memory cgroup enhancements: force_empty interface for dropping all account in empty...
[linux-2.6/mini2440.git] / mm / memcontrol.c
blobc867612d9c04c7baa3a619bcc458058a5758b916
1 /* memcontrol.c - Memory Controller
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License as published by
11 * the Free Software Foundation; either version 2 of the License, or
12 * (at your option) any later version.
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
20 #include <linux/res_counter.h>
21 #include <linux/memcontrol.h>
22 #include <linux/cgroup.h>
23 #include <linux/mm.h>
24 #include <linux/page-flags.h>
25 #include <linux/backing-dev.h>
26 #include <linux/bit_spinlock.h>
27 #include <linux/rcupdate.h>
28 #include <linux/swap.h>
29 #include <linux/spinlock.h>
30 #include <linux/fs.h>
32 #include <asm/uaccess.h>
34 struct cgroup_subsys mem_cgroup_subsys;
35 static const int MEM_CGROUP_RECLAIM_RETRIES = 5;
38 * The memory controller data structure. The memory controller controls both
39 * page cache and RSS per cgroup. We would eventually like to provide
40 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
41 * to help the administrator determine what knobs to tune.
43 * TODO: Add a water mark for the memory controller. Reclaim will begin when
44 * we hit the water mark. May be even add a low water mark, such that
45 * no reclaim occurs from a cgroup at it's low water mark, this is
46 * a feature that will be implemented much later in the future.
48 struct mem_cgroup {
49 struct cgroup_subsys_state css;
51 * the counter to account for memory usage
53 struct res_counter res;
55 * Per cgroup active and inactive list, similar to the
56 * per zone LRU lists.
57 * TODO: Consider making these lists per zone
59 struct list_head active_list;
60 struct list_head inactive_list;
62 * spin_lock to protect the per cgroup LRU
64 spinlock_t lru_lock;
65 unsigned long control_type; /* control RSS or RSS+Pagecache */
69 * We use the lower bit of the page->page_cgroup pointer as a bit spin
70 * lock. We need to ensure that page->page_cgroup is atleast two
71 * byte aligned (based on comments from Nick Piggin)
73 #define PAGE_CGROUP_LOCK_BIT 0x0
74 #define PAGE_CGROUP_LOCK (1 << PAGE_CGROUP_LOCK_BIT)
77 * A page_cgroup page is associated with every page descriptor. The
78 * page_cgroup helps us identify information about the cgroup
80 struct page_cgroup {
81 struct list_head lru; /* per cgroup LRU list */
82 struct page *page;
83 struct mem_cgroup *mem_cgroup;
84 atomic_t ref_cnt; /* Helpful when pages move b/w */
85 /* mapped and cached states */
88 enum {
89 MEM_CGROUP_TYPE_UNSPEC = 0,
90 MEM_CGROUP_TYPE_MAPPED,
91 MEM_CGROUP_TYPE_CACHED,
92 MEM_CGROUP_TYPE_ALL,
93 MEM_CGROUP_TYPE_MAX,
96 static struct mem_cgroup init_mem_cgroup;
98 static inline
99 struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont)
101 return container_of(cgroup_subsys_state(cont,
102 mem_cgroup_subsys_id), struct mem_cgroup,
103 css);
106 static inline
107 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
109 return container_of(task_subsys_state(p, mem_cgroup_subsys_id),
110 struct mem_cgroup, css);
113 void mm_init_cgroup(struct mm_struct *mm, struct task_struct *p)
115 struct mem_cgroup *mem;
117 mem = mem_cgroup_from_task(p);
118 css_get(&mem->css);
119 mm->mem_cgroup = mem;
122 void mm_free_cgroup(struct mm_struct *mm)
124 css_put(&mm->mem_cgroup->css);
127 static inline int page_cgroup_locked(struct page *page)
129 return bit_spin_is_locked(PAGE_CGROUP_LOCK_BIT,
130 &page->page_cgroup);
133 void page_assign_page_cgroup(struct page *page, struct page_cgroup *pc)
135 int locked;
138 * While resetting the page_cgroup we might not hold the
139 * page_cgroup lock. free_hot_cold_page() is an example
140 * of such a scenario
142 if (pc)
143 VM_BUG_ON(!page_cgroup_locked(page));
144 locked = (page->page_cgroup & PAGE_CGROUP_LOCK);
145 page->page_cgroup = ((unsigned long)pc | locked);
148 struct page_cgroup *page_get_page_cgroup(struct page *page)
150 return (struct page_cgroup *)
151 (page->page_cgroup & ~PAGE_CGROUP_LOCK);
154 static void __always_inline lock_page_cgroup(struct page *page)
156 bit_spin_lock(PAGE_CGROUP_LOCK_BIT, &page->page_cgroup);
157 VM_BUG_ON(!page_cgroup_locked(page));
160 static void __always_inline unlock_page_cgroup(struct page *page)
162 bit_spin_unlock(PAGE_CGROUP_LOCK_BIT, &page->page_cgroup);
166 * Tie new page_cgroup to struct page under lock_page_cgroup()
167 * This can fail if the page has been tied to a page_cgroup.
