4 * (C) Copyright Al Viro 2000, 2001
5 * Released under GPL v2.
7 * Based on code from fs/super.c, copyright Linus Torvalds and others.
11 #include <linux/syscalls.h>
12 #include <linux/slab.h>
13 #include <linux/sched.h>
14 #include <linux/smp_lock.h>
15 #include <linux/init.h>
16 #include <linux/kernel.h>
17 #include <linux/acct.h>
18 #include <linux/capability.h>
19 #include <linux/cpumask.h>
20 #include <linux/module.h>
21 #include <linux/sysfs.h>
22 #include <linux/seq_file.h>
23 #include <linux/mnt_namespace.h>
24 #include <linux/namei.h>
25 #include <linux/security.h>
26 #include <linux/mount.h>
27 #include <linux/ramfs.h>
28 #include <linux/log2.h>
29 #include <linux/idr.h>
30 #include <linux/fs_struct.h>
31 #include <asm/uaccess.h>
32 #include <asm/unistd.h>
36 #define HASH_SHIFT ilog2(PAGE_SIZE / sizeof(struct list_head))
37 #define HASH_SIZE (1UL << HASH_SHIFT)
39 /* spinlock for vfsmount related operations, inplace of dcache_lock */
40 __cacheline_aligned_in_smp
DEFINE_SPINLOCK(vfsmount_lock
);
43 static DEFINE_IDA(mnt_id_ida
);
44 static DEFINE_IDA(mnt_group_ida
);
45 static int mnt_id_start
= 0;
46 static int mnt_group_start
= 1;
48 static struct list_head
*mount_hashtable __read_mostly
;
49 static struct kmem_cache
*mnt_cache __read_mostly
;
50 static struct rw_semaphore namespace_sem
;
53 struct kobject
*fs_kobj
;
54 EXPORT_SYMBOL_GPL(fs_kobj
);
56 static inline unsigned long hash(struct vfsmount
*mnt
, struct dentry
*dentry
)
58 unsigned long tmp
= ((unsigned long)mnt
/ L1_CACHE_BYTES
);
59 tmp
+= ((unsigned long)dentry
/ L1_CACHE_BYTES
);
60 tmp
= tmp
+ (tmp
>> HASH_SHIFT
);
61 return tmp
& (HASH_SIZE
- 1);
64 #define MNT_WRITER_UNDERFLOW_LIMIT -(1<<16)
66 /* allocation is serialized by namespace_sem */
67 static int mnt_alloc_id(struct vfsmount
*mnt
)
72 ida_pre_get(&mnt_id_ida
, GFP_KERNEL
);
73 spin_lock(&vfsmount_lock
);
74 res
= ida_get_new_above(&mnt_id_ida
, mnt_id_start
, &mnt
->mnt_id
);
76 mnt_id_start
= mnt
->mnt_id
+ 1;
77 spin_unlock(&vfsmount_lock
);
84 static void mnt_free_id(struct vfsmount
*mnt
)
87 spin_lock(&vfsmount_lock
);
88 ida_remove(&mnt_id_ida
, id
);
89 if (mnt_id_start
> id
)
91 spin_unlock(&vfsmount_lock
);
95 * Allocate a new peer group ID
97 * mnt_group_ida is protected by namespace_sem
99 static int mnt_alloc_group_id(struct vfsmount
*mnt
)
103 if (!ida_pre_get(&mnt_group_ida
, GFP_KERNEL
))
106 res
= ida_get_new_above(&mnt_group_ida
,
110 mnt_group_start
= mnt
->mnt_group_id
+ 1;
116 * Release a peer group ID
118 void mnt_release_group_id(struct vfsmount
*mnt
)
120 int id
= mnt
->mnt_group_id
;
121 ida_remove(&mnt_group_ida
, id
);
122 if (mnt_group_start
> id
)
123 mnt_group_start
= id
;
124 mnt
->mnt_group_id
= 0;
127 struct vfsmount
*alloc_vfsmnt(const char *name
)
129 struct vfsmount
*mnt
= kmem_cache_zalloc(mnt_cache
, GFP_KERNEL
);
133 err
= mnt_alloc_id(mnt
);
138 mnt
->mnt_devname
= kstrdup(name
, GFP_KERNEL
);
139 if (!mnt
->mnt_devname
)
143 atomic_set(&mnt
->mnt_count
, 1);
144 INIT_LIST_HEAD(&mnt
->mnt_hash
);
145 INIT_LIST_HEAD(&mnt
->mnt_child
);
146 INIT_LIST_HEAD(&mnt
->mnt_mounts
);
147 INIT_LIST_HEAD(&mnt
->mnt_list
);
148 INIT_LIST_HEAD(&mnt
->mnt_expire
);
149 INIT_LIST_HEAD(&mnt
->mnt_share
);
150 INIT_LIST_HEAD(&mnt
->mnt_slave_list
);
151 INIT_LIST_HEAD(&mnt
->mnt_slave
);
153 mnt
->mnt_writers
= alloc_percpu(int);
154 if (!mnt
->mnt_writers
)
155 goto out_free_devname
;
157 mnt
->mnt_writers
= 0;
164 kfree(mnt
->mnt_devname
);
169 kmem_cache_free(mnt_cache
, mnt
);
174 * Most r/o checks on a fs are for operations that take
175 * discrete amounts of time, like a write() or unlink().
176 * We must keep track of when those operations start
177 * (for permission checks) and when they end, so that
178 * we can determine when writes are able to occur to
182 * __mnt_is_readonly: check whether a mount is read-only
183 * @mnt: the mount to check for its write status
185 * This shouldn't be used directly ouside of the VFS.
186 * It does not guarantee that the filesystem will stay
187 * r/w, just that it is right *now*. This can not and
188 * should not be used in place of IS_RDONLY(inode).
189 * mnt_want/drop_write() will _keep_ the filesystem
192 int __mnt_is_readonly(struct vfsmount
*mnt
)
194 if (mnt
->mnt_flags
& MNT_READONLY
)
196 if (mnt
->mnt_sb
->s_flags
& MS_RDONLY
)
200 EXPORT_SYMBOL_GPL(__mnt_is_readonly
);
202 static inline void inc_mnt_writers(struct vfsmount
*mnt
)
205 (*per_cpu_ptr(mnt
->mnt_writers
, smp_processor_id()))++;
211 static inline void dec_mnt_writers(struct vfsmount
*mnt
)
214 (*per_cpu_ptr(mnt
->mnt_writers
, smp_processor_id()))--;
220 static unsigned int count_mnt_writers(struct vfsmount
*mnt
)
223 unsigned int count
= 0;
226 for_each_possible_cpu(cpu
) {
227 count
+= *per_cpu_ptr(mnt
->mnt_writers
, cpu
);
232 return mnt
->mnt_writers
;
237 * Most r/o checks on a fs are for operations that take
238 * discrete amounts of time, like a write() or unlink().
239 * We must keep track of when those operations start
240 * (for permission checks) and when they end, so that
241 * we can determine when writes are able to occur to
245 * mnt_want_write - get write access to a mount
246 * @mnt: the mount on which to take a write
248 * This tells the low-level filesystem that a write is
249 * about to be performed to it, and makes sure that
250 * writes are allowed before returning success. When
251 * the write operation is finished, mnt_drop_write()
252 * must be called. This is effectively a refcount.
254 int mnt_want_write(struct vfsmount
*mnt
)
259 inc_mnt_writers(mnt
);
261 * The store to inc_mnt_writers must be visible before we pass
262 * MNT_WRITE_HOLD loop below, so that the slowpath can see our
263 * incremented count after it has set MNT_WRITE_HOLD.
266 while (mnt
->mnt_flags
& MNT_WRITE_HOLD
)
269 * After the slowpath clears MNT_WRITE_HOLD, mnt_is_readonly will
270 * be set to match its requirements. So we must not load that until
271 * MNT_WRITE_HOLD is cleared.
274 if (__mnt_is_readonly(mnt
)) {
275 dec_mnt_writers(mnt
);
283 EXPORT_SYMBOL_GPL(mnt_want_write
);
286 * mnt_clone_write - get write access to a mount
287 * @mnt: the mount on which to take a write
289 * This is effectively like mnt_want_write, except
290 * it must only be used to take an extra write reference
291 * on a mountpoint that we already know has a write reference
292 * on it. This allows some optimisation.
294 * After finished, mnt_drop_write must be called as usual to
295 * drop the reference.
