2 * raid10.c : Multiple Devices driver for Linux
4 * Copyright (C) 2000-2004 Neil Brown
6 * RAID-10 support for md.
8 * Base on code in raid1.c. See raid1.c for futher copyright information.
11 * This program is free software; you can redistribute it and/or modify
12 * it under the terms of the GNU General Public License as published by
13 * the Free Software Foundation; either version 2, or (at your option)
16 * You should have received a copy of the GNU General Public License
17 * (for example /usr/src/linux/COPYING); if not, write to the Free
18 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
21 #include "dm-bio-list.h"
22 #include <linux/raid/raid10.h>
23 #include <linux/raid/bitmap.h>
26 * RAID10 provides a combination of RAID0 and RAID1 functionality.
27 * The layout of data is defined by
30 * near_copies (stored in low byte of layout)
31 * far_copies (stored in second byte of layout)
32 * far_offset (stored in bit 16 of layout )
34 * The data to be stored is divided into chunks using chunksize.
35 * Each device is divided into far_copies sections.
36 * In each section, chunks are laid out in a style similar to raid0, but
37 * near_copies copies of each chunk is stored (each on a different drive).
38 * The starting device for each section is offset near_copies from the starting
39 * device of the previous section.
40 * Thus they are (near_copies*far_copies) of each chunk, and each is on a different
42 * near_copies and far_copies must be at least one, and their product is at most
45 * If far_offset is true, then the far_copies are handled a bit differently.
46 * The copies are still in different stripes, but instead of be very far apart
47 * on disk, there are adjacent stripes.
51 * Number of guaranteed r10bios in case of extreme VM load:
53 #define NR_RAID10_BIOS 256
55 static void unplug_slaves(mddev_t
*mddev
);
57 static void allow_barrier(conf_t
*conf
);
58 static void lower_barrier(conf_t
*conf
);
60 static void * r10bio_pool_alloc(gfp_t gfp_flags
, void *data
)
64 int size
= offsetof(struct r10bio_s
, devs
[conf
->copies
]);
66 /* allocate a r10bio with room for raid_disks entries in the bios array */
67 r10_bio
= kzalloc(size
, gfp_flags
);
69 unplug_slaves(conf
->mddev
);
74 static void r10bio_pool_free(void *r10_bio
, void *data
)
79 #define RESYNC_BLOCK_SIZE (64*1024)
80 //#define RESYNC_BLOCK_SIZE PAGE_SIZE
81 #define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9)
82 #define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE)
83 #define RESYNC_WINDOW (2048*1024)
86 * When performing a resync, we need to read and compare, so
87 * we need as many pages are there are copies.
88 * When performing a recovery, we need 2 bios, one for read,
89 * one for write (we recover only one drive per r10buf)
92 static void * r10buf_pool_alloc(gfp_t gfp_flags
, void *data
)
101 r10_bio
= r10bio_pool_alloc(gfp_flags
, conf
);
103 unplug_slaves(conf
->mddev
);
107 if (test_bit(MD_RECOVERY_SYNC
, &conf
->mddev
->recovery
))
108 nalloc
= conf
->copies
; /* resync */
110 nalloc
= 2; /* recovery */
115 for (j
= nalloc
; j
-- ; ) {
116 bio
= bio_alloc(gfp_flags
, RESYNC_PAGES
);
119 r10_bio
->devs
[j
].bio
= bio
;
122 * Allocate RESYNC_PAGES data pages and attach them
125 for (j
= 0 ; j
< nalloc
; j
++) {
126 bio
= r10_bio
->devs
[j
].bio
;
127 for (i
= 0; i
< RESYNC_PAGES
; i
++) {
128 page
= alloc_page(gfp_flags
);
132 bio
->bi_io_vec
[i
].bv_page
= page
;
140 safe_put_page(bio
->bi_io_vec
[i
-1].bv_page
);
142 for (i
= 0; i
< RESYNC_PAGES
; i
++)
143 safe_put_page(r10_bio
->devs
[j
].bio
->bi_io_vec
[i
].bv_page
);
146 while ( ++j
< nalloc
)
147 bio_put(r10_bio
->devs
[j
].bio
);
148 r10bio_pool_free(r10_bio
, conf
);
152 static void r10buf_pool_free(void *__r10_bio
, void *data
)
156 r10bio_t
*r10bio
= __r10_bio
;
159 for (j
=0; j
< conf
->copies
; j
++) {
160 struct bio
*bio
= r10bio
->devs
[j
].bio
;
162 for (i
= 0; i
< RESYNC_PAGES
; i
++) {
163 safe_put_page(bio
->bi_io_vec
[i
].bv_page
);
164 bio
->bi_io_vec
[i
].bv_page
= NULL
;
169 r10bio_pool_free(r10bio
, conf
);
172 static void put_all_bios(conf_t
*conf
, r10bio_t
*r10_bio
)
176 for (i
= 0; i
< conf
->copies
; i
++) {
177 struct bio
**bio
= & r10_bio
->devs
[i
].bio
;
178 if (*bio
&& *bio
!= IO_BLOCKED
)
184 static void free_r10bio(r10bio_t
*r10_bio
)
186 conf_t
*conf
= mddev_to_conf(r10_bio
->mddev
);
189 * Wake up any possible resync thread that waits for the device
194 put_all_bios(conf
, r10_bio
);
195 mempool_free(r10_bio
, conf
->r10bio_pool
);
198 static void put_buf(r10bio_t
*r10_bio
)
200 conf_t
*conf
= mddev_to_conf(r10_bio
->mddev
);
202 mempool_free(r10_bio
, conf
->r10buf_pool
);
207 static void reschedule_retry(r10bio_t
*r10_bio
)
210 mddev_t
*mddev
= r10_bio
->mddev
;
211 conf_t
*conf
= mddev_to_conf(mddev
);
213 spin_lock_irqsave(&conf
->device_lock
, flags
);
214 list_add(&r10_bio
->retry_list
, &conf
->retry_list
);
216 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
218 md_wakeup_thread(mddev
->thread
);
222 * raid_end_bio_io() is called when we have finished servicing a mirrored
223 * operation and are ready to return a success/failure code to the buffer
226 static void raid_end_bio_io(r10bio_t
*r10_bio
)
228 struct bio
*bio
= r10_bio
->master_bio
;
231 test_bit(R10BIO_Uptodate
, &r10_bio
->state
) ? 0 : -EIO
);
232 free_r10bio(r10_bio
);
236 * Update disk head position estimator based on IRQ completion info.
238 static inline void update_head_pos(int slot
, r10bio_t
*r10_bio
)
240 conf_t
*conf
= mddev_to_conf(r10_bio
->mddev
);
242 conf
->mirrors
[r10_bio
->devs
[slot
].devnum
].head_position
=
243 r10_bio
->devs
[slot
].addr
+ (r10_bio
->sectors
);
246 static void raid10_end_read_request(struct bio
*bio
, int error
)
248 int uptodate
= test_bit(BIO_UPTODATE
, &bio
->bi_flags
);
249 r10bio_t
* r10_bio
= (r10bio_t
*)(bio
->bi_private
);
251 conf_t
*conf
= mddev_to_conf(r10_bio
->mddev
);
254 slot
= r10_bio
->read_slot
;
255 dev
= r10_bio
->devs
[slot
].devnum
;
257 * this branch is our 'one mirror IO has finished' event handler:
259 update_head_pos(slot
, r10_bio
);
263 * Set R10BIO_Uptodate in our master bio, so that
264 * we will return a good error code to the higher
265 * levels even if IO on some other mirrored buffer fails.
267 * The 'master' represents the composite IO operation to
268 * user-side. So if something waits for IO, then it will
269 * wait for the 'master' bio.
271 set_bit(R10BIO_Uptodate
, &r10_bio
->state
);
272 raid_end_bio_io(r10_bio
);
277 char b
[BDEVNAME_SIZE
];
278 if (printk_ratelimit())
279 printk(KERN_ERR
"raid10: %s: rescheduling sector %llu\n",
280 bdevname(conf
->mirrors
[dev
].rdev
->bdev
,b
), (unsigned long long)r10_bio
->sector
);
281 reschedule_retry(r10_bio
);
284 rdev_dec_pending(conf
->mirrors
[dev
].rdev
, conf
->mddev
);
287 static void raid10_end_write_request(struct bio
*bio
, int error
)
289 int uptodate
= test_bit(BIO_UPTODATE
, &bio
->bi_flags
);
290 r10bio_t
* r10_bio
= (r10bio_t
*)(bio
->bi_private
);
292 conf_t
*conf
= mddev_to_conf(r10_bio
->mddev
);
294 for (slot
= 0; slot
< conf
->copies
; slot
++)
295 if (r10_bio
->devs
[slot
].bio
== bio
)
297 dev
= r10_bio
->devs
[slot
].devnum
;
300 * this branch is our 'one mirror IO has finished' event handler:
303 md_error(r10_bio
->mddev
, conf
->mirrors
[dev
].rdev
);
304 /* an I/O failed, we can't clear the bitmap */
305 set_bit(R10BIO_Degraded
, &r10_bio
->state
);
308 * Set R10BIO_Uptodate in our master bio, so that
309 * we will return a good error code for to the higher
310 * levels even if IO on some other mirrored buffer fails.
312 * The 'master' represents the composite IO operation to
313 * user-side. So if something waits for IO, then it will
314 * wait for the 'master' bio.
