2 * linux/mm/page_alloc.c
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
17 #include <linux/stddef.h>
19 #include <linux/swap.h>
20 #include <linux/interrupt.h>
21 #include <linux/pagemap.h>
22 #include <linux/jiffies.h>
23 #include <linux/bootmem.h>
24 #include <linux/compiler.h>
25 #include <linux/kernel.h>
26 #include <linux/module.h>
27 #include <linux/suspend.h>
28 #include <linux/pagevec.h>
29 #include <linux/blkdev.h>
30 #include <linux/slab.h>
31 #include <linux/oom.h>
32 #include <linux/notifier.h>
33 #include <linux/topology.h>
34 #include <linux/sysctl.h>
35 #include <linux/cpu.h>
36 #include <linux/cpuset.h>
37 #include <linux/memory_hotplug.h>
38 #include <linux/nodemask.h>
39 #include <linux/vmalloc.h>
40 #include <linux/mempolicy.h>
41 #include <linux/stop_machine.h>
42 #include <linux/sort.h>
43 #include <linux/pfn.h>
44 #include <linux/backing-dev.h>
45 #include <linux/fault-inject.h>
46 #include <linux/page-isolation.h>
47 #include <linux/memcontrol.h>
48 #include <linux/debugobjects.h>
50 #include <asm/tlbflush.h>
51 #include <asm/div64.h>
55 * Array of node states.
57 nodemask_t node_states
[NR_NODE_STATES
] __read_mostly
= {
58 [N_POSSIBLE
] = NODE_MASK_ALL
,
59 [N_ONLINE
] = { { [0] = 1UL } },
61 [N_NORMAL_MEMORY
] = { { [0] = 1UL } },
63 [N_HIGH_MEMORY
] = { { [0] = 1UL } },
65 [N_CPU
] = { { [0] = 1UL } },
68 EXPORT_SYMBOL(node_states
);
70 unsigned long totalram_pages __read_mostly
;
71 unsigned long totalreserve_pages __read_mostly
;
73 int percpu_pagelist_fraction
;
75 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
76 int pageblock_order __read_mostly
;
79 static void __free_pages_ok(struct page
*page
, unsigned int order
);
82 * results with 256, 32 in the lowmem_reserve sysctl:
83 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
84 * 1G machine -> (16M dma, 784M normal, 224M high)
85 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
86 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
87 * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
89 * TBD: should special case ZONE_DMA32 machines here - in those we normally
90 * don't need any ZONE_NORMAL reservation
92 int sysctl_lowmem_reserve_ratio
[MAX_NR_ZONES
-1] = {
93 #ifdef CONFIG_ZONE_DMA
96 #ifdef CONFIG_ZONE_DMA32
105 EXPORT_SYMBOL(totalram_pages
);
107 static char * const zone_names
[MAX_NR_ZONES
] = {
108 #ifdef CONFIG_ZONE_DMA
111 #ifdef CONFIG_ZONE_DMA32
115 #ifdef CONFIG_HIGHMEM
121 int min_free_kbytes
= 1024;
123 unsigned long __meminitdata nr_kernel_pages
;
124 unsigned long __meminitdata nr_all_pages
;
125 static unsigned long __meminitdata dma_reserve
;
127 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
129 * MAX_ACTIVE_REGIONS determines the maximum number of distinct
130 * ranges of memory (RAM) that may be registered with add_active_range().
131 * Ranges passed to add_active_range() will be merged if possible
132 * so the number of times add_active_range() can be called is
133 * related to the number of nodes and the number of holes
135 #ifdef CONFIG_MAX_ACTIVE_REGIONS
136 /* Allow an architecture to set MAX_ACTIVE_REGIONS to save memory */
137 #define MAX_ACTIVE_REGIONS CONFIG_MAX_ACTIVE_REGIONS
139 #if MAX_NUMNODES >= 32
140 /* If there can be many nodes, allow up to 50 holes per node */
141 #define MAX_ACTIVE_REGIONS (MAX_NUMNODES*50)
143 /* By default, allow up to 256 distinct regions */
144 #define MAX_ACTIVE_REGIONS 256
148 static struct node_active_region __meminitdata early_node_map
[MAX_ACTIVE_REGIONS
];
149 static int __meminitdata nr_nodemap_entries
;
150 static unsigned long __meminitdata arch_zone_lowest_possible_pfn
[MAX_NR_ZONES
];
151 static unsigned long __meminitdata arch_zone_highest_possible_pfn
[MAX_NR_ZONES
];
152 #ifdef CONFIG_MEMORY_HOTPLUG_RESERVE
153 static unsigned long __meminitdata node_boundary_start_pfn
[MAX_NUMNODES
];
154 static unsigned long __meminitdata node_boundary_end_pfn
[MAX_NUMNODES
];
155 #endif /* CONFIG_MEMORY_HOTPLUG_RESERVE */
156 unsigned long __initdata required_kernelcore
;
157 static unsigned long __initdata required_movablecore
;
158 unsigned long __meminitdata zone_movable_pfn
[MAX_NUMNODES
];
160 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
162 EXPORT_SYMBOL(movable_zone
);
163 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
166 int nr_node_ids __read_mostly
= MAX_NUMNODES
;
167 EXPORT_SYMBOL(nr_node_ids
);
170 int page_group_by_mobility_disabled __read_mostly
;
172 static void set_pageblock_migratetype(struct page
*page
, int migratetype
)
174 set_pageblock_flags_group(page
, (unsigned long)migratetype
,
175 PB_migrate
, PB_migrate_end
);
178 #ifdef CONFIG_DEBUG_VM
179 static int page_outside_zone_boundaries(struct zone
*zone
, struct page
*page
)
183 unsigned long pfn
= page_to_pfn(page
);
186 seq
= zone_span_seqbegin(zone
);
187 if (pfn
>= zone
->zone_start_pfn
+ zone
->spanned_pages
)
189 else if (pfn
< zone
->zone_start_pfn
)
191 } while (zone_span_seqretry(zone
, seq
));
196 static int page_is_consistent(struct zone
*zone
, struct page
*page
)
198 if (!pfn_valid_within(page_to_pfn(page
)))
200 if (zone
!= page_zone(page
))
206 * Temporary debugging check for pages not lying within a given zone.
208 static int bad_range(struct zone
*zone
, struct page
*page
)
210 if (page_outside_zone_boundaries(zone
, page
))
212 if (!page_is_consistent(zone
, page
))
218 static inline int bad_range(struct zone
*zone
, struct page
*page
)
224 static void bad_page(struct page
*page
)
226 void *pc
= page_get_page_cgroup(page
);
228 printk(KERN_EMERG
"Bad page state in process '%s'\n" KERN_EMERG
229 "page:%p flags:0x%0*lx mapping:%p mapcount:%d count:%d\n",
230 current
->comm
, page
, (int)(2*sizeof(unsigned long)),
231 (unsigned long)page
->flags
, page
->mapping
,
232 page_mapcount(page
), page_count(page
));
234 printk(KERN_EMERG
"cgroup:%p\n", pc
);
235 page_reset_bad_cgroup(page
);
237 printk(KERN_EMERG
"Trying to fix it up, but a reboot is needed\n"
238 KERN_EMERG
"Backtrace:\n");
240 page
->flags
&= ~(1 << PG_lru
|
250 set_page_count(page
, 0);
251 reset_page_mapcount(page
);
252 page
->mapping
= NULL
;
253 add_taint(TAINT_BAD_PAGE
);
257 * Higher-order pages are called "compound pages". They are structured thusly:
259 * The first PAGE_SIZE page is called the "head page".
261 * The remaining PAGE_SIZE pages are called "tail pages".
263 * All pages have PG_compound set. All pages have their ->private pointing at
264 * the head page (even the head page has this).
266 * The first tail page's ->lru.next holds the address of the compound page's
267 * put_page() function. Its ->lru.prev holds the order of allocation.
268 * This usage means that zero-order pages may not be compound.
271 static void free_compound_page(struct page
*page
)
273 __free_pages_ok(page
, compound_order(page
));
276 static void prep_compound_page(struct page
*page
, unsigned long order
)
279 int nr_pages
= 1 << order
;
281 set_compound_page_dtor(page
, free_compound_page
);
282 set_compound_order(page
, order
);
284 for (i
= 1; i
< nr_pages
; i
++) {
285 struct page
*p
= page
+ i
;
288 p
->first_page
= page
;
292 static void destroy_compound_page(struct page
*page
, unsigned long order
)
295 int nr_pages
= 1 << order
;
297 if (unlikely(compound_order(page
) != order
))
300 if (unlikely(!PageHead(page
)))
302 __ClearPageHead(page
);
303 for (i
= 1; i
< nr_pages
; i
++) {
304 struct page
*p
= page
+ i
;
306 if (unlikely(!PageTail(p
) |
307 (p
->first_page
!= page
)))
313 static inline void prep_zero_page(struct page
*page
, int order
, gfp_t gfp_flags
)
318 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
319 * and __GFP_HIGHMEM from hard or soft interrupt context.
321 VM_BUG_ON((gfp_flags
& __GFP_HIGHMEM
) && in_interrupt());
322 for (i
= 0; i
< (1 << order
); i
++)
323 clear_highpage(page
+ i
);
326 static inline void set_page_order(struct page
*page
, int order
)
328 set_page_private(page
, order
);
329 __SetPageBuddy(page
);
332 static inline void rmv_page_order(struct page
*page
)
334 __ClearPageBuddy(page
);
335 set_page_private(page
, 0);
339 * Locate the struct page for both the matching buddy in our
340 * pair (buddy1) and the combined O(n+1) page they form (page).
342 * 1) Any buddy B1 will have an order O twin B2 which satisfies
343 * the following equation:
345 * For example, if the starting buddy (buddy2) is #8 its order
347 * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
349 * 2) Any buddy B will have an order O+1 parent P which
350 * satisfies the following equation:
353 * Assumption: *_mem_map is contiguous at least up to MAX_ORDER
355 static inline struct page
*
356 __page_find_buddy(struct page
*page
, unsigned long page_idx
, unsigned int order
)
358 unsigned long buddy_idx
= page_idx
^ (1 << order
);
360 return page
+ (buddy_idx
- page_idx
);
363 static inline unsigned long
364 __find_combined_index(unsigned long page_idx
, unsigned int order
)
366 return (page_idx
& ~(1 << order
));
370 * This function checks whether a page is free && is the buddy
371 * we can do coalesce a page and its buddy if
372 * (a) the buddy is not in a hole &&
373 * (b) the buddy is in the buddy system &&
374 * (c) a page and its buddy have the same order &&
375 * (d) a page and its buddy are in the same zone.
377 * For recording whether a page is in the buddy system, we use PG_buddy.
378 * Setting, clearing, and testing PG_buddy is serialized by zone->lock.
380 * For recording page's order, we use page_private(page).
382 static inline int page_is_buddy(struct page
*page
, struct page
*buddy
,
385 if (!pfn_valid_within(page_to_pfn(buddy
)))
388 if (page_zone_id(page
) != page_zone_id(buddy
))
391 if (PageBuddy(buddy
) && page_order(buddy
) == order
) {
392 BUG_ON(page_count(buddy
) != 0);
399 * Freeing function for a buddy system allocator.
401 * The concept of a buddy system is to maintain direct-mapped table
402 * (containing bit values) for memory blocks of various "orders".
403 * The bottom level table contains the map for the smallest allocatable
404 * units of memory (here, pages), and each level above it describes
405 * pairs of units from the levels below, hence, "buddies".
406 * At a high level, all that happens here is marking the table entry
407 * at the bottom level available, and propagating the changes upward
408 * as necessary, plus some accounting needed to play nicely with other
409 * parts of the VM system.
410 * At each level, we keep a list of pages, which are heads of continuous
411 * free pages of length of (1 << order) and marked with PG_buddy. Page's
412 * order is recorded in page_private(page) field.
413 * So when we are allocating or freeing one, we can derive the state of the
414 * other. That is, if we allocate a small block, and both were
415 * free, the remainder of the region must be split into blocks.
416 * If a block is freed, and its buddy is also free, then this
417 * triggers coalescing into a block of larger size.
422 static inline void __free_one_page(struct page
*page
,
423 struct zone
*zone
, unsigned int order
)
425 unsigned long page_idx
;
426 int order_size
= 1 << order
;
427 int migratetype
= get_pageblock_migratetype(page
);
429 if (unlikely(PageCompound(page
)))
430 destroy_compound_page(page
, order
);
432 page_idx
= page_to_pfn(page
) & ((1 << MAX_ORDER
) - 1);
434 VM_BUG_ON(page_idx
& (order_size
- 1));
435 VM_BUG_ON(bad_range(zone
, page
));
437 __mod_zone_page_state(zone
, NR_FREE_PAGES
, order_size
);
438 while (order
< MAX_ORDER
-1) {
439 unsigned long combined_idx
;
442 buddy
= __page_find_buddy(page
, page_idx
, order
);
443 if (!page_is_buddy(page
, buddy
, order
))
444 break; /* Move the buddy up one level. */
446 list_del(&buddy
->lru
);
447 zone
->free_area
[order
].nr_free
--;
448 rmv_page_order(buddy
);
449 combined_idx
= __find_combined_index(page_idx
, order
);
450 page
= page
+ (combined_idx
- page_idx
);
451 page_idx
= combined_idx
;
454 set_page_order(page
, order
);
456 &zone
->free_area
[order
].free_list
[migratetype
]);
457 zone
->free_area
[order
].nr_free
++;
460 static inline int free_pages_check(struct page
*page
)
462 if (unlikely(page_mapcount(page
) |
463 (page
->mapping
!= NULL
) |
464 (page_get_page_cgroup(page
) != NULL
) |
465 (page_count(page
) != 0) |
478 __ClearPageDirty(page
);
480 * For now, we report if PG_reserved was found set, but do not
481 * clear it, and do not free the page. But we shall soon need
482 * to do more, for when the ZERO_PAGE count wraps negative.
484 return PageReserved(page
);
488 * Frees a list of pages.
489 * Assumes all pages on list are in same zone, and of same order.
490 * count is the number of pages to free.
492 * If the zone was previously in an "all pages pinned" state then look to
493 * see if this freeing clears that state.
495 * And clear the zone's pages_scanned counter, to hold off the "all pages are
496 * pinned" detection logic.
498 static void free_pages_bulk(struct zone
*zone
, int count
,
499 struct list_head
*list
, int order
)
501 spin_lock(&zone
->lock
);
502 zone_clear_flag(zone
, ZONE_ALL_UNRECLAIMABLE
);
503 zone
->pages_scanned
= 0;
507 VM_BUG_ON(list_empty(list
));
508 page
= list_entry(list
->prev
, struct page
, lru
);
509 /* have to delete it as __free_one_page list manipulates */
510 list_del(&page
->lru
);
511 __free_one_page(page
, zone
, order
);
513 spin_unlock(&zone
->lock
);
516 static void free_one_page(struct zone
*zone
, struct page
*page
, int order
)
518 spin_lock(&zone
->lock
);
519 zone_clear_flag(zone
, ZONE_ALL_UNRECLAIMABLE
);
520 zone
->pages_scanned
= 0;
521 __free_one_page(page
, zone
, order
);
522 spin_unlock(&zone
->lock
);
525 static void __free_pages_ok(struct page
*page
, unsigned int order
)
531 for (i
= 0 ; i
< (1 << order
) ; ++i
)
532 reserved
+= free_pages_check(page
+ i
);
536 if (!PageHighMem(page
)) {
537 debug_check_no_locks_freed(page_address(page
),PAGE_SIZE
<<order
);
538 debug_check_no_obj_freed(page_address(page
),
541 arch_free_page(page
, order
);
542 kernel_map_pages(page
, 1 << order
, 0);
544 local_irq_save(flags
);
545 __count_vm_events(PGFREE
, 1 << order
);
546 free_one_page(page_zone(page
), page
, order
);
547 local_irq_restore(flags
);
551 * permit the bootmem allocator to evade page validation on high-order frees
553 void __free_pages_bootmem(struct page
*page
, unsigned int order
)
556 __ClearPageReserved(page
);
557 set_page_count(page
, 0);
558 set_page_refcounted(page
);
564 for (loop
= 0; loop
< BITS_PER_LONG
; loop
++) {
565 struct page
*p
= &page
[loop
];
567 if (loop
+ 1 < BITS_PER_LONG
)
569 __ClearPageReserved(p
);
570 set_page_count(p
, 0);
573 set_page_refcounted(page
);
574 __free_pages(page
, order
);
580 * The order of subdivision here is critical for the IO subsystem.
581 * Please do not alter this order without good reasons and regression
582 * testing. Specifically, as large blocks of memory are subdivided,
583 * the order in which smaller blocks are delivered depends on the order
584 * they're subdivided in this function. This is the primary factor
585 * influencing the order in which pages are delivered to the IO
586 * subsystem according to empirical testing, and this is also justified
587 * by considering the behavior of a buddy system containing a single
588 * large block of memory acted on by a series of small allocations.
589 * This behavior is a critical factor in sglist merging's success.
593 static inline void expand(struct zone
*zone
, struct page
*page
,
594 int low
, int high
, struct free_area
*area
,
597 unsigned long size
= 1 << high
;
603 VM_BUG_ON(bad_range(zone
, &page
[size
]));
604 list_add(&page
[size
].lru
, &area
->free_list
[migratetype
]);
606 set_page_order(&page
[size
], high
);
611 * This page is about to be returned from the page allocator
613 static int prep_new_page(struct page
*page
, int order
, gfp_t gfp_flags
)
615 if (unlikely(page_mapcount(page
) |
616 (page
->mapping
!= NULL
) |
617 (page_get_page_cgroup(page
) != NULL
) |
618 (page_count(page
) != 0) |
633 * For now, we report if PG_reserved was found set, but do not
634 * clear it, and do not allocate the page: as a safety net.