168 * If success, returns 0.
170 static inline int
171 page_cgroup_assign_new_page_cgroup(struct page *page, struct page_cgroup *pc)
173 int ret = 0;
175 lock_page_cgroup(page);
176 if (!page_get_page_cgroup(page))
177 page_assign_page_cgroup(page, pc);
178 else /* A page is tied to other pc. */
179 ret = 1;
180 unlock_page_cgroup(page);
181 return ret;
185 * Clear page->page_cgroup member under lock_page_cgroup().
186 * If given "pc" value is different from one page->page_cgroup,
187 * page->cgroup is not cleared.
188 * Returns a value of page->page_cgroup at lock taken.
189 * A can can detect failure of clearing by following
190 * clear_page_cgroup(page, pc) == pc
193 static inline struct page_cgroup *
194 clear_page_cgroup(struct page *page, struct page_cgroup *pc)
196 struct page_cgroup *ret;
197 /* lock and clear */
198 lock_page_cgroup(page);
199 ret = page_get_page_cgroup(page);
200 if (likely(ret == pc))
201 page_assign_page_cgroup(page, NULL);
202 unlock_page_cgroup(page);
203 return ret;
207 static void __mem_cgroup_move_lists(struct page_cgroup *pc, bool active)
209 if (active)
210 list_move(&pc->lru, &pc->mem_cgroup->active_list);
211 else
212 list_move(&pc->lru, &pc->mem_cgroup->inactive_list);
215 int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *mem)
217 int ret;
219 task_lock(task);
220 ret = task->mm && mm_cgroup(task->mm) == mem;
221 task_unlock(task);
222 return ret;
226 * This routine assumes that the appropriate zone's lru lock is already held
228 void mem_cgroup_move_lists(struct page_cgroup *pc, bool active)
230 struct mem_cgroup *mem;
231 if (!pc)
232 return;
234 mem = pc->mem_cgroup;
236 spin_lock(&mem->lru_lock);
237 __mem_cgroup_move_lists(pc, active);
238 spin_unlock(&mem->lru_lock);
241 unsigned long mem_cgroup_isolate_pages(unsigned long nr_to_scan,
242 struct list_head *dst,
243 unsigned long *scanned, int order,
244 int mode, struct zone *z,
245 struct mem_cgroup *mem_cont,
246 int active)
248 unsigned long nr_taken = 0;
249 struct page *page;
250 unsigned long scan;
251 LIST_HEAD(pc_list);
252 struct list_head *src;
253 struct page_cgroup *pc, *tmp;
255 if (active)
256 src = &mem_cont->active_list;
257 else
258 src = &mem_cont->inactive_list;
260 spin_lock(&mem_cont->lru_lock);
261 scan = 0;
262 list_for_each_entry_safe_reverse(pc, tmp, src, lru) {
263 if (scan >= nr_to_scan)
264 break;
265 page = pc->page;
266 VM_BUG_ON(!pc);
268 if (unlikely(!PageLRU(page)))
269 continue;
271 if (PageActive(page) && !active) {
272 __mem_cgroup_move_lists(pc, true);
273 continue;
275 if (!PageActive(page) && active) {
276 __mem_cgroup_move_lists(pc, false);
277 continue;
281 * Reclaim, per zone
282 * TODO: make the active/inactive lists per zone
284 if (page_zone(page) != z)
285 continue;
287 scan++;
288 list_move(&pc->lru, &pc_list);
290 if (__isolate_lru_page(page, mode) == 0) {
291 list_move(&page->lru, dst);
292 nr_taken++;
296 list_splice(&pc_list, src);
297 spin_unlock(&mem_cont->lru_lock);
299 *scanned = scan;
300 return nr_taken;
304 * Charge the memory controller for page usage.
