[BLOCK] Reimplement elevator switch
[linux-2.6/mini2440.git] / mm / swapfile.c
blob1dcaeda039f4b85f8bbe1b70f4ccbc80de388ade
1 /*
2 * linux/mm/swapfile.c
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 * Swap reorganised 29.12.95, Stephen Tweedie
6 */
8 #include <linux/config.h>
9 #include <linux/mm.h>
10 #include <linux/hugetlb.h>
11 #include <linux/mman.h>
12 #include <linux/slab.h>
13 #include <linux/kernel_stat.h>
14 #include <linux/swap.h>
15 #include <linux/vmalloc.h>
16 #include <linux/pagemap.h>
17 #include <linux/namei.h>
18 #include <linux/shm.h>
19 #include <linux/blkdev.h>
20 #include <linux/writeback.h>
21 #include <linux/proc_fs.h>
22 #include <linux/seq_file.h>
23 #include <linux/init.h>
24 #include <linux/module.h>
25 #include <linux/rmap.h>
26 #include <linux/security.h>
27 #include <linux/backing-dev.h>
28 #include <linux/syscalls.h>
30 #include <asm/pgtable.h>
31 #include <asm/tlbflush.h>
32 #include <linux/swapops.h>
34 DEFINE_SPINLOCK(swap_lock);
35 unsigned int nr_swapfiles;
36 long total_swap_pages;
37 static int swap_overflow;
39 EXPORT_SYMBOL(total_swap_pages);
41 static const char Bad_file[] = "Bad swap file entry ";
42 static const char Unused_file[] = "Unused swap file entry ";
43 static const char Bad_offset[] = "Bad swap offset entry ";
44 static const char Unused_offset[] = "Unused swap offset entry ";
46 struct swap_list_t swap_list = {-1, -1};
48 struct swap_info_struct swap_info[MAX_SWAPFILES];
50 static DECLARE_MUTEX(swapon_sem);
53 * We need this because the bdev->unplug_fn can sleep and we cannot
54 * hold swap_lock while calling the unplug_fn. And swap_lock
55 * cannot be turned into a semaphore.
57 static DECLARE_RWSEM(swap_unplug_sem);
59 void swap_unplug_io_fn(struct backing_dev_info *unused_bdi, struct page *page)
61 swp_entry_t entry;
63 down_read(&swap_unplug_sem);
64 entry.val = page->private;
65 if (PageSwapCache(page)) {
66 struct block_device *bdev = swap_info[swp_type(entry)].bdev;
67 struct backing_dev_info *bdi;
70 * If the page is removed from swapcache from under us (with a
71 * racy try_to_unuse/swapoff) we need an additional reference
72 * count to avoid reading garbage from page->private above. If
73 * the WARN_ON triggers during a swapoff it maybe the race
74 * condition and it's harmless. However if it triggers without
75 * swapoff it signals a problem.
77 WARN_ON(page_count(page) <= 1);
79 bdi = bdev->bd_inode->i_mapping->backing_dev_info;
80 blk_run_backing_dev(bdi, page);
82 up_read(&swap_unplug_sem);
85 #define SWAPFILE_CLUSTER 256
86 #define LATENCY_LIMIT 256
88 static inline unsigned long scan_swap_map(struct swap_info_struct *si)
90 unsigned long offset, last_in_cluster;
91 int latency_ration = LATENCY_LIMIT;
93 /*
94 * We try to cluster swap pages by allocating them sequentially
95 * in swap. Once we've allocated SWAPFILE_CLUSTER pages this
96 * way, however, we resort to first-free allocation, starting
97 * a new cluster. This prevents us from scattering swap pages
98 * all over the entire swap partition, so that we reduce
99 * overall disk seek times between swap pages. -- sct
100 * But we do now try to find an empty cluster. -Andrea
103 si->flags += SWP_SCANNING;
104 if (unlikely(!si->cluster_nr)) {
105 si->cluster_nr = SWAPFILE_CLUSTER - 1;
106 if (si->pages - si->inuse_pages < SWAPFILE_CLUSTER)
107 goto lowest;
108 spin_unlock(&swap_lock);
110 offset = si->lowest_bit;
111 last_in_cluster = offset + SWAPFILE_CLUSTER - 1;
113 /* Locate the first empty (unaligned) cluster */
114 for (; last_in_cluster <= si->highest_bit; offset++) {
115 if (si->swap_map[offset])
116 last_in_cluster = offset + SWAPFILE_CLUSTER;
117 else if (offset == last_in_cluster) {
118 spin_lock(&swap_lock);
119 si->cluster_next = offset-SWAPFILE_CLUSTER-1;
120 goto cluster;
122 if (unlikely(--latency_ration < 0)) {
123 cond_resched();
124 latency_ration = LATENCY_LIMIT;
127 spin_lock(&swap_lock);
128 goto lowest;
131 si->cluster_nr--;
132 cluster:
133 offset = si->cluster_next;
134 if (offset > si->highest_bit)
135 lowest: offset = si->lowest_bit;
136 checks: if (!(si->flags & SWP_WRITEOK))
137 goto no_page;
138 if (!si->highest_bit)
139 goto no_page;
140 if (!si->swap_map[offset]) {
141 if (offset == si->lowest_bit)
142 si->lowest_bit++;
143 if (offset == si->highest_bit)
144 si->highest_bit--;
145 si->inuse_pages++;
146 if (si->inuse_pages == si->pages) {
147 si->lowest_bit = si->max;
148 si->highest_bit = 0;
150 si->swap_map[offset] = 1;
151 si->cluster_next = offset + 1;
152 si->flags -= SWP_SCANNING;
153 return offset;
156 spin_unlock(&swap_lock);
157 while (++offset <= si->highest_bit) {
158 if (!si->swap_map[offset]) {
159 spin_lock(&swap_lock);
160 goto checks;
162 if (unlikely(--latency_ration < 0)) {
163 cond_resched();
164 latency_ration = LATENCY_LIMIT;
167 spin_lock(&swap_lock);
168 goto lowest;
170 no_page:
171 si->flags -= SWP_SCANNING;
172 return 0;
175 swp_entry_t get_swap_page(void)
177 struct swap_info_struct *si;
178 pgoff_t offset;
179 int type, next;
180 int wrapped = 0;
182 spin_lock(&swap_lock);
183 if (nr_swap_pages <= 0)
184 goto noswap;
185 nr_swap_pages--;
187 for (type = swap_list.next; type >= 0 && wrapped < 2; type = next) {
188 si = swap_info + type;
189 next = si->next;
190 if (next < 0 ||
191 (!wrapped && si->prio != swap_info[next].prio)) {
192 next = swap_list.head;
193 wrapped++;
196 if (!si->highest_bit)
197 continue;
198 if (!(si->flags & SWP_WRITEOK))
199 continue;
201 swap_list.next = next;
202 offset = scan_swap_map(si);
203 if (offset) {
204 spin_unlock(&swap_lock);