636 if (PageReserved(page
))
639 page
->flags
&= ~(1 << PG_uptodate
| 1 << PG_error
| 1 << PG_reclaim
|
640 1 << PG_referenced
| 1 << PG_arch_1
|
641 1 << PG_owner_priv_1
| 1 << PG_mappedtodisk
);
642 set_page_private(page
, 0);
643 set_page_refcounted(page
);
645 arch_alloc_page(page
, order
);
646 kernel_map_pages(page
, 1 << order
, 1);
648 if (gfp_flags
& __GFP_ZERO
)
649 prep_zero_page(page
, order
, gfp_flags
);
651 if (order
&& (gfp_flags
& __GFP_COMP
))
652 prep_compound_page(page
, order
);
658 * Go through the free lists for the given migratetype and remove
659 * the smallest available page from the freelists
661 static struct page
*__rmqueue_smallest(struct zone
*zone
, unsigned int order
,
664 unsigned int current_order
;
665 struct free_area
* area
;
668 /* Find a page of the appropriate size in the preferred list */
669 for (current_order
= order
; current_order
< MAX_ORDER
; ++current_order
) {
670 area
= &(zone
->free_area
[current_order
]);
671 if (list_empty(&area
->free_list
[migratetype
]))
674 page
= list_entry(area
->free_list
[migratetype
].next
,
676 list_del(&page
->lru
);
677 rmv_page_order(page
);
679 __mod_zone_page_state(zone
, NR_FREE_PAGES
, - (1UL << order
));
680 expand(zone
, page
, order
, current_order
, area
, migratetype
);
689 * This array describes the order lists are fallen back to when
690 * the free lists for the desirable migrate type are depleted
692 static int fallbacks
[MIGRATE_TYPES
][MIGRATE_TYPES
-1] = {
693 [MIGRATE_UNMOVABLE
] = { MIGRATE_RECLAIMABLE
, MIGRATE_MOVABLE
, MIGRATE_RESERVE
},
694 [MIGRATE_RECLAIMABLE
] = { MIGRATE_UNMOVABLE
, MIGRATE_MOVABLE
, MIGRATE_RESERVE
},
695 [MIGRATE_MOVABLE
] = { MIGRATE_RECLAIMABLE
, MIGRATE_UNMOVABLE
, MIGRATE_RESERVE
},
696 [MIGRATE_RESERVE
] = { MIGRATE_RESERVE
, MIGRATE_RESERVE
, MIGRATE_RESERVE
}, /* Never used */
700 * Move the free pages in a range to the free lists of the requested type.
701 * Note that start_page and end_pages are not aligned on a pageblock
702 * boundary. If alignment is required, use move_freepages_block()
704 int move_freepages(struct zone
*zone
,
705 struct page
*start_page
, struct page
*end_page
,
712 #ifndef CONFIG_HOLES_IN_ZONE
714 * page_zone is not safe to call in this context when
715 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
716 * anyway as we check zone boundaries in move_freepages_block().
717 * Remove at a later date when no bug reports exist related to
718 * grouping pages by mobility
720 BUG_ON(page_zone(start_page
) != page_zone(end_page
));
723 for (page
= start_page
; page
<= end_page
;) {
724 if (!pfn_valid_within(page_to_pfn(page
))) {
729 if (!PageBuddy(page
)) {
734 order
= page_order(page
);
735 list_del(&page
->lru
);
737 &zone
->free_area
[order
].free_list
[migratetype
]);
739 pages_moved
+= 1 << order
;
745 int move_freepages_block(struct zone
*zone
, struct page
*page
, int migratetype
)
747 unsigned long start_pfn
, end_pfn
;
748 struct page
*start_page
, *end_page
;
750 start_pfn
= page_to_pfn(page
);
751 start_pfn
= start_pfn
& ~(pageblock_nr_pages
-1);
752 start_page
= pfn_to_page(start_pfn
);
753 end_page
= start_page
+ pageblock_nr_pages
- 1;
754 end_pfn
= start_pfn
+ pageblock_nr_pages
- 1;
756 /* Do not cross zone boundaries */
757 if (start_pfn
< zone
->zone_start_pfn
)
759 if (end_pfn
>= zone
->zone_start_pfn
+ zone
->spanned_pages
)
762 return move_freepages(zone
, start_page
, end_page
, migratetype
);
765 /* Remove an element from the buddy allocator from the fallback list */
766 static struct page
*__rmqueue_fallback(struct zone
*zone
, int order
,
767 int start_migratetype
)
769 struct free_area
* area
;
774 /* Find the largest possible block of pages in the other list */
775 for (current_order
= MAX_ORDER
-1; current_order
>= order
;
777 for (i
= 0; i
< MIGRATE_TYPES
- 1; i
++) {
778 migratetype
= fallbacks
[start_migratetype
][i
];
780 /* MIGRATE_RESERVE handled later if necessary */
781 if (migratetype
== MIGRATE_RESERVE
)
784 area
= &(zone
->free_area
[current_order
]);
785 if (list_empty(&area
->free_list
[migratetype
]))
788 page
= list_entry(area
->free_list
[migratetype
].next
,
793 * If breaking a large block of pages, move all free
794 * pages to the preferred allocation list. If falling
795 * back for a reclaimable kernel allocation, be more
796 * agressive about taking ownership of free pages
798 if (unlikely(current_order
>= (pageblock_order
>> 1)) ||
799 start_migratetype
== MIGRATE_RECLAIMABLE
) {
801 pages
= move_freepages_block(zone
, page
,
804 /* Claim the whole block if over half of it is free */
805 if (pages
>= (1 << (pageblock_order
-1)))
806 set_pageblock_migratetype(page
,
809 migratetype
= start_migratetype
;
812 /* Remove the page from the freelists */
813 list_del(&page
->lru
);
814 rmv_page_order(page
);
815 __mod_zone_page_state(zone
, NR_FREE_PAGES
,
818 if (current_order
== pageblock_order
)
819 set_pageblock_migratetype(page
,
822 expand(zone
, page
, order
, current_order
, area
, migratetype
);
827 /* Use MIGRATE_RESERVE rather than fail an allocation */
828 return __rmqueue_smallest(zone
, order
, MIGRATE_RESERVE
);
832 * Do the hard work of removing an element from the buddy allocator.
833 * Call me with the zone->lock already held.
835 static struct page
*__rmqueue(struct zone
*zone
, unsigned int order
,
840 page
= __rmqueue_smallest(zone
, order
, migratetype
);
843 page
= __rmqueue_fallback(zone
, order
, migratetype
);
849 * Obtain a specified number of elements from the buddy allocator, all under
850 * a single hold of the lock, for efficiency. Add them to the supplied list.
851 * Returns the number of new pages which were placed at *list.
853 static int rmqueue_bulk(struct zone
*zone
, unsigned int order
,
854 unsigned long count
, struct list_head
*list
,
859 spin_lock(&zone
->lock
);
860 for (i
= 0; i
< count
; ++i
) {
861 struct page
*page
= __rmqueue(zone
, order
, migratetype
);
862 if (unlikely(page
== NULL
))
866 * Split buddy pages returned by expand() are received here
867 * in physical page order. The page is added to the callers and
868 * list and the list head then moves forward. From the callers
869 * perspective, the linked list is ordered by page number in
870 * some conditions. This is useful for IO devices that can
871 * merge IO requests if the physical pages are ordered
874 list_add(&page
->lru
, list
);
875 set_page_private(page
, migratetype
);
878 spin_unlock(&zone
->lock
);
884 * Called from the vmstat counter updater to drain pagesets of this
885 * currently executing processor on remote nodes after they have
888 * Note that this function must be called with the thread pinned to
889 * a single processor.
891 void drain_zone_pages(struct zone
*zone
, struct per_cpu_pages
*pcp
)
896 local_irq_save(flags
);
897 if (pcp
->count
>= pcp
->batch
)
898 to_drain
= pcp
->batch
;
900 to_drain
= pcp
->count
;
901 free_pages_bulk(zone
, to_drain
, &pcp
->list
, 0);
902 pcp
->count
-= to_drain
;
903 local_irq_restore(flags
);
908 * Drain pages of the indicated processor.
910 * The processor must either be the current processor and the
911 * thread pinned to the current processor or a processor that
914 static void drain_pages(unsigned int cpu
)
919 for_each_zone(zone
) {
920 struct per_cpu_pageset
*pset
;
921 struct per_cpu_pages
*pcp
;
923 if (!populated_zone(zone
))
926 pset
= zone_pcp(zone
, cpu
);
929 local_irq_save(flags
);
930 free_pages_bulk(zone
, pcp
->count
, &pcp
->list
, 0);
932 local_irq_restore(flags
);
937 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
939 void drain_local_pages(void *arg
)
941 drain_pages(smp_processor_id());
945 * Spill all the per-cpu pages from all CPUs back into the buddy allocator
947 void drain_all_pages(void)
949 on_each_cpu(drain_local_pages
, NULL
, 0, 1);
952 #ifdef CONFIG_HIBERNATION
954 void mark_free_pages(struct zone
*zone
)
956 unsigned long pfn
, max_zone_pfn
;
959 struct list_head
*curr
;
961 if (!zone
->spanned_pages
)
964 spin_lock_irqsave(&zone
->lock
, flags
);
966 max_zone_pfn
= zone
->zone_start_pfn
+ zone
->spanned_pages
;
967 for (pfn
= zone
->zone_start_pfn
; pfn
< max_zone_pfn
; pfn
++)
968 if (pfn_valid(pfn
)) {
969 struct page
*page
= pfn_to_page(pfn
);
971 if (!swsusp_page_is_forbidden(page
))
972 swsusp_unset_page_free(page
);
975 for_each_migratetype_order(order
, t
) {
976 list_for_each(curr
, &zone
->free_area
[order
].free_list
[t
]) {
979 pfn
= page_to_pfn(list_entry(curr
, struct page
, lru
));
980 for (i
= 0; i
< (1UL << order
); i
++)
981 swsusp_set_page_free(pfn_to_page(pfn
+ i
));
984 spin_unlock_irqrestore(&zone
->lock
, flags
);
986 #endif /* CONFIG_PM */
989 * Free a 0-order page
991 static void free_hot_cold_page(struct page
*page
, int cold
)
993 struct zone
*zone
= page_zone(page
);
994 struct per_cpu_pages
*pcp
;
998 page
->mapping
= NULL
;
999 if (free_pages_check(page
))
1002 if (!PageHighMem(page
)) {
1003 debug_check_no_locks_freed(page_address(page
), PAGE_SIZE
);
1004 debug_check_no_obj_freed(page_address(page
), PAGE_SIZE
);
1006 arch_free_page(page
, 0);
1007 kernel_map_pages(page
, 1, 0);
1009 pcp
= &zone_pcp(zone
, get_cpu())->pcp
;
1010 local_irq_save(flags
);
1011 __count_vm_event(PGFREE
);
1013 list_add_tail(&page
->lru
, &pcp
->list
);
1015 list_add(&page
->lru
, &pcp
->list
);
1016 set_page_private(page
, get_pageblock_migratetype(page
));
1018 if (pcp
->count
>= pcp
->high
) {
1019 free_pages_bulk(zone
, pcp
->batch
, &pcp
->list
, 0);
1020 pcp
->count
-= pcp
->batch
;
1022 local_irq_restore(flags
);
1026 void free_hot_page(struct page
*page
)
1028 free_hot_cold_page(page
, 0);
1031 void free_cold_page(struct page
*page
)
1033 free_hot_cold_page(page
, 1);
1037 * split_page takes a non-compound higher-order page, and splits it into
1038 * n (1<<order) sub-pages: page[0..n]
1039 * Each sub-page must be freed individually.
1041 * Note: this is probably too low level an operation for use in drivers.
1042 * Please consult with lkml before using this in your driver.
1044 void split_page(struct page
*page
, unsigned int order
)
1048 VM_BUG_ON(PageCompound(page
));
1049 VM_BUG_ON(!page_count(page
));
1050 for (i
= 1; i
< (1 << order
); i
++)
1051 set_page_refcounted(page
+ i
);
1055 * Really, prep_compound_page() should be called from __rmqueue_bulk(). But
1056 * we cheat by calling it from here, in the order > 0 path. Saves a branch
1059 static struct page
*buffered_rmqueue(struct zone
*preferred_zone
,
1060 struct zone
*zone
, int order
, gfp_t gfp_flags
)
1062 unsigned long flags
;
1064 int cold
= !!(gfp_flags
& __GFP_COLD
);
1066 int migratetype
= allocflags_to_migratetype(gfp_flags
);
1070 if (likely(order
== 0)) {
1071 struct per_cpu_pages
*pcp
;
1073 pcp
= &zone_pcp(zone
, cpu
)->pcp
;
1074 local_irq_save(flags
);
1076 pcp
->count
= rmqueue_bulk(zone
, 0,
1077 pcp
->batch
, &pcp
->list
, migratetype
);
1078 if (unlikely(!pcp
->count
))
1082 /* Find a page of the appropriate migrate type */
1084 list_for_each_entry_reverse(page
, &pcp
->list
, lru
)
1085 if (page_private(page
) == migratetype
)
1088 list_for_each_entry(page
, &pcp
->list
, lru
)
1089 if (page_private(page
) == migratetype
)
1093 /* Allocate more to the pcp list if necessary */
1094 if (unlikely(&page
->lru
== &pcp
->list
)) {
1095 pcp
->count
+= rmqueue_bulk(zone
, 0,
1096 pcp
->batch
, &pcp
->list
, migratetype
);
1097 page
= list_entry(pcp
->list
.next
, struct page
, lru
);
1100 list_del(&page
->lru
);
1103 spin_lock_irqsave(&zone
->lock
, flags
);
1104 page
= __rmqueue(zone
, order
, migratetype
);
1105 spin_unlock(&zone
->lock
);
1110 __count_zone_vm_events(PGALLOC
, zone
, 1 << order
);
1111 zone_statistics(preferred_zone
, zone
);
1112 local_irq_restore(flags
);
1115 VM_BUG_ON(bad_range(zone
, page
));
1116 if (prep_new_page(page
, order
, gfp_flags
))
1121 local_irq_restore(flags
);
1126 #define ALLOC_NO_WATERMARKS 0x01 /* don't check watermarks at all */
1127 #define ALLOC_WMARK_MIN 0x02 /* use pages_min watermark */
1128 #define ALLOC_WMARK_LOW 0x04 /* use pages_low watermark */
1129 #define ALLOC_WMARK_HIGH 0x08 /* use pages_high watermark */
1130 #define ALLOC_HARDER 0x10 /* try to alloc harder */
1131 #define ALLOC_HIGH 0x20 /* __GFP_HIGH set */
1132 #define ALLOC_CPUSET 0x40 /* check for correct cpuset */
1134 #ifdef CONFIG_FAIL_PAGE_ALLOC
1136 static struct fail_page_alloc_attr
{
1137 struct fault_attr attr
;
1139 u32 ignore_gfp_highmem
;
1140 u32 ignore_gfp_wait
;
1143 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1145 struct dentry
*ignore_gfp_highmem_file
;
1146 struct dentry
*ignore_gfp_wait_file
;
1147 struct dentry
*min_order_file
;
1149 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1151 } fail_page_alloc
= {
1152 .attr
= FAULT_ATTR_INITIALIZER
,
1153 .ignore_gfp_wait
= 1,
1154 .ignore_gfp_highmem
= 1,
1158 static int __init
setup_fail_page_alloc(char *str
)
1160 return setup_fault_attr(&fail_page_alloc
.attr
, str
);
1162 __setup("fail_page_alloc=", setup_fail_page_alloc
);
1164 static int should_fail_alloc_page(gfp_t gfp_mask
, unsigned int order
)
1166 if (order
< fail_page_alloc
.min_order
)
1168 if (gfp_mask
& __GFP_NOFAIL
)
1170 if (fail_page_alloc
.ignore_gfp_highmem
&& (gfp_mask
& __GFP_HIGHMEM
))
1172 if (fail_page_alloc
.ignore_gfp_wait
&& (gfp_mask
& __GFP_WAIT
))
1175 return should_fail(&fail_page_alloc
.attr
, 1 << order
);
1178 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1180 static int __init
fail_page_alloc_debugfs(void)
1182 mode_t mode
= S_IFREG
| S_IRUSR
| S_IWUSR
;
1186 err
= init_fault_attr_dentries(&fail_page_alloc
.attr
,
1190 dir
= fail_page_alloc
.attr
.dentries
.dir
;
1192 fail_page_alloc
.ignore_gfp_wait_file
=
1193 debugfs_create_bool("ignore-gfp-wait", mode
, dir
,
1194 &fail_page_alloc
.ignore_gfp_wait
);
1196 fail_page_alloc
.ignore_gfp_highmem_file
=
1197 debugfs_create_bool("ignore-gfp-highmem", mode
, dir
,
1198 &fail_page_alloc
.ignore_gfp_highmem
);
1199 fail_page_alloc
.min_order_file
=
1200 debugfs_create_u32("min-order", mode
, dir
,
1201 &fail_page_alloc
.min_order
);
1203 if (!fail_page_alloc
.ignore_gfp_wait_file
||
1204 !fail_page_alloc
.ignore_gfp_highmem_file
||
1205 !fail_page_alloc
.min_order_file
) {
1207 debugfs_remove(fail_page_alloc
.ignore_gfp_wait_file
);
1208 debugfs_remove(fail_page_alloc
.ignore_gfp_highmem_file
);
1209 debugfs_remove(fail_page_alloc
.min_order_file
);
1210 cleanup_fault_attr_dentries(&fail_page_alloc
.attr
);
1216 late_initcall(fail_page_alloc_debugfs
);
1218 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1220 #else /* CONFIG_FAIL_PAGE_ALLOC */
1222 static inline int should_fail_alloc_page(gfp_t gfp_mask
, unsigned int order
)
1227 #endif /* CONFIG_FAIL_PAGE_ALLOC */
1230 * Return 1 if free pages are above 'mark'. This takes into account the order
1231 * of the allocation.
1233 int zone_watermark_ok(struct zone
*z
, int order
, unsigned long mark
,
1234 int classzone_idx
, int alloc_flags
)
1236 /* free_pages my go negative - that's OK */
1238 long free_pages
= zone_page_state(z
, NR_FREE_PAGES
) - (1 << order
) + 1;
1241 if (alloc_flags
& ALLOC_HIGH
)
1243 if (alloc_flags
& ALLOC_HARDER
)
1246 if (free_pages
<= min
+ z
->lowmem_reserve
[classzone_idx
])
1248 for (o
= 0; o
< order
; o
++) {
1249 /* At the next order, this order's pages become unavailable */
1250 free_pages
-= z
->free_area
[o
].nr_free
<< o
;
1252 /* Require fewer higher order pages to be free */
1255 if (free_pages
<= min
)
1263 * zlc_setup - Setup for "zonelist cache". Uses cached zone data to
1264 * skip over zones that are not allowed by the cpuset, or that have
1265 * been recently (in last second) found to be nearly full. See further
1266 * comments in mmzone.h. Reduces cache footprint of zonelist scans
1267 * that have to skip over a lot of full or unallowed zones.
