Merge branch 'tip/x86/urgent' of git://git.kernel.org/pub/scm/linux/kernel/git/rosted...
[linux-2.6/mini2440.git] / arch / x86 / mm / fault.c
blobe4b9fc5001c6b3aa1de28e3392be8859c2917fca
1 /*
2 * Copyright (C) 1995 Linus Torvalds
3 * Copyright (C) 2001,2002 Andi Kleen, SuSE Labs.
4 */
6 #include <linux/signal.h>
7 #include <linux/sched.h>
8 #include <linux/kernel.h>
9 #include <linux/errno.h>
10 #include <linux/string.h>
11 #include <linux/types.h>
12 #include <linux/ptrace.h>
13 #include <linux/mmiotrace.h>
14 #include <linux/mman.h>
15 #include <linux/mm.h>
16 #include <linux/smp.h>
17 #include <linux/interrupt.h>
18 #include <linux/init.h>
19 #include <linux/tty.h>
20 #include <linux/vt_kern.h> /* For unblank_screen() */
21 #include <linux/compiler.h>
22 #include <linux/highmem.h>
23 #include <linux/bootmem.h> /* for max_low_pfn */
24 #include <linux/vmalloc.h>
25 #include <linux/module.h>
26 #include <linux/kprobes.h>
27 #include <linux/uaccess.h>
28 #include <linux/kdebug.h>
29 #include <linux/magic.h>
31 #include <asm/system.h>
32 #include <asm/desc.h>
33 #include <asm/segment.h>
34 #include <asm/pgalloc.h>
35 #include <asm/smp.h>
36 #include <asm/tlbflush.h>
37 #include <asm/proto.h>
38 #include <asm-generic/sections.h>
39 #include <asm/traps.h>
42 * Page fault error code bits
43 * bit 0 == 0 means no page found, 1 means protection fault
44 * bit 1 == 0 means read, 1 means write
45 * bit 2 == 0 means kernel, 1 means user-mode
46 * bit 3 == 1 means use of reserved bit detected
47 * bit 4 == 1 means fault was an instruction fetch
49 #define PF_PROT (1<<0)
50 #define PF_WRITE (1<<1)
51 #define PF_USER (1<<2)
52 #define PF_RSVD (1<<3)
53 #define PF_INSTR (1<<4)
55 static inline int kmmio_fault(struct pt_regs *regs, unsigned long addr)
57 #ifdef CONFIG_MMIOTRACE
58 if (unlikely(is_kmmio_active()))
59 if (kmmio_handler(regs, addr) == 1)
60 return -1;
61 #endif
62 return 0;
65 static inline int notify_page_fault(struct pt_regs *regs)
67 #ifdef CONFIG_KPROBES
68 int ret = 0;
70 /* kprobe_running() needs smp_processor_id() */
71 if (!user_mode_vm(regs)) {
72 preempt_disable();
73 if (kprobe_running() && kprobe_fault_handler(regs, 14))
74 ret = 1;
75 preempt_enable();
78 return ret;
79 #else
80 return 0;
81 #endif
85 * X86_32
86 * Sometimes AMD Athlon/Opteron CPUs report invalid exceptions on prefetch.
87 * Check that here and ignore it.
89 * X86_64
90 * Sometimes the CPU reports invalid exceptions on prefetch.
91 * Check that here and ignore it.
93 * Opcode checker based on code by Richard Brunner
95 static int is_prefetch(struct pt_regs *regs, unsigned long error_code,
96 unsigned long addr)
98 unsigned char *instr;
99 int scan_more = 1;
100 int prefetch = 0;
101 unsigned char *max_instr;
104 * If it was a exec (instruction fetch) fault on NX page, then
105 * do not ignore the fault:
107 if (error_code & PF_INSTR)
108 return 0;
110 instr = (unsigned char *)convert_ip_to_linear(current, regs);
111 max_instr = instr + 15;
113 if (user_mode(regs) && instr >= (unsigned char *)TASK_SIZE)
114 return 0;
116 while (scan_more && instr < max_instr) {
117 unsigned char opcode;
118 unsigned char instr_hi;
119 unsigned char instr_lo;
121 if (probe_kernel_address(instr, opcode))
122 break;
124 instr_hi = opcode & 0xf0;
125 instr_lo = opcode & 0x0f;
126 instr++;
128 switch (instr_hi) {
129 case 0x20:
130 case 0x30:
132 * Values 0x26,0x2E,0x36,0x3E are valid x86 prefixes.
