mm: further cleanup page_add_new_anon_rmap
[linux-2.6/mini2440.git] / mm / rmap.c
blobb1770b11a5710a63b73bde04f307164b11d49cfd
1 /*
2 * mm/rmap.c - physical to virtual reverse mappings
4 * Copyright 2001, Rik van Riel <riel@conectiva.com.br>
5 * Released under the General Public License (GPL).
7 * Simple, low overhead reverse mapping scheme.
8 * Please try to keep this thing as modular as possible.
10 * Provides methods for unmapping each kind of mapped page:
11 * the anon methods track anonymous pages, and
12 * the file methods track pages belonging to an inode.
14 * Original design by Rik van Riel <riel@conectiva.com.br> 2001
15 * File methods by Dave McCracken <dmccr@us.ibm.com> 2003, 2004
16 * Anonymous methods by Andrea Arcangeli <andrea@suse.de> 2004
17 * Contributions by Hugh Dickins <hugh@veritas.com> 2003, 2004
21 * Lock ordering in mm:
23 * inode->i_mutex (while writing or truncating, not reading or faulting)
24 * inode->i_alloc_sem (vmtruncate_range)
25 * mm->mmap_sem
26 * page->flags PG_locked (lock_page)
27 * mapping->i_mmap_lock
28 * anon_vma->lock
29 * mm->page_table_lock or pte_lock
30 * zone->lru_lock (in mark_page_accessed, isolate_lru_page)
31 * swap_lock (in swap_duplicate, swap_info_get)
32 * mmlist_lock (in mmput, drain_mmlist and others)
33 * mapping->private_lock (in __set_page_dirty_buffers)
34 * inode_lock (in set_page_dirty's __mark_inode_dirty)
35 * sb_lock (within inode_lock in fs/fs-writeback.c)
36 * mapping->tree_lock (widely used, in set_page_dirty,
37 * in arch-dependent flush_dcache_mmap_lock,
38 * within inode_lock in __sync_single_inode)
41 #include <linux/mm.h>
42 #include <linux/pagemap.h>
43 #include <linux/swap.h>
44 #include <linux/swapops.h>
45 #include <linux/slab.h>
46 #include <linux/init.h>
47 #include <linux/rmap.h>
48 #include <linux/rcupdate.h>
49 #include <linux/module.h>
50 #include <linux/kallsyms.h>
51 #include <linux/memcontrol.h>
52 #include <linux/mmu_notifier.h>
53 #include <linux/migrate.h>
55 #include <asm/tlbflush.h>
57 #include "internal.h"
59 static struct kmem_cache *anon_vma_cachep;
61 static inline struct anon_vma *anon_vma_alloc(void)
63 return kmem_cache_alloc(anon_vma_cachep, GFP_KERNEL);
66 static inline void anon_vma_free(struct anon_vma *anon_vma)
68 kmem_cache_free(anon_vma_cachep, anon_vma);
71 /**
72 * anon_vma_prepare - attach an anon_vma to a memory region
73 * @vma: the memory region in question
75 * This makes sure the memory mapping described by 'vma' has
76 * an 'anon_vma' attached to it, so that we can associate the
77 * anonymous pages mapped into it with that anon_vma.
79 * The common case will be that we already have one, but if
80 * if not we either need to find an adjacent mapping that we
81 * can re-use the anon_vma from (very common when the only
82 * reason for splitting a vma has been mprotect()), or we
83 * allocate a new one.
85 * Anon-vma allocations are very subtle, because we may have
86 * optimistically looked up an anon_vma in page_lock_anon_vma()
87 * and that may actually touch the spinlock even in the newly
88 * allocated vma (it depends on RCU to make sure that the
89 * anon_vma isn't actually destroyed).
91 * As a result, we need to do proper anon_vma locking even
92 * for the new allocation. At the same time, we do not want
93 * to do any locking for the common case of already having
94 * an anon_vma.
96 * This must be called with the mmap_sem held for reading.