1269 * If the zonelist cache is present in the passed in zonelist, then
1270 * returns a pointer to the allowed node mask (either the current
1271 * tasks mems_allowed, or node_states[N_HIGH_MEMORY].)
1273 * If the zonelist cache is not available for this zonelist, does
1274 * nothing and returns NULL.
1276 * If the fullzones BITMAP in the zonelist cache is stale (more than
1277 * a second since last zap'd) then we zap it out (clear its bits.)
1279 * We hold off even calling zlc_setup, until after we've checked the
1280 * first zone in the zonelist, on the theory that most allocations will
1281 * be satisfied from that first zone, so best to examine that zone as
1282 * quickly as we can.
1284 static nodemask_t
*zlc_setup(struct zonelist
*zonelist
, int alloc_flags
)
1286 struct zonelist_cache
*zlc
; /* cached zonelist speedup info */
1287 nodemask_t
*allowednodes
; /* zonelist_cache approximation */
1289 zlc
= zonelist
->zlcache_ptr
;
1293 if (time_after(jiffies
, zlc
->last_full_zap
+ HZ
)) {
1294 bitmap_zero(zlc
->fullzones
, MAX_ZONES_PER_ZONELIST
);
1295 zlc
->last_full_zap
= jiffies
;
1298 allowednodes
= !in_interrupt() && (alloc_flags
& ALLOC_CPUSET
) ?
1299 &cpuset_current_mems_allowed
:
1300 &node_states
[N_HIGH_MEMORY
];
1301 return allowednodes
;
1305 * Given 'z' scanning a zonelist, run a couple of quick checks to see
1306 * if it is worth looking at further for free memory:
1307 * 1) Check that the zone isn't thought to be full (doesn't have its
1308 * bit set in the zonelist_cache fullzones BITMAP).
1309 * 2) Check that the zones node (obtained from the zonelist_cache
1310 * z_to_n[] mapping) is allowed in the passed in allowednodes mask.
1311 * Return true (non-zero) if zone is worth looking at further, or
1312 * else return false (zero) if it is not.
1314 * This check -ignores- the distinction between various watermarks,
1315 * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ... If a zone is
1316 * found to be full for any variation of these watermarks, it will
1317 * be considered full for up to one second by all requests, unless
1318 * we are so low on memory on all allowed nodes that we are forced
1319 * into the second scan of the zonelist.
1321 * In the second scan we ignore this zonelist cache and exactly
1322 * apply the watermarks to all zones, even it is slower to do so.
1323 * We are low on memory in the second scan, and should leave no stone
1324 * unturned looking for a free page.
1326 static int zlc_zone_worth_trying(struct zonelist
*zonelist
, struct zoneref
*z
,
1327 nodemask_t
*allowednodes
)
1329 struct zonelist_cache
*zlc
; /* cached zonelist speedup info */
1330 int i
; /* index of *z in zonelist zones */
1331 int n
; /* node that zone *z is on */
1333 zlc
= zonelist
->zlcache_ptr
;
1337 i
= z
- zonelist
->_zonerefs
;
1340 /* This zone is worth trying if it is allowed but not full */
1341 return node_isset(n
, *allowednodes
) && !test_bit(i
, zlc
->fullzones
);
1345 * Given 'z' scanning a zonelist, set the corresponding bit in
1346 * zlc->fullzones, so that subsequent attempts to allocate a page
1347 * from that zone don't waste time re-examining it.
1349 static void zlc_mark_zone_full(struct zonelist
*zonelist
, struct zoneref
*z
)
1351 struct zonelist_cache
*zlc
; /* cached zonelist speedup info */
1352 int i
; /* index of *z in zonelist zones */
1354 zlc
= zonelist
->zlcache_ptr
;
1358 i
= z
- zonelist
->_zonerefs
;
1360 set_bit(i
, zlc
->fullzones
);
1363 #else /* CONFIG_NUMA */
1365 static nodemask_t
*zlc_setup(struct zonelist
*zonelist
, int alloc_flags
)
1370 static int zlc_zone_worth_trying(struct zonelist
*zonelist
, struct zoneref
*z
,
1371 nodemask_t
*allowednodes
)
1376 static void zlc_mark_zone_full(struct zonelist
*zonelist
, struct zoneref
*z
)
1379 #endif /* CONFIG_NUMA */
1382 * get_page_from_freelist goes through the zonelist trying to allocate
1385 static struct page
*
1386 get_page_from_freelist(gfp_t gfp_mask
, nodemask_t
*nodemask
, unsigned int order
,
1387 struct zonelist
*zonelist
, int high_zoneidx
, int alloc_flags
)
1390 struct page
*page
= NULL
;
1392 struct zone
*zone
, *preferred_zone
;
1393 nodemask_t
*allowednodes
= NULL
;/* zonelist_cache approximation */
1394 int zlc_active
= 0; /* set if using zonelist_cache */
1395 int did_zlc_setup
= 0; /* just call zlc_setup() one time */
1397 (void)first_zones_zonelist(zonelist
, high_zoneidx
, nodemask
,
1399 classzone_idx
= zone_idx(preferred_zone
);
1403 * Scan zonelist, looking for a zone with enough free.
1404 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1406 for_each_zone_zonelist_nodemask(zone
, z
, zonelist
,
1407 high_zoneidx
, nodemask
) {
1408 if (NUMA_BUILD
&& zlc_active
&&
1409 !zlc_zone_worth_trying(zonelist
, z
, allowednodes
))
1411 if ((alloc_flags
& ALLOC_CPUSET
) &&
1412 !cpuset_zone_allowed_softwall(zone
, gfp_mask
))
1415 if (!(alloc_flags
& ALLOC_NO_WATERMARKS
)) {
1417 if (alloc_flags
& ALLOC_WMARK_MIN
)
1418 mark
= zone
->pages_min
;
1419 else if (alloc_flags
& ALLOC_WMARK_LOW
)
1420 mark
= zone
->pages_low
;
1422 mark
= zone
->pages_high
;
1423 if (!zone_watermark_ok(zone
, order
, mark
,
1424 classzone_idx
, alloc_flags
)) {
1425 if (!zone_reclaim_mode
||
1426 !zone_reclaim(zone
, gfp_mask
, order
))
1427 goto this_zone_full
;
1431 page
= buffered_rmqueue(preferred_zone
, zone
, order
, gfp_mask
);
1436 zlc_mark_zone_full(zonelist
, z
);
1438 if (NUMA_BUILD
&& !did_zlc_setup
) {
1439 /* we do zlc_setup after the first zone is tried */
1440 allowednodes
= zlc_setup(zonelist
, alloc_flags
);
1446 if (unlikely(NUMA_BUILD
&& page
== NULL
&& zlc_active
)) {
1447 /* Disable zlc cache for second zonelist scan */
1455 * This is the 'heart' of the zoned buddy allocator.
1457 static struct page
*
1458 __alloc_pages_internal(gfp_t gfp_mask
, unsigned int order
,
1459 struct zonelist
*zonelist
, nodemask_t
*nodemask
)
1461 const gfp_t wait
= gfp_mask
& __GFP_WAIT
;
1462 enum zone_type high_zoneidx
= gfp_zone(gfp_mask
);
1466 struct reclaim_state reclaim_state
;
1467 struct task_struct
*p
= current
;
1470 unsigned long did_some_progress
;
1471 unsigned long pages_reclaimed
= 0;
1473 might_sleep_if(wait
);
1475 if (should_fail_alloc_page(gfp_mask
, order
))
1479 z
= zonelist
->_zonerefs
; /* the list of zones suitable for gfp_mask */
1481 if (unlikely(!z
->zone
)) {
1483 * Happens if we have an empty zonelist as a result of
1484 * GFP_THISNODE being used on a memoryless node
1489 page
= get_page_from_freelist(gfp_mask
|__GFP_HARDWALL
, nodemask
, order
,
1490 zonelist
, high_zoneidx
, ALLOC_WMARK_LOW
|ALLOC_CPUSET
);
1495 * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and
1496 * __GFP_NOWARN set) should not cause reclaim since the subsystem
1497 * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim
1498 * using a larger set of nodes after it has established that the
1499 * allowed per node queues are empty and that nodes are
1502 if (NUMA_BUILD
&& (gfp_mask
& GFP_THISNODE
) == GFP_THISNODE
)
1505 for_each_zone_zonelist(zone
, z
, zonelist
, high_zoneidx
)
1506 wakeup_kswapd(zone
, order
);
1509 * OK, we're below the kswapd watermark and have kicked background
1510 * reclaim. Now things get more complex, so set up alloc_flags according
1511 * to how we want to proceed.
1513 * The caller may dip into page reserves a bit more if the caller
1514 * cannot run direct reclaim, or if the caller has realtime scheduling
1515 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
1516 * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH).
1518 alloc_flags
= ALLOC_WMARK_MIN
;
1519 if ((unlikely(rt_task(p
)) && !in_interrupt()) || !wait
)
1520 alloc_flags
|= ALLOC_HARDER
;
1521 if (gfp_mask
& __GFP_HIGH
)
1522 alloc_flags
|= ALLOC_HIGH
;
1524 alloc_flags
|= ALLOC_CPUSET
;
1527 * Go through the zonelist again. Let __GFP_HIGH and allocations
1528 * coming from realtime tasks go deeper into reserves.
1530 * This is the last chance, in general, before the goto nopage.
1531 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
1532 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1534 page
= get_page_from_freelist(gfp_mask
, nodemask
, order
, zonelist
,
1535 high_zoneidx
, alloc_flags
);
1539 /* This allocation should allow future memory freeing. */
1542 if (((p
->flags
& PF_MEMALLOC
) || unlikely(test_thread_flag(TIF_MEMDIE
)))
1543 && !in_interrupt()) {
1544 if (!(gfp_mask
& __GFP_NOMEMALLOC
)) {
1546 /* go through the zonelist yet again, ignoring mins */
1547 page
= get_page_from_freelist(gfp_mask
, nodemask
, order
,
1548 zonelist
, high_zoneidx
, ALLOC_NO_WATERMARKS
);
1551 if (gfp_mask
& __GFP_NOFAIL
) {
1552 congestion_wait(WRITE
, HZ
/50);
1559 /* Atomic allocations - we can't balance anything */
1565 /* We now go into synchronous reclaim */
1566 cpuset_memory_pressure_bump();
1567 p
->flags
|= PF_MEMALLOC
;
1568 reclaim_state
.reclaimed_slab
= 0;
1569 p
->reclaim_state
= &reclaim_state
;
1571 did_some_progress
= try_to_free_pages(zonelist
, order
, gfp_mask
);
1573 p
->reclaim_state
= NULL
;
1574 p
->flags
&= ~PF_MEMALLOC
;
1581 if (likely(did_some_progress
)) {
1582 page
= get_page_from_freelist(gfp_mask
, nodemask
, order
,
1583 zonelist
, high_zoneidx
, alloc_flags
);
1586 } else if ((gfp_mask
& __GFP_FS
) && !(gfp_mask
& __GFP_NORETRY
)) {
1587 if (!try_set_zone_oom(zonelist
, gfp_mask
)) {
1588 schedule_timeout_uninterruptible(1);
1593 * Go through the zonelist yet one more time, keep
1594 * very high watermark here, this is only to catch
1595 * a parallel oom killing, we must fail if we're still
1596 * under heavy pressure.
1598 page
= get_page_from_freelist(gfp_mask
|__GFP_HARDWALL
, nodemask
,
1599 order
, zonelist
, high_zoneidx
,
1600 ALLOC_WMARK_HIGH
|ALLOC_CPUSET
);
1602 clear_zonelist_oom(zonelist
, gfp_mask
);
1606 /* The OOM killer will not help higher order allocs so fail */
1607 if (order
> PAGE_ALLOC_COSTLY_ORDER
) {
1608 clear_zonelist_oom(zonelist
, gfp_mask
);
1612 out_of_memory(zonelist
, gfp_mask
, order
);
1613 clear_zonelist_oom(zonelist
, gfp_mask
);
1618 * Don't let big-order allocations loop unless the caller explicitly
1619 * requests that. Wait for some write requests to complete then retry.
1621 * In this implementation, order <= PAGE_ALLOC_COSTLY_ORDER
1622 * means __GFP_NOFAIL, but that may not be true in other
1625 * For order > PAGE_ALLOC_COSTLY_ORDER, if __GFP_REPEAT is
1626 * specified, then we retry until we no longer reclaim any pages
1627 * (above), or we've reclaimed an order of pages at least as
1628 * large as the allocation's order. In both cases, if the
1629 * allocation still fails, we stop retrying.
1631 pages_reclaimed
+= did_some_progress
;
1633 if (!(gfp_mask
& __GFP_NORETRY
)) {
1634 if (order
<= PAGE_ALLOC_COSTLY_ORDER
) {
1637 if (gfp_mask
& __GFP_REPEAT
&&
1638 pages_reclaimed
< (1 << order
))
1641 if (gfp_mask
& __GFP_NOFAIL
)
1645 congestion_wait(WRITE
, HZ
/50);
1650 if (!(gfp_mask
& __GFP_NOWARN
) && printk_ratelimit()) {
1651 printk(KERN_WARNING
"%s: page allocation failure."
1652 " order:%d, mode:0x%x\n",
1653 p
->comm
, order
, gfp_mask
);
1662 __alloc_pages(gfp_t gfp_mask
, unsigned int order
,
1663 struct zonelist
*zonelist
)
1665 return __alloc_pages_internal(gfp_mask
, order
, zonelist
, NULL
);
1669 __alloc_pages_nodemask(gfp_t gfp_mask
, unsigned int order
,
1670 struct zonelist
*zonelist
, nodemask_t
*nodemask
)
1672 return __alloc_pages_internal(gfp_mask
, order
, zonelist
, nodemask
);
1675 EXPORT_SYMBOL(__alloc_pages
);
1678 * Common helper functions.
1680 unsigned long __get_free_pages(gfp_t gfp_mask
, unsigned int order
)
1683 page
= alloc_pages(gfp_mask
, order
);
1686 return (unsigned long) page_address(page
);
1689 EXPORT_SYMBOL(__get_free_pages
);
1691 unsigned long get_zeroed_page(gfp_t gfp_mask
)
1696 * get_zeroed_page() returns a 32-bit address, which cannot represent
1699 VM_BUG_ON((gfp_mask
& __GFP_HIGHMEM
) != 0);
1701 page
= alloc_pages(gfp_mask
| __GFP_ZERO
, 0);
1703 return (unsigned long) page_address(page
);
1707 EXPORT_SYMBOL(get_zeroed_page
);
1709 void __pagevec_free(struct pagevec
*pvec
)
1711 int i
= pagevec_count(pvec
);
1714 free_hot_cold_page(pvec
->pages
[i
], pvec
->cold
);
1717 void __free_pages(struct page
*page
, unsigned int order
)
1719 if (put_page_testzero(page
)) {
1721 free_hot_page(page
);
1723 __free_pages_ok(page
, order
);
1727 EXPORT_SYMBOL(__free_pages
);
1729 void free_pages(unsigned long addr
, unsigned int order
)
1732 VM_BUG_ON(!virt_addr_valid((void *)addr
));
1733 __free_pages(virt_to_page((void *)addr
), order
);
1737 EXPORT_SYMBOL(free_pages
);
1739 static unsigned int nr_free_zone_pages(int offset
)
1744 /* Just pick one node, since fallback list is circular */
1745 unsigned int sum
= 0;
1747 struct zonelist
*zonelist
= node_zonelist(numa_node_id(), GFP_KERNEL
);
1749 for_each_zone_zonelist(zone
, z
, zonelist
, offset
) {
1750 unsigned long size
= zone
->present_pages
;
1751 unsigned long high
= zone
->pages_high
;
1760 * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL
1762 unsigned int nr_free_buffer_pages(void)
1764 return nr_free_zone_pages(gfp_zone(GFP_USER
));
1766 EXPORT_SYMBOL_GPL(nr_free_buffer_pages
);
1769 * Amount of free RAM allocatable within all zones
1771 unsigned int nr_free_pagecache_pages(void)
1773 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE
));
1776 static inline void show_node(struct zone
*zone
)
1779 printk("Node %d ", zone_to_nid(zone
));
1782 void si_meminfo(struct sysinfo
*val
)
1784 val
->totalram
= totalram_pages
;
1786 val
->freeram
= global_page_state(NR_FREE_PAGES
);
1787 val
->bufferram
= nr_blockdev_pages();
1788 val
->totalhigh
= totalhigh_pages
;
1789 val
->freehigh
= nr_free_highpages();
1790 val
->mem_unit
= PAGE_SIZE
;
1793 EXPORT_SYMBOL(si_meminfo
);
1796 void si_meminfo_node(struct sysinfo
*val
, int nid
)
1798 pg_data_t
*pgdat
= NODE_DATA(nid
);
1800 val
->totalram
= pgdat
->node_present_pages
;
1801 val
->freeram
= node_page_state(nid
, NR_FREE_PAGES
);
1802 #ifdef CONFIG_HIGHMEM
1803 val
->totalhigh
= pgdat
->node_zones
[ZONE_HIGHMEM
].present_pages
;
1804 val
->freehigh
= zone_page_state(&pgdat
->node_zones
[ZONE_HIGHMEM
],
1810 val
->mem_unit
= PAGE_SIZE
;
1814 #define K(x) ((x) << (PAGE_SHIFT-10))
1817 * Show free area list (used inside shift_scroll-lock stuff)
1818 * We also calculate the percentage fragmentation. We do this by counting the
1819 * memory on each free list with the exception of the first item on the list.