305 * Return
306 * 0 if the charge was successful
307 * < 0 if the cgroup is over its limit
309 int mem_cgroup_charge(struct page *page, struct mm_struct *mm,
310 gfp_t gfp_mask)
312 struct mem_cgroup *mem;
313 struct page_cgroup *pc;
314 unsigned long flags;
315 unsigned long nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
318 * Should page_cgroup's go to their own slab?
319 * One could optimize the performance of the charging routine
320 * by saving a bit in the page_flags and using it as a lock
321 * to see if the cgroup page already has a page_cgroup associated
322 * with it
324 retry:
325 lock_page_cgroup(page);
326 pc = page_get_page_cgroup(page);
328 * The page_cgroup exists and the page has already been accounted
330 if (pc) {
331 if (unlikely(!atomic_inc_not_zero(&pc->ref_cnt))) {
332 /* this page is under being uncharged ? */
333 unlock_page_cgroup(page);
334 cpu_relax();
335 goto retry;
336 } else {
337 unlock_page_cgroup(page);
338 goto done;
342 unlock_page_cgroup(page);
344 pc = kzalloc(sizeof(struct page_cgroup), gfp_mask);
345 if (pc == NULL)
346 goto err;
348 rcu_read_lock();
350 * We always charge the cgroup the mm_struct belongs to
351 * the mm_struct's mem_cgroup changes on task migration if the
352 * thread group leader migrates. It's possible that mm is not
353 * set, if so charge the init_mm (happens for pagecache usage).
355 if (!mm)
356 mm = &init_mm;
358 mem = rcu_dereference(mm->mem_cgroup);
360 * For every charge from the cgroup, increment reference
361 * count
363 css_get(&mem->css);
364 rcu_read_unlock();
367 * If we created the page_cgroup, we should free it on exceeding
368 * the cgroup limit.
370 while (res_counter_charge(&mem->res, PAGE_SIZE)) {
371 bool is_atomic = gfp_mask & GFP_ATOMIC;
373 * We cannot reclaim under GFP_ATOMIC, fail the charge
375 if (is_atomic)
376 goto noreclaim;
378 if (try_to_free_mem_cgroup_pages(mem, gfp_mask))
379 continue;
382 * try_to_free_mem_cgroup_pages() might not give us a full
383 * picture of reclaim. Some pages are reclaimed and might be
384 * moved to swap cache or just unmapped from the cgroup.
385 * Check the limit again to see if the reclaim reduced the
386 * current usage of the cgroup before giving up
388 if (res_counter_check_under_limit(&mem->res))
389 continue;
391 * Since we control both RSS and cache, we end up with a
392 * very interesting scenario where we end up reclaiming
393 * memory (essentially RSS), since the memory is pushed
394 * to swap cache, we eventually end up adding those
395 * pages back to our list. Hence we give ourselves a
396 * few chances before we fail
398 else if (nr_retries--) {
399 congestion_wait(WRITE, HZ/10);
400 continue;
402 noreclaim:
403 css_put(&mem->css);
404 if (!is_atomic)
405 mem_cgroup_out_of_memory(mem, GFP_KERNEL);
406 goto free_pc;
409 atomic_set(&pc->ref_cnt, 1);
410 pc->mem_cgroup = mem;
411 pc->page = page;
412 if (page_cgroup_assign_new_page_cgroup(page, pc)) {
414 * an another charge is added to this page already.
