4 * Copyright (C) 1991, 1992 Linus Torvalds
8 #include <linux/slab.h>
9 #include <linux/interrupt.h>
10 #include <linux/module.h>
11 #include <linux/capability.h>
12 #include <linux/completion.h>
13 #include <linux/personality.h>
14 #include <linux/tty.h>
15 #include <linux/mnt_namespace.h>
16 #include <linux/key.h>
17 #include <linux/security.h>
18 #include <linux/cpu.h>
19 #include <linux/acct.h>
20 #include <linux/tsacct_kern.h>
21 #include <linux/file.h>
22 #include <linux/binfmts.h>
23 #include <linux/nsproxy.h>
24 #include <linux/pid_namespace.h>
25 #include <linux/ptrace.h>
26 #include <linux/profile.h>
27 #include <linux/mount.h>
28 #include <linux/proc_fs.h>
29 #include <linux/kthread.h>
30 #include <linux/mempolicy.h>
31 #include <linux/taskstats_kern.h>
32 #include <linux/delayacct.h>
33 #include <linux/freezer.h>
34 #include <linux/cpuset.h>
35 #include <linux/syscalls.h>
36 #include <linux/signal.h>
37 #include <linux/posix-timers.h>
38 #include <linux/cn_proc.h>
39 #include <linux/mutex.h>
40 #include <linux/futex.h>
41 #include <linux/compat.h>
42 #include <linux/pipe_fs_i.h>
43 #include <linux/audit.h> /* for audit_free() */
44 #include <linux/resource.h>
45 #include <linux/blkdev.h>
46 #include <linux/task_io_accounting_ops.h>
48 #include <asm/uaccess.h>
49 #include <asm/unistd.h>
50 #include <asm/pgtable.h>
51 #include <asm/mmu_context.h>
53 extern void sem_exit (void);
55 static void exit_mm(struct task_struct
* tsk
);
57 static void __unhash_process(struct task_struct
*p
)
60 detach_pid(p
, PIDTYPE_PID
);
61 if (thread_group_leader(p
)) {
62 detach_pid(p
, PIDTYPE_PGID
);
63 detach_pid(p
, PIDTYPE_SID
);
65 list_del_rcu(&p
->tasks
);
66 __get_cpu_var(process_counts
)--;
68 list_del_rcu(&p
->thread_group
);
73 * This function expects the tasklist_lock write-locked.
75 static void __exit_signal(struct task_struct
*tsk
)
77 struct signal_struct
*sig
= tsk
->signal
;
78 struct sighand_struct
*sighand
;
81 BUG_ON(!atomic_read(&sig
->count
));
84 sighand
= rcu_dereference(tsk
->sighand
);
85 spin_lock(&sighand
->siglock
);
87 posix_cpu_timers_exit(tsk
);
88 if (atomic_dec_and_test(&sig
->count
))
89 posix_cpu_timers_exit_group(tsk
);
92 * If there is any task waiting for the group exit
95 if (sig
->group_exit_task
&& atomic_read(&sig
->count
) == sig
->notify_count
)
96 wake_up_process(sig
->group_exit_task
);
98 if (tsk
== sig
->curr_target
)
99 sig
->curr_target
= next_thread(tsk
);
101 * Accumulate here the counters for all threads but the
102 * group leader as they die, so they can be added into
103 * the process-wide totals when those are taken.
104 * The group leader stays around as a zombie as long
105 * as there are other threads. When it gets reaped,
106 * the exit.c code will add its counts into these totals.
107 * We won't ever get here for the group leader, since it
108 * will have been the last reference on the signal_struct.