1821 void show_free_areas(void)
1826 for_each_zone(zone
) {
1827 if (!populated_zone(zone
))
1831 printk("%s per-cpu:\n", zone
->name
);
1833 for_each_online_cpu(cpu
) {
1834 struct per_cpu_pageset
*pageset
;
1836 pageset
= zone_pcp(zone
, cpu
);
1838 printk("CPU %4d: hi:%5d, btch:%4d usd:%4d\n",
1839 cpu
, pageset
->pcp
.high
,
1840 pageset
->pcp
.batch
, pageset
->pcp
.count
);
1844 printk("Active:%lu inactive:%lu dirty:%lu writeback:%lu unstable:%lu\n"
1845 " free:%lu slab:%lu mapped:%lu pagetables:%lu bounce:%lu\n",
1846 global_page_state(NR_ACTIVE
),
1847 global_page_state(NR_INACTIVE
),
1848 global_page_state(NR_FILE_DIRTY
),
1849 global_page_state(NR_WRITEBACK
),
1850 global_page_state(NR_UNSTABLE_NFS
),
1851 global_page_state(NR_FREE_PAGES
),
1852 global_page_state(NR_SLAB_RECLAIMABLE
) +
1853 global_page_state(NR_SLAB_UNRECLAIMABLE
),
1854 global_page_state(NR_FILE_MAPPED
),
1855 global_page_state(NR_PAGETABLE
),
1856 global_page_state(NR_BOUNCE
));
1858 for_each_zone(zone
) {
1861 if (!populated_zone(zone
))
1873 " pages_scanned:%lu"
1874 " all_unreclaimable? %s"
1877 K(zone_page_state(zone
, NR_FREE_PAGES
)),
1880 K(zone
->pages_high
),
1881 K(zone_page_state(zone
, NR_ACTIVE
)),
1882 K(zone_page_state(zone
, NR_INACTIVE
)),
1883 K(zone
->present_pages
),
1884 zone
->pages_scanned
,
1885 (zone_is_all_unreclaimable(zone
) ? "yes" : "no")
1887 printk("lowmem_reserve[]:");
1888 for (i
= 0; i
< MAX_NR_ZONES
; i
++)
1889 printk(" %lu", zone
->lowmem_reserve
[i
]);
1893 for_each_zone(zone
) {
1894 unsigned long nr
[MAX_ORDER
], flags
, order
, total
= 0;
1896 if (!populated_zone(zone
))
1900 printk("%s: ", zone
->name
);
1902 spin_lock_irqsave(&zone
->lock
, flags
);
1903 for (order
= 0; order
< MAX_ORDER
; order
++) {
1904 nr
[order
] = zone
->free_area
[order
].nr_free
;
1905 total
+= nr
[order
] << order
;
1907 spin_unlock_irqrestore(&zone
->lock
, flags
);
1908 for (order
= 0; order
< MAX_ORDER
; order
++)
1909 printk("%lu*%lukB ", nr
[order
], K(1UL) << order
);
1910 printk("= %lukB\n", K(total
));
1913 printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES
));
1915 show_swap_cache_info();
1918 static void zoneref_set_zone(struct zone
*zone
, struct zoneref
*zoneref
)
1920 zoneref
->zone
= zone
;
1921 zoneref
->zone_idx
= zone_idx(zone
);
1925 * Builds allocation fallback zone lists.
1927 * Add all populated zones of a node to the zonelist.
1929 static int build_zonelists_node(pg_data_t
*pgdat
, struct zonelist
*zonelist
,
1930 int nr_zones
, enum zone_type zone_type
)
1934 BUG_ON(zone_type
>= MAX_NR_ZONES
);
1939 zone
= pgdat
->node_zones
+ zone_type
;
1940 if (populated_zone(zone
)) {
1941 zoneref_set_zone(zone
,
1942 &zonelist
->_zonerefs
[nr_zones
++]);
1943 check_highest_zone(zone_type
);
1946 } while (zone_type
);
1953 * 0 = automatic detection of better ordering.
1954 * 1 = order by ([node] distance, -zonetype)
1955 * 2 = order by (-zonetype, [node] distance)
1957 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
1958 * the same zonelist. So only NUMA can configure this param.
1960 #define ZONELIST_ORDER_DEFAULT 0
1961 #define ZONELIST_ORDER_NODE 1
1962 #define ZONELIST_ORDER_ZONE 2
1964 /* zonelist order in the kernel.
1965 * set_zonelist_order() will set this to NODE or ZONE.
1967 static int current_zonelist_order
= ZONELIST_ORDER_DEFAULT
;
1968 static char zonelist_order_name
[3][8] = {"Default", "Node", "Zone"};
1972 /* The value user specified ....changed by config */
1973 static int user_zonelist_order
= ZONELIST_ORDER_DEFAULT
;
1974 /* string for sysctl */
1975 #define NUMA_ZONELIST_ORDER_LEN 16
1976 char numa_zonelist_order
[16] = "default";
1979 * interface for configure zonelist ordering.
1980 * command line option "numa_zonelist_order"
1981 * = "[dD]efault - default, automatic configuration.
1982 * = "[nN]ode - order by node locality, then by zone within node
1983 * = "[zZ]one - order by zone, then by locality within zone
1986 static int __parse_numa_zonelist_order(char *s
)
1988 if (*s
== 'd' || *s
== 'D') {
1989 user_zonelist_order
= ZONELIST_ORDER_DEFAULT
;
1990 } else if (*s
== 'n' || *s
== 'N') {
1991 user_zonelist_order
= ZONELIST_ORDER_NODE
;
1992 } else if (*s
== 'z' || *s
== 'Z') {
1993 user_zonelist_order
= ZONELIST_ORDER_ZONE
;
1996 "Ignoring invalid numa_zonelist_order value: "
2003 static __init
int setup_numa_zonelist_order(char *s
)
2006 return __parse_numa_zonelist_order(s
);
2009 early_param("numa_zonelist_order", setup_numa_zonelist_order
);
2012 * sysctl handler for numa_zonelist_order
2014 int numa_zonelist_order_handler(ctl_table
*table
, int write
,
2015 struct file
*file
, void __user
*buffer
, size_t *length
,
2018 char saved_string
[NUMA_ZONELIST_ORDER_LEN
];
2022 strncpy(saved_string
, (char*)table
->data
,
2023 NUMA_ZONELIST_ORDER_LEN
);
2024 ret
= proc_dostring(table
, write
, file
, buffer
, length
, ppos
);
2028 int oldval
= user_zonelist_order
;
2029 if (__parse_numa_zonelist_order((char*)table
->data
)) {
2031 * bogus value. restore saved string
2033 strncpy((char*)table
->data
, saved_string
,
2034 NUMA_ZONELIST_ORDER_LEN
);
2035 user_zonelist_order
= oldval
;
2036 } else if (oldval
!= user_zonelist_order
)
2037 build_all_zonelists();
2043 #define MAX_NODE_LOAD (num_online_nodes())
2044 static int node_load
[MAX_NUMNODES
];
2047 * find_next_best_node - find the next node that should appear in a given node's fallback list
2048 * @node: node whose fallback list we're appending
2049 * @used_node_mask: nodemask_t of already used nodes
2051 * We use a number of factors to determine which is the next node that should
2052 * appear on a given node's fallback list. The node should not have appeared
2053 * already in @node's fallback list, and it should be the next closest node
2054 * according to the distance array (which contains arbitrary distance values
2055 * from each node to each node in the system), and should also prefer nodes
2056 * with no CPUs, since presumably they'll have very little allocation pressure
2057 * on them otherwise.
2058 * It returns -1 if no node is found.
2060 static int find_next_best_node(int node
, nodemask_t
*used_node_mask
)
2063 int min_val
= INT_MAX
;
2065 node_to_cpumask_ptr(tmp
, 0);
2067 /* Use the local node if we haven't already */
2068 if (!node_isset(node
, *used_node_mask
)) {
2069 node_set(node
, *used_node_mask
);
2073 for_each_node_state(n
, N_HIGH_MEMORY
) {
2075 /* Don't want a node to appear more than once */
2076 if (node_isset(n
, *used_node_mask
))
2079 /* Use the distance array to find the distance */
2080 val
= node_distance(node
, n
);
2082 /* Penalize nodes under us ("prefer the next node") */
2085 /* Give preference to headless and unused nodes */
2086 node_to_cpumask_ptr_next(tmp
, n
);
2087 if (!cpus_empty(*tmp
))
2088 val
+= PENALTY_FOR_NODE_WITH_CPUS
;
2090 /* Slight preference for less loaded node */
2091 val
*= (MAX_NODE_LOAD
*MAX_NUMNODES
);
2092 val
+= node_load
[n
];
2094 if (val
< min_val
) {
2101 node_set(best_node
, *used_node_mask
);
2108 * Build zonelists ordered by node and zones within node.
2109 * This results in maximum locality--normal zone overflows into local
2110 * DMA zone, if any--but risks exhausting DMA zone.
2112 static void build_zonelists_in_node_order(pg_data_t
*pgdat
, int node
)
2115 struct zonelist
*zonelist
;
2117 zonelist
= &pgdat
->node_zonelists
[0];
2118 for (j
= 0; zonelist
->_zonerefs
[j
].zone
!= NULL
; j
++)
2120 j
= build_zonelists_node(NODE_DATA(node
), zonelist
, j
,
2122 zonelist
->_zonerefs
[j
].zone
= NULL
;
2123 zonelist
->_zonerefs
[j
].zone_idx
= 0;
2127 * Build gfp_thisnode zonelists
2129 static void build_thisnode_zonelists(pg_data_t
*pgdat
)
2132 struct zonelist
*zonelist
;
2134 zonelist
= &pgdat
->node_zonelists
[1];
2135 j
= build_zonelists_node(pgdat
, zonelist
, 0, MAX_NR_ZONES
- 1);
2136 zonelist
->_zonerefs
[j
].zone
= NULL
;
2137 zonelist
->_zonerefs
[j
].zone_idx
= 0;
2141 * Build zonelists ordered by zone and nodes within zones.
2142 * This results in conserving DMA zone[s] until all Normal memory is
2143 * exhausted, but results in overflowing to remote node while memory
2144 * may still exist in local DMA zone.
2146 static int node_order
[MAX_NUMNODES
];
2148 static void build_zonelists_in_zone_order(pg_data_t
*pgdat
, int nr_nodes
)
2151 int zone_type
; /* needs to be signed */
2153 struct zonelist
*zonelist
;
2155 zonelist
= &pgdat
->node_zonelists
[0];
2157 for (zone_type
= MAX_NR_ZONES
- 1; zone_type
>= 0; zone_type
--) {
2158 for (j
= 0; j
< nr_nodes
; j
++) {
2159 node
= node_order
[j
];
2160 z
= &NODE_DATA(node
)->node_zones
[zone_type
];
2161 if (populated_zone(z
)) {
2163 &zonelist
->_zonerefs
[pos
++]);
2164 check_highest_zone(zone_type
);
2168 zonelist
->_zonerefs
[pos
].zone
= NULL
;
2169 zonelist
->_zonerefs
[pos
].zone_idx
= 0;
2172 static int default_zonelist_order(void)
2175 unsigned long low_kmem_size
,total_size
;
2179 * ZONE_DMA and ZONE_DMA32 can be very small area in the sytem.
2180 * If they are really small and used heavily, the system can fall
2181 * into OOM very easily.
2182 * This function detect ZONE_DMA/DMA32 size and confgigures zone order.
2184 /* Is there ZONE_NORMAL ? (ex. ppc has only DMA zone..) */
2187 for_each_online_node(nid
) {
2188 for (zone_type
= 0; zone_type
< MAX_NR_ZONES
; zone_type
++) {
2189 z
= &NODE_DATA(nid
)->node_zones
[zone_type
];
2190 if (populated_zone(z
)) {
2191 if (zone_type
< ZONE_NORMAL
)
2192 low_kmem_size
+= z
->present_pages
;
2193 total_size
+= z
->present_pages
;
2197 if (!low_kmem_size
|| /* there are no DMA area. */
2198 low_kmem_size
> total_size
/2) /* DMA/DMA32 is big. */
2199 return ZONELIST_ORDER_NODE
;
2201 * look into each node's config.
2202 * If there is a node whose DMA/DMA32 memory is very big area on
2203 * local memory, NODE_ORDER may be suitable.
2205 average_size
= total_size
/
2206 (nodes_weight(node_states
[N_HIGH_MEMORY
]) + 1);
2207 for_each_online_node(nid
) {
2210 for (zone_type
= 0; zone_type
< MAX_NR_ZONES
; zone_type
++) {
2211 z
= &NODE_DATA(nid
)->node_zones
[zone_type
];
2212 if (populated_zone(z
)) {
2213 if (zone_type
< ZONE_NORMAL
)
2214 low_kmem_size
+= z
->present_pages
;
2215 total_size
+= z
->present_pages
;
2218 if (low_kmem_size
&&
2219 total_size
> average_size
&& /* ignore small node */
2220 low_kmem_size
> total_size
* 70/100)
2221 return ZONELIST_ORDER_NODE
;
2223 return ZONELIST_ORDER_ZONE
;
2226 static void set_zonelist_order(void)
2228 if (user_zonelist_order
== ZONELIST_ORDER_DEFAULT
)
2229 current_zonelist_order
= default_zonelist_order();
2231 current_zonelist_order
= user_zonelist_order
;
2234 static void build_zonelists(pg_data_t
*pgdat
)
2238 nodemask_t used_mask
;
2239 int local_node
, prev_node
;
2240 struct zonelist
*zonelist
;
2241 int order
= current_zonelist_order
;
2243 /* initialize zonelists */
2244 for (i
= 0; i
< MAX_ZONELISTS
; i
++) {
2245 zonelist
= pgdat
->node_zonelists
+ i
;
2246 zonelist
->_zonerefs
[0].zone
= NULL
;
2247 zonelist
->_zonerefs
[0].zone_idx
= 0;
2250 /* NUMA-aware ordering of nodes */
2251 local_node
= pgdat
->node_id
;
2252 load
= num_online_nodes();
2253 prev_node
= local_node
;
2254 nodes_clear(used_mask
);
2256 memset(node_load
, 0, sizeof(node_load
));
2257 memset(node_order
, 0, sizeof(node_order
));
2260 while ((node
= find_next_best_node(local_node
, &used_mask
)) >= 0) {
2261 int distance
= node_distance(local_node
, node
);
2264 * If another node is sufficiently far away then it is better
2265 * to reclaim pages in a zone before going off node.
2267 if (distance
> RECLAIM_DISTANCE
)
2268 zone_reclaim_mode
= 1;
2271 * We don't want to pressure a particular node.
2272 * So adding penalty to the first node in same
2273 * distance group to make it round-robin.
2275 if (distance
!= node_distance(local_node
, prev_node
))
2276 node_load
[node
] = load
;
2280 if (order
== ZONELIST_ORDER_NODE
)
2281 build_zonelists_in_node_order(pgdat
, node
);
2283 node_order
[j
++] = node
; /* remember order */
2286 if (order
== ZONELIST_ORDER_ZONE
) {
2287 /* calculate node order -- i.e., DMA last! */
2288 build_zonelists_in_zone_order(pgdat
, j
);
2291 build_thisnode_zonelists(pgdat
);
2294 /* Construct the zonelist performance cache - see further mmzone.h */
2295 static void build_zonelist_cache(pg_data_t
*pgdat
)
2297 struct zonelist
*zonelist
;
2298 struct zonelist_cache
*zlc
;
2301 zonelist
= &pgdat
->node_zonelists
[0];
2302 zonelist
->zlcache_ptr
= zlc
= &zonelist
->zlcache
;
2303 bitmap_zero(zlc
->fullzones
, MAX_ZONES_PER_ZONELIST
);
2304 for (z
= zonelist
->_zonerefs
; z
->zone
; z
++)
2305 zlc
->z_to_n
[z
- zonelist
->_zonerefs
] = zonelist_node_idx(z
);
2309 #else /* CONFIG_NUMA */
2311 static void set_zonelist_order(void)
2313 current_zonelist_order
= ZONELIST_ORDER_ZONE
;
2316 static void build_zonelists(pg_data_t
*pgdat
)
2318 int node
, local_node
;
2320 struct zonelist
*zonelist
;
2322 local_node
= pgdat
->node_id
;
2324 zonelist
= &pgdat
->node_zonelists
[0];
2325 j
= build_zonelists_node(pgdat
, zonelist
, 0, MAX_NR_ZONES
- 1);
2328 * Now we build the zonelist so that it contains the zones
2329 * of all the other nodes.
2330 * We don't want to pressure a particular node, so when
2331 * building the zones for node N, we make sure that the
2332 * zones coming right after the local ones are those from
2333 * node N+1 (modulo N)
2335 for (node
= local_node
+ 1; node
< MAX_NUMNODES
; node
++) {
2336 if (!node_online(node
))
2338 j
= build_zonelists_node(NODE_DATA(node
), zonelist
, j
,
2341 for (node
= 0; node
< local_node
; node
++) {
2342 if (!node_online(node
))
2344 j
= build_zonelists_node(NODE_DATA(node
), zonelist
, j
,
2348 zonelist
->_zonerefs
[j
].zone
= NULL
;
2349 zonelist
->_zonerefs
[j
].zone_idx
= 0;
2352 /* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
2353 static void build_zonelist_cache(pg_data_t
*pgdat
)
2355 pgdat
->node_zonelists
[0].zlcache_ptr
= NULL
;
2356 pgdat
->node_zonelists
[1].zlcache_ptr
= NULL
;
2359 #endif /* CONFIG_NUMA */
2361 /* return values int ....just for stop_machine_run() */
2362 static int __build_all_zonelists(void *dummy
)
2366 for_each_online_node(nid
) {
2367 pg_data_t
*pgdat
= NODE_DATA(nid
);
2369 build_zonelists(pgdat
);
2370 build_zonelist_cache(pgdat
);
2375 void build_all_zonelists(void)
2377 set_zonelist_order();
2379 if (system_state
== SYSTEM_BOOTING
) {
2380 __build_all_zonelists(NULL
);
2381 cpuset_init_current_mems_allowed();
2383 /* we have to stop all cpus to guarantee there is no user
2385 stop_machine_run(__build_all_zonelists
, NULL
, NR_CPUS
);
2386 /* cpuset refresh routine should be here */
2388 vm_total_pages
= nr_free_pagecache_pages();
2390 * Disable grouping by mobility if the number of pages in the
2391 * system is too low to allow the mechanism to work. It would be
2392 * more accurate, but expensive to check per-zone. This check is
2393 * made on memory-hotadd so a system can start with mobility
2394 * disabled and enable it later
2396 if (vm_total_pages
< (pageblock_nr_pages
* MIGRATE_TYPES
))
2397 page_group_by_mobility_disabled
= 1;
2399 page_group_by_mobility_disabled
= 0;
2401 printk("Built %i zonelists in %s order, mobility grouping %s. "
2402 "Total pages: %ld\n",
2404 zonelist_order_name
[current_zonelist_order
],
2405 page_group_by_mobility_disabled
? "off" : "on",
2408 printk("Policy zone: %s\n", zone_names
[policy_zone
]);
2413 * Helper functions to size the waitqueue hash table.