133 * In X86_64 long mode, the CPU will signal invalid
134 * opcode if some of these prefixes are present so
135 * X86_64 will never get here anyway
137 scan_more = ((instr_lo & 7) == 0x6);
138 break;
139 #ifdef CONFIG_X86_64
140 case 0x40:
142 * In AMD64 long mode 0x40..0x4F are valid REX prefixes
143 * Need to figure out under what instruction mode the
144 * instruction was issued. Could check the LDT for lm,
145 * but for now it's good enough to assume that long
146 * mode only uses well known segments or kernel.
148 scan_more = (!user_mode(regs)) || (regs->cs == __USER_CS);
149 break;
150 #endif
151 case 0x60:
152 /* 0x64 thru 0x67 are valid prefixes in all modes. */
153 scan_more = (instr_lo & 0xC) == 0x4;
154 break;
155 case 0xF0:
156 /* 0xF0, 0xF2, 0xF3 are valid prefixes in all modes. */
157 scan_more = !instr_lo || (instr_lo>>1) == 1;
158 break;
159 case 0x00:
160 /* Prefetch instruction is 0x0F0D or 0x0F18 */
161 scan_more = 0;
163 if (probe_kernel_address(instr, opcode))
164 break;
165 prefetch = (instr_lo == 0xF) &&
166 (opcode == 0x0D || opcode == 0x18);
167 break;
168 default:
169 scan_more = 0;
170 break;
173 return prefetch;
176 static void force_sig_info_fault(int si_signo, int si_code,
177 unsigned long address, struct task_struct *tsk)
179 siginfo_t info;
181 info.si_signo = si_signo;
182 info.si_errno = 0;
183 info.si_code = si_code;
184 info.si_addr = (void __user *)address;
185 force_sig_info(si_signo, &info, tsk);
188 #ifdef CONFIG_X86_64
189 static int bad_address(void *p)
191 unsigned long dummy;
192 return probe_kernel_address((unsigned long *)p, dummy);
194 #endif
196 static void dump_pagetable(unsigned long address)
198 #ifdef CONFIG_X86_32
199 __typeof__(pte_val(__pte(0))) page;
201 page = read_cr3();
202 page = ((__typeof__(page) *) __va(page))[address >> PGDIR_SHIFT];
203 #ifdef CONFIG_X86_PAE
204 printk("*pdpt = %016Lx ", page);
205 if ((page >> PAGE_SHIFT) < max_low_pfn
206 && page & _PAGE_PRESENT) {
207 page &= PAGE_MASK;
208 page = ((__typeof__(page) *) __va(page))[(address >> PMD_SHIFT)
209 & (PTRS_PER_PMD - 1)];
210 printk(KERN_CONT "*pde = %016Lx ", page);
211 page &= ~_PAGE_NX;
213 #else
214 printk("*pde = %08lx ", page);
215 #endif
218 * We must not directly access the pte in the highpte
219 * case if the page table is located in highmem.
220 * And let's rather not kmap-atomic the pte, just in case
221 * it's allocated already.