316 set_bit(R10BIO_Uptodate
, &r10_bio
->state
);
318 update_head_pos(slot
, r10_bio
);
322 * Let's see if all mirrored write operations have finished
325 if (atomic_dec_and_test(&r10_bio
->remaining
)) {
326 /* clear the bitmap if all writes complete successfully */
327 bitmap_endwrite(r10_bio
->mddev
->bitmap
, r10_bio
->sector
,
329 !test_bit(R10BIO_Degraded
, &r10_bio
->state
),
331 md_write_end(r10_bio
->mddev
);
332 raid_end_bio_io(r10_bio
);
335 rdev_dec_pending(conf
->mirrors
[dev
].rdev
, conf
->mddev
);
340 * RAID10 layout manager
341 * Aswell as the chunksize and raid_disks count, there are two
342 * parameters: near_copies and far_copies.
343 * near_copies * far_copies must be <= raid_disks.
344 * Normally one of these will be 1.
345 * If both are 1, we get raid0.
346 * If near_copies == raid_disks, we get raid1.
348 * Chunks are layed out in raid0 style with near_copies copies of the
349 * first chunk, followed by near_copies copies of the next chunk and
351 * If far_copies > 1, then after 1/far_copies of the array has been assigned
352 * as described above, we start again with a device offset of near_copies.
353 * So we effectively have another copy of the whole array further down all
354 * the drives, but with blocks on different drives.
355 * With this layout, and block is never stored twice on the one device.
357 * raid10_find_phys finds the sector offset of a given virtual sector
358 * on each device that it is on.
360 * raid10_find_virt does the reverse mapping, from a device and a
361 * sector offset to a virtual address
364 static void raid10_find_phys(conf_t
*conf
, r10bio_t
*r10bio
)
374 /* now calculate first sector/dev */
375 chunk
= r10bio
->sector
>> conf
->chunk_shift
;
376 sector
= r10bio
->sector
& conf
->chunk_mask
;
378 chunk
*= conf
->near_copies
;
380 dev
= sector_div(stripe
, conf
->raid_disks
);
381 if (conf
->far_offset
)
382 stripe
*= conf
->far_copies
;
384 sector
+= stripe
<< conf
->chunk_shift
;
386 /* and calculate all the others */
387 for (n
=0; n
< conf
->near_copies
; n
++) {
390 r10bio
->devs
[slot
].addr
= sector
;
391 r10bio
->devs
[slot
].devnum
= d
;
394 for (f
= 1; f
< conf
->far_copies
; f
++) {
395 d
+= conf
->near_copies
;
396 if (d
>= conf
->raid_disks
)
397 d
-= conf
->raid_disks
;
399 r10bio
->devs
[slot
].devnum
= d
;
400 r10bio
->devs
[slot
].addr
= s
;
404 if (dev
>= conf
->raid_disks
) {
406 sector
+= (conf
->chunk_mask
+ 1);
409 BUG_ON(slot
!= conf
->copies
);
412 static sector_t
raid10_find_virt(conf_t
*conf
, sector_t sector
, int dev
)
414 sector_t offset
, chunk
, vchunk
;
416 offset
= sector
& conf
->chunk_mask
;
417 if (conf
->far_offset
) {
419 chunk
= sector
>> conf
->chunk_shift
;
420 fc
= sector_div(chunk
, conf
->far_copies
);
421 dev
-= fc
* conf
->near_copies
;
423 dev
+= conf
->raid_disks
;
425 while (sector
>= conf
->stride
) {
426 sector
-= conf
->stride
;
427 if (dev
< conf
->near_copies
)
428 dev
+= conf
->raid_disks
- conf
->near_copies
;
430 dev
-= conf
->near_copies
;
432 chunk
= sector
>> conf
->chunk_shift
;
434 vchunk
= chunk
* conf
->raid_disks
+ dev
;
435 sector_div(vchunk
, conf
->near_copies
);
436 return (vchunk
<< conf
->chunk_shift
) + offset
;
440 * raid10_mergeable_bvec -- tell bio layer if a two requests can be merged
442 * @bio: the buffer head that's been built up so far
443 * @biovec: the request that could be merged to it.
445 * Return amount of bytes we can accept at this offset
446 * If near_copies == raid_disk, there are no striping issues,
447 * but in that case, the function isn't called at all.
449 static int raid10_mergeable_bvec(struct request_queue
*q
, struct bio
*bio
,
450 struct bio_vec
*bio_vec
)
452 mddev_t
*mddev
= q
->queuedata
;
453 sector_t sector
= bio
->bi_sector
+ get_start_sect(bio
->bi_bdev
);
455 unsigned int chunk_sectors
= mddev
->chunk_size
>> 9;
456 unsigned int bio_sectors
= bio
->bi_size
>> 9;
458 max
= (chunk_sectors
- ((sector
& (chunk_sectors
- 1)) + bio_sectors
)) << 9;
459 if (max
< 0) max
= 0; /* bio_add cannot handle a negative return */
460 if (max
<= bio_vec
->bv_len
&& bio_sectors
== 0)
461 return bio_vec
->bv_len
;
467 * This routine returns the disk from which the requested read should
468 * be done. There is a per-array 'next expected sequential IO' sector
469 * number - if this matches on the next IO then we use the last disk.
470 * There is also a per-disk 'last know head position' sector that is
471 * maintained from IRQ contexts, both the normal and the resync IO
472 * completion handlers update this position correctly. If there is no
473 * perfect sequential match then we pick the disk whose head is closest.
475 * If there are 2 mirrors in the same 2 devices, performance degrades
476 * because position is mirror, not device based.
478 * The rdev for the device selected will have nr_pending incremented.
482 * FIXME: possibly should rethink readbalancing and do it differently
483 * depending on near_copies / far_copies geometry.
485 static int read_balance(conf_t
*conf
, r10bio_t
*r10_bio
)
487 const unsigned long this_sector
= r10_bio
->sector
;
488 int disk
, slot
, nslot
;
489 const int sectors
= r10_bio
->sectors
;
490 sector_t new_distance
, current_distance
;
493 raid10_find_phys(conf
, r10_bio
);
496 * Check if we can balance. We can balance on the whole
497 * device if no resync is going on (recovery is ok), or below
498 * the resync window. We take the first readable disk when
499 * above the resync window.
501 if (conf
->mddev
->recovery_cp
< MaxSector
502 && (this_sector
+ sectors
>= conf
->next_resync
)) {
503 /* make sure that disk is operational */
505 disk
= r10_bio
->devs
[slot
].devnum
;
507 while ((rdev
= rcu_dereference(conf
->mirrors
[disk
].rdev
)) == NULL
||
508 r10_bio
->devs
[slot
].bio
== IO_BLOCKED
||
509 !test_bit(In_sync
, &rdev
->flags
)) {
511 if (slot
== conf
->copies
) {
516 disk
= r10_bio
->devs
[slot
].devnum
;
522 /* make sure the disk is operational */
524 disk
= r10_bio
->devs
[slot
].devnum
;
525 while ((rdev
=rcu_dereference(conf
->mirrors
[disk
].rdev
)) == NULL
||
526 r10_bio
->devs
[slot
].bio
== IO_BLOCKED
||
527 !test_bit(In_sync
, &rdev
->flags
)) {
529 if (slot
== conf
->copies
) {
533 disk
= r10_bio
->devs
[slot
].devnum
;
537 current_distance
= abs(r10_bio
->devs
[slot
].addr
-
538 conf
->mirrors
[disk
].head_position
);
540 /* Find the disk whose head is closest,
541 * or - for far > 1 - find the closest to partition beginning */
543 for (nslot
= slot
; nslot
< conf
->copies
; nslot
++) {
544 int ndisk
= r10_bio
->devs
[nslot
].devnum
;
547 if ((rdev
=rcu_dereference(conf
->mirrors
[ndisk
].rdev
)) == NULL
||
548 r10_bio
->devs
[nslot
].bio
== IO_BLOCKED
||
549 !test_bit(In_sync
, &rdev
->flags
))
552 /* This optimisation is debatable, and completely destroys
553 * sequential read speed for 'far copies' arrays. So only
554 * keep it for 'near' arrays, and review those later.
