release_group_id(p);
1237 static int invent_group_ids(struct vfsmount *mnt, bool recurse)
1239 struct vfsmount *p;
1241 for (p = mnt; p; p = recurse ? next_mnt(p, mnt) : NULL) {
1242 if (!p->mnt_group_id && !IS_MNT_SHARED(p)) {
1243 int err = mnt_alloc_group_id(p);
1244 if (err) {
1245 cleanup_group_ids(mnt, p);
1246 return err;
1251 return 0;
1255 * @source_mnt : mount tree to be attached
1256 * @nd : place the mount tree @source_mnt is attached
1257 * @parent_nd : if non-null, detach the source_mnt from its parent and
1258 * store the parent mount and mountpoint dentry.
1259 * (done when source_mnt is moved)
1261 * NOTE: in the table below explains the semantics when a source mount
1262 * of a given type is attached to a destination mount of a given type.
1263 * ---------------------------------------------------------------------------
1264 * | BIND MOUNT OPERATION |
1265 * |**************************************************************************
1266 * | source-->| shared | private | slave | unbindable |
1267 * | dest | | | | |
1268 * | | | | | | |
1269 * | v | | | | |
1270 * |**************************************************************************
1271 * | shared | shared (++) | shared (+) | shared(+++)| invalid |
1272 * | | | | | |
1273 * |non-shared| shared (+) | private | slave (*) | invalid |
1274 * ***************************************************************************
1275 * A bind operation clones the source mount and mounts the clone on the
1276 * destination mount.
1278 * (++) the cloned mount is propagated to all the mounts in the propagation
1279 * tree of the destination mount and the cloned mount is added to
1280 * the peer group of the source mount.
1281 * (+) the cloned mount is created under the destination mount and is marked
1282 * as shared. The cloned mount is added to the peer group of the source
1283 * mount.
1284 * (+++) the mount is propagated to all the mounts in the propagation tree
1285 * of the destination mount and the cloned mount is made slave
1286 * of the same master as that of the source mount. The cloned mount
1287 * is marked as 'shared and slave'.
1288 * (*) the cloned mount is made a slave of the same master as that of the
1289 * source mount.
1291 * ---------------------------------------------------------------------------
1292 * | MOVE MOUNT OPERATION |
1293 * |**************************************************************************
1294 * | source-->| shared | private | slave | unbindable |
1295 * | dest | | | | |
1296 * | | | | | | |
1297 * | v | | | | |
1298 * |**************************************************************************
1299 * | shared | shared (+) | shared (+) | shared(+++) | invalid |
1300 * | | | | | |
1301 * |non-shared| shared (+*) | private | slave (*) | unbindable |
1302 * ***************************************************************************
1304 * (+) the mount is moved to the destination. And is then propagated to
1305 * all the mounts in the propagation tree of the destination mount.
1306 * (+*) the mount is moved to the destination.
1307 * (+++) the mount is moved to the destination and is then propagated to
1308 * all the mounts belonging to the destination mount's propagation tree.
1309 * the mount is marked as 'shared and slave'.
1310 * (*) the mount continues to be a slave at the new location.
1312 * if the source mount is a tree, the operations explained above is
1313 * applied to each mount in the tree.
1314 * Must be called without spinlocks held, since this function can sleep
1315 * in allocations.