98 int anon_vma_prepare(struct vm_area_struct *vma)
100 struct anon_vma *anon_vma = vma->anon_vma;
102 might_sleep();
103 if (unlikely(!anon_vma)) {
104 struct mm_struct *mm = vma->vm_mm;
105 struct anon_vma *allocated;
107 anon_vma = find_mergeable_anon_vma(vma);
108 allocated = NULL;
109 if (!anon_vma) {
110 anon_vma = anon_vma_alloc();
111 if (unlikely(!anon_vma))
112 return -ENOMEM;
113 allocated = anon_vma;
115 spin_lock(&anon_vma->lock);
117 /* page_table_lock to protect against threads */
118 spin_lock(&mm->page_table_lock);
119 if (likely(!vma->anon_vma)) {
120 vma->anon_vma = anon_vma;
121 list_add_tail(&vma->anon_vma_node, &anon_vma->head);
122 allocated = NULL;
124 spin_unlock(&mm->page_table_lock);
126 spin_unlock(&anon_vma->lock);
127 if (unlikely(allocated))
128 anon_vma_free(allocated);
130 return 0;
133 void __anon_vma_merge(struct vm_area_struct *vma, struct vm_area_struct *next)
135 BUG_ON(vma->anon_vma != next->anon_vma);
136 list_del(&next->anon_vma_node);
139 void __anon_vma_link(struct vm_area_struct *vma)
141 struct anon_vma *anon_vma = vma->anon_vma;
143 if (anon_vma)
144 list_add_tail(&vma->anon_vma_node, &anon_vma->head);
147 void anon_vma_link(struct vm_area_struct *vma)
149 struct anon_vma *anon_vma = vma->anon_vma;
151 if (anon_vma) {
152 spin_lock(&anon_vma->lock);
153 list_add_tail(&vma->anon_vma_node, &anon_vma->head);
154 spin_unlock(&anon_vma->lock);
158 void anon_vma_unlink(struct vm_area_struct *vma)
160 struct anon_vma *anon_vma = vma->anon_vma;
161 int empty;
163 if (!anon_vma)
164 return;
166 spin_lock(&anon_vma->lock);
167 list_del(&vma->anon_vma_node);
169 /* We must garbage collect the anon_vma if it's empty */
170 empty = list_empty(&anon_vma->head);
171 spin_unlock(&anon_vma->lock);
173 if (empty)
174 anon_vma_free(anon_vma);
177 static void anon_vma_ctor(void *data)
179 struct anon_vma *anon_vma = data;
181 spin_lock_init(&anon_vma->lock);
182 INIT_LIST_HEAD(&anon_vma->head);
185 void __init anon_vma_init(void)
187 anon_vma_cachep = kmem_cache_create("anon_vma", sizeof(struct anon_vma),
188 0, SLAB_DESTROY_BY_RCU|SLAB_PANIC, anon_vma_ctor);
192 * Getting a lock on a stable anon_vma from a page off the LRU is
193 * tricky: page_lock_anon_vma rely on RCU to guard against the races.
195 static struct anon_vma *page_lock_anon_vma(struct page *page)
197 struct anon_vma *anon_vma;
198 unsigned long anon_mapping;
200 rcu_read_lock();
201 anon_mapping = (unsigned long) page->mapping;
202 if (!(anon_mapping & PAGE_MAPPING_ANON))
203 goto out;
204 if (!page_mapped(page))
205 goto out;
207 anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
208 spin_lock(&anon_vma->lock);
209 return anon_vma;
210 out:
211 rcu_read_unlock();
212 return NULL;
215 static void page_unlock_anon_vma(struct anon_vma *anon_vma)
217 spin_unlock(&anon_vma->lock);
218 rcu_read_unlock();
222 * At what user virtual address is page expected in @vma?
223 * Returns virtual address or -EFAULT if page's index/offset is not
224 * within the range mapped the @vma.
226 static inline unsigned long
227 vma_address(struct page *page, struct vm_area_struct *vma)
229 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
230 unsigned long address;
232 address = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
233 if (unlikely(address < vma->vm_start || address >= vma->vm_end)) {
234 /* page should be within @vma mapping range */
235 return -EFAULT;
237 return address;
241 * At what user virtual address is page expected in vma? checking that the
242 * page matches the vma: currently only used on anon pages, by unuse_vma;
244 unsigned long page_address_in_vma(struct page *page, struct vm_area_struct *vma)
246 if (PageAnon(page)) {
247 if ((void *)vma->anon_vma !=
248 (void *)page->mapping - PAGE_MAPPING_ANON)
249 return -EFAULT;
250 } else if (page->mapping && !(vma->vm_flags & VM_NONLINEAR)) {
251 if (!vma->vm_file ||
252 vma->vm_file->f_mapping != page->mapping)
253 return -EFAULT;
254 } else
255 return -EFAULT;
256 return vma_address(page, vma);
260 * Check that @page is mapped at @address into @mm.
262 * If @sync is false, page_check_address may perform a racy check to avoid
263 * the page table lock when the pte is not present (helpful when reclaiming
264 * highly shared pages).
266 * On success returns with pte mapped and locked.
268 pte_t *page_check_address(struct page *page, struct mm_struct *mm,
269 unsigned long address, spinlock_t **ptlp, int sync)
271 pgd_t *pgd;
272 pud_t *pud;
273 pmd_t *pmd;
274 pte_t *pte;
275 spinlock_t *ptl;
277 pgd = pgd_offset(mm, address);
278 if (!pgd_present(*pgd))
279 return NULL;
281 pud = pud_offset(pgd, address);
282 if (!pud_present(*pud))
283 return NULL;
285 pmd = pmd_offset(pud, address);
286 if (!pmd_present(*pmd))
287 return NULL;
289 pte = pte_offset_map(pmd, address);
290 /* Make a quick check before getting the lock */
291 if (!sync && !pte_present(*pte)) {
292 pte_unmap(pte);
293 return NULL;
296 ptl = pte_lockptr(mm, pmd);
297 spin_lock(ptl);
298 if (pte_present(*pte) && page_to_pfn(page) == pte_pfn(*pte)) {
299 *ptlp = ptl;
300 return pte;
302 pte_unmap_unlock(pte, ptl);
303 return NULL;
307 * page_mapped_in_vma - check whether a page is really mapped in a VMA
308 * @page: the page to test
309 * @vma: the VMA to test
311 * Returns 1 if the page is mapped into the page tables of the VMA, 0
312 * if the page is not mapped into the page tables of this VMA. Only
313 * valid for normal file or anonymous VMAs.