223 if ((page >> PAGE_SHIFT) < max_low_pfn
224 && (page & _PAGE_PRESENT)
225 && !(page & _PAGE_PSE)) {
226 page &= PAGE_MASK;
227 page = ((__typeof__(page) *) __va(page))[(address >> PAGE_SHIFT)
228 & (PTRS_PER_PTE - 1)];
229 printk("*pte = %0*Lx ", sizeof(page)*2, (u64)page);
232 printk("\n");
233 #else /* CONFIG_X86_64 */
234 pgd_t *pgd;
235 pud_t *pud;
236 pmd_t *pmd;
237 pte_t *pte;
239 pgd = (pgd_t *)read_cr3();
241 pgd = __va((unsigned long)pgd & PHYSICAL_PAGE_MASK);
242 pgd += pgd_index(address);
243 if (bad_address(pgd)) goto bad;
244 printk("PGD %lx ", pgd_val(*pgd));
245 if (!pgd_present(*pgd)) goto ret;
247 pud = pud_offset(pgd, address);
248 if (bad_address(pud)) goto bad;
249 printk("PUD %lx ", pud_val(*pud));
250 if (!pud_present(*pud) || pud_large(*pud))
251 goto ret;
253 pmd = pmd_offset(pud, address);
254 if (bad_address(pmd)) goto bad;
255 printk("PMD %lx ", pmd_val(*pmd));
256 if (!pmd_present(*pmd) || pmd_large(*pmd)) goto ret;
258 pte = pte_offset_kernel(pmd, address);
259 if (bad_address(pte)) goto bad;
260 printk("PTE %lx", pte_val(*pte));
261 ret:
262 printk("\n");
263 return;
264 bad:
265 printk("BAD\n");
266 #endif
269 #ifdef CONFIG_X86_32
270 static inline pmd_t *vmalloc_sync_one(pgd_t *pgd, unsigned long address)
272 unsigned index = pgd_index(address);
273 pgd_t *pgd_k;
274 pud_t *pud, *pud_k;
275 pmd_t *pmd, *pmd_k;
277 pgd += index;
278 pgd_k = init_mm.pgd + index;
280 if (!pgd_present(*pgd_k))
281 return NULL;
284 * set_pgd(pgd, *pgd_k); here would be useless on PAE
285 * and redundant with the set_pmd() on non-PAE. As would
286 * set_pud.
289 pud = pud_offset(pgd, address);
290 pud_k = pud_offset(pgd_k, address);
291 if (!pud_present(*pud_k))
292 return NULL;
294 pmd = pmd_offset(pud, address);
295 pmd_k = pmd_offset(pud_k, address);
296 if (!pmd_present(*pmd_k))
297 return NULL;
298 if (!pmd_present(*pmd)) {
299 set_pmd(pmd, *pmd_k);
300 arch_flush_lazy_mmu_mode();
301 } else
302 BUG_ON(pmd_page(*pmd) != pmd_page(*pmd_k));
303 return pmd_k;
305 #endif
307 #ifdef CONFIG_X86_64
308 static const char errata93_warning[] =
309 KERN_ERR "******* Your BIOS seems to not contain a fix for K8 errata #93\n"
310 KERN_ERR "******* Working around it, but it may cause SEGVs or burn power.\n"
311 KERN_ERR "******* Please consider a BIOS update.\n"
312 KERN_ERR "******* Disabling USB legacy in the BIOS may also help.\n";
313 #endif
315 /* Workaround for K8 erratum #93 & buggy BIOS.
316 BIOS SMM functions are required to use a specific workaround
317 to avoid corruption of the 64bit RIP register on C stepping K8.
318 A lot of BIOS that didn't get tested properly miss this.
319 The OS sees this as a page fault with the upper 32bits of RIP cleared.
320 Try to work around it here.
321 Note we only handle faults in kernel here.
322 Does nothing for X86_32
324 static int is_errata93(struct pt_regs *regs, unsigned long address)
326 #ifdef CONFIG_X86_64
327 static int warned;
328 if (address != regs->ip)
329 return 0;
330 if ((address >> 32) != 0)
331 return 0;
332 address |= 0xffffffffUL << 32;
333 if ((address >= (u64)_stext && address <= (u64)_etext) ||
334 (address >= MODULES_VADDR && address <= MODULES_END)) {
335 if (!warned) {
336 printk(errata93_warning);
337 warned = 1;
339 regs->ip = address;
340 return 1;
342 #endif
343 return 0;
347 * Work around K8 erratum #100 K8 in compat mode occasionally jumps to illegal
348 * addresses >4GB. We catch this in the page fault handler because these
349 * addresses are not reachable. Just detect this case and return. Any code
350 * segment in LDT is compatibility mode.
352 static int is_errata100(struct pt_regs *regs, unsigned long address)
354 #ifdef CONFIG_X86_64
355 if ((regs->cs == __USER32_CS || (regs->cs & (1<<2))) &&
356 (address >> 32))
357 return 1;
358 #endif
359 return 0;
362 static int is_f00f_bug(struct pt_regs *regs, unsigned long address)
364 #ifdef CONFIG_X86_F00F_BUG
365 unsigned long nr;
367 * Pentium F0 0F C7 C8 bug workaround.