205 return swp_entry(type, offset);
207 next = swap_list.next;
210 nr_swap_pages++;
211 noswap:
212 spin_unlock(&swap_lock);
213 return (swp_entry_t) {0};
216 static struct swap_info_struct * swap_info_get(swp_entry_t entry)
218 struct swap_info_struct * p;
219 unsigned long offset, type;
221 if (!entry.val)
222 goto out;
223 type = swp_type(entry);
224 if (type >= nr_swapfiles)
225 goto bad_nofile;
226 p = & swap_info[type];
227 if (!(p->flags & SWP_USED))
228 goto bad_device;
229 offset = swp_offset(entry);
230 if (offset >= p->max)
231 goto bad_offset;
232 if (!p->swap_map[offset])
233 goto bad_free;
234 spin_lock(&swap_lock);
235 return p;
237 bad_free:
238 printk(KERN_ERR "swap_free: %s%08lx\n", Unused_offset, entry.val);
239 goto out;
240 bad_offset:
241 printk(KERN_ERR "swap_free: %s%08lx\n", Bad_offset, entry.val);
242 goto out;
243 bad_device:
244 printk(KERN_ERR "swap_free: %s%08lx\n", Unused_file, entry.val);
245 goto out;
246 bad_nofile:
247 printk(KERN_ERR "swap_free: %s%08lx\n", Bad_file, entry.val);
248 out:
249 return NULL;
252 static int swap_entry_free(struct swap_info_struct *p, unsigned long offset)
254 int count = p->swap_map[offset];
256 if (count < SWAP_MAP_MAX) {
257 count--;
258 p->swap_map[offset] = count;
259 if (!count) {
260 if (offset < p->lowest_bit)
261 p->lowest_bit = offset;
262 if (offset > p->highest_bit)
263 p->highest_bit = offset;
264 if (p->prio > swap_info[swap_list.next].prio)
265 swap_list.next = p - swap_info;
266 nr_swap_pages++;
267 p->inuse_pages--;
270 return count;
274 * Caller has made sure that the swapdevice corresponding to entry
275 * is still around or has not been recycled.
277 void swap_free(swp_entry_t entry)
279 struct swap_info_struct * p;
281 p = swap_info_get(entry);
282 if (p) {
283 swap_entry_free(p, swp_offset(entry));
284 spin_unlock(&swap_lock);
289 * How many references to page are currently swapped out?
291 static inline int page_swapcount(struct page *page)
293 int count = 0;
294 struct swap_info_struct *p;
295 swp_entry_t entry;
297 entry.val = page->private;
298 p = swap_info_get(entry);
299 if (p) {
300 /* Subtract the 1 for the swap cache itself */
301 count = p->swap_map[swp_offset(entry)] - 1;
302 spin_unlock(&swap_lock);
304 return count;
308 * We can use this swap cache entry directly
309 * if there are no other references to it.
311 int can_share_swap_page(struct page *page)
313 int count;
315 BUG_ON(!PageLocked(page));
316 count = page_mapcount(page);
317 if (count <= 1 && PageSwapCache(page))
318 count += page_swapcount(page);
319 return count == 1;
323 * Work out if there are any other processes sharing this
324 * swap cache page. Free it if you can. Return success.
326 int remove_exclusive_swap_page(struct page *page)
328 int retval;
329 struct swap_info_struct * p;
330 swp_entry_t entry;
332 BUG_ON(PagePrivate(page));
333 BUG_ON(!PageLocked(page));
335 if (!PageSwapCache(page))
336 return 0;
337 if (PageWriteback(page))
338 return 0;
339 if (page_count(page) != 2) /* 2: us + cache */
340 return 0;
342 entry.val = page->private;
343 p = swap_info_get(entry);
344 if (!p)
345 return 0;
347 /* Is the only swap cache user the cache itself? */
348 retval = 0;
349 if (p->swap_map[swp_offset(entry)] == 1) {
350 /* Recheck the page count with the swapcache lock held.. */
351 write_lock_irq(&swapper_space.tree_lock);
352 if ((page_count(page) == 2) && !PageWriteback(page)) {
353 __delete_from_swap_cache(page);
354 SetPageDirty(page);
355 retval = 1;
357 write_unlock_irq(&swapper_space.tree_lock);
359 spin_unlock(&swap_lock);
361 if (retval) {
362 swap_free(entry);
363 page_cache_release(page);
366 return retval;
370 * Free the swap entry like above, but also try to
371 * free the page cache entry if it is the last user.
373 void free_swap_and_cache(swp_entry_t entry)
375 struct swap_info_struct * p;
376 struct page *page = NULL;
378 p = swap_info_get(entry);
379 if (p) {
380 if (swap_entry_free(p, swp_offset(entry)) == 1)
381 page = find_trylock_page(&swapper_space, entry.val);
382 spin_unlock(&swap_lock);
384 if (page) {
385 int one_user;
387 BUG_ON(PagePrivate(page));
388 page_cache_get(page);
389 one_user = (page_count(page) == 2);
390 /* Only cache user (+us), or swap space full? Free it! */
391 if (!PageWriteback(page) && (one_user || vm_swap_full())) {
392 delete_from_swap_cache(page);
393 SetPageDirty(page);
395 unlock_page(page);
396 page_cache_release(page);
401 * Always set the resulting pte to be nowrite (the same as COW pages
402 * after one process has exited). We don't know just how many PTEs will
403 * share this swap entry, so be cautious and let do_wp_page work out
404 * what to do if a write is requested later.
406 * vma->vm_mm->page_table_lock is held.
408 static void unuse_pte(struct vm_area_struct *vma, pte_t *pte,
409 unsigned long addr, swp_entry_t entry, struct page *page)
411 inc_mm_counter(vma->vm_mm, rss);
412 get_page(page);
413 set_pte_at(vma->vm_mm, addr, pte,
414 pte_mkold(mk_pte(page, vma->vm_page_prot)));
415 page_add_anon_rmap(page, vma, addr);
416 swap_free(entry);
418 * Move the page to the active list so it is not
419 * immediately swapped out again after swapon.
421 activate_page(page);
424 static int unuse_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
425 unsigned long addr, unsigned long end,
426 swp_entry_t entry, struct page *page)
428 pte_t *pte;
429 pte_t swp_pte = swp_entry_to_pte(entry);
431 pte = pte_offset_map(pmd, addr);
432 do {
434 * swapoff spends a _lot_ of time in this loop!
435 * Test inline before going to call unuse_pte.