297 int mnt_clone_write(struct vfsmount
*mnt
)
299 /* superblock may be r/o */
300 if (__mnt_is_readonly(mnt
))
303 inc_mnt_writers(mnt
);
307 EXPORT_SYMBOL_GPL(mnt_clone_write
);
310 * mnt_want_write_file - get write access to a file's mount
311 * @file: the file who's mount on which to take a write
313 * This is like mnt_want_write, but it takes a file and can
314 * do some optimisations if the file is open for write already
316 int mnt_want_write_file(struct file
*file
)
318 if (!(file
->f_mode
& FMODE_WRITE
))
319 return mnt_want_write(file
->f_path
.mnt
);
321 return mnt_clone_write(file
->f_path
.mnt
);
323 EXPORT_SYMBOL_GPL(mnt_want_write_file
);
326 * mnt_drop_write - give up write access to a mount
327 * @mnt: the mount on which to give up write access
329 * Tells the low-level filesystem that we are done
330 * performing writes to it. Must be matched with
331 * mnt_want_write() call above.
333 void mnt_drop_write(struct vfsmount
*mnt
)
336 dec_mnt_writers(mnt
);
339 EXPORT_SYMBOL_GPL(mnt_drop_write
);
341 static int mnt_make_readonly(struct vfsmount
*mnt
)
345 spin_lock(&vfsmount_lock
);
346 mnt
->mnt_flags
|= MNT_WRITE_HOLD
;
348 * After storing MNT_WRITE_HOLD, we'll read the counters. This store
349 * should be visible before we do.
354 * With writers on hold, if this value is zero, then there are
355 * definitely no active writers (although held writers may subsequently
356 * increment the count, they'll have to wait, and decrement it after
357 * seeing MNT_READONLY).
359 * It is OK to have counter incremented on one CPU and decremented on
360 * another: the sum will add up correctly. The danger would be when we
361 * sum up each counter, if we read a counter before it is incremented,
362 * but then read another CPU's count which it has been subsequently
363 * decremented from -- we would see more decrements than we should.
364 * MNT_WRITE_HOLD protects against this scenario, because
365 * mnt_want_write first increments count, then smp_mb, then spins on
366 * MNT_WRITE_HOLD, so it can't be decremented by another CPU while
367 * we're counting up here.
369 if (count_mnt_writers(mnt
) > 0)
372 mnt
->mnt_flags
|= MNT_READONLY
;
374 * MNT_READONLY must become visible before ~MNT_WRITE_HOLD, so writers
375 * that become unheld will see MNT_READONLY.
378 mnt
->mnt_flags
&= ~MNT_WRITE_HOLD
;
379 spin_unlock(&vfsmount_lock
);
383 static void __mnt_unmake_readonly(struct vfsmount
*mnt
)
385 spin_lock(&vfsmount_lock
);
386 mnt
->mnt_flags
&= ~MNT_READONLY
;
387 spin_unlock(&vfsmount_lock
);
390 void simple_set_mnt(struct vfsmount
*mnt
, struct super_block
*sb
)
393 mnt
->mnt_root
= dget(sb
->s_root
);
396 EXPORT_SYMBOL(simple_set_mnt
);
398 void free_vfsmnt(struct vfsmount
*mnt
)
400 kfree(mnt
->mnt_devname
);
403 free_percpu(mnt
->mnt_writers
);
405 kmem_cache_free(mnt_cache
, mnt
);
409 * find the first or last mount at @dentry on vfsmount @mnt depending on
410 * @dir. If @dir is set return the first mount else return the last mount.
412 struct vfsmount
*__lookup_mnt(struct vfsmount
*mnt
, struct dentry
*dentry
,
415 struct list_head
*head
= mount_hashtable
+ hash(mnt
, dentry
);
416 struct list_head
*tmp
= head
;
417 struct vfsmount
*p
, *found
= NULL
;
420 tmp
= dir
? tmp
->next
: tmp
->prev
;
424 p
= list_entry(tmp
, struct vfsmount
, mnt_hash
);
425 if (p
->mnt_parent
== mnt
&& p
->mnt_mountpoint
== dentry
) {
434 * lookup_mnt increments the ref count before returning
435 * the vfsmount struct.
437 struct vfsmount
*lookup_mnt(struct path
*path
)
439 struct vfsmount
*child_mnt
;
440 spin_lock(&vfsmount_lock
);
441 if ((child_mnt
= __lookup_mnt(path
->mnt
, path
->dentry
, 1)))
443 spin_unlock(&vfsmount_lock
);
447 static inline int check_mnt(struct vfsmount
*mnt
)
449 return mnt
->mnt_ns
== current
->nsproxy
->mnt_ns
;
452 static void touch_mnt_namespace(struct mnt_namespace
*ns
)
456 wake_up_interruptible(&ns
->poll
);
460 static void __touch_mnt_namespace(struct mnt_namespace
*ns
)
462 if (ns
&& ns
->event
!= event
) {
464 wake_up_interruptible(&ns
->poll
);
468 static void detach_mnt(struct vfsmount
*mnt
, struct path
*old_path
)
470 old_path
->dentry
= mnt
->mnt_mountpoint
;
471 old_path
->mnt
= mnt
->mnt_parent
;
472 mnt
->mnt_parent
= mnt
;
473 mnt
->mnt_mountpoint
= mnt
->mnt_root
;
474 list_del_init(&mnt
->mnt_child
);
475 list_del_init(&mnt
->mnt_hash
);
476 old_path
->dentry
->d_mounted
--;
479 void mnt_set_mountpoint(struct vfsmount
*mnt
, struct dentry
*dentry
,
480 struct vfsmount
*child_mnt
)
482 child_mnt
->mnt_parent
= mntget(mnt
);
483 child_mnt
->mnt_mountpoint
= dget(dentry
);
487 static void attach_mnt(struct vfsmount
*mnt
, struct path
*path
)
489 mnt_set_mountpoint(path
->mnt
, path
->dentry
, mnt
);
490 list_add_tail(&mnt
->mnt_hash
, mount_hashtable
+
491 hash(path
->mnt
, path
->dentry
));
492 list_add_tail(&mnt
->mnt_child
, &path
->mnt
->mnt_mounts
);
496 * the caller must hold vfsmount_lock
498 static void commit_tree(struct vfsmount
*mnt
)
500 struct vfsmount
*parent
= mnt
->mnt_parent
;
503 struct mnt_namespace
*n
= parent
->mnt_ns
;
505 BUG_ON(parent
== mnt
);
507 list_add_tail(&head
, &mnt
->mnt_list
);
508 list_for_each_entry(m
, &head
, mnt_list
)
510 list_splice(&head
, n
->list
.prev
);
512 list_add_tail(&mnt
->mnt_hash
, mount_hashtable
+
513 hash(parent
, mnt
->mnt_mountpoint
));
514 list_add_tail(&mnt
->mnt_child
, &parent
->mnt_mounts
);
515 touch_mnt_namespace(n
);
518 static struct vfsmount
*next_mnt(struct vfsmount
*p
, struct vfsmount
*root
)
520 struct list_head
*next
= p
->mnt_mounts
.next
;
521 if (next
== &p
->mnt_mounts
) {
525 next
= p
->mnt_child
.next
;
526 if (next
!= &p
->mnt_parent
->mnt_mounts
)
531 return list_entry(next
, struct vfsmount
, mnt_child
);
534 static struct vfsmount
*skip_mnt_tree(struct vfsmount
*p
)
536 struct list_head
*prev
= p
->mnt_mounts
.prev
;
537 while (prev
!= &p
->mnt_mounts
) {
538 p
= list_entry(prev
, struct vfsmount
, mnt_child
);
539 prev
= p
->mnt_mounts
.prev
;
544 static struct vfsmount
*clone_mnt(struct vfsmount
*old
, struct dentry
*root
,
547 struct super_block
*sb
= old
->mnt_sb
;
548 struct vfsmount
*mnt
= alloc_vfsmnt(old
->mnt_devname
);
551 if (flag
& (CL_SLAVE
| CL_PRIVATE
))
552 mnt
->mnt_group_id
= 0; /* not a peer of original */
554 mnt
->mnt_group_id
= old
->mnt_group_id
;
556 if ((flag
& CL_MAKE_SHARED
) && !mnt
->mnt_group_id
) {
557 int err
= mnt_alloc_group_id(mnt
);
562 mnt
->mnt_flags
= old
->mnt_flags
;
563 atomic_inc(&sb
->s_active
);
565 mnt
->mnt_root
= dget(root
);
566 mnt
->mnt_mountpoint
= mnt
->mnt_root
;
567 mnt
->mnt_parent
= mnt
;
569 if (flag
& CL_SLAVE
) {
570 list_add(&mnt
->mnt_slave
, &old
->mnt_slave_list
);
571 mnt
->mnt_master
= old
;
572 CLEAR_MNT_SHARED(mnt
);
573 } else if (!(flag
& CL_PRIVATE
)) {
574 if ((flag
& CL_PROPAGATION
) || IS_MNT_SHARED(old
))
575 list_add(&mnt
->mnt_share
, &old
->mnt_share
);
576 if (IS_MNT_SLAVE(old
))
577 list_add(&mnt
->mnt_slave
, &old
->mnt_slave
);
578 mnt
->mnt_master
= old
->mnt_master
;
580 if (flag
& CL_MAKE_SHARED
)
583 /* stick the duplicate mount on the same expiry list
584 * as the original if that was on one */
585 if (flag
& CL_EXPIRE
) {
586 if (!list_empty(&old
->mnt_expire
))
587 list_add(&mnt
->mnt_expire
, &old
->mnt_expire
);
597 static inline void __mntput(struct vfsmount
*mnt
)
599 struct super_block
*sb
= mnt
->mnt_sb
;
601 * This probably indicates that somebody messed
602 * up a mnt_want/drop_write() pair. If this
603 * happens, the filesystem was probably unable
604 * to make r/w->r/o transitions.