415 * we do take lock_page_cgroup(page) again and read
416 * page->cgroup, increment refcnt.... just retry is OK.
418 res_counter_uncharge(&mem->res, PAGE_SIZE);
419 css_put(&mem->css);
420 kfree(pc);
421 goto retry;
424 spin_lock_irqsave(&mem->lru_lock, flags);
425 list_add(&pc->lru, &mem->active_list);
426 spin_unlock_irqrestore(&mem->lru_lock, flags);
428 done:
429 return 0;
430 free_pc:
431 kfree(pc);
432 err:
433 return -ENOMEM;
437 * See if the cached pages should be charged at all?
439 int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
440 gfp_t gfp_mask)
442 struct mem_cgroup *mem;
443 if (!mm)
444 mm = &init_mm;
446 mem = rcu_dereference(mm->mem_cgroup);
447 if (mem->control_type == MEM_CGROUP_TYPE_ALL)
448 return mem_cgroup_charge(page, mm, gfp_mask);
449 else
450 return 0;
454 * Uncharging is always a welcome operation, we never complain, simply
455 * uncharge.
457 void mem_cgroup_uncharge(struct page_cgroup *pc)
459 struct mem_cgroup *mem;
460 struct page *page;
461 unsigned long flags;
464 * This can handle cases when a page is not charged at all and we
465 * are switching between handling the control_type.
467 if (!pc)
468 return;
470 if (atomic_dec_and_test(&pc->ref_cnt)) {
471 page = pc->page;
473 * get page->cgroup and clear it under lock.
474 * force_empty can drop page->cgroup without checking refcnt.
476 if (clear_page_cgroup(page, pc) == pc) {
477 mem = pc->mem_cgroup;
478 css_put(&mem->css);
479 res_counter_uncharge(&mem->res, PAGE_SIZE);
480 spin_lock_irqsave(&mem->lru_lock, flags);
481 list_del_init(&pc->lru);
482 spin_unlock_irqrestore(&mem->lru_lock, flags);
483 kfree(pc);
488 * Returns non-zero if a page (under migration) has valid page_cgroup member.
489 * Refcnt of page_cgroup is incremented.
492 int mem_cgroup_prepare_migration(struct page *page)
494 struct page_cgroup *pc;
495 int ret = 0;
496 lock_page_cgroup(page);
497 pc = page_get_page_cgroup(page);
498 if (pc && atomic_inc_not_zero(&pc->ref_cnt))
499 ret = 1;
500 unlock_page_cgroup(page);
501 return ret;
504 void mem_cgroup_end_migration(struct page *page)
506 struct page_cgroup *pc = page_get_page_cgroup(page);
507 mem_cgroup_uncharge(pc);
510 * We know both *page* and *newpage* are now not-on-LRU and Pg_locked.
511 * And no race with uncharge() routines because page_cgroup for *page*
512 * has extra one reference by mem_cgroup_prepare_migration.
515 void mem_cgroup_page_migration(struct page *page, struct page *newpage)
517 struct page_cgroup *pc;
518 retry:
519 pc = page_get_page_cgroup(page);
520 if (!pc)
521 return;
522 if (clear_page_cgroup(page, pc) != pc)
523 goto retry;
524 pc->page = newpage;
525 lock_page_cgroup(newpage);
526 page_assign_page_cgroup(newpage, pc);
527 unlock_page_cgroup(newpage);
528 return;
532 * This routine traverse page_cgroup in given list and drop them all.
533 * This routine ignores page_cgroup->ref_cnt.
534 * *And* this routine doesn't reclaim page itself, just removes page_cgroup.
