2 * Performance events core code:
4 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5 * Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
6 * Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
7 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
9 * For licensing details see kernel-base/COPYING
14 #include <linux/cpu.h>
15 #include <linux/smp.h>
16 #include <linux/file.h>
17 #include <linux/poll.h>
18 #include <linux/sysfs.h>
19 #include <linux/dcache.h>
20 #include <linux/percpu.h>
21 #include <linux/ptrace.h>
22 #include <linux/vmstat.h>
23 #include <linux/vmalloc.h>
24 #include <linux/hardirq.h>
25 #include <linux/rculist.h>
26 #include <linux/uaccess.h>
27 #include <linux/syscalls.h>
28 #include <linux/anon_inodes.h>
29 #include <linux/kernel_stat.h>
30 #include <linux/perf_event.h>
32 #include <asm/irq_regs.h>
35 * Each CPU has a list of per CPU events:
37 DEFINE_PER_CPU(struct perf_cpu_context
, perf_cpu_context
);
39 int perf_max_events __read_mostly
= 1;
40 static int perf_reserved_percpu __read_mostly
;
41 static int perf_overcommit __read_mostly
= 1;
43 static atomic_t nr_events __read_mostly
;
44 static atomic_t nr_mmap_events __read_mostly
;
45 static atomic_t nr_comm_events __read_mostly
;
46 static atomic_t nr_task_events __read_mostly
;
49 * perf event paranoia level:
50 * -1 - not paranoid at all
51 * 0 - disallow raw tracepoint access for unpriv
52 * 1 - disallow cpu events for unpriv
53 * 2 - disallow kernel profiling for unpriv
55 int sysctl_perf_event_paranoid __read_mostly
= 1;
57 static inline bool perf_paranoid_tracepoint_raw(void)
59 return sysctl_perf_event_paranoid
> -1;
62 static inline bool perf_paranoid_cpu(void)
64 return sysctl_perf_event_paranoid
> 0;
67 static inline bool perf_paranoid_kernel(void)
69 return sysctl_perf_event_paranoid
> 1;
72 int sysctl_perf_event_mlock __read_mostly
= 512; /* 'free' kb per user */
75 * max perf event sample rate
77 int sysctl_perf_event_sample_rate __read_mostly
= 100000;
79 static atomic64_t perf_event_id
;
82 * Lock for (sysadmin-configurable) event reservations:
84 static DEFINE_SPINLOCK(perf_resource_lock
);
87 * Architecture provided APIs - weak aliases:
89 extern __weak
const struct pmu
*hw_perf_event_init(struct perf_event
*event
)
94 void __weak
hw_perf_disable(void) { barrier(); }
95 void __weak
hw_perf_enable(void) { barrier(); }
97 void __weak
hw_perf_event_setup(int cpu
) { barrier(); }
98 void __weak
hw_perf_event_setup_online(int cpu
) { barrier(); }
101 hw_perf_group_sched_in(struct perf_event
*group_leader
,
102 struct perf_cpu_context
*cpuctx
,
103 struct perf_event_context
*ctx
, int cpu
)
108 void __weak
perf_event_print_debug(void) { }
110 static DEFINE_PER_CPU(int, perf_disable_count
);
112 void __perf_disable(void)
114 __get_cpu_var(perf_disable_count
)++;
117 bool __perf_enable(void)
119 return !--__get_cpu_var(perf_disable_count
);
122 void perf_disable(void)
128 void perf_enable(void)
134 static void get_ctx(struct perf_event_context
*ctx
)
136 WARN_ON(!atomic_inc_not_zero(&ctx
->refcount
));
139 static void free_ctx(struct rcu_head
*head
)
141 struct perf_event_context
*ctx
;
143 ctx
= container_of(head
, struct perf_event_context
, rcu_head
);
147 static void put_ctx(struct perf_event_context
*ctx
)
149 if (atomic_dec_and_test(&ctx
->refcount
)) {
151 put_ctx(ctx
->parent_ctx
);
153 put_task_struct(ctx
->task
);
154 call_rcu(&ctx
->rcu_head
, free_ctx
);
158 static void unclone_ctx(struct perf_event_context
*ctx
)
160 if (ctx
->parent_ctx
) {
161 put_ctx(ctx
->parent_ctx
);
162 ctx
->parent_ctx
= NULL
;
167 * If we inherit events we want to return the parent event id
170 static u64
primary_event_id(struct perf_event
*event
)
175 id
= event
->parent
->id
;
181 * Get the perf_event_context for a task and lock it.
182 * This has to cope with with the fact that until it is locked,
183 * the context could get moved to another task.
185 static struct perf_event_context
*
186 perf_lock_task_context(struct task_struct
*task
, unsigned long *flags
)
188 struct perf_event_context
*ctx
;
192 ctx
= rcu_dereference(task
->perf_event_ctxp
);
195 * If this context is a clone of another, it might
196 * get swapped for another underneath us by
197 * perf_event_task_sched_out, though the
198 * rcu_read_lock() protects us from any context
199 * getting freed. Lock the context and check if it
200 * got swapped before we could get the lock, and retry
201 * if so. If we locked the right context, then it
202 * can't get swapped on us any more.
204 spin_lock_irqsave(&ctx
->lock
, *flags
);
205 if (ctx
!= rcu_dereference(task
->perf_event_ctxp
)) {
206 spin_unlock_irqrestore(&ctx
->lock
, *flags
);
210 if (!atomic_inc_not_zero(&ctx
->refcount
)) {
211 spin_unlock_irqrestore(&ctx
->lock
, *flags
);
220 * Get the context for a task and increment its pin_count so it
221 * can't get swapped to another task. This also increments its
222 * reference count so that the context can't get freed.
224 static struct perf_event_context
*perf_pin_task_context(struct task_struct
*task
)
226 struct perf_event_context
*ctx
;
229 ctx
= perf_lock_task_context(task
, &flags
);
232 spin_unlock_irqrestore(&ctx
->lock
, flags
);
237 static void perf_unpin_context(struct perf_event_context
*ctx
)
241 spin_lock_irqsave(&ctx
->lock
, flags
);
243 spin_unlock_irqrestore(&ctx
->lock
, flags
);
248 * Add a event from the lists for its context.
249 * Must be called with ctx->mutex and ctx->lock held.
252 list_add_event(struct perf_event
*event
, struct perf_event_context
*ctx
)
254 struct perf_event
*group_leader
= event
->group_leader
;
257 * Depending on whether it is a standalone or sibling event,
258 * add it straight to the context's event list, or to the group
259 * leader's sibling list:
261 if (group_leader
== event
)
262 list_add_tail(&event
->group_entry
, &ctx
->group_list
);
264 list_add_tail(&event
->group_entry
, &group_leader
->sibling_list
);
265 group_leader
->nr_siblings
++;
268 list_add_rcu(&event
->event_entry
, &ctx
->event_list
);
270 if (event
->attr
.inherit_stat
)
275 * Remove a event from the lists for its context.
276 * Must be called with ctx->mutex and ctx->lock held.
279 list_del_event(struct perf_event
*event
, struct perf_event_context
*ctx
)
281 struct perf_event
*sibling
, *tmp
;
283 if (list_empty(&event
->group_entry
))
286 if (event
->attr
.inherit_stat
)
289 list_del_init(&event
->group_entry
);
290 list_del_rcu(&event
->event_entry
);
292 if (event
->group_leader
!= event
)
293 event
->group_leader
->nr_siblings
--;
296 * If this was a group event with sibling events then
297 * upgrade the siblings to singleton events by adding them
298 * to the context list directly:
300 list_for_each_entry_safe(sibling
, tmp
, &event
->sibling_list
, group_entry
) {
302 list_move_tail(&sibling
->group_entry
, &ctx
->group_list
);
303 sibling
->group_leader
= sibling
;
308 event_sched_out(struct perf_event
*event
,
309 struct perf_cpu_context
*cpuctx
,
310 struct perf_event_context
*ctx
)
312 if (event
->state
!= PERF_EVENT_STATE_ACTIVE
)
315 event
->state
= PERF_EVENT_STATE_INACTIVE
;
316 if (event
->pending_disable
) {
317 event
->pending_disable
= 0;
318 event
->state
= PERF_EVENT_STATE_OFF
;
320 event
->tstamp_stopped
= ctx
->time
;
321 event
->pmu
->disable(event
);
324 if (!is_software_event(event
))
325 cpuctx
->active_oncpu
--;
327 if (event
->attr
.exclusive
|| !cpuctx
->active_oncpu
)
328 cpuctx
->exclusive
= 0;
332 group_sched_out(struct perf_event
*group_event
,
333 struct perf_cpu_context
*cpuctx
,
334 struct perf_event_context
*ctx
)
336 struct perf_event
*event
;
338 if (group_event
->state
!= PERF_EVENT_STATE_ACTIVE
)
341 event_sched_out(group_event
, cpuctx
, ctx
);
344 * Schedule out siblings (if any):
346 list_for_each_entry(event
, &group_event
->sibling_list
, group_entry
)
347 event_sched_out(event
, cpuctx
, ctx
);
349 if (group_event
->attr
.exclusive
)
350 cpuctx
->exclusive
= 0;
354 * Cross CPU call to remove a performance event
356 * We disable the event on the hardware level first. After that we
357 * remove it from the context list.
359 static void __perf_event_remove_from_context(void *info
)
361 struct perf_cpu_context
*cpuctx
= &__get_cpu_var(perf_cpu_context
);
362 struct perf_event
*event
= info
;
363 struct perf_event_context
*ctx
= event
->ctx
;
366 * If this is a task context, we need to check whether it is
367 * the current task context of this cpu. If not it has been
368 * scheduled out before the smp call arrived.
370 if (ctx
->task
&& cpuctx
->task_ctx
!= ctx
)
373 spin_lock(&ctx
->lock
);
375 * Protect the list operation against NMI by disabling the
376 * events on a global level.
380 event_sched_out(event
, cpuctx
, ctx
);
382 list_del_event(event
, ctx
);
386 * Allow more per task events with respect to the
389 cpuctx
->max_pertask
=
390 min(perf_max_events
- ctx
->nr_events
,
391 perf_max_events
- perf_reserved_percpu
);
395 spin_unlock(&ctx
->lock
);
400 * Remove the event from a task's (or a CPU's) list of events.
402 * Must be called with ctx->mutex held.
404 * CPU events are removed with a smp call. For task events we only
405 * call when the task is on a CPU.
407 * If event->ctx is a cloned context, callers must make sure that
408 * every task struct that event->ctx->task could possibly point to
409 * remains valid. This is OK when called from perf_release since
410 * that only calls us on the top-level context, which can't be a clone.
411 * When called from perf_event_exit_task, it's OK because the
412 * context has been detached from its task.
414 static void perf_event_remove_from_context(struct perf_event
*event
)
416 struct perf_event_context
*ctx
= event
->ctx
;
417 struct task_struct
*task
= ctx
->task
;
421 * Per cpu events are removed via an smp call and
422 * the removal is always sucessful.
424 smp_call_function_single(event
->cpu
,
425 __perf_event_remove_from_context
,
431 task_oncpu_function_call(task
, __perf_event_remove_from_context
,
434 spin_lock_irq(&ctx
->lock
);
436 * If the context is active we need to retry the smp call.
438 if (ctx
->nr_active
&& !list_empty(&event
->group_entry
)) {
439 spin_unlock_irq(&ctx
->lock
);
444 * The lock prevents that this context is scheduled in so we
445 * can remove the event safely, if the call above did not
448 if (!list_empty(&event
->group_entry
)) {
449 list_del_event(event
, ctx
);
451 spin_unlock_irq(&ctx
->lock
);
454 static inline u64
perf_clock(void)
456 return cpu_clock(smp_processor_id());
460 * Update the record of the current time in a context.
462 static void update_context_time(struct perf_event_context
*ctx
)
464 u64 now
= perf_clock();
466 ctx
->time
+= now
- ctx
->timestamp
;
467 ctx
->timestamp
= now
;
471 * Update the total_time_enabled and total_time_running fields for a event.
473 static void update_event_times(struct perf_event
*event
)
475 struct perf_event_context
*ctx
= event
->ctx
;
478 if (event
->state
< PERF_EVENT_STATE_INACTIVE
||
479 event
->group_leader
->state
< PERF_EVENT_STATE_INACTIVE
)
482 event
->total_time_enabled
= ctx
->time
- event
->tstamp_enabled
;
484 if (event
->state
== PERF_EVENT_STATE_INACTIVE
)
485 run_end
= event
->tstamp_stopped
;
489 event
->total_time_running
= run_end
- event
->tstamp_running
;
493 * Update total_time_enabled and total_time_running for all events in a group.
495 static void update_group_times(struct perf_event
*leader
)
497 struct perf_event
*event
;
499 update_event_times(leader
);
500 list_for_each_entry(event
, &leader
->sibling_list
, group_entry
)
501 update_event_times(event
);
505 * Cross CPU call to disable a performance event
507 static void __perf_event_disable(void *info
)
509 struct perf_event
*event
= info
;
510 struct perf_cpu_context
*cpuctx
= &__get_cpu_var(perf_cpu_context
);
511 struct perf_event_context
*ctx
= event
->ctx
;
514 * If this is a per-task event, need to check whether this
515 * event's task is the current task on this cpu.
517 if (ctx
->task
&& cpuctx
->task_ctx
!= ctx
)
520 spin_lock(&ctx
->lock
);
523 * If the event is on, turn it off.
524 * If it is in error state, leave it in error state.
526 if (event
->state
>= PERF_EVENT_STATE_INACTIVE
) {
527 update_context_time(ctx
);
528 update_group_times(event
);
529 if (event
== event
->group_leader
)
530 group_sched_out(event
, cpuctx
, ctx
);
532 event_sched_out(event
, cpuctx
, ctx
);
533 event
->state
= PERF_EVENT_STATE_OFF
;
536 spin_unlock(&ctx
->lock
);
542 * If event->ctx is a cloned context, callers must make sure that
543 * every task struct that event->ctx->task could possibly point to
544 * remains valid. This condition is satisifed when called through
545 * perf_event_for_each_child or perf_event_for_each because they
546 * hold the top-level event's child_mutex, so any descendant that
547 * goes to exit will block in sync_child_event.
548 * When called from perf_pending_event it's OK because event->ctx
549 * is the current context on this CPU and preemption is disabled,
550 * hence we can't get into perf_event_task_sched_out for this context.
552 static void perf_event_disable(struct perf_event
*event
)
554 struct perf_event_context
*ctx
= event
->ctx
;
555 struct task_struct
*task
= ctx
->task
;
559 * Disable the event on the cpu that it's on
561 smp_call_function_single(event
->cpu
, __perf_event_disable
,
567 task_oncpu_function_call(task
, __perf_event_disable
, event
);
569 spin_lock_irq(&ctx
->lock
);
571 * If the event is still active, we need to retry the cross-call.
573 if (event
->state
== PERF_EVENT_STATE_ACTIVE
) {
574 spin_unlock_irq(&ctx
->lock
);
579 * Since we have the lock this context can't be scheduled
580 * in, so we can change the state safely.
582 if (event
->state
== PERF_EVENT_STATE_INACTIVE
) {
583 update_group_times(event
);
584 event
->state
= PERF_EVENT_STATE_OFF
;
587 spin_unlock_irq(&ctx
->lock
);
591 event_sched_in(struct perf_event
*event
,
592 struct perf_cpu_context
*cpuctx
,
593 struct perf_event_context
*ctx
,
596 if (event
->state
<= PERF_EVENT_STATE_OFF
)
599 event
->state
= PERF_EVENT_STATE_ACTIVE
;
600 event
->oncpu
= cpu
; /* TODO: put 'cpu' into cpuctx->cpu */
602 * The new state must be visible before we turn it on in the hardware:
606 if (event
->pmu
->enable(event
)) {
607 event
->state
= PERF_EVENT_STATE_INACTIVE
;
612 event
->tstamp_running
+= ctx
->time
- event
->tstamp_stopped
;
614 if (!is_software_event(event
))
615 cpuctx
->active_oncpu
++;
618 if (event
->attr
.exclusive
)
619 cpuctx
->exclusive
= 1;
625 group_sched_in(struct perf_event
*group_event
,
626 struct perf_cpu_context
*cpuctx
,
627 struct perf_event_context
*ctx
,
630 struct perf_event
*event
, *partial_group
;
633 if (group_event
->state
== PERF_EVENT_STATE_OFF
)
636 ret
= hw_perf_group_sched_in(group_event
, cpuctx
, ctx
, cpu
);
638 return ret
< 0 ? ret
: 0;
640 if (event_sched_in(group_event
, cpuctx
, ctx
, cpu
))
644 * Schedule in siblings as one group (if any):
646 list_for_each_entry(event
, &group_event
->sibling_list
, group_entry
) {
647 if (event_sched_in(event
, cpuctx
, ctx
, cpu
)) {
648 partial_group
= event
;
657 * Groups can be scheduled in as one unit only, so undo any
658 * partial group before returning:
660 list_for_each_entry(event
, &group_event
->sibling_list
, group_entry
) {
661 if (event
== partial_group
)
663 event_sched_out(event
, cpuctx
, ctx
);
665 event_sched_out(group_event
, cpuctx
, ctx
);
671 * Return 1 for a group consisting entirely of software events,
672 * 0 if the group contains any hardware events.