1317 static int attach_recursive_mnt(struct vfsmount *source_mnt,
1318 struct path *path, struct path *parent_path)
1320 LIST_HEAD(tree_list);
1321 struct vfsmount *dest_mnt = path->mnt;
1322 struct dentry *dest_dentry = path->dentry;
1323 struct vfsmount *child, *p;
1324 int err;
1326 if (IS_MNT_SHARED(dest_mnt)) {
1327 err = invent_group_ids(source_mnt, true);
1328 if (err)
1329 goto out;
1331 err = propagate_mnt(dest_mnt, dest_dentry, source_mnt, &tree_list);
1332 if (err)
1333 goto out_cleanup_ids;
1335 if (IS_MNT_SHARED(dest_mnt)) {
1336 for (p = source_mnt; p; p = next_mnt(p, source_mnt))
1337 set_mnt_shared(p);
1340 spin_lock(&vfsmount_lock);
1341 if (parent_path) {
1342 detach_mnt(source_mnt, parent_path);
1343 attach_mnt(source_mnt, path);
1344 touch_mnt_namespace(parent_path->mnt->mnt_ns);
1345 } else {
1346 mnt_set_mountpoint(dest_mnt, dest_dentry, source_mnt);
1347 commit_tree(source_mnt);
1350 list_for_each_entry_safe(child, p, &tree_list, mnt_hash) {
1351 list_del_init(&child->mnt_hash);
1352 commit_tree(child);
1354 spin_unlock(&vfsmount_lock);
1355 return 0;
1357 out_cleanup_ids:
1358 if (IS_MNT_SHARED(dest_mnt))
1359 cleanup_group_ids(source_mnt, NULL);
1360 out:
1361 return err;
1364 static int graft_tree(struct vfsmount *mnt, struct path *path)
1366 int err;
1367 if (mnt->mnt_sb->s_flags & MS_NOUSER)
1368 return -EINVAL;
1370 if (S_ISDIR(path->dentry->d_inode->i_mode) !=
1371 S_ISDIR(mnt->mnt_root->d_inode->i_mode))
1372 return -ENOTDIR;
1374 err = -ENOENT;
1375 mutex_lock(&path->dentry->d_inode->i_mutex);
1376 if (IS_DEADDIR(path->dentry->d_inode))
1377 goto out_unlock;
1379 err = security_sb_check_sb(mnt, path);
1380 if (err)
1381 goto out_unlock;
1383 err = -ENOENT;
1384 if (!d_unlinked(path->dentry))
1385 err = attach_recursive_mnt(mnt, path, NULL);
1386 out_unlock:
1387 mutex_unlock(&path->dentry->d_inode->i_mutex);
1388 if (!err)
1389 security_sb_post_addmount(mnt, path);
1390 return err;
1394 * recursively change the type of the mountpoint.
1396 static int do_change_type(struct path *path, int flag)
1398 struct vfsmount *m, *mnt = path->mnt;
1399 int recurse = flag & MS_REC;
1400 int type = flag & ~MS_REC;
1401 int err = 0;
1403 if (!capable(CAP_SYS_ADMIN))
1404 return -EPERM;
1406 if (path->dentry != path->mnt->mnt_root)
1407 return -EINVAL;
1409 down_write(&namespace_sem);
1410 if (type == MS_SHARED) {
1411 err = invent_group_ids(mnt, recurse);
1412 if (err)
1413 goto out_unlock;
1416 spin_lock(&vfsmount_lock);
1417 for (m = mnt; m; m = (recurse ? next_mnt(m, mnt) : NULL))
1418 change_mnt_propagation(m, type);
1419 spin_unlock(&vfsmount_lock);
1421 out_unlock:
1422 up_write(&namespace_sem);
1423 return err;
1427 * do loopback mount.
1429 static int do_loopback(struct path *path, char *old_name,
1430 int recurse)
1432 struct path old_path;
1433 struct vfsmount *mnt = NULL;
1434 int err = mount_is_safe(path);
1435 if (err)
1436 return err;
1437 if (!old_name || !*old_name)
1438 return -EINVAL;
1439 err = kern_path(old_name, LOOKUP_FOLLOW, &old_path);
1440 if (err)
1441 return err;
1443 down_write(&namespace_sem);
1444 err = -EINVAL;
1445 if (IS_MNT_UNBINDABLE(old_path.mnt))
1446 goto out;
1448 if (!check_mnt(path->mnt) || !check_mnt(old_path.mnt))
1449 goto out;
1451 err = -ENOMEM;
1452 if (recurse)
1453 mnt = copy_tree(old_path.mnt, old_path.dentry, 0);
1454 else
1455 mnt = clone_mnt(old_path.mnt, old_path.dentry, 0);
1457 if (!mnt)
1458 goto out;
1460 err = graft_tree(mnt, path);
1461 if (err) {
1462 LIST_HEAD(umount_list);
1463 spin_lock(&vfsmount_lock);
1464 umount_tree(mnt, 0, &umount_list);
1465 spin_unlock(&vfsmount_lock);
1466 release_mounts(&umount_list);
1469 out:
1470 up_write(&namespace_sem);
1471 path_put(&old_path);
1472 return err;
1475 static int change_mount_flags(struct vfsmount *mnt, int ms_flags)
1477 int error = 0;
1478 int readonly_request = 0;
1480 if (ms_flags & MS_RDONLY)
1481 readonly_request = 1;
1482 if (readonly_request == __mnt_is_readonly(mnt))
1483 return 0;
1485 if (readonly_request)
1486 error = mnt_make_readonly(mnt);
1487 else
1488 __mnt_unmake_readonly(mnt);
1489 return error;
1493 * change filesystem flags. dir should be a physical root of filesystem.