437 if (unlikely(pte_same(*pte, swp_pte))) {
438 unuse_pte(vma, pte, addr, entry, page);
439 pte_unmap(pte);
440 return 1;
442 } while (pte++, addr += PAGE_SIZE, addr != end);
443 pte_unmap(pte - 1);
444 return 0;
447 static inline int unuse_pmd_range(struct vm_area_struct *vma, pud_t *pud,
448 unsigned long addr, unsigned long end,
449 swp_entry_t entry, struct page *page)
451 pmd_t *pmd;
452 unsigned long next;
454 pmd = pmd_offset(pud, addr);
455 do {
456 next = pmd_addr_end(addr, end);
457 if (pmd_none_or_clear_bad(pmd))
458 continue;
459 if (unuse_pte_range(vma, pmd, addr, next, entry, page))
460 return 1;
461 } while (pmd++, addr = next, addr != end);
462 return 0;
465 static inline int unuse_pud_range(struct vm_area_struct *vma, pgd_t *pgd,
466 unsigned long addr, unsigned long end,
467 swp_entry_t entry, struct page *page)
469 pud_t *pud;
470 unsigned long next;
472 pud = pud_offset(pgd, addr);
473 do {
474 next = pud_addr_end(addr, end);
475 if (pud_none_or_clear_bad(pud))
476 continue;
477 if (unuse_pmd_range(vma, pud, addr, next, entry, page))
478 return 1;
479 } while (pud++, addr = next, addr != end);
480 return 0;
483 static int unuse_vma(struct vm_area_struct *vma,
484 swp_entry_t entry, struct page *page)
486 pgd_t *pgd;
487 unsigned long addr, end, next;
489 if (page->mapping) {
490 addr = page_address_in_vma(page, vma);
491 if (addr == -EFAULT)
492 return 0;
493 else
494 end = addr + PAGE_SIZE;
495 } else {
496 addr = vma->vm_start;
497 end = vma->vm_end;
500 pgd = pgd_offset(vma->vm_mm, addr);
501 do {
502 next = pgd_addr_end(addr, end);
503 if (pgd_none_or_clear_bad(pgd))
504 continue;
505 if (unuse_pud_range(vma, pgd, addr, next, entry, page))
506 return 1;
507 } while (pgd++, addr = next, addr != end);
508 return 0;
511 static int unuse_mm(struct mm_struct *mm,
512 swp_entry_t entry, struct page *page)
514 struct vm_area_struct *vma;
516 if (!down_read_trylock(&mm->mmap_sem)) {
518 * Activate page so shrink_cache is unlikely to unmap its
519 * ptes while lock is dropped, so swapoff can make progress.
521 activate_page(page);
522 unlock_page(page);
523 down_read(&mm->mmap_sem);
524 lock_page(page);
526 spin_lock(&mm->page_table_lock);
527 for (vma = mm->mmap; vma; vma = vma->vm_next) {
528 if (vma->anon_vma && unuse_vma(vma, entry, page))
529 break;
531 spin_unlock(&mm->page_table_lock);
532 up_read(&mm->mmap_sem);
534 * Currently unuse_mm cannot fail, but leave error handling
535 * at call sites for now, since we change it from time to time.
537 return 0;
541 * Scan swap_map from current position to next entry still in use.
542 * Recycle to start on reaching the end, returning 0 when empty.
544 static unsigned int find_next_to_unuse(struct swap_info_struct *si,
545 unsigned int prev)
547 unsigned int max = si->max;
548 unsigned int i = prev;
549 int count;
552 * No need for swap_lock here: we're just looking
553 * for whether an entry is in use, not modifying it; false
554 * hits are okay, and sys_swapoff() has already prevented new
555 * allocations from this area (while holding swap_lock).
557 for (;;) {
558 if (++i >= max) {
559 if (!prev) {
560 i = 0;
561 break;
564 * No entries in use at top of swap_map,
565 * loop back to start and recheck there.
567 max = prev + 1;
568 prev = 0;
569 i = 1;
571 count = si->swap_map[i];
572 if (count && count != SWAP_MAP_BAD)
573 break;
575 return i;
579 * We completely avoid races by reading each swap page in advance,
580 * and then search for the process using it. All the necessary
581 * page table adjustments can then be made atomically.
583 static int try_to_unuse(unsigned int type)
585 struct swap_info_struct * si = &swap_info[type];
586 struct mm_struct *start_mm;
587 unsigned short *swap_map;
588 unsigned short swcount;
589 struct page *page;
590 swp_entry_t entry;
591 unsigned int i = 0;
592 int retval = 0;
593 int reset_overflow = 0;
594 int shmem;
597 * When searching mms for an entry, a good strategy is to
598 * start at the first mm we freed the previous entry from
599 * (though actually we don't notice whether we or coincidence
600 * freed the entry). Initialize this start_mm with a hold.
602 * A simpler strategy would be to start at the last mm we
603 * freed the previous entry from; but that would take less
604 * advantage of mmlist ordering, which clusters forked mms
605 * together, child after parent. If we race with dup_mmap(), we
606 * prefer to resolve parent before child, lest we miss entries
607 * duplicated after we scanned child: using last mm would invert
608 * that. Though it's only a serious concern when an overflowed
609 * swap count is reset from SWAP_MAP_MAX, preventing a rescan.
611 start_mm = &init_mm;
612 atomic_inc(&init_mm.mm_users);
615 * Keep on scanning until all entries have gone. Usually,
616 * one pass through swap_map is enough, but not necessarily:
617 * there are races when an instance of an entry might be missed.
619 while ((i = find_next_to_unuse(si, i)) != 0) {
620 if (signal_pending(current)) {
621 retval = -EINTR;
622 break;
626 * Get a page for the entry, using the existing swap
627 * cache page if there is one. Otherwise, get a clean
628 * page and read the swap into it.
630 swap_map = &si->swap_map[i];
631 entry = swp_entry(type, i);
632 page = read_swap_cache_async(entry, NULL, 0);
633 if (!page) {
635 * Either swap_duplicate() failed because entry
636 * has been freed independently, and will not be
637 * reused since sys_swapoff() already disabled
638 * allocation from here, or alloc_page() failed.
640 if (!*swap_map)
641 continue;
642 retval = -ENOMEM;
643 break;
647 * Don't hold on to start_mm if it looks like exiting.
649 if (atomic_read(&start_mm->mm_users) == 1) {
650 mmput(start_mm);
651 start_mm = &init_mm;
652 atomic_inc(&init_mm.mm_users);
656 * Wait for and lock page. When do_swap_page races with
657 * try_to_unuse, do_swap_page can handle the fault much
658 * faster than try_to_unuse can locate the entry. This
659 * apparently redundant "wait_on_page_locked" lets try_to_unuse
660 * defer to do_swap_page in such a case - in some tests,
661 * do_swap_page and try_to_unuse repeatedly compete.
663 wait_on_page_locked(page);
664 wait_on_page_writeback(page);
665 lock_page(page);
666 wait_on_page_writeback(page);
669 * Remove all references to entry.
670 * Whenever we reach init_mm, there's no address space
671 * to search, but use it as a reminder to search shmem.