674 static int is_software_only_group(struct perf_event
*leader
)
676 struct perf_event
*event
;
678 if (!is_software_event(leader
))
681 list_for_each_entry(event
, &leader
->sibling_list
, group_entry
)
682 if (!is_software_event(event
))
689 * Work out whether we can put this event group on the CPU now.
691 static int group_can_go_on(struct perf_event
*event
,
692 struct perf_cpu_context
*cpuctx
,
696 * Groups consisting entirely of software events can always go on.
698 if (is_software_only_group(event
))
701 * If an exclusive group is already on, no other hardware
704 if (cpuctx
->exclusive
)
707 * If this group is exclusive and there are already
708 * events on the CPU, it can't go on.
710 if (event
->attr
.exclusive
&& cpuctx
->active_oncpu
)
713 * Otherwise, try to add it if all previous groups were able
719 static void add_event_to_ctx(struct perf_event
*event
,
720 struct perf_event_context
*ctx
)
722 list_add_event(event
, ctx
);
723 event
->tstamp_enabled
= ctx
->time
;
724 event
->tstamp_running
= ctx
->time
;
725 event
->tstamp_stopped
= ctx
->time
;
729 * Cross CPU call to install and enable a performance event
731 * Must be called with ctx->mutex held
733 static void __perf_install_in_context(void *info
)
735 struct perf_cpu_context
*cpuctx
= &__get_cpu_var(perf_cpu_context
);
736 struct perf_event
*event
= info
;
737 struct perf_event_context
*ctx
= event
->ctx
;
738 struct perf_event
*leader
= event
->group_leader
;
739 int cpu
= smp_processor_id();
743 * If this is a task context, we need to check whether it is
744 * the current task context of this cpu. If not it has been
745 * scheduled out before the smp call arrived.
746 * Or possibly this is the right context but it isn't
747 * on this cpu because it had no events.
749 if (ctx
->task
&& cpuctx
->task_ctx
!= ctx
) {
750 if (cpuctx
->task_ctx
|| ctx
->task
!= current
)
752 cpuctx
->task_ctx
= ctx
;
755 spin_lock(&ctx
->lock
);
757 update_context_time(ctx
);
760 * Protect the list operation against NMI by disabling the
761 * events on a global level. NOP for non NMI based events.
765 add_event_to_ctx(event
, ctx
);
768 * Don't put the event on if it is disabled or if
769 * it is in a group and the group isn't on.
771 if (event
->state
!= PERF_EVENT_STATE_INACTIVE
||
772 (leader
!= event
&& leader
->state
!= PERF_EVENT_STATE_ACTIVE
))
776 * An exclusive event can't go on if there are already active
777 * hardware events, and no hardware event can go on if there
778 * is already an exclusive event on.
780 if (!group_can_go_on(event
, cpuctx
, 1))
783 err
= event_sched_in(event
, cpuctx
, ctx
, cpu
);
787 * This event couldn't go on. If it is in a group
788 * then we have to pull the whole group off.
789 * If the event group is pinned then put it in error state.
792 group_sched_out(leader
, cpuctx
, ctx
);
793 if (leader
->attr
.pinned
) {
794 update_group_times(leader
);
795 leader
->state
= PERF_EVENT_STATE_ERROR
;
799 if (!err
&& !ctx
->task
&& cpuctx
->max_pertask
)
800 cpuctx
->max_pertask
--;
805 spin_unlock(&ctx
->lock
);
809 * Attach a performance event to a context
811 * First we add the event to the list with the hardware enable bit
812 * in event->hw_config cleared.
814 * If the event is attached to a task which is on a CPU we use a smp
815 * call to enable it in the task context. The task might have been
816 * scheduled away, but we check this in the smp call again.
818 * Must be called with ctx->mutex held.
821 perf_install_in_context(struct perf_event_context
*ctx
,
822 struct perf_event
*event
,
825 struct task_struct
*task
= ctx
->task
;
829 * Per cpu events are installed via an smp call and
830 * the install is always sucessful.
832 smp_call_function_single(cpu
, __perf_install_in_context
,
838 task_oncpu_function_call(task
, __perf_install_in_context
,
841 spin_lock_irq(&ctx
->lock
);
843 * we need to retry the smp call.
845 if (ctx
->is_active
&& list_empty(&event
->group_entry
)) {
846 spin_unlock_irq(&ctx
->lock
);
851 * The lock prevents that this context is scheduled in so we
852 * can add the event safely, if it the call above did not
855 if (list_empty(&event
->group_entry
))
856 add_event_to_ctx(event
, ctx
);
857 spin_unlock_irq(&ctx
->lock
);
861 * Put a event into inactive state and update time fields.
862 * Enabling the leader of a group effectively enables all
863 * the group members that aren't explicitly disabled, so we
864 * have to update their ->tstamp_enabled also.
865 * Note: this works for group members as well as group leaders
866 * since the non-leader members' sibling_lists will be empty.
868 static void __perf_event_mark_enabled(struct perf_event
*event
,
869 struct perf_event_context
*ctx
)
871 struct perf_event
*sub
;
873 event
->state
= PERF_EVENT_STATE_INACTIVE
;
874 event
->tstamp_enabled
= ctx
->time
- event
->total_time_enabled
;
875 list_for_each_entry(sub
, &event
->sibling_list
, group_entry
)
876 if (sub
->state
>= PERF_EVENT_STATE_INACTIVE
)
877 sub
->tstamp_enabled
=
878 ctx
->time
- sub
->total_time_enabled
;
882 * Cross CPU call to enable a performance event
884 static void __perf_event_enable(void *info
)
886 struct perf_event
*event
= info
;
887 struct perf_cpu_context
*cpuctx
= &__get_cpu_var(perf_cpu_context
);
888 struct perf_event_context
*ctx
= event
->ctx
;
889 struct perf_event
*leader
= event
->group_leader
;
893 * If this is a per-task event, need to check whether this
894 * event's task is the current task on this cpu.
896 if (ctx
->task
&& cpuctx
->task_ctx
!= ctx
) {
897 if (cpuctx
->task_ctx
|| ctx
->task
!= current
)
899 cpuctx
->task_ctx
= ctx
;
902 spin_lock(&ctx
->lock
);
904 update_context_time(ctx
);
906 if (event
->state
>= PERF_EVENT_STATE_INACTIVE
)
908 __perf_event_mark_enabled(event
, ctx
);
911 * If the event is in a group and isn't the group leader,
912 * then don't put it on unless the group is on.
914 if (leader
!= event
&& leader
->state
!= PERF_EVENT_STATE_ACTIVE
)
917 if (!group_can_go_on(event
, cpuctx
, 1)) {
922 err
= group_sched_in(event
, cpuctx
, ctx
,
925 err
= event_sched_in(event
, cpuctx
, ctx
,
932 * If this event can't go on and it's part of a
933 * group, then the whole group has to come off.
936 group_sched_out(leader
, cpuctx
, ctx
);
937 if (leader
->attr
.pinned
) {
938 update_group_times(leader
);
939 leader
->state
= PERF_EVENT_STATE_ERROR
;
944 spin_unlock(&ctx
->lock
);
950 * If event->ctx is a cloned context, callers must make sure that
951 * every task struct that event->ctx->task could possibly point to
952 * remains valid. This condition is satisfied when called through
953 * perf_event_for_each_child or perf_event_for_each as described
954 * for perf_event_disable.
956 static void perf_event_enable(struct perf_event
*event
)
958 struct perf_event_context
*ctx
= event
->ctx
;
959 struct task_struct
*task
= ctx
->task
;
963 * Enable the event on the cpu that it's on
965 smp_call_function_single(event
->cpu
, __perf_event_enable
,
970 spin_lock_irq(&ctx
->lock
);
971 if (event
->state
>= PERF_EVENT_STATE_INACTIVE
)
975 * If the event is in error state, clear that first.
976 * That way, if we see the event in error state below, we
977 * know that it has gone back into error state, as distinct
978 * from the task having been scheduled away before the
979 * cross-call arrived.
981 if (event
->state
== PERF_EVENT_STATE_ERROR
)
982 event
->state
= PERF_EVENT_STATE_OFF
;
985 spin_unlock_irq(&ctx
->lock
);
986 task_oncpu_function_call(task
, __perf_event_enable
, event
);
988 spin_lock_irq(&ctx
->lock
);
991 * If the context is active and the event is still off,
992 * we need to retry the cross-call.
994 if (ctx
->is_active
&& event
->state
== PERF_EVENT_STATE_OFF
)
998 * Since we have the lock this context can't be scheduled
999 * in, so we can change the state safely.
1001 if (event
->state
== PERF_EVENT_STATE_OFF
)
1002 __perf_event_mark_enabled(event
, ctx
);
1005 spin_unlock_irq(&ctx
->lock
);
1008 static int perf_event_refresh(struct perf_event
*event
, int refresh
)
1011 * not supported on inherited events
1013 if (event
->attr
.inherit
)
1016 atomic_add(refresh
, &event
->event_limit
);
1017 perf_event_enable(event
);
1022 void __perf_event_sched_out(struct perf_event_context
*ctx
,
1023 struct perf_cpu_context
*cpuctx
)
1025 struct perf_event
*event
;
1027 spin_lock(&ctx
->lock
);
1029 if (likely(!ctx
->nr_events
))
1031 update_context_time(ctx
);
1035 list_for_each_entry(event
, &ctx
->group_list
, group_entry
)
1036 group_sched_out(event
, cpuctx
, ctx
);
1040 spin_unlock(&ctx
->lock
);
1044 * Test whether two contexts are equivalent, i.e. whether they
1045 * have both been cloned from the same version of the same context
1046 * and they both have the same number of enabled events.
1047 * If the number of enabled events is the same, then the set
1048 * of enabled events should be the same, because these are both
1049 * inherited contexts, therefore we can't access individual events
1050 * in them directly with an fd; we can only enable/disable all
1051 * events via prctl, or enable/disable all events in a family
1052 * via ioctl, which will have the same effect on both contexts.
1054 static int context_equiv(struct perf_event_context
*ctx1
,
1055 struct perf_event_context
*ctx2
)
1057 return ctx1
->parent_ctx
&& ctx1
->parent_ctx
== ctx2
->parent_ctx
1058 && ctx1
->parent_gen
== ctx2
->parent_gen
1059 && !ctx1
->pin_count
&& !ctx2
->pin_count
;
1062 static void __perf_event_read(void *event
);
1064 static void __perf_event_sync_stat(struct perf_event
*event
,
1065 struct perf_event
*next_event
)
1069 if (!event
->attr
.inherit_stat
)
1073 * Update the event value, we cannot use perf_event_read()
1074 * because we're in the middle of a context switch and have IRQs
1075 * disabled, which upsets smp_call_function_single(), however
1076 * we know the event must be on the current CPU, therefore we
1077 * don't need to use it.
1079 switch (event
->state
) {
1080 case PERF_EVENT_STATE_ACTIVE
:
1081 __perf_event_read(event
);
1084 case PERF_EVENT_STATE_INACTIVE
:
1085 update_event_times(event
);
1093 * In order to keep per-task stats reliable we need to flip the event
1094 * values when we flip the contexts.
1096 value
= atomic64_read(&next_event
->count
);
1097 value
= atomic64_xchg(&event
->count
, value
);
1098 atomic64_set(&next_event
->count
, value
);
1100 swap(event
->total_time_enabled
, next_event
->total_time_enabled
);
1101 swap(event
->total_time_running
, next_event
->total_time_running
);
1104 * Since we swizzled the values, update the user visible data too.
1106 perf_event_update_userpage(event
);
1107 perf_event_update_userpage(next_event
);
1110 #define list_next_entry(pos, member) \
1111 list_entry(pos->member.next, typeof(*pos), member)
1113 static void perf_event_sync_stat(struct perf_event_context
*ctx
,
1114 struct perf_event_context
*next_ctx
)
1116 struct perf_event
*event
, *next_event
;
1121 event
= list_first_entry(&ctx
->event_list
,
1122 struct perf_event
, event_entry
);
1124 next_event
= list_first_entry(&next_ctx
->event_list
,
1125 struct perf_event
, event_entry
);
1127 while (&event
->event_entry
!= &ctx
->event_list
&&
1128 &next_event
->event_entry
!= &next_ctx
->event_list
) {
1130 __perf_event_sync_stat(event
, next_event
);
1132 event
= list_next_entry(event
, event_entry
);
1133 next_event
= list_next_entry(next_event
, event_entry
);
1138 * Called from scheduler to remove the events of the current task,
1139 * with interrupts disabled.
1141 * We stop each event and update the event value in event->count.
1143 * This does not protect us against NMI, but disable()
1144 * sets the disabled bit in the control field of event _before_
1145 * accessing the event control register. If a NMI hits, then it will
1146 * not restart the event.
1148 void perf_event_task_sched_out(struct task_struct
*task
,
1149 struct task_struct
*next
, int cpu
)
1151 struct perf_cpu_context
*cpuctx
= &per_cpu(perf_cpu_context
, cpu
);
1152 struct perf_event_context
*ctx
= task
->perf_event_ctxp
;
1153 struct perf_event_context
*next_ctx
;
1154 struct perf_event_context
*parent
;
1155 struct pt_regs
*regs
;
1158 regs
= task_pt_regs(task
);
1159 perf_sw_event(PERF_COUNT_SW_CONTEXT_SWITCHES
, 1, 1, regs
, 0);
1161 if (likely(!ctx
|| !cpuctx
->task_ctx
))
1164 update_context_time(ctx
);
1167 parent
= rcu_dereference(ctx
->parent_ctx
);
1168 next_ctx
= next
->perf_event_ctxp
;
1169 if (parent
&& next_ctx
&&
1170 rcu_dereference(next_ctx
->parent_ctx
) == parent
) {
1172 * Looks like the two contexts are clones, so we might be
1173 * able to optimize the context switch. We lock both
1174 * contexts and check that they are clones under the
1175 * lock (including re-checking that neither has been
1176 * uncloned in the meantime). It doesn't matter which
1177 * order we take the locks because no other cpu could
1178 * be trying to lock both of these tasks.
1180 spin_lock(&ctx
->lock
);
1181 spin_lock_nested(&next_ctx
->lock
, SINGLE_DEPTH_NESTING
);
1182 if (context_equiv(ctx
, next_ctx
)) {
1184 * XXX do we need a memory barrier of sorts
1185 * wrt to rcu_dereference() of perf_event_ctxp
1187 task
->perf_event_ctxp
= next_ctx
;
1188 next
->perf_event_ctxp
= ctx
;
1190 next_ctx
->task
= task
;
1193 perf_event_sync_stat(ctx
, next_ctx
);
1195 spin_unlock(&next_ctx
->lock
);
1196 spin_unlock(&ctx
->lock
);
1201 __perf_event_sched_out(ctx
, cpuctx
);
1202 cpuctx
->task_ctx
= NULL
;
1207 * Called with IRQs disabled
1209 static void __perf_event_task_sched_out(struct perf_event_context
*ctx
)
1211 struct perf_cpu_context
*cpuctx
= &__get_cpu_var(perf_cpu_context
);
1213 if (!cpuctx
->task_ctx
)
1216 if (WARN_ON_ONCE(ctx
!= cpuctx
->task_ctx
))
1219 __perf_event_sched_out(ctx
, cpuctx
);
1220 cpuctx
->task_ctx
= NULL
;
1224 * Called with IRQs disabled
1226 static void perf_event_cpu_sched_out(struct perf_cpu_context
*cpuctx
)
1228 __perf_event_sched_out(&cpuctx
->ctx
, cpuctx
);
1232 __perf_event_sched_in(struct perf_event_context
*ctx
,
1233 struct perf_cpu_context
*cpuctx
, int cpu
)
1235 struct perf_event
*event
;
1238 spin_lock(&ctx
->lock
);
1240 if (likely(!ctx
->nr_events
))
1243 ctx
->timestamp
= perf_clock();
1248 * First go through the list and put on any pinned groups
1249 * in order to give them the best chance of going on.
1251 list_for_each_entry(event
, &ctx
->group_list
, group_entry
) {
1252 if (event
->state
<= PERF_EVENT_STATE_OFF
||
1253 !event
->attr
.pinned
)
1255 if (event
->cpu
!= -1 && event
->cpu
!= cpu
)
1258 if (group_can_go_on(event
, cpuctx
, 1))
1259 group_sched_in(event
, cpuctx
, ctx
, cpu
);
1262 * If this pinned group hasn't been scheduled,
1263 * put it in error state.
1265 if (event
->state
== PERF_EVENT_STATE_INACTIVE
) {
1266 update_group_times(event
);
1267 event
->state
= PERF_EVENT_STATE_ERROR
;
1271 list_for_each_entry(event
, &ctx
->group_list
, group_entry
) {
1273 * Ignore events in OFF or ERROR state, and
1274 * ignore pinned events since we did them already.