1494 * If you've mounted a non-root directory somewhere and want to do remount
1495 * on it - tough luck.
1497 static int do_remount(struct path *path, int flags, int mnt_flags,
1498 void *data)
1500 int err;
1501 struct super_block *sb = path->mnt->mnt_sb;
1503 if (!capable(CAP_SYS_ADMIN))
1504 return -EPERM;
1506 if (!check_mnt(path->mnt))
1507 return -EINVAL;
1509 if (path->dentry != path->mnt->mnt_root)
1510 return -EINVAL;
1512 down_write(&sb->s_umount);
1513 if (flags & MS_BIND)
1514 err = change_mount_flags(path->mnt, flags);
1515 else
1516 err = do_remount_sb(sb, flags, data, 0);
1517 if (!err)
1518 path->mnt->mnt_flags = mnt_flags;
1519 up_write(&sb->s_umount);
1520 if (!err) {
1521 security_sb_post_remount(path->mnt, flags, data);
1523 spin_lock(&vfsmount_lock);
1524 touch_mnt_namespace(path->mnt->mnt_ns);
1525 spin_unlock(&vfsmount_lock);
1527 return err;
1530 static inline int tree_contains_unbindable(struct vfsmount *mnt)
1532 struct vfsmount *p;
1533 for (p = mnt; p; p = next_mnt(p, mnt)) {
1534 if (IS_MNT_UNBINDABLE(p))
1535 return 1;
1537 return 0;
1540 static int do_move_mount(struct path *path, char *old_name)
1542 struct path old_path, parent_path;
1543 struct vfsmount *p;
1544 int err = 0;
1545 if (!capable(CAP_SYS_ADMIN))
1546 return -EPERM;
1547 if (!old_name || !*old_name)
1548 return -EINVAL;
1549 err = kern_path(old_name, LOOKUP_FOLLOW, &old_path);
1550 if (err)
1551 return err;
1553 down_write(&namespace_sem);
1554 while (d_mountpoint(path->dentry) &&
1555 follow_down(path))
1557 err = -EINVAL;
1558 if (!check_mnt(path->mnt) || !check_mnt(old_path.mnt))
1559 goto out;
1561 err = -ENOENT;
1562 mutex_lock(&path->dentry->d_inode->i_mutex);
1563 if (IS_DEADDIR(path->dentry->d_inode))
1564 goto out1;
1566 if (d_unlinked(path->dentry))
1567 goto out1;
1569 err = -EINVAL;
1570 if (old_path.dentry != old_path.mnt->mnt_root)
1571 goto out1;
1573 if (old_path.mnt == old_path.mnt->mnt_parent)
1574 goto out1;
1576 if (S_ISDIR(path->dentry->d_inode->i_mode) !=
1577 S_ISDIR(old_path.dentry->d_inode->i_mode))
1578 goto out1;
1580 * Don't move a mount residing in a shared parent.
1582 if (old_path.mnt->mnt_parent &&
1583 IS_MNT_SHARED(old_path.mnt->mnt_parent))
1584 goto out1;
1586 * Don't move a mount tree containing unbindable mounts to a destination
1587 * mount which is shared.