315 static int page_mapped_in_vma(struct page *page, struct vm_area_struct *vma)
317 unsigned long address;
318 pte_t *pte;
319 spinlock_t *ptl;
321 address = vma_address(page, vma);
322 if (address == -EFAULT) /* out of vma range */
323 return 0;
324 pte = page_check_address(page, vma->vm_mm, address, &ptl, 1);
325 if (!pte) /* the page is not in this mm */
326 return 0;
327 pte_unmap_unlock(pte, ptl);
329 return 1;
333 * Subfunctions of page_referenced: page_referenced_one called
334 * repeatedly from either page_referenced_anon or page_referenced_file.
336 static int page_referenced_one(struct page *page,
337 struct vm_area_struct *vma, unsigned int *mapcount)
339 struct mm_struct *mm = vma->vm_mm;
340 unsigned long address;
341 pte_t *pte;
342 spinlock_t *ptl;
343 int referenced = 0;
345 address = vma_address(page, vma);
346 if (address == -EFAULT)
347 goto out;
349 pte = page_check_address(page, mm, address, &ptl, 0);
350 if (!pte)
351 goto out;
354 * Don't want to elevate referenced for mlocked page that gets this far,
355 * in order that it progresses to try_to_unmap and is moved to the
356 * unevictable list.
358 if (vma->vm_flags & VM_LOCKED) {
359 *mapcount = 1; /* break early from loop */
360 goto out_unmap;
363 if (ptep_clear_flush_young_notify(vma, address, pte)) {
365 * Don't treat a reference through a sequentially read
366 * mapping as such. If the page has been used in
367 * another mapping, we will catch it; if this other
368 * mapping is already gone, the unmap path will have
369 * set PG_referenced or activated the page.
371 if (likely(!VM_SequentialReadHint(vma)))
372 referenced++;
375 /* Pretend the page is referenced if the task has the
376 swap token and is in the middle of a page fault. */
377 if (mm != current->mm && has_swap_token(mm) &&
378 rwsem_is_locked(&mm->mmap_sem))
379 referenced++;
381 out_unmap:
382 (*mapcount)--;
383 pte_unmap_unlock(pte, ptl);
384 out:
385 return referenced;
388 static int page_referenced_anon(struct page *page,
389 struct mem_cgroup *mem_cont)
391 unsigned int mapcount;
392 struct anon_vma *anon_vma;
393 struct vm_area_struct *vma;
394 int referenced = 0;
396 anon_vma = page_lock_anon_vma(page);
397 if (!anon_vma)
398 return referenced;
400 mapcount = page_mapcount(page);
401 list_for_each_entry(vma, &anon_vma->head, anon_vma_node) {
403 * If we are reclaiming on behalf of a cgroup, skip
404 * counting on behalf of references from different
405 * cgroups
407 if (mem_cont && !mm_match_cgroup(vma->vm_mm, mem_cont))
408 continue;
409 referenced += page_referenced_one(page, vma, &mapcount);
410 if (!mapcount)
411 break;
414 page_unlock_anon_vma(anon_vma);
415 return referenced;
419 * page_referenced_file - referenced check for object-based rmap
420 * @page: the page we're checking references on.
421 * @mem_cont: target memory controller
423 * For an object-based mapped page, find all the places it is mapped and
424 * check/clear the referenced flag. This is done by following the page->mapping
425 * pointer, then walking the chain of vmas it holds. It returns the number
426 * of references it found.
428 * This function is only called from page_referenced for object-based pages.
430 static int page_referenced_file(struct page *page,
431 struct mem_cgroup *mem_cont)
433 unsigned int mapcount;
434 struct address_space *mapping = page->mapping;
435 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
436 struct vm_area_struct *vma;
437 struct prio_tree_iter iter;
438 int referenced = 0;
441 * The caller's checks on page->mapping and !PageAnon have made
442 * sure that this is a file page: the check for page->mapping
443 * excludes the case just before it gets set on an anon page.
445 BUG_ON(PageAnon(page));
448 * The page lock not only makes sure that page->mapping cannot
449 * suddenly be NULLified by truncation, it makes sure that the
450 * structure at mapping cannot be freed and reused yet,
451 * so we can safely take mapping->i_mmap_lock.
453 BUG_ON(!PageLocked(page));
455 spin_lock(&mapping->i_mmap_lock);
458 * i_mmap_lock does not stabilize mapcount at all, but mapcount
459 * is more likely to be accurate if we note it after spinning.
461 mapcount = page_mapcount(page);
463 vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
465 * If we are reclaiming on behalf of a cgroup, skip
466 * counting on behalf of references from different
467 * cgroups
469 if (mem_cont && !mm_match_cgroup(vma->vm_mm, mem_cont))
470 continue;
471 referenced += page_referenced_one(page, vma, &mapcount);
472 if (!mapcount)
473 break;
476 spin_unlock(&mapping->i_mmap_lock);
477 return referenced;
481 * page_referenced - test if the page was referenced
482 * @page: the page to test
483 * @is_locked: caller holds lock on the page
484 * @mem_cont: target memory controller
486 * Quick test_and_clear_referenced for all mappings to a page,
487 * returns the number of ptes which referenced the page.