2414 * Essentially these want to choose hash table sizes sufficiently
2415 * large so that collisions trying to wait on pages are rare.
2416 * But in fact, the number of active page waitqueues on typical
2417 * systems is ridiculously low, less than 200. So this is even
2418 * conservative, even though it seems large.
2420 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
2421 * waitqueues, i.e. the size of the waitq table given the number of pages.
2423 #define PAGES_PER_WAITQUEUE 256
2425 #ifndef CONFIG_MEMORY_HOTPLUG
2426 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages
)
2428 unsigned long size
= 1;
2430 pages
/= PAGES_PER_WAITQUEUE
;
2432 while (size
< pages
)
2436 * Once we have dozens or even hundreds of threads sleeping
2437 * on IO we've got bigger problems than wait queue collision.
2438 * Limit the size of the wait table to a reasonable size.
2440 size
= min(size
, 4096UL);
2442 return max(size
, 4UL);
2446 * A zone's size might be changed by hot-add, so it is not possible to determine
2447 * a suitable size for its wait_table. So we use the maximum size now.
2449 * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
2451 * i386 (preemption config) : 4096 x 16 = 64Kbyte.
2452 * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
2453 * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
2455 * The maximum entries are prepared when a zone's memory is (512K + 256) pages
2456 * or more by the traditional way. (See above). It equals:
2458 * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
2459 * ia64(16K page size) : = ( 8G + 4M)byte.
2460 * powerpc (64K page size) : = (32G +16M)byte.
2462 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages
)
2469 * This is an integer logarithm so that shifts can be used later
2470 * to extract the more random high bits from the multiplicative
2471 * hash function before the remainder is taken.
2473 static inline unsigned long wait_table_bits(unsigned long size
)
2478 #define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
2481 * Mark a number of pageblocks as MIGRATE_RESERVE. The number
2482 * of blocks reserved is based on zone->pages_min. The memory within the
2483 * reserve will tend to store contiguous free pages. Setting min_free_kbytes
2484 * higher will lead to a bigger reserve which will get freed as contiguous
2485 * blocks as reclaim kicks in
2487 static void setup_zone_migrate_reserve(struct zone
*zone
)
2489 unsigned long start_pfn
, pfn
, end_pfn
;
2491 unsigned long reserve
, block_migratetype
;
2493 /* Get the start pfn, end pfn and the number of blocks to reserve */
2494 start_pfn
= zone
->zone_start_pfn
;
2495 end_pfn
= start_pfn
+ zone
->spanned_pages
;
2496 reserve
= roundup(zone
->pages_min
, pageblock_nr_pages
) >>
2499 for (pfn
= start_pfn
; pfn
< end_pfn
; pfn
+= pageblock_nr_pages
) {
2500 if (!pfn_valid(pfn
))
2502 page
= pfn_to_page(pfn
);
2504 /* Blocks with reserved pages will never free, skip them. */
2505 if (PageReserved(page
))
2508 block_migratetype
= get_pageblock_migratetype(page
);
2510 /* If this block is reserved, account for it */
2511 if (reserve
> 0 && block_migratetype
== MIGRATE_RESERVE
) {
2516 /* Suitable for reserving if this block is movable */
2517 if (reserve
> 0 && block_migratetype
== MIGRATE_MOVABLE
) {
2518 set_pageblock_migratetype(page
, MIGRATE_RESERVE
);
2519 move_freepages_block(zone
, page
, MIGRATE_RESERVE
);
2525 * If the reserve is met and this is a previous reserved block,
2528 if (block_migratetype
== MIGRATE_RESERVE
) {
2529 set_pageblock_migratetype(page
, MIGRATE_MOVABLE
);
2530 move_freepages_block(zone
, page
, MIGRATE_MOVABLE
);
2536 * Initially all pages are reserved - free ones are freed
2537 * up by free_all_bootmem() once the early boot process is
2538 * done. Non-atomic initialization, single-pass.
2540 void __meminit
memmap_init_zone(unsigned long size
, int nid
, unsigned long zone
,
2541 unsigned long start_pfn
, enum memmap_context context
)
2544 unsigned long end_pfn
= start_pfn
+ size
;
2548 z
= &NODE_DATA(nid
)->node_zones
[zone
];
2549 for (pfn
= start_pfn
; pfn
< end_pfn
; pfn
++) {
2551 * There can be holes in boot-time mem_map[]s
2552 * handed to this function. They do not
2553 * exist on hotplugged memory.
2555 if (context
== MEMMAP_EARLY
) {
2556 if (!early_pfn_valid(pfn
))
2558 if (!early_pfn_in_nid(pfn
, nid
))
2561 page
= pfn_to_page(pfn
);
2562 set_page_links(page
, zone
, nid
, pfn
);
2563 init_page_count(page
);
2564 reset_page_mapcount(page
);
2565 SetPageReserved(page
);
2567 * Mark the block movable so that blocks are reserved for
2568 * movable at startup. This will force kernel allocations
2569 * to reserve their blocks rather than leaking throughout
2570 * the address space during boot when many long-lived
2571 * kernel allocations are made. Later some blocks near
2572 * the start are marked MIGRATE_RESERVE by
2573 * setup_zone_migrate_reserve()
2575 * bitmap is created for zone's valid pfn range. but memmap
2576 * can be created for invalid pages (for alignment)
2577 * check here not to call set_pageblock_migratetype() against
2580 if ((z
->zone_start_pfn
<= pfn
)
2581 && (pfn
< z
->zone_start_pfn
+ z
->spanned_pages
)
2582 && !(pfn
& (pageblock_nr_pages
- 1)))
2583 set_pageblock_migratetype(page
, MIGRATE_MOVABLE
);
2585 INIT_LIST_HEAD(&page
->lru
);
2586 #ifdef WANT_PAGE_VIRTUAL
2587 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
2588 if (!is_highmem_idx(zone
))
2589 set_page_address(page
, __va(pfn
<< PAGE_SHIFT
));
2594 static void __meminit
zone_init_free_lists(struct zone
*zone
)
2597 for_each_migratetype_order(order
, t
) {
2598 INIT_LIST_HEAD(&zone
->free_area
[order
].free_list
[t
]);
2599 zone
->free_area
[order
].nr_free
= 0;
2603 #ifndef __HAVE_ARCH_MEMMAP_INIT
2604 #define memmap_init(size, nid, zone, start_pfn) \
2605 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
2608 static int zone_batchsize(struct zone
*zone
)
2613 * The per-cpu-pages pools are set to around 1000th of the
2614 * size of the zone. But no more than 1/2 of a meg.
2616 * OK, so we don't know how big the cache is. So guess.
2618 batch
= zone
->present_pages
/ 1024;
2619 if (batch
* PAGE_SIZE
> 512 * 1024)
2620 batch
= (512 * 1024) / PAGE_SIZE
;
2621 batch
/= 4; /* We effectively *= 4 below */
2626 * Clamp the batch to a 2^n - 1 value. Having a power
2627 * of 2 value was found to be more likely to have
2628 * suboptimal cache aliasing properties in some cases.
2630 * For example if 2 tasks are alternately allocating
2631 * batches of pages, one task can end up with a lot
2632 * of pages of one half of the possible page colors
2633 * and the other with pages of the other colors.
2635 batch
= (1 << (fls(batch
+ batch
/2)-1)) - 1;
2640 inline void setup_pageset(struct per_cpu_pageset
*p
, unsigned long batch
)
2642 struct per_cpu_pages
*pcp
;
2644 memset(p
, 0, sizeof(*p
));
2648 pcp
->high
= 6 * batch
;
2649 pcp
->batch
= max(1UL, 1 * batch
);
2650 INIT_LIST_HEAD(&pcp
->list
);
2654 * setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist
2655 * to the value high for the pageset p.
2658 static void setup_pagelist_highmark(struct per_cpu_pageset
*p
,
2661 struct per_cpu_pages
*pcp
;
2665 pcp
->batch
= max(1UL, high
/4);
2666 if ((high
/4) > (PAGE_SHIFT
* 8))
2667 pcp
->batch
= PAGE_SHIFT
* 8;
2673 * Boot pageset table. One per cpu which is going to be used for all
2674 * zones and all nodes. The parameters will be set in such a way
2675 * that an item put on a list will immediately be handed over to
2676 * the buddy list. This is safe since pageset manipulation is done
2677 * with interrupts disabled.
2679 * Some NUMA counter updates may also be caught by the boot pagesets.
2681 * The boot_pagesets must be kept even after bootup is complete for
2682 * unused processors and/or zones. They do play a role for bootstrapping
2683 * hotplugged processors.
2685 * zoneinfo_show() and maybe other functions do
2686 * not check if the processor is online before following the pageset pointer.
2687 * Other parts of the kernel may not check if the zone is available.
2689 static struct per_cpu_pageset boot_pageset
[NR_CPUS
];
2692 * Dynamically allocate memory for the
2693 * per cpu pageset array in struct zone.
2695 static int __cpuinit
process_zones(int cpu
)
2697 struct zone
*zone
, *dzone
;
2698 int node
= cpu_to_node(cpu
);
2700 node_set_state(node
, N_CPU
); /* this node has a cpu */
2702 for_each_zone(zone
) {
2704 if (!populated_zone(zone
))
2707 zone_pcp(zone
, cpu
) = kmalloc_node(sizeof(struct per_cpu_pageset
),
2709 if (!zone_pcp(zone
, cpu
))
2712 setup_pageset(zone_pcp(zone
, cpu
), zone_batchsize(zone
));
2714 if (percpu_pagelist_fraction
)
2715 setup_pagelist_highmark(zone_pcp(zone
, cpu
),
2716 (zone
->present_pages
/ percpu_pagelist_fraction
));
2721 for_each_zone(dzone
) {
2722 if (!populated_zone(dzone
))
2726 kfree(zone_pcp(dzone
, cpu
));
2727 zone_pcp(dzone
, cpu
) = NULL
;
2732 static inline void free_zone_pagesets(int cpu
)
2736 for_each_zone(zone
) {
2737 struct per_cpu_pageset
*pset
= zone_pcp(zone
, cpu
);
2739 /* Free per_cpu_pageset if it is slab allocated */
2740 if (pset
!= &boot_pageset
[cpu
])
2742 zone_pcp(zone
, cpu
) = NULL
;
2746 static int __cpuinit
pageset_cpuup_callback(struct notifier_block
*nfb
,
2747 unsigned long action
,
2750 int cpu
= (long)hcpu
;
2751 int ret
= NOTIFY_OK
;
2754 case CPU_UP_PREPARE
:
2755 case CPU_UP_PREPARE_FROZEN
:
2756 if (process_zones(cpu
))
2759 case CPU_UP_CANCELED
:
2760 case CPU_UP_CANCELED_FROZEN
:
2762 case CPU_DEAD_FROZEN
:
2763 free_zone_pagesets(cpu
);
2771 static struct notifier_block __cpuinitdata pageset_notifier
=
2772 { &pageset_cpuup_callback
, NULL
, 0 };
2774 void __init
setup_per_cpu_pageset(void)
2778 /* Initialize per_cpu_pageset for cpu 0.
2779 * A cpuup callback will do this for every cpu
2780 * as it comes online
2782 err
= process_zones(smp_processor_id());
2784 register_cpu_notifier(&pageset_notifier
);
2789 static noinline __init_refok
2790 int zone_wait_table_init(struct zone
*zone
, unsigned long zone_size_pages
)
2793 struct pglist_data
*pgdat
= zone
->zone_pgdat
;
2797 * The per-page waitqueue mechanism uses hashed waitqueues
2800 zone
->wait_table_hash_nr_entries
=
2801 wait_table_hash_nr_entries(zone_size_pages
);
2802 zone
->wait_table_bits
=
2803 wait_table_bits(zone
->wait_table_hash_nr_entries
);
2804 alloc_size
= zone
->wait_table_hash_nr_entries
2805 * sizeof(wait_queue_head_t
);
2807 if (system_state
== SYSTEM_BOOTING
) {
2808 zone
->wait_table
= (wait_queue_head_t
*)
2809 alloc_bootmem_node(pgdat
, alloc_size
);
2812 * This case means that a zone whose size was 0 gets new memory
2813 * via memory hot-add.
2814 * But it may be the case that a new node was hot-added. In
2815 * this case vmalloc() will not be able to use this new node's
2816 * memory - this wait_table must be initialized to use this new
2817 * node itself as well.
2818 * To use this new node's memory, further consideration will be
2821 zone
->wait_table
= vmalloc(alloc_size
);
2823 if (!zone
->wait_table
)
2826 for(i
= 0; i
< zone
->wait_table_hash_nr_entries
; ++i
)
2827 init_waitqueue_head(zone
->wait_table
+ i
);
2832 static __meminit
void zone_pcp_init(struct zone
*zone
)
2835 unsigned long batch
= zone_batchsize(zone
);
2837 for (cpu
= 0; cpu
< NR_CPUS
; cpu
++) {
2839 /* Early boot. Slab allocator not functional yet */
2840 zone_pcp(zone
, cpu
) = &boot_pageset
[cpu
];
2841 setup_pageset(&boot_pageset
[cpu
],0);
2843 setup_pageset(zone_pcp(zone
,cpu
), batch
);
2846 if (zone
->present_pages
)
2847 printk(KERN_DEBUG
" %s zone: %lu pages, LIFO batch:%lu\n",
2848 zone
->name
, zone
->present_pages
, batch
);
2851 __meminit
int init_currently_empty_zone(struct zone
*zone
,
2852 unsigned long zone_start_pfn
,
2854 enum memmap_context context
)
2856 struct pglist_data
*pgdat
= zone
->zone_pgdat
;
2858 ret
= zone_wait_table_init(zone
, size
);
2861 pgdat
->nr_zones
= zone_idx(zone
) + 1;
2863 zone
->zone_start_pfn
= zone_start_pfn
;
2865 memmap_init(size
, pgdat
->node_id
, zone_idx(zone
), zone_start_pfn
);
2867 zone_init_free_lists(zone
);
2872 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
2874 * Basic iterator support. Return the first range of PFNs for a node
2875 * Note: nid == MAX_NUMNODES returns first region regardless of node
2877 static int __meminit
first_active_region_index_in_nid(int nid
)
2881 for (i
= 0; i
< nr_nodemap_entries
; i
++)
2882 if (nid
== MAX_NUMNODES
|| early_node_map
[i
].nid
== nid
)
2889 * Basic iterator support. Return the next active range of PFNs for a node
2890 * Note: nid == MAX_NUMNODES returns next region regardless of node
2892 static int __meminit
next_active_region_index_in_nid(int index
, int nid
)
2894 for (index
= index
+ 1; index
< nr_nodemap_entries
; index
++)
2895 if (nid
== MAX_NUMNODES
|| early_node_map
[index
].nid
== nid
)
2901 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
2903 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
2904 * Architectures may implement their own version but if add_active_range()
2905 * was used and there are no special requirements, this is a convenient
2908 int __meminit
early_pfn_to_nid(unsigned long pfn
)
2912 for (i
= 0; i
< nr_nodemap_entries
; i
++) {
2913 unsigned long start_pfn
= early_node_map
[i
].start_pfn
;
2914 unsigned long end_pfn
= early_node_map
[i
].end_pfn
;
2916 if (start_pfn
<= pfn
&& pfn
< end_pfn
)
2917 return early_node_map
[i
].nid
;
2922 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
2924 /* Basic iterator support to walk early_node_map[] */
2925 #define for_each_active_range_index_in_nid(i, nid) \
2926 for (i = first_active_region_index_in_nid(nid); i != -1; \
2927 i = next_active_region_index_in_nid(i, nid))
2930 * free_bootmem_with_active_regions - Call free_bootmem_node for each active range
2931 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
2932 * @max_low_pfn: The highest PFN that will be passed to free_bootmem_node
2934 * If an architecture guarantees that all ranges registered with
2935 * add_active_ranges() contain no holes and may be freed, this
2936 * this function may be used instead of calling free_bootmem() manually.
2938 void __init
free_bootmem_with_active_regions(int nid
,
2939 unsigned long max_low_pfn
)
2943 for_each_active_range_index_in_nid(i
, nid
) {
2944 unsigned long size_pages
= 0;
2945 unsigned long end_pfn
= early_node_map
[i
].end_pfn
;
2947 if (early_node_map
[i
].start_pfn
>= max_low_pfn
)
2950 if (end_pfn
> max_low_pfn
)
2951 end_pfn
= max_low_pfn
;
2953 size_pages
= end_pfn
- early_node_map
[i
].start_pfn
;
2954 free_bootmem_node(NODE_DATA(early_node_map
[i
].nid
),
2955 PFN_PHYS(early_node_map
[i
].start_pfn
),
2956 size_pages
<< PAGE_SHIFT
);
2961 * sparse_memory_present_with_active_regions - Call memory_present for each active range
2962 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
2964 * If an architecture guarantees that all ranges registered with
2965 * add_active_ranges() contain no holes and may be freed, this
2966 * function may be used instead of calling memory_present() manually.