1276 if (event
->state
<= PERF_EVENT_STATE_OFF
||
1281 * Listen to the 'cpu' scheduling filter constraint
1284 if (event
->cpu
!= -1 && event
->cpu
!= cpu
)
1287 if (group_can_go_on(event
, cpuctx
, can_add_hw
))
1288 if (group_sched_in(event
, cpuctx
, ctx
, cpu
))
1293 spin_unlock(&ctx
->lock
);
1297 * Called from scheduler to add the events of the current task
1298 * with interrupts disabled.
1300 * We restore the event value and then enable it.
1302 * This does not protect us against NMI, but enable()
1303 * sets the enabled bit in the control field of event _before_
1304 * accessing the event control register. If a NMI hits, then it will
1305 * keep the event running.
1307 void perf_event_task_sched_in(struct task_struct
*task
, int cpu
)
1309 struct perf_cpu_context
*cpuctx
= &per_cpu(perf_cpu_context
, cpu
);
1310 struct perf_event_context
*ctx
= task
->perf_event_ctxp
;
1314 if (cpuctx
->task_ctx
== ctx
)
1316 __perf_event_sched_in(ctx
, cpuctx
, cpu
);
1317 cpuctx
->task_ctx
= ctx
;
1320 static void perf_event_cpu_sched_in(struct perf_cpu_context
*cpuctx
, int cpu
)
1322 struct perf_event_context
*ctx
= &cpuctx
->ctx
;
1324 __perf_event_sched_in(ctx
, cpuctx
, cpu
);
1327 #define MAX_INTERRUPTS (~0ULL)
1329 static void perf_log_throttle(struct perf_event
*event
, int enable
);
1331 static void perf_adjust_period(struct perf_event
*event
, u64 events
)
1333 struct hw_perf_event
*hwc
= &event
->hw
;
1334 u64 period
, sample_period
;
1337 events
*= hwc
->sample_period
;
1338 period
= div64_u64(events
, event
->attr
.sample_freq
);
1340 delta
= (s64
)(period
- hwc
->sample_period
);
1341 delta
= (delta
+ 7) / 8; /* low pass filter */
1343 sample_period
= hwc
->sample_period
+ delta
;
1348 hwc
->sample_period
= sample_period
;
1351 static void perf_ctx_adjust_freq(struct perf_event_context
*ctx
)
1353 struct perf_event
*event
;
1354 struct hw_perf_event
*hwc
;
1355 u64 interrupts
, freq
;
1357 spin_lock(&ctx
->lock
);
1358 list_for_each_entry_rcu(event
, &ctx
->event_list
, event_entry
) {
1359 if (event
->state
!= PERF_EVENT_STATE_ACTIVE
)
1362 if (event
->cpu
!= -1 && event
->cpu
!= smp_processor_id())
1367 interrupts
= hwc
->interrupts
;
1368 hwc
->interrupts
= 0;
1371 * unthrottle events on the tick
1373 if (interrupts
== MAX_INTERRUPTS
) {
1374 perf_log_throttle(event
, 1);
1375 event
->pmu
->unthrottle(event
);
1376 interrupts
= 2*sysctl_perf_event_sample_rate
/HZ
;
1379 if (!event
->attr
.freq
|| !event
->attr
.sample_freq
)
1383 * if the specified freq < HZ then we need to skip ticks
1385 if (event
->attr
.sample_freq
< HZ
) {
1386 freq
= event
->attr
.sample_freq
;
1388 hwc
->freq_count
+= freq
;
1389 hwc
->freq_interrupts
+= interrupts
;
1391 if (hwc
->freq_count
< HZ
)
1394 interrupts
= hwc
->freq_interrupts
;
1395 hwc
->freq_interrupts
= 0;
1396 hwc
->freq_count
-= HZ
;
1400 perf_adjust_period(event
, freq
* interrupts
);
1403 * In order to avoid being stalled by an (accidental) huge
1404 * sample period, force reset the sample period if we didn't
1405 * get any events in this freq period.
1409 event
->pmu
->disable(event
);
1410 atomic64_set(&hwc
->period_left
, 0);
1411 event
->pmu
->enable(event
);
1415 spin_unlock(&ctx
->lock
);
1419 * Round-robin a context's events:
1421 static void rotate_ctx(struct perf_event_context
*ctx
)
1423 struct perf_event
*event
;
1425 if (!ctx
->nr_events
)
1428 spin_lock(&ctx
->lock
);
1430 * Rotate the first entry last (works just fine for group events too):
1433 list_for_each_entry(event
, &ctx
->group_list
, group_entry
) {
1434 list_move_tail(&event
->group_entry
, &ctx
->group_list
);
1439 spin_unlock(&ctx
->lock
);
1442 void perf_event_task_tick(struct task_struct
*curr
, int cpu
)
1444 struct perf_cpu_context
*cpuctx
;
1445 struct perf_event_context
*ctx
;
1447 if (!atomic_read(&nr_events
))
1450 cpuctx
= &per_cpu(perf_cpu_context
, cpu
);
1451 ctx
= curr
->perf_event_ctxp
;
1453 perf_ctx_adjust_freq(&cpuctx
->ctx
);
1455 perf_ctx_adjust_freq(ctx
);
1457 perf_event_cpu_sched_out(cpuctx
);
1459 __perf_event_task_sched_out(ctx
);
1461 rotate_ctx(&cpuctx
->ctx
);
1465 perf_event_cpu_sched_in(cpuctx
, cpu
);
1467 perf_event_task_sched_in(curr
, cpu
);
1471 * Enable all of a task's events that have been marked enable-on-exec.
1472 * This expects task == current.
1474 static void perf_event_enable_on_exec(struct task_struct
*task
)
1476 struct perf_event_context
*ctx
;
1477 struct perf_event
*event
;
1478 unsigned long flags
;
1481 local_irq_save(flags
);
1482 ctx
= task
->perf_event_ctxp
;
1483 if (!ctx
|| !ctx
->nr_events
)
1486 __perf_event_task_sched_out(ctx
);
1488 spin_lock(&ctx
->lock
);
1490 list_for_each_entry(event
, &ctx
->group_list
, group_entry
) {
1491 if (!event
->attr
.enable_on_exec
)
1493 event
->attr
.enable_on_exec
= 0;
1494 if (event
->state
>= PERF_EVENT_STATE_INACTIVE
)
1496 __perf_event_mark_enabled(event
, ctx
);
1501 * Unclone this context if we enabled any event.
1506 spin_unlock(&ctx
->lock
);
1508 perf_event_task_sched_in(task
, smp_processor_id());
1510 local_irq_restore(flags
);
1514 * Cross CPU call to read the hardware event
1516 static void __perf_event_read(void *info
)
1518 struct perf_cpu_context
*cpuctx
= &__get_cpu_var(perf_cpu_context
);
1519 struct perf_event
*event
= info
;
1520 struct perf_event_context
*ctx
= event
->ctx
;
1521 unsigned long flags
;
1524 * If this is a task context, we need to check whether it is
1525 * the current task context of this cpu. If not it has been
1526 * scheduled out before the smp call arrived. In that case
1527 * event->count would have been updated to a recent sample
1528 * when the event was scheduled out.
1530 if (ctx
->task
&& cpuctx
->task_ctx
!= ctx
)
1533 local_irq_save(flags
);
1535 update_context_time(ctx
);
1536 event
->pmu
->read(event
);
1537 update_event_times(event
);
1538 local_irq_restore(flags
);
1541 static u64
perf_event_read(struct perf_event
*event
)
1544 * If event is enabled and currently active on a CPU, update the
1545 * value in the event structure:
1547 if (event
->state
== PERF_EVENT_STATE_ACTIVE
) {
1548 smp_call_function_single(event
->oncpu
,
1549 __perf_event_read
, event
, 1);
1550 } else if (event
->state
== PERF_EVENT_STATE_INACTIVE
) {
1551 update_event_times(event
);
1554 return atomic64_read(&event
->count
);
1558 * Initialize the perf_event context in a task_struct:
1561 __perf_event_init_context(struct perf_event_context
*ctx
,
1562 struct task_struct
*task
)
1564 memset(ctx
, 0, sizeof(*ctx
));
1565 spin_lock_init(&ctx
->lock
);
1566 mutex_init(&ctx
->mutex
);
1567 INIT_LIST_HEAD(&ctx
->group_list
);
1568 INIT_LIST_HEAD(&ctx
->event_list
);
1569 atomic_set(&ctx
->refcount
, 1);
1573 static struct perf_event_context
*find_get_context(pid_t pid
, int cpu
)
1575 struct perf_event_context
*ctx
;
1576 struct perf_cpu_context
*cpuctx
;
1577 struct task_struct
*task
;
1578 unsigned long flags
;
1582 * If cpu is not a wildcard then this is a percpu event:
1585 /* Must be root to operate on a CPU event: */
1586 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN
))
1587 return ERR_PTR(-EACCES
);
1589 if (cpu
< 0 || cpu
>= nr_cpumask_bits
)
1590 return ERR_PTR(-EINVAL
);
1593 * We could be clever and allow to attach a event to an
1594 * offline CPU and activate it when the CPU comes up, but
1597 if (!cpu_isset(cpu
, cpu_online_map
))
1598 return ERR_PTR(-ENODEV
);
1600 cpuctx
= &per_cpu(perf_cpu_context
, cpu
);
1611 task
= find_task_by_vpid(pid
);
1613 get_task_struct(task
);
1617 return ERR_PTR(-ESRCH
);
1620 * Can't attach events to a dying task.
1623 if (task
->flags
& PF_EXITING
)
1626 /* Reuse ptrace permission checks for now. */
1628 if (!ptrace_may_access(task
, PTRACE_MODE_READ
))
1632 ctx
= perf_lock_task_context(task
, &flags
);
1635 spin_unlock_irqrestore(&ctx
->lock
, flags
);
1639 ctx
= kmalloc(sizeof(struct perf_event_context
), GFP_KERNEL
);
1643 __perf_event_init_context(ctx
, task
);
1645 if (cmpxchg(&task
->perf_event_ctxp
, NULL
, ctx
)) {
1647 * We raced with some other task; use
1648 * the context they set.
1653 get_task_struct(task
);
1656 put_task_struct(task
);
1660 put_task_struct(task
);
1661 return ERR_PTR(err
);
1664 static void free_event_rcu(struct rcu_head
*head
)
1666 struct perf_event
*event
;
1668 event
= container_of(head
, struct perf_event
, rcu_head
);
1670 put_pid_ns(event
->ns
);
1674 static void perf_pending_sync(struct perf_event
*event
);
1676 static void free_event(struct perf_event
*event
)
1678 perf_pending_sync(event
);
1680 if (!event
->parent
) {
1681 atomic_dec(&nr_events
);
1682 if (event
->attr
.mmap
)
1683 atomic_dec(&nr_mmap_events
);
1684 if (event
->attr
.comm
)
1685 atomic_dec(&nr_comm_events
);
1686 if (event
->attr
.task
)
1687 atomic_dec(&nr_task_events
);
1690 if (event
->output
) {
1691 fput(event
->output
->filp
);
1692 event
->output
= NULL
;
1696 event
->destroy(event
);
1698 put_ctx(event
->ctx
);
1699 call_rcu(&event
->rcu_head
, free_event_rcu
);
1703 * Called when the last reference to the file is gone.
1705 static int perf_release(struct inode
*inode
, struct file
*file
)
1707 struct perf_event
*event
= file
->private_data
;
1708 struct perf_event_context
*ctx
= event
->ctx
;
1710 file
->private_data
= NULL
;
1712 WARN_ON_ONCE(ctx
->parent_ctx
);
1713 mutex_lock(&ctx
->mutex
);
1714 perf_event_remove_from_context(event
);
1715 mutex_unlock(&ctx
->mutex
);
1717 mutex_lock(&event
->owner
->perf_event_mutex
);
1718 list_del_init(&event
->owner_entry
);
1719 mutex_unlock(&event
->owner
->perf_event_mutex
);
1720 put_task_struct(event
->owner
);
1727 static int perf_event_read_size(struct perf_event
*event
)
1729 int entry
= sizeof(u64
); /* value */
1733 if (event
->attr
.read_format
& PERF_FORMAT_TOTAL_TIME_ENABLED
)
1734 size
+= sizeof(u64
);
1736 if (event
->attr
.read_format
& PERF_FORMAT_TOTAL_TIME_RUNNING
)
1737 size
+= sizeof(u64
);
1739 if (event
->attr
.read_format
& PERF_FORMAT_ID
)
1740 entry
+= sizeof(u64
);
1742 if (event
->attr
.read_format
& PERF_FORMAT_GROUP
) {
1743 nr
+= event
->group_leader
->nr_siblings
;
1744 size
+= sizeof(u64
);
1752 static u64
perf_event_read_value(struct perf_event
*event
)
1754 struct perf_event
*child
;
1757 total
+= perf_event_read(event
);
1758 list_for_each_entry(child
, &event
->child_list
, child_list
)
1759 total
+= perf_event_read(child
);
1764 static int perf_event_read_entry(struct perf_event
*event
,
1765 u64 read_format
, char __user
*buf
)
1767 int n
= 0, count
= 0;
1770 values
[n
++] = perf_event_read_value(event
);
1771 if (read_format
& PERF_FORMAT_ID
)
1772 values
[n
++] = primary_event_id(event
);
1774 count
= n
* sizeof(u64
);
1776 if (copy_to_user(buf
, values
, count
))
1782 static int perf_event_read_group(struct perf_event
*event
,
1783 u64 read_format
, char __user
*buf
)
1785 struct perf_event
*leader
= event
->group_leader
, *sub
;
1786 int n
= 0, size
= 0, err
= -EFAULT
;
1789 values
[n
++] = 1 + leader
->nr_siblings
;
1790 if (read_format
& PERF_FORMAT_TOTAL_TIME_ENABLED
) {
1791 values
[n
++] = leader
->total_time_enabled
+
1792 atomic64_read(&leader
->child_total_time_enabled
);
1794 if (read_format
& PERF_FORMAT_TOTAL_TIME_RUNNING
) {
1795 values
[n
++] = leader
->total_time_running
+
1796 atomic64_read(&leader
->child_total_time_running
);
1799 size
= n
* sizeof(u64
);
1801 if (copy_to_user(buf
, values
, size
))
1804 err
= perf_event_read_entry(leader
, read_format
, buf
+ size
);
1810 list_for_each_entry(sub
, &leader
->sibling_list
, group_entry
) {
1811 err
= perf_event_read_entry(sub
, read_format
,
1822 static int perf_event_read_one(struct perf_event
*event
,
1823 u64 read_format
, char __user
*buf
)
1828 values
[n
++] = perf_event_read_value(event
);
1829 if (read_format
& PERF_FORMAT_TOTAL_TIME_ENABLED
) {
1830 values
[n
++] = event
->total_time_enabled
+
1831 atomic64_read(&event
->child_total_time_enabled
);
1833 if (read_format
& PERF_FORMAT_TOTAL_TIME_RUNNING
) {
1834 values
[n
++] = event
->total_time_running
+
1835 atomic64_read(&event
->child_total_time_running
);
1837 if (read_format
& PERF_FORMAT_ID
)
1838 values
[n
++] = primary_event_id(event
);
1840 if (copy_to_user(buf
, values
, n
* sizeof(u64
)))
1843 return n
* sizeof(u64
);
1847 * Read the performance event - simple non blocking version for now
1850 perf_read_hw(struct perf_event
*event
, char __user
*buf
, size_t count
)
1852 u64 read_format
= event
->attr
.read_format
;
1856 * Return end-of-file for a read on a event that is in
1857 * error state (i.e. because it was pinned but it couldn't be
1858 * scheduled on to the CPU at some point).
1860 if (event
->state
== PERF_EVENT_STATE_ERROR
)
1863 if (count
< perf_event_read_size(event
))
1866 WARN_ON_ONCE(event
->ctx
->parent_ctx
);
1867 mutex_lock(&event
->child_mutex
);
1868 if (read_format
& PERF_FORMAT_GROUP
)
1869 ret
= perf_event_read_group(event
, read_format
, buf
);
1871 ret
= perf_event_read_one(event
, read_format
, buf
);
1872 mutex_unlock(&event
->child_mutex
);
1878 perf_read(struct file
*file
, char __user
*buf
, size_t count
, loff_t
*ppos
)
1880 struct perf_event
*event
= file
->private_data
;
1882 return perf_read_hw(event
, buf
, count
);
1885 static unsigned int perf_poll(struct file
*file
, poll_table
*wait
)
1887 struct perf_event
*event
= file
->private_data
;
1888 struct perf_mmap_data
*data
;
1889 unsigned int events
= POLL_HUP
;
1892 data
= rcu_dereference(event
->data
);
1894 events
= atomic_xchg(&data
->poll
, 0);
1897 poll_wait(file
, &event
->waitq
, wait
);
1902 static void perf_event_reset(struct perf_event
*event
)
1904 (void)perf_event_read(event
);
1905 atomic64_set(&event
->count
, 0);
1906 perf_event_update_userpage(event
);
1910 * Holding the top-level event's child_mutex means that any
1911 * descendant process that has inherited this event will block
1912 * in sync_child_event if it goes to exit, thus satisfying the
1913 * task existence requirements of perf_event_enable/disable.