110 sig
->utime
= cputime_add(sig
->utime
, tsk
->utime
);
111 sig
->stime
= cputime_add(sig
->stime
, tsk
->stime
);
112 sig
->gtime
= cputime_add(sig
->gtime
, tsk
->gtime
);
113 sig
->min_flt
+= tsk
->min_flt
;
114 sig
->maj_flt
+= tsk
->maj_flt
;
115 sig
->nvcsw
+= tsk
->nvcsw
;
116 sig
->nivcsw
+= tsk
->nivcsw
;
117 sig
->inblock
+= task_io_get_inblock(tsk
);
118 sig
->oublock
+= task_io_get_oublock(tsk
);
119 sig
->sum_sched_runtime
+= tsk
->se
.sum_exec_runtime
;
120 sig
= NULL
; /* Marker for below. */
123 __unhash_process(tsk
);
127 spin_unlock(&sighand
->siglock
);
130 __cleanup_sighand(sighand
);
131 clear_tsk_thread_flag(tsk
,TIF_SIGPENDING
);
132 flush_sigqueue(&tsk
->pending
);
134 flush_sigqueue(&sig
->shared_pending
);
135 taskstats_tgid_free(sig
);
136 __cleanup_signal(sig
);
140 static void delayed_put_task_struct(struct rcu_head
*rhp
)
142 put_task_struct(container_of(rhp
, struct task_struct
, rcu
));
145 void release_task(struct task_struct
* p
)
147 struct task_struct
*leader
;
150 atomic_dec(&p
->user
->processes
);
151 write_lock_irq(&tasklist_lock
);
153 BUG_ON(!list_empty(&p
->ptrace_list
) || !list_empty(&p
->ptrace_children
));
157 * If we are the last non-leader member of the thread
158 * group, and the leader is zombie, then notify the
159 * group leader's parent process. (if it wants notification.)
162 leader
= p
->group_leader
;
163 if (leader
!= p
&& thread_group_empty(leader
) && leader
->exit_state
== EXIT_ZOMBIE
) {
164 BUG_ON(leader
->exit_signal
== -1);
165 do_notify_parent(leader
, leader
->exit_signal
);
167 * If we were the last child thread and the leader has
168 * exited already, and the leader's parent ignores SIGCHLD,
169 * then we are the one who should release the leader.
171 * do_notify_parent() will have marked it self-reaping in
174 zap_leader
= (leader
->exit_signal
== -1);
177 write_unlock_irq(&tasklist_lock
);
180 call_rcu(&p
->rcu
, delayed_put_task_struct
);
183 if (unlikely(zap_leader
))
188 * This checks not only the pgrp, but falls back on the pid if no
189 * satisfactory pgrp is found. I dunno - gdb doesn't work correctly
192 * The caller must hold rcu lock or the tasklist lock.
194 struct pid
*session_of_pgrp(struct pid
*pgrp
)
196 struct task_struct
*p
;
197 struct pid
*sid
= NULL
;
199 p
= pid_task(pgrp
, PIDTYPE_PGID
);
201 p
= pid_task(pgrp
, PIDTYPE_PID
);
203 sid
= task_session(p
);
209 * Determine if a process group is "orphaned", according to the POSIX
210 * definition in 2.2.2.52. Orphaned process groups are not to be affected
211 * by terminal-generated stop signals. Newly orphaned process groups are
212 * to receive a SIGHUP and a SIGCONT.
214 * "I ask you, have you ever known what it is to be an orphan?"
216 static int will_become_orphaned_pgrp(struct pid
*pgrp
, struct task_struct
*ignored_task
)
218 struct task_struct
*p
;
221 do_each_pid_task(pgrp
, PIDTYPE_PGID
, p
) {
222 if (p
== ignored_task
224 || is_init(p
->real_parent
))
226 if (task_pgrp(p
->real_parent
) != pgrp
&&
227 task_session(p
->real_parent
) == task_session(p
)) {
231 } while_each_pid_task(pgrp
, PIDTYPE_PGID
, p
);
232 return ret
; /* (sighing) "Often!" */
235 int is_current_pgrp_orphaned(void)
239 read_lock(&tasklist_lock
);
240 retval
= will_become_orphaned_pgrp(task_pgrp(current
), NULL
);
241 read_unlock(&tasklist_lock
);
246 static int has_stopped_jobs(struct pid
*pgrp
)
249 struct task_struct
*p
;
251 do_each_pid_task(pgrp
, PIDTYPE_PGID
, p
) {
252 if (p
->state
!= TASK_STOPPED
)
256 } while_each_pid_task(pgrp
, PIDTYPE_PGID
, p
);
261 * reparent_to_kthreadd - Reparent the calling kernel thread to kthreadd
263 * If a kernel thread is launched as a result of a system call, or if
264 * it ever exits, it should generally reparent itself to kthreadd so it
265 * isn't in the way of other processes and is correctly cleaned up on exit.