2968 void __init
sparse_memory_present_with_active_regions(int nid
)
2972 for_each_active_range_index_in_nid(i
, nid
)
2973 memory_present(early_node_map
[i
].nid
,
2974 early_node_map
[i
].start_pfn
,
2975 early_node_map
[i
].end_pfn
);
2979 * push_node_boundaries - Push node boundaries to at least the requested boundary
2980 * @nid: The nid of the node to push the boundary for
2981 * @start_pfn: The start pfn of the node
2982 * @end_pfn: The end pfn of the node
2984 * In reserve-based hot-add, mem_map is allocated that is unused until hotadd
2985 * time. Specifically, on x86_64, SRAT will report ranges that can potentially
2986 * be hotplugged even though no physical memory exists. This function allows
2987 * an arch to push out the node boundaries so mem_map is allocated that can
2990 #ifdef CONFIG_MEMORY_HOTPLUG_RESERVE
2991 void __init
push_node_boundaries(unsigned int nid
,
2992 unsigned long start_pfn
, unsigned long end_pfn
)
2994 printk(KERN_DEBUG
"Entering push_node_boundaries(%u, %lu, %lu)\n",
2995 nid
, start_pfn
, end_pfn
);
2997 /* Initialise the boundary for this node if necessary */
2998 if (node_boundary_end_pfn
[nid
] == 0)
2999 node_boundary_start_pfn
[nid
] = -1UL;
3001 /* Update the boundaries */
3002 if (node_boundary_start_pfn
[nid
] > start_pfn
)
3003 node_boundary_start_pfn
[nid
] = start_pfn
;
3004 if (node_boundary_end_pfn
[nid
] < end_pfn
)
3005 node_boundary_end_pfn
[nid
] = end_pfn
;
3008 /* If necessary, push the node boundary out for reserve hotadd */
3009 static void __meminit
account_node_boundary(unsigned int nid
,
3010 unsigned long *start_pfn
, unsigned long *end_pfn
)
3012 printk(KERN_DEBUG
"Entering account_node_boundary(%u, %lu, %lu)\n",
3013 nid
, *start_pfn
, *end_pfn
);
3015 /* Return if boundary information has not been provided */
3016 if (node_boundary_end_pfn
[nid
] == 0)
3019 /* Check the boundaries and update if necessary */
3020 if (node_boundary_start_pfn
[nid
] < *start_pfn
)
3021 *start_pfn
= node_boundary_start_pfn
[nid
];
3022 if (node_boundary_end_pfn
[nid
] > *end_pfn
)
3023 *end_pfn
= node_boundary_end_pfn
[nid
];
3026 void __init
push_node_boundaries(unsigned int nid
,
3027 unsigned long start_pfn
, unsigned long end_pfn
) {}
3029 static void __meminit
account_node_boundary(unsigned int nid
,
3030 unsigned long *start_pfn
, unsigned long *end_pfn
) {}
3035 * get_pfn_range_for_nid - Return the start and end page frames for a node
3036 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
3037 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
3038 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
3040 * It returns the start and end page frame of a node based on information
3041 * provided by an arch calling add_active_range(). If called for a node
3042 * with no available memory, a warning is printed and the start and end
3045 void __meminit
get_pfn_range_for_nid(unsigned int nid
,
3046 unsigned long *start_pfn
, unsigned long *end_pfn
)
3052 for_each_active_range_index_in_nid(i
, nid
) {
3053 *start_pfn
= min(*start_pfn
, early_node_map
[i
].start_pfn
);
3054 *end_pfn
= max(*end_pfn
, early_node_map
[i
].end_pfn
);
3057 if (*start_pfn
== -1UL)
3060 /* Push the node boundaries out if requested */
3061 account_node_boundary(nid
, start_pfn
, end_pfn
);
3065 * This finds a zone that can be used for ZONE_MOVABLE pages. The
3066 * assumption is made that zones within a node are ordered in monotonic
3067 * increasing memory addresses so that the "highest" populated zone is used
3069 void __init
find_usable_zone_for_movable(void)
3072 for (zone_index
= MAX_NR_ZONES
- 1; zone_index
>= 0; zone_index
--) {
3073 if (zone_index
== ZONE_MOVABLE
)
3076 if (arch_zone_highest_possible_pfn
[zone_index
] >
3077 arch_zone_lowest_possible_pfn
[zone_index
])
3081 VM_BUG_ON(zone_index
== -1);
3082 movable_zone
= zone_index
;
3086 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
3087 * because it is sized independant of architecture. Unlike the other zones,
3088 * the starting point for ZONE_MOVABLE is not fixed. It may be different
3089 * in each node depending on the size of each node and how evenly kernelcore
3090 * is distributed. This helper function adjusts the zone ranges
3091 * provided by the architecture for a given node by using the end of the
3092 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
3093 * zones within a node are in order of monotonic increases memory addresses
3095 void __meminit
adjust_zone_range_for_zone_movable(int nid
,
3096 unsigned long zone_type
,
3097 unsigned long node_start_pfn
,
3098 unsigned long node_end_pfn
,
3099 unsigned long *zone_start_pfn
,
3100 unsigned long *zone_end_pfn
)
3102 /* Only adjust if ZONE_MOVABLE is on this node */
3103 if (zone_movable_pfn
[nid
]) {
3104 /* Size ZONE_MOVABLE */
3105 if (zone_type
== ZONE_MOVABLE
) {
3106 *zone_start_pfn
= zone_movable_pfn
[nid
];
3107 *zone_end_pfn
= min(node_end_pfn
,
3108 arch_zone_highest_possible_pfn
[movable_zone
]);
3110 /* Adjust for ZONE_MOVABLE starting within this range */
3111 } else if (*zone_start_pfn
< zone_movable_pfn
[nid
] &&
3112 *zone_end_pfn
> zone_movable_pfn
[nid
]) {
3113 *zone_end_pfn
= zone_movable_pfn
[nid
];
3115 /* Check if this whole range is within ZONE_MOVABLE */
3116 } else if (*zone_start_pfn
>= zone_movable_pfn
[nid
])
3117 *zone_start_pfn
= *zone_end_pfn
;
3122 * Return the number of pages a zone spans in a node, including holes
3123 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
3125 static unsigned long __meminit
zone_spanned_pages_in_node(int nid
,
3126 unsigned long zone_type
,
3127 unsigned long *ignored
)
3129 unsigned long node_start_pfn
, node_end_pfn
;
3130 unsigned long zone_start_pfn
, zone_end_pfn
;
3132 /* Get the start and end of the node and zone */
3133 get_pfn_range_for_nid(nid
, &node_start_pfn
, &node_end_pfn
);
3134 zone_start_pfn
= arch_zone_lowest_possible_pfn
[zone_type
];
3135 zone_end_pfn
= arch_zone_highest_possible_pfn
[zone_type
];
3136 adjust_zone_range_for_zone_movable(nid
, zone_type
,
3137 node_start_pfn
, node_end_pfn
,
3138 &zone_start_pfn
, &zone_end_pfn
);
3140 /* Check that this node has pages within the zone's required range */
3141 if (zone_end_pfn
< node_start_pfn
|| zone_start_pfn
> node_end_pfn
)
3144 /* Move the zone boundaries inside the node if necessary */
3145 zone_end_pfn
= min(zone_end_pfn
, node_end_pfn
);
3146 zone_start_pfn
= max(zone_start_pfn
, node_start_pfn
);
3148 /* Return the spanned pages */
3149 return zone_end_pfn
- zone_start_pfn
;
3153 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
3154 * then all holes in the requested range will be accounted for.
3156 unsigned long __meminit
__absent_pages_in_range(int nid
,
3157 unsigned long range_start_pfn
,
3158 unsigned long range_end_pfn
)
3161 unsigned long prev_end_pfn
= 0, hole_pages
= 0;
3162 unsigned long start_pfn
;
3164 /* Find the end_pfn of the first active range of pfns in the node */
3165 i
= first_active_region_index_in_nid(nid
);
3169 prev_end_pfn
= min(early_node_map
[i
].start_pfn
, range_end_pfn
);
3171 /* Account for ranges before physical memory on this node */
3172 if (early_node_map
[i
].start_pfn
> range_start_pfn
)
3173 hole_pages
= prev_end_pfn
- range_start_pfn
;
3175 /* Find all holes for the zone within the node */
3176 for (; i
!= -1; i
= next_active_region_index_in_nid(i
, nid
)) {
3178 /* No need to continue if prev_end_pfn is outside the zone */
3179 if (prev_end_pfn
>= range_end_pfn
)
3182 /* Make sure the end of the zone is not within the hole */
3183 start_pfn
= min(early_node_map
[i
].start_pfn
, range_end_pfn
);
3184 prev_end_pfn
= max(prev_end_pfn
, range_start_pfn
);
3186 /* Update the hole size cound and move on */
3187 if (start_pfn
> range_start_pfn
) {
3188 BUG_ON(prev_end_pfn
> start_pfn
);
3189 hole_pages
+= start_pfn
- prev_end_pfn
;
3191 prev_end_pfn
= early_node_map
[i
].end_pfn
;
3194 /* Account for ranges past physical memory on this node */
3195 if (range_end_pfn
> prev_end_pfn
)
3196 hole_pages
+= range_end_pfn
-
3197 max(range_start_pfn
, prev_end_pfn
);
3203 * absent_pages_in_range - Return number of page frames in holes within a range
3204 * @start_pfn: The start PFN to start searching for holes
3205 * @end_pfn: The end PFN to stop searching for holes
3207 * It returns the number of pages frames in memory holes within a range.
3209 unsigned long __init
absent_pages_in_range(unsigned long start_pfn
,
3210 unsigned long end_pfn
)
3212 return __absent_pages_in_range(MAX_NUMNODES
, start_pfn
, end_pfn
);
3215 /* Return the number of page frames in holes in a zone on a node */
3216 static unsigned long __meminit
zone_absent_pages_in_node(int nid
,
3217 unsigned long zone_type
,
3218 unsigned long *ignored
)
3220 unsigned long node_start_pfn
, node_end_pfn
;
3221 unsigned long zone_start_pfn
, zone_end_pfn
;
3223 get_pfn_range_for_nid(nid
, &node_start_pfn
, &node_end_pfn
);
3224 zone_start_pfn
= max(arch_zone_lowest_possible_pfn
[zone_type
],
3226 zone_end_pfn
= min(arch_zone_highest_possible_pfn
[zone_type
],
3229 adjust_zone_range_for_zone_movable(nid
, zone_type
,
3230 node_start_pfn
, node_end_pfn
,
3231 &zone_start_pfn
, &zone_end_pfn
);
3232 return __absent_pages_in_range(nid
, zone_start_pfn
, zone_end_pfn
);
3236 static inline unsigned long __meminit
zone_spanned_pages_in_node(int nid
,
3237 unsigned long zone_type
,
3238 unsigned long *zones_size
)
3240 return zones_size
[zone_type
];
3243 static inline unsigned long __meminit
zone_absent_pages_in_node(int nid
,
3244 unsigned long zone_type
,
3245 unsigned long *zholes_size
)
3250 return zholes_size
[zone_type
];
3255 static void __meminit
calculate_node_totalpages(struct pglist_data
*pgdat
,
3256 unsigned long *zones_size
, unsigned long *zholes_size
)
3258 unsigned long realtotalpages
, totalpages
= 0;
3261 for (i
= 0; i
< MAX_NR_ZONES
; i
++)
3262 totalpages
+= zone_spanned_pages_in_node(pgdat
->node_id
, i
,
3264 pgdat
->node_spanned_pages
= totalpages
;
3266 realtotalpages
= totalpages
;
3267 for (i
= 0; i
< MAX_NR_ZONES
; i
++)
3269 zone_absent_pages_in_node(pgdat
->node_id
, i
,
3271 pgdat
->node_present_pages
= realtotalpages
;
3272 printk(KERN_DEBUG
"On node %d totalpages: %lu\n", pgdat
->node_id
,
3276 #ifndef CONFIG_SPARSEMEM
3278 * Calculate the size of the zone->blockflags rounded to an unsigned long
3279 * Start by making sure zonesize is a multiple of pageblock_order by rounding
3280 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
3281 * round what is now in bits to nearest long in bits, then return it in
3284 static unsigned long __init
usemap_size(unsigned long zonesize
)
3286 unsigned long usemapsize
;
3288 usemapsize
= roundup(zonesize
, pageblock_nr_pages
);
3289 usemapsize
= usemapsize
>> pageblock_order
;
3290 usemapsize
*= NR_PAGEBLOCK_BITS
;
3291 usemapsize
= roundup(usemapsize
, 8 * sizeof(unsigned long));
3293 return usemapsize
/ 8;
3296 static void __init
setup_usemap(struct pglist_data
*pgdat
,
3297 struct zone
*zone
, unsigned long zonesize
)
3299 unsigned long usemapsize
= usemap_size(zonesize
);
3300 zone
->pageblock_flags
= NULL
;
3302 zone
->pageblock_flags
= alloc_bootmem_node(pgdat
, usemapsize
);
3303 memset(zone
->pageblock_flags
, 0, usemapsize
);
3307 static void inline setup_usemap(struct pglist_data
*pgdat
,
3308 struct zone
*zone
, unsigned long zonesize
) {}
3309 #endif /* CONFIG_SPARSEMEM */
3311 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
3313 /* Return a sensible default order for the pageblock size. */
3314 static inline int pageblock_default_order(void)
3316 if (HPAGE_SHIFT
> PAGE_SHIFT
)
3317 return HUGETLB_PAGE_ORDER
;
3322 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
3323 static inline void __init
set_pageblock_order(unsigned int order
)
3325 /* Check that pageblock_nr_pages has not already been setup */
3326 if (pageblock_order
)
3330 * Assume the largest contiguous order of interest is a huge page.
3331 * This value may be variable depending on boot parameters on IA64
3333 pageblock_order
= order
;
3335 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
3338 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
3339 * and pageblock_default_order() are unused as pageblock_order is set
3340 * at compile-time. See include/linux/pageblock-flags.h for the values of
3341 * pageblock_order based on the kernel config
3343 static inline int pageblock_default_order(unsigned int order
)
3347 #define set_pageblock_order(x) do {} while (0)
3349 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
3352 * Set up the zone data structures:
3353 * - mark all pages reserved
3354 * - mark all memory queues empty
3355 * - clear the memory bitmaps
3357 static void __paginginit
free_area_init_core(struct pglist_data
*pgdat
,
3358 unsigned long *zones_size
, unsigned long *zholes_size
)
3361 int nid
= pgdat
->node_id
;
3362 unsigned long zone_start_pfn
= pgdat
->node_start_pfn
;
3365 pgdat_resize_init(pgdat
);
3366 pgdat
->nr_zones
= 0;
3367 init_waitqueue_head(&pgdat
->kswapd_wait
);
3368 pgdat
->kswapd_max_order
= 0;
3370 for (j
= 0; j
< MAX_NR_ZONES
; j
++) {
3371 struct zone
*zone
= pgdat
->node_zones
+ j
;
3372 unsigned long size
, realsize
, memmap_pages
;
3374 size
= zone_spanned_pages_in_node(nid
, j
, zones_size
);
3375 realsize
= size
- zone_absent_pages_in_node(nid
, j
,
3379 * Adjust realsize so that it accounts for how much memory
3380 * is used by this zone for memmap. This affects the watermark
3381 * and per-cpu initialisations
3383 memmap_pages
= (size
* sizeof(struct page
)) >> PAGE_SHIFT
;
3384 if (realsize
>= memmap_pages
) {
3385 realsize
-= memmap_pages
;
3387 " %s zone: %lu pages used for memmap\n",
3388 zone_names
[j
], memmap_pages
);
3391 " %s zone: %lu pages exceeds realsize %lu\n",
3392 zone_names
[j
], memmap_pages
, realsize
);
3394 /* Account for reserved pages */
3395 if (j
== 0 && realsize
> dma_reserve
) {
3396 realsize
-= dma_reserve
;
3397 printk(KERN_DEBUG
" %s zone: %lu pages reserved\n",
3398 zone_names
[0], dma_reserve
);
3401 if (!is_highmem_idx(j
))
3402 nr_kernel_pages
+= realsize
;
3403 nr_all_pages
+= realsize
;
3405 zone
->spanned_pages
= size
;
3406 zone
->present_pages
= realsize
;
3409 zone
->min_unmapped_pages
= (realsize
*sysctl_min_unmapped_ratio
)
3411 zone
->min_slab_pages
= (realsize
* sysctl_min_slab_ratio
) / 100;
3413 zone
->name
= zone_names
[j
];
3414 spin_lock_init(&zone
->lock
);
3415 spin_lock_init(&zone
->lru_lock
);
3416 zone_seqlock_init(zone
);
3417 zone
->zone_pgdat
= pgdat
;
3419 zone
->prev_priority
= DEF_PRIORITY
;
3421 zone_pcp_init(zone
);
3422 INIT_LIST_HEAD(&zone
->active_list
);
3423 INIT_LIST_HEAD(&zone
->inactive_list
);
3424 zone
->nr_scan_active
= 0;
3425 zone
->nr_scan_inactive
= 0;
3426 zap_zone_vm_stats(zone
);
3431 set_pageblock_order(pageblock_default_order());
3432 setup_usemap(pgdat
, zone
, size
);
3433 ret
= init_currently_empty_zone(zone
, zone_start_pfn
,
3434 size
, MEMMAP_EARLY
);
3436 zone_start_pfn
+= size
;
3440 static void __init_refok
alloc_node_mem_map(struct pglist_data
*pgdat
)
3442 /* Skip empty nodes */
3443 if (!pgdat
->node_spanned_pages
)
3446 #ifdef CONFIG_FLAT_NODE_MEM_MAP
3447 /* ia64 gets its own node_mem_map, before this, without bootmem */
3448 if (!pgdat
->node_mem_map
) {
3449 unsigned long size
, start
, end
;
3453 * The zone's endpoints aren't required to be MAX_ORDER
3454 * aligned but the node_mem_map endpoints must be in order
3455 * for the buddy allocator to function correctly.
3457 start
= pgdat
->node_start_pfn
& ~(MAX_ORDER_NR_PAGES
- 1);
3458 end
= pgdat
->node_start_pfn
+ pgdat
->node_spanned_pages
;
3459 end
= ALIGN(end
, MAX_ORDER_NR_PAGES
);
3460 size
= (end
- start
) * sizeof(struct page
);
3461 map
= alloc_remap(pgdat
->node_id
, size
);
3463 map
= alloc_bootmem_node(pgdat
, size
);
3464 pgdat
->node_mem_map
= map
+ (pgdat
->node_start_pfn
- start
);
3466 #ifndef CONFIG_NEED_MULTIPLE_NODES
3468 * With no DISCONTIG, the global mem_map is just set as node 0's
3470 if (pgdat
== NODE_DATA(0)) {
3471 mem_map
= NODE_DATA(0)->node_mem_map
;
3472 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
3473 if (page_to_pfn(mem_map
) != pgdat
->node_start_pfn
)
3474 mem_map
-= (pgdat
->node_start_pfn
- ARCH_PFN_OFFSET
);
3475 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
3478 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
3481 void __paginginit
free_area_init_node(int nid
, struct pglist_data
*pgdat
,
3482 unsigned long *zones_size
, unsigned long node_start_pfn
,
3483 unsigned long *zholes_size
)
3485 pgdat
->node_id
= nid
;
3486 pgdat
->node_start_pfn
= node_start_pfn
;
3487 calculate_node_totalpages(pgdat
, zones_size
, zholes_size
);
3489 alloc_node_mem_map(pgdat
);
3491 free_area_init_core(pgdat
, zones_size
, zholes_size
);
3494 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
3496 #if MAX_NUMNODES > 1
3498 * Figure out the number of possible node ids.