607 * atomic_dec_and_lock() used to deal with ->mnt_count decrements
608 * provides barriers, so count_mnt_writers() below is safe. AV
610 WARN_ON(count_mnt_writers(mnt
));
613 deactivate_super(sb
);
616 void mntput_no_expire(struct vfsmount
*mnt
)
619 if (atomic_dec_and_lock(&mnt
->mnt_count
, &vfsmount_lock
)) {
620 if (likely(!mnt
->mnt_pinned
)) {
621 spin_unlock(&vfsmount_lock
);
625 atomic_add(mnt
->mnt_pinned
+ 1, &mnt
->mnt_count
);
627 spin_unlock(&vfsmount_lock
);
628 acct_auto_close_mnt(mnt
);
629 security_sb_umount_close(mnt
);
634 EXPORT_SYMBOL(mntput_no_expire
);
636 void mnt_pin(struct vfsmount
*mnt
)
638 spin_lock(&vfsmount_lock
);
640 spin_unlock(&vfsmount_lock
);
643 EXPORT_SYMBOL(mnt_pin
);
645 void mnt_unpin(struct vfsmount
*mnt
)
647 spin_lock(&vfsmount_lock
);
648 if (mnt
->mnt_pinned
) {
649 atomic_inc(&mnt
->mnt_count
);
652 spin_unlock(&vfsmount_lock
);
655 EXPORT_SYMBOL(mnt_unpin
);
657 static inline void mangle(struct seq_file
*m
, const char *s
)
659 seq_escape(m
, s
, " \t\n\\");
663 * Simple .show_options callback for filesystems which don't want to
664 * implement more complex mount option showing.
666 * See also save_mount_options().
668 int generic_show_options(struct seq_file
*m
, struct vfsmount
*mnt
)
673 options
= rcu_dereference(mnt
->mnt_sb
->s_options
);
675 if (options
!= NULL
&& options
[0]) {
683 EXPORT_SYMBOL(generic_show_options
);
686 * If filesystem uses generic_show_options(), this function should be
687 * called from the fill_super() callback.
689 * The .remount_fs callback usually needs to be handled in a special
690 * way, to make sure, that previous options are not overwritten if the
693 * Also note, that if the filesystem's .remount_fs function doesn't
694 * reset all options to their default value, but changes only newly
695 * given options, then the displayed options will not reflect reality
698 void save_mount_options(struct super_block
*sb
, char *options
)
700 BUG_ON(sb
->s_options
);
701 rcu_assign_pointer(sb
->s_options
, kstrdup(options
, GFP_KERNEL
));
703 EXPORT_SYMBOL(save_mount_options
);
705 void replace_mount_options(struct super_block
*sb
, char *options
)
707 char *old
= sb
->s_options
;
708 rcu_assign_pointer(sb
->s_options
, options
);
714 EXPORT_SYMBOL(replace_mount_options
);
716 #ifdef CONFIG_PROC_FS
718 static void *m_start(struct seq_file
*m
, loff_t
*pos
)
720 struct proc_mounts
*p
= m
->private;
722 down_read(&namespace_sem
);
723 return seq_list_start(&p
->ns
->list
, *pos
);
726 static void *m_next(struct seq_file
*m
, void *v
, loff_t
*pos
)
728 struct proc_mounts
*p
= m
->private;
730 return seq_list_next(v
, &p
->ns
->list
, pos
);
733 static void m_stop(struct seq_file
*m
, void *v
)
735 up_read(&namespace_sem
);
738 struct proc_fs_info
{
743 static int show_sb_opts(struct seq_file
*m
, struct super_block
*sb
)
745 static const struct proc_fs_info fs_info
[] = {
746 { MS_SYNCHRONOUS
, ",sync" },
747 { MS_DIRSYNC
, ",dirsync" },
748 { MS_MANDLOCK
, ",mand" },
751 const struct proc_fs_info
*fs_infop
;
753 for (fs_infop
= fs_info
; fs_infop
->flag
; fs_infop
++) {
754 if (sb
->s_flags
& fs_infop
->flag
)
755 seq_puts(m
, fs_infop
->str
);
758 return security_sb_show_options(m
, sb
);
761 static void show_mnt_opts(struct seq_file
*m
, struct vfsmount
*mnt
)
763 static const struct proc_fs_info mnt_info
[] = {
764 { MNT_NOSUID
, ",nosuid" },
765 { MNT_NODEV
, ",nodev" },
766 { MNT_NOEXEC
, ",noexec" },
767 { MNT_NOATIME
, ",noatime" },
768 { MNT_NODIRATIME
, ",nodiratime" },
769 { MNT_RELATIME
, ",relatime" },
770 { MNT_STRICTATIME
, ",strictatime" },
773 const struct proc_fs_info
*fs_infop
;
775 for (fs_infop
= mnt_info
; fs_infop
->flag
; fs_infop
++) {
776 if (mnt
->mnt_flags
& fs_infop
->flag
)
777 seq_puts(m
, fs_infop
->str
);
781 static void show_type(struct seq_file
*m
, struct super_block
*sb
)
783 mangle(m
, sb
->s_type
->name
);
784 if (sb
->s_subtype
&& sb
->s_subtype
[0]) {
786 mangle(m
, sb
->s_subtype
);
790 static int show_vfsmnt(struct seq_file
*m
, void *v
)
792 struct vfsmount
*mnt
= list_entry(v
, struct vfsmount
, mnt_list
);
794 struct path mnt_path
= { .dentry
= mnt
->mnt_root
, .mnt
= mnt
};
796 mangle(m
, mnt
->mnt_devname
? mnt
->mnt_devname
: "none");
798 seq_path(m
, &mnt_path
, " \t\n\\");
800 show_type(m
, mnt
->mnt_sb
);
801 seq_puts(m
, __mnt_is_readonly(mnt
) ? " ro" : " rw");
802 err
= show_sb_opts(m
, mnt
->mnt_sb
);
805 show_mnt_opts(m
, mnt
);
806 if (mnt
->mnt_sb
->s_op
->show_options
)
807 err
= mnt
->mnt_sb
->s_op
->show_options(m
, mnt
);
808 seq_puts(m
, " 0 0\n");
813 const struct seq_operations mounts_op
= {
820 static int show_mountinfo(struct seq_file
*m
, void *v
)
822 struct proc_mounts
*p
= m
->private;
823 struct vfsmount
*mnt
= list_entry(v
, struct vfsmount
, mnt_list
);
824 struct super_block
*sb
= mnt
->mnt_sb
;
825 struct path mnt_path
= { .dentry
= mnt
->mnt_root
, .mnt
= mnt
};
826 struct path root
= p
->root
;
829 seq_printf(m
, "%i %i %u:%u ", mnt
->mnt_id
, mnt
->mnt_parent
->mnt_id
,
830 MAJOR(sb
->s_dev
), MINOR(sb
->s_dev
));
831 seq_dentry(m
, mnt
->mnt_root
, " \t\n\\");
833 seq_path_root(m
, &mnt_path
, &root
, " \t\n\\");
834 if (root
.mnt
!= p
->root
.mnt
|| root
.dentry
!= p
->root
.dentry
) {
836 * Mountpoint is outside root, discard that one. Ugly,
837 * but less so than trying to do that in iterator in a
838 * race-free way (due to renames).