267 * The various task state such as scheduling policy and priority may have
268 * been inherited from a user process, so we reset them to sane values here.
270 * NOTE that reparent_to_kthreadd() gives the caller full capabilities.
272 static void reparent_to_kthreadd(void)
274 write_lock_irq(&tasklist_lock
);
276 ptrace_unlink(current
);
277 /* Reparent to init */
278 remove_parent(current
);
279 current
->real_parent
= current
->parent
= kthreadd_task
;
282 /* Set the exit signal to SIGCHLD so we signal init on exit */
283 current
->exit_signal
= SIGCHLD
;
285 if (task_nice(current
) < 0)
286 set_user_nice(current
, 0);
290 security_task_reparent_to_init(current
);
291 memcpy(current
->signal
->rlim
, init_task
.signal
->rlim
,
292 sizeof(current
->signal
->rlim
));
293 atomic_inc(&(INIT_USER
->__count
));
294 write_unlock_irq(&tasklist_lock
);
295 switch_uid(INIT_USER
);
298 void __set_special_pids(pid_t session
, pid_t pgrp
)
300 struct task_struct
*curr
= current
->group_leader
;
302 if (process_session(curr
) != session
) {
303 detach_pid(curr
, PIDTYPE_SID
);
304 set_signal_session(curr
->signal
, session
);
305 attach_pid(curr
, PIDTYPE_SID
, find_pid(session
));
307 if (process_group(curr
) != pgrp
) {
308 detach_pid(curr
, PIDTYPE_PGID
);
309 curr
->signal
->pgrp
= pgrp
;
310 attach_pid(curr
, PIDTYPE_PGID
, find_pid(pgrp
));
314 static void set_special_pids(pid_t session
, pid_t pgrp
)
316 write_lock_irq(&tasklist_lock
);
317 __set_special_pids(session
, pgrp
);
318 write_unlock_irq(&tasklist_lock
);
322 * Let kernel threads use this to say that they
323 * allow a certain signal (since daemonize() will
324 * have disabled all of them by default).
326 int allow_signal(int sig
)
328 if (!valid_signal(sig
) || sig
< 1)
331 spin_lock_irq(¤t
->sighand
->siglock
);
332 sigdelset(¤t
->blocked
, sig
);
334 /* Kernel threads handle their own signals.
335 Let the signal code know it'll be handled, so
336 that they don't get converted to SIGKILL or
337 just silently dropped */
338 current
->sighand
->action
[(sig
)-1].sa
.sa_handler
= (void __user
*)2;
341 spin_unlock_irq(¤t
->sighand
->siglock
);
345 EXPORT_SYMBOL(allow_signal
);
347 int disallow_signal(int sig
)
349 if (!valid_signal(sig
) || sig
< 1)
352 spin_lock_irq(¤t
->sighand
->siglock
);
353 current
->sighand
->action
[(sig
)-1].sa
.sa_handler
= SIG_IGN
;
355 spin_unlock_irq(¤t
->sighand
->siglock
);
359 EXPORT_SYMBOL(disallow_signal
);
362 * Put all the gunge required to become a kernel thread without
363 * attached user resources in one place where it belongs.
366 void daemonize(const char *name
, ...)
369 struct fs_struct
*fs
;
372 va_start(args
, name
);
373 vsnprintf(current
->comm
, sizeof(current
->comm
), name
, args
);
377 * If we were started as result of loading a module, close all of the
378 * user space pages. We don't need them, and if we didn't close them
379 * they would be locked into memory.
383 * We don't want to have TIF_FREEZE set if the system-wide hibernation
384 * or suspend transition begins right now.