369 if (boot_cpu_data.f00f_bug) {
370 nr = (address - idt_descr.address) >> 3;
372 if (nr == 6) {
373 do_invalid_op(regs, 0);
374 return 1;
377 #endif
378 return 0;
381 static void show_fault_oops(struct pt_regs *regs, unsigned long error_code,
382 unsigned long address)
384 #ifdef CONFIG_X86_32
385 if (!oops_may_print())
386 return;
387 #endif
389 #ifdef CONFIG_X86_PAE
390 if (error_code & PF_INSTR) {
391 unsigned int level;
392 pte_t *pte = lookup_address(address, &level);
394 if (pte && pte_present(*pte) && !pte_exec(*pte))
395 printk(KERN_CRIT "kernel tried to execute "
396 "NX-protected page - exploit attempt? "
397 "(uid: %d)\n", current_uid());
399 #endif
401 printk(KERN_ALERT "BUG: unable to handle kernel ");
402 if (address < PAGE_SIZE)
403 printk(KERN_CONT "NULL pointer dereference");
404 else
405 printk(KERN_CONT "paging request");
406 printk(KERN_CONT " at %p\n", (void *) address);
407 printk(KERN_ALERT "IP:");
408 printk_address(regs->ip, 1);
409 dump_pagetable(address);
412 #ifdef CONFIG_X86_64
413 static noinline void pgtable_bad(struct pt_regs *regs,
414 unsigned long error_code, unsigned long address)
416 unsigned long flags = oops_begin();
417 int sig = SIGKILL;
418 struct task_struct *tsk = current;
420 printk(KERN_ALERT "%s: Corrupted page table at address %lx\n",
421 tsk->comm, address);
422 dump_pagetable(address);
423 tsk->thread.cr2 = address;
424 tsk->thread.trap_no = 14;
425 tsk->thread.error_code = error_code;
426 if (__die("Bad pagetable", regs, error_code))
427 sig = 0;
428 oops_end(flags, regs, sig);
430 #endif
432 static noinline void no_context(struct pt_regs *regs,
433 unsigned long error_code, unsigned long address)
435 struct task_struct *tsk = current;
436 unsigned long *stackend;
438 #ifdef CONFIG_X86_64
439 unsigned long flags;
440 int sig;
441 #endif
443 /* Are we prepared to handle this kernel fault? */
444 if (fixup_exception(regs))
445 return;
448 * X86_32
449 * Valid to do another page fault here, because if this fault
450 * had been triggered by is_prefetch fixup_exception would have
451 * handled it.
453 * X86_64
454 * Hall of shame of CPU/BIOS bugs.
456 if (is_prefetch(regs, error_code, address))
457 return;
459 if (is_errata93(regs, address))
460 return;
463 * Oops. The kernel tried to access some bad page. We'll have to
464 * terminate things with extreme prejudice.
466 #ifdef CONFIG_X86_32
467 bust_spinlocks(1);
468 #else
469 flags = oops_begin();
470 #endif
472 show_fault_oops(regs, error_code, address);
474 stackend = end_of_stack(tsk);
475 if (*stackend != STACK_END_MAGIC)
476 printk(KERN_ALERT "Thread overran stack, or stack corrupted\n");
478 tsk->thread.cr2 = address;
479 tsk->thread.trap_no = 14;
480 tsk->thread.error_code = error_code;
482 #ifdef CONFIG_X86_32
483 die("Oops", regs, error_code);
484 bust_spinlocks(0);
485 do_exit(SIGKILL);
486 #else
487 sig = SIGKILL;
488 if (__die("Oops", regs, error_code))
489 sig = 0;
490 /* Executive summary in case the body of the oops scrolled away */
491 printk(KERN_EMERG "CR2: %016lx\n", address);
492 oops_end(flags, regs, sig);
493 #endif
496 static void __bad_area_nosemaphore(struct pt_regs *regs,
497 unsigned long error_code, unsigned long address,
498 int si_code)
500 struct task_struct *tsk = current;
502 /* User mode accesses just cause a SIGSEGV */
503 if (error_code & PF_USER) {
505 * It's possible to have interrupts off here.
507 local_irq_enable();
510 * Valid to do another page fault here because this one came
511 * from user space.