1589 if (IS_MNT_SHARED(path->mnt) &&
1590 tree_contains_unbindable(old_path.mnt))
1591 goto out1;
1592 err = -ELOOP;
1593 for (p = path->mnt; p->mnt_parent != p; p = p->mnt_parent)
1594 if (p == old_path.mnt)
1595 goto out1;
1597 err = attach_recursive_mnt(old_path.mnt, path, &parent_path);
1598 if (err)
1599 goto out1;
1601 /* if the mount is moved, it should no longer be expire
1602 * automatically */
1603 list_del_init(&old_path.mnt->mnt_expire);
1604 out1:
1605 mutex_unlock(&path->dentry->d_inode->i_mutex);
1606 out:
1607 up_write(&namespace_sem);
1608 if (!err)
1609 path_put(&parent_path);
1610 path_put(&old_path);
1611 return err;
1615 * create a new mount for userspace and request it to be added into the
1616 * namespace's tree
1618 static int do_new_mount(struct path *path, char *type, int flags,
1619 int mnt_flags, char *name, void *data)
1621 struct vfsmount *mnt;
1623 if (!type || !memchr(type, 0, PAGE_SIZE))
1624 return -EINVAL;
1626 /* we need capabilities... */
1627 if (!capable(CAP_SYS_ADMIN))
1628 return -EPERM;
1630 lock_kernel();
1631 mnt = do_kern_mount(type, flags, name, data);
1632 unlock_kernel();
1633 if (IS_ERR(mnt))
1634 return PTR_ERR(mnt);
1636 return do_add_mount(mnt, path, mnt_flags, NULL);
1640 * add a mount into a namespace's mount tree
1641 * - provide the option of adding the new mount to an expiration list
1643 int do_add_mount(struct vfsmount *newmnt, struct path *path,
1644 int mnt_flags, struct list_head *fslist)
1646 int err;
1648 down_write(&namespace_sem);
1649 /* Something was mounted here while we slept */
1650 while (d_mountpoint(path->dentry) &&
1651 follow_down(path))
1653 err = -EINVAL;
1654 if (!(mnt_flags & MNT_SHRINKABLE) && !check_mnt(path->mnt))
1655 goto unlock;
1657 /* Refuse the same filesystem on the same mount point */
1658 err = -EBUSY;
1659 if (path->mnt->mnt_sb == newmnt->mnt_sb &&
1660 path->mnt->mnt_root == path->dentry)
1661 goto unlock;
1663 err = -EINVAL;
1664 if (S_ISLNK(newmnt->mnt_root->d_inode->i_mode))
1665 goto unlock;
1667 newmnt->mnt_flags = mnt_flags;
1668 if ((err = graft_tree(newmnt, path)))
1669 goto unlock;
1671 if (fslist) /* add to the specified expiration list */
1672 list_add_tail(&newmnt->mnt_expire, fslist);
1674 up_write(&namespace_sem);
1675 return 0;
1677 unlock:
1678 up_write(&namespace_sem);
1679 mntput(newmnt);
1680 return err;
1683 EXPORT_SYMBOL_GPL(do_add_mount);
1686 * process a list of expirable mountpoints with the intent of discarding any
1687 * mountpoints that aren't in use and haven't been touched since last we came
1688 * here
1690 void mark_mounts_for_expiry(struct list_head *mounts)
1692 struct vfsmount *mnt, *next;
1693 LIST_HEAD(graveyard);
1694 LIST_HEAD(umounts);
1696 if (list_empty(mounts))
1697 return;
1699 down_write(&namespace_sem);
1700 spin_lock(&vfsmount_lock);
1702 /* extract from the expiration list every vfsmount that matches the
1703 * following criteria:
1704 * - only referenced by its parent vfsmount
1705 * - still marked for expiry (marked on the last call here; marks are
1706 * cleared by mntput())
1708 list_for_each_entry_safe(mnt, next, mounts, mnt_expire) {
1709 if (!xchg(&mnt->mnt_expiry_mark, 1) ||
1710 propagate_mount_busy(mnt, 1))
1711 continue;
1712 list_move(&mnt->mnt_expire, &graveyard);
1714 while (!list_empty(&graveyard)) {
1715 mnt = list_first_entry(&graveyard, struct vfsmount, mnt_expire);
1716 touch_mnt_namespace(mnt->mnt_ns);
1717 umount_tree(mnt, 1, &umounts);
1719 spin_unlock(&vfsmount_lock);
1720 up_write(&namespace_sem);
1722 release_mounts(&umounts);
1725 EXPORT_SYMBOL_GPL(mark_mounts_for_expiry);
1728 * Ripoff of 'select_parent()'
1730 * search the list of submounts for a given mountpoint, and move any
1731 * shrinkable submounts to the 'graveyard' list.
1733 static int select_submounts(struct vfsmount *parent, struct list_head *graveyard)
1735 struct vfsmount *this_parent = parent;
1736 struct list_head *next;
1737 int found = 0;
1739 repeat:
1740 next = this_parent->mnt_mounts.next;
1741 resume:
1742 while (next != &this_parent->mnt_mounts) {
1743 struct list_head *tmp = next;
1744 struct vfsmount *mnt = list_entry(tmp, struct vfsmount, mnt_child);
1746 next = tmp->next;
1747 if (!(mnt->mnt_flags & MNT_SHRINKABLE))
1748 continue;
1750 * Descend a level if the d_mounts list is non-empty.