386 current
->flags
|= PF_NOFREEZE
;
388 set_special_pids(1, 1);
389 proc_clear_tty(current
);
391 /* Block and flush all signals */
392 sigfillset(&blocked
);
393 sigprocmask(SIG_BLOCK
, &blocked
, NULL
);
394 flush_signals(current
);
396 /* Become as one with the init task */
398 exit_fs(current
); /* current->fs->count--; */
401 atomic_inc(&fs
->count
);
403 exit_task_namespaces(current
);
404 current
->nsproxy
= init_task
.nsproxy
;
405 get_task_namespaces(current
);
408 current
->files
= init_task
.files
;
409 atomic_inc(¤t
->files
->count
);
411 reparent_to_kthreadd();
414 EXPORT_SYMBOL(daemonize
);
416 static void close_files(struct files_struct
* files
)
424 * It is safe to dereference the fd table without RCU or
425 * ->file_lock because this is the last reference to the
428 fdt
= files_fdtable(files
);
432 if (i
>= fdt
->max_fds
)
434 set
= fdt
->open_fds
->fds_bits
[j
++];
437 struct file
* file
= xchg(&fdt
->fd
[i
], NULL
);
439 filp_close(file
, files
);
449 struct files_struct
*get_files_struct(struct task_struct
*task
)
451 struct files_struct
*files
;
456 atomic_inc(&files
->count
);
462 void fastcall
put_files_struct(struct files_struct
*files
)
466 if (atomic_dec_and_test(&files
->count
)) {
469 * Free the fd and fdset arrays if we expanded them.
470 * If the fdtable was embedded, pass files for freeing
471 * at the end of the RCU grace period. Otherwise,
472 * you can free files immediately.
474 fdt
= files_fdtable(files
);
475 if (fdt
!= &files
->fdtab
)
476 kmem_cache_free(files_cachep
, files
);
481 EXPORT_SYMBOL(put_files_struct
);
483 void reset_files_struct(struct task_struct
*tsk
, struct files_struct
*files
)
485 struct files_struct
*old
;
491 put_files_struct(old
);
493 EXPORT_SYMBOL(reset_files_struct
);
495 static inline void __exit_files(struct task_struct
*tsk
)
497 struct files_struct
* files
= tsk
->files
;
503 put_files_struct(files
);
507 void exit_files(struct task_struct
*tsk
)
512 static inline void __put_fs_struct(struct fs_struct
*fs
)
514 /* No need to hold fs->lock if we are killing it */
515 if (atomic_dec_and_test(&fs
->count
)) {
522 mntput(fs
->altrootmnt
);
524 kmem_cache_free(fs_cachep
, fs
);
528 void put_fs_struct(struct fs_struct
*fs
)
533 static inline void __exit_fs(struct task_struct
*tsk
)
535 struct fs_struct
* fs
= tsk
->fs
;
545 void exit_fs(struct task_struct
*tsk
)
550 EXPORT_SYMBOL_GPL(exit_fs
);
553 * Turn us into a lazy TLB process if we
556 static void exit_mm(struct task_struct
* tsk
)
558 struct mm_struct
*mm
= tsk
->mm
;
564 * Serialize with any possible pending coredump.
565 * We must hold mmap_sem around checking core_waiters
566 * and clearing tsk->mm. The core-inducing thread
567 * will increment core_waiters for each thread in the
568 * group with ->mm != NULL.
570 down_read(&mm
->mmap_sem
);
571 if (mm
->core_waiters
) {
572 up_read(&mm
->mmap_sem
);
573 down_write(&mm
->mmap_sem
);
574 if (!--mm
->core_waiters
)
575 complete(mm
->core_startup_done
);
576 up_write(&mm
->mmap_sem
);
578 wait_for_completion(&mm
->core_done
);
579 down_read(&mm
->mmap_sem
);
581 atomic_inc(&mm
->mm_count
);
582 BUG_ON(mm
!= tsk
->active_mm
);
583 /* more a memory barrier than a real lock */
586 up_read(&mm
->mmap_sem
);
587 enter_lazy_tlb(mm
, current
);
588 /* We don't want this task to be frozen prematurely */
589 clear_freeze_flag(tsk
);
595 reparent_thread(struct task_struct
*p
, struct task_struct
*father
, int traced
)
597 if (p
->pdeath_signal
)
598 /* We already hold the tasklist_lock here. */
599 group_send_sig_info(p
->pdeath_signal
, SEND_SIG_NOINFO
, p
);
601 /* Move the child from its dying parent to the new one. */
602 if (unlikely(traced
)) {
603 /* Preserve ptrace links if someone else is tracing this child. */
604 list_del_init(&p
->ptrace_list
);
605 if (p
->parent
!= p
->real_parent
)
606 list_add(&p
->ptrace_list
, &p
->real_parent
->ptrace_children
);
608 /* If this child is being traced, then we're the one tracing it
609 * anyway, so let go of it.