513 if (is_prefetch(regs, error_code, address))
514 return;
516 if (is_errata100(regs, address))
517 return;
519 if (show_unhandled_signals && unhandled_signal(tsk, SIGSEGV) &&
520 printk_ratelimit()) {
521 printk(
522 "%s%s[%d]: segfault at %lx ip %p sp %p error %lx",
523 task_pid_nr(tsk) > 1 ? KERN_INFO : KERN_EMERG,
524 tsk->comm, task_pid_nr(tsk), address,
525 (void *) regs->ip, (void *) regs->sp, error_code);
526 print_vma_addr(" in ", regs->ip);
527 printk("\n");
530 tsk->thread.cr2 = address;
531 /* Kernel addresses are always protection faults */
532 tsk->thread.error_code = error_code | (address >= TASK_SIZE);
533 tsk->thread.trap_no = 14;
534 force_sig_info_fault(SIGSEGV, si_code, address, tsk);
535 return;
538 if (is_f00f_bug(regs, address))
539 return;
541 no_context(regs, error_code, address);
544 static noinline void bad_area_nosemaphore(struct pt_regs *regs,
545 unsigned long error_code, unsigned long address)
547 __bad_area_nosemaphore(regs, error_code, address, SEGV_MAPERR);
550 static void __bad_area(struct pt_regs *regs,
551 unsigned long error_code, unsigned long address,
552 int si_code)
554 struct mm_struct *mm = current->mm;
557 * Something tried to access memory that isn't in our memory map..
558 * Fix it, but check if it's kernel or user first..
560 up_read(&mm->mmap_sem);
562 __bad_area_nosemaphore(regs, error_code, address, si_code);
565 static noinline void bad_area(struct pt_regs *regs,
566 unsigned long error_code, unsigned long address)
568 __bad_area(regs, error_code, address, SEGV_MAPERR);
571 static noinline void bad_area_access_error(struct pt_regs *regs,
572 unsigned long error_code, unsigned long address)
574 __bad_area(regs, error_code, address, SEGV_ACCERR);
577 /* TODO: fixup for "mm-invoke-oom-killer-from-page-fault.patch" */
578 static void out_of_memory(struct pt_regs *regs,
579 unsigned long error_code, unsigned long address)
582 * We ran out of memory, call the OOM killer, and return the userspace
583 * (which will retry the fault, or kill us if we got oom-killed).
585 up_read(&current->mm->mmap_sem);
586 pagefault_out_of_memory();
589 static void do_sigbus(struct pt_regs *regs,
590 unsigned long error_code, unsigned long address)
592 struct task_struct *tsk = current;
593 struct mm_struct *mm = tsk->mm;
595 up_read(&mm->mmap_sem);
597 /* Kernel mode? Handle exceptions or die */
598 if (!(error_code & PF_USER))
599 no_context(regs, error_code, address);
600 #ifdef CONFIG_X86_32
601 /* User space => ok to do another page fault */
602 if (is_prefetch(regs, error_code, address))
603 return;
604 #endif
605 tsk->thread.cr2 = address;
606 tsk->thread.error_code = error_code;
607 tsk->thread.trap_no = 14;
608 force_sig_info_fault(SIGBUS, BUS_ADRERR, address, tsk);
611 static noinline void mm_fault_error(struct pt_regs *regs,
612 unsigned long error_code, unsigned long address, unsigned int fault)
614 if (fault & VM_FAULT_OOM)
615 out_of_memory(regs, error_code, address);
616 else if (fault & VM_FAULT_SIGBUS)
617 do_sigbus(regs, error_code, address);
618 else
619 BUG();
622 static int spurious_fault_check(unsigned long error_code, pte_t *pte)
624 if ((error_code & PF_WRITE) && !pte_write(*pte))
625 return 0;
626 if ((error_code & PF_INSTR) && !pte_exec(*pte))
627 return 0;
629 return 1;
633 * Handle a spurious fault caused by a stale TLB entry. This allows
634 * us to lazily refresh the TLB when increasing the permissions of a
635 * kernel page (RO -> RW or NX -> X). Doing it eagerly is very
636 * expensive since that implies doing a full cross-processor TLB
637 * flush, even if no stale TLB entries exist on other processors.
638 * There are no security implications to leaving a stale TLB when
639 * increasing the permissions on a page.