489 int page_referenced(struct page *page, int is_locked,
490 struct mem_cgroup *mem_cont)
492 int referenced = 0;
494 if (TestClearPageReferenced(page))
495 referenced++;
497 if (page_mapped(page) && page->mapping) {
498 if (PageAnon(page))
499 referenced += page_referenced_anon(page, mem_cont);
500 else if (is_locked)
501 referenced += page_referenced_file(page, mem_cont);
502 else if (!trylock_page(page))
503 referenced++;
504 else {
505 if (page->mapping)
506 referenced +=
507 page_referenced_file(page, mem_cont);
508 unlock_page(page);
512 if (page_test_and_clear_young(page))
513 referenced++;
515 return referenced;
518 static int page_mkclean_one(struct page *page, struct vm_area_struct *vma)
520 struct mm_struct *mm = vma->vm_mm;
521 unsigned long address;
522 pte_t *pte;
523 spinlock_t *ptl;
524 int ret = 0;
526 address = vma_address(page, vma);
527 if (address == -EFAULT)
528 goto out;
530 pte = page_check_address(page, mm, address, &ptl, 1);
531 if (!pte)
532 goto out;
534 if (pte_dirty(*pte) || pte_write(*pte)) {
535 pte_t entry;
537 flush_cache_page(vma, address, pte_pfn(*pte));
538 entry = ptep_clear_flush_notify(vma, address, pte);
539 entry = pte_wrprotect(entry);
540 entry = pte_mkclean(entry);
541 set_pte_at(mm, address, pte, entry);
542 ret = 1;
545 pte_unmap_unlock(pte, ptl);
546 out:
547 return ret;
550 static int page_mkclean_file(struct address_space *mapping, struct page *page)
552 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
553 struct vm_area_struct *vma;
554 struct prio_tree_iter iter;
555 int ret = 0;
557 BUG_ON(PageAnon(page));
559 spin_lock(&mapping->i_mmap_lock);
560 vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
561 if (vma->vm_flags & VM_SHARED)
562 ret += page_mkclean_one(page, vma);
564 spin_unlock(&mapping->i_mmap_lock);
565 return ret;
568 int page_mkclean(struct page *page)
570 int ret = 0;
572 BUG_ON(!PageLocked(page));
574 if (page_mapped(page)) {
575 struct address_space *mapping = page_mapping(page);
576 if (mapping) {
577 ret = page_mkclean_file(mapping, page);
578 if (page_test_dirty(page)) {
579 page_clear_dirty(page);
580 ret = 1;
585 return ret;
587 EXPORT_SYMBOL_GPL(page_mkclean);
590 * __page_set_anon_rmap - setup new anonymous rmap
591 * @page: the page to add the mapping to
592 * @vma: the vm area in which the mapping is added
593 * @address: the user virtual address mapped
595 static void __page_set_anon_rmap(struct page *page,
596 struct vm_area_struct *vma, unsigned long address)
598 struct anon_vma *anon_vma = vma->anon_vma;
600 BUG_ON(!anon_vma);
601 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
602 page->mapping = (struct address_space *) anon_vma;
604 page->index = linear_page_index(vma, address);
607 * nr_mapped state can be updated without turning off
608 * interrupts because it is not modified via interrupt.
610 __inc_zone_page_state(page, NR_ANON_PAGES);
614 * __page_check_anon_rmap - sanity check anonymous rmap addition
615 * @page: the page to add the mapping to
616 * @vma: the vm area in which the mapping is added
617 * @address: the user virtual address mapped
619 static void __page_check_anon_rmap(struct page *page,
620 struct vm_area_struct *vma, unsigned long address)
622 #ifdef CONFIG_DEBUG_VM
624 * The page's anon-rmap details (mapping and index) are guaranteed to
625 * be set up correctly at this point.
627 * We have exclusion against page_add_anon_rmap because the caller
628 * always holds the page locked, except if called from page_dup_rmap,
629 * in which case the page is already known to be setup.
631 * We have exclusion against page_add_new_anon_rmap because those pages
632 * are initially only visible via the pagetables, and the pte is locked
633 * over the call to page_add_new_anon_rmap.
635 struct anon_vma *anon_vma = vma->anon_vma;
636 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
637 BUG_ON(page->mapping != (struct address_space *)anon_vma);
638 BUG_ON(page->index != linear_page_index(vma, address));
639 #endif
643 * page_add_anon_rmap - add pte mapping to an anonymous page
644 * @page: the page to add the mapping to
645 * @vma: the vm area in which the mapping is added
646 * @address: the user virtual address mapped
648 * The caller needs to hold the pte lock and the page must be locked.
650 void page_add_anon_rmap(struct page *page,
651 struct vm_area_struct *vma, unsigned long address)
653 VM_BUG_ON(!PageLocked(page));
654 VM_BUG_ON(address < vma->vm_start || address >= vma->vm_end);
655 if (atomic_inc_and_test(&page->_mapcount))
656 __page_set_anon_rmap(page, vma, address);
657 else
658 __page_check_anon_rmap(page, vma, address);
662 * page_add_new_anon_rmap - add pte mapping to a new anonymous page
663 * @page: the page to add the mapping to
664 * @vma: the vm area in which the mapping is added
665 * @address: the user virtual address mapped
667 * Same as page_add_anon_rmap but must only be called on *new* pages.
668 * This means the inc-and-test can be bypassed.
669 * Page does not have to be locked.
671 void page_add_new_anon_rmap(struct page *page,
672 struct vm_area_struct *vma, unsigned long address)
674 VM_BUG_ON(address < vma->vm_start || address >= vma->vm_end);
675 SetPageSwapBacked(page);
676 atomic_set(&page->_mapcount, 0); /* increment count (starts at -1) */
677 __page_set_anon_rmap(page, vma, address);
678 if (page_evictable(page, vma))
679 lru_cache_add_lru(page, LRU_ACTIVE_ANON);
680 else
681 add_page_to_unevictable_list(page);
685 * page_add_file_rmap - add pte mapping to a file page
686 * @page: the page to add the mapping to
688 * The caller needs to hold the pte lock.