556 if (conf
->near_copies
> 1 && !atomic_read(&rdev
->nr_pending
)) {
562 /* for far > 1 always use the lowest address */
563 if (conf
->far_copies
> 1)
564 new_distance
= r10_bio
->devs
[nslot
].addr
;
566 new_distance
= abs(r10_bio
->devs
[nslot
].addr
-
567 conf
->mirrors
[ndisk
].head_position
);
568 if (new_distance
< current_distance
) {
569 current_distance
= new_distance
;
576 r10_bio
->read_slot
= slot
;
577 /* conf->next_seq_sect = this_sector + sectors;*/
579 if (disk
>= 0 && (rdev
=rcu_dereference(conf
->mirrors
[disk
].rdev
))!= NULL
)
580 atomic_inc(&conf
->mirrors
[disk
].rdev
->nr_pending
);
588 static void unplug_slaves(mddev_t
*mddev
)
590 conf_t
*conf
= mddev_to_conf(mddev
);
594 for (i
=0; i
<mddev
->raid_disks
; i
++) {
595 mdk_rdev_t
*rdev
= rcu_dereference(conf
->mirrors
[i
].rdev
);
596 if (rdev
&& !test_bit(Faulty
, &rdev
->flags
) && atomic_read(&rdev
->nr_pending
)) {
597 struct request_queue
*r_queue
= bdev_get_queue(rdev
->bdev
);
599 atomic_inc(&rdev
->nr_pending
);
604 rdev_dec_pending(rdev
, mddev
);
611 static void raid10_unplug(struct request_queue
*q
)
613 mddev_t
*mddev
= q
->queuedata
;
615 unplug_slaves(q
->queuedata
);
616 md_wakeup_thread(mddev
->thread
);
619 static int raid10_congested(void *data
, int bits
)
621 mddev_t
*mddev
= data
;
622 conf_t
*conf
= mddev_to_conf(mddev
);
626 for (i
= 0; i
< mddev
->raid_disks
&& ret
== 0; i
++) {
627 mdk_rdev_t
*rdev
= rcu_dereference(conf
->mirrors
[i
].rdev
);
628 if (rdev
&& !test_bit(Faulty
, &rdev
->flags
)) {
629 struct request_queue
*q
= bdev_get_queue(rdev
->bdev
);
631 ret
|= bdi_congested(&q
->backing_dev_info
, bits
);
638 static int flush_pending_writes(conf_t
*conf
)
640 /* Any writes that have been queued but are awaiting
641 * bitmap updates get flushed here.
642 * We return 1 if any requests were actually submitted.
646 spin_lock_irq(&conf
->device_lock
);
648 if (conf
->pending_bio_list
.head
) {
650 bio
= bio_list_get(&conf
->pending_bio_list
);
651 blk_remove_plug(conf
->mddev
->queue
);
652 spin_unlock_irq(&conf
->device_lock
);
653 /* flush any pending bitmap writes to disk
654 * before proceeding w/ I/O */
655 bitmap_unplug(conf
->mddev
->bitmap
);
657 while (bio
) { /* submit pending writes */
658 struct bio
*next
= bio
->bi_next
;
660 generic_make_request(bio
);
665 spin_unlock_irq(&conf
->device_lock
);
669 * Sometimes we need to suspend IO while we do something else,
670 * either some resync/recovery, or reconfigure the array.
671 * To do this we raise a 'barrier'.
672 * The 'barrier' is a counter that can be raised multiple times
673 * to count how many activities are happening which preclude
675 * We can only raise the barrier if there is no pending IO.
676 * i.e. if nr_pending == 0.
677 * We choose only to raise the barrier if no-one is waiting for the
678 * barrier to go down. This means that as soon as an IO request
679 * is ready, no other operations which require a barrier will start
680 * until the IO request has had a chance.
682 * So: regular IO calls 'wait_barrier'. When that returns there
683 * is no backgroup IO happening, It must arrange to call
684 * allow_barrier when it has finished its IO.
685 * backgroup IO calls must call raise_barrier. Once that returns
686 * there is no normal IO happeing. It must arrange to call
687 * lower_barrier when the particular background IO completes.
689 #define RESYNC_DEPTH 32
691 static void raise_barrier(conf_t
*conf
, int force
)
693 BUG_ON(force
&& !conf
->barrier
);
694 spin_lock_irq(&conf
->resync_lock
);
696 /* Wait until no block IO is waiting (unless 'force') */
697 wait_event_lock_irq(conf
->wait_barrier
, force
|| !conf
->nr_waiting
,
699 raid10_unplug(conf
->mddev
->queue
));
701 /* block any new IO from starting */
704 /* No wait for all pending IO to complete */
705 wait_event_lock_irq(conf
->wait_barrier
,
706 !conf
->nr_pending
&& conf
->barrier
< RESYNC_DEPTH
,
708 raid10_unplug(conf
->mddev
->queue
));
710 spin_unlock_irq(&conf
->resync_lock
);
713 static void lower_barrier(conf_t
*conf
)
716 spin_lock_irqsave(&conf
->resync_lock
, flags
);
718 spin_unlock_irqrestore(&conf
->resync_lock
, flags
);
719 wake_up(&conf
->wait_barrier
);
722 static void wait_barrier(conf_t
*conf
)
724 spin_lock_irq(&conf
->resync_lock
);
727 wait_event_lock_irq(conf
->wait_barrier
, !conf
->barrier
,
729 raid10_unplug(conf
->mddev
->queue
));
733 spin_unlock_irq(&conf
->resync_lock
);
736 static void allow_barrier(conf_t
*conf
)
739 spin_lock_irqsave(&conf
->resync_lock
, flags
);
741 spin_unlock_irqrestore(&conf
->resync_lock
, flags
);
742 wake_up(&conf
->wait_barrier
);
745 static void freeze_array(conf_t
*conf
)
747 /* stop syncio and normal IO and wait for everything to
749 * We increment barrier and nr_waiting, and then
750 * wait until nr_pending match nr_queued+1
751 * This is called in the context of one normal IO request
752 * that has failed. Thus any sync request that might be pending
753 * will be blocked by nr_pending, and we need to wait for
754 * pending IO requests to complete or be queued for re-try.
755 * Thus the number queued (nr_queued) plus this request (1)
756 * must match the number of pending IOs (nr_pending) before
759 spin_lock_irq(&conf
->resync_lock
);
762 wait_event_lock_irq(conf
->wait_barrier
,
763 conf
->nr_pending
== conf
->nr_queued
+1,
765 ({ flush_pending_writes(conf
);
766 raid10_unplug(conf
->mddev
->queue
); }));
767 spin_unlock_irq(&conf
->resync_lock
);
770 static void unfreeze_array(conf_t
*conf
)
772 /* reverse the effect of the freeze */
773 spin_lock_irq(&conf
->resync_lock
);
776 wake_up(&conf
->wait_barrier
);
777 spin_unlock_irq(&conf
->resync_lock
);
780 static int make_request(struct request_queue
*q
, struct bio
* bio
)
782 mddev_t
*mddev
= q
->queuedata
;
783 conf_t
*conf
= mddev_to_conf(mddev
);
784 mirror_info_t
*mirror
;
786 struct bio
*read_bio
;
788 int chunk_sects
= conf
->chunk_mask
+ 1;
789 const int rw
= bio_data_dir(bio
);
790 const int do_sync
= bio_sync(bio
);
793 mdk_rdev_t
*blocked_rdev
;
795 if (unlikely(bio_barrier(bio
))) {
796 bio_endio(bio
, -EOPNOTSUPP
);
800 /* If this request crosses a chunk boundary, we need to
801 * split it. This will only happen for 1 PAGE (or less) requests.
803 if (unlikely( (bio
->bi_sector
& conf
->chunk_mask
) + (bio
->bi_size
>> 9)
805 conf
->near_copies
< conf
->raid_disks
)) {
807 /* Sanity check -- queue functions should prevent this happening */
808 if (bio
->bi_vcnt
!= 1 ||
811 /* This is a one page bio that upper layers
812 * refuse to split for us, so we need to split it.
814 bp
= bio_split(bio
, bio_split_pool
,
815 chunk_sects
- (bio
->bi_sector
& (chunk_sects
- 1)) );
816 if (make_request(q
, &bp
->bio1
))
817 generic_make_request(&bp
->bio1
);
818 if (make_request(q
, &bp
->bio2
))
819 generic_make_request(&bp
->bio2
);
821 bio_pair_release(bp
);
824 printk("raid10_make_request bug: can't convert block across chunks"
825 " or bigger than %dk %llu %d\n", chunk_sects
/2,
826 (unsigned long long)bio
->bi_sector
, bio
->bi_size
>> 10);
832 md_write_start(mddev
, bio
);
835 * Register the new request and wait if the reconstruction
836 * thread has put up a bar for new requests.
837 * Continue immediately if no resync is active currently.