641 static noinline int spurious_fault(unsigned long error_code,
642 unsigned long address)
644 pgd_t *pgd;
645 pud_t *pud;
646 pmd_t *pmd;
647 pte_t *pte;
648 int ret;
650 /* Reserved-bit violation or user access to kernel space? */
651 if (error_code & (PF_USER | PF_RSVD))
652 return 0;
654 pgd = init_mm.pgd + pgd_index(address);
655 if (!pgd_present(*pgd))
656 return 0;
658 pud = pud_offset(pgd, address);
659 if (!pud_present(*pud))
660 return 0;
662 if (pud_large(*pud))
663 return spurious_fault_check(error_code, (pte_t *) pud);
665 pmd = pmd_offset(pud, address);
666 if (!pmd_present(*pmd))
667 return 0;
669 if (pmd_large(*pmd))
670 return spurious_fault_check(error_code, (pte_t *) pmd);
672 pte = pte_offset_kernel(pmd, address);
673 if (!pte_present(*pte))
674 return 0;
676 ret = spurious_fault_check(error_code, pte);
677 if (!ret)
678 return 0;
681 * Make sure we have permissions in PMD
682 * If not, then there's a bug in the page tables.
684 ret = spurious_fault_check(error_code, (pte_t *) pmd);
685 WARN_ONCE(!ret, "PMD has incorrect permission bits\n");
686 return ret;
690 * X86_32
691 * Handle a fault on the vmalloc or module mapping area
693 * X86_64
694 * Handle a fault on the vmalloc area
696 * This assumes no large pages in there.
698 static noinline int vmalloc_fault(unsigned long address)
700 #ifdef CONFIG_X86_32
701 unsigned long pgd_paddr;
702 pmd_t *pmd_k;
703 pte_t *pte_k;
705 /* Make sure we are in vmalloc area */
706 if (!(address >= VMALLOC_START && address < VMALLOC_END))
707 return -1;
710 * Synchronize this task's top level page-table
711 * with the 'reference' page table.
713 * Do _not_ use "current" here. We might be inside
714 * an interrupt in the middle of a task switch..
716 pgd_paddr = read_cr3();
717 pmd_k = vmalloc_sync_one(__va(pgd_paddr), address);
718 if (!pmd_k)
719 return -1;
720 pte_k = pte_offset_kernel(pmd_k, address);
721 if (!pte_present(*pte_k))
722 return -1;
723 return 0;
724 #else
725 pgd_t *pgd, *pgd_ref;
726 pud_t *pud, *pud_ref;
727 pmd_t *pmd, *pmd_ref;
728 pte_t *pte, *pte_ref;
730 /* Make sure we are in vmalloc area */
731 if (!(address >= VMALLOC_START && address < VMALLOC_END))
732 return -1;
734 /* Copy kernel mappings over when needed. This can also
735 happen within a race in page table update. In the later
736 case just flush. */
738 pgd = pgd_offset(current->active_mm, address);
739 pgd_ref = pgd_offset_k(address);
740 if (pgd_none(*pgd_ref))
741 return -1;
742 if (pgd_none(*pgd))
743 set_pgd(pgd, *pgd_ref);
744 else
745 BUG_ON(pgd_page_vaddr(*pgd) != pgd_page_vaddr(*pgd_ref));
747 /* Below here mismatches are bugs because these lower tables
748 are shared */
750 pud = pud_offset(pgd, address);
751 pud_ref = pud_offset(pgd_ref, address);
752 if (pud_none(*pud_ref))
753 return -1;
754 if (pud_none(*pud) || pud_page_vaddr(*pud) != pud_page_vaddr(*pud_ref))
755 BUG();
756 pmd = pmd_offset(pud, address);
757 pmd_ref = pmd_offset(pud_ref, address);
758 if (pmd_none(*pmd_ref))
759 return -1;
760 if (pmd_none(*pmd) || pmd_page(*pmd) != pmd_page(*pmd_ref))
761 BUG();
762 pte_ref = pte_offset_kernel(pmd_ref, address);
763 if (!pte_present(*pte_ref))
764 return -1;
765 pte = pte_offset_kernel(pmd, address);
766 /* Don't use pte_page here, because the mappings can point
767 outside mem_map, and the NUMA hash lookup cannot handle
768 that. */
769 if (!pte_present(*pte) || pte_pfn(*pte) != pte_pfn(*pte_ref))
770 BUG();
771 return 0;
772 #endif
775 int show_unhandled_signals = 1;
777 static inline int access_error(unsigned long error_code, int write,
778 struct vm_area_struct *vma)
780 if (write) {
781 /* write, present and write, not present */
782 if (unlikely(!(vma->vm_flags & VM_WRITE)))
783 return 1;
784 } else if (unlikely(error_code & PF_PROT)) {
785 /* read, present */
786 return 1;
787 } else {
788 /* read, not present */
789 if (unlikely(!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE))))
790 return 1;
793 return 0;
796 static int fault_in_kernel_space(unsigned long address)
798 #ifdef CONFIG_X86_32
799 return address >= TASK_SIZE;
800 #else /* !CONFIG_X86_32 */
801 return address >= TASK_SIZE64;
802 #endif /* CONFIG_X86_32 */
806 * This routine handles page faults. It determines the address,
807 * and the problem, and then passes it off to one of the appropriate
808 * routines.