536 #define FORCE_UNCHARGE_BATCH (128)
537 static void
538 mem_cgroup_force_empty_list(struct mem_cgroup *mem, struct list_head *list)
540 struct page_cgroup *pc;
541 struct page *page;
542 int count;
543 unsigned long flags;
545 retry:
546 count = FORCE_UNCHARGE_BATCH;
547 spin_lock_irqsave(&mem->lru_lock, flags);
549 while (--count && !list_empty(list)) {
550 pc = list_entry(list->prev, struct page_cgroup, lru);
551 page = pc->page;
552 /* Avoid race with charge */
553 atomic_set(&pc->ref_cnt, 0);
554 if (clear_page_cgroup(page, pc) == pc) {
555 css_put(&mem->css);
556 res_counter_uncharge(&mem->res, PAGE_SIZE);
557 list_del_init(&pc->lru);
558 kfree(pc);
559 } else /* being uncharged ? ...do relax */
560 break;
562 spin_unlock_irqrestore(&mem->lru_lock, flags);
563 if (!list_empty(list)) {
564 cond_resched();
565 goto retry;
567 return;
571 * make mem_cgroup's charge to be 0 if there is no task.
572 * This enables deleting this mem_cgroup.
575 int mem_cgroup_force_empty(struct mem_cgroup *mem)
577 int ret = -EBUSY;
578 css_get(&mem->css);
580 * page reclaim code (kswapd etc..) will move pages between
581 ` * active_list <-> inactive_list while we don't take a lock.
582 * So, we have to do loop here until all lists are empty.
584 while (!(list_empty(&mem->active_list) &&
585 list_empty(&mem->inactive_list))) {
586 if (atomic_read(&mem->css.cgroup->count) > 0)
587 goto out;
588 /* drop all page_cgroup in active_list */
589 mem_cgroup_force_empty_list(mem, &mem->active_list);
590 /* drop all page_cgroup in inactive_list */
591 mem_cgroup_force_empty_list(mem, &mem->inactive_list);
593 ret = 0;
594 out:
595 css_put(&mem->css);
596 return ret;
601 int mem_cgroup_write_strategy(char *buf, unsigned long long *tmp)
603 *tmp = memparse(buf, &buf);
604 if (*buf != '\0')
605 return -EINVAL;
608 * Round up the value to the closest page size
610 *tmp = ((*tmp + PAGE_SIZE - 1) >> PAGE_SHIFT) << PAGE_SHIFT;
611 return 0;
614 static ssize_t mem_cgroup_read(struct cgroup *cont,
615 struct cftype *cft, struct file *file,
616 char __user *userbuf, size_t nbytes, loff_t *ppos)
618 return res_counter_read(&mem_cgroup_from_cont(cont)->res,
619 cft->private, userbuf, nbytes, ppos,
620 NULL);
623 static ssize_t mem_cgroup_write(struct cgroup *cont, struct cftype *cft,
624 struct file *file, const char __user *userbuf,
625 size_t nbytes, loff_t *ppos)
627 return res_counter_write(&mem_cgroup_from_cont(cont)->res,
628 cft->private, userbuf, nbytes, ppos,
629 mem_cgroup_write_strategy);
632 static ssize_t mem_control_type_write(struct cgroup *cont,
633 struct cftype *cft, struct file *file,
634 const char __user *userbuf,
635 size_t nbytes, loff_t *pos)
637 int ret;
638 char *buf, *end;
639 unsigned long tmp;
640 struct mem_cgroup *mem;
642 mem = mem_cgroup_from_cont(cont);
643 buf = kmalloc(nbytes + 1, GFP_KERNEL);
644 ret = -ENOMEM;
645 if (buf == NULL)
646 goto out;
648 buf[nbytes] = 0;
649 ret = -EFAULT;
650 if (copy_from_user(buf, userbuf, nbytes))
651 goto out_free;
653 ret = -EINVAL;
654 tmp = simple_strtoul(buf, &end, 10);
655 if (*end != '\0')
656 goto out_free;
658 if (tmp <= MEM_CGROUP_TYPE_UNSPEC || tmp >= MEM_CGROUP_TYPE_MAX)
659 goto out_free;
661 mem->control_type = tmp;
662 ret = nbytes;
663 out_free:
664 kfree(buf);
665 out:
666 return ret;
669 static ssize_t mem_control_type_read(struct cgroup *cont,
670 struct cftype *cft,
671 struct file *file, char __user *userbuf,
672 size_t nbytes, loff_t *ppos)
674 unsigned long val;
675 char buf[64], *s;
676 struct mem_cgroup *mem;
678 mem = mem_cgroup_from_cont(cont);
679 s = buf;
680 val = mem->control_type;
681 s += sprintf(s, "%lu\n", val);
682 return simple_read_from_buffer((void __user *)userbuf, nbytes,
683 ppos, buf, s - buf);
687 static ssize_t mem_force_empty_write(struct cgroup *cont,
688 struct cftype *cft, struct file *file,
689 const char __user *userbuf,
690 size_t nbytes, loff_t *ppos)
692 struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
693 int ret;
694 ret = mem_cgroup_force_empty(mem);
695 if (!ret)
696 ret = nbytes;
697 return ret;
701 * Note: This should be removed if cgroup supports write-only file.