842 seq_puts(m
, mnt
->mnt_flags
& MNT_READONLY
? " ro" : " rw");
843 show_mnt_opts(m
, mnt
);
845 /* Tagged fields ("foo:X" or "bar") */
846 if (IS_MNT_SHARED(mnt
))
847 seq_printf(m
, " shared:%i", mnt
->mnt_group_id
);
848 if (IS_MNT_SLAVE(mnt
)) {
849 int master
= mnt
->mnt_master
->mnt_group_id
;
850 int dom
= get_dominating_id(mnt
, &p
->root
);
851 seq_printf(m
, " master:%i", master
);
852 if (dom
&& dom
!= master
)
853 seq_printf(m
, " propagate_from:%i", dom
);
855 if (IS_MNT_UNBINDABLE(mnt
))
856 seq_puts(m
, " unbindable");
858 /* Filesystem specific data */
862 mangle(m
, mnt
->mnt_devname
? mnt
->mnt_devname
: "none");
863 seq_puts(m
, sb
->s_flags
& MS_RDONLY
? " ro" : " rw");
864 err
= show_sb_opts(m
, sb
);
867 if (sb
->s_op
->show_options
)
868 err
= sb
->s_op
->show_options(m
, mnt
);
874 const struct seq_operations mountinfo_op
= {
878 .show
= show_mountinfo
,
881 static int show_vfsstat(struct seq_file
*m
, void *v
)
883 struct vfsmount
*mnt
= list_entry(v
, struct vfsmount
, mnt_list
);
884 struct path mnt_path
= { .dentry
= mnt
->mnt_root
, .mnt
= mnt
};
888 if (mnt
->mnt_devname
) {
889 seq_puts(m
, "device ");
890 mangle(m
, mnt
->mnt_devname
);
892 seq_puts(m
, "no device");
895 seq_puts(m
, " mounted on ");
896 seq_path(m
, &mnt_path
, " \t\n\\");
899 /* file system type */
900 seq_puts(m
, "with fstype ");
901 show_type(m
, mnt
->mnt_sb
);
903 /* optional statistics */
904 if (mnt
->mnt_sb
->s_op
->show_stats
) {
906 err
= mnt
->mnt_sb
->s_op
->show_stats(m
, mnt
);
913 const struct seq_operations mountstats_op
= {
917 .show
= show_vfsstat
,
919 #endif /* CONFIG_PROC_FS */
922 * may_umount_tree - check if a mount tree is busy
923 * @mnt: root of mount tree
925 * This is called to check if a tree of mounts has any
926 * open files, pwds, chroots or sub mounts that are
929 int may_umount_tree(struct vfsmount
*mnt
)
932 int minimum_refs
= 0;
935 spin_lock(&vfsmount_lock
);
936 for (p
= mnt
; p
; p
= next_mnt(p
, mnt
)) {
937 actual_refs
+= atomic_read(&p
->mnt_count
);
940 spin_unlock(&vfsmount_lock
);
942 if (actual_refs
> minimum_refs
)
948 EXPORT_SYMBOL(may_umount_tree
);
951 * may_umount - check if a mount point is busy
952 * @mnt: root of mount
954 * This is called to check if a mount point has any
955 * open files, pwds, chroots or sub mounts. If the
956 * mount has sub mounts this will return busy
957 * regardless of whether the sub mounts are busy.
959 * Doesn't take quota and stuff into account. IOW, in some cases it will
960 * give false negatives. The main reason why it's here is that we need
961 * a non-destructive way to look for easily umountable filesystems.
963 int may_umount(struct vfsmount
*mnt
)
966 spin_lock(&vfsmount_lock
);
967 if (propagate_mount_busy(mnt
, 2))
969 spin_unlock(&vfsmount_lock
);
973 EXPORT_SYMBOL(may_umount
);
975 void release_mounts(struct list_head
*head
)
977 struct vfsmount
*mnt
;
978 while (!list_empty(head
)) {
979 mnt
= list_first_entry(head
, struct vfsmount
, mnt_hash
);
980 list_del_init(&mnt
->mnt_hash
);
981 if (mnt
->mnt_parent
!= mnt
) {
982 struct dentry
*dentry
;
984 spin_lock(&vfsmount_lock
);
985 dentry
= mnt
->mnt_mountpoint
;
987 mnt
->mnt_mountpoint
= mnt
->mnt_root
;
988 mnt
->mnt_parent
= mnt
;
990 spin_unlock(&vfsmount_lock
);
998 void umount_tree(struct vfsmount
*mnt
, int propagate
, struct list_head
*kill
)
1002 for (p
= mnt
; p
; p
= next_mnt(p
, mnt
))
1003 list_move(&p
->mnt_hash
, kill
);
1006 propagate_umount(kill
);
1008 list_for_each_entry(p
, kill
, mnt_hash
) {
1009 list_del_init(&p
->mnt_expire
);
1010 list_del_init(&p
->mnt_list
);
1011 __touch_mnt_namespace(p
->mnt_ns
);
1013 list_del_init(&p
->mnt_child
);
1014 if (p
->mnt_parent
!= p
) {
1015 p
->mnt_parent
->mnt_ghosts
++;
1016 p
->mnt_mountpoint
->d_mounted
--;
1018 change_mnt_propagation(p
, MS_PRIVATE
);
1022 static void shrink_submounts(struct vfsmount
*mnt
, struct list_head
*umounts
);
1024 static int do_umount(struct vfsmount
*mnt
, int flags
)
1026 struct super_block
*sb
= mnt
->mnt_sb
;
1028 LIST_HEAD(umount_list
);
1030 retval
= security_sb_umount(mnt
, flags
);
1035 * Allow userspace to request a mountpoint be expired rather than
1036 * unmounting unconditionally. Unmount only happens if:
1037 * (1) the mark is already set (the mark is cleared by mntput())
1038 * (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount]
1040 if (flags
& MNT_EXPIRE
) {
1041 if (mnt
== current
->fs
->root
.mnt
||
1042 flags
& (MNT_FORCE
| MNT_DETACH
))
1045 if (atomic_read(&mnt
->mnt_count
) != 2)
1048 if (!xchg(&mnt
->mnt_expiry_mark
, 1))
1053 * If we may have to abort operations to get out of this
1054 * mount, and they will themselves hold resources we must
1055 * allow the fs to do things. In the Unix tradition of
1056 * 'Gee thats tricky lets do it in userspace' the umount_begin
1057 * might fail to complete on the first run through as other tasks
1058 * must return, and the like. Thats for the mount program to worry
1059 * about for the moment.
1062 if (flags
& MNT_FORCE
&& sb
->s_op
->umount_begin
) {
1063 sb
->s_op
->umount_begin(sb
);
1067 * No sense to grab the lock for this test, but test itself looks
1068 * somewhat bogus. Suggestions for better replacement?
1069 * Ho-hum... In principle, we might treat that as umount + switch
1070 * to rootfs. GC would eventually take care of the old vfsmount.
1071 * Actually it makes sense, especially if rootfs would contain a
1072 * /reboot - static binary that would close all descriptors and
1073 * call reboot(9). Then init(8) could umount root and exec /reboot.
1075 if (mnt
== current
->fs
->root
.mnt
&& !(flags
& MNT_DETACH
)) {
1077 * Special case for "unmounting" root ...
1078 * we just try to remount it readonly.
1080 down_write(&sb
->s_umount
);
1081 if (!(sb
->s_flags
& MS_RDONLY
))
1082 retval
= do_remount_sb(sb
, MS_RDONLY
, NULL
, 0);
1083 up_write(&sb
->s_umount
);
1087 down_write(&namespace_sem
);
1088 spin_lock(&vfsmount_lock
);
1091 if (!(flags
& MNT_DETACH
))
1092 shrink_submounts(mnt
, &umount_list
);
1095 if (flags
& MNT_DETACH
|| !propagate_mount_busy(mnt
, 2)) {
1096 if (!list_empty(&mnt
->mnt_list
))
1097 umount_tree(mnt
, 1, &umount_list
);
1100 spin_unlock(&vfsmount_lock
);
1102 security_sb_umount_busy(mnt
);
1103 up_write(&namespace_sem
);
1104 release_mounts(&umount_list
);
1109 * Now umount can handle mount points as well as block devices.
1110 * This is important for filesystems which use unnamed block devices.
1112 * We now support a flag for forced unmount like the other 'big iron'
1113 * unixes. Our API is identical to OSF/1 to avoid making a mess of AMD
1116 SYSCALL_DEFINE2(umount
, char __user
*, name
, int, flags
)
1121 retval
= user_path(name
, &path
);
1125 if (path
.dentry
!= path
.mnt
->mnt_root
)
1127 if (!check_mnt(path
.mnt
))
1131 if (!capable(CAP_SYS_ADMIN
))
1134 retval
= do_umount(path
.mnt
, flags
);
1136 /* we mustn't call path_put() as that would clear mnt_expiry_mark */
1138 mntput_no_expire(path
.mnt
);
1143 #ifdef __ARCH_WANT_SYS_OLDUMOUNT
1146 * The 2.0 compatible umount. No flags.