673 shmem = 0;
674 swcount = *swap_map;
675 if (swcount > 1) {
676 if (start_mm == &init_mm)
677 shmem = shmem_unuse(entry, page);
678 else
679 retval = unuse_mm(start_mm, entry, page);
681 if (*swap_map > 1) {
682 int set_start_mm = (*swap_map >= swcount);
683 struct list_head *p = &start_mm->mmlist;
684 struct mm_struct *new_start_mm = start_mm;
685 struct mm_struct *prev_mm = start_mm;
686 struct mm_struct *mm;
688 atomic_inc(&new_start_mm->mm_users);
689 atomic_inc(&prev_mm->mm_users);
690 spin_lock(&mmlist_lock);
691 while (*swap_map > 1 && !retval &&
692 (p = p->next) != &start_mm->mmlist) {
693 mm = list_entry(p, struct mm_struct, mmlist);
694 if (atomic_inc_return(&mm->mm_users) == 1) {
695 atomic_dec(&mm->mm_users);
696 continue;
698 spin_unlock(&mmlist_lock);
699 mmput(prev_mm);
700 prev_mm = mm;
702 cond_resched();
704 swcount = *swap_map;
705 if (swcount <= 1)
707 else if (mm == &init_mm) {
708 set_start_mm = 1;
709 shmem = shmem_unuse(entry, page);
710 } else
711 retval = unuse_mm(mm, entry, page);
712 if (set_start_mm && *swap_map < swcount) {
713 mmput(new_start_mm);
714 atomic_inc(&mm->mm_users);
715 new_start_mm = mm;
716 set_start_mm = 0;
718 spin_lock(&mmlist_lock);
720 spin_unlock(&mmlist_lock);
721 mmput(prev_mm);
722 mmput(start_mm);
723 start_mm = new_start_mm;
725 if (retval) {
726 unlock_page(page);
727 page_cache_release(page);
728 break;
732 * How could swap count reach 0x7fff when the maximum
733 * pid is 0x7fff, and there's no way to repeat a swap
734 * page within an mm (except in shmem, where it's the
735 * shared object which takes the reference count)?
736 * We believe SWAP_MAP_MAX cannot occur in Linux 2.4.
738 * If that's wrong, then we should worry more about
739 * exit_mmap() and do_munmap() cases described above:
740 * we might be resetting SWAP_MAP_MAX too early here.
741 * We know "Undead"s can happen, they're okay, so don't
742 * report them; but do report if we reset SWAP_MAP_MAX.
744 if (*swap_map == SWAP_MAP_MAX) {
745 spin_lock(&swap_lock);
746 *swap_map = 1;
747 spin_unlock(&swap_lock);
748 reset_overflow = 1;
752 * If a reference remains (rare), we would like to leave
753 * the page in the swap cache; but try_to_unmap could
754 * then re-duplicate the entry once we drop page lock,
755 * so we might loop indefinitely; also, that page could
756 * not be swapped out to other storage meanwhile. So:
757 * delete from cache even if there's another reference,
758 * after ensuring that the data has been saved to disk -
759 * since if the reference remains (rarer), it will be
760 * read from disk into another page. Splitting into two
761 * pages would be incorrect if swap supported "shared
762 * private" pages, but they are handled by tmpfs files.
764 * Note shmem_unuse already deleted a swappage from
765 * the swap cache, unless the move to filepage failed:
766 * in which case it left swappage in cache, lowered its
767 * swap count to pass quickly through the loops above,
768 * and now we must reincrement count to try again later.
770 if ((*swap_map > 1) && PageDirty(page) && PageSwapCache(page)) {
771 struct writeback_control wbc = {
772 .sync_mode = WB_SYNC_NONE,
775 swap_writepage(page, &wbc);
776 lock_page(page);
777 wait_on_page_writeback(page);
779 if (PageSwapCache(page)) {
780 if (shmem)
781 swap_duplicate(entry);
782 else
783 delete_from_swap_cache(page);
787 * So we could skip searching mms once swap count went
788 * to 1, we did not mark any present ptes as dirty: must
789 * mark page dirty so shrink_list will preserve it.
791 SetPageDirty(page);
792 unlock_page(page);
793 page_cache_release(page);
796 * Make sure that we aren't completely killing
797 * interactive performance.
799 cond_resched();
802 mmput(start_mm);
803 if (reset_overflow) {
804 printk(KERN_WARNING "swapoff: cleared swap entry overflow\n");
805 swap_overflow = 0;
807 return retval;
811 * After a successful try_to_unuse, if no swap is now in use, we know
812 * we can empty the mmlist. swap_lock must be held on entry and exit.
813 * Note that mmlist_lock nests inside swap_lock, and an mm must be
814 * added to the mmlist just after page_duplicate - before would be racy.
816 static void drain_mmlist(void)
818 struct list_head *p, *next;
819 unsigned int i;
821 for (i = 0; i < nr_swapfiles; i++)
822 if (swap_info[i].inuse_pages)
823 return;
824 spin_lock(&mmlist_lock);
825 list_for_each_safe(p, next, &init_mm.mmlist)
826 list_del_init(p);
827 spin_unlock(&mmlist_lock);
831 * Use this swapdev's extent info to locate the (PAGE_SIZE) block which
832 * corresponds to page offset `offset'.
834 sector_t map_swap_page(struct swap_info_struct *sis, pgoff_t offset)
836 struct swap_extent *se = sis->curr_swap_extent;
837 struct swap_extent *start_se = se;
839 for ( ; ; ) {
840 struct list_head *lh;
842 if (se->start_page <= offset &&
843 offset < (se->start_page + se->nr_pages)) {
844 return se->start_block + (offset - se->start_page);
846 lh = se->list.next;
847 if (lh == &sis->extent_list)
848 lh = lh->next;
849 se = list_entry(lh, struct swap_extent, list);
850 sis->curr_swap_extent = se;
851 BUG_ON(se == start_se); /* It *must* be present */
856 * Free all of a swapdev's extent information
858 static void destroy_swap_extents(struct swap_info_struct *sis)
860 while (!list_empty(&sis->extent_list)) {
861 struct swap_extent *se;
863 se = list_entry(sis->extent_list.next,
864 struct swap_extent, list);
865 list_del(&se->list);
866 kfree(se);
871 * Add a block range (and the corresponding page range) into this swapdev's
872 * extent list. The extent list is kept sorted in page order.
874 * This function rather assumes that it is called in ascending page order.
876 static int
877 add_swap_extent(struct swap_info_struct *sis, unsigned long start_page,
878 unsigned long nr_pages, sector_t start_block)
880 struct swap_extent *se;
881 struct swap_extent *new_se;
882 struct list_head *lh;
884 lh = sis->extent_list.prev; /* The highest page extent */
885 if (lh != &sis->extent_list) {
886 se = list_entry(lh, struct swap_extent, list);
887 BUG_ON(se->start_page + se->nr_pages != start_page);
888 if (se->start_block + se->nr_pages == start_block) {
889 /* Merge it */
890 se->nr_pages += nr_pages;
891 return 0;
896 * No merge. Insert a new extent, preserving ordering.