3500 static void __init
setup_nr_node_ids(void)
3503 unsigned int highest
= 0;
3505 for_each_node_mask(node
, node_possible_map
)
3507 nr_node_ids
= highest
+ 1;
3510 static inline void setup_nr_node_ids(void)
3516 * add_active_range - Register a range of PFNs backed by physical memory
3517 * @nid: The node ID the range resides on
3518 * @start_pfn: The start PFN of the available physical memory
3519 * @end_pfn: The end PFN of the available physical memory
3521 * These ranges are stored in an early_node_map[] and later used by
3522 * free_area_init_nodes() to calculate zone sizes and holes. If the
3523 * range spans a memory hole, it is up to the architecture to ensure
3524 * the memory is not freed by the bootmem allocator. If possible
3525 * the range being registered will be merged with existing ranges.
3527 void __init
add_active_range(unsigned int nid
, unsigned long start_pfn
,
3528 unsigned long end_pfn
)
3532 printk(KERN_DEBUG
"Entering add_active_range(%d, %lu, %lu) "
3533 "%d entries of %d used\n",
3534 nid
, start_pfn
, end_pfn
,
3535 nr_nodemap_entries
, MAX_ACTIVE_REGIONS
);
3537 /* Merge with existing active regions if possible */
3538 for (i
= 0; i
< nr_nodemap_entries
; i
++) {
3539 if (early_node_map
[i
].nid
!= nid
)
3542 /* Skip if an existing region covers this new one */
3543 if (start_pfn
>= early_node_map
[i
].start_pfn
&&
3544 end_pfn
<= early_node_map
[i
].end_pfn
)
3547 /* Merge forward if suitable */
3548 if (start_pfn
<= early_node_map
[i
].end_pfn
&&
3549 end_pfn
> early_node_map
[i
].end_pfn
) {
3550 early_node_map
[i
].end_pfn
= end_pfn
;
3554 /* Merge backward if suitable */
3555 if (start_pfn
< early_node_map
[i
].end_pfn
&&
3556 end_pfn
>= early_node_map
[i
].start_pfn
) {
3557 early_node_map
[i
].start_pfn
= start_pfn
;
3562 /* Check that early_node_map is large enough */
3563 if (i
>= MAX_ACTIVE_REGIONS
) {
3564 printk(KERN_CRIT
"More than %d memory regions, truncating\n",
3565 MAX_ACTIVE_REGIONS
);
3569 early_node_map
[i
].nid
= nid
;
3570 early_node_map
[i
].start_pfn
= start_pfn
;
3571 early_node_map
[i
].end_pfn
= end_pfn
;
3572 nr_nodemap_entries
= i
+ 1;
3576 * shrink_active_range - Shrink an existing registered range of PFNs
3577 * @nid: The node id the range is on that should be shrunk
3578 * @old_end_pfn: The old end PFN of the range
3579 * @new_end_pfn: The new PFN of the range
3581 * i386 with NUMA use alloc_remap() to store a node_mem_map on a local node.
3582 * The map is kept at the end physical page range that has already been
3583 * registered with add_active_range(). This function allows an arch to shrink
3584 * an existing registered range.
3586 void __init
shrink_active_range(unsigned int nid
, unsigned long old_end_pfn
,
3587 unsigned long new_end_pfn
)
3591 /* Find the old active region end and shrink */
3592 for_each_active_range_index_in_nid(i
, nid
)
3593 if (early_node_map
[i
].end_pfn
== old_end_pfn
) {
3594 early_node_map
[i
].end_pfn
= new_end_pfn
;
3600 * remove_all_active_ranges - Remove all currently registered regions
3602 * During discovery, it may be found that a table like SRAT is invalid
3603 * and an alternative discovery method must be used. This function removes
3604 * all currently registered regions.
3606 void __init
remove_all_active_ranges(void)
3608 memset(early_node_map
, 0, sizeof(early_node_map
));
3609 nr_nodemap_entries
= 0;
3610 #ifdef CONFIG_MEMORY_HOTPLUG_RESERVE
3611 memset(node_boundary_start_pfn
, 0, sizeof(node_boundary_start_pfn
));
3612 memset(node_boundary_end_pfn
, 0, sizeof(node_boundary_end_pfn
));
3613 #endif /* CONFIG_MEMORY_HOTPLUG_RESERVE */
3616 /* Compare two active node_active_regions */
3617 static int __init
cmp_node_active_region(const void *a
, const void *b
)
3619 struct node_active_region
*arange
= (struct node_active_region
*)a
;
3620 struct node_active_region
*brange
= (struct node_active_region
*)b
;
3622 /* Done this way to avoid overflows */
3623 if (arange
->start_pfn
> brange
->start_pfn
)
3625 if (arange
->start_pfn
< brange
->start_pfn
)
3631 /* sort the node_map by start_pfn */
3632 static void __init
sort_node_map(void)
3634 sort(early_node_map
, (size_t)nr_nodemap_entries
,
3635 sizeof(struct node_active_region
),
3636 cmp_node_active_region
, NULL
);
3639 /* Find the lowest pfn for a node */
3640 unsigned long __init
find_min_pfn_for_node(unsigned long nid
)
3643 unsigned long min_pfn
= ULONG_MAX
;
3645 /* Assuming a sorted map, the first range found has the starting pfn */
3646 for_each_active_range_index_in_nid(i
, nid
)
3647 min_pfn
= min(min_pfn
, early_node_map
[i
].start_pfn
);
3649 if (min_pfn
== ULONG_MAX
) {
3651 "Could not find start_pfn for node %lu\n", nid
);
3659 * find_min_pfn_with_active_regions - Find the minimum PFN registered
3661 * It returns the minimum PFN based on information provided via
3662 * add_active_range().
3664 unsigned long __init
find_min_pfn_with_active_regions(void)
3666 return find_min_pfn_for_node(MAX_NUMNODES
);
3670 * find_max_pfn_with_active_regions - Find the maximum PFN registered
3672 * It returns the maximum PFN based on information provided via
3673 * add_active_range().
3675 unsigned long __init
find_max_pfn_with_active_regions(void)
3678 unsigned long max_pfn
= 0;
3680 for (i
= 0; i
< nr_nodemap_entries
; i
++)
3681 max_pfn
= max(max_pfn
, early_node_map
[i
].end_pfn
);
3687 * early_calculate_totalpages()
3688 * Sum pages in active regions for movable zone.
3689 * Populate N_HIGH_MEMORY for calculating usable_nodes.
3691 static unsigned long __init
early_calculate_totalpages(void)
3694 unsigned long totalpages
= 0;
3696 for (i
= 0; i
< nr_nodemap_entries
; i
++) {
3697 unsigned long pages
= early_node_map
[i
].end_pfn
-
3698 early_node_map
[i
].start_pfn
;
3699 totalpages
+= pages
;
3701 node_set_state(early_node_map
[i
].nid
, N_HIGH_MEMORY
);
3707 * Find the PFN the Movable zone begins in each node. Kernel memory
3708 * is spread evenly between nodes as long as the nodes have enough
3709 * memory. When they don't, some nodes will have more kernelcore than
3712 void __init
find_zone_movable_pfns_for_nodes(unsigned long *movable_pfn
)
3715 unsigned long usable_startpfn
;
3716 unsigned long kernelcore_node
, kernelcore_remaining
;
3717 unsigned long totalpages
= early_calculate_totalpages();
3718 int usable_nodes
= nodes_weight(node_states
[N_HIGH_MEMORY
]);
3721 * If movablecore was specified, calculate what size of
3722 * kernelcore that corresponds so that memory usable for
3723 * any allocation type is evenly spread. If both kernelcore
3724 * and movablecore are specified, then the value of kernelcore
3725 * will be used for required_kernelcore if it's greater than
3726 * what movablecore would have allowed.
3728 if (required_movablecore
) {
3729 unsigned long corepages
;
3732 * Round-up so that ZONE_MOVABLE is at least as large as what
3733 * was requested by the user
3735 required_movablecore
=
3736 roundup(required_movablecore
, MAX_ORDER_NR_PAGES
);
3737 corepages
= totalpages
- required_movablecore
;
3739 required_kernelcore
= max(required_kernelcore
, corepages
);
3742 /* If kernelcore was not specified, there is no ZONE_MOVABLE */
3743 if (!required_kernelcore
)
3746 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
3747 find_usable_zone_for_movable();
3748 usable_startpfn
= arch_zone_lowest_possible_pfn
[movable_zone
];
3751 /* Spread kernelcore memory as evenly as possible throughout nodes */
3752 kernelcore_node
= required_kernelcore
/ usable_nodes
;
3753 for_each_node_state(nid
, N_HIGH_MEMORY
) {
3755 * Recalculate kernelcore_node if the division per node
3756 * now exceeds what is necessary to satisfy the requested
3757 * amount of memory for the kernel
3759 if (required_kernelcore
< kernelcore_node
)
3760 kernelcore_node
= required_kernelcore
/ usable_nodes
;
3763 * As the map is walked, we track how much memory is usable
3764 * by the kernel using kernelcore_remaining. When it is
3765 * 0, the rest of the node is usable by ZONE_MOVABLE
3767 kernelcore_remaining
= kernelcore_node
;
3769 /* Go through each range of PFNs within this node */
3770 for_each_active_range_index_in_nid(i
, nid
) {
3771 unsigned long start_pfn
, end_pfn
;
3772 unsigned long size_pages
;
3774 start_pfn
= max(early_node_map
[i
].start_pfn
,
3775 zone_movable_pfn
[nid
]);
3776 end_pfn
= early_node_map
[i
].end_pfn
;
3777 if (start_pfn
>= end_pfn
)
3780 /* Account for what is only usable for kernelcore */
3781 if (start_pfn
< usable_startpfn
) {
3782 unsigned long kernel_pages
;
3783 kernel_pages
= min(end_pfn
, usable_startpfn
)
3786 kernelcore_remaining
-= min(kernel_pages
,
3787 kernelcore_remaining
);
3788 required_kernelcore
-= min(kernel_pages
,
3789 required_kernelcore
);
3791 /* Continue if range is now fully accounted */
3792 if (end_pfn
<= usable_startpfn
) {
3795 * Push zone_movable_pfn to the end so
3796 * that if we have to rebalance
3797 * kernelcore across nodes, we will
3798 * not double account here
3800 zone_movable_pfn
[nid
] = end_pfn
;
3803 start_pfn
= usable_startpfn
;
3807 * The usable PFN range for ZONE_MOVABLE is from
3808 * start_pfn->end_pfn. Calculate size_pages as the
3809 * number of pages used as kernelcore
3811 size_pages
= end_pfn
- start_pfn
;
3812 if (size_pages
> kernelcore_remaining
)
3813 size_pages
= kernelcore_remaining
;
3814 zone_movable_pfn
[nid
] = start_pfn
+ size_pages
;
3817 * Some kernelcore has been met, update counts and
3818 * break if the kernelcore for this node has been
3821 required_kernelcore
-= min(required_kernelcore
,
3823 kernelcore_remaining
-= size_pages
;
3824 if (!kernelcore_remaining
)
3830 * If there is still required_kernelcore, we do another pass with one
3831 * less node in the count. This will push zone_movable_pfn[nid] further
3832 * along on the nodes that still have memory until kernelcore is
3836 if (usable_nodes
&& required_kernelcore
> usable_nodes
)
3839 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
3840 for (nid
= 0; nid
< MAX_NUMNODES
; nid
++)
3841 zone_movable_pfn
[nid
] =
3842 roundup(zone_movable_pfn
[nid
], MAX_ORDER_NR_PAGES
);
3845 /* Any regular memory on that node ? */
3846 static void check_for_regular_memory(pg_data_t
*pgdat
)
3848 #ifdef CONFIG_HIGHMEM
3849 enum zone_type zone_type
;
3851 for (zone_type
= 0; zone_type
<= ZONE_NORMAL
; zone_type
++) {
3852 struct zone
*zone
= &pgdat
->node_zones
[zone_type
];
3853 if (zone
->present_pages
)
3854 node_set_state(zone_to_nid(zone
), N_NORMAL_MEMORY
);
3860 * free_area_init_nodes - Initialise all pg_data_t and zone data
3861 * @max_zone_pfn: an array of max PFNs for each zone
3863 * This will call free_area_init_node() for each active node in the system.
3864 * Using the page ranges provided by add_active_range(), the size of each
3865 * zone in each node and their holes is calculated. If the maximum PFN
3866 * between two adjacent zones match, it is assumed that the zone is empty.
3867 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
3868 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
3869 * starts where the previous one ended. For example, ZONE_DMA32 starts
3870 * at arch_max_dma_pfn.
3872 void __init
free_area_init_nodes(unsigned long *max_zone_pfn
)
3877 /* Sort early_node_map as initialisation assumes it is sorted */
3880 /* Record where the zone boundaries are */
3881 memset(arch_zone_lowest_possible_pfn
, 0,
3882 sizeof(arch_zone_lowest_possible_pfn
));
3883 memset(arch_zone_highest_possible_pfn
, 0,
3884 sizeof(arch_zone_highest_possible_pfn
));
3885 arch_zone_lowest_possible_pfn
[0] = find_min_pfn_with_active_regions();
3886 arch_zone_highest_possible_pfn
[0] = max_zone_pfn
[0];
3887 for (i
= 1; i
< MAX_NR_ZONES
; i
++) {
3888 if (i
== ZONE_MOVABLE
)
3890 arch_zone_lowest_possible_pfn
[i
] =
3891 arch_zone_highest_possible_pfn
[i
-1];
3892 arch_zone_highest_possible_pfn
[i
] =
3893 max(max_zone_pfn
[i
], arch_zone_lowest_possible_pfn
[i
]);
3895 arch_zone_lowest_possible_pfn
[ZONE_MOVABLE
] = 0;
3896 arch_zone_highest_possible_pfn
[ZONE_MOVABLE
] = 0;
3898 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
3899 memset(zone_movable_pfn
, 0, sizeof(zone_movable_pfn
));
3900 find_zone_movable_pfns_for_nodes(zone_movable_pfn
);
3902 /* Print out the zone ranges */
3903 printk("Zone PFN ranges:\n");
3904 for (i
= 0; i
< MAX_NR_ZONES
; i
++) {
3905 if (i
== ZONE_MOVABLE
)
3907 printk(" %-8s %8lu -> %8lu\n",
3909 arch_zone_lowest_possible_pfn
[i
],
3910 arch_zone_highest_possible_pfn
[i
]);
3913 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
3914 printk("Movable zone start PFN for each node\n");
3915 for (i
= 0; i
< MAX_NUMNODES
; i
++) {
3916 if (zone_movable_pfn
[i
])
3917 printk(" Node %d: %lu\n", i
, zone_movable_pfn
[i
]);
3920 /* Print out the early_node_map[] */
3921 printk("early_node_map[%d] active PFN ranges\n", nr_nodemap_entries
);
3922 for (i
= 0; i
< nr_nodemap_entries
; i
++)
3923 printk(" %3d: %8lu -> %8lu\n", early_node_map
[i
].nid
,
3924 early_node_map
[i
].start_pfn
,
3925 early_node_map
[i
].end_pfn
);
3927 /* Initialise every node */
3928 setup_nr_node_ids();
3929 for_each_online_node(nid
) {
3930 pg_data_t
*pgdat
= NODE_DATA(nid
);
3931 free_area_init_node(nid
, pgdat
, NULL
,
3932 find_min_pfn_for_node(nid
), NULL
);
3934 /* Any memory on that node */
3935 if (pgdat
->node_present_pages
)
3936 node_set_state(nid
, N_HIGH_MEMORY
);
3937 check_for_regular_memory(pgdat
);
3941 static int __init
cmdline_parse_core(char *p
, unsigned long *core
)
3943 unsigned long long coremem
;
3947 coremem
= memparse(p
, &p
);
3948 *core
= coremem
>> PAGE_SHIFT
;
3950 /* Paranoid check that UL is enough for the coremem value */
3951 WARN_ON((coremem
>> PAGE_SHIFT
) > ULONG_MAX
);
3957 * kernelcore=size sets the amount of memory for use for allocations that
3958 * cannot be reclaimed or migrated.
3960 static int __init
cmdline_parse_kernelcore(char *p
)
3962 return cmdline_parse_core(p
, &required_kernelcore
);
3966 * movablecore=size sets the amount of memory for use for allocations that
3967 * can be reclaimed or migrated.
3969 static int __init
cmdline_parse_movablecore(char *p
)
3971 return cmdline_parse_core(p
, &required_movablecore
);
3974 early_param("kernelcore", cmdline_parse_kernelcore
);
3975 early_param("movablecore", cmdline_parse_movablecore
);
3977 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
3980 * set_dma_reserve - set the specified number of pages reserved in the first zone
3981 * @new_dma_reserve: The number of pages to mark reserved
3983 * The per-cpu batchsize and zone watermarks are determined by present_pages.
3984 * In the DMA zone, a significant percentage may be consumed by kernel image
3985 * and other unfreeable allocations which can skew the watermarks badly. This
3986 * function may optionally be used to account for unfreeable pages in the
3987 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
3988 * smaller per-cpu batchsize.