810 #ifdef CONFIG_X86_64
811 asmlinkage
812 #endif
813 void __kprobes do_page_fault(struct pt_regs *regs, unsigned long error_code)
815 unsigned long address;
816 struct task_struct *tsk;
817 struct mm_struct *mm;
818 struct vm_area_struct *vma;
819 int write;
820 int fault;
822 tsk = current;
823 mm = tsk->mm;
824 prefetchw(&mm->mmap_sem);
826 /* get the address */
827 address = read_cr2();
829 if (unlikely(kmmio_fault(regs, address)))
830 return;
833 * We fault-in kernel-space virtual memory on-demand. The
834 * 'reference' page table is init_mm.pgd.
836 * NOTE! We MUST NOT take any locks for this case. We may
837 * be in an interrupt or a critical region, and should
838 * only copy the information from the master page table,
839 * nothing more.
841 * This verifies that the fault happens in kernel space
842 * (error_code & 4) == 0, and that the fault was not a
843 * protection error (error_code & 9) == 0.
845 if (unlikely(fault_in_kernel_space(address))) {
846 if (!(error_code & (PF_RSVD|PF_USER|PF_PROT)) &&
847 vmalloc_fault(address) >= 0)
848 return;
850 /* Can handle a stale RO->RW TLB */
851 if (spurious_fault(error_code, address))
852 return;
854 /* kprobes don't want to hook the spurious faults. */
855 if (notify_page_fault(regs))
856 return;
858 * Don't take the mm semaphore here. If we fixup a prefetch
859 * fault we could otherwise deadlock.
861 bad_area_nosemaphore(regs, error_code, address);
862 return;
865 /* kprobes don't want to hook the spurious faults. */
866 if (unlikely(notify_page_fault(regs)))
867 return;
869 * It's safe to allow irq's after cr2 has been saved and the
870 * vmalloc fault has been handled.
872 * User-mode registers count as a user access even for any
873 * potential system fault or CPU buglet.
875 if (user_mode_vm(regs)) {
876 local_irq_enable();
877 error_code |= PF_USER;
878 } else if (regs->flags & X86_EFLAGS_IF)
879 local_irq_enable();
881 #ifdef CONFIG_X86_64
882 if (unlikely(error_code & PF_RSVD))
883 pgtable_bad(regs, error_code, address);
884 #endif
887 * If we're in an interrupt, have no user context or are running in an
888 * atomic region then we must not take the fault.
890 if (unlikely(in_atomic() || !mm)) {
891 bad_area_nosemaphore(regs, error_code, address);
892 return;
896 * When running in the kernel we expect faults to occur only to
897 * addresses in user space. All other faults represent errors in the
898 * kernel and should generate an OOPS. Unfortunately, in the case of an
899 * erroneous fault occurring in a code path which already holds mmap_sem
900 * we will deadlock attempting to validate the fault against the
901 * address space. Luckily the kernel only validly references user
902 * space from well defined areas of code, which are listed in the
903 * exceptions table.
905 * As the vast majority of faults will be valid we will only perform
906 * the source reference check when there is a possibility of a deadlock.