898 new_se = kmalloc(sizeof(*se), GFP_KERNEL);
899 if (new_se == NULL)
900 return -ENOMEM;
901 new_se->start_page = start_page;
902 new_se->nr_pages = nr_pages;
903 new_se->start_block = start_block;
905 list_add_tail(&new_se->list, &sis->extent_list);
906 return 1;
910 * A `swap extent' is a simple thing which maps a contiguous range of pages
911 * onto a contiguous range of disk blocks. An ordered list of swap extents
912 * is built at swapon time and is then used at swap_writepage/swap_readpage
913 * time for locating where on disk a page belongs.
915 * If the swapfile is an S_ISBLK block device, a single extent is installed.
916 * This is done so that the main operating code can treat S_ISBLK and S_ISREG
917 * swap files identically.
919 * Whether the swapdev is an S_ISREG file or an S_ISBLK blockdev, the swap
920 * extent list operates in PAGE_SIZE disk blocks. Both S_ISREG and S_ISBLK
921 * swapfiles are handled *identically* after swapon time.
923 * For S_ISREG swapfiles, setup_swap_extents() will walk all the file's blocks
924 * and will parse them into an ordered extent list, in PAGE_SIZE chunks. If
925 * some stray blocks are found which do not fall within the PAGE_SIZE alignment
926 * requirements, they are simply tossed out - we will never use those blocks
927 * for swapping.
929 * For S_ISREG swapfiles we set S_SWAPFILE across the life of the swapon. This
930 * prevents root from shooting her foot off by ftruncating an in-use swapfile,
931 * which will scribble on the fs.
933 * The amount of disk space which a single swap extent represents varies.
934 * Typically it is in the 1-4 megabyte range. So we can have hundreds of
935 * extents in the list. To avoid much list walking, we cache the previous
936 * search location in `curr_swap_extent', and start new searches from there.
937 * This is extremely effective. The average number of iterations in
938 * map_swap_page() has been measured at about 0.3 per page. - akpm.
940 static int setup_swap_extents(struct swap_info_struct *sis, sector_t *span)
942 struct inode *inode;
943 unsigned blocks_per_page;
944 unsigned long page_no;
945 unsigned blkbits;
946 sector_t probe_block;
947 sector_t last_block;
948 sector_t lowest_block = -1;
949 sector_t highest_block = 0;
950 int nr_extents = 0;
951 int ret;
953 inode = sis->swap_file->f_mapping->host;
954 if (S_ISBLK(inode->i_mode)) {
955 ret = add_swap_extent(sis, 0, sis->max, 0);
956 *span = sis->pages;
957 goto done;
960 blkbits = inode->i_blkbits;
961 blocks_per_page = PAGE_SIZE >> blkbits;
964 * Map all the blocks into the extent list. This code doesn't try
965 * to be very smart.
967 probe_block = 0;
968 page_no = 0;
969 last_block = i_size_read(inode) >> blkbits;
970 while ((probe_block + blocks_per_page) <= last_block &&
971 page_no < sis->max) {
972 unsigned block_in_page;
973 sector_t first_block;
975 first_block = bmap(inode, probe_block);
976 if (first_block == 0)
977 goto bad_bmap;
980 * It must be PAGE_SIZE aligned on-disk
982 if (first_block & (blocks_per_page - 1)) {
983 probe_block++;
984 goto reprobe;
987 for (block_in_page = 1; block_in_page < blocks_per_page;
988 block_in_page++) {
989 sector_t block;
991 block = bmap(inode, probe_block + block_in_page);
992 if (block == 0)
993 goto bad_bmap;
994 if (block != first_block + block_in_page) {
995 /* Discontiguity */
996 probe_block++;
997 goto reprobe;
1001 first_block >>= (PAGE_SHIFT - blkbits);
1002 if (page_no) { /* exclude the header page */
1003 if (first_block < lowest_block)
1004 lowest_block = first_block;
1005 if (first_block > highest_block)
1006 highest_block = first_block;
1010 * We found a PAGE_SIZE-length, PAGE_SIZE-aligned run of blocks
1012 ret = add_swap_extent(sis, page_no, 1, first_block);
1013 if (ret < 0)
1014 goto out;
1015 nr_extents += ret;
1016 page_no++;
1017 probe_block += blocks_per_page;
1018 reprobe:
1019 continue;
1021 ret = nr_extents;
1022 *span = 1 + highest_block - lowest_block;
1023 if (page_no == 0)
1024 page_no = 1; /* force Empty message */
1025 sis->max = page_no;
1026 sis->pages = page_no - 1;
1027 sis->highest_bit = page_no - 1;
1028 done:
1029 sis->curr_swap_extent = list_entry(sis->extent_list.prev,
1030 struct swap_extent, list);
1031 goto out;
1032 bad_bmap:
1033 printk(KERN_ERR "swapon: swapfile has holes\n");
1034 ret = -EINVAL;
1035 out:
1036 return ret;
1039 #if 0 /* We don't need this yet */
1040 #include <linux/backing-dev.h>
1041 int page_queue_congested(struct page *page)
1043 struct backing_dev_info *bdi;
1045 BUG_ON(!PageLocked(page)); /* It pins the swap_info_struct */
1047 if (PageSwapCache(page)) {
1048 swp_entry_t entry = { .val = page->private };
1049 struct swap_info_struct *sis;
1051 sis = get_swap_info_struct(swp_type(entry));
1052 bdi = sis->bdev->bd_inode->i_mapping->backing_dev_info;
1053 } else
1054 bdi = page->mapping->backing_dev_info;
1055 return bdi_write_congested(bdi);
1057 #endif
1059 asmlinkage long sys_swapoff(const char __user * specialfile)
1061 struct swap_info_struct * p = NULL;
1062 unsigned short *swap_map;
1063 struct file *swap_file, *victim;
1064 struct address_space *mapping;
1065 struct inode *inode;