690 void page_add_file_rmap(struct page *page)
692 if (atomic_inc_and_test(&page->_mapcount))
693 __inc_zone_page_state(page, NR_FILE_MAPPED);
696 #ifdef CONFIG_DEBUG_VM
698 * page_dup_rmap - duplicate pte mapping to a page
699 * @page: the page to add the mapping to
700 * @vma: the vm area being duplicated
701 * @address: the user virtual address mapped
703 * For copy_page_range only: minimal extract from page_add_file_rmap /
704 * page_add_anon_rmap, avoiding unnecessary tests (already checked) so it's
705 * quicker.
707 * The caller needs to hold the pte lock.
709 void page_dup_rmap(struct page *page, struct vm_area_struct *vma, unsigned long address)
711 BUG_ON(page_mapcount(page) == 0);
712 if (PageAnon(page))
713 __page_check_anon_rmap(page, vma, address);
714 atomic_inc(&page->_mapcount);
716 #endif
719 * page_remove_rmap - take down pte mapping from a page
720 * @page: page to remove mapping from
721 * @vma: the vm area in which the mapping is removed
723 * The caller needs to hold the pte lock.
725 void page_remove_rmap(struct page *page, struct vm_area_struct *vma)
727 if (atomic_add_negative(-1, &page->_mapcount)) {
728 if (unlikely(page_mapcount(page) < 0)) {
729 printk (KERN_EMERG "Eeek! page_mapcount(page) went negative! (%d)\n", page_mapcount(page));
730 printk (KERN_EMERG " page pfn = %lx\n", page_to_pfn(page));
731 printk (KERN_EMERG " page->flags = %lx\n", page->flags);
732 printk (KERN_EMERG " page->count = %x\n", page_count(page));
733 printk (KERN_EMERG " page->mapping = %p\n", page->mapping);
734 print_symbol (KERN_EMERG " vma->vm_ops = %s\n", (unsigned long)vma->vm_ops);
735 if (vma->vm_ops) {
736 print_symbol (KERN_EMERG " vma->vm_ops->fault = %s\n", (unsigned long)vma->vm_ops->fault);
738 if (vma->vm_file && vma->vm_file->f_op)
739 print_symbol (KERN_EMERG " vma->vm_file->f_op->mmap = %s\n", (unsigned long)vma->vm_file->f_op->mmap);
740 BUG();
744 * Now that the last pte has gone, s390 must transfer dirty
745 * flag from storage key to struct page. We can usually skip
746 * this if the page is anon, so about to be freed; but perhaps
747 * not if it's in swapcache - there might be another pte slot
748 * containing the swap entry, but page not yet written to swap.
750 if ((!PageAnon(page) || PageSwapCache(page)) &&
751 page_test_dirty(page)) {
752 page_clear_dirty(page);
753 set_page_dirty(page);
755 if (PageAnon(page))
756 mem_cgroup_uncharge_page(page);
757 __dec_zone_page_state(page,
758 PageAnon(page) ? NR_ANON_PAGES : NR_FILE_MAPPED);
760 * It would be tidy to reset the PageAnon mapping here,
761 * but that might overwrite a racing page_add_anon_rmap
762 * which increments mapcount after us but sets mapping
763 * before us: so leave the reset to free_hot_cold_page,
764 * and remember that it's only reliable while mapped.
765 * Leaving it set also helps swapoff to reinstate ptes
766 * faster for those pages still in swapcache.
772 * Subfunctions of try_to_unmap: try_to_unmap_one called
773 * repeatedly from either try_to_unmap_anon or try_to_unmap_file.
775 static int try_to_unmap_one(struct page *page, struct vm_area_struct *vma,
776 int migration)
778 struct mm_struct *mm = vma->vm_mm;
779 unsigned long address;
780 pte_t *pte;
781 pte_t pteval;
782 spinlock_t *ptl;
783 int ret = SWAP_AGAIN;
785 address = vma_address(page, vma);
786 if (address == -EFAULT)
787 goto out;
789 pte = page_check_address(page, mm, address, &ptl, 0);
790 if (!pte)
791 goto out;
794 * If the page is mlock()d, we cannot swap it out.
795 * If it's recently referenced (perhaps page_referenced
796 * skipped over this mm) then we should reactivate it.
798 if (!migration) {
799 if (vma->vm_flags & VM_LOCKED) {
800 ret = SWAP_MLOCK;
801 goto out_unmap;
803 if (ptep_clear_flush_young_notify(vma, address, pte)) {
804 ret = SWAP_FAIL;
805 goto out_unmap;
809 /* Nuke the page table entry. */
810 flush_cache_page(vma, address, page_to_pfn(page));
811 pteval = ptep_clear_flush_notify(vma, address, pte);
813 /* Move the dirty bit to the physical page now the pte is gone. */
814 if (pte_dirty(pteval))
815 set_page_dirty(page);
817 /* Update high watermark before we lower rss */
818 update_hiwater_rss(mm);
820 if (PageAnon(page)) {
821 swp_entry_t entry = { .val = page_private(page) };
823 if (PageSwapCache(page)) {
825 * Store the swap location in the pte.
826 * See handle_pte_fault() ...