1148 SYSCALL_DEFINE1(oldumount
, char __user
*, name
)
1150 return sys_umount(name
, 0);
1155 static int mount_is_safe(struct path
*path
)
1157 if (capable(CAP_SYS_ADMIN
))
1161 if (S_ISLNK(path
->dentry
->d_inode
->i_mode
))
1163 if (path
->dentry
->d_inode
->i_mode
& S_ISVTX
) {
1164 if (current_uid() != path
->dentry
->d_inode
->i_uid
)
1167 if (inode_permission(path
->dentry
->d_inode
, MAY_WRITE
))
1173 struct vfsmount
*copy_tree(struct vfsmount
*mnt
, struct dentry
*dentry
,
1176 struct vfsmount
*res
, *p
, *q
, *r
, *s
;
1179 if (!(flag
& CL_COPY_ALL
) && IS_MNT_UNBINDABLE(mnt
))
1182 res
= q
= clone_mnt(mnt
, dentry
, flag
);
1185 q
->mnt_mountpoint
= mnt
->mnt_mountpoint
;
1188 list_for_each_entry(r
, &mnt
->mnt_mounts
, mnt_child
) {
1189 if (!is_subdir(r
->mnt_mountpoint
, dentry
))
1192 for (s
= r
; s
; s
= next_mnt(s
, r
)) {
1193 if (!(flag
& CL_COPY_ALL
) && IS_MNT_UNBINDABLE(s
)) {
1194 s
= skip_mnt_tree(s
);
1197 while (p
!= s
->mnt_parent
) {
1203 path
.dentry
= p
->mnt_mountpoint
;
1204 q
= clone_mnt(p
, p
->mnt_root
, flag
);
1207 spin_lock(&vfsmount_lock
);
1208 list_add_tail(&q
->mnt_list
, &res
->mnt_list
);
1209 attach_mnt(q
, &path
);
1210 spin_unlock(&vfsmount_lock
);
1216 LIST_HEAD(umount_list
);
1217 spin_lock(&vfsmount_lock
);
1218 umount_tree(res
, 0, &umount_list
);
1219 spin_unlock(&vfsmount_lock
);
1220 release_mounts(&umount_list
);
1225 struct vfsmount
*collect_mounts(struct path
*path
)
1227 struct vfsmount
*tree
;
1228 down_write(&namespace_sem
);
1229 tree
= copy_tree(path
->mnt
, path
->dentry
, CL_COPY_ALL
| CL_PRIVATE
);
1230 up_write(&namespace_sem
);
1234 void drop_collected_mounts(struct vfsmount
*mnt
)
1236 LIST_HEAD(umount_list
);
1237 down_write(&namespace_sem
);
1238 spin_lock(&vfsmount_lock
);
1239 umount_tree(mnt
, 0, &umount_list
);
1240 spin_unlock(&vfsmount_lock
);
1241 up_write(&namespace_sem
);
1242 release_mounts(&umount_list
);
1245 static void cleanup_group_ids(struct vfsmount
*mnt
, struct vfsmount
*end
)
1249 for (p
= mnt
; p
!= end
; p
= next_mnt(p
, mnt
)) {
1250 if (p
->mnt_group_id
&& !IS_MNT_SHARED(p
))
1251 mnt_release_group_id(p
);
1255 static int invent_group_ids(struct vfsmount
*mnt
, bool recurse
)
1259 for (p
= mnt
; p
; p
= recurse
? next_mnt(p
, mnt
) : NULL
) {
1260 if (!p
->mnt_group_id
&& !IS_MNT_SHARED(p
)) {
1261 int err
= mnt_alloc_group_id(p
);
1263 cleanup_group_ids(mnt
, p
);
1273 * @source_mnt : mount tree to be attached
1274 * @nd : place the mount tree @source_mnt is attached
1275 * @parent_nd : if non-null, detach the source_mnt from its parent and
1276 * store the parent mount and mountpoint dentry.
1277 * (done when source_mnt is moved)
1279 * NOTE: in the table below explains the semantics when a source mount
1280 * of a given type is attached to a destination mount of a given type.
1281 * ---------------------------------------------------------------------------
1282 * | BIND MOUNT OPERATION |
1283 * |**************************************************************************
1284 * | source-->| shared | private | slave | unbindable |
1288 * |**************************************************************************
1289 * | shared | shared (++) | shared (+) | shared(+++)| invalid |
1291 * |non-shared| shared (+) | private | slave (*) | invalid |
1292 * ***************************************************************************
1293 * A bind operation clones the source mount and mounts the clone on the
1294 * destination mount.
1296 * (++) the cloned mount is propagated to all the mounts in the propagation
1297 * tree of the destination mount and the cloned mount is added to
1298 * the peer group of the source mount.
1299 * (+) the cloned mount is created under the destination mount and is marked
1300 * as shared. The cloned mount is added to the peer group of the source
1302 * (+++) the mount is propagated to all the mounts in the propagation tree
1303 * of the destination mount and the cloned mount is made slave
1304 * of the same master as that of the source mount. The cloned mount
1305 * is marked as 'shared and slave'.
1306 * (*) the cloned mount is made a slave of the same master as that of the
1309 * ---------------------------------------------------------------------------
1310 * | MOVE MOUNT OPERATION |
1311 * |**************************************************************************
1312 * | source-->| shared | private | slave | unbindable |
1316 * |**************************************************************************
1317 * | shared | shared (+) | shared (+) | shared(+++) | invalid |
1319 * |non-shared| shared (+*) | private | slave (*) | unbindable |
1320 * ***************************************************************************
1322 * (+) the mount is moved to the destination. And is then propagated to
1323 * all the mounts in the propagation tree of the destination mount.
1324 * (+*) the mount is moved to the destination.
1325 * (+++) the mount is moved to the destination and is then propagated to
1326 * all the mounts belonging to the destination mount's propagation tree.
1327 * the mount is marked as 'shared and slave'.
1328 * (*) the mount continues to be a slave at the new location.
1330 * if the source mount is a tree, the operations explained above is
1331 * applied to each mount in the tree.
1332 * Must be called without spinlocks held, since this function can sleep
1335 static int attach_recursive_mnt(struct vfsmount
*source_mnt
,
1336 struct path
*path
, struct path
*parent_path
)
1338 LIST_HEAD(tree_list
);
1339 struct vfsmount
*dest_mnt
= path
->mnt
;
1340 struct dentry
*dest_dentry
= path
->dentry
;
1341 struct vfsmount
*child
, *p
;
1344 if (IS_MNT_SHARED(dest_mnt
)) {
1345 err
= invent_group_ids(source_mnt
, true);
1349 err
= propagate_mnt(dest_mnt
, dest_dentry
, source_mnt
, &tree_list
);
1351 goto out_cleanup_ids
;
1353 if (IS_MNT_SHARED(dest_mnt
)) {
1354 for (p
= source_mnt
; p
; p
= next_mnt(p
, source_mnt
))
1358 spin_lock(&vfsmount_lock
);
1360 detach_mnt(source_mnt
, parent_path
);
1361 attach_mnt(source_mnt
, path
);
1362 touch_mnt_namespace(parent_path
->mnt
->mnt_ns
);
1364 mnt_set_mountpoint(dest_mnt
, dest_dentry
, source_mnt
);
1365 commit_tree(source_mnt
);
1368 list_for_each_entry_safe(child
, p
, &tree_list
, mnt_hash
) {
1369 list_del_init(&child
->mnt_hash
);
1372 spin_unlock(&vfsmount_lock
);
1376 if (IS_MNT_SHARED(dest_mnt
))
1377 cleanup_group_ids(source_mnt
, NULL
);
1382 static int graft_tree(struct vfsmount
*mnt
, struct path
*path
)
1385 if (mnt
->mnt_sb
->s_flags
& MS_NOUSER
)
1388 if (S_ISDIR(path
->dentry
->d_inode
->i_mode
) !=
1389 S_ISDIR(mnt
->mnt_root
->d_inode
->i_mode
))
1393 mutex_lock(&path
->dentry
->d_inode
->i_mutex
);
1394 if (IS_DEADDIR(path
->dentry
->d_inode
))
1397 err
= security_sb_check_sb(mnt
, path
);
1402 if (!d_unlinked(path
->dentry
))
1403 err
= attach_recursive_mnt(mnt
, path
, NULL
);
1405 mutex_unlock(&path
->dentry
->d_inode
->i_mutex
);
1407 security_sb_post_addmount(mnt
, path
);
1412 * recursively change the type of the mountpoint.