1066 char * pathname;
1067 int i, type, prev;
1068 int err;
1070 if (!capable(CAP_SYS_ADMIN))
1071 return -EPERM;
1073 pathname = getname(specialfile);
1074 err = PTR_ERR(pathname);
1075 if (IS_ERR(pathname))
1076 goto out;
1078 victim = filp_open(pathname, O_RDWR|O_LARGEFILE, 0);
1079 putname(pathname);
1080 err = PTR_ERR(victim);
1081 if (IS_ERR(victim))
1082 goto out;
1084 mapping = victim->f_mapping;
1085 prev = -1;
1086 spin_lock(&swap_lock);
1087 for (type = swap_list.head; type >= 0; type = swap_info[type].next) {
1088 p = swap_info + type;
1089 if ((p->flags & SWP_ACTIVE) == SWP_ACTIVE) {
1090 if (p->swap_file->f_mapping == mapping)
1091 break;
1093 prev = type;
1095 if (type < 0) {
1096 err = -EINVAL;
1097 spin_unlock(&swap_lock);
1098 goto out_dput;
1100 if (!security_vm_enough_memory(p->pages))
1101 vm_unacct_memory(p->pages);
1102 else {
1103 err = -ENOMEM;
1104 spin_unlock(&swap_lock);
1105 goto out_dput;
1107 if (prev < 0) {
1108 swap_list.head = p->next;
1109 } else {
1110 swap_info[prev].next = p->next;
1112 if (type == swap_list.next) {
1113 /* just pick something that's safe... */
1114 swap_list.next = swap_list.head;
1116 nr_swap_pages -= p->pages;
1117 total_swap_pages -= p->pages;
1118 p->flags &= ~SWP_WRITEOK;
1119 spin_unlock(&swap_lock);
1121 current->flags |= PF_SWAPOFF;
1122 err = try_to_unuse(type);
1123 current->flags &= ~PF_SWAPOFF;
1125 if (err) {
1126 /* re-insert swap space back into swap_list */
1127 spin_lock(&swap_lock);
1128 for (prev = -1, i = swap_list.head; i >= 0; prev = i, i = swap_info[i].next)
1129 if (p->prio >= swap_info[i].prio)
1130 break;
1131 p->next = i;
1132 if (prev < 0)
1133 swap_list.head = swap_list.next = p - swap_info;
1134 else
1135 swap_info[prev].next = p - swap_info;
1136 nr_swap_pages += p->pages;
1137 total_swap_pages += p->pages;
1138 p->flags |= SWP_WRITEOK;
1139 spin_unlock(&swap_lock);
1140 goto out_dput;
1143 /* wait for any unplug function to finish */
1144 down_write(&swap_unplug_sem);
1145 up_write(&swap_unplug_sem);
1147 destroy_swap_extents(p);
1148 down(&swapon_sem);
1149 spin_lock(&swap_lock);
1150 drain_mmlist();
1152 /* wait for anyone still in scan_swap_map */
1153 p->highest_bit = 0; /* cuts scans short */
1154 while (p->flags >= SWP_SCANNING) {
1155 spin_unlock(&swap_lock);
1156 schedule_timeout_uninterruptible(1);
1157 spin_lock(&swap_lock);
1160 swap_file = p->swap_file;
1161 p->swap_file = NULL;
1162 p->max = 0;
1163 swap_map = p->swap_map;
1164 p->swap_map = NULL;
1165 p->flags = 0;
1166 spin_unlock(&swap_lock);
1167 up(&swapon_sem);
1168 vfree(swap_map);
1169 inode = mapping->host;
1170 if (S_ISBLK(inode->i_mode)) {
1171 struct block_device *bdev = I_BDEV(inode);
1172 set_blocksize(bdev, p->old_block_size);
1173 bd_release(bdev);
1174 } else {
1175 down(&inode->i_sem);
1176 inode->i_flags &= ~S_SWAPFILE;
1177 up(&inode->i_sem);
1179 filp_close(swap_file, NULL);
1180 err = 0;
1182 out_dput:
1183 filp_close(victim, NULL);
1184 out:
1185 return err;
1188 #ifdef CONFIG_PROC_FS
1189 /* iterator */
1190 static void *swap_start(struct seq_file *swap, loff_t *pos)
1192 struct swap_info_struct *ptr = swap_info;
1193 int i;
1194 loff_t l = *pos;
1196 down(&swapon_sem);
1198 for (i = 0; i < nr_swapfiles; i++, ptr++) {
1199 if (!(ptr->flags & SWP_USED) || !ptr->swap_map)
1200 continue;
1201 if (!l--)
1202 return ptr;
1205 return NULL;
1208 static void *swap_next(struct seq_file *swap, void *v, loff_t *pos)
1210 struct swap_info_struct *ptr = v;
1211 struct swap_info_struct *endptr = swap_info + nr_swapfiles;
1213 for (++ptr; ptr < endptr; ptr++) {
1214 if (!(ptr->flags & SWP_USED) || !ptr->swap_map)
1215 continue;
1216 ++*pos;
1217 return ptr;
1220 return NULL;
1223 static void swap_stop(struct seq_file *swap, void *v)
1225 up(&swapon_sem);
1228 static int swap_show(struct seq_file *swap, void *v)
1230 struct swap_info_struct *ptr = v;
1231 struct file *file;
1232 int len;
1234 if (v == swap_info)
1235 seq_puts(swap, "Filename\t\t\t\tType\t\tSize\tUsed\tPriority\n");
1237 file = ptr->swap_file;
1238 len = seq_path(swap, file->f_vfsmnt, file->f_dentry, " \t\n\\");
1239 seq_printf(swap, "%*s%s\t%u\t%u\t%d\n",
1240 len < 40 ? 40 - len : 1, " ",
1241 S_ISBLK(file->f_dentry->d_inode->i_mode) ?
1242 "partition" : "file\t",
1243 ptr->pages << (PAGE_SHIFT - 10),
1244 ptr->inuse_pages << (PAGE_SHIFT - 10),
1245 ptr->prio);
1246 return 0;
1249 static struct seq_operations swaps_op = {
1250 .start = swap_start,
1251 .next = swap_next,
1252 .stop = swap_stop,
1253 .show = swap_show
1256 static int swaps_open(struct inode *inode, struct file *file)
1258 return seq_open(file, &swaps_op);
1261 static struct file_operations proc_swaps_operations = {
1262 .open = swaps_open,
1263 .read = seq_read,
1264 .llseek = seq_lseek,
1265 .release = seq_release,
1268 static int __init procswaps_init(void)
1270 struct proc_dir_entry *entry;
1272 entry = create_proc_entry("swaps", 0, NULL);
1273 if (entry)
1274 entry->proc_fops = &proc_swaps_operations;
1275 return 0;
1277 __initcall(procswaps_init);
1278 #endif /* CONFIG_PROC_FS */
1281 * Written 01/25/92 by Simmule Turner, heavily changed by Linus.