1752 if (!list_empty(&mnt->mnt_mounts)) {
1753 this_parent = mnt;
1754 goto repeat;
1757 if (!propagate_mount_busy(mnt, 1)) {
1758 list_move_tail(&mnt->mnt_expire, graveyard);
1759 found++;
1763 * All done at this level ... ascend and resume the search
1765 if (this_parent != parent) {
1766 next = this_parent->mnt_child.next;
1767 this_parent = this_parent->mnt_parent;
1768 goto resume;
1770 return found;
1774 * process a list of expirable mountpoints with the intent of discarding any
1775 * submounts of a specific parent mountpoint
1777 static void shrink_submounts(struct vfsmount *mnt, struct list_head *umounts)
1779 LIST_HEAD(graveyard);
1780 struct vfsmount *m;
1782 /* extract submounts of 'mountpoint' from the expiration list */
1783 while (select_submounts(mnt, &graveyard)) {
1784 while (!list_empty(&graveyard)) {
1785 m = list_first_entry(&graveyard, struct vfsmount,
1786 mnt_expire);
1787 touch_mnt_namespace(m->mnt_ns);
1788 umount_tree(m, 1, umounts);
1794 * Some copy_from_user() implementations do not return the exact number of
1795 * bytes remaining to copy on a fault. But copy_mount_options() requires that.
1796 * Note that this function differs from copy_from_user() in that it will oops
1797 * on bad values of `to', rather than returning a short copy.
1799 static long exact_copy_from_user(void *to, const void __user * from,
1800 unsigned long n)
1802 char *t = to;
1803 const char __user *f = from;
1804 char c;
1806 if (!access_ok(VERIFY_READ, from, n))
1807 return n;
1809 while (n) {
1810 if (__get_user(c, f)) {
1811 memset(t, 0, n);
1812 break;
1814 *t++ = c;
1815 f++;
1816 n--;
1818 return n;
1821 int copy_mount_options(const void __user * data, unsigned long *where)
1823 int i;
1824 unsigned long page;
1825 unsigned long size;
1827 *where = 0;
1828 if (!data)
1829 return 0;
1831 if (!(page = __get_free_page(GFP_KERNEL)))
1832 return -ENOMEM;
1834 /* We only care that *some* data at the address the user
1835 * gave us is valid. Just in case, we'll zero
1836 * the remainder of the page.
1838 /* copy_from_user cannot cross TASK_SIZE ! */
1839 size = TASK_SIZE - (unsigned long)data;
1840 if (size > PAGE_SIZE)
1841 size = PAGE_SIZE;
1843 i = size - exact_copy_from_user((void *)page, data, size);
1844 if (!i) {
1845 free_page(page);
1846 return -EFAULT;
1848 if (i != PAGE_SIZE)
1849 memset((char *)page + i, 0, PAGE_SIZE - i);
1850 *where = page;
1851 return 0;
1855 * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to
1856 * be given to the mount() call (ie: read-only, no-dev, no-suid etc).
1858 * data is a (void *) that can point to any structure up to
1859 * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent
1860 * information (or be NULL).
1862 * Pre-0.97 versions of mount() didn't have a flags word.
1863 * When the flags word was introduced its top half was required
1864 * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9.
1865 * Therefore, if this magic number is present, it carries no information
1866 * and must be discarded.
1868 long do_mount(char *dev_name, char *dir_name, char *type_page,
1869 unsigned long flags, void *data_page)
1871 struct path path;
1872 int retval = 0;