1414 static int do_change_type(struct path
*path
, int flag
)
1416 struct vfsmount
*m
, *mnt
= path
->mnt
;
1417 int recurse
= flag
& MS_REC
;
1418 int type
= flag
& ~MS_REC
;
1421 if (!capable(CAP_SYS_ADMIN
))
1424 if (path
->dentry
!= path
->mnt
->mnt_root
)
1427 down_write(&namespace_sem
);
1428 if (type
== MS_SHARED
) {
1429 err
= invent_group_ids(mnt
, recurse
);
1434 spin_lock(&vfsmount_lock
);
1435 for (m
= mnt
; m
; m
= (recurse
? next_mnt(m
, mnt
) : NULL
))
1436 change_mnt_propagation(m
, type
);
1437 spin_unlock(&vfsmount_lock
);
1440 up_write(&namespace_sem
);
1445 * do loopback mount.
1447 static int do_loopback(struct path
*path
, char *old_name
,
1450 struct path old_path
;
1451 struct vfsmount
*mnt
= NULL
;
1452 int err
= mount_is_safe(path
);
1455 if (!old_name
|| !*old_name
)
1457 err
= kern_path(old_name
, LOOKUP_FOLLOW
, &old_path
);
1461 down_write(&namespace_sem
);
1463 if (IS_MNT_UNBINDABLE(old_path
.mnt
))
1466 if (!check_mnt(path
->mnt
) || !check_mnt(old_path
.mnt
))
1471 mnt
= copy_tree(old_path
.mnt
, old_path
.dentry
, 0);
1473 mnt
= clone_mnt(old_path
.mnt
, old_path
.dentry
, 0);
1478 err
= graft_tree(mnt
, path
);
1480 LIST_HEAD(umount_list
);
1481 spin_lock(&vfsmount_lock
);
1482 umount_tree(mnt
, 0, &umount_list
);
1483 spin_unlock(&vfsmount_lock
);
1484 release_mounts(&umount_list
);
1488 up_write(&namespace_sem
);
1489 path_put(&old_path
);
1493 static int change_mount_flags(struct vfsmount
*mnt
, int ms_flags
)
1496 int readonly_request
= 0;
1498 if (ms_flags
& MS_RDONLY
)
1499 readonly_request
= 1;
1500 if (readonly_request
== __mnt_is_readonly(mnt
))
1503 if (readonly_request
)
1504 error
= mnt_make_readonly(mnt
);
1506 __mnt_unmake_readonly(mnt
);
1511 * change filesystem flags. dir should be a physical root of filesystem.
1512 * If you've mounted a non-root directory somewhere and want to do remount
1513 * on it - tough luck.
1515 static int do_remount(struct path
*path
, int flags
, int mnt_flags
,
1519 struct super_block
*sb
= path
->mnt
->mnt_sb
;
1521 if (!capable(CAP_SYS_ADMIN
))
1524 if (!check_mnt(path
->mnt
))
1527 if (path
->dentry
!= path
->mnt
->mnt_root
)
1530 down_write(&sb
->s_umount
);
1531 if (flags
& MS_BIND
)
1532 err
= change_mount_flags(path
->mnt
, flags
);
1534 err
= do_remount_sb(sb
, flags
, data
, 0);
1536 path
->mnt
->mnt_flags
= mnt_flags
;
1537 up_write(&sb
->s_umount
);
1539 security_sb_post_remount(path
->mnt
, flags
, data
);
1541 spin_lock(&vfsmount_lock
);
1542 touch_mnt_namespace(path
->mnt
->mnt_ns
);
1543 spin_unlock(&vfsmount_lock
);
1548 static inline int tree_contains_unbindable(struct vfsmount
*mnt
)
1551 for (p
= mnt
; p
; p
= next_mnt(p
, mnt
)) {
1552 if (IS_MNT_UNBINDABLE(p
))
1558 static int do_move_mount(struct path
*path
, char *old_name
)
1560 struct path old_path
, parent_path
;
1563 if (!capable(CAP_SYS_ADMIN
))
1565 if (!old_name
|| !*old_name
)
1567 err
= kern_path(old_name
, LOOKUP_FOLLOW
, &old_path
);
1571 down_write(&namespace_sem
);
1572 while (d_mountpoint(path
->dentry
) &&
1576 if (!check_mnt(path
->mnt
) || !check_mnt(old_path
.mnt
))
1580 mutex_lock(&path
->dentry
->d_inode
->i_mutex
);
1581 if (IS_DEADDIR(path
->dentry
->d_inode
))
1584 if (d_unlinked(path
->dentry
))
1588 if (old_path
.dentry
!= old_path
.mnt
->mnt_root
)
1591 if (old_path
.mnt
== old_path
.mnt
->mnt_parent
)
1594 if (S_ISDIR(path
->dentry
->d_inode
->i_mode
) !=
1595 S_ISDIR(old_path
.dentry
->d_inode
->i_mode
))
1598 * Don't move a mount residing in a shared parent.
1600 if (old_path
.mnt
->mnt_parent
&&
1601 IS_MNT_SHARED(old_path
.mnt
->mnt_parent
))
1604 * Don't move a mount tree containing unbindable mounts to a destination
1605 * mount which is shared.
1607 if (IS_MNT_SHARED(path
->mnt
) &&
1608 tree_contains_unbindable(old_path
.mnt
))
1611 for (p
= path
->mnt
; p
->mnt_parent
!= p
; p
= p
->mnt_parent
)
1612 if (p
== old_path
.mnt
)
1615 err
= attach_recursive_mnt(old_path
.mnt
, path
, &parent_path
);
1619 /* if the mount is moved, it should no longer be expire
1621 list_del_init(&old_path
.mnt
->mnt_expire
);
1623 mutex_unlock(&path
->dentry
->d_inode
->i_mutex
);
1625 up_write(&namespace_sem
);
1627 path_put(&parent_path
);
1628 path_put(&old_path
);
1633 * create a new mount for userspace and request it to be added into the
1636 static int do_new_mount(struct path
*path
, char *type
, int flags
,
1637 int mnt_flags
, char *name
, void *data
)
1639 struct vfsmount
*mnt
;
1641 if (!type
|| !memchr(type
, 0, PAGE_SIZE
))
1644 /* we need capabilities... */
1645 if (!capable(CAP_SYS_ADMIN
))
1649 mnt
= do_kern_mount(type
, flags
, name
, data
);
1652 return PTR_ERR(mnt
);
1654 return do_add_mount(mnt
, path
, mnt_flags
, NULL
);
1658 * add a mount into a namespace's mount tree
1659 * - provide the option of adding the new mount to an expiration list
1661 int do_add_mount(struct vfsmount
*newmnt
, struct path
*path
,
1662 int mnt_flags
, struct list_head
*fslist
)
1666 down_write(&namespace_sem
);
1667 /* Something was mounted here while we slept */
1668 while (d_mountpoint(path
->dentry
) &&
1672 if (!(mnt_flags
& MNT_SHRINKABLE
) && !check_mnt(path
->mnt
))
1675 /* Refuse the same filesystem on the same mount point */
1677 if (path
->mnt
->mnt_sb
== newmnt
->mnt_sb
&&
1678 path
->mnt
->mnt_root
== path
->dentry
)
1682 if (S_ISLNK(newmnt
->mnt_root
->d_inode
->i_mode
))
1685 newmnt
->mnt_flags
= mnt_flags
;
1686 if ((err
= graft_tree(newmnt
, path
)))
1689 if (fslist
) /* add to the specified expiration list */
1690 list_add_tail(&newmnt
->mnt_expire
, fslist
);
1692 up_write(&namespace_sem
);
1696 up_write(&namespace_sem
);
1701 EXPORT_SYMBOL_GPL(do_add_mount
);
1704 * process a list of expirable mountpoints with the intent of discarding any
1705 * mountpoints that aren't in use and haven't been touched since last we came
1708 void mark_mounts_for_expiry(struct list_head
*mounts
)
1710 struct vfsmount
*mnt
, *next
;
1711 LIST_HEAD(graveyard
);
1714 if (list_empty(mounts
))
1717 down_write(&namespace_sem
);
1718 spin_lock(&vfsmount_lock
);
1720 /* extract from the expiration list every vfsmount that matches the
1721 * following criteria:
1722 * - only referenced by its parent vfsmount
1723 * - still marked for expiry (marked on the last call here; marks are
1724 * cleared by mntput())
1726 list_for_each_entry_safe(mnt
, next
, mounts
, mnt_expire
) {
1727 if (!xchg(&mnt
->mnt_expiry_mark
, 1) ||
1728 propagate_mount_busy(mnt
, 1))
1730 list_move(&mnt
->mnt_expire
, &graveyard
);
1732 while (!list_empty(&graveyard
)) {
1733 mnt
= list_first_entry(&graveyard
, struct vfsmount
, mnt_expire
);
1734 touch_mnt_namespace(mnt
->mnt_ns
);
1735 umount_tree(mnt
, 1, &umounts
);
1737 spin_unlock(&vfsmount_lock
);
1738 up_write(&namespace_sem
);
1740 release_mounts(&umounts
);
1743 EXPORT_SYMBOL_GPL(mark_mounts_for_expiry
);
1746 * Ripoff of 'select_parent()'
1748 * search the list of submounts for a given mountpoint, and move any
1749 * shrinkable submounts to the 'graveyard' list.