1915 static void perf_event_for_each_child(struct perf_event
*event
,
1916 void (*func
)(struct perf_event
*))
1918 struct perf_event
*child
;
1920 WARN_ON_ONCE(event
->ctx
->parent_ctx
);
1921 mutex_lock(&event
->child_mutex
);
1923 list_for_each_entry(child
, &event
->child_list
, child_list
)
1925 mutex_unlock(&event
->child_mutex
);
1928 static void perf_event_for_each(struct perf_event
*event
,
1929 void (*func
)(struct perf_event
*))
1931 struct perf_event_context
*ctx
= event
->ctx
;
1932 struct perf_event
*sibling
;
1934 WARN_ON_ONCE(ctx
->parent_ctx
);
1935 mutex_lock(&ctx
->mutex
);
1936 event
= event
->group_leader
;
1938 perf_event_for_each_child(event
, func
);
1940 list_for_each_entry(sibling
, &event
->sibling_list
, group_entry
)
1941 perf_event_for_each_child(event
, func
);
1942 mutex_unlock(&ctx
->mutex
);
1945 static int perf_event_period(struct perf_event
*event
, u64 __user
*arg
)
1947 struct perf_event_context
*ctx
= event
->ctx
;
1952 if (!event
->attr
.sample_period
)
1955 size
= copy_from_user(&value
, arg
, sizeof(value
));
1956 if (size
!= sizeof(value
))
1962 spin_lock_irq(&ctx
->lock
);
1963 if (event
->attr
.freq
) {
1964 if (value
> sysctl_perf_event_sample_rate
) {
1969 event
->attr
.sample_freq
= value
;
1971 event
->attr
.sample_period
= value
;
1972 event
->hw
.sample_period
= value
;
1975 spin_unlock_irq(&ctx
->lock
);
1980 int perf_event_set_output(struct perf_event
*event
, int output_fd
);
1982 static long perf_ioctl(struct file
*file
, unsigned int cmd
, unsigned long arg
)
1984 struct perf_event
*event
= file
->private_data
;
1985 void (*func
)(struct perf_event
*);
1989 case PERF_EVENT_IOC_ENABLE
:
1990 func
= perf_event_enable
;
1992 case PERF_EVENT_IOC_DISABLE
:
1993 func
= perf_event_disable
;
1995 case PERF_EVENT_IOC_RESET
:
1996 func
= perf_event_reset
;
1999 case PERF_EVENT_IOC_REFRESH
:
2000 return perf_event_refresh(event
, arg
);
2002 case PERF_EVENT_IOC_PERIOD
:
2003 return perf_event_period(event
, (u64 __user
*)arg
);
2005 case PERF_EVENT_IOC_SET_OUTPUT
:
2006 return perf_event_set_output(event
, arg
);
2012 if (flags
& PERF_IOC_FLAG_GROUP
)
2013 perf_event_for_each(event
, func
);
2015 perf_event_for_each_child(event
, func
);
2020 int perf_event_task_enable(void)
2022 struct perf_event
*event
;
2024 mutex_lock(¤t
->perf_event_mutex
);
2025 list_for_each_entry(event
, ¤t
->perf_event_list
, owner_entry
)
2026 perf_event_for_each_child(event
, perf_event_enable
);
2027 mutex_unlock(¤t
->perf_event_mutex
);
2032 int perf_event_task_disable(void)
2034 struct perf_event
*event
;
2036 mutex_lock(¤t
->perf_event_mutex
);
2037 list_for_each_entry(event
, ¤t
->perf_event_list
, owner_entry
)
2038 perf_event_for_each_child(event
, perf_event_disable
);
2039 mutex_unlock(¤t
->perf_event_mutex
);
2044 #ifndef PERF_EVENT_INDEX_OFFSET
2045 # define PERF_EVENT_INDEX_OFFSET 0
2048 static int perf_event_index(struct perf_event
*event
)
2050 if (event
->state
!= PERF_EVENT_STATE_ACTIVE
)
2053 return event
->hw
.idx
+ 1 - PERF_EVENT_INDEX_OFFSET
;
2057 * Callers need to ensure there can be no nesting of this function, otherwise
2058 * the seqlock logic goes bad. We can not serialize this because the arch
2059 * code calls this from NMI context.
2061 void perf_event_update_userpage(struct perf_event
*event
)
2063 struct perf_event_mmap_page
*userpg
;
2064 struct perf_mmap_data
*data
;
2067 data
= rcu_dereference(event
->data
);
2071 userpg
= data
->user_page
;
2074 * Disable preemption so as to not let the corresponding user-space
2075 * spin too long if we get preempted.
2080 userpg
->index
= perf_event_index(event
);
2081 userpg
->offset
= atomic64_read(&event
->count
);
2082 if (event
->state
== PERF_EVENT_STATE_ACTIVE
)
2083 userpg
->offset
-= atomic64_read(&event
->hw
.prev_count
);
2085 userpg
->time_enabled
= event
->total_time_enabled
+
2086 atomic64_read(&event
->child_total_time_enabled
);
2088 userpg
->time_running
= event
->total_time_running
+
2089 atomic64_read(&event
->child_total_time_running
);
2098 static unsigned long perf_data_size(struct perf_mmap_data
*data
)
2100 return data
->nr_pages
<< (PAGE_SHIFT
+ data
->data_order
);
2103 #ifndef CONFIG_PERF_USE_VMALLOC
2106 * Back perf_mmap() with regular GFP_KERNEL-0 pages.
2109 static struct page
*
2110 perf_mmap_to_page(struct perf_mmap_data
*data
, unsigned long pgoff
)
2112 if (pgoff
> data
->nr_pages
)
2116 return virt_to_page(data
->user_page
);
2118 return virt_to_page(data
->data_pages
[pgoff
- 1]);
2121 static struct perf_mmap_data
*
2122 perf_mmap_data_alloc(struct perf_event
*event
, int nr_pages
)
2124 struct perf_mmap_data
*data
;
2128 WARN_ON(atomic_read(&event
->mmap_count
));
2130 size
= sizeof(struct perf_mmap_data
);
2131 size
+= nr_pages
* sizeof(void *);
2133 data
= kzalloc(size
, GFP_KERNEL
);
2137 data
->user_page
= (void *)get_zeroed_page(GFP_KERNEL
);
2138 if (!data
->user_page
)
2139 goto fail_user_page
;
2141 for (i
= 0; i
< nr_pages
; i
++) {
2142 data
->data_pages
[i
] = (void *)get_zeroed_page(GFP_KERNEL
);
2143 if (!data
->data_pages
[i
])
2144 goto fail_data_pages
;
2147 data
->data_order
= 0;
2148 data
->nr_pages
= nr_pages
;
2153 for (i
--; i
>= 0; i
--)
2154 free_page((unsigned long)data
->data_pages
[i
]);
2156 free_page((unsigned long)data
->user_page
);
2165 static void perf_mmap_free_page(unsigned long addr
)
2167 struct page
*page
= virt_to_page((void *)addr
);
2169 page
->mapping
= NULL
;
2173 static void perf_mmap_data_free(struct perf_mmap_data
*data
)
2177 perf_mmap_free_page((unsigned long)data
->user_page
);
2178 for (i
= 0; i
< data
->nr_pages
; i
++)
2179 perf_mmap_free_page((unsigned long)data
->data_pages
[i
]);
2186 * Back perf_mmap() with vmalloc memory.
2188 * Required for architectures that have d-cache aliasing issues.
2191 static struct page
*
2192 perf_mmap_to_page(struct perf_mmap_data
*data
, unsigned long pgoff
)
2194 if (pgoff
> (1UL << data
->data_order
))
2197 return vmalloc_to_page((void *)data
->user_page
+ pgoff
* PAGE_SIZE
);
2200 static void perf_mmap_unmark_page(void *addr
)
2202 struct page
*page
= vmalloc_to_page(addr
);
2204 page
->mapping
= NULL
;
2207 static void perf_mmap_data_free_work(struct work_struct
*work
)
2209 struct perf_mmap_data
*data
;
2213 data
= container_of(work
, struct perf_mmap_data
, work
);
2214 nr
= 1 << data
->data_order
;
2216 base
= data
->user_page
;
2217 for (i
= 0; i
< nr
+ 1; i
++)
2218 perf_mmap_unmark_page(base
+ (i
* PAGE_SIZE
));
2224 static void perf_mmap_data_free(struct perf_mmap_data
*data
)
2226 schedule_work(&data
->work
);
2229 static struct perf_mmap_data
*
2230 perf_mmap_data_alloc(struct perf_event
*event
, int nr_pages
)
2232 struct perf_mmap_data
*data
;
2236 WARN_ON(atomic_read(&event
->mmap_count
));
2238 size
= sizeof(struct perf_mmap_data
);
2239 size
+= sizeof(void *);
2241 data
= kzalloc(size
, GFP_KERNEL
);
2245 INIT_WORK(&data
->work
, perf_mmap_data_free_work
);
2247 all_buf
= vmalloc_user((nr_pages
+ 1) * PAGE_SIZE
);
2251 data
->user_page
= all_buf
;
2252 data
->data_pages
[0] = all_buf
+ PAGE_SIZE
;
2253 data
->data_order
= ilog2(nr_pages
);
2267 static int perf_mmap_fault(struct vm_area_struct
*vma
, struct vm_fault
*vmf
)
2269 struct perf_event
*event
= vma
->vm_file
->private_data
;
2270 struct perf_mmap_data
*data
;
2271 int ret
= VM_FAULT_SIGBUS
;
2273 if (vmf
->flags
& FAULT_FLAG_MKWRITE
) {
2274 if (vmf
->pgoff
== 0)
2280 data
= rcu_dereference(event
->data
);
2284 if (vmf
->pgoff
&& (vmf
->flags
& FAULT_FLAG_WRITE
))
2287 vmf
->page
= perf_mmap_to_page(data
, vmf
->pgoff
);
2291 get_page(vmf
->page
);
2292 vmf
->page
->mapping
= vma
->vm_file
->f_mapping
;
2293 vmf
->page
->index
= vmf
->pgoff
;
2303 perf_mmap_data_init(struct perf_event
*event
, struct perf_mmap_data
*data
)
2305 long max_size
= perf_data_size(data
);
2307 atomic_set(&data
->lock
, -1);
2309 if (event
->attr
.watermark
) {
2310 data
->watermark
= min_t(long, max_size
,
2311 event
->attr
.wakeup_watermark
);
2314 if (!data
->watermark
)
2315 data
->watermark
= max_t(long, PAGE_SIZE
, max_size
/ 2);
2318 rcu_assign_pointer(event
->data
, data
);
2321 static void perf_mmap_data_free_rcu(struct rcu_head
*rcu_head
)
2323 struct perf_mmap_data
*data
;
2325 data
= container_of(rcu_head
, struct perf_mmap_data
, rcu_head
);
2326 perf_mmap_data_free(data
);
2329 static void perf_mmap_data_release(struct perf_event
*event
)
2331 struct perf_mmap_data
*data
= event
->data
;
2333 WARN_ON(atomic_read(&event
->mmap_count
));
2335 rcu_assign_pointer(event
->data
, NULL
);
2336 call_rcu(&data
->rcu_head
, perf_mmap_data_free_rcu
);
2339 static void perf_mmap_open(struct vm_area_struct
*vma
)
2341 struct perf_event
*event
= vma
->vm_file
->private_data
;
2343 atomic_inc(&event
->mmap_count
);
2346 static void perf_mmap_close(struct vm_area_struct
*vma
)
2348 struct perf_event
*event
= vma
->vm_file
->private_data
;
2350 WARN_ON_ONCE(event
->ctx
->parent_ctx
);
2351 if (atomic_dec_and_mutex_lock(&event
->mmap_count
, &event
->mmap_mutex
)) {
2352 unsigned long size
= perf_data_size(event
->data
);
2353 struct user_struct
*user
= current_user();
2355 atomic_long_sub((size
>> PAGE_SHIFT
) + 1, &user
->locked_vm
);
2356 vma
->vm_mm
->locked_vm
-= event
->data
->nr_locked
;
2357 perf_mmap_data_release(event
);
2358 mutex_unlock(&event
->mmap_mutex
);
2362 static const struct vm_operations_struct perf_mmap_vmops
= {
2363 .open
= perf_mmap_open
,
2364 .close
= perf_mmap_close
,
2365 .fault
= perf_mmap_fault
,
2366 .page_mkwrite
= perf_mmap_fault
,
2369 static int perf_mmap(struct file
*file
, struct vm_area_struct
*vma
)
2371 struct perf_event
*event
= file
->private_data
;
2372 unsigned long user_locked
, user_lock_limit
;
2373 struct user_struct
*user
= current_user();
2374 unsigned long locked
, lock_limit
;
2375 struct perf_mmap_data
*data
;
2376 unsigned long vma_size
;
2377 unsigned long nr_pages
;
2378 long user_extra
, extra
;
2381 if (!(vma
->vm_flags
& VM_SHARED
))
2384 vma_size
= vma
->vm_end
- vma
->vm_start
;
2385 nr_pages
= (vma_size
/ PAGE_SIZE
) - 1;
2388 * If we have data pages ensure they're a power-of-two number, so we
2389 * can do bitmasks instead of modulo.
2391 if (nr_pages
!= 0 && !is_power_of_2(nr_pages
))
2394 if (vma_size
!= PAGE_SIZE
* (1 + nr_pages
))
2397 if (vma
->vm_pgoff
!= 0)
2400 WARN_ON_ONCE(event
->ctx
->parent_ctx
);
2401 mutex_lock(&event
->mmap_mutex
);
2402 if (event
->output
) {
2407 if (atomic_inc_not_zero(&event
->mmap_count
)) {
2408 if (nr_pages
!= event
->data
->nr_pages
)
2413 user_extra
= nr_pages
+ 1;
2414 user_lock_limit
= sysctl_perf_event_mlock
>> (PAGE_SHIFT
- 10);
2417 * Increase the limit linearly with more CPUs:
2419 user_lock_limit
*= num_online_cpus();
2421 user_locked
= atomic_long_read(&user
->locked_vm
) + user_extra
;
2424 if (user_locked
> user_lock_limit
)
2425 extra
= user_locked
- user_lock_limit
;
2427 lock_limit
= current
->signal
->rlim
[RLIMIT_MEMLOCK
].rlim_cur
;
2428 lock_limit
>>= PAGE_SHIFT
;
2429 locked
= vma
->vm_mm
->locked_vm
+ extra
;
2431 if ((locked
> lock_limit
) && perf_paranoid_tracepoint_raw() &&
2432 !capable(CAP_IPC_LOCK
)) {
2437 WARN_ON(event
->data
);
2439 data
= perf_mmap_data_alloc(event
, nr_pages
);
2445 perf_mmap_data_init(event
, data
);
2447 atomic_set(&event
->mmap_count
, 1);
2448 atomic_long_add(user_extra
, &user
->locked_vm
);
2449 vma
->vm_mm
->locked_vm
+= extra
;
2450 event
->data
->nr_locked
= extra
;
2451 if (vma
->vm_flags
& VM_WRITE
)
2452 event
->data
->writable
= 1;
2455 mutex_unlock(&event
->mmap_mutex
);
2457 vma
->vm_flags
|= VM_RESERVED
;
2458 vma
->vm_ops
= &perf_mmap_vmops
;
2463 static int perf_fasync(int fd
, struct file
*filp
, int on
)
2465 struct inode
*inode
= filp
->f_path
.dentry
->d_inode
;
2466 struct perf_event
*event
= filp
->private_data
;
2469 mutex_lock(&inode
->i_mutex
);
2470 retval
= fasync_helper(fd
, filp
, on
, &event
->fasync
);
2471 mutex_unlock(&inode
->i_mutex
);
2479 static const struct file_operations perf_fops
= {
2480 .release
= perf_release
,
2483 .unlocked_ioctl
= perf_ioctl
,
2484 .compat_ioctl
= perf_ioctl
,
2486 .fasync
= perf_fasync
,
2492 * If there's data, ensure we set the poll() state and publish everything
2493 * to user-space before waking everybody up.
2496 void perf_event_wakeup(struct perf_event
*event
)
2498 wake_up_all(&event
->waitq
);
2500 if (event
->pending_kill
) {
2501 kill_fasync(&event
->fasync
, SIGIO
, event
->pending_kill
);
2502 event
->pending_kill
= 0;
2509 * Handle the case where we need to wakeup up from NMI (or rq->lock) context.
2511 * The NMI bit means we cannot possibly take locks. Therefore, maintain a
2512 * single linked list and use cmpxchg() to add entries lockless.
2515 static void perf_pending_event(struct perf_pending_entry
*entry
)
2517 struct perf_event
*event
= container_of(entry
,
2518 struct perf_event
, pending
);
2520 if (event
->pending_disable
) {
2521 event
->pending_disable
= 0;
2522 __perf_event_disable(event
);
2525 if (event
->pending_wakeup
) {
2526 event
->pending_wakeup
= 0;
2527 perf_event_wakeup(event
);
2531 #define PENDING_TAIL ((struct perf_pending_entry *)-1UL)
2533 static DEFINE_PER_CPU(struct perf_pending_entry
*, perf_pending_head
) = {
2537 static void perf_pending_queue(struct perf_pending_entry
*entry
,
2538 void (*func
)(struct perf_pending_entry
*))
2540 struct perf_pending_entry
**head
;
2542 if (cmpxchg(&entry
->next
, NULL
, PENDING_TAIL
) != NULL
)
2547 head
= &get_cpu_var(perf_pending_head
);
2550 entry
->next
= *head
;
2551 } while (cmpxchg(head
, entry
->next
, entry
) != entry
->next
);
2553 set_perf_event_pending();
2555 put_cpu_var(perf_pending_head
);
2558 static int __perf_pending_run(void)
2560 struct perf_pending_entry
*list
;
2563 list
= xchg(&__get_cpu_var(perf_pending_head
), PENDING_TAIL
);
2564 while (list
!= PENDING_TAIL
) {
2565 void (*func
)(struct perf_pending_entry
*);
2566 struct perf_pending_entry
*entry
= list
;
2573 * Ensure we observe the unqueue before we issue the wakeup,
2574 * so that we won't be waiting forever.