841 disk_stat_inc(mddev
->gendisk
, ios
[rw
]);
842 disk_stat_add(mddev
->gendisk
, sectors
[rw
], bio_sectors(bio
));
844 r10_bio
= mempool_alloc(conf
->r10bio_pool
, GFP_NOIO
);
846 r10_bio
->master_bio
= bio
;
847 r10_bio
->sectors
= bio
->bi_size
>> 9;
849 r10_bio
->mddev
= mddev
;
850 r10_bio
->sector
= bio
->bi_sector
;
855 * read balancing logic:
857 int disk
= read_balance(conf
, r10_bio
);
858 int slot
= r10_bio
->read_slot
;
860 raid_end_bio_io(r10_bio
);
863 mirror
= conf
->mirrors
+ disk
;
865 read_bio
= bio_clone(bio
, GFP_NOIO
);
867 r10_bio
->devs
[slot
].bio
= read_bio
;
869 read_bio
->bi_sector
= r10_bio
->devs
[slot
].addr
+
870 mirror
->rdev
->data_offset
;
871 read_bio
->bi_bdev
= mirror
->rdev
->bdev
;
872 read_bio
->bi_end_io
= raid10_end_read_request
;
873 read_bio
->bi_rw
= READ
| do_sync
;
874 read_bio
->bi_private
= r10_bio
;
876 generic_make_request(read_bio
);
883 /* first select target devices under rcu_lock and
884 * inc refcount on their rdev. Record them by setting
887 raid10_find_phys(conf
, r10_bio
);
891 for (i
= 0; i
< conf
->copies
; i
++) {
892 int d
= r10_bio
->devs
[i
].devnum
;
893 mdk_rdev_t
*rdev
= rcu_dereference(conf
->mirrors
[d
].rdev
);
894 if (rdev
&& unlikely(test_bit(Blocked
, &rdev
->flags
))) {
895 atomic_inc(&rdev
->nr_pending
);
899 if (rdev
&& !test_bit(Faulty
, &rdev
->flags
)) {
900 atomic_inc(&rdev
->nr_pending
);
901 r10_bio
->devs
[i
].bio
= bio
;
903 r10_bio
->devs
[i
].bio
= NULL
;
904 set_bit(R10BIO_Degraded
, &r10_bio
->state
);
909 if (unlikely(blocked_rdev
)) {
910 /* Have to wait for this device to get unblocked, then retry */
914 for (j
= 0; j
< i
; j
++)
915 if (r10_bio
->devs
[j
].bio
) {
916 d
= r10_bio
->devs
[j
].devnum
;
917 rdev_dec_pending(conf
->mirrors
[d
].rdev
, mddev
);
920 md_wait_for_blocked_rdev(blocked_rdev
, mddev
);
925 atomic_set(&r10_bio
->remaining
, 0);
928 for (i
= 0; i
< conf
->copies
; i
++) {
930 int d
= r10_bio
->devs
[i
].devnum
;
931 if (!r10_bio
->devs
[i
].bio
)
934 mbio
= bio_clone(bio
, GFP_NOIO
);
935 r10_bio
->devs
[i
].bio
= mbio
;
937 mbio
->bi_sector
= r10_bio
->devs
[i
].addr
+
938 conf
->mirrors
[d
].rdev
->data_offset
;
939 mbio
->bi_bdev
= conf
->mirrors
[d
].rdev
->bdev
;
940 mbio
->bi_end_io
= raid10_end_write_request
;
941 mbio
->bi_rw
= WRITE
| do_sync
;
942 mbio
->bi_private
= r10_bio
;
944 atomic_inc(&r10_bio
->remaining
);
945 bio_list_add(&bl
, mbio
);
948 if (unlikely(!atomic_read(&r10_bio
->remaining
))) {
949 /* the array is dead */
951 raid_end_bio_io(r10_bio
);
955 bitmap_startwrite(mddev
->bitmap
, bio
->bi_sector
, r10_bio
->sectors
, 0);
956 spin_lock_irqsave(&conf
->device_lock
, flags
);
957 bio_list_merge(&conf
->pending_bio_list
, &bl
);
958 blk_plug_device(mddev
->queue
);
959 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
961 /* In case raid10d snuck in to freeze_array */
962 wake_up(&conf
->wait_barrier
);
965 md_wakeup_thread(mddev
->thread
);
970 static void status(struct seq_file
*seq
, mddev_t
*mddev
)
972 conf_t
*conf
= mddev_to_conf(mddev
);
975 if (conf
->near_copies
< conf
->raid_disks
)
976 seq_printf(seq
, " %dK chunks", mddev
->chunk_size
/1024);
977 if (conf
->near_copies
> 1)
978 seq_printf(seq
, " %d near-copies", conf
->near_copies
);
979 if (conf
->far_copies
> 1) {
980 if (conf
->far_offset
)
981 seq_printf(seq
, " %d offset-copies", conf
->far_copies
);
983 seq_printf(seq
, " %d far-copies", conf
->far_copies
);
985 seq_printf(seq
, " [%d/%d] [", conf
->raid_disks
,
986 conf
->raid_disks
- mddev
->degraded
);
987 for (i
= 0; i
< conf
->raid_disks
; i
++)
988 seq_printf(seq
, "%s",
989 conf
->mirrors
[i
].rdev
&&
990 test_bit(In_sync
, &conf
->mirrors
[i
].rdev
->flags
) ? "U" : "_");
991 seq_printf(seq
, "]");
994 static void error(mddev_t
*mddev
, mdk_rdev_t
*rdev
)
996 char b
[BDEVNAME_SIZE
];
997 conf_t
*conf
= mddev_to_conf(mddev
);
1000 * If it is not operational, then we have already marked it as dead
1001 * else if it is the last working disks, ignore the error, let the
1002 * next level up know.
1003 * else mark the drive as failed
1005 if (test_bit(In_sync
, &rdev
->flags
)
1006 && conf
->raid_disks
-mddev
->degraded
== 1)
1008 * Don't fail the drive, just return an IO error.
1009 * The test should really be more sophisticated than
1010 * "working_disks == 1", but it isn't critical, and
1011 * can wait until we do more sophisticated "is the drive
1012 * really dead" tests...
1015 if (test_and_clear_bit(In_sync
, &rdev
->flags
)) {
1016 unsigned long flags
;
1017 spin_lock_irqsave(&conf
->device_lock
, flags
);
1019 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
1021 * if recovery is running, make sure it aborts.
1023 set_bit(MD_RECOVERY_ERR
, &mddev
->recovery
);
1025 set_bit(Faulty
, &rdev
->flags
);
1026 set_bit(MD_CHANGE_DEVS
, &mddev
->flags
);
1027 printk(KERN_ALERT
"raid10: Disk failure on %s, disabling device.\n"
1028 "raid10: Operation continuing on %d devices.\n",
1029 bdevname(rdev
->bdev
,b
), conf
->raid_disks
- mddev
->degraded
);
1032 static void print_conf(conf_t
*conf
)
1037 printk("RAID10 conf printout:\n");
1039 printk("(!conf)\n");
1042 printk(" --- wd:%d rd:%d\n", conf
->raid_disks
- conf
->mddev
->degraded
,
1045 for (i
= 0; i
< conf
->raid_disks
; i
++) {
1046 char b
[BDEVNAME_SIZE
];
1047 tmp
= conf
->mirrors
+ i
;
1049 printk(" disk %d, wo:%d, o:%d, dev:%s\n",
1050 i
, !test_bit(In_sync
, &tmp
->rdev
->flags
),
1051 !test_bit(Faulty
, &tmp
->rdev
->flags
),
1052 bdevname(tmp
->rdev
->bdev
,b
));
1056 static void close_sync(conf_t
*conf
)
1059 allow_barrier(conf
);
1061 mempool_destroy(conf
->r10buf_pool
);
1062 conf
->r10buf_pool
= NULL
;
1065 /* check if there are enough drives for
1066 * every block to appear on atleast one
1068 static int enough(conf_t
*conf
)
1073 int n
= conf
->copies
;
1076 if (conf
->mirrors
[first
].rdev
)
1078 first
= (first
+1) % conf
->raid_disks
;
1082 } while (first
!= 0);
1086 static int raid10_spare_active(mddev_t
*mddev
)
1089 conf_t
*conf
= mddev
->private;
1093 * Find all non-in_sync disks within the RAID10 configuration
1094 * and mark them in_sync
1096 for (i
= 0; i
< conf
->raid_disks
; i
++) {
1097 tmp
= conf
->mirrors
+ i
;
1099 && !test_bit(Faulty
, &tmp
->rdev
->flags
)
1100 && !test_and_set_bit(In_sync
, &tmp
->rdev
->flags
)) {
1101 unsigned long flags
;
1102 spin_lock_irqsave(&conf
->device_lock
, flags
);
1104 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
1113 static int raid10_add_disk(mddev_t
*mddev
, mdk_rdev_t
*rdev
)
1115 conf_t
*conf
= mddev
->private;
1120 if (mddev
->recovery_cp
< MaxSector
)
1121 /* only hot-add to in-sync arrays, as recovery is
1122 * very different from resync
1128 if (rdev
->saved_raid_disk
>= 0 &&
1129 conf
->mirrors
[rdev
->saved_raid_disk
].rdev
== NULL
)
1130 mirror
= rdev
->saved_raid_disk
;
1133 for ( ; mirror
< mddev
->raid_disks
; mirror
++)
1134 if ( !(p
=conf
->mirrors
+mirror
)->rdev
) {
1136 blk_queue_stack_limits(mddev
->queue
,
1137 rdev
->bdev
->bd_disk
->queue
);
1138 /* as we don't honour merge_bvec_fn, we must never risk
1139 * violating it, so limit ->max_sector to one PAGE, as
1140 * a one page request is never in violation.
1142 if (rdev
->bdev
->bd_disk
->queue
->merge_bvec_fn
&&
1143 mddev
->queue
->max_sectors
> (PAGE_SIZE
>>9))
1144 mddev
->queue
->max_sectors
= (PAGE_SIZE
>>9);
1146 p
->head_position
= 0;
1147 rdev
->raid_disk
= mirror
;
1149 if (rdev
->saved_raid_disk
!= mirror
)
1151 rcu_assign_pointer(p
->rdev
, rdev
);
1159 static int raid10_remove_disk(mddev_t
*mddev
, int number
)
1161 conf_t
*conf
= mddev
->private;
1164 mirror_info_t
*p
= conf
->mirrors
+ number
;
1169 if (test_bit(In_sync
, &rdev
->flags
) ||
1170 atomic_read(&rdev
->nr_pending
)) {
1176 if (atomic_read(&rdev
->nr_pending
)) {
1177 /* lost the race, try later */
1189 static void end_sync_read(struct bio
*bio
, int error
)
1191 r10bio_t
* r10_bio
= (r10bio_t
*)(bio
->bi_private
);
1192 conf_t
*conf
= mddev_to_conf(r10_bio
->mddev
);
1195 for (i
=0; i
<conf
->copies
; i
++)
1196 if (r10_bio
->devs
[i
].bio
== bio
)
1198 BUG_ON(i
== conf
->copies
);
1199 update_head_pos(i
, r10_bio
);
1200 d
= r10_bio
->devs
[i
].devnum
;
1202 if (test_bit(BIO_UPTODATE
, &bio
->bi_flags
))
1203 set_bit(R10BIO_Uptodate
, &r10_bio
->state
);
1205 atomic_add(r10_bio
->sectors
,
1206 &conf
->mirrors
[d
].rdev
->corrected_errors
);
1207 if (!test_bit(MD_RECOVERY_SYNC
, &conf
->mddev
->recovery
))
1208 md_error(r10_bio
->mddev
,
1209 conf
->mirrors
[d
].rdev
);
1212 /* for reconstruct, we always reschedule after a read.