1873 int mnt_flags = 0;
1875 /* Discard magic */
1876 if ((flags & MS_MGC_MSK) == MS_MGC_VAL)
1877 flags &= ~MS_MGC_MSK;
1879 /* Basic sanity checks */
1881 if (!dir_name || !*dir_name || !memchr(dir_name, 0, PAGE_SIZE))
1882 return -EINVAL;
1883 if (dev_name && !memchr(dev_name, 0, PAGE_SIZE))
1884 return -EINVAL;
1886 if (data_page)
1887 ((char *)data_page)[PAGE_SIZE - 1] = 0;
1889 /* Default to relatime unless overriden */
1890 if (!(flags & MS_NOATIME))
1891 mnt_flags |= MNT_RELATIME;
1893 /* Separate the per-mountpoint flags */
1894 if (flags & MS_NOSUID)
1895 mnt_flags |= MNT_NOSUID;
1896 if (flags & MS_NODEV)
1897 mnt_flags |= MNT_NODEV;
1898 if (flags & MS_NOEXEC)
1899 mnt_flags |= MNT_NOEXEC;
1900 if (flags & MS_NOATIME)
1901 mnt_flags |= MNT_NOATIME;
1902 if (flags & MS_NODIRATIME)
1903 mnt_flags |= MNT_NODIRATIME;
1904 if (flags & MS_STRICTATIME)
1905 mnt_flags &= ~(MNT_RELATIME | MNT_NOATIME);
1906 if (flags & MS_RDONLY)
1907 mnt_flags |= MNT_READONLY;
1909 flags &= ~(MS_NOSUID | MS_NOEXEC | MS_NODEV | MS_ACTIVE |
1910 MS_NOATIME | MS_NODIRATIME | MS_RELATIME| MS_KERNMOUNT |
1911 MS_STRICTATIME);
1913 /* ... and get the mountpoint */
1914 retval = kern_path(dir_name, LOOKUP_FOLLOW, &path);
1915 if (retval)
1916 return retval;
1918 retval = security_sb_mount(dev_name, &path,
1919 type_page, flags, data_page);
1920 if (retval)
1921 goto dput_out;
1923 if (flags & MS_REMOUNT)
1924 retval = do_remount(&path, flags & ~MS_REMOUNT, mnt_flags,
1925 data_page);
1926 else if (flags & MS_BIND)
1927 retval = do_loopback(&path, dev_name, flags & MS_REC);
1928 else if (flags & (MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
1929 retval = do_change_type(&path, flags);
1930 else if (flags & MS_MOVE)
1931 retval = do_move_mount(&path, dev_name);
1932 else
1933 retval = do_new_mount(&path, type_page, flags, mnt_flags,
1934 dev_name, data_page);
1935 dput_out:
1936 path_put(&path);
1937 return retval;
1941 * Allocate a new namespace structure and populate it with contents
1942 * copied from the namespace of the passed in task structure.
1944 static struct mnt_namespace *dup_mnt_ns(struct mnt_namespace *mnt_ns,
1945 struct fs_struct *fs)
1947 struct mnt_namespace *new_ns;
1948 struct vfsmount *rootmnt = NULL, *pwdmnt = NULL;
1949 struct vfsmount *p, *q;
1951 new_ns = kmalloc(sizeof(struct mnt_namespace), GFP_KERNEL);
1952 if (!new_ns)
1953 return ERR_PTR(-ENOMEM);
1955 atomic_set(&new_ns->count, 1);
1956 INIT_LIST_HEAD(&new_ns->list);
1957 init_waitqueue_head(&new_ns->poll);
1958 new_ns->event = 0;
1960 down_write(&namespace_sem);
1961 /* First pass: copy the tree topology */
1962 new_ns->root = copy_tree(mnt_ns->root, mnt_ns->root->mnt_root,
1963 CL_COPY_ALL | CL_EXPIRE);
1964 if (!new_ns->root) {
1965 up_write(&namespace_sem);
1966 kfree(new_ns);
1967 return ERR_PTR(-ENOMEM);
1969 spin_lock(&vfsmount_lock);
1970 list_add_tail(&new_ns->list, &new_ns->root->mnt_list);
1971 spin_unlock(&vfsmount_lock);
1974 * Second pass: switch the tsk->fs->* elements and mark new vfsmounts
1975 * as belonging to new namespace. We have already acquired a private
1976 * fs_struct, so tsk->fs->lock is not needed.