2575 * -- see perf_not_pending().
2586 static inline int perf_not_pending(struct perf_event
*event
)
2589 * If we flush on whatever cpu we run, there is a chance we don't
2593 __perf_pending_run();
2597 * Ensure we see the proper queue state before going to sleep
2598 * so that we do not miss the wakeup. -- see perf_pending_handle()
2601 return event
->pending
.next
== NULL
;
2604 static void perf_pending_sync(struct perf_event
*event
)
2606 wait_event(event
->waitq
, perf_not_pending(event
));
2609 void perf_event_do_pending(void)
2611 __perf_pending_run();
2615 * Callchain support -- arch specific
2618 __weak
struct perf_callchain_entry
*perf_callchain(struct pt_regs
*regs
)
2626 static bool perf_output_space(struct perf_mmap_data
*data
, unsigned long tail
,
2627 unsigned long offset
, unsigned long head
)
2631 if (!data
->writable
)
2634 mask
= perf_data_size(data
) - 1;
2636 offset
= (offset
- tail
) & mask
;
2637 head
= (head
- tail
) & mask
;
2639 if ((int)(head
- offset
) < 0)
2645 static void perf_output_wakeup(struct perf_output_handle
*handle
)
2647 atomic_set(&handle
->data
->poll
, POLL_IN
);
2650 handle
->event
->pending_wakeup
= 1;
2651 perf_pending_queue(&handle
->event
->pending
,
2652 perf_pending_event
);
2654 perf_event_wakeup(handle
->event
);
2658 * Curious locking construct.
2660 * We need to ensure a later event_id doesn't publish a head when a former
2661 * event_id isn't done writing. However since we need to deal with NMIs we
2662 * cannot fully serialize things.
2664 * What we do is serialize between CPUs so we only have to deal with NMI
2665 * nesting on a single CPU.
2667 * We only publish the head (and generate a wakeup) when the outer-most
2668 * event_id completes.
2670 static void perf_output_lock(struct perf_output_handle
*handle
)
2672 struct perf_mmap_data
*data
= handle
->data
;
2677 local_irq_save(handle
->flags
);
2678 cpu
= smp_processor_id();
2680 if (in_nmi() && atomic_read(&data
->lock
) == cpu
)
2683 while (atomic_cmpxchg(&data
->lock
, -1, cpu
) != -1)
2689 static void perf_output_unlock(struct perf_output_handle
*handle
)
2691 struct perf_mmap_data
*data
= handle
->data
;
2695 data
->done_head
= data
->head
;
2697 if (!handle
->locked
)
2702 * The xchg implies a full barrier that ensures all writes are done
2703 * before we publish the new head, matched by a rmb() in userspace when
2704 * reading this position.
2706 while ((head
= atomic_long_xchg(&data
->done_head
, 0)))
2707 data
->user_page
->data_head
= head
;
2710 * NMI can happen here, which means we can miss a done_head update.
2713 cpu
= atomic_xchg(&data
->lock
, -1);
2714 WARN_ON_ONCE(cpu
!= smp_processor_id());
2717 * Therefore we have to validate we did not indeed do so.
2719 if (unlikely(atomic_long_read(&data
->done_head
))) {
2721 * Since we had it locked, we can lock it again.
2723 while (atomic_cmpxchg(&data
->lock
, -1, cpu
) != -1)
2729 if (atomic_xchg(&data
->wakeup
, 0))
2730 perf_output_wakeup(handle
);
2732 local_irq_restore(handle
->flags
);
2735 void perf_output_copy(struct perf_output_handle
*handle
,
2736 const void *buf
, unsigned int len
)
2738 unsigned int pages_mask
;
2739 unsigned long offset
;
2743 offset
= handle
->offset
;
2744 pages_mask
= handle
->data
->nr_pages
- 1;
2745 pages
= handle
->data
->data_pages
;
2748 unsigned long page_offset
;
2749 unsigned long page_size
;
2752 nr
= (offset
>> PAGE_SHIFT
) & pages_mask
;
2753 page_size
= 1UL << (handle
->data
->data_order
+ PAGE_SHIFT
);
2754 page_offset
= offset
& (page_size
- 1);
2755 size
= min_t(unsigned int, page_size
- page_offset
, len
);
2757 memcpy(pages
[nr
] + page_offset
, buf
, size
);
2764 handle
->offset
= offset
;
2767 * Check we didn't copy past our reservation window, taking the
2768 * possible unsigned int wrap into account.
2770 WARN_ON_ONCE(((long)(handle
->head
- handle
->offset
)) < 0);
2773 int perf_output_begin(struct perf_output_handle
*handle
,
2774 struct perf_event
*event
, unsigned int size
,
2775 int nmi
, int sample
)
2777 struct perf_event
*output_event
;
2778 struct perf_mmap_data
*data
;
2779 unsigned long tail
, offset
, head
;
2782 struct perf_event_header header
;
2789 * For inherited events we send all the output towards the parent.
2792 event
= event
->parent
;
2794 output_event
= rcu_dereference(event
->output
);
2796 event
= output_event
;
2798 data
= rcu_dereference(event
->data
);
2802 handle
->data
= data
;
2803 handle
->event
= event
;
2805 handle
->sample
= sample
;
2807 if (!data
->nr_pages
)
2810 have_lost
= atomic_read(&data
->lost
);
2812 size
+= sizeof(lost_event
);
2814 perf_output_lock(handle
);
2818 * Userspace could choose to issue a mb() before updating the
2819 * tail pointer. So that all reads will be completed before the
2822 tail
= ACCESS_ONCE(data
->user_page
->data_tail
);
2824 offset
= head
= atomic_long_read(&data
->head
);
2826 if (unlikely(!perf_output_space(data
, tail
, offset
, head
)))
2828 } while (atomic_long_cmpxchg(&data
->head
, offset
, head
) != offset
);
2830 handle
->offset
= offset
;
2831 handle
->head
= head
;
2833 if (head
- tail
> data
->watermark
)
2834 atomic_set(&data
->wakeup
, 1);
2837 lost_event
.header
.type
= PERF_RECORD_LOST
;
2838 lost_event
.header
.misc
= 0;
2839 lost_event
.header
.size
= sizeof(lost_event
);
2840 lost_event
.id
= event
->id
;
2841 lost_event
.lost
= atomic_xchg(&data
->lost
, 0);
2843 perf_output_put(handle
, lost_event
);
2849 atomic_inc(&data
->lost
);
2850 perf_output_unlock(handle
);
2857 void perf_output_end(struct perf_output_handle
*handle
)
2859 struct perf_event
*event
= handle
->event
;
2860 struct perf_mmap_data
*data
= handle
->data
;
2862 int wakeup_events
= event
->attr
.wakeup_events
;
2864 if (handle
->sample
&& wakeup_events
) {
2865 int events
= atomic_inc_return(&data
->events
);
2866 if (events
>= wakeup_events
) {
2867 atomic_sub(wakeup_events
, &data
->events
);
2868 atomic_set(&data
->wakeup
, 1);
2872 perf_output_unlock(handle
);
2876 static u32
perf_event_pid(struct perf_event
*event
, struct task_struct
*p
)
2879 * only top level events have the pid namespace they were created in
2882 event
= event
->parent
;
2884 return task_tgid_nr_ns(p
, event
->ns
);
2887 static u32
perf_event_tid(struct perf_event
*event
, struct task_struct
*p
)
2890 * only top level events have the pid namespace they were created in
2893 event
= event
->parent
;
2895 return task_pid_nr_ns(p
, event
->ns
);
2898 static void perf_output_read_one(struct perf_output_handle
*handle
,
2899 struct perf_event
*event
)
2901 u64 read_format
= event
->attr
.read_format
;
2905 values
[n
++] = atomic64_read(&event
->count
);
2906 if (read_format
& PERF_FORMAT_TOTAL_TIME_ENABLED
) {
2907 values
[n
++] = event
->total_time_enabled
+
2908 atomic64_read(&event
->child_total_time_enabled
);
2910 if (read_format
& PERF_FORMAT_TOTAL_TIME_RUNNING
) {
2911 values
[n
++] = event
->total_time_running
+
2912 atomic64_read(&event
->child_total_time_running
);
2914 if (read_format
& PERF_FORMAT_ID
)
2915 values
[n
++] = primary_event_id(event
);
2917 perf_output_copy(handle
, values
, n
* sizeof(u64
));
2921 * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
2923 static void perf_output_read_group(struct perf_output_handle
*handle
,
2924 struct perf_event
*event
)
2926 struct perf_event
*leader
= event
->group_leader
, *sub
;
2927 u64 read_format
= event
->attr
.read_format
;
2931 values
[n
++] = 1 + leader
->nr_siblings
;
2933 if (read_format
& PERF_FORMAT_TOTAL_TIME_ENABLED
)
2934 values
[n
++] = leader
->total_time_enabled
;
2936 if (read_format
& PERF_FORMAT_TOTAL_TIME_RUNNING
)
2937 values
[n
++] = leader
->total_time_running
;
2939 if (leader
!= event
)
2940 leader
->pmu
->read(leader
);
2942 values
[n
++] = atomic64_read(&leader
->count
);
2943 if (read_format
& PERF_FORMAT_ID
)
2944 values
[n
++] = primary_event_id(leader
);
2946 perf_output_copy(handle
, values
, n
* sizeof(u64
));
2948 list_for_each_entry(sub
, &leader
->sibling_list
, group_entry
) {
2952 sub
->pmu
->read(sub
);
2954 values
[n
++] = atomic64_read(&sub
->count
);
2955 if (read_format
& PERF_FORMAT_ID
)
2956 values
[n
++] = primary_event_id(sub
);
2958 perf_output_copy(handle
, values
, n
* sizeof(u64
));
2962 static void perf_output_read(struct perf_output_handle
*handle
,
2963 struct perf_event
*event
)
2965 if (event
->attr
.read_format
& PERF_FORMAT_GROUP
)
2966 perf_output_read_group(handle
, event
);
2968 perf_output_read_one(handle
, event
);
2971 void perf_output_sample(struct perf_output_handle
*handle
,
2972 struct perf_event_header
*header
,
2973 struct perf_sample_data
*data
,
2974 struct perf_event
*event
)
2976 u64 sample_type
= data
->type
;
2978 perf_output_put(handle
, *header
);
2980 if (sample_type
& PERF_SAMPLE_IP
)
2981 perf_output_put(handle
, data
->ip
);
2983 if (sample_type
& PERF_SAMPLE_TID
)
2984 perf_output_put(handle
, data
->tid_entry
);
2986 if (sample_type
& PERF_SAMPLE_TIME
)
2987 perf_output_put(handle
, data
->time
);
2989 if (sample_type
& PERF_SAMPLE_ADDR
)
2990 perf_output_put(handle
, data
->addr
);
2992 if (sample_type
& PERF_SAMPLE_ID
)
2993 perf_output_put(handle
, data
->id
);
2995 if (sample_type
& PERF_SAMPLE_STREAM_ID
)
2996 perf_output_put(handle
, data
->stream_id
);
2998 if (sample_type
& PERF_SAMPLE_CPU
)
2999 perf_output_put(handle
, data
->cpu_entry
);
3001 if (sample_type
& PERF_SAMPLE_PERIOD
)
3002 perf_output_put(handle
, data
->period
);
3004 if (sample_type
& PERF_SAMPLE_READ
)
3005 perf_output_read(handle
, event
);
3007 if (sample_type
& PERF_SAMPLE_CALLCHAIN
) {
3008 if (data
->callchain
) {
3011 if (data
->callchain
)
3012 size
+= data
->callchain
->nr
;
3014 size
*= sizeof(u64
);
3016 perf_output_copy(handle
, data
->callchain
, size
);
3019 perf_output_put(handle
, nr
);
3023 if (sample_type
& PERF_SAMPLE_RAW
) {
3025 perf_output_put(handle
, data
->raw
->size
);
3026 perf_output_copy(handle
, data
->raw
->data
,
3033 .size
= sizeof(u32
),
3036 perf_output_put(handle
, raw
);
3041 void perf_prepare_sample(struct perf_event_header
*header
,
3042 struct perf_sample_data
*data
,
3043 struct perf_event
*event
,
3044 struct pt_regs
*regs
)
3046 u64 sample_type
= event
->attr
.sample_type
;
3048 data
->type
= sample_type
;
3050 header
->type
= PERF_RECORD_SAMPLE
;
3051 header
->size
= sizeof(*header
);
3054 header
->misc
|= perf_misc_flags(regs
);
3056 if (sample_type
& PERF_SAMPLE_IP
) {
3057 data
->ip
= perf_instruction_pointer(regs
);
3059 header
->size
+= sizeof(data
->ip
);
3062 if (sample_type
& PERF_SAMPLE_TID
) {
3063 /* namespace issues */
3064 data
->tid_entry
.pid
= perf_event_pid(event
, current
);
3065 data
->tid_entry
.tid
= perf_event_tid(event
, current
);
3067 header
->size
+= sizeof(data
->tid_entry
);
3070 if (sample_type
& PERF_SAMPLE_TIME
) {
3071 data
->time
= perf_clock();
3073 header
->size
+= sizeof(data
->time
);
3076 if (sample_type
& PERF_SAMPLE_ADDR
)
3077 header
->size
+= sizeof(data
->addr
);
3079 if (sample_type
& PERF_SAMPLE_ID
) {
3080 data
->id
= primary_event_id(event
);
3082 header
->size
+= sizeof(data
->id
);
3085 if (sample_type
& PERF_SAMPLE_STREAM_ID
) {
3086 data
->stream_id
= event
->id
;
3088 header
->size
+= sizeof(data
->stream_id
);
3091 if (sample_type
& PERF_SAMPLE_CPU
) {
3092 data
->cpu_entry
.cpu
= raw_smp_processor_id();
3093 data
->cpu_entry
.reserved
= 0;
3095 header
->size
+= sizeof(data
->cpu_entry
);
3098 if (sample_type
& PERF_SAMPLE_PERIOD
)
3099 header
->size
+= sizeof(data
->period
);
3101 if (sample_type
& PERF_SAMPLE_READ
)
3102 header
->size
+= perf_event_read_size(event
);
3104 if (sample_type
& PERF_SAMPLE_CALLCHAIN
) {
3107 data
->callchain
= perf_callchain(regs
);
3109 if (data
->callchain
)
3110 size
+= data
->callchain
->nr
;
3112 header
->size
+= size
* sizeof(u64
);
3115 if (sample_type
& PERF_SAMPLE_RAW
) {
3116 int size
= sizeof(u32
);
3119 size
+= data
->raw
->size
;
3121 size
+= sizeof(u32
);
3123 WARN_ON_ONCE(size
& (sizeof(u64
)-1));
3124 header
->size
+= size
;
3128 static void perf_event_output(struct perf_event
*event
, int nmi
,
3129 struct perf_sample_data
*data
,
3130 struct pt_regs
*regs
)
3132 struct perf_output_handle handle
;
3133 struct perf_event_header header
;
3135 perf_prepare_sample(&header
, data
, event
, regs
);
3137 if (perf_output_begin(&handle
, event
, header
.size
, nmi
, 1))
3140 perf_output_sample(&handle
, &header
, data
, event
);
3142 perf_output_end(&handle
);
3149 struct perf_read_event
{
3150 struct perf_event_header header
;
3157 perf_event_read_event(struct perf_event
*event
,
3158 struct task_struct
*task
)
3160 struct perf_output_handle handle
;
3161 struct perf_read_event read_event
= {
3163 .type
= PERF_RECORD_READ
,
3165 .size
= sizeof(read_event
) + perf_event_read_size(event
),
3167 .pid
= perf_event_pid(event
, task
),
3168 .tid
= perf_event_tid(event
, task
),
3172 ret
= perf_output_begin(&handle
, event
, read_event
.header
.size
, 0, 0);
3176 perf_output_put(&handle
, read_event
);
3177 perf_output_read(&handle
, event
);
3179 perf_output_end(&handle
);
3183 * task tracking -- fork/exit
3185 * enabled by: attr.comm | attr.mmap | attr.task
3188 struct perf_task_event
{
3189 struct task_struct
*task
;
3190 struct perf_event_context
*task_ctx
;
3193 struct perf_event_header header
;
3203 static void perf_event_task_output(struct perf_event
*event
,
3204 struct perf_task_event
*task_event
)
3206 struct perf_output_handle handle
;
3208 struct task_struct
*task
= task_event
->task
;
3211 size
= task_event
->event_id
.header
.size
;
3212 ret
= perf_output_begin(&handle
, event
, size
, 0, 0);
3217 task_event
->event_id
.pid
= perf_event_pid(event
, task
);
3218 task_event
->event_id
.ppid
= perf_event_pid(event
, current
);
3220 task_event
->event_id
.tid
= perf_event_tid(event
, task
);
3221 task_event
->event_id
.ptid
= perf_event_tid(event
, current
);
3223 task_event
->event_id
.time
= perf_clock();
3225 perf_output_put(&handle
, task_event
->event_id
);
3227 perf_output_end(&handle
);
3230 static int perf_event_task_match(struct perf_event
*event
)
3232 if (event
->state
!= PERF_EVENT_STATE_ACTIVE
)
3235 if (event
->cpu
!= -1 && event
->cpu
!= smp_processor_id())
3238 if (event
->attr
.comm
|| event
->attr
.mmap
|| event
->attr
.task
)
3244 static void perf_event_task_ctx(struct perf_event_context
*ctx
,
3245 struct perf_task_event
*task_event
)
3247 struct perf_event
*event
;
3249 if (system_state
!= SYSTEM_RUNNING
|| list_empty(&ctx
->event_list
))
3253 list_for_each_entry_rcu(event
, &ctx
->event_list
, event_entry
) {
3254 if (perf_event_task_match(event
))
3255 perf_event_task_output(event
, task_event
);
3260 static void perf_event_task_event(struct perf_task_event
*task_event
)
3262 struct perf_cpu_context
*cpuctx
;
3263 struct perf_event_context
*ctx
= task_event
->task_ctx
;
3265 cpuctx
= &get_cpu_var(perf_cpu_context
);
3266 perf_event_task_ctx(&cpuctx
->ctx
, task_event
);
3270 ctx
= rcu_dereference(task_event
->task
->perf_event_ctxp
);
3272 perf_event_task_ctx(ctx
, task_event
);
3273 put_cpu_var(perf_cpu_context
);
3277 static void perf_event_task(struct task_struct
*task
,
3278 struct perf_event_context
*task_ctx
,
3281 struct perf_task_event task_event
;
3283 if (!atomic_read(&nr_comm_events
) &&
3284 !atomic_read(&nr_mmap_events
) &&
3285 !atomic_read(&nr_task_events
))
3288 task_event
= (struct perf_task_event
){
3290 .task_ctx
= task_ctx
,
3293 .type
= new ? PERF_RECORD_FORK
: PERF_RECORD_EXIT
,
3295 .size
= sizeof(task_event
.event_id
),
3304 perf_event_task_event(&task_event
);
3307 void perf_event_fork(struct task_struct
*task
)
3309 perf_event_task(task
, NULL
, 1);
3316 struct perf_comm_event
{
3317 struct task_struct
*task
;
3322 struct perf_event_header header
;
3329 static void perf_event_comm_output(struct perf_event
*event
,
3330 struct perf_comm_event
*comm_event
)
3332 struct perf_output_handle handle
;
3333 int size
= comm_event
->event_id
.header
.size
;
3334 int ret
= perf_output_begin(&handle
, event
, size
, 0, 0);
3339 comm_event
->event_id
.pid
= perf_event_pid(event
, comm_event
->task
);
3340 comm_event
->event_id
.tid
= perf_event_tid(event
, comm_event
->task
);
3342 perf_output_put(&handle
, comm_event
->event_id
);
3343 perf_output_copy(&handle
, comm_event
->comm
,
3344 comm_event
->comm_size
);
3345 perf_output_end(&handle
);
3348 static int perf_event_comm_match(struct perf_event
*event
)
3350 if (event
->state
!= PERF_EVENT_STATE_ACTIVE
)
3353 if (event
->cpu
!= -1 && event
->cpu
!= smp_processor_id())
3356 if (event
->attr
.comm
)
3362 static void perf_event_comm_ctx(struct perf_event_context
*ctx
,
3363 struct perf_comm_event
*comm_event
)
3365 struct perf_event
*event
;
3367 if (system_state
!= SYSTEM_RUNNING
|| list_empty(&ctx
->event_list
))
3371 list_for_each_entry_rcu(event
, &ctx
->event_list
, event_entry
) {
3372 if (perf_event_comm_match(event
))
3373 perf_event_comm_output(event
, comm_event
);
3378 static void perf_event_comm_event(struct perf_comm_event
*comm_event
)
3380 struct perf_cpu_context
*cpuctx
;
3381 struct perf_event_context
*ctx
;
3383 char comm
[TASK_COMM_LEN
];
3385 memset(comm
, 0, sizeof(comm
));
3386 strncpy(comm
, comm_event
->task
->comm
, sizeof(comm
));
3387 size
= ALIGN(strlen(comm
)+1, sizeof(u64
));
3389 comm_event
->comm
= comm
;
3390 comm_event
->comm_size
= size
;
3392 comm_event
->event_id
.header
.size
= sizeof(comm_event
->event_id
) + size
;
3394 cpuctx
= &get_cpu_var(perf_cpu_context
);
3395 perf_event_comm_ctx(&cpuctx
->ctx
, comm_event
);
3399 * doesn't really matter which of the child contexts the
3400 * events ends up in.