3990 void __init
set_dma_reserve(unsigned long new_dma_reserve
)
3992 dma_reserve
= new_dma_reserve
;
3995 #ifndef CONFIG_NEED_MULTIPLE_NODES
3996 static bootmem_data_t contig_bootmem_data
;
3997 struct pglist_data contig_page_data
= { .bdata
= &contig_bootmem_data
};
3999 EXPORT_SYMBOL(contig_page_data
);
4002 void __init
free_area_init(unsigned long *zones_size
)
4004 free_area_init_node(0, NODE_DATA(0), zones_size
,
4005 __pa(PAGE_OFFSET
) >> PAGE_SHIFT
, NULL
);
4008 static int page_alloc_cpu_notify(struct notifier_block
*self
,
4009 unsigned long action
, void *hcpu
)
4011 int cpu
= (unsigned long)hcpu
;
4013 if (action
== CPU_DEAD
|| action
== CPU_DEAD_FROZEN
) {
4017 * Spill the event counters of the dead processor
4018 * into the current processors event counters.
4019 * This artificially elevates the count of the current
4022 vm_events_fold_cpu(cpu
);
4025 * Zero the differential counters of the dead processor
4026 * so that the vm statistics are consistent.
4028 * This is only okay since the processor is dead and cannot
4029 * race with what we are doing.
4031 refresh_cpu_vm_stats(cpu
);
4036 void __init
page_alloc_init(void)
4038 hotcpu_notifier(page_alloc_cpu_notify
, 0);
4042 * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
4043 * or min_free_kbytes changes.
4045 static void calculate_totalreserve_pages(void)
4047 struct pglist_data
*pgdat
;
4048 unsigned long reserve_pages
= 0;
4049 enum zone_type i
, j
;
4051 for_each_online_pgdat(pgdat
) {
4052 for (i
= 0; i
< MAX_NR_ZONES
; i
++) {
4053 struct zone
*zone
= pgdat
->node_zones
+ i
;
4054 unsigned long max
= 0;
4056 /* Find valid and maximum lowmem_reserve in the zone */
4057 for (j
= i
; j
< MAX_NR_ZONES
; j
++) {
4058 if (zone
->lowmem_reserve
[j
] > max
)
4059 max
= zone
->lowmem_reserve
[j
];
4062 /* we treat pages_high as reserved pages. */
4063 max
+= zone
->pages_high
;
4065 if (max
> zone
->present_pages
)
4066 max
= zone
->present_pages
;
4067 reserve_pages
+= max
;
4070 totalreserve_pages
= reserve_pages
;
4074 * setup_per_zone_lowmem_reserve - called whenever
4075 * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone
4076 * has a correct pages reserved value, so an adequate number of
4077 * pages are left in the zone after a successful __alloc_pages().
4079 static void setup_per_zone_lowmem_reserve(void)
4081 struct pglist_data
*pgdat
;
4082 enum zone_type j
, idx
;
4084 for_each_online_pgdat(pgdat
) {
4085 for (j
= 0; j
< MAX_NR_ZONES
; j
++) {
4086 struct zone
*zone
= pgdat
->node_zones
+ j
;
4087 unsigned long present_pages
= zone
->present_pages
;
4089 zone
->lowmem_reserve
[j
] = 0;
4093 struct zone
*lower_zone
;
4097 if (sysctl_lowmem_reserve_ratio
[idx
] < 1)
4098 sysctl_lowmem_reserve_ratio
[idx
] = 1;
4100 lower_zone
= pgdat
->node_zones
+ idx
;
4101 lower_zone
->lowmem_reserve
[j
] = present_pages
/
4102 sysctl_lowmem_reserve_ratio
[idx
];
4103 present_pages
+= lower_zone
->present_pages
;
4108 /* update totalreserve_pages */
4109 calculate_totalreserve_pages();
4113 * setup_per_zone_pages_min - called when min_free_kbytes changes.
4115 * Ensures that the pages_{min,low,high} values for each zone are set correctly
4116 * with respect to min_free_kbytes.
4118 void setup_per_zone_pages_min(void)
4120 unsigned long pages_min
= min_free_kbytes
>> (PAGE_SHIFT
- 10);
4121 unsigned long lowmem_pages
= 0;
4123 unsigned long flags
;
4125 /* Calculate total number of !ZONE_HIGHMEM pages */
4126 for_each_zone(zone
) {
4127 if (!is_highmem(zone
))
4128 lowmem_pages
+= zone
->present_pages
;
4131 for_each_zone(zone
) {
4134 spin_lock_irqsave(&zone
->lru_lock
, flags
);
4135 tmp
= (u64
)pages_min
* zone
->present_pages
;
4136 do_div(tmp
, lowmem_pages
);
4137 if (is_highmem(zone
)) {
4139 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
4140 * need highmem pages, so cap pages_min to a small
4143 * The (pages_high-pages_low) and (pages_low-pages_min)
4144 * deltas controls asynch page reclaim, and so should
4145 * not be capped for highmem.
4149 min_pages
= zone
->present_pages
/ 1024;
4150 if (min_pages
< SWAP_CLUSTER_MAX
)
4151 min_pages
= SWAP_CLUSTER_MAX
;
4152 if (min_pages
> 128)
4154 zone
->pages_min
= min_pages
;
4157 * If it's a lowmem zone, reserve a number of pages
4158 * proportionate to the zone's size.
4160 zone
->pages_min
= tmp
;
4163 zone
->pages_low
= zone
->pages_min
+ (tmp
>> 2);
4164 zone
->pages_high
= zone
->pages_min
+ (tmp
>> 1);
4165 setup_zone_migrate_reserve(zone
);
4166 spin_unlock_irqrestore(&zone
->lru_lock
, flags
);
4169 /* update totalreserve_pages */
4170 calculate_totalreserve_pages();
4174 * Initialise min_free_kbytes.
4176 * For small machines we want it small (128k min). For large machines
4177 * we want it large (64MB max). But it is not linear, because network
4178 * bandwidth does not increase linearly with machine size. We use
4180 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
4181 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
4197 static int __init
init_per_zone_pages_min(void)
4199 unsigned long lowmem_kbytes
;
4201 lowmem_kbytes
= nr_free_buffer_pages() * (PAGE_SIZE
>> 10);
4203 min_free_kbytes
= int_sqrt(lowmem_kbytes
* 16);
4204 if (min_free_kbytes
< 128)
4205 min_free_kbytes
= 128;
4206 if (min_free_kbytes
> 65536)
4207 min_free_kbytes
= 65536;
4208 setup_per_zone_pages_min();
4209 setup_per_zone_lowmem_reserve();
4212 module_init(init_per_zone_pages_min
)
4215 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
4216 * that we can call two helper functions whenever min_free_kbytes
4219 int min_free_kbytes_sysctl_handler(ctl_table
*table
, int write
,
4220 struct file
*file
, void __user
*buffer
, size_t *length
, loff_t
*ppos
)
4222 proc_dointvec(table
, write
, file
, buffer
, length
, ppos
);
4224 setup_per_zone_pages_min();
4229 int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table
*table
, int write
,
4230 struct file
*file
, void __user
*buffer
, size_t *length
, loff_t
*ppos
)
4235 rc
= proc_dointvec_minmax(table
, write
, file
, buffer
, length
, ppos
);
4240 zone
->min_unmapped_pages
= (zone
->present_pages
*
4241 sysctl_min_unmapped_ratio
) / 100;
4245 int sysctl_min_slab_ratio_sysctl_handler(ctl_table
*table
, int write
,
4246 struct file
*file
, void __user
*buffer
, size_t *length
, loff_t
*ppos
)
4251 rc
= proc_dointvec_minmax(table
, write
, file
, buffer
, length
, ppos
);
4256 zone
->min_slab_pages
= (zone
->present_pages
*
4257 sysctl_min_slab_ratio
) / 100;
4263 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
4264 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
4265 * whenever sysctl_lowmem_reserve_ratio changes.
4267 * The reserve ratio obviously has absolutely no relation with the
4268 * pages_min watermarks. The lowmem reserve ratio can only make sense
4269 * if in function of the boot time zone sizes.
4271 int lowmem_reserve_ratio_sysctl_handler(ctl_table
*table
, int write
,
4272 struct file
*file
, void __user
*buffer
, size_t *length
, loff_t
*ppos
)
4274 proc_dointvec_minmax(table
, write
, file
, buffer
, length
, ppos
);
4275 setup_per_zone_lowmem_reserve();
4280 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
4281 * cpu. It is the fraction of total pages in each zone that a hot per cpu pagelist
4282 * can have before it gets flushed back to buddy allocator.
4285 int percpu_pagelist_fraction_sysctl_handler(ctl_table
*table
, int write
,
4286 struct file
*file
, void __user
*buffer
, size_t *length
, loff_t
*ppos
)
4292 ret
= proc_dointvec_minmax(table
, write
, file
, buffer
, length
, ppos
);
4293 if (!write
|| (ret
== -EINVAL
))
4295 for_each_zone(zone
) {
4296 for_each_online_cpu(cpu
) {
4298 high
= zone
->present_pages
/ percpu_pagelist_fraction
;
4299 setup_pagelist_highmark(zone_pcp(zone
, cpu
), high
);
4305 int hashdist
= HASHDIST_DEFAULT
;
4308 static int __init
set_hashdist(char *str
)
4312 hashdist
= simple_strtoul(str
, &str
, 0);
4315 __setup("hashdist=", set_hashdist
);
4319 * allocate a large system hash table from bootmem
4320 * - it is assumed that the hash table must contain an exact power-of-2
4321 * quantity of entries
4322 * - limit is the number of hash buckets, not the total allocation size
4324 void *__init
alloc_large_system_hash(const char *tablename
,
4325 unsigned long bucketsize
,
4326 unsigned long numentries
,
4329 unsigned int *_hash_shift
,
4330 unsigned int *_hash_mask
,
4331 unsigned long limit
)
4333 unsigned long long max
= limit
;
4334 unsigned long log2qty
, size
;
4337 /* allow the kernel cmdline to have a say */
4339 /* round applicable memory size up to nearest megabyte */
4340 numentries
= nr_kernel_pages
;
4341 numentries
+= (1UL << (20 - PAGE_SHIFT
)) - 1;
4342 numentries
>>= 20 - PAGE_SHIFT
;
4343 numentries
<<= 20 - PAGE_SHIFT
;
4345 /* limit to 1 bucket per 2^scale bytes of low memory */
4346 if (scale
> PAGE_SHIFT
)
4347 numentries
>>= (scale
- PAGE_SHIFT
);
4349 numentries
<<= (PAGE_SHIFT
- scale
);
4351 /* Make sure we've got at least a 0-order allocation.. */
4352 if (unlikely((numentries
* bucketsize
) < PAGE_SIZE
))
4353 numentries
= PAGE_SIZE
/ bucketsize
;
4355 numentries
= roundup_pow_of_two(numentries
);
4357 /* limit allocation size to 1/16 total memory by default */
4359 max
= ((unsigned long long)nr_all_pages
<< PAGE_SHIFT
) >> 4;
4360 do_div(max
, bucketsize
);
4363 if (numentries
> max
)
4366 log2qty
= ilog2(numentries
);
4369 size
= bucketsize
<< log2qty
;
4370 if (flags
& HASH_EARLY
)
4371 table
= alloc_bootmem(size
);
4373 table
= __vmalloc(size
, GFP_ATOMIC
, PAGE_KERNEL
);
4375 unsigned long order
= get_order(size
);
4376 table
= (void*) __get_free_pages(GFP_ATOMIC
, order
);
4378 * If bucketsize is not a power-of-two, we may free
4379 * some pages at the end of hash table.
4382 unsigned long alloc_end
= (unsigned long)table
+
4383 (PAGE_SIZE
<< order
);
4384 unsigned long used
= (unsigned long)table
+
4386 split_page(virt_to_page(table
), order
);
4387 while (used
< alloc_end
) {
4393 } while (!table
&& size
> PAGE_SIZE
&& --log2qty
);
4396 panic("Failed to allocate %s hash table\n", tablename
);
4398 printk(KERN_INFO
"%s hash table entries: %d (order: %d, %lu bytes)\n",
4401 ilog2(size
) - PAGE_SHIFT
,
4405 *_hash_shift
= log2qty
;
4407 *_hash_mask
= (1 << log2qty
) - 1;
4412 #ifdef CONFIG_OUT_OF_LINE_PFN_TO_PAGE
4413 struct page
*pfn_to_page(unsigned long pfn
)
4415 return __pfn_to_page(pfn
);
4417 unsigned long page_to_pfn(struct page
*page
)
4419 return __page_to_pfn(page
);
4421 EXPORT_SYMBOL(pfn_to_page
);
4422 EXPORT_SYMBOL(page_to_pfn
);
4423 #endif /* CONFIG_OUT_OF_LINE_PFN_TO_PAGE */
4425 /* Return a pointer to the bitmap storing bits affecting a block of pages */
4426 static inline unsigned long *get_pageblock_bitmap(struct zone
*zone
,
4429 #ifdef CONFIG_SPARSEMEM
4430 return __pfn_to_section(pfn
)->pageblock_flags
;
4432 return zone
->pageblock_flags
;
4433 #endif /* CONFIG_SPARSEMEM */
4436 static inline int pfn_to_bitidx(struct zone
*zone
, unsigned long pfn
)
4438 #ifdef CONFIG_SPARSEMEM
4439 pfn
&= (PAGES_PER_SECTION
-1);
4440 return (pfn
>> pageblock_order
) * NR_PAGEBLOCK_BITS
;
4442 pfn
= pfn
- zone
->zone_start_pfn
;
4443 return (pfn
>> pageblock_order
) * NR_PAGEBLOCK_BITS
;
4444 #endif /* CONFIG_SPARSEMEM */
4448 * get_pageblock_flags_group - Return the requested group of flags for the pageblock_nr_pages block of pages
4449 * @page: The page within the block of interest
4450 * @start_bitidx: The first bit of interest to retrieve
4451 * @end_bitidx: The last bit of interest
4452 * returns pageblock_bits flags
4454 unsigned long get_pageblock_flags_group(struct page
*page
,
4455 int start_bitidx
, int end_bitidx
)
4458 unsigned long *bitmap
;
4459 unsigned long pfn
, bitidx
;
4460 unsigned long flags
= 0;
4461 unsigned long value
= 1;
4463 zone
= page_zone(page
);
4464 pfn
= page_to_pfn(page
);
4465 bitmap
= get_pageblock_bitmap(zone
, pfn
);
4466 bitidx
= pfn_to_bitidx(zone
, pfn
);
4468 for (; start_bitidx
<= end_bitidx
; start_bitidx
++, value
<<= 1)
4469 if (test_bit(bitidx
+ start_bitidx
, bitmap
))
4476 * set_pageblock_flags_group - Set the requested group of flags for a pageblock_nr_pages block of pages
4477 * @page: The page within the block of interest
4478 * @start_bitidx: The first bit of interest
4479 * @end_bitidx: The last bit of interest
4480 * @flags: The flags to set
4482 void set_pageblock_flags_group(struct page
*page
, unsigned long flags
,
4483 int start_bitidx
, int end_bitidx
)
4486 unsigned long *bitmap
;
4487 unsigned long pfn
, bitidx
;
4488 unsigned long value
= 1;
4490 zone
= page_zone(page
);
4491 pfn
= page_to_pfn(page
);
4492 bitmap
= get_pageblock_bitmap(zone
, pfn
);
4493 bitidx
= pfn_to_bitidx(zone
, pfn
);
4494 VM_BUG_ON(pfn
< zone
->zone_start_pfn
);
4495 VM_BUG_ON(pfn
>= zone
->zone_start_pfn
+ zone
->spanned_pages
);
4497 for (; start_bitidx
<= end_bitidx
; start_bitidx
++, value
<<= 1)
4499 __set_bit(bitidx
+ start_bitidx
, bitmap
);
4501 __clear_bit(bitidx
+ start_bitidx
, bitmap
);
4505 * This is designed as sub function...plz see page_isolation.c also.
4506 * set/clear page block's type to be ISOLATE.
4507 * page allocater never alloc memory from ISOLATE block.
4510 int set_migratetype_isolate(struct page
*page
)
4513 unsigned long flags
;
4516 zone
= page_zone(page
);
4517 spin_lock_irqsave(&zone
->lock
, flags
);
4519 * In future, more migrate types will be able to be isolation target.
4521 if (get_pageblock_migratetype(page
) != MIGRATE_MOVABLE
)
4523 set_pageblock_migratetype(page
, MIGRATE_ISOLATE
);
4524 move_freepages_block(zone
, page
, MIGRATE_ISOLATE
);
4527 spin_unlock_irqrestore(&zone
->lock
, flags
);
4533 void unset_migratetype_isolate(struct page
*page
)
4536 unsigned long flags
;
4537 zone
= page_zone(page
);
4538 spin_lock_irqsave(&zone
->lock
, flags
);
4539 if (get_pageblock_migratetype(page
) != MIGRATE_ISOLATE
)
4541 set_pageblock_migratetype(page
, MIGRATE_MOVABLE
);
4542 move_freepages_block(zone
, page
, MIGRATE_MOVABLE
);
4544 spin_unlock_irqrestore(&zone
->lock
, flags
);
4547 #ifdef CONFIG_MEMORY_HOTREMOVE
4549 * All pages in the range must be isolated before calling this.
4552 __offline_isolated_pages(unsigned long start_pfn
, unsigned long end_pfn
)
4558 unsigned long flags
;
4559 /* find the first valid pfn */
4560 for (pfn
= start_pfn
; pfn
< end_pfn
; pfn
++)
4565 zone
= page_zone(pfn_to_page(pfn
));
4566 spin_lock_irqsave(&zone
->lock
, flags
);
4568 while (pfn
< end_pfn
) {
4569 if (!pfn_valid(pfn
)) {
4573 page
= pfn_to_page(pfn
);
4574 BUG_ON(page_count(page
));
4575 BUG_ON(!PageBuddy(page
));
4576 order
= page_order(page
);
4577 #ifdef CONFIG_DEBUG_VM
4578 printk(KERN_INFO
"remove from free list %lx %d %lx\n",
4579 pfn
, 1 << order
, end_pfn
);
4581 list_del(&page
->lru
);
4582 rmv_page_order(page
);
4583 zone
->free_area
[order
].nr_free
--;
4584 __mod_zone_page_state(zone
, NR_FREE_PAGES
,
4586 for (i
= 0; i
< (1 << order
); i
++)
4587 SetPageReserved((page
+i
));
4588 pfn
+= (1 << order
);
4590 spin_unlock_irqrestore(&zone
->lock
, flags
);