1978 p = mnt_ns->root;
1979 q = new_ns->root;
1980 while (p) {
1981 q->mnt_ns = new_ns;
1982 if (fs) {
1983 if (p == fs->root.mnt) {
1984 rootmnt = p;
1985 fs->root.mnt = mntget(q);
1987 if (p == fs->pwd.mnt) {
1988 pwdmnt = p;
1989 fs->pwd.mnt = mntget(q);
1992 p = next_mnt(p, mnt_ns->root);
1993 q = next_mnt(q, new_ns->root);
1995 up_write(&namespace_sem);
1997 if (rootmnt)
1998 mntput(rootmnt);
1999 if (pwdmnt)
2000 mntput(pwdmnt);
2002 return new_ns;
2005 struct mnt_namespace *copy_mnt_ns(unsigned long flags, struct mnt_namespace *ns,
2006 struct fs_struct *new_fs)
2008 struct mnt_namespace *new_ns;
2010 BUG_ON(!ns);
2011 get_mnt_ns(ns);
2013 if (!(flags & CLONE_NEWNS))
2014 return ns;
2016 new_ns = dup_mnt_ns(ns, new_fs);
2018 put_mnt_ns(ns);
2019 return new_ns;
2022 SYSCALL_DEFINE5(mount, char __user *, dev_name, char __user *, dir_name,
2023 char __user *, type, unsigned long, flags, void __user *, data)
2025 int retval;
2026 unsigned long data_page;
2027 unsigned long type_page;
2028 unsigned long dev_page;
2029 char *dir_page;
2031 retval = copy_mount_options(type, &type_page);
2032 if (retval < 0)
2033 return retval;
2035 dir_page = getname(dir_name);
2036 retval = PTR_ERR(dir_page);
2037 if (IS_ERR(dir_page))
2038 goto out1;
2040 retval = copy_mount_options(dev_name, &dev_page);
2041 if (retval < 0)
2042 goto out2;
2044 retval = copy_mount_options(data, &data_page);
2045 if (retval < 0)
2046 goto out3;
2048 retval = do_mount((char *)dev_page, dir_page, (char *)type_page,
2049 flags, (void *)data_page);
2050 free_page(data_page);
2052 out3:
2053 free_page(dev_page);
2054 out2:
2055 putname(dir_page);
2056 out1:
2057 free_page(type_page);
2058 return retval;
2062 * pivot_root Semantics:
2063 * Moves the root file system of the current process to the directory put_old,
2064 * makes new_root as the new root file system of the current process, and sets
2065 * root/cwd of all processes which had them on the current root to new_root.
2067 * Restrictions:
2068 * The new_root and put_old must be directories, and must not be on the
2069 * same file system as the current process root. The put_old must be
2070 * underneath new_root, i.e. adding a non-zero number of /.. to the string
2071 * pointed to by put_old must yield the same directory as new_root. No other
2072 * file system may be mounted on put_old. After all, new_root is a mountpoint.
2074 * Also, the current root cannot be on the 'rootfs' (initial ramfs) filesystem.
2075 * See Documentation/filesystems/ramfs-rootfs-initramfs.txt for alternatives
2076 * in this situation.
2078 * Notes:
2079 * - we don't move root/cwd if they are not at the root (reason: if something
2080 * cared enough to change them, it's probably wrong to force them elsewhere)
2081 * - it's okay to pick a root that isn't the root of a file system, e.g.
2082 * /nfs/my_root where /nfs is the mount point. It must be a mountpoint,
2083 * though, so you may need to say mount --bind /nfs/my_root /nfs/my_root
2084 * first.
2086 SYSCALL_DEFINE2(pivot_root, const char __user *, new_root,
2087 const char __user *, put_old)
2089 struct vfsmount *tmp;
2090 struct path new, old, parent_path, root_parent, root;
2091 int error;
2093 if (!capable(CAP_SYS_ADMIN))
2094 return -EPERM;
2096 error = user_path_dir(new_root, &new);
2097 if (error)
2098 goto out0;
2099 error = -EINVAL;
2100 if (!check_mnt(new.mnt))
2101 goto out1;
2103 error = user_path_dir(put_old, &old);
2104 if (error)
2105 goto out1;
2107 error = security_sb_pivotroot(&old, &new);
2108 if (error) {
2109 path_put(&old);
2110 goto out1;
2113 read_lock(&current->fs->lock);
2114 root = current->fs->root;
2115 path_get(&current->fs->root);
2116 read_unlock(&current->fs->lock);
2117 down_write(&namespace_sem);
2118 mutex_lock(&old.dentry->d_inode->i_mutex);
2119 error = -EINVAL;
2120 if (IS_MNT_SHARED(old.mnt) ||
2121 IS_MNT_SHARED(new.mnt->mnt_parent) ||