3402 ctx
= rcu_dereference(current
->perf_event_ctxp
);
3404 perf_event_comm_ctx(ctx
, comm_event
);
3405 put_cpu_var(perf_cpu_context
);
3409 void perf_event_comm(struct task_struct
*task
)
3411 struct perf_comm_event comm_event
;
3413 if (task
->perf_event_ctxp
)
3414 perf_event_enable_on_exec(task
);
3416 if (!atomic_read(&nr_comm_events
))
3419 comm_event
= (struct perf_comm_event
){
3425 .type
= PERF_RECORD_COMM
,
3434 perf_event_comm_event(&comm_event
);
3441 struct perf_mmap_event
{
3442 struct vm_area_struct
*vma
;
3444 const char *file_name
;
3448 struct perf_event_header header
;
3458 static void perf_event_mmap_output(struct perf_event
*event
,
3459 struct perf_mmap_event
*mmap_event
)
3461 struct perf_output_handle handle
;
3462 int size
= mmap_event
->event_id
.header
.size
;
3463 int ret
= perf_output_begin(&handle
, event
, size
, 0, 0);
3468 mmap_event
->event_id
.pid
= perf_event_pid(event
, current
);
3469 mmap_event
->event_id
.tid
= perf_event_tid(event
, current
);
3471 perf_output_put(&handle
, mmap_event
->event_id
);
3472 perf_output_copy(&handle
, mmap_event
->file_name
,
3473 mmap_event
->file_size
);
3474 perf_output_end(&handle
);
3477 static int perf_event_mmap_match(struct perf_event
*event
,
3478 struct perf_mmap_event
*mmap_event
)
3480 if (event
->state
!= PERF_EVENT_STATE_ACTIVE
)
3483 if (event
->cpu
!= -1 && event
->cpu
!= smp_processor_id())
3486 if (event
->attr
.mmap
)
3492 static void perf_event_mmap_ctx(struct perf_event_context
*ctx
,
3493 struct perf_mmap_event
*mmap_event
)
3495 struct perf_event
*event
;
3497 if (system_state
!= SYSTEM_RUNNING
|| list_empty(&ctx
->event_list
))
3501 list_for_each_entry_rcu(event
, &ctx
->event_list
, event_entry
) {
3502 if (perf_event_mmap_match(event
, mmap_event
))
3503 perf_event_mmap_output(event
, mmap_event
);
3508 static void perf_event_mmap_event(struct perf_mmap_event
*mmap_event
)
3510 struct perf_cpu_context
*cpuctx
;
3511 struct perf_event_context
*ctx
;
3512 struct vm_area_struct
*vma
= mmap_event
->vma
;
3513 struct file
*file
= vma
->vm_file
;
3519 memset(tmp
, 0, sizeof(tmp
));
3523 * d_path works from the end of the buffer backwards, so we
3524 * need to add enough zero bytes after the string to handle
3525 * the 64bit alignment we do later.
3527 buf
= kzalloc(PATH_MAX
+ sizeof(u64
), GFP_KERNEL
);
3529 name
= strncpy(tmp
, "//enomem", sizeof(tmp
));
3532 name
= d_path(&file
->f_path
, buf
, PATH_MAX
);
3534 name
= strncpy(tmp
, "//toolong", sizeof(tmp
));
3538 if (arch_vma_name(mmap_event
->vma
)) {
3539 name
= strncpy(tmp
, arch_vma_name(mmap_event
->vma
),
3545 name
= strncpy(tmp
, "[vdso]", sizeof(tmp
));
3549 name
= strncpy(tmp
, "//anon", sizeof(tmp
));
3554 size
= ALIGN(strlen(name
)+1, sizeof(u64
));
3556 mmap_event
->file_name
= name
;
3557 mmap_event
->file_size
= size
;
3559 mmap_event
->event_id
.header
.size
= sizeof(mmap_event
->event_id
) + size
;
3561 cpuctx
= &get_cpu_var(perf_cpu_context
);
3562 perf_event_mmap_ctx(&cpuctx
->ctx
, mmap_event
);
3566 * doesn't really matter which of the child contexts the
3567 * events ends up in.
3569 ctx
= rcu_dereference(current
->perf_event_ctxp
);
3571 perf_event_mmap_ctx(ctx
, mmap_event
);
3572 put_cpu_var(perf_cpu_context
);
3578 void __perf_event_mmap(struct vm_area_struct
*vma
)
3580 struct perf_mmap_event mmap_event
;
3582 if (!atomic_read(&nr_mmap_events
))
3585 mmap_event
= (struct perf_mmap_event
){
3591 .type
= PERF_RECORD_MMAP
,
3597 .start
= vma
->vm_start
,
3598 .len
= vma
->vm_end
- vma
->vm_start
,
3599 .pgoff
= vma
->vm_pgoff
,
3603 perf_event_mmap_event(&mmap_event
);
3607 * IRQ throttle logging
3610 static void perf_log_throttle(struct perf_event
*event
, int enable
)
3612 struct perf_output_handle handle
;
3616 struct perf_event_header header
;
3620 } throttle_event
= {
3622 .type
= PERF_RECORD_THROTTLE
,
3624 .size
= sizeof(throttle_event
),
3626 .time
= perf_clock(),
3627 .id
= primary_event_id(event
),
3628 .stream_id
= event
->id
,
3632 throttle_event
.header
.type
= PERF_RECORD_UNTHROTTLE
;
3634 ret
= perf_output_begin(&handle
, event
, sizeof(throttle_event
), 1, 0);
3638 perf_output_put(&handle
, throttle_event
);
3639 perf_output_end(&handle
);
3643 * Generic event overflow handling, sampling.
3646 static int __perf_event_overflow(struct perf_event
*event
, int nmi
,
3647 int throttle
, struct perf_sample_data
*data
,
3648 struct pt_regs
*regs
)
3650 int events
= atomic_read(&event
->event_limit
);
3651 struct hw_perf_event
*hwc
= &event
->hw
;
3654 throttle
= (throttle
&& event
->pmu
->unthrottle
!= NULL
);
3659 if (hwc
->interrupts
!= MAX_INTERRUPTS
) {
3661 if (HZ
* hwc
->interrupts
>
3662 (u64
)sysctl_perf_event_sample_rate
) {
3663 hwc
->interrupts
= MAX_INTERRUPTS
;
3664 perf_log_throttle(event
, 0);
3669 * Keep re-disabling events even though on the previous
3670 * pass we disabled it - just in case we raced with a
3671 * sched-in and the event got enabled again:
3677 if (event
->attr
.freq
) {
3678 u64 now
= perf_clock();
3679 s64 delta
= now
- hwc
->freq_stamp
;
3681 hwc
->freq_stamp
= now
;
3683 if (delta
> 0 && delta
< TICK_NSEC
)
3684 perf_adjust_period(event
, NSEC_PER_SEC
/ (int)delta
);
3688 * XXX event_limit might not quite work as expected on inherited
3692 event
->pending_kill
= POLL_IN
;
3693 if (events
&& atomic_dec_and_test(&event
->event_limit
)) {
3695 event
->pending_kill
= POLL_HUP
;
3697 event
->pending_disable
= 1;
3698 perf_pending_queue(&event
->pending
,
3699 perf_pending_event
);
3701 perf_event_disable(event
);
3704 perf_event_output(event
, nmi
, data
, regs
);
3708 int perf_event_overflow(struct perf_event
*event
, int nmi
,
3709 struct perf_sample_data
*data
,
3710 struct pt_regs
*regs
)
3712 return __perf_event_overflow(event
, nmi
, 1, data
, regs
);
3716 * Generic software event infrastructure
3720 * We directly increment event->count and keep a second value in
3721 * event->hw.period_left to count intervals. This period event
3722 * is kept in the range [-sample_period, 0] so that we can use the
3726 static u64
perf_swevent_set_period(struct perf_event
*event
)
3728 struct hw_perf_event
*hwc
= &event
->hw
;
3729 u64 period
= hwc
->last_period
;
3733 hwc
->last_period
= hwc
->sample_period
;
3736 old
= val
= atomic64_read(&hwc
->period_left
);
3740 nr
= div64_u64(period
+ val
, period
);
3741 offset
= nr
* period
;
3743 if (atomic64_cmpxchg(&hwc
->period_left
, old
, val
) != old
)
3749 static void perf_swevent_overflow(struct perf_event
*event
,
3750 int nmi
, struct perf_sample_data
*data
,
3751 struct pt_regs
*regs
)
3753 struct hw_perf_event
*hwc
= &event
->hw
;
3757 data
->period
= event
->hw
.last_period
;
3758 overflow
= perf_swevent_set_period(event
);
3760 if (hwc
->interrupts
== MAX_INTERRUPTS
)
3763 for (; overflow
; overflow
--) {
3764 if (__perf_event_overflow(event
, nmi
, throttle
,
3767 * We inhibit the overflow from happening when
3768 * hwc->interrupts == MAX_INTERRUPTS.
3776 static void perf_swevent_unthrottle(struct perf_event
*event
)
3779 * Nothing to do, we already reset hwc->interrupts.
3783 static void perf_swevent_add(struct perf_event
*event
, u64 nr
,
3784 int nmi
, struct perf_sample_data
*data
,
3785 struct pt_regs
*regs
)
3787 struct hw_perf_event
*hwc
= &event
->hw
;
3789 atomic64_add(nr
, &event
->count
);
3791 if (!hwc
->sample_period
)
3797 if (!atomic64_add_negative(nr
, &hwc
->period_left
))
3798 perf_swevent_overflow(event
, nmi
, data
, regs
);
3801 static int perf_swevent_is_counting(struct perf_event
*event
)
3804 * The event is active, we're good!
3806 if (event
->state
== PERF_EVENT_STATE_ACTIVE
)
3810 * The event is off/error, not counting.
3812 if (event
->state
!= PERF_EVENT_STATE_INACTIVE
)
3816 * The event is inactive, if the context is active
3817 * we're part of a group that didn't make it on the 'pmu',
3820 if (event
->ctx
->is_active
)
3824 * We're inactive and the context is too, this means the
3825 * task is scheduled out, we're counting events that happen
3826 * to us, like migration events.
3831 static int perf_swevent_match(struct perf_event
*event
,
3832 enum perf_type_id type
,
3833 u32 event_id
, struct pt_regs
*regs
)
3835 if (event
->cpu
!= -1 && event
->cpu
!= smp_processor_id())
3838 if (!perf_swevent_is_counting(event
))
3841 if (event
->attr
.type
!= type
)
3843 if (event
->attr
.config
!= event_id
)
3847 if (event
->attr
.exclude_user
&& user_mode(regs
))
3850 if (event
->attr
.exclude_kernel
&& !user_mode(regs
))
3857 static void perf_swevent_ctx_event(struct perf_event_context
*ctx
,
3858 enum perf_type_id type
,
3859 u32 event_id
, u64 nr
, int nmi
,
3860 struct perf_sample_data
*data
,
3861 struct pt_regs
*regs
)
3863 struct perf_event
*event
;
3865 if (system_state
!= SYSTEM_RUNNING
|| list_empty(&ctx
->event_list
))
3869 list_for_each_entry_rcu(event
, &ctx
->event_list
, event_entry
) {
3870 if (perf_swevent_match(event
, type
, event_id
, regs
))
3871 perf_swevent_add(event
, nr
, nmi
, data
, regs
);
3876 static int *perf_swevent_recursion_context(struct perf_cpu_context
*cpuctx
)
3879 return &cpuctx
->recursion
[3];
3882 return &cpuctx
->recursion
[2];
3885 return &cpuctx
->recursion
[1];
3887 return &cpuctx
->recursion
[0];
3890 static void do_perf_sw_event(enum perf_type_id type
, u32 event_id
,
3892 struct perf_sample_data
*data
,
3893 struct pt_regs
*regs
)
3895 struct perf_cpu_context
*cpuctx
= &get_cpu_var(perf_cpu_context
);
3896 int *recursion
= perf_swevent_recursion_context(cpuctx
);
3897 struct perf_event_context
*ctx
;
3905 perf_swevent_ctx_event(&cpuctx
->ctx
, type
, event_id
,
3906 nr
, nmi
, data
, regs
);
3909 * doesn't really matter which of the child contexts the
3910 * events ends up in.