1283 * The swapon system call
1285 asmlinkage long sys_swapon(const char __user * specialfile, int swap_flags)
1287 struct swap_info_struct * p;
1288 char *name = NULL;
1289 struct block_device *bdev = NULL;
1290 struct file *swap_file = NULL;
1291 struct address_space *mapping;
1292 unsigned int type;
1293 int i, prev;
1294 int error;
1295 static int least_priority;
1296 union swap_header *swap_header = NULL;
1297 int swap_header_version;
1298 unsigned int nr_good_pages = 0;
1299 int nr_extents = 0;
1300 sector_t span;
1301 unsigned long maxpages = 1;
1302 int swapfilesize;
1303 unsigned short *swap_map;
1304 struct page *page = NULL;
1305 struct inode *inode = NULL;
1306 int did_down = 0;
1308 if (!capable(CAP_SYS_ADMIN))
1309 return -EPERM;
1310 spin_lock(&swap_lock);
1311 p = swap_info;
1312 for (type = 0 ; type < nr_swapfiles ; type++,p++)
1313 if (!(p->flags & SWP_USED))
1314 break;
1315 error = -EPERM;
1317 * Test if adding another swap device is possible. There are
1318 * two limiting factors: 1) the number of bits for the swap
1319 * type swp_entry_t definition and 2) the number of bits for
1320 * the swap type in the swap ptes as defined by the different
1321 * architectures. To honor both limitations a swap entry
1322 * with swap offset 0 and swap type ~0UL is created, encoded
1323 * to a swap pte, decoded to a swp_entry_t again and finally
1324 * the swap type part is extracted. This will mask all bits
1325 * from the initial ~0UL that can't be encoded in either the
1326 * swp_entry_t or the architecture definition of a swap pte.
1328 if (type > swp_type(pte_to_swp_entry(swp_entry_to_pte(swp_entry(~0UL,0))))) {
1329 spin_unlock(&swap_lock);
1330 goto out;
1332 if (type >= nr_swapfiles)
1333 nr_swapfiles = type+1;
1334 INIT_LIST_HEAD(&p->extent_list);
1335 p->flags = SWP_USED;
1336 p->swap_file = NULL;
1337 p->old_block_size = 0;
1338 p->swap_map = NULL;
1339 p->lowest_bit = 0;
1340 p->highest_bit = 0;
1341 p->cluster_nr = 0;
1342 p->inuse_pages = 0;
1343 p->next = -1;
1344 if (swap_flags & SWAP_FLAG_PREFER) {
1345 p->prio =
1346 (swap_flags & SWAP_FLAG_PRIO_MASK)>>SWAP_FLAG_PRIO_SHIFT;
1347 } else {
1348 p->prio = --least_priority;
1350 spin_unlock(&swap_lock);
1351 name = getname(specialfile);
1352 error = PTR_ERR(name);
1353 if (IS_ERR(name)) {
1354 name = NULL;
1355 goto bad_swap_2;
1357 swap_file = filp_open(name, O_RDWR|O_LARGEFILE, 0);
1358 error = PTR_ERR(swap_file);
1359 if (IS_ERR(swap_file)) {
1360 swap_file = NULL;
1361 goto bad_swap_2;
1364 p->swap_file = swap_file;
1365 mapping = swap_file->f_mapping;
1366 inode = mapping->host;
1368 error = -EBUSY;
1369 for (i = 0; i < nr_swapfiles; i++) {
1370 struct swap_info_struct *q = &swap_info[i];
1372 if (i == type || !q->swap_file)
1373 continue;
1374 if (mapping == q->swap_file->f_mapping)
1375 goto bad_swap;
1378 error = -EINVAL;
1379 if (S_ISBLK(inode->i_mode)) {
1380 bdev = I_BDEV(inode);
1381 error = bd_claim(bdev, sys_swapon);
1382 if (error < 0) {
1383 bdev = NULL;
1384 error = -EINVAL;
1385 goto bad_swap;
1387 p->old_block_size = block_size(bdev);
1388 error = set_blocksize(bdev, PAGE_SIZE);
1389 if (error < 0)
1390 goto bad_swap;
1391 p->bdev = bdev;
1392 } else if (S_ISREG(inode->i_mode)) {
1393 p->bdev = inode->i_sb->s_bdev;
1394 down(&inode->i_sem);
1395 did_down = 1;
1396 if (IS_SWAPFILE(inode)) {
1397 error = -EBUSY;
1398 goto bad_swap;
1400 } else {
1401 goto bad_swap;
1404 swapfilesize = i_size_read(inode) >> PAGE_SHIFT;
1407 * Read the swap header.
1409 if (!mapping->a_ops->readpage) {
1410 error = -EINVAL;
1411 goto bad_swap;
1413 page = read_cache_page(mapping, 0,
1414 (filler_t *)mapping->a_ops->readpage, swap_file);
1415 if (IS_ERR(page)) {
1416 error = PTR_ERR(page);
1417 goto bad_swap;
1419 wait_on_page_locked(page);
1420 if (!PageUptodate(page))
1421 goto bad_swap;
1422 kmap(page);
1423 swap_header = page_address(page);
1425 if (!memcmp("SWAP-SPACE",swap_header->magic.magic,10))
1426 swap_header_version = 1;
1427 else if (!memcmp("SWAPSPACE2",swap_header->magic.magic,10))
1428 swap_header_version = 2;
1429 else {
1430 printk("Unable to find swap-space signature\n");
1431 error = -EINVAL;
1432 goto bad_swap;
1435 switch (swap_header_version) {
1436 case 1:
1437 printk(KERN_ERR "version 0 swap is no longer supported. "
1438 "Use mkswap -v1 %s\n", name);
1439 error = -EINVAL;
1440 goto bad_swap;
1441 case 2:
1442 /* Check the swap header's sub-version and the size of
1443 the swap file and bad block lists */
1444 if (swap_header->info.version != 1) {
1445 printk(KERN_WARNING
1446 "Unable to handle swap header version %d\n",
1447 swap_header->info.version);
1448 error = -EINVAL;
1449 goto bad_swap;
1452 p->lowest_bit = 1;
1453 p->cluster_next = 1;
1456 * Find out how many pages are allowed for a single swap
1457 * device. There are two limiting factors: 1) the number of
1458 * bits for the swap offset in the swp_entry_t type and
1459 * 2) the number of bits in the a swap pte as defined by
1460 * the different architectures. In order to find the
1461 * largest possible bit mask a swap entry with swap type 0
1462 * and swap offset ~0UL is created, encoded to a swap pte,
1463 * decoded to a swp_entry_t again and finally the swap
1464 * offset is extracted. This will mask all the bits from
1465 * the initial ~0UL mask that can't be encoded in either
1466 * the swp_entry_t or the architecture definition of a
1467 * swap pte.