907 * Attempt to lock the address space, if we cannot we then validate the
908 * source. If this is invalid we can skip the address space check,
909 * thus avoiding the deadlock.
911 if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
912 if ((error_code & PF_USER) == 0 &&
913 !search_exception_tables(regs->ip)) {
914 bad_area_nosemaphore(regs, error_code, address);
915 return;
917 down_read(&mm->mmap_sem);
918 } else {
920 * The above down_read_trylock() might have succeeded in which
921 * case we'll have missed the might_sleep() from down_read().
923 might_sleep();
926 vma = find_vma(mm, address);
927 if (unlikely(!vma)) {
928 bad_area(regs, error_code, address);
929 return;
931 if (likely(vma->vm_start <= address))
932 goto good_area;
933 if (unlikely(!(vma->vm_flags & VM_GROWSDOWN))) {
934 bad_area(regs, error_code, address);
935 return;
937 if (error_code & PF_USER) {
939 * Accessing the stack below %sp is always a bug.
940 * The large cushion allows instructions like enter
941 * and pusha to work. ("enter $65535,$31" pushes
942 * 32 pointers and then decrements %sp by 65535.)
944 if (unlikely(address + 65536 + 32 * sizeof(unsigned long) < regs->sp)) {
945 bad_area(regs, error_code, address);
946 return;
949 if (unlikely(expand_stack(vma, address))) {
950 bad_area(regs, error_code, address);
951 return;
955 * Ok, we have a good vm_area for this memory access, so
956 * we can handle it..
958 good_area:
959 write = error_code & PF_WRITE;
960 if (unlikely(access_error(error_code, write, vma))) {
961 bad_area_access_error(regs, error_code, address);
962 return;
966 * If for any reason at all we couldn't handle the fault,
967 * make sure we exit gracefully rather than endlessly redo
968 * the fault.
970 fault = handle_mm_fault(mm, vma, address, write);
971 if (unlikely(fault & VM_FAULT_ERROR)) {
972 mm_fault_error(regs, error_code, address, fault);
973 return;
975 if (fault & VM_FAULT_MAJOR)
976 tsk->maj_flt++;
977 else
978 tsk->min_flt++;
980 #ifdef CONFIG_X86_32
982 * Did it hit the DOS screen memory VA from vm86 mode?
984 if (v8086_mode(regs)) {
985 unsigned long bit = (address - 0xA0000) >> PAGE_SHIFT;
986 if (bit < 32)
987 tsk->thread.screen_bitmap |= 1 << bit;
989 #endif
990 up_read(&mm->mmap_sem);
993 DEFINE_SPINLOCK(pgd_lock);
994 LIST_HEAD(pgd_list);
996 void vmalloc_sync_all(void)
998 unsigned long address;
1000 #ifdef CONFIG_X86_32
1001 if (SHARED_KERNEL_PMD)
1002 return;
1004 for (address = VMALLOC_START & PMD_MASK;
1005 address >= TASK_SIZE && address < FIXADDR_TOP;
1006 address += PMD_SIZE) {
1007 unsigned long flags;
1008 struct page *page;
1010 spin_lock_irqsave(&pgd_lock, flags);
1011 list_for_each_entry(page, &pgd_list, lru) {
1012 if (!vmalloc_sync_one(page_address(page),
1013 address))
1014 break;
1016 spin_unlock_irqrestore(&pgd_lock, flags);
1018 #else /* CONFIG_X86_64 */
1019 for (address = VMALLOC_START & PGDIR_MASK; address <= VMALLOC_END;
1020 address += PGDIR_SIZE) {
1021 const pgd_t *pgd_ref = pgd_offset_k(address);
1022 unsigned long flags;
1023 struct page *page;
1025 if (pgd_none(*pgd_ref))
1026 continue;
1027 spin_lock_irqsave(&pgd_lock, flags);
1028 list_for_each_entry(page, &pgd_list, lru) {
1029 pgd_t *pgd;
1030 pgd = (pgd_t *)page_address(page) + pgd_index(address);
1031 if (pgd_none(*pgd))
1032 set_pgd(pgd, *pgd_ref);
1033 else
1034 BUG_ON(pgd_page_vaddr(*pgd) != pgd_page_vaddr(*pgd_ref));
1036 spin_unlock_irqrestore(&pgd_lock, flags);
1038 #endif