3912 ctx
= rcu_dereference(current
->perf_event_ctxp
);
3914 perf_swevent_ctx_event(ctx
, type
, event_id
, nr
, nmi
, data
, regs
);
3921 put_cpu_var(perf_cpu_context
);
3924 void __perf_sw_event(u32 event_id
, u64 nr
, int nmi
,
3925 struct pt_regs
*regs
, u64 addr
)
3927 struct perf_sample_data data
= {
3931 do_perf_sw_event(PERF_TYPE_SOFTWARE
, event_id
, nr
, nmi
,
3935 static void perf_swevent_read(struct perf_event
*event
)
3939 static int perf_swevent_enable(struct perf_event
*event
)
3941 struct hw_perf_event
*hwc
= &event
->hw
;
3943 if (hwc
->sample_period
) {
3944 hwc
->last_period
= hwc
->sample_period
;
3945 perf_swevent_set_period(event
);
3950 static void perf_swevent_disable(struct perf_event
*event
)
3954 static const struct pmu perf_ops_generic
= {
3955 .enable
= perf_swevent_enable
,
3956 .disable
= perf_swevent_disable
,
3957 .read
= perf_swevent_read
,
3958 .unthrottle
= perf_swevent_unthrottle
,
3962 * hrtimer based swevent callback
3965 static enum hrtimer_restart
perf_swevent_hrtimer(struct hrtimer
*hrtimer
)
3967 enum hrtimer_restart ret
= HRTIMER_RESTART
;
3968 struct perf_sample_data data
;
3969 struct pt_regs
*regs
;
3970 struct perf_event
*event
;
3973 event
= container_of(hrtimer
, struct perf_event
, hw
.hrtimer
);
3974 event
->pmu
->read(event
);
3977 data
.period
= event
->hw
.last_period
;
3978 regs
= get_irq_regs();
3980 * In case we exclude kernel IPs or are somehow not in interrupt
3981 * context, provide the next best thing, the user IP.
3983 if ((event
->attr
.exclude_kernel
|| !regs
) &&
3984 !event
->attr
.exclude_user
)
3985 regs
= task_pt_regs(current
);
3988 if (!(event
->attr
.exclude_idle
&& current
->pid
== 0))
3989 if (perf_event_overflow(event
, 0, &data
, regs
))
3990 ret
= HRTIMER_NORESTART
;
3993 period
= max_t(u64
, 10000, event
->hw
.sample_period
);
3994 hrtimer_forward_now(hrtimer
, ns_to_ktime(period
));
3999 static void perf_swevent_start_hrtimer(struct perf_event
*event
)
4001 struct hw_perf_event
*hwc
= &event
->hw
;
4003 hrtimer_init(&hwc
->hrtimer
, CLOCK_MONOTONIC
, HRTIMER_MODE_REL
);
4004 hwc
->hrtimer
.function
= perf_swevent_hrtimer
;
4005 if (hwc
->sample_period
) {
4008 if (hwc
->remaining
) {
4009 if (hwc
->remaining
< 0)
4012 period
= hwc
->remaining
;
4015 period
= max_t(u64
, 10000, hwc
->sample_period
);
4017 __hrtimer_start_range_ns(&hwc
->hrtimer
,
4018 ns_to_ktime(period
), 0,
4019 HRTIMER_MODE_REL
, 0);
4023 static void perf_swevent_cancel_hrtimer(struct perf_event
*event
)
4025 struct hw_perf_event
*hwc
= &event
->hw
;
4027 if (hwc
->sample_period
) {
4028 ktime_t remaining
= hrtimer_get_remaining(&hwc
->hrtimer
);
4029 hwc
->remaining
= ktime_to_ns(remaining
);
4031 hrtimer_cancel(&hwc
->hrtimer
);
4036 * Software event: cpu wall time clock
4039 static void cpu_clock_perf_event_update(struct perf_event
*event
)
4041 int cpu
= raw_smp_processor_id();
4045 now
= cpu_clock(cpu
);
4046 prev
= atomic64_read(&event
->hw
.prev_count
);
4047 atomic64_set(&event
->hw
.prev_count
, now
);
4048 atomic64_add(now
- prev
, &event
->count
);
4051 static int cpu_clock_perf_event_enable(struct perf_event
*event
)
4053 struct hw_perf_event
*hwc
= &event
->hw
;
4054 int cpu
= raw_smp_processor_id();
4056 atomic64_set(&hwc
->prev_count
, cpu_clock(cpu
));
4057 perf_swevent_start_hrtimer(event
);
4062 static void cpu_clock_perf_event_disable(struct perf_event
*event
)
4064 perf_swevent_cancel_hrtimer(event
);
4065 cpu_clock_perf_event_update(event
);
4068 static void cpu_clock_perf_event_read(struct perf_event
*event
)
4070 cpu_clock_perf_event_update(event
);
4073 static const struct pmu perf_ops_cpu_clock
= {
4074 .enable
= cpu_clock_perf_event_enable
,
4075 .disable
= cpu_clock_perf_event_disable
,
4076 .read
= cpu_clock_perf_event_read
,
4080 * Software event: task time clock
4083 static void task_clock_perf_event_update(struct perf_event
*event
, u64 now
)
4088 prev
= atomic64_xchg(&event
->hw
.prev_count
, now
);
4090 atomic64_add(delta
, &event
->count
);
4093 static int task_clock_perf_event_enable(struct perf_event
*event
)
4095 struct hw_perf_event
*hwc
= &event
->hw
;
4098 now
= event
->ctx
->time
;
4100 atomic64_set(&hwc
->prev_count
, now
);
4102 perf_swevent_start_hrtimer(event
);
4107 static void task_clock_perf_event_disable(struct perf_event
*event
)
4109 perf_swevent_cancel_hrtimer(event
);
4110 task_clock_perf_event_update(event
, event
->ctx
->time
);
4114 static void task_clock_perf_event_read(struct perf_event
*event
)
4119 update_context_time(event
->ctx
);
4120 time
= event
->ctx
->time
;
4122 u64 now
= perf_clock();
4123 u64 delta
= now
- event
->ctx
->timestamp
;
4124 time
= event
->ctx
->time
+ delta
;
4127 task_clock_perf_event_update(event
, time
);
4130 static const struct pmu perf_ops_task_clock
= {
4131 .enable
= task_clock_perf_event_enable
,
4132 .disable
= task_clock_perf_event_disable
,
4133 .read
= task_clock_perf_event_read
,
4136 #ifdef CONFIG_EVENT_PROFILE
4137 void perf_tp_event(int event_id
, u64 addr
, u64 count
, void *record
,
4140 struct perf_raw_record raw
= {
4145 struct perf_sample_data data
= {
4150 struct pt_regs
*regs
= get_irq_regs();
4153 regs
= task_pt_regs(current
);
4155 do_perf_sw_event(PERF_TYPE_TRACEPOINT
, event_id
, count
, 1,
4158 EXPORT_SYMBOL_GPL(perf_tp_event
);
4160 extern int ftrace_profile_enable(int);
4161 extern void ftrace_profile_disable(int);
4163 static void tp_perf_event_destroy(struct perf_event
*event
)
4165 ftrace_profile_disable(event
->attr
.config
);
4168 static const struct pmu
*tp_perf_event_init(struct perf_event
*event
)
4171 * Raw tracepoint data is a severe data leak, only allow root to
4174 if ((event
->attr
.sample_type
& PERF_SAMPLE_RAW
) &&
4175 perf_paranoid_tracepoint_raw() &&
4176 !capable(CAP_SYS_ADMIN
))
4177 return ERR_PTR(-EPERM
);
4179 if (ftrace_profile_enable(event
->attr
.config
))
4182 event
->destroy
= tp_perf_event_destroy
;
4184 return &perf_ops_generic
;
4187 static const struct pmu
*tp_perf_event_init(struct perf_event
*event
)
4193 atomic_t perf_swevent_enabled
[PERF_COUNT_SW_MAX
];
4195 static void sw_perf_event_destroy(struct perf_event
*event
)
4197 u64 event_id
= event
->attr
.config
;
4199 WARN_ON(event
->parent
);
4201 atomic_dec(&perf_swevent_enabled
[event_id
]);
4204 static const struct pmu
*sw_perf_event_init(struct perf_event
*event
)
4206 const struct pmu
*pmu
= NULL
;
4207 u64 event_id
= event
->attr
.config
;
4210 * Software events (currently) can't in general distinguish
4211 * between user, kernel and hypervisor events.
4212 * However, context switches and cpu migrations are considered
4213 * to be kernel events, and page faults are never hypervisor
4217 case PERF_COUNT_SW_CPU_CLOCK
:
4218 pmu
= &perf_ops_cpu_clock
;
4221 case PERF_COUNT_SW_TASK_CLOCK
:
4223 * If the user instantiates this as a per-cpu event,
4224 * use the cpu_clock event instead.
4226 if (event
->ctx
->task
)
4227 pmu
= &perf_ops_task_clock
;
4229 pmu
= &perf_ops_cpu_clock
;
4232 case PERF_COUNT_SW_PAGE_FAULTS
:
4233 case PERF_COUNT_SW_PAGE_FAULTS_MIN
:
4234 case PERF_COUNT_SW_PAGE_FAULTS_MAJ
:
4235 case PERF_COUNT_SW_CONTEXT_SWITCHES
:
4236 case PERF_COUNT_SW_CPU_MIGRATIONS
:
4237 if (!event
->parent
) {
4238 atomic_inc(&perf_swevent_enabled
[event_id
]);
4239 event
->destroy
= sw_perf_event_destroy
;
4241 pmu
= &perf_ops_generic
;
4249 * Allocate and initialize a event structure
4251 static struct perf_event
*
4252 perf_event_alloc(struct perf_event_attr
*attr
,
4254 struct perf_event_context
*ctx
,
4255 struct perf_event
*group_leader
,
4256 struct perf_event
*parent_event
,
4259 const struct pmu
*pmu
;
4260 struct perf_event
*event
;
4261 struct hw_perf_event
*hwc
;
4264 event
= kzalloc(sizeof(*event
), gfpflags
);
4266 return ERR_PTR(-ENOMEM
);
4269 * Single events are their own group leaders, with an
4270 * empty sibling list:
4273 group_leader
= event
;
4275 mutex_init(&event
->child_mutex
);
4276 INIT_LIST_HEAD(&event
->child_list
);
4278 INIT_LIST_HEAD(&event
->group_entry
);
4279 INIT_LIST_HEAD(&event
->event_entry
);
4280 INIT_LIST_HEAD(&event
->sibling_list
);
4281 init_waitqueue_head(&event
->waitq
);
4283 mutex_init(&event
->mmap_mutex
);
4286 event
->attr
= *attr
;
4287 event
->group_leader
= group_leader
;
4292 event
->parent
= parent_event
;
4294 event
->ns
= get_pid_ns(current
->nsproxy
->pid_ns
);
4295 event
->id
= atomic64_inc_return(&perf_event_id
);
4297 event
->state
= PERF_EVENT_STATE_INACTIVE
;
4300 event
->state
= PERF_EVENT_STATE_OFF
;
4305 hwc
->sample_period
= attr
->sample_period
;
4306 if (attr
->freq
&& attr
->sample_freq
)
4307 hwc
->sample_period
= 1;
4308 hwc
->last_period
= hwc
->sample_period
;
4310 atomic64_set(&hwc
->period_left
, hwc
->sample_period
);
4313 * we currently do not support PERF_FORMAT_GROUP on inherited events
4315 if (attr
->inherit
&& (attr
->read_format
& PERF_FORMAT_GROUP
))
4318 switch (attr
->type
) {
4320 case PERF_TYPE_HARDWARE
:
4321 case PERF_TYPE_HW_CACHE
:
4322 pmu
= hw_perf_event_init(event
);
4325 case PERF_TYPE_SOFTWARE
:
4326 pmu
= sw_perf_event_init(event
);
4329 case PERF_TYPE_TRACEPOINT
:
4330 pmu
= tp_perf_event_init(event
);
4340 else if (IS_ERR(pmu
))
4345 put_pid_ns(event
->ns
);
4347 return ERR_PTR(err
);
4352 if (!event
->parent
) {
4353 atomic_inc(&nr_events
);
4354 if (event
->attr
.mmap
)
4355 atomic_inc(&nr_mmap_events
);
4356 if (event
->attr
.comm
)
4357 atomic_inc(&nr_comm_events
);
4358 if (event
->attr
.task
)
4359 atomic_inc(&nr_task_events
);
4365 static int perf_copy_attr(struct perf_event_attr __user
*uattr
,
4366 struct perf_event_attr
*attr
)
4371 if (!access_ok(VERIFY_WRITE
, uattr
, PERF_ATTR_SIZE_VER0
))
4375 * zero the full structure, so that a short copy will be nice.
4377 memset(attr
, 0, sizeof(*attr
));
4379 ret
= get_user(size
, &uattr
->size
);
4383 if (size
> PAGE_SIZE
) /* silly large */
4386 if (!size
) /* abi compat */
4387 size
= PERF_ATTR_SIZE_VER0
;
4389 if (size
< PERF_ATTR_SIZE_VER0
)
4393 * If we're handed a bigger struct than we know of,
4394 * ensure all the unknown bits are 0 - i.e. new
4395 * user-space does not rely on any kernel feature
4396 * extensions we dont know about yet.
4398 if (size
> sizeof(*attr
)) {
4399 unsigned char __user
*addr
;
4400 unsigned char __user
*end
;
4403 addr
= (void __user
*)uattr
+ sizeof(*attr
);
4404 end
= (void __user
*)uattr
+ size
;
4406 for (; addr
< end
; addr
++) {
4407 ret
= get_user(val
, addr
);
4413 size
= sizeof(*attr
);
4416 ret
= copy_from_user(attr
, uattr
, size
);
4421 * If the type exists, the corresponding creation will verify
4424 if (attr
->type
>= PERF_TYPE_MAX
)
4427 if (attr
->__reserved_1
|| attr
->__reserved_2
|| attr
->__reserved_3
)
4430 if (attr
->sample_type
& ~(PERF_SAMPLE_MAX
-1))
4433 if (attr
->read_format
& ~(PERF_FORMAT_MAX
-1))
4440 put_user(sizeof(*attr
), &uattr
->size
);
4445 int perf_event_set_output(struct perf_event
*event
, int output_fd
)
4447 struct perf_event
*output_event
= NULL
;
4448 struct file
*output_file
= NULL
;
4449 struct perf_event
*old_output
;
4450 int fput_needed
= 0;
4456 output_file
= fget_light(output_fd
, &fput_needed
);
4460 if (output_file
->f_op
!= &perf_fops
)
4463 output_event
= output_file
->private_data
;
4465 /* Don't chain output fds */
4466 if (output_event
->output
)
4469 /* Don't set an output fd when we already have an output channel */
4473 atomic_long_inc(&output_file
->f_count
);
4476 mutex_lock(&event
->mmap_mutex
);
4477 old_output
= event
->output
;
4478 rcu_assign_pointer(event
->output
, output_event
);
4479 mutex_unlock(&event
->mmap_mutex
);
4483 * we need to make sure no existing perf_output_*()
4484 * is still referencing this event.