613 p
->parent
= p
->real_parent
;
616 if (p
->state
== TASK_TRACED
) {
618 * If it was at a trace stop, turn it into
619 * a normal stop since it's no longer being
626 /* If this is a threaded reparent there is no need to
627 * notify anyone anything has happened.
629 if (p
->real_parent
->group_leader
== father
->group_leader
)
632 /* We don't want people slaying init. */
633 if (p
->exit_signal
!= -1)
634 p
->exit_signal
= SIGCHLD
;
636 /* If we'd notified the old parent about this child's death,
637 * also notify the new parent.
639 if (!traced
&& p
->exit_state
== EXIT_ZOMBIE
&&
640 p
->exit_signal
!= -1 && thread_group_empty(p
))
641 do_notify_parent(p
, p
->exit_signal
);
644 * process group orphan check
645 * Case ii: Our child is in a different pgrp
646 * than we are, and it was the only connection
647 * outside, so the child pgrp is now orphaned.
649 if ((task_pgrp(p
) != task_pgrp(father
)) &&
650 (task_session(p
) == task_session(father
))) {
651 struct pid
*pgrp
= task_pgrp(p
);
653 if (will_become_orphaned_pgrp(pgrp
, NULL
) &&
654 has_stopped_jobs(pgrp
)) {
655 __kill_pgrp_info(SIGHUP
, SEND_SIG_PRIV
, pgrp
);
656 __kill_pgrp_info(SIGCONT
, SEND_SIG_PRIV
, pgrp
);
662 * When we die, we re-parent all our children.
663 * Try to give them to another thread in our thread
664 * group, and if no such member exists, give it to
665 * the child reaper process (ie "init") in our pid
669 forget_original_parent(struct task_struct
*father
, struct list_head
*to_release
)
671 struct task_struct
*p
, *reaper
= father
;
672 struct list_head
*_p
, *_n
;
675 reaper
= next_thread(reaper
);
676 if (reaper
== father
) {
677 reaper
= child_reaper(father
);
680 } while (reaper
->exit_state
);
683 * There are only two places where our children can be:
685 * - in our child list
686 * - in our ptraced child list
688 * Search them and reparent children.
690 list_for_each_safe(_p
, _n
, &father
->children
) {
692 p
= list_entry(_p
, struct task_struct
, sibling
);
696 /* if father isn't the real parent, then ptrace must be enabled */
697 BUG_ON(father
!= p
->real_parent
&& !ptrace
);
699 if (father
== p
->real_parent
) {
700 /* reparent with a reaper, real father it's us */
701 p
->real_parent
= reaper
;
702 reparent_thread(p
, father
, 0);
704 /* reparent ptraced task to its real parent */
706 if (p
->exit_state
== EXIT_ZOMBIE
&& p
->exit_signal
!= -1 &&
707 thread_group_empty(p
))
708 do_notify_parent(p
, p
->exit_signal
);
712 * if the ptraced child is a zombie with exit_signal == -1
713 * we must collect it before we exit, or it will remain
714 * zombie forever since we prevented it from self-reap itself
715 * while it was being traced by us, to be able to see it in wait4.
717 if (unlikely(ptrace
&& p
->exit_state
== EXIT_ZOMBIE
&& p
->exit_signal
== -1))
718 list_add(&p
->ptrace_list
, to_release
);
720 list_for_each_safe(_p
, _n
, &father
->ptrace_children
) {
721 p
= list_entry(_p
, struct task_struct
, ptrace_list
);
722 p
->real_parent
= reaper
;
723 reparent_thread(p
, father
, 1);
728 * Send signals to all our closest relatives so that they know
729 * to properly mourn us..