828 swap_duplicate(entry);
829 if (list_empty(&mm->mmlist)) {
830 spin_lock(&mmlist_lock);
831 if (list_empty(&mm->mmlist))
832 list_add(&mm->mmlist, &init_mm.mmlist);
833 spin_unlock(&mmlist_lock);
835 dec_mm_counter(mm, anon_rss);
836 } else if (PAGE_MIGRATION) {
838 * Store the pfn of the page in a special migration
839 * pte. do_swap_page() will wait until the migration
840 * pte is removed and then restart fault handling.
842 BUG_ON(!migration);
843 entry = make_migration_entry(page, pte_write(pteval));
845 set_pte_at(mm, address, pte, swp_entry_to_pte(entry));
846 BUG_ON(pte_file(*pte));
847 } else if (PAGE_MIGRATION && migration) {
848 /* Establish migration entry for a file page */
849 swp_entry_t entry;
850 entry = make_migration_entry(page, pte_write(pteval));
851 set_pte_at(mm, address, pte, swp_entry_to_pte(entry));
852 } else
853 dec_mm_counter(mm, file_rss);
856 page_remove_rmap(page, vma);
857 page_cache_release(page);
859 out_unmap:
860 pte_unmap_unlock(pte, ptl);
861 out:
862 return ret;
866 * objrmap doesn't work for nonlinear VMAs because the assumption that
867 * offset-into-file correlates with offset-into-virtual-addresses does not hold.
868 * Consequently, given a particular page and its ->index, we cannot locate the
869 * ptes which are mapping that page without an exhaustive linear search.
871 * So what this code does is a mini "virtual scan" of each nonlinear VMA which
872 * maps the file to which the target page belongs. The ->vm_private_data field
873 * holds the current cursor into that scan. Successive searches will circulate
874 * around the vma's virtual address space.
876 * So as more replacement pressure is applied to the pages in a nonlinear VMA,
877 * more scanning pressure is placed against them as well. Eventually pages
878 * will become fully unmapped and are eligible for eviction.
880 * For very sparsely populated VMAs this is a little inefficient - chances are
881 * there there won't be many ptes located within the scan cluster. In this case
882 * maybe we could scan further - to the end of the pte page, perhaps.
884 * Mlocked pages: check VM_LOCKED under mmap_sem held for read, if we can
885 * acquire it without blocking. If vma locked, mlock the pages in the cluster,
886 * rather than unmapping them. If we encounter the "check_page" that vmscan is
887 * trying to unmap, return SWAP_MLOCK, else default SWAP_AGAIN.
889 #define CLUSTER_SIZE min(32*PAGE_SIZE, PMD_SIZE)
890 #define CLUSTER_MASK (~(CLUSTER_SIZE - 1))
892 static int try_to_unmap_cluster(unsigned long cursor, unsigned int *mapcount,
893 struct vm_area_struct *vma, struct page *check_page)
895 struct mm_struct *mm = vma->vm_mm;
896 pgd_t *pgd;
897 pud_t *pud;
898 pmd_t *pmd;
899 pte_t *pte;
900 pte_t pteval;
901 spinlock_t *ptl;
902 struct page *page;
903 unsigned long address;
904 unsigned long end;
905 int ret = SWAP_AGAIN;
906 int locked_vma = 0;
908 address = (vma->vm_start + cursor) & CLUSTER_MASK;
909 end = address + CLUSTER_SIZE;
910 if (address < vma->vm_start)
911 address = vma->vm_start;
912 if (end > vma->vm_end)
913 end = vma->vm_end;
915 pgd = pgd_offset(mm, address);
916 if (!pgd_present(*pgd))
917 return ret;
919 pud = pud_offset(pgd, address);
920 if (!pud_present(*pud))
921 return ret;
923 pmd = pmd_offset(pud, address);
924 if (!pmd_present(*pmd))
925 return ret;
928 * MLOCK_PAGES => feature is configured.
929 * if we can acquire the mmap_sem for read, and vma is VM_LOCKED,
930 * keep the sem while scanning the cluster for mlocking pages.
932 if (MLOCK_PAGES && down_read_trylock(&vma->vm_mm->mmap_sem)) {
933 locked_vma = (vma->vm_flags & VM_LOCKED);
934 if (!locked_vma)
935 up_read(&vma->vm_mm->mmap_sem); /* don't need it */
938 pte = pte_offset_map_lock(mm, pmd, address, &ptl);
940 /* Update high watermark before we lower rss */
941 update_hiwater_rss(mm);
943 for (; address < end; pte++, address += PAGE_SIZE) {
944 if (!pte_present(*pte))
945 continue;
946 page = vm_normal_page(vma, address, *pte);
947 BUG_ON(!page || PageAnon(page));
949 if (locked_vma) {
950 mlock_vma_page(page); /* no-op if already mlocked */
951 if (page == check_page)
952 ret = SWAP_MLOCK;
953 continue; /* don't unmap */
956 if (ptep_clear_flush_young_notify(vma, address, pte))
957 continue;
959 /* Nuke the page table entry. */
960 flush_cache_page(vma, address, pte_pfn(*pte));
961 pteval = ptep_clear_flush_notify(vma, address, pte);
963 /* If nonlinear, store the file page offset in the pte. */
964 if (page->index != linear_page_index(vma, address))
965 set_pte_at(mm, address, pte, pgoff_to_pte(page->index));
967 /* Move the dirty bit to the physical page now the pte is gone. */
968 if (pte_dirty(pteval))
969 set_page_dirty(page);
971 page_remove_rmap(page, vma);
972 page_cache_release(page);
973 dec_mm_counter(mm, file_rss);
974 (*mapcount)--;
976 pte_unmap_unlock(pte - 1, ptl);
977 if (locked_vma)
978 up_read(&vma->vm_mm->mmap_sem);
979 return ret;
983 * common handling for pages mapped in VM_LOCKED vmas
985 static int try_to_mlock_page(struct page *page, struct vm_area_struct *vma)
987 int mlocked = 0;
989 if (down_read_trylock(&vma->vm_mm->mmap_sem)) {
990 if (vma->vm_flags & VM_LOCKED) {
991 mlock_vma_page(page);
992 mlocked++; /* really mlocked the page */
994 up_read(&vma->vm_mm->mmap_sem);
996 return mlocked;
1000 * try_to_unmap_anon - unmap or unlock anonymous page using the object-based
1001 * rmap method
1002 * @page: the page to unmap/unlock
1003 * @unlock: request for unlock rather than unmap [unlikely]
1004 * @migration: unmapping for migration - ignored if @unlock
1006 * Find all the mappings of a page using the mapping pointer and the vma chains
1007 * contained in the anon_vma struct it points to.