1213 * for resync, only after all reads
1215 if (test_bit(R10BIO_IsRecover
, &r10_bio
->state
) ||
1216 atomic_dec_and_test(&r10_bio
->remaining
)) {
1217 /* we have read all the blocks,
1218 * do the comparison in process context in raid10d
1220 reschedule_retry(r10_bio
);
1222 rdev_dec_pending(conf
->mirrors
[d
].rdev
, conf
->mddev
);
1225 static void end_sync_write(struct bio
*bio
, int error
)
1227 int uptodate
= test_bit(BIO_UPTODATE
, &bio
->bi_flags
);
1228 r10bio_t
* r10_bio
= (r10bio_t
*)(bio
->bi_private
);
1229 mddev_t
*mddev
= r10_bio
->mddev
;
1230 conf_t
*conf
= mddev_to_conf(mddev
);
1233 for (i
= 0; i
< conf
->copies
; i
++)
1234 if (r10_bio
->devs
[i
].bio
== bio
)
1236 d
= r10_bio
->devs
[i
].devnum
;
1239 md_error(mddev
, conf
->mirrors
[d
].rdev
);
1240 update_head_pos(i
, r10_bio
);
1242 while (atomic_dec_and_test(&r10_bio
->remaining
)) {
1243 if (r10_bio
->master_bio
== NULL
) {
1244 /* the primary of several recovery bios */
1245 md_done_sync(mddev
, r10_bio
->sectors
, 1);
1249 r10bio_t
*r10_bio2
= (r10bio_t
*)r10_bio
->master_bio
;
1254 rdev_dec_pending(conf
->mirrors
[d
].rdev
, mddev
);
1258 * Note: sync and recover and handled very differently for raid10
1259 * This code is for resync.
1260 * For resync, we read through virtual addresses and read all blocks.
1261 * If there is any error, we schedule a write. The lowest numbered
1262 * drive is authoritative.
1263 * However requests come for physical address, so we need to map.
1264 * For every physical address there are raid_disks/copies virtual addresses,
1265 * which is always are least one, but is not necessarly an integer.
1266 * This means that a physical address can span multiple chunks, so we may
1267 * have to submit multiple io requests for a single sync request.
1270 * We check if all blocks are in-sync and only write to blocks that
1273 static void sync_request_write(mddev_t
*mddev
, r10bio_t
*r10_bio
)
1275 conf_t
*conf
= mddev_to_conf(mddev
);
1277 struct bio
*tbio
, *fbio
;
1279 atomic_set(&r10_bio
->remaining
, 1);
1281 /* find the first device with a block */
1282 for (i
=0; i
<conf
->copies
; i
++)
1283 if (test_bit(BIO_UPTODATE
, &r10_bio
->devs
[i
].bio
->bi_flags
))
1286 if (i
== conf
->copies
)
1290 fbio
= r10_bio
->devs
[i
].bio
;
1292 /* now find blocks with errors */
1293 for (i
=0 ; i
< conf
->copies
; i
++) {
1295 int vcnt
= r10_bio
->sectors
>> (PAGE_SHIFT
-9);
1297 tbio
= r10_bio
->devs
[i
].bio
;
1299 if (tbio
->bi_end_io
!= end_sync_read
)
1303 if (test_bit(BIO_UPTODATE
, &r10_bio
->devs
[i
].bio
->bi_flags
)) {
1304 /* We know that the bi_io_vec layout is the same for
1305 * both 'first' and 'i', so we just compare them.
1306 * All vec entries are PAGE_SIZE;
1308 for (j
= 0; j
< vcnt
; j
++)
1309 if (memcmp(page_address(fbio
->bi_io_vec
[j
].bv_page
),
1310 page_address(tbio
->bi_io_vec
[j
].bv_page
),
1315 mddev
->resync_mismatches
+= r10_bio
->sectors
;
1317 if (test_bit(MD_RECOVERY_CHECK
, &mddev
->recovery
))
1318 /* Don't fix anything. */
1320 /* Ok, we need to write this bio
1321 * First we need to fixup bv_offset, bv_len and
1322 * bi_vecs, as the read request might have corrupted these
1324 tbio
->bi_vcnt
= vcnt
;
1325 tbio
->bi_size
= r10_bio
->sectors
<< 9;
1327 tbio
->bi_phys_segments
= 0;
1328 tbio
->bi_hw_segments
= 0;
1329 tbio
->bi_hw_front_size
= 0;
1330 tbio
->bi_hw_back_size
= 0;
1331 tbio
->bi_flags
&= ~(BIO_POOL_MASK
- 1);
1332 tbio
->bi_flags
|= 1 << BIO_UPTODATE
;
1333 tbio
->bi_next
= NULL
;
1334 tbio
->bi_rw
= WRITE
;
1335 tbio
->bi_private
= r10_bio
;
1336 tbio
->bi_sector
= r10_bio
->devs
[i
].addr
;
1338 for (j
=0; j
< vcnt
; j
++) {
1339 tbio
->bi_io_vec
[j
].bv_offset
= 0;
1340 tbio
->bi_io_vec
[j
].bv_len
= PAGE_SIZE
;
1342 memcpy(page_address(tbio
->bi_io_vec
[j
].bv_page
),
1343 page_address(fbio
->bi_io_vec
[j
].bv_page
),
1346 tbio
->bi_end_io
= end_sync_write
;
1348 d
= r10_bio
->devs
[i
].devnum
;
1349 atomic_inc(&conf
->mirrors
[d
].rdev
->nr_pending
);
1350 atomic_inc(&r10_bio
->remaining
);
1351 md_sync_acct(conf
->mirrors
[d
].rdev
->bdev
, tbio
->bi_size
>> 9);
1353 tbio
->bi_sector
+= conf
->mirrors
[d
].rdev
->data_offset
;
1354 tbio
->bi_bdev
= conf
->mirrors
[d
].rdev
->bdev
;
1355 generic_make_request(tbio
);
1359 if (atomic_dec_and_test(&r10_bio
->remaining
)) {
1360 md_done_sync(mddev
, r10_bio
->sectors
, 1);
1366 * Now for the recovery code.
1367 * Recovery happens across physical sectors.
1368 * We recover all non-is_sync drives by finding the virtual address of
1369 * each, and then choose a working drive that also has that virt address.
1370 * There is a separate r10_bio for each non-in_sync drive.
1371 * Only the first two slots are in use. The first for reading,
1372 * The second for writing.
1376 static void recovery_request_write(mddev_t
*mddev
, r10bio_t
*r10_bio
)
1378 conf_t
*conf
= mddev_to_conf(mddev
);
1380 struct bio
*bio
, *wbio
;
1383 /* move the pages across to the second bio
1384 * and submit the write request
1386 bio
= r10_bio
->devs
[0].bio
;
1387 wbio
= r10_bio
->devs
[1].bio
;
1388 for (i
=0; i
< wbio
->bi_vcnt
; i
++) {
1389 struct page
*p
= bio
->bi_io_vec
[i
].bv_page
;
1390 bio
->bi_io_vec
[i
].bv_page
= wbio
->bi_io_vec
[i
].bv_page
;
1391 wbio
->bi_io_vec
[i
].bv_page
= p
;
1393 d
= r10_bio
->devs
[1].devnum
;
1395 atomic_inc(&conf
->mirrors
[d
].rdev
->nr_pending
);
1396 md_sync_acct(conf
->mirrors
[d
].rdev
->bdev
, wbio
->bi_size
>> 9);
1397 if (test_bit(R10BIO_Uptodate
, &r10_bio
->state
))
1398 generic_make_request(wbio
);
1400 bio_endio(wbio
, -EIO
);
1405 * This is a kernel thread which:
1407 * 1. Retries failed read operations on working mirrors.
1408 * 2. Updates the raid superblock when problems encounter.
1409 * 3. Performs writes following reads for array synchronising.