704 static ssize_t mem_force_empty_read(struct cgroup *cont,
705 struct cftype *cft,
706 struct file *file, char __user *userbuf,
707 size_t nbytes, loff_t *ppos)
709 return -EINVAL;
713 static struct cftype mem_cgroup_files[] = {
715 .name = "usage_in_bytes",
716 .private = RES_USAGE,
717 .read = mem_cgroup_read,
720 .name = "limit_in_bytes",
721 .private = RES_LIMIT,
722 .write = mem_cgroup_write,
723 .read = mem_cgroup_read,
726 .name = "failcnt",
727 .private = RES_FAILCNT,
728 .read = mem_cgroup_read,
731 .name = "control_type",
732 .write = mem_control_type_write,
733 .read = mem_control_type_read,
736 .name = "force_empty",
737 .write = mem_force_empty_write,
738 .read = mem_force_empty_read,
742 static struct mem_cgroup init_mem_cgroup;
744 static struct cgroup_subsys_state *
745 mem_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cont)
747 struct mem_cgroup *mem;
749 if (unlikely((cont->parent) == NULL)) {
750 mem = &init_mem_cgroup;
751 init_mm.mem_cgroup = mem;
752 } else
753 mem = kzalloc(sizeof(struct mem_cgroup), GFP_KERNEL);
755 if (mem == NULL)
756 return NULL;
758 res_counter_init(&mem->res);
759 INIT_LIST_HEAD(&mem->active_list);
760 INIT_LIST_HEAD(&mem->inactive_list);
761 spin_lock_init(&mem->lru_lock);
762 mem->control_type = MEM_CGROUP_TYPE_ALL;
763 return &mem->css;
766 static void mem_cgroup_destroy(struct cgroup_subsys *ss,
767 struct cgroup *cont)
769 kfree(mem_cgroup_from_cont(cont));
772 static int mem_cgroup_populate(struct cgroup_subsys *ss,
773 struct cgroup *cont)
775 return cgroup_add_files(cont, ss, mem_cgroup_files,
776 ARRAY_SIZE(mem_cgroup_files));
779 static void mem_cgroup_move_task(struct cgroup_subsys *ss,
780 struct cgroup *cont,
781 struct cgroup *old_cont,
782 struct task_struct *p)
784 struct mm_struct *mm;
785 struct mem_cgroup *mem, *old_mem;
787 mm = get_task_mm(p);
788 if (mm == NULL)
789 return;
791 mem = mem_cgroup_from_cont(cont);
792 old_mem = mem_cgroup_from_cont(old_cont);
794 if (mem == old_mem)
795 goto out;
798 * Only thread group leaders are allowed to migrate, the mm_struct is
799 * in effect owned by the leader
801 if (p->tgid != p->pid)
802 goto out;
804 css_get(&mem->css);
805 rcu_assign_pointer(mm->mem_cgroup, mem);
806 css_put(&old_mem->css);
808 out:
809 mmput(mm);
810 return;
813 struct cgroup_subsys mem_cgroup_subsys = {
814 .name = "memory",
815 .subsys_id = mem_cgroup_subsys_id,
816 .create = mem_cgroup_create,
817 .destroy = mem_cgroup_destroy,
818 .populate = mem_cgroup_populate,
819 .attach = mem_cgroup_move_task,
820 .early_init = 1,