4487 fput(old_output
->filp
);
4492 fput_light(output_file
, fput_needed
);
4497 * sys_perf_event_open - open a performance event, associate it to a task/cpu
4499 * @attr_uptr: event_id type attributes for monitoring/sampling
4502 * @group_fd: group leader event fd
4504 SYSCALL_DEFINE5(perf_event_open
,
4505 struct perf_event_attr __user
*, attr_uptr
,
4506 pid_t
, pid
, int, cpu
, int, group_fd
, unsigned long, flags
)
4508 struct perf_event
*event
, *group_leader
;
4509 struct perf_event_attr attr
;
4510 struct perf_event_context
*ctx
;
4511 struct file
*event_file
= NULL
;
4512 struct file
*group_file
= NULL
;
4513 int fput_needed
= 0;
4514 int fput_needed2
= 0;
4517 /* for future expandability... */
4518 if (flags
& ~(PERF_FLAG_FD_NO_GROUP
| PERF_FLAG_FD_OUTPUT
))
4521 err
= perf_copy_attr(attr_uptr
, &attr
);
4525 if (!attr
.exclude_kernel
) {
4526 if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN
))
4531 if (attr
.sample_freq
> sysctl_perf_event_sample_rate
)
4536 * Get the target context (task or percpu):
4538 ctx
= find_get_context(pid
, cpu
);
4540 return PTR_ERR(ctx
);
4543 * Look up the group leader (we will attach this event to it):
4545 group_leader
= NULL
;
4546 if (group_fd
!= -1 && !(flags
& PERF_FLAG_FD_NO_GROUP
)) {
4548 group_file
= fget_light(group_fd
, &fput_needed
);
4550 goto err_put_context
;
4551 if (group_file
->f_op
!= &perf_fops
)
4552 goto err_put_context
;
4554 group_leader
= group_file
->private_data
;
4556 * Do not allow a recursive hierarchy (this new sibling
4557 * becoming part of another group-sibling):
4559 if (group_leader
->group_leader
!= group_leader
)
4560 goto err_put_context
;
4562 * Do not allow to attach to a group in a different
4563 * task or CPU context:
4565 if (group_leader
->ctx
!= ctx
)
4566 goto err_put_context
;
4568 * Only a group leader can be exclusive or pinned
4570 if (attr
.exclusive
|| attr
.pinned
)
4571 goto err_put_context
;
4574 event
= perf_event_alloc(&attr
, cpu
, ctx
, group_leader
,
4576 err
= PTR_ERR(event
);
4578 goto err_put_context
;
4580 err
= anon_inode_getfd("[perf_event]", &perf_fops
, event
, 0);
4582 goto err_free_put_context
;
4584 event_file
= fget_light(err
, &fput_needed2
);
4586 goto err_free_put_context
;
4588 if (flags
& PERF_FLAG_FD_OUTPUT
) {
4589 err
= perf_event_set_output(event
, group_fd
);
4591 goto err_fput_free_put_context
;
4594 event
->filp
= event_file
;
4595 WARN_ON_ONCE(ctx
->parent_ctx
);
4596 mutex_lock(&ctx
->mutex
);
4597 perf_install_in_context(ctx
, event
, cpu
);
4599 mutex_unlock(&ctx
->mutex
);
4601 event
->owner
= current
;
4602 get_task_struct(current
);
4603 mutex_lock(¤t
->perf_event_mutex
);
4604 list_add_tail(&event
->owner_entry
, ¤t
->perf_event_list
);
4605 mutex_unlock(¤t
->perf_event_mutex
);
4607 err_fput_free_put_context
:
4608 fput_light(event_file
, fput_needed2
);
4610 err_free_put_context
:
4618 fput_light(group_file
, fput_needed
);
4624 * inherit a event from parent task to child task:
4626 static struct perf_event
*
4627 inherit_event(struct perf_event
*parent_event
,
4628 struct task_struct
*parent
,
4629 struct perf_event_context
*parent_ctx
,
4630 struct task_struct
*child
,
4631 struct perf_event
*group_leader
,
4632 struct perf_event_context
*child_ctx
)
4634 struct perf_event
*child_event
;
4637 * Instead of creating recursive hierarchies of events,
4638 * we link inherited events back to the original parent,
4639 * which has a filp for sure, which we use as the reference
4642 if (parent_event
->parent
)
4643 parent_event
= parent_event
->parent
;
4645 child_event
= perf_event_alloc(&parent_event
->attr
,
4646 parent_event
->cpu
, child_ctx
,
4647 group_leader
, parent_event
,
4649 if (IS_ERR(child_event
))
4654 * Make the child state follow the state of the parent event,
4655 * not its attr.disabled bit. We hold the parent's mutex,
4656 * so we won't race with perf_event_{en, dis}able_family.
4658 if (parent_event
->state
>= PERF_EVENT_STATE_INACTIVE
)
4659 child_event
->state
= PERF_EVENT_STATE_INACTIVE
;
4661 child_event
->state
= PERF_EVENT_STATE_OFF
;
4663 if (parent_event
->attr
.freq
)
4664 child_event
->hw
.sample_period
= parent_event
->hw
.sample_period
;
4667 * Link it up in the child's context:
4669 add_event_to_ctx(child_event
, child_ctx
);
4672 * Get a reference to the parent filp - we will fput it
4673 * when the child event exits. This is safe to do because
4674 * we are in the parent and we know that the filp still
4675 * exists and has a nonzero count:
4677 atomic_long_inc(&parent_event
->filp
->f_count
);
4680 * Link this into the parent event's child list
4682 WARN_ON_ONCE(parent_event
->ctx
->parent_ctx
);
4683 mutex_lock(&parent_event
->child_mutex
);
4684 list_add_tail(&child_event
->child_list
, &parent_event
->child_list
);
4685 mutex_unlock(&parent_event
->child_mutex
);
4690 static int inherit_group(struct perf_event
*parent_event
,
4691 struct task_struct
*parent
,
4692 struct perf_event_context
*parent_ctx
,
4693 struct task_struct
*child
,
4694 struct perf_event_context
*child_ctx
)
4696 struct perf_event
*leader
;
4697 struct perf_event
*sub
;
4698 struct perf_event
*child_ctr
;
4700 leader
= inherit_event(parent_event
, parent
, parent_ctx
,
4701 child
, NULL
, child_ctx
);
4703 return PTR_ERR(leader
);
4704 list_for_each_entry(sub
, &parent_event
->sibling_list
, group_entry
) {
4705 child_ctr
= inherit_event(sub
, parent
, parent_ctx
,
4706 child
, leader
, child_ctx
);
4707 if (IS_ERR(child_ctr
))
4708 return PTR_ERR(child_ctr
);
4713 static void sync_child_event(struct perf_event
*child_event
,
4714 struct task_struct
*child
)
4716 struct perf_event
*parent_event
= child_event
->parent
;
4719 if (child_event
->attr
.inherit_stat
)
4720 perf_event_read_event(child_event
, child
);
4722 child_val
= atomic64_read(&child_event
->count
);
4725 * Add back the child's count to the parent's count:
4727 atomic64_add(child_val
, &parent_event
->count
);
4728 atomic64_add(child_event
->total_time_enabled
,
4729 &parent_event
->child_total_time_enabled
);
4730 atomic64_add(child_event
->total_time_running
,
4731 &parent_event
->child_total_time_running
);
4734 * Remove this event from the parent's list
4736 WARN_ON_ONCE(parent_event
->ctx
->parent_ctx
);
4737 mutex_lock(&parent_event
->child_mutex
);
4738 list_del_init(&child_event
->child_list
);
4739 mutex_unlock(&parent_event
->child_mutex
);
4742 * Release the parent event, if this was the last
4745 fput(parent_event
->filp
);
4749 __perf_event_exit_task(struct perf_event
*child_event
,
4750 struct perf_event_context
*child_ctx
,
4751 struct task_struct
*child
)
4753 struct perf_event
*parent_event
;
4755 update_event_times(child_event
);
4756 perf_event_remove_from_context(child_event
);
4758 parent_event
= child_event
->parent
;
4760 * It can happen that parent exits first, and has events
4761 * that are still around due to the child reference. These
4762 * events need to be zapped - but otherwise linger.
4765 sync_child_event(child_event
, child
);
4766 free_event(child_event
);
4771 * When a child task exits, feed back event values to parent events.
4773 void perf_event_exit_task(struct task_struct
*child
)
4775 struct perf_event
*child_event
, *tmp
;
4776 struct perf_event_context
*child_ctx
;
4777 unsigned long flags
;
4779 if (likely(!child
->perf_event_ctxp
)) {
4780 perf_event_task(child
, NULL
, 0);
4784 local_irq_save(flags
);
4786 * We can't reschedule here because interrupts are disabled,
4787 * and either child is current or it is a task that can't be
4788 * scheduled, so we are now safe from rescheduling changing
4791 child_ctx
= child
->perf_event_ctxp
;
4792 __perf_event_task_sched_out(child_ctx
);
4795 * Take the context lock here so that if find_get_context is
4796 * reading child->perf_event_ctxp, we wait until it has
4797 * incremented the context's refcount before we do put_ctx below.
4799 spin_lock(&child_ctx
->lock
);
4800 child
->perf_event_ctxp
= NULL
;
4802 * If this context is a clone; unclone it so it can't get
4803 * swapped to another process while we're removing all
4804 * the events from it.
4806 unclone_ctx(child_ctx
);
4807 spin_unlock_irqrestore(&child_ctx
->lock
, flags
);
4810 * Report the task dead after unscheduling the events so that we
4811 * won't get any samples after PERF_RECORD_EXIT. We can however still
4812 * get a few PERF_RECORD_READ events.
4814 perf_event_task(child
, child_ctx
, 0);
4817 * We can recurse on the same lock type through:
4819 * __perf_event_exit_task()
4820 * sync_child_event()
4821 * fput(parent_event->filp)
4823 * mutex_lock(&ctx->mutex)
4825 * But since its the parent context it won't be the same instance.
4827 mutex_lock_nested(&child_ctx
->mutex
, SINGLE_DEPTH_NESTING
);
4830 list_for_each_entry_safe(child_event
, tmp
, &child_ctx
->group_list
,
4832 __perf_event_exit_task(child_event
, child_ctx
, child
);
4835 * If the last event was a group event, it will have appended all
4836 * its siblings to the list, but we obtained 'tmp' before that which
4837 * will still point to the list head terminating the iteration.
4839 if (!list_empty(&child_ctx
->group_list
))
4842 mutex_unlock(&child_ctx
->mutex
);
4848 * free an unexposed, unused context as created by inheritance by
4849 * init_task below, used by fork() in case of fail.
4851 void perf_event_free_task(struct task_struct
*task
)
4853 struct perf_event_context
*ctx
= task
->perf_event_ctxp
;
4854 struct perf_event
*event
, *tmp
;
4859 mutex_lock(&ctx
->mutex
);
4861 list_for_each_entry_safe(event
, tmp
, &ctx
->group_list
, group_entry
) {
4862 struct perf_event
*parent
= event
->parent
;
4864 if (WARN_ON_ONCE(!parent
))
4867 mutex_lock(&parent
->child_mutex
);
4868 list_del_init(&event
->child_list
);
4869 mutex_unlock(&parent
->child_mutex
);
4873 list_del_event(event
, ctx
);
4877 if (!list_empty(&ctx
->group_list
))
4880 mutex_unlock(&ctx
->mutex
);
4886 * Initialize the perf_event context in task_struct
4888 int perf_event_init_task(struct task_struct
*child
)
4890 struct perf_event_context
*child_ctx
, *parent_ctx
;
4891 struct perf_event_context
*cloned_ctx
;
4892 struct perf_event
*event
;
4893 struct task_struct
*parent
= current
;
4894 int inherited_all
= 1;
4897 child
->perf_event_ctxp
= NULL
;
4899 mutex_init(&child
->perf_event_mutex
);
4900 INIT_LIST_HEAD(&child
->perf_event_list
);
4902 if (likely(!parent
->perf_event_ctxp
))
4906 * This is executed from the parent task context, so inherit
4907 * events that have been marked for cloning.
4908 * First allocate and initialize a context for the child.
4911 child_ctx
= kmalloc(sizeof(struct perf_event_context
), GFP_KERNEL
);
4915 __perf_event_init_context(child_ctx
, child
);
4916 child
->perf_event_ctxp
= child_ctx
;
4917 get_task_struct(child
);
4920 * If the parent's context is a clone, pin it so it won't get
4923 parent_ctx
= perf_pin_task_context(parent
);
4926 * No need to check if parent_ctx != NULL here; since we saw
4927 * it non-NULL earlier, the only reason for it to become NULL
4928 * is if we exit, and since we're currently in the middle of
4929 * a fork we can't be exiting at the same time.
4933 * Lock the parent list. No need to lock the child - not PID
4934 * hashed yet and not running, so nobody can access it.
4936 mutex_lock(&parent_ctx
->mutex
);
4939 * We dont have to disable NMIs - we are only looking at
4940 * the list, not manipulating it:
4942 list_for_each_entry(event
, &parent_ctx
->group_list
, group_entry
) {
4944 if (!event
->attr
.inherit
) {
4949 ret
= inherit_group(event
, parent
, parent_ctx
,
4957 if (inherited_all
) {
4959 * Mark the child context as a clone of the parent
4960 * context, or of whatever the parent is a clone of.
4961 * Note that if the parent is a clone, it could get
4962 * uncloned at any point, but that doesn't matter
4963 * because the list of events and the generation
4964 * count can't have changed since we took the mutex.
4966 cloned_ctx
= rcu_dereference(parent_ctx
->parent_ctx
);
4968 child_ctx
->parent_ctx
= cloned_ctx
;
4969 child_ctx
->parent_gen
= parent_ctx
->parent_gen
;
4971 child_ctx
->parent_ctx
= parent_ctx
;
4972 child_ctx
->parent_gen
= parent_ctx
->generation
;
4974 get_ctx(child_ctx
->parent_ctx
);
4977 mutex_unlock(&parent_ctx
->mutex
);
4979 perf_unpin_context(parent_ctx
);
4984 static void __cpuinit
perf_event_init_cpu(int cpu
)
4986 struct perf_cpu_context
*cpuctx
;
4988 cpuctx
= &per_cpu(perf_cpu_context
, cpu
);
4989 __perf_event_init_context(&cpuctx
->ctx
, NULL
);
4991 spin_lock(&perf_resource_lock
);
4992 cpuctx
->max_pertask
= perf_max_events
- perf_reserved_percpu
;
4993 spin_unlock(&perf_resource_lock
);
4995 hw_perf_event_setup(cpu
);
4998 #ifdef CONFIG_HOTPLUG_CPU
4999 static void __perf_event_exit_cpu(void *info
)
5001 struct perf_cpu_context
*cpuctx
= &__get_cpu_var(perf_cpu_context
);
5002 struct perf_event_context
*ctx
= &cpuctx
->ctx
;
5003 struct perf_event
*event
, *tmp
;
5005 list_for_each_entry_safe(event
, tmp
, &ctx
->group_list
, group_entry
)
5006 __perf_event_remove_from_context(event
);
5008 static void perf_event_exit_cpu(int cpu
)
5010 struct perf_cpu_context
*cpuctx
= &per_cpu(perf_cpu_context
, cpu
);
5011 struct perf_event_context
*ctx
= &cpuctx
->ctx
;
5013 mutex_lock(&ctx
->mutex
);
5014 smp_call_function_single(cpu
, __perf_event_exit_cpu
, NULL
, 1);
5015 mutex_unlock(&ctx
->mutex
);
5018 static inline void perf_event_exit_cpu(int cpu
) { }
5021 static int __cpuinit
5022 perf_cpu_notify(struct notifier_block
*self
, unsigned long action
, void *hcpu
)
5024 unsigned int cpu
= (long)hcpu
;
5028 case CPU_UP_PREPARE
:
5029 case CPU_UP_PREPARE_FROZEN
:
5030 perf_event_init_cpu(cpu
);
5034 case CPU_ONLINE_FROZEN
:
5035 hw_perf_event_setup_online(cpu
);
5038 case CPU_DOWN_PREPARE
:
5039 case CPU_DOWN_PREPARE_FROZEN
:
5040 perf_event_exit_cpu(cpu
);
5051 * This has to have a higher priority than migration_notifier in sched.c.
5053 static struct notifier_block __cpuinitdata perf_cpu_nb
= {
5054 .notifier_call
= perf_cpu_notify
,
5058 void __init
perf_event_init(void)
5060 perf_cpu_notify(&perf_cpu_nb
, (unsigned long)CPU_UP_PREPARE
,
5061 (void *)(long)smp_processor_id());
5062 perf_cpu_notify(&perf_cpu_nb
, (unsigned long)CPU_ONLINE
,
5063 (void *)(long)smp_processor_id());
5064 register_cpu_notifier(&perf_cpu_nb
);
5067 static ssize_t
perf_show_reserve_percpu(struct sysdev_class
*class, char *buf
)
5069 return sprintf(buf
, "%d\n", perf_reserved_percpu
);
5073 perf_set_reserve_percpu(struct sysdev_class
*class,
5077 struct perf_cpu_context
*cpuctx
;
5081 err
= strict_strtoul(buf
, 10, &val
);
5084 if (val
> perf_max_events
)
5087 spin_lock(&perf_resource_lock
);
5088 perf_reserved_percpu
= val
;
5089 for_each_online_cpu(cpu
) {
5090 cpuctx
= &per_cpu(perf_cpu_context
, cpu
);
5091 spin_lock_irq(&cpuctx
->ctx
.lock
);
5092 mpt
= min(perf_max_events
- cpuctx
->ctx
.nr_events
,
5093 perf_max_events
- perf_reserved_percpu
);
5094 cpuctx
->max_pertask
= mpt
;
5095 spin_unlock_irq(&cpuctx
->ctx
.lock
);
5097 spin_unlock(&perf_resource_lock
);
5102 static ssize_t
perf_show_overcommit(struct sysdev_class
*class, char *buf
)
5104 return sprintf(buf
, "%d\n", perf_overcommit
);
5108 perf_set_overcommit(struct sysdev_class
*class, const char *buf
, size_t count
)
5113 err
= strict_strtoul(buf
, 10, &val
);
5119 spin_lock(&perf_resource_lock
);
5120 perf_overcommit
= val
;
5121 spin_unlock(&perf_resource_lock
);
5126 static SYSDEV_CLASS_ATTR(
5129 perf_show_reserve_percpu
,
5130 perf_set_reserve_percpu
5133 static SYSDEV_CLASS_ATTR(
5136 perf_show_overcommit
,
5140 static struct attribute
*perfclass_attrs
[] = {
5141 &attr_reserve_percpu
.attr
,
5142 &attr_overcommit
.attr
,
5146 static struct attribute_group perfclass_attr_group
= {
5147 .attrs
= perfclass_attrs
,
5148 .name
= "perf_events",
5151 static int __init
perf_event_sysfs_init(void)
5153 return sysfs_create_group(&cpu_sysdev_class
.kset
.kobj
,
5154 &perfclass_attr_group
);
5156 device_initcall(perf_event_sysfs_init
);