2122 IS_MNT_SHARED(root.mnt->mnt_parent))
2123 goto out2;
2124 if (!check_mnt(root.mnt))
2125 goto out2;
2126 error = -ENOENT;
2127 if (IS_DEADDIR(new.dentry->d_inode))
2128 goto out2;
2129 if (d_unlinked(new.dentry))
2130 goto out2;
2131 if (d_unlinked(old.dentry))
2132 goto out2;
2133 error = -EBUSY;
2134 if (new.mnt == root.mnt ||
2135 old.mnt == root.mnt)
2136 goto out2; /* loop, on the same file system */
2137 error = -EINVAL;
2138 if (root.mnt->mnt_root != root.dentry)
2139 goto out2; /* not a mountpoint */
2140 if (root.mnt->mnt_parent == root.mnt)
2141 goto out2; /* not attached */
2142 if (new.mnt->mnt_root != new.dentry)
2143 goto out2; /* not a mountpoint */
2144 if (new.mnt->mnt_parent == new.mnt)
2145 goto out2; /* not attached */
2146 /* make sure we can reach put_old from new_root */
2147 tmp = old.mnt;
2148 spin_lock(&vfsmount_lock);
2149 if (tmp != new.mnt) {
2150 for (;;) {
2151 if (tmp->mnt_parent == tmp)
2152 goto out3; /* already mounted on put_old */
2153 if (tmp->mnt_parent == new.mnt)
2154 break;
2155 tmp = tmp->mnt_parent;
2157 if (!is_subdir(tmp->mnt_mountpoint, new.dentry))
2158 goto out3;
2159 } else if (!is_subdir(old.dentry, new.dentry))
2160 goto out3;
2161 detach_mnt(new.mnt, &parent_path);
2162 detach_mnt(root.mnt, &root_parent);
2163 /* mount old root on put_old */
2164 attach_mnt(root.mnt, &old);
2165 /* mount new_root on / */
2166 attach_mnt(new.mnt, &root_parent);
2167 touch_mnt_namespace(current->nsproxy->mnt_ns);
2168 spin_unlock(&vfsmount_lock);
2169 chroot_fs_refs(&root, &new);
2170 security_sb_post_pivotroot(&root, &new);
2171 error = 0;
2172 path_put(&root_parent);
2173 path_put(&parent_path);
2174 out2:
2175 mutex_unlock(&old.dentry->d_inode->i_mutex);
2176 up_write(&namespace_sem);
2177 path_put(&root);
2178 path_put(&old);
2179 out1:
2180 path_put(&new);
2181 out0:
2182 return error;
2183 out3:
2184 spin_unlock(&vfsmount_lock);
2185 goto out2;
2188 static void __init init_mount_tree(void)
2190 struct vfsmount *mnt;
2191 struct mnt_namespace *ns;
2192 struct path root;
2194 mnt = do_kern_mount("rootfs", 0, "rootfs", NULL);
2195 if (IS_ERR(mnt))
2196 panic("Can't create rootfs");
2197 ns = kmalloc(sizeof(*ns), GFP_KERNEL);
2198 if (!ns)
2199 panic("Can't allocate initial namespace");
2200 atomic_set(&ns->count, 1);
2201 INIT_LIST_HEAD(&ns->list);
2202 init_waitqueue_head(&ns->poll);
2203 ns->event = 0;
2204 list_add(&mnt->mnt_list, &ns->list);
2205 ns->root = mnt;
2206 mnt->mnt_ns = ns;
2208 init_task.nsproxy->mnt_ns = ns;
2209 get_mnt_ns(ns);
2211 root.mnt = ns->root;
2212 root.dentry = ns->root->mnt_root;
2214 set_fs_pwd(current->fs, &root);
2215 set_fs_root(current->fs, &root);
2218 void __init mnt_init(void)
2220 unsigned u;
2221 int err;
2223 init_rwsem(&namespace_sem);
2225 mnt_cache = kmem_cache_create("mnt_cache", sizeof(struct vfsmount),
2226 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
2228 mount_hashtable = (struct list_head *)__get_free_page(GFP_ATOMIC);
2230 if (!mount_hashtable)
2231 panic("Failed to allocate mount hash table\n");
2233 printk("Mount-cache hash table entries: %lu\n", HASH_SIZE);
2235 for (u = 0; u < HASH_SIZE; u++)
2236 INIT_LIST_HEAD(&mount_hashtable[u]);
2238 err = sysfs_init();
2239 if (err)
2240 printk(KERN_WARNING "%s: sysfs_init error: %d\n",
2241 __func__, err);
2242 fs_kobj = kobject_create_and_add("fs", NULL);
2243 if (!fs_kobj)
2244 printk(KERN_WARNING "%s: kobj create error\n", __func__);
2245 init_rootfs();
2246 init_mount_tree();
2249 void __put_mnt_ns(struct mnt_namespace *ns)
2251 struct vfsmount *root = ns->root;
2252 LIST_HEAD(umount_list);
2253 ns->root = NULL;
2254 spin_unlock(&vfsmount_lock);
2255 down_write(&namespace_sem);
2256 spin_lock(&vfsmount_lock);
2257 umount_tree(root, 0, &umount_list);
2258 spin_unlock(&vfsmount_lock);
2259 up_write(&namespace_sem);
2260 release_mounts(&umount_list);
2261 kfree(ns);