1751 static int select_submounts(struct vfsmount
*parent
, struct list_head
*graveyard
)
1753 struct vfsmount
*this_parent
= parent
;
1754 struct list_head
*next
;
1758 next
= this_parent
->mnt_mounts
.next
;
1760 while (next
!= &this_parent
->mnt_mounts
) {
1761 struct list_head
*tmp
= next
;
1762 struct vfsmount
*mnt
= list_entry(tmp
, struct vfsmount
, mnt_child
);
1765 if (!(mnt
->mnt_flags
& MNT_SHRINKABLE
))
1768 * Descend a level if the d_mounts list is non-empty.
1770 if (!list_empty(&mnt
->mnt_mounts
)) {
1775 if (!propagate_mount_busy(mnt
, 1)) {
1776 list_move_tail(&mnt
->mnt_expire
, graveyard
);
1781 * All done at this level ... ascend and resume the search
1783 if (this_parent
!= parent
) {
1784 next
= this_parent
->mnt_child
.next
;
1785 this_parent
= this_parent
->mnt_parent
;
1792 * process a list of expirable mountpoints with the intent of discarding any
1793 * submounts of a specific parent mountpoint
1795 static void shrink_submounts(struct vfsmount
*mnt
, struct list_head
*umounts
)
1797 LIST_HEAD(graveyard
);
1800 /* extract submounts of 'mountpoint' from the expiration list */
1801 while (select_submounts(mnt
, &graveyard
)) {
1802 while (!list_empty(&graveyard
)) {
1803 m
= list_first_entry(&graveyard
, struct vfsmount
,
1805 touch_mnt_namespace(m
->mnt_ns
);
1806 umount_tree(m
, 1, umounts
);
1812 * Some copy_from_user() implementations do not return the exact number of
1813 * bytes remaining to copy on a fault. But copy_mount_options() requires that.
1814 * Note that this function differs from copy_from_user() in that it will oops
1815 * on bad values of `to', rather than returning a short copy.
1817 static long exact_copy_from_user(void *to
, const void __user
* from
,
1821 const char __user
*f
= from
;
1824 if (!access_ok(VERIFY_READ
, from
, n
))
1828 if (__get_user(c
, f
)) {
1839 int copy_mount_options(const void __user
* data
, unsigned long *where
)
1849 if (!(page
= __get_free_page(GFP_KERNEL
)))
1852 /* We only care that *some* data at the address the user
1853 * gave us is valid. Just in case, we'll zero
1854 * the remainder of the page.
1856 /* copy_from_user cannot cross TASK_SIZE ! */
1857 size
= TASK_SIZE
- (unsigned long)data
;
1858 if (size
> PAGE_SIZE
)
1861 i
= size
- exact_copy_from_user((void *)page
, data
, size
);
1867 memset((char *)page
+ i
, 0, PAGE_SIZE
- i
);
1873 * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to
1874 * be given to the mount() call (ie: read-only, no-dev, no-suid etc).
1876 * data is a (void *) that can point to any structure up to
1877 * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent
1878 * information (or be NULL).
1880 * Pre-0.97 versions of mount() didn't have a flags word.
1881 * When the flags word was introduced its top half was required
1882 * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9.
1883 * Therefore, if this magic number is present, it carries no information
1884 * and must be discarded.
1886 long do_mount(char *dev_name
, char *dir_name
, char *type_page
,
1887 unsigned long flags
, void *data_page
)
1894 if ((flags
& MS_MGC_MSK
) == MS_MGC_VAL
)
1895 flags
&= ~MS_MGC_MSK
;
1897 /* Basic sanity checks */
1899 if (!dir_name
|| !*dir_name
|| !memchr(dir_name
, 0, PAGE_SIZE
))
1901 if (dev_name
&& !memchr(dev_name
, 0, PAGE_SIZE
))
1905 ((char *)data_page
)[PAGE_SIZE
- 1] = 0;
1907 /* Default to relatime unless overriden */
1908 if (!(flags
& MS_NOATIME
))
1909 mnt_flags
|= MNT_RELATIME
;
1911 /* Separate the per-mountpoint flags */
1912 if (flags
& MS_NOSUID
)
1913 mnt_flags
|= MNT_NOSUID
;
1914 if (flags
& MS_NODEV
)
1915 mnt_flags
|= MNT_NODEV
;
1916 if (flags
& MS_NOEXEC
)
1917 mnt_flags
|= MNT_NOEXEC
;
1918 if (flags
& MS_NOATIME
)
1919 mnt_flags
|= MNT_NOATIME
;
1920 if (flags
& MS_NODIRATIME
)
1921 mnt_flags
|= MNT_NODIRATIME
;
1922 if (flags
& MS_STRICTATIME
)
1923 mnt_flags
&= ~(MNT_RELATIME
| MNT_NOATIME
);
1924 if (flags
& MS_RDONLY
)
1925 mnt_flags
|= MNT_READONLY
;
1927 flags
&= ~(MS_NOSUID
| MS_NOEXEC
| MS_NODEV
| MS_ACTIVE
|
1928 MS_NOATIME
| MS_NODIRATIME
| MS_RELATIME
| MS_KERNMOUNT
|
1931 /* ... and get the mountpoint */
1932 retval
= kern_path(dir_name
, LOOKUP_FOLLOW
, &path
);
1936 retval
= security_sb_mount(dev_name
, &path
,
1937 type_page
, flags
, data_page
);
1941 if (flags
& MS_REMOUNT
)
1942 retval
= do_remount(&path
, flags
& ~MS_REMOUNT
, mnt_flags
,
1944 else if (flags
& MS_BIND
)
1945 retval
= do_loopback(&path
, dev_name
, flags
& MS_REC
);
1946 else if (flags
& (MS_SHARED
| MS_PRIVATE
| MS_SLAVE
| MS_UNBINDABLE
))
1947 retval
= do_change_type(&path
, flags
);
1948 else if (flags
& MS_MOVE
)
1949 retval
= do_move_mount(&path
, dev_name
);
1951 retval
= do_new_mount(&path
, type_page
, flags
, mnt_flags
,
1952 dev_name
, data_page
);
1958 static struct mnt_namespace
*alloc_mnt_ns(void)
1960 struct mnt_namespace
*new_ns
;
1962 new_ns
= kmalloc(sizeof(struct mnt_namespace
), GFP_KERNEL
);
1964 return ERR_PTR(-ENOMEM
);
1965 atomic_set(&new_ns
->count
, 1);
1966 new_ns
->root
= NULL
;
1967 INIT_LIST_HEAD(&new_ns
->list
);
1968 init_waitqueue_head(&new_ns
->poll
);
1974 * Allocate a new namespace structure and populate it with contents
1975 * copied from the namespace of the passed in task structure.
1977 static struct mnt_namespace
*dup_mnt_ns(struct mnt_namespace
*mnt_ns
,
1978 struct fs_struct
*fs
)
1980 struct mnt_namespace
*new_ns
;
1981 struct vfsmount
*rootmnt
= NULL
, *pwdmnt
= NULL
;
1982 struct vfsmount
*p
, *q
;
1984 new_ns
= alloc_mnt_ns();
1988 down_write(&namespace_sem
);
1989 /* First pass: copy the tree topology */
1990 new_ns
->root
= copy_tree(mnt_ns
->root
, mnt_ns
->root
->mnt_root
,
1991 CL_COPY_ALL
| CL_EXPIRE
);
1992 if (!new_ns
->root
) {
1993 up_write(&namespace_sem
);
1995 return ERR_PTR(-ENOMEM
);
1997 spin_lock(&vfsmount_lock
);
1998 list_add_tail(&new_ns
->list
, &new_ns
->root
->mnt_list
);
1999 spin_unlock(&vfsmount_lock
);
2002 * Second pass: switch the tsk->fs->* elements and mark new vfsmounts
2003 * as belonging to new namespace. We have already acquired a private
2004 * fs_struct, so tsk->fs->lock is not needed.