1412 static void fix_read_error(conf_t
*conf
, mddev_t
*mddev
, r10bio_t
*r10_bio
)
1414 int sect
= 0; /* Offset from r10_bio->sector */
1415 int sectors
= r10_bio
->sectors
;
1419 int sl
= r10_bio
->read_slot
;
1423 if (s
> (PAGE_SIZE
>>9))
1428 int d
= r10_bio
->devs
[sl
].devnum
;
1429 rdev
= rcu_dereference(conf
->mirrors
[d
].rdev
);
1431 test_bit(In_sync
, &rdev
->flags
)) {
1432 atomic_inc(&rdev
->nr_pending
);
1434 success
= sync_page_io(rdev
->bdev
,
1435 r10_bio
->devs
[sl
].addr
+
1436 sect
+ rdev
->data_offset
,
1438 conf
->tmppage
, READ
);
1439 rdev_dec_pending(rdev
, mddev
);
1445 if (sl
== conf
->copies
)
1447 } while (!success
&& sl
!= r10_bio
->read_slot
);
1451 /* Cannot read from anywhere -- bye bye array */
1452 int dn
= r10_bio
->devs
[r10_bio
->read_slot
].devnum
;
1453 md_error(mddev
, conf
->mirrors
[dn
].rdev
);
1458 /* write it back and re-read */
1460 while (sl
!= r10_bio
->read_slot
) {
1465 d
= r10_bio
->devs
[sl
].devnum
;
1466 rdev
= rcu_dereference(conf
->mirrors
[d
].rdev
);
1468 test_bit(In_sync
, &rdev
->flags
)) {
1469 atomic_inc(&rdev
->nr_pending
);
1471 atomic_add(s
, &rdev
->corrected_errors
);
1472 if (sync_page_io(rdev
->bdev
,
1473 r10_bio
->devs
[sl
].addr
+
1474 sect
+ rdev
->data_offset
,
1475 s
<<9, conf
->tmppage
, WRITE
)
1477 /* Well, this device is dead */
1478 md_error(mddev
, rdev
);
1479 rdev_dec_pending(rdev
, mddev
);
1484 while (sl
!= r10_bio
->read_slot
) {
1489 d
= r10_bio
->devs
[sl
].devnum
;
1490 rdev
= rcu_dereference(conf
->mirrors
[d
].rdev
);
1492 test_bit(In_sync
, &rdev
->flags
)) {
1493 char b
[BDEVNAME_SIZE
];
1494 atomic_inc(&rdev
->nr_pending
);
1496 if (sync_page_io(rdev
->bdev
,
1497 r10_bio
->devs
[sl
].addr
+
1498 sect
+ rdev
->data_offset
,
1499 s
<<9, conf
->tmppage
, READ
) == 0)
1500 /* Well, this device is dead */
1501 md_error(mddev
, rdev
);
1504 "raid10:%s: read error corrected"
1505 " (%d sectors at %llu on %s)\n",
1507 (unsigned long long)(sect
+
1509 bdevname(rdev
->bdev
, b
));
1511 rdev_dec_pending(rdev
, mddev
);
1522 static void raid10d(mddev_t
*mddev
)
1526 unsigned long flags
;
1527 conf_t
*conf
= mddev_to_conf(mddev
);
1528 struct list_head
*head
= &conf
->retry_list
;
1532 md_check_recovery(mddev
);
1535 char b
[BDEVNAME_SIZE
];
1537 unplug
+= flush_pending_writes(conf
);
1539 spin_lock_irqsave(&conf
->device_lock
, flags
);
1540 if (list_empty(head
)) {
1541 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
1544 r10_bio
= list_entry(head
->prev
, r10bio_t
, retry_list
);
1545 list_del(head
->prev
);
1547 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
1549 mddev
= r10_bio
->mddev
;
1550 conf
= mddev_to_conf(mddev
);
1551 if (test_bit(R10BIO_IsSync
, &r10_bio
->state
)) {
1552 sync_request_write(mddev
, r10_bio
);
1554 } else if (test_bit(R10BIO_IsRecover
, &r10_bio
->state
)) {
1555 recovery_request_write(mddev
, r10_bio
);
1559 /* we got a read error. Maybe the drive is bad. Maybe just
1560 * the block and we can fix it.
1561 * We freeze all other IO, and try reading the block from
1562 * other devices. When we find one, we re-write
1563 * and check it that fixes the read error.
1564 * This is all done synchronously while the array is
1567 if (mddev
->ro
== 0) {
1569 fix_read_error(conf
, mddev
, r10_bio
);
1570 unfreeze_array(conf
);
1573 bio
= r10_bio
->devs
[r10_bio
->read_slot
].bio
;
1574 r10_bio
->devs
[r10_bio
->read_slot
].bio
=
1575 mddev
->ro
? IO_BLOCKED
: NULL
;
1576 mirror
= read_balance(conf
, r10_bio
);
1578 printk(KERN_ALERT
"raid10: %s: unrecoverable I/O"
1579 " read error for block %llu\n",
1580 bdevname(bio
->bi_bdev
,b
),
1581 (unsigned long long)r10_bio
->sector
);
1582 raid_end_bio_io(r10_bio
);
1585 const int do_sync
= bio_sync(r10_bio
->master_bio
);
1587 rdev
= conf
->mirrors
[mirror
].rdev
;
1588 if (printk_ratelimit())
1589 printk(KERN_ERR
"raid10: %s: redirecting sector %llu to"
1590 " another mirror\n",
1591 bdevname(rdev
->bdev
,b
),
1592 (unsigned long long)r10_bio
->sector
);
1593 bio
= bio_clone(r10_bio
->master_bio
, GFP_NOIO
);
1594 r10_bio
->devs
[r10_bio
->read_slot
].bio
= bio
;
1595 bio
->bi_sector
= r10_bio
->devs
[r10_bio
->read_slot
].addr
1596 + rdev
->data_offset
;
1597 bio
->bi_bdev
= rdev
->bdev
;
1598 bio
->bi_rw
= READ
| do_sync
;
1599 bio
->bi_private
= r10_bio
;
1600 bio
->bi_end_io
= raid10_end_read_request
;
1602 generic_make_request(bio
);
1607 unplug_slaves(mddev
);
1611 static int init_resync(conf_t
*conf
)
1615 buffs
= RESYNC_WINDOW
/ RESYNC_BLOCK_SIZE
;
1616 BUG_ON(conf
->r10buf_pool
);
1617 conf
->r10buf_pool
= mempool_create(buffs
, r10buf_pool_alloc
, r10buf_pool_free
, conf
);
1618 if (!conf
->r10buf_pool
)
1620 conf
->next_resync
= 0;
1625 * perform a "sync" on one "block"
1627 * We need to make sure that no normal I/O request - particularly write
1628 * requests - conflict with active sync requests.
1630 * This is achieved by tracking pending requests and a 'barrier' concept
1631 * that can be installed to exclude normal IO requests.
1633 * Resync and recovery are handled very differently.
1634 * We differentiate by looking at MD_RECOVERY_SYNC in mddev->recovery.
1636 * For resync, we iterate over virtual addresses, read all copies,
1637 * and update if there are differences. If only one copy is live,
1639 * For recovery, we iterate over physical addresses, read a good
1640 * value for each non-in_sync drive, and over-write.
1642 * So, for recovery we may have several outstanding complex requests for a
1643 * given address, one for each out-of-sync device. We model this by allocating
1644 * a number of r10_bio structures, one for each out-of-sync device.
1645 * As we setup these structures, we collect all bio's together into a list
1646 * which we then process collectively to add pages, and then process again
1647 * to pass to generic_make_request.
1649 * The r10_bio structures are linked using a borrowed master_bio pointer.
1650 * This link is counted in ->remaining. When the r10_bio that points to NULL
1651 * has its remaining count decremented to 0, the whole complex operation
1656 static sector_t
sync_request(mddev_t
*mddev
, sector_t sector_nr
, int *skipped
, int go_faster
)
1658 conf_t
*conf
= mddev_to_conf(mddev
);
1660 struct bio
*biolist
= NULL
, *bio
;
1661 sector_t max_sector
, nr_sectors
;
1667 sector_t sectors_skipped
= 0;
1668 int chunks_skipped
= 0;
1670 if (!conf
->r10buf_pool
)
1671 if (init_resync(conf
))
1675 max_sector
= mddev
->size
<< 1;
1676 if (test_bit(MD_RECOVERY_SYNC
, &mddev
->recovery
))
1677 max_sector
= mddev
->resync_max_sectors
;
1678 if (sector_nr
>= max_sector
) {
1679 /* If we aborted, we need to abort the
1680 * sync on the 'current' bitmap chucks (there can
1681 * be several when recovering multiple devices).
1682 * as we may have started syncing it but not finished.
1683 * We can find the current address in
1684 * mddev->curr_resync, but for recovery,
1685 * we need to convert that to several
1686 * virtual addresses.
1688 if (mddev
->curr_resync
< max_sector
) { /* aborted */
1689 if (test_bit(MD_RECOVERY_SYNC
, &mddev
->recovery
))
1690 bitmap_end_sync(mddev
->bitmap
, mddev
->curr_resync
,
1692 else for (i
=0; i
<conf
->raid_disks
; i
++) {
1694 raid10_find_virt(conf
, mddev
->curr_resync
, i
);
1695 bitmap_end_sync(mddev
->bitmap
, sect
,
1698 } else /* completed sync */
1701 bitmap_close_sync(mddev
->bitmap
);
1704 return sectors_skipped
;
1706 if (chunks_skipped
>= conf
->raid_disks
) {
1707 /* if there has been nothing to do on any drive,
1708 * then there is nothing to do at all..
1711 return (max_sector
- sector_nr
) + sectors_skipped
;
1714 if (max_sector
> mddev
->resync_max
)
1715 max_sector
= mddev
->resync_max
; /* Don't do IO beyond here */
1717 /* make sure whole request will fit in a chunk - if chunks
1720 if (conf
->near_copies
< conf
->raid_disks
&&
1721 max_sector
> (sector_nr
| conf
->chunk_mask
))
1722 max_sector
= (sector_nr
| conf
->chunk_mask
) + 1;
1724 * If there is non-resync activity waiting for us then
1725 * put in a delay to throttle resync.