1009 * This function is only called from try_to_unmap/try_to_munlock for
1010 * anonymous pages.
1011 * When called from try_to_munlock(), the mmap_sem of the mm containing the vma
1012 * where the page was found will be held for write. So, we won't recheck
1013 * vm_flags for that VMA. That should be OK, because that vma shouldn't be
1014 * 'LOCKED.
1016 static int try_to_unmap_anon(struct page *page, int unlock, int migration)
1018 struct anon_vma *anon_vma;
1019 struct vm_area_struct *vma;
1020 unsigned int mlocked = 0;
1021 int ret = SWAP_AGAIN;
1023 if (MLOCK_PAGES && unlikely(unlock))
1024 ret = SWAP_SUCCESS; /* default for try_to_munlock() */
1026 anon_vma = page_lock_anon_vma(page);
1027 if (!anon_vma)
1028 return ret;
1030 list_for_each_entry(vma, &anon_vma->head, anon_vma_node) {
1031 if (MLOCK_PAGES && unlikely(unlock)) {
1032 if (!((vma->vm_flags & VM_LOCKED) &&
1033 page_mapped_in_vma(page, vma)))
1034 continue; /* must visit all unlocked vmas */
1035 ret = SWAP_MLOCK; /* saw at least one mlocked vma */
1036 } else {
1037 ret = try_to_unmap_one(page, vma, migration);
1038 if (ret == SWAP_FAIL || !page_mapped(page))
1039 break;
1041 if (ret == SWAP_MLOCK) {
1042 mlocked = try_to_mlock_page(page, vma);
1043 if (mlocked)
1044 break; /* stop if actually mlocked page */
1048 page_unlock_anon_vma(anon_vma);
1050 if (mlocked)
1051 ret = SWAP_MLOCK; /* actually mlocked the page */
1052 else if (ret == SWAP_MLOCK)
1053 ret = SWAP_AGAIN; /* saw VM_LOCKED vma */
1055 return ret;
1059 * try_to_unmap_file - unmap/unlock file page using the object-based rmap method
1060 * @page: the page to unmap/unlock
1061 * @unlock: request for unlock rather than unmap [unlikely]
1062 * @migration: unmapping for migration - ignored if @unlock
1064 * Find all the mappings of a page using the mapping pointer and the vma chains
1065 * contained in the address_space struct it points to.
1067 * This function is only called from try_to_unmap/try_to_munlock for
1068 * object-based pages.
1069 * When called from try_to_munlock(), the mmap_sem of the mm containing the vma
1070 * where the page was found will be held for write. So, we won't recheck
1071 * vm_flags for that VMA. That should be OK, because that vma shouldn't be
1072 * 'LOCKED.
1074 static int try_to_unmap_file(struct page *page, int unlock, int migration)
1076 struct address_space *mapping = page->mapping;
1077 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
1078 struct vm_area_struct *vma;
1079 struct prio_tree_iter iter;
1080 int ret = SWAP_AGAIN;
1081 unsigned long cursor;
1082 unsigned long max_nl_cursor = 0;
1083 unsigned long max_nl_size = 0;
1084 unsigned int mapcount;
1085 unsigned int mlocked = 0;
1087 if (MLOCK_PAGES && unlikely(unlock))
1088 ret = SWAP_SUCCESS; /* default for try_to_munlock() */
1090 spin_lock(&mapping->i_mmap_lock);
1091 vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
1092 if (MLOCK_PAGES && unlikely(unlock)) {
1093 if (!(vma->vm_flags & VM_LOCKED))
1094 continue; /* must visit all vmas */
1095 ret = SWAP_MLOCK;
1096 } else {
1097 ret = try_to_unmap_one(page, vma, migration);
1098 if (ret == SWAP_FAIL || !page_mapped(page))
1099 goto out;
1101 if (ret == SWAP_MLOCK) {
1102 mlocked = try_to_mlock_page(page, vma);
1103 if (mlocked)
1104 break; /* stop if actually mlocked page */
1108 if (mlocked)
1109 goto out;
1111 if (list_empty(&mapping->i_mmap_nonlinear))
1112 goto out;
1114 list_for_each_entry(vma, &mapping->i_mmap_nonlinear,
1115 shared.vm_set.list) {
1116 if (MLOCK_PAGES && unlikely(unlock)) {
1117 if (!(vma->vm_flags & VM_LOCKED))
1118 continue; /* must visit all vmas */
1119 ret = SWAP_MLOCK; /* leave mlocked == 0 */
1120 goto out; /* no need to look further */
1122 if (!MLOCK_PAGES && !migration && (vma->vm_flags & VM_LOCKED))
1123 continue;
1124 cursor = (unsigned long) vma->vm_private_data;
1125 if (cursor > max_nl_cursor)
1126 max_nl_cursor = cursor;
1127 cursor = vma->vm_end - vma->vm_start;
1128 if (cursor > max_nl_size)
1129 max_nl_size = cursor;
1132 if (max_nl_size == 0) { /* all nonlinears locked or reserved ? */
1133 ret = SWAP_FAIL;
1134 goto out;
1138 * We don't try to search for this page in the nonlinear vmas,
1139 * and page_referenced wouldn't have found it anyway. Instead
1140 * just walk the nonlinear vmas trying to age and unmap some.