731 static void exit_notify(struct task_struct
*tsk
)
734 struct task_struct
*t
;
735 struct list_head ptrace_dead
, *_p
, *_n
;
738 if (signal_pending(tsk
) && !(tsk
->signal
->flags
& SIGNAL_GROUP_EXIT
)
739 && !thread_group_empty(tsk
)) {
741 * This occurs when there was a race between our exit
742 * syscall and a group signal choosing us as the one to
743 * wake up. It could be that we are the only thread
744 * alerted to check for pending signals, but another thread
745 * should be woken now to take the signal since we will not.
746 * Now we'll wake all the threads in the group just to make
747 * sure someone gets all the pending signals.
749 spin_lock_irq(&tsk
->sighand
->siglock
);
750 for (t
= next_thread(tsk
); t
!= tsk
; t
= next_thread(t
))
751 if (!signal_pending(t
) && !(t
->flags
& PF_EXITING
))
752 recalc_sigpending_and_wake(t
);
753 spin_unlock_irq(&tsk
->sighand
->siglock
);
756 write_lock_irq(&tasklist_lock
);
759 * This does two things:
761 * A. Make init inherit all the child processes
762 * B. Check to see if any process groups have become orphaned
763 * as a result of our exiting, and if they have any stopped
764 * jobs, send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
767 INIT_LIST_HEAD(&ptrace_dead
);
768 forget_original_parent(tsk
, &ptrace_dead
);
769 BUG_ON(!list_empty(&tsk
->children
));
770 BUG_ON(!list_empty(&tsk
->ptrace_children
));
773 * Check to see if any process groups have become orphaned
774 * as a result of our exiting, and if they have any stopped
775 * jobs, send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
777 * Case i: Our father is in a different pgrp than we are
778 * and we were the only connection outside, so our pgrp
779 * is about to become orphaned.
781 t
= tsk
->real_parent
;
783 pgrp
= task_pgrp(tsk
);
784 if ((task_pgrp(t
) != pgrp
) &&
785 (task_session(t
) == task_session(tsk
)) &&
786 will_become_orphaned_pgrp(pgrp
, tsk
) &&
787 has_stopped_jobs(pgrp
)) {
788 __kill_pgrp_info(SIGHUP
, SEND_SIG_PRIV
, pgrp
);
789 __kill_pgrp_info(SIGCONT
, SEND_SIG_PRIV
, pgrp
);
792 /* Let father know we died
794 * Thread signals are configurable, but you aren't going to use
795 * that to send signals to arbitary processes.
796 * That stops right now.
798 * If the parent exec id doesn't match the exec id we saved
799 * when we started then we know the parent has changed security
802 * If our self_exec id doesn't match our parent_exec_id then
803 * we have changed execution domain as these two values started
804 * the same after a fork.
806 if (tsk
->exit_signal
!= SIGCHLD
&& tsk
->exit_signal
!= -1 &&
807 ( tsk
->parent_exec_id
!= t
->self_exec_id
||
808 tsk
->self_exec_id
!= tsk
->parent_exec_id
)
809 && !capable(CAP_KILL
))
810 tsk
->exit_signal
= SIGCHLD
;
813 /* If something other than our normal parent is ptracing us, then
814 * send it a SIGCHLD instead of honoring exit_signal. exit_signal
815 * only has special meaning to our real parent.