1727 if (!go_faster
&& conf
->nr_waiting
)
1728 msleep_interruptible(1000);
1730 bitmap_cond_end_sync(mddev
->bitmap
, sector_nr
);
1732 /* Again, very different code for resync and recovery.
1733 * Both must result in an r10bio with a list of bios that
1734 * have bi_end_io, bi_sector, bi_bdev set,
1735 * and bi_private set to the r10bio.
1736 * For recovery, we may actually create several r10bios
1737 * with 2 bios in each, that correspond to the bios in the main one.
1738 * In this case, the subordinate r10bios link back through a
1739 * borrowed master_bio pointer, and the counter in the master
1740 * includes a ref from each subordinate.
1742 /* First, we decide what to do and set ->bi_end_io
1743 * To end_sync_read if we want to read, and
1744 * end_sync_write if we will want to write.
1747 max_sync
= RESYNC_PAGES
<< (PAGE_SHIFT
-9);
1748 if (!test_bit(MD_RECOVERY_SYNC
, &mddev
->recovery
)) {
1749 /* recovery... the complicated one */
1753 for (i
=0 ; i
<conf
->raid_disks
; i
++)
1754 if (conf
->mirrors
[i
].rdev
&&
1755 !test_bit(In_sync
, &conf
->mirrors
[i
].rdev
->flags
)) {
1756 int still_degraded
= 0;
1757 /* want to reconstruct this device */
1758 r10bio_t
*rb2
= r10_bio
;
1759 sector_t sect
= raid10_find_virt(conf
, sector_nr
, i
);
1761 /* Unless we are doing a full sync, we only need
1762 * to recover the block if it is set in the bitmap
1764 must_sync
= bitmap_start_sync(mddev
->bitmap
, sect
,
1766 if (sync_blocks
< max_sync
)
1767 max_sync
= sync_blocks
;
1770 /* yep, skip the sync_blocks here, but don't assume
1771 * that there will never be anything to do here
1773 chunks_skipped
= -1;
1777 r10_bio
= mempool_alloc(conf
->r10buf_pool
, GFP_NOIO
);
1778 raise_barrier(conf
, rb2
!= NULL
);
1779 atomic_set(&r10_bio
->remaining
, 0);
1781 r10_bio
->master_bio
= (struct bio
*)rb2
;
1783 atomic_inc(&rb2
->remaining
);
1784 r10_bio
->mddev
= mddev
;
1785 set_bit(R10BIO_IsRecover
, &r10_bio
->state
);
1786 r10_bio
->sector
= sect
;
1788 raid10_find_phys(conf
, r10_bio
);
1789 /* Need to check if this section will still be
1792 for (j
=0; j
<conf
->copies
;j
++) {
1793 int d
= r10_bio
->devs
[j
].devnum
;
1794 if (conf
->mirrors
[d
].rdev
== NULL
||
1795 test_bit(Faulty
, &conf
->mirrors
[d
].rdev
->flags
)) {
1800 must_sync
= bitmap_start_sync(mddev
->bitmap
, sect
,
1801 &sync_blocks
, still_degraded
);
1803 for (j
=0; j
<conf
->copies
;j
++) {
1804 int d
= r10_bio
->devs
[j
].devnum
;
1805 if (conf
->mirrors
[d
].rdev
&&
1806 test_bit(In_sync
, &conf
->mirrors
[d
].rdev
->flags
)) {
1807 /* This is where we read from */
1808 bio
= r10_bio
->devs
[0].bio
;
1809 bio
->bi_next
= biolist
;
1811 bio
->bi_private
= r10_bio
;
1812 bio
->bi_end_io
= end_sync_read
;
1814 bio
->bi_sector
= r10_bio
->devs
[j
].addr
+
1815 conf
->mirrors
[d
].rdev
->data_offset
;
1816 bio
->bi_bdev
= conf
->mirrors
[d
].rdev
->bdev
;
1817 atomic_inc(&conf
->mirrors
[d
].rdev
->nr_pending
);
1818 atomic_inc(&r10_bio
->remaining
);
1819 /* and we write to 'i' */
1821 for (k
=0; k
<conf
->copies
; k
++)
1822 if (r10_bio
->devs
[k
].devnum
== i
)
1824 BUG_ON(k
== conf
->copies
);
1825 bio
= r10_bio
->devs
[1].bio
;
1826 bio
->bi_next
= biolist
;
1828 bio
->bi_private
= r10_bio
;
1829 bio
->bi_end_io
= end_sync_write
;
1831 bio
->bi_sector
= r10_bio
->devs
[k
].addr
+
1832 conf
->mirrors
[i
].rdev
->data_offset
;
1833 bio
->bi_bdev
= conf
->mirrors
[i
].rdev
->bdev
;
1835 r10_bio
->devs
[0].devnum
= d
;
1836 r10_bio
->devs
[1].devnum
= i
;
1841 if (j
== conf
->copies
) {
1842 /* Cannot recover, so abort the recovery */
1845 atomic_dec(&rb2
->remaining
);
1847 if (!test_and_set_bit(MD_RECOVERY_ERR
, &mddev
->recovery
))
1848 printk(KERN_INFO
"raid10: %s: insufficient working devices for recovery.\n",
1853 if (biolist
== NULL
) {
1855 r10bio_t
*rb2
= r10_bio
;
1856 r10_bio
= (r10bio_t
*) rb2
->master_bio
;
1857 rb2
->master_bio
= NULL
;
1863 /* resync. Schedule a read for every block at this virt offset */
1866 if (!bitmap_start_sync(mddev
->bitmap
, sector_nr
,
1867 &sync_blocks
, mddev
->degraded
) &&
1868 !conf
->fullsync
&& !test_bit(MD_RECOVERY_REQUESTED
, &mddev
->recovery
)) {
1869 /* We can skip this block */
1871 return sync_blocks
+ sectors_skipped
;
1873 if (sync_blocks
< max_sync
)
1874 max_sync
= sync_blocks
;
1875 r10_bio
= mempool_alloc(conf
->r10buf_pool
, GFP_NOIO
);
1877 r10_bio
->mddev
= mddev
;
1878 atomic_set(&r10_bio
->remaining
, 0);
1879 raise_barrier(conf
, 0);
1880 conf
->next_resync
= sector_nr
;
1882 r10_bio
->master_bio
= NULL
;
1883 r10_bio
->sector
= sector_nr
;
1884 set_bit(R10BIO_IsSync
, &r10_bio
->state
);
1885 raid10_find_phys(conf
, r10_bio
);
1886 r10_bio
->sectors
= (sector_nr
| conf
->chunk_mask
) - sector_nr
+1;
1888 for (i
=0; i
<conf
->copies
; i
++) {
1889 int d
= r10_bio
->devs
[i
].devnum
;
1890 bio
= r10_bio
->devs
[i
].bio
;
1891 bio
->bi_end_io
= NULL
;
1892 clear_bit(BIO_UPTODATE
, &bio
->bi_flags
);
1893 if (conf
->mirrors
[d
].rdev
== NULL
||
1894 test_bit(Faulty
, &conf
->mirrors
[d
].rdev
->flags
))
1896 atomic_inc(&conf
->mirrors
[d
].rdev
->nr_pending
);
1897 atomic_inc(&r10_bio
->remaining
);
1898 bio
->bi_next
= biolist
;
1900 bio
->bi_private
= r10_bio
;
1901 bio
->bi_end_io
= end_sync_read
;
1903 bio
->bi_sector
= r10_bio
->devs
[i
].addr
+
1904 conf
->mirrors
[d
].rdev
->data_offset
;
1905 bio
->bi_bdev
= conf
->mirrors
[d
].rdev
->bdev
;
1910 for (i
=0; i
<conf
->copies
; i
++) {
1911 int d
= r10_bio
->devs
[i
].devnum
;
1912 if (r10_bio
->devs
[i
].bio
->bi_end_io
)
1913 rdev_dec_pending(conf
->mirrors
[d
].rdev
, mddev
);
1921 for (bio
= biolist
; bio
; bio
=bio
->bi_next
) {
1923 bio
->bi_flags
&= ~(BIO_POOL_MASK
- 1);
1925 bio
->bi_flags
|= 1 << BIO_UPTODATE
;
1928 bio
->bi_phys_segments
= 0;
1929 bio
->bi_hw_segments
= 0;
1934 if (sector_nr
+ max_sync
< max_sector
)
1935 max_sector
= sector_nr
+ max_sync
;
1938 int len
= PAGE_SIZE
;
1940 if (sector_nr
+ (len
>>9) > max_sector
)
1941 len
= (max_sector
- sector_nr
) << 9;
1944 for (bio
= biolist
; bio
; bio
=bio
->bi_next
) {
1945 page
= bio
->bi_io_vec
[bio
->bi_vcnt
].bv_page
;
1946 if (bio_add_page(bio
, page
, len
, 0) == 0) {
1949 bio
->bi_io_vec
[bio
->bi_vcnt
].bv_page
= page
;
1950 for (bio2
= biolist
; bio2
&& bio2
!= bio
; bio2
= bio2
->bi_next
) {
1951 /* remove last page from this bio */
1953 bio2
->bi_size
-= len
;
1954 bio2
->bi_flags
&= ~(1<< BIO_SEG_VALID
);
1960 nr_sectors
+= len
>>9;
1961 sector_nr
+= len
>>9;
1962 } while (biolist
->bi_vcnt
< RESYNC_PAGES
);
1964 r10_bio
->sectors
= nr_sectors
;
1968 biolist
= biolist
->bi_next
;
1970 bio
->bi_next
= NULL
;
1971 r10_bio
= bio
->bi_private
;
1972 r10_bio
->sectors
= nr_sectors
;
1974 if (bio
->bi_end_io
== end_sync_read
) {
1975 md_sync_acct(bio
->bi_bdev
, nr_sectors
);
1976 generic_make_request(bio
);
1980 if (sectors_skipped
)
1981 /* pretend they weren't skipped, it makes
1982 * no important difference in this case
1984 md_done_sync(mddev
, sectors_skipped
, 1);
1986 return sectors_skipped
+ nr_sectors
;
1988 /* There is nowhere to write, so all non-sync
1989 * drives must be failed, so try the next chunk...