1141 * The mapcount of the page we came in with is irrelevant,
1142 * but even so use it as a guide to how hard we should try?
1144 mapcount = page_mapcount(page);
1145 if (!mapcount)
1146 goto out;
1147 cond_resched_lock(&mapping->i_mmap_lock);
1149 max_nl_size = (max_nl_size + CLUSTER_SIZE - 1) & CLUSTER_MASK;
1150 if (max_nl_cursor == 0)
1151 max_nl_cursor = CLUSTER_SIZE;
1153 do {
1154 list_for_each_entry(vma, &mapping->i_mmap_nonlinear,
1155 shared.vm_set.list) {
1156 if (!MLOCK_PAGES && !migration &&
1157 (vma->vm_flags & VM_LOCKED))
1158 continue;
1159 cursor = (unsigned long) vma->vm_private_data;
1160 while ( cursor < max_nl_cursor &&
1161 cursor < vma->vm_end - vma->vm_start) {
1162 ret = try_to_unmap_cluster(cursor, &mapcount,
1163 vma, page);
1164 if (ret == SWAP_MLOCK)
1165 mlocked = 2; /* to return below */
1166 cursor += CLUSTER_SIZE;
1167 vma->vm_private_data = (void *) cursor;
1168 if ((int)mapcount <= 0)
1169 goto out;
1171 vma->vm_private_data = (void *) max_nl_cursor;
1173 cond_resched_lock(&mapping->i_mmap_lock);
1174 max_nl_cursor += CLUSTER_SIZE;
1175 } while (max_nl_cursor <= max_nl_size);
1178 * Don't loop forever (perhaps all the remaining pages are
1179 * in locked vmas). Reset cursor on all unreserved nonlinear
1180 * vmas, now forgetting on which ones it had fallen behind.
1182 list_for_each_entry(vma, &mapping->i_mmap_nonlinear, shared.vm_set.list)
1183 vma->vm_private_data = NULL;
1184 out:
1185 spin_unlock(&mapping->i_mmap_lock);
1186 if (mlocked)
1187 ret = SWAP_MLOCK; /* actually mlocked the page */
1188 else if (ret == SWAP_MLOCK)
1189 ret = SWAP_AGAIN; /* saw VM_LOCKED vma */
1190 return ret;
1194 * try_to_unmap - try to remove all page table mappings to a page
1195 * @page: the page to get unmapped
1196 * @migration: migration flag
1198 * Tries to remove all the page table entries which are mapping this
1199 * page, used in the pageout path. Caller must hold the page lock.
1200 * Return values are:
1202 * SWAP_SUCCESS - we succeeded in removing all mappings
1203 * SWAP_AGAIN - we missed a mapping, try again later
1204 * SWAP_FAIL - the page is unswappable
1205 * SWAP_MLOCK - page is mlocked.
1207 int try_to_unmap(struct page *page, int migration)
1209 int ret;
1211 BUG_ON(!PageLocked(page));
1213 if (PageAnon(page))
1214 ret = try_to_unmap_anon(page, 0, migration);
1215 else
1216 ret = try_to_unmap_file(page, 0, migration);
1217 if (ret != SWAP_MLOCK && !page_mapped(page))
1218 ret = SWAP_SUCCESS;
1219 return ret;
1222 #ifdef CONFIG_UNEVICTABLE_LRU
1224 * try_to_munlock - try to munlock a page
1225 * @page: the page to be munlocked
1227 * Called from munlock code. Checks all of the VMAs mapping the page
1228 * to make sure nobody else has this page mlocked. The page will be
1229 * returned with PG_mlocked cleared if no other vmas have it mlocked.
1231 * Return values are:
1233 * SWAP_SUCCESS - no vma's holding page mlocked.
1234 * SWAP_AGAIN - page mapped in mlocked vma -- couldn't acquire mmap sem
1235 * SWAP_MLOCK - page is now mlocked.
1237 int try_to_munlock(struct page *page)
1239 VM_BUG_ON(!PageLocked(page) || PageLRU(page));
1241 if (PageAnon(page))
1242 return try_to_unmap_anon(page, 1, 0);
1243 else
1244 return try_to_unmap_file(page, 1, 0);
1246 #endif