2011 if (p
== fs
->root
.mnt
) {
2013 fs
->root
.mnt
= mntget(q
);
2015 if (p
== fs
->pwd
.mnt
) {
2017 fs
->pwd
.mnt
= mntget(q
);
2020 p
= next_mnt(p
, mnt_ns
->root
);
2021 q
= next_mnt(q
, new_ns
->root
);
2023 up_write(&namespace_sem
);
2033 struct mnt_namespace
*copy_mnt_ns(unsigned long flags
, struct mnt_namespace
*ns
,
2034 struct fs_struct
*new_fs
)
2036 struct mnt_namespace
*new_ns
;
2041 if (!(flags
& CLONE_NEWNS
))
2044 new_ns
= dup_mnt_ns(ns
, new_fs
);
2051 * create_mnt_ns - creates a private namespace and adds a root filesystem
2052 * @mnt: pointer to the new root filesystem mountpoint
2054 struct mnt_namespace
*create_mnt_ns(struct vfsmount
*mnt
)
2056 struct mnt_namespace
*new_ns
;
2058 new_ns
= alloc_mnt_ns();
2059 if (!IS_ERR(new_ns
)) {
2060 mnt
->mnt_ns
= new_ns
;
2062 list_add(&new_ns
->list
, &new_ns
->root
->mnt_list
);
2066 EXPORT_SYMBOL(create_mnt_ns
);
2068 SYSCALL_DEFINE5(mount
, char __user
*, dev_name
, char __user
*, dir_name
,
2069 char __user
*, type
, unsigned long, flags
, void __user
*, data
)
2072 unsigned long data_page
;
2073 unsigned long type_page
;
2074 unsigned long dev_page
;
2077 retval
= copy_mount_options(type
, &type_page
);
2081 dir_page
= getname(dir_name
);
2082 retval
= PTR_ERR(dir_page
);
2083 if (IS_ERR(dir_page
))
2086 retval
= copy_mount_options(dev_name
, &dev_page
);
2090 retval
= copy_mount_options(data
, &data_page
);
2094 retval
= do_mount((char *)dev_page
, dir_page
, (char *)type_page
,
2095 flags
, (void *)data_page
);
2096 free_page(data_page
);
2099 free_page(dev_page
);
2103 free_page(type_page
);
2108 * pivot_root Semantics:
2109 * Moves the root file system of the current process to the directory put_old,
2110 * makes new_root as the new root file system of the current process, and sets
2111 * root/cwd of all processes which had them on the current root to new_root.
2114 * The new_root and put_old must be directories, and must not be on the
2115 * same file system as the current process root. The put_old must be
2116 * underneath new_root, i.e. adding a non-zero number of /.. to the string
2117 * pointed to by put_old must yield the same directory as new_root. No other
2118 * file system may be mounted on put_old. After all, new_root is a mountpoint.
2120 * Also, the current root cannot be on the 'rootfs' (initial ramfs) filesystem.
2121 * See Documentation/filesystems/ramfs-rootfs-initramfs.txt for alternatives
2122 * in this situation.
2125 * - we don't move root/cwd if they are not at the root (reason: if something
2126 * cared enough to change them, it's probably wrong to force them elsewhere)
2127 * - it's okay to pick a root that isn't the root of a file system, e.g.
2128 * /nfs/my_root where /nfs is the mount point. It must be a mountpoint,
2129 * though, so you may need to say mount --bind /nfs/my_root /nfs/my_root
2132 SYSCALL_DEFINE2(pivot_root
, const char __user
*, new_root
,
2133 const char __user
*, put_old
)
2135 struct vfsmount
*tmp
;
2136 struct path
new, old
, parent_path
, root_parent
, root
;
2139 if (!capable(CAP_SYS_ADMIN
))
2142 error
= user_path_dir(new_root
, &new);
2146 if (!check_mnt(new.mnt
))
2149 error
= user_path_dir(put_old
, &old
);
2153 error
= security_sb_pivotroot(&old
, &new);
2159 read_lock(¤t
->fs
->lock
);
2160 root
= current
->fs
->root
;
2161 path_get(¤t
->fs
->root
);
2162 read_unlock(¤t
->fs
->lock
);
2163 down_write(&namespace_sem
);
2164 mutex_lock(&old
.dentry
->d_inode
->i_mutex
);
2166 if (IS_MNT_SHARED(old
.mnt
) ||
2167 IS_MNT_SHARED(new.mnt
->mnt_parent
) ||
2168 IS_MNT_SHARED(root
.mnt
->mnt_parent
))
2170 if (!check_mnt(root
.mnt
))
2173 if (IS_DEADDIR(new.dentry
->d_inode
))
2175 if (d_unlinked(new.dentry
))
2177 if (d_unlinked(old
.dentry
))
2180 if (new.mnt
== root
.mnt
||
2181 old
.mnt
== root
.mnt
)
2182 goto out2
; /* loop, on the same file system */
2184 if (root
.mnt
->mnt_root
!= root
.dentry
)
2185 goto out2
; /* not a mountpoint */
2186 if (root
.mnt
->mnt_parent
== root
.mnt
)
2187 goto out2
; /* not attached */
2188 if (new.mnt
->mnt_root
!= new.dentry
)
2189 goto out2
; /* not a mountpoint */
2190 if (new.mnt
->mnt_parent
== new.mnt
)
2191 goto out2
; /* not attached */
2192 /* make sure we can reach put_old from new_root */
2194 spin_lock(&vfsmount_lock
);
2195 if (tmp
!= new.mnt
) {
2197 if (tmp
->mnt_parent
== tmp
)
2198 goto out3
; /* already mounted on put_old */
2199 if (tmp
->mnt_parent
== new.mnt
)
2201 tmp
= tmp
->mnt_parent
;
2203 if (!is_subdir(tmp
->mnt_mountpoint
, new.dentry
))
2205 } else if (!is_subdir(old
.dentry
, new.dentry
))
2207 detach_mnt(new.mnt
, &parent_path
);
2208 detach_mnt(root
.mnt
, &root_parent
);
2209 /* mount old root on put_old */
2210 attach_mnt(root
.mnt
, &old
);
2211 /* mount new_root on / */
2212 attach_mnt(new.mnt
, &root_parent
);
2213 touch_mnt_namespace(current
->nsproxy
->mnt_ns
);
2214 spin_unlock(&vfsmount_lock
);
2215 chroot_fs_refs(&root
, &new);
2216 security_sb_post_pivotroot(&root
, &new);
2218 path_put(&root_parent
);
2219 path_put(&parent_path
);
2221 mutex_unlock(&old
.dentry
->d_inode
->i_mutex
);
2222 up_write(&namespace_sem
);
2230 spin_unlock(&vfsmount_lock
);
2234 static void __init
init_mount_tree(void)
2236 struct vfsmount
*mnt
;
2237 struct mnt_namespace
*ns
;
2240 mnt
= do_kern_mount("rootfs", 0, "rootfs", NULL
);
2242 panic("Can't create rootfs");
2243 ns
= create_mnt_ns(mnt
);
2245 panic("Can't allocate initial namespace");
2247 init_task
.nsproxy
->mnt_ns
= ns
;
2250 root
.mnt
= ns
->root
;
2251 root
.dentry
= ns
->root
->mnt_root
;
2253 set_fs_pwd(current
->fs
, &root
);
2254 set_fs_root(current
->fs
, &root
);
2257 void __init
mnt_init(void)
2262 init_rwsem(&namespace_sem
);
2264 mnt_cache
= kmem_cache_create("mnt_cache", sizeof(struct vfsmount
),
2265 0, SLAB_HWCACHE_ALIGN
| SLAB_PANIC
, NULL
);
2267 mount_hashtable
= (struct list_head
*)__get_free_page(GFP_ATOMIC
);
2269 if (!mount_hashtable
)
2270 panic("Failed to allocate mount hash table\n");
2272 printk("Mount-cache hash table entries: %lu\n", HASH_SIZE
);
2274 for (u
= 0; u
< HASH_SIZE
; u
++)
2275 INIT_LIST_HEAD(&mount_hashtable
[u
]);
2279 printk(KERN_WARNING
"%s: sysfs_init error: %d\n",
2281 fs_kobj
= kobject_create_and_add("fs", NULL
);
2283 printk(KERN_WARNING
"%s: kobj create error\n", __func__
);
2288 void put_mnt_ns(struct mnt_namespace
*ns
)
2290 struct vfsmount
*root
;
2291 LIST_HEAD(umount_list
);
2293 if (!atomic_dec_and_lock(&ns
->count
, &vfsmount_lock
))
2297 spin_unlock(&vfsmount_lock
);
2298 down_write(&namespace_sem
);
2299 spin_lock(&vfsmount_lock
);
2300 umount_tree(root
, 0, &umount_list
);
2301 spin_unlock(&vfsmount_lock
);
2302 up_write(&namespace_sem
);
2303 release_mounts(&umount_list
);
2306 EXPORT_SYMBOL(put_mnt_ns
);