1992 sector_t sec
= max_sector
- sector_nr
;
1993 sectors_skipped
+= sec
;
1995 sector_nr
= max_sector
;
2000 static int run(mddev_t
*mddev
)
2004 mirror_info_t
*disk
;
2006 struct list_head
*tmp
;
2008 sector_t stride
, size
;
2010 if (mddev
->chunk_size
== 0) {
2011 printk(KERN_ERR
"md/raid10: non-zero chunk size required.\n");
2015 nc
= mddev
->layout
& 255;
2016 fc
= (mddev
->layout
>> 8) & 255;
2017 fo
= mddev
->layout
& (1<<16);
2018 if ((nc
*fc
) <2 || (nc
*fc
) > mddev
->raid_disks
||
2019 (mddev
->layout
>> 17)) {
2020 printk(KERN_ERR
"raid10: %s: unsupported raid10 layout: 0x%8x\n",
2021 mdname(mddev
), mddev
->layout
);
2025 * copy the already verified devices into our private RAID10
2026 * bookkeeping area. [whatever we allocate in run(),
2027 * should be freed in stop()]
2029 conf
= kzalloc(sizeof(conf_t
), GFP_KERNEL
);
2030 mddev
->private = conf
;
2032 printk(KERN_ERR
"raid10: couldn't allocate memory for %s\n",
2036 conf
->mirrors
= kzalloc(sizeof(struct mirror_info
)*mddev
->raid_disks
,
2038 if (!conf
->mirrors
) {
2039 printk(KERN_ERR
"raid10: couldn't allocate memory for %s\n",
2044 conf
->tmppage
= alloc_page(GFP_KERNEL
);
2048 conf
->mddev
= mddev
;
2049 conf
->raid_disks
= mddev
->raid_disks
;
2050 conf
->near_copies
= nc
;
2051 conf
->far_copies
= fc
;
2052 conf
->copies
= nc
*fc
;
2053 conf
->far_offset
= fo
;
2054 conf
->chunk_mask
= (sector_t
)(mddev
->chunk_size
>>9)-1;
2055 conf
->chunk_shift
= ffz(~mddev
->chunk_size
) - 9;
2056 size
= mddev
->size
>> (conf
->chunk_shift
-1);
2057 sector_div(size
, fc
);
2058 size
= size
* conf
->raid_disks
;
2059 sector_div(size
, nc
);
2060 /* 'size' is now the number of chunks in the array */
2061 /* calculate "used chunks per device" in 'stride' */
2062 stride
= size
* conf
->copies
;
2064 /* We need to round up when dividing by raid_disks to
2065 * get the stride size.
2067 stride
+= conf
->raid_disks
- 1;
2068 sector_div(stride
, conf
->raid_disks
);
2069 mddev
->size
= stride
<< (conf
->chunk_shift
-1);
2074 sector_div(stride
, fc
);
2075 conf
->stride
= stride
<< conf
->chunk_shift
;
2077 conf
->r10bio_pool
= mempool_create(NR_RAID10_BIOS
, r10bio_pool_alloc
,
2078 r10bio_pool_free
, conf
);
2079 if (!conf
->r10bio_pool
) {
2080 printk(KERN_ERR
"raid10: couldn't allocate memory for %s\n",
2085 rdev_for_each(rdev
, tmp
, mddev
) {
2086 disk_idx
= rdev
->raid_disk
;
2087 if (disk_idx
>= mddev
->raid_disks
2090 disk
= conf
->mirrors
+ disk_idx
;
2094 blk_queue_stack_limits(mddev
->queue
,
2095 rdev
->bdev
->bd_disk
->queue
);
2096 /* as we don't honour merge_bvec_fn, we must never risk
2097 * violating it, so limit ->max_sector to one PAGE, as
2098 * a one page request is never in violation.
2100 if (rdev
->bdev
->bd_disk
->queue
->merge_bvec_fn
&&
2101 mddev
->queue
->max_sectors
> (PAGE_SIZE
>>9))
2102 mddev
->queue
->max_sectors
= (PAGE_SIZE
>>9);
2104 disk
->head_position
= 0;
2106 spin_lock_init(&conf
->device_lock
);
2107 INIT_LIST_HEAD(&conf
->retry_list
);
2109 spin_lock_init(&conf
->resync_lock
);
2110 init_waitqueue_head(&conf
->wait_barrier
);
2112 /* need to check that every block has at least one working mirror */
2113 if (!enough(conf
)) {
2114 printk(KERN_ERR
"raid10: not enough operational mirrors for %s\n",
2119 mddev
->degraded
= 0;
2120 for (i
= 0; i
< conf
->raid_disks
; i
++) {
2122 disk
= conf
->mirrors
+ i
;
2125 !test_bit(In_sync
, &disk
->rdev
->flags
)) {
2126 disk
->head_position
= 0;
2132 mddev
->thread
= md_register_thread(raid10d
, mddev
, "%s_raid10");
2133 if (!mddev
->thread
) {
2135 "raid10: couldn't allocate thread for %s\n",
2141 "raid10: raid set %s active with %d out of %d devices\n",
2142 mdname(mddev
), mddev
->raid_disks
- mddev
->degraded
,
2145 * Ok, everything is just fine now
2147 mddev
->array_size
= size
<< (conf
->chunk_shift
-1);
2148 mddev
->resync_max_sectors
= size
<< conf
->chunk_shift
;
2150 mddev
->queue
->unplug_fn
= raid10_unplug
;
2151 mddev
->queue
->backing_dev_info
.congested_fn
= raid10_congested
;
2152 mddev
->queue
->backing_dev_info
.congested_data
= mddev
;
2154 /* Calculate max read-ahead size.
2155 * We need to readahead at least twice a whole stripe....
2159 int stripe
= conf
->raid_disks
* (mddev
->chunk_size
/ PAGE_SIZE
);
2160 stripe
/= conf
->near_copies
;
2161 if (mddev
->queue
->backing_dev_info
.ra_pages
< 2* stripe
)
2162 mddev
->queue
->backing_dev_info
.ra_pages
= 2* stripe
;
2165 if (conf
->near_copies
< mddev
->raid_disks
)
2166 blk_queue_merge_bvec(mddev
->queue
, raid10_mergeable_bvec
);
2170 if (conf
->r10bio_pool
)
2171 mempool_destroy(conf
->r10bio_pool
);
2172 safe_put_page(conf
->tmppage
);
2173 kfree(conf
->mirrors
);
2175 mddev
->private = NULL
;
2180 static int stop(mddev_t
*mddev
)
2182 conf_t
*conf
= mddev_to_conf(mddev
);
2184 md_unregister_thread(mddev
->thread
);
2185 mddev
->thread
= NULL
;
2186 blk_sync_queue(mddev
->queue
); /* the unplug fn references 'conf'*/
2187 if (conf
->r10bio_pool
)
2188 mempool_destroy(conf
->r10bio_pool
);
2189 kfree(conf
->mirrors
);
2191 mddev
->private = NULL
;
2195 static void raid10_quiesce(mddev_t
*mddev
, int state
)
2197 conf_t
*conf
= mddev_to_conf(mddev
);
2201 raise_barrier(conf
, 0);
2204 lower_barrier(conf
);
2207 if (mddev
->thread
) {
2209 mddev
->thread
->timeout
= mddev
->bitmap
->daemon_sleep
* HZ
;
2211 mddev
->thread
->timeout
= MAX_SCHEDULE_TIMEOUT
;
2212 md_wakeup_thread(mddev
->thread
);
2216 static struct mdk_personality raid10_personality
=
2220 .owner
= THIS_MODULE
,
2221 .make_request
= make_request
,
2225 .error_handler
= error
,
2226 .hot_add_disk
= raid10_add_disk
,
2227 .hot_remove_disk
= raid10_remove_disk
,
2228 .spare_active
= raid10_spare_active
,
2229 .sync_request
= sync_request
,
2230 .quiesce
= raid10_quiesce
,
2233 static int __init
raid_init(void)
2235 return register_md_personality(&raid10_personality
);
2238 static void raid_exit(void)
2240 unregister_md_personality(&raid10_personality
);
2243 module_init(raid_init
);
2244 module_exit(raid_exit
);
2245 MODULE_LICENSE("GPL");
2246 MODULE_ALIAS("md-personality-9"); /* RAID10 */
2247 MODULE_ALIAS("md-raid10");
2248 MODULE_ALIAS("md-level-10");