1469 maxpages = swp_offset(pte_to_swp_entry(swp_entry_to_pte(swp_entry(0,~0UL)))) - 1;
1470 if (maxpages > swap_header->info.last_page)
1471 maxpages = swap_header->info.last_page;
1472 p->highest_bit = maxpages - 1;
1474 error = -EINVAL;
1475 if (!maxpages)
1476 goto bad_swap;
1477 if (swap_header->info.nr_badpages && S_ISREG(inode->i_mode))
1478 goto bad_swap;
1479 if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
1480 goto bad_swap;
1482 /* OK, set up the swap map and apply the bad block list */
1483 if (!(p->swap_map = vmalloc(maxpages * sizeof(short)))) {
1484 error = -ENOMEM;
1485 goto bad_swap;
1488 error = 0;
1489 memset(p->swap_map, 0, maxpages * sizeof(short));
1490 for (i=0; i<swap_header->info.nr_badpages; i++) {
1491 int page = swap_header->info.badpages[i];
1492 if (page <= 0 || page >= swap_header->info.last_page)
1493 error = -EINVAL;
1494 else
1495 p->swap_map[page] = SWAP_MAP_BAD;
1497 nr_good_pages = swap_header->info.last_page -
1498 swap_header->info.nr_badpages -
1499 1 /* header page */;
1500 if (error)
1501 goto bad_swap;
1504 if (swapfilesize && maxpages > swapfilesize) {
1505 printk(KERN_WARNING
1506 "Swap area shorter than signature indicates\n");
1507 error = -EINVAL;
1508 goto bad_swap;
1510 if (nr_good_pages) {
1511 p->swap_map[0] = SWAP_MAP_BAD;
1512 p->max = maxpages;
1513 p->pages = nr_good_pages;
1514 nr_extents = setup_swap_extents(p, &span);
1515 if (nr_extents < 0) {
1516 error = nr_extents;
1517 goto bad_swap;
1519 nr_good_pages = p->pages;
1521 if (!nr_good_pages) {
1522 printk(KERN_WARNING "Empty swap-file\n");
1523 error = -EINVAL;
1524 goto bad_swap;
1527 down(&swapon_sem);
1528 spin_lock(&swap_lock);
1529 p->flags = SWP_ACTIVE;
1530 nr_swap_pages += nr_good_pages;
1531 total_swap_pages += nr_good_pages;
1533 printk(KERN_INFO "Adding %uk swap on %s. "
1534 "Priority:%d extents:%d across:%lluk\n",
1535 nr_good_pages<<(PAGE_SHIFT-10), name, p->prio,
1536 nr_extents, (unsigned long long)span<<(PAGE_SHIFT-10));
1538 /* insert swap space into swap_list: */
1539 prev = -1;
1540 for (i = swap_list.head; i >= 0; i = swap_info[i].next) {
1541 if (p->prio >= swap_info[i].prio) {
1542 break;
1544 prev = i;
1546 p->next = i;
1547 if (prev < 0) {
1548 swap_list.head = swap_list.next = p - swap_info;
1549 } else {
1550 swap_info[prev].next = p - swap_info;
1552 spin_unlock(&swap_lock);
1553 up(&swapon_sem);
1554 error = 0;
1555 goto out;
1556 bad_swap:
1557 if (bdev) {
1558 set_blocksize(bdev, p->old_block_size);
1559 bd_release(bdev);
1561 destroy_swap_extents(p);
1562 bad_swap_2:
1563 spin_lock(&swap_lock);
1564 swap_map = p->swap_map;
1565 p->swap_file = NULL;
1566 p->swap_map = NULL;
1567 p->flags = 0;
1568 if (!(swap_flags & SWAP_FLAG_PREFER))
1569 ++least_priority;
1570 spin_unlock(&swap_lock);
1571 vfree(swap_map);
1572 if (swap_file)
1573 filp_close(swap_file, NULL);
1574 out:
1575 if (page && !IS_ERR(page)) {
1576 kunmap(page);
1577 page_cache_release(page);
1579 if (name)
1580 putname(name);
1581 if (did_down) {
1582 if (!error)
1583 inode->i_flags |= S_SWAPFILE;
1584 up(&inode->i_sem);
1586 return error;
1589 void si_swapinfo(struct sysinfo *val)
1591 unsigned int i;
1592 unsigned long nr_to_be_unused = 0;
1594 spin_lock(&swap_lock);
1595 for (i = 0; i < nr_swapfiles; i++) {
1596 if (!(swap_info[i].flags & SWP_USED) ||
1597 (swap_info[i].flags & SWP_WRITEOK))
1598 continue;
1599 nr_to_be_unused += swap_info[i].inuse_pages;
1601 val->freeswap = nr_swap_pages + nr_to_be_unused;
1602 val->totalswap = total_swap_pages + nr_to_be_unused;
1603 spin_unlock(&swap_lock);
1607 * Verify that a swap entry is valid and increment its swap map count.
1609 * Note: if swap_map[] reaches SWAP_MAP_MAX the entries are treated as
1610 * "permanent", but will be reclaimed by the next swapoff.
1612 int swap_duplicate(swp_entry_t entry)
1614 struct swap_info_struct * p;
1615 unsigned long offset, type;
1616 int result = 0;
1618 type = swp_type(entry);
1619 if (type >= nr_swapfiles)
1620 goto bad_file;
1621 p = type + swap_info;
1622 offset = swp_offset(entry);
1624 spin_lock(&swap_lock);
1625 if (offset < p->max && p->swap_map[offset]) {
1626 if (p->swap_map[offset] < SWAP_MAP_MAX - 1) {
1627 p->swap_map[offset]++;
1628 result = 1;
1629 } else if (p->swap_map[offset] <= SWAP_MAP_MAX) {
1630 if (swap_overflow++ < 5)
1631 printk(KERN_WARNING "swap_dup: swap entry overflow\n");
1632 p->swap_map[offset] = SWAP_MAP_MAX;
1633 result = 1;
1636 spin_unlock(&swap_lock);
1637 out:
1638 return result;
1640 bad_file:
1641 printk(KERN_ERR "swap_dup: %s%08lx\n", Bad_file, entry.val);
1642 goto out;
1645 struct swap_info_struct *
1646 get_swap_info_struct(unsigned type)
1648 return &swap_info[type];
1652 * swap_lock prevents swap_map being freed. Don't grab an extra
1653 * reference on the swaphandle, it doesn't matter if it becomes unused.
1655 int valid_swaphandles(swp_entry_t entry, unsigned long *offset)
1657 int ret = 0, i = 1 << page_cluster;
1658 unsigned long toff;
1659 struct swap_info_struct *swapdev = swp_type(entry) + swap_info;
1661 if (!page_cluster) /* no readahead */
1662 return 0;
1663 toff = (swp_offset(entry) >> page_cluster) << page_cluster;
1664 if (!toff) /* first page is swap header */
1665 toff++, i--;
1666 *offset = toff;
1668 spin_lock(&swap_lock);
1669 do {
1670 /* Don't read-ahead past the end of the swap area */
1671 if (toff >= swapdev->max)
1672 break;
1673 /* Don't read in free or bad pages */
1674 if (!swapdev->swap_map[toff])
1675 break;
1676 if (swapdev->swap_map[toff] == SWAP_MAP_BAD)
1677 break;
1678 toff++;
1679 ret++;
1680 } while (--i);
1681 spin_unlock(&swap_lock);
1682 return ret;