817 if (tsk
->exit_signal
!= -1 && thread_group_empty(tsk
)) {
818 int signal
= tsk
->parent
== tsk
->real_parent
? tsk
->exit_signal
: SIGCHLD
;
819 do_notify_parent(tsk
, signal
);
820 } else if (tsk
->ptrace
) {
821 do_notify_parent(tsk
, SIGCHLD
);
825 if (tsk
->exit_signal
== -1 && likely(!tsk
->ptrace
))
827 tsk
->exit_state
= state
;
829 if (thread_group_leader(tsk
) &&
830 tsk
->signal
->notify_count
< 0 &&
831 tsk
->signal
->group_exit_task
)
832 wake_up_process(tsk
->signal
->group_exit_task
);
834 write_unlock_irq(&tasklist_lock
);
836 list_for_each_safe(_p
, _n
, &ptrace_dead
) {
838 t
= list_entry(_p
, struct task_struct
, ptrace_list
);
842 /* If the process is dead, release it - nobody will wait for it */
843 if (state
== EXIT_DEAD
)
847 #ifdef CONFIG_DEBUG_STACK_USAGE
848 static void check_stack_usage(void)
850 static DEFINE_SPINLOCK(low_water_lock
);
851 static int lowest_to_date
= THREAD_SIZE
;
852 unsigned long *n
= end_of_stack(current
);
857 free
= (unsigned long)n
- (unsigned long)end_of_stack(current
);
859 if (free
>= lowest_to_date
)
862 spin_lock(&low_water_lock
);
863 if (free
< lowest_to_date
) {
864 printk(KERN_WARNING
"%s used greatest stack depth: %lu bytes "
866 current
->comm
, free
);
867 lowest_to_date
= free
;
869 spin_unlock(&low_water_lock
);
872 static inline void check_stack_usage(void) {}
875 static inline void exit_child_reaper(struct task_struct
*tsk
)
877 if (likely(tsk
->group_leader
!= child_reaper(tsk
)))
880 panic("Attempted to kill init!");
883 fastcall NORET_TYPE
void do_exit(long code
)
885 struct task_struct
*tsk
= current
;
888 profile_task_exit(tsk
);
890 WARN_ON(atomic_read(&tsk
->fs_excl
));
892 if (unlikely(in_interrupt()))
893 panic("Aiee, killing interrupt handler!");
894 if (unlikely(!tsk
->pid
))
895 panic("Attempted to kill the idle task!");
897 if (unlikely(current
->ptrace
& PT_TRACE_EXIT
)) {
898 current
->ptrace_message
= code
;
899 ptrace_notify((PTRACE_EVENT_EXIT
<< 8) | SIGTRAP
);
903 * We're taking recursive faults here in do_exit. Safest is to just
904 * leave this task alone and wait for reboot.
906 if (unlikely(tsk
->flags
& PF_EXITING
)) {
908 "Fixing recursive fault but reboot is needed!\n");
910 * We can do this unlocked here. The futex code uses
911 * this flag just to verify whether the pi state
912 * cleanup has been done or not. In the worst case it
913 * loops once more. We pretend that the cleanup was
914 * done as there is no way to return. Either the
915 * OWNER_DIED bit is set by now or we push the blocked
916 * task into the wait for ever nirwana as well.
918 tsk
->flags
|= PF_EXITPIDONE
;
921 set_current_state(TASK_UNINTERRUPTIBLE
);
925 tsk
->flags
|= PF_EXITING
;
927 * tsk->flags are checked in the futex code to protect against
928 * an exiting task cleaning up the robust pi futexes.
931 spin_unlock_wait(&tsk
->pi_lock
);
933 if (unlikely(in_atomic()))
934 printk(KERN_INFO
"note: %s[%d] exited with preempt_count %d\n",
935 current
->comm
, current
->pid
,
938 acct_update_integrals(tsk
);
940 update_hiwater_rss(tsk
->mm
);
941 update_hiwater_vm(tsk
->mm
);
943 group_dead
= atomic_dec_and_test(&tsk
->signal
->live
);
945 exit_child_reaper(tsk
);
946 hrtimer_cancel(&tsk
->signal
->real_timer
);
947 exit_itimers(tsk
->signal
);
949 acct_collect(code
, group_dead
);
951 if (unlikely(tsk
->robust_list
))
952 exit_robust_list(tsk
);
954 if (unlikely(tsk
->compat_robust_list
))
955 compat_exit_robust_list(tsk
);
960 if (unlikely(tsk
->audit_context
))
963 tsk
->exit_code
= code
;
964 taskstats_exit(tsk
, group_dead
);
978 if (group_dead
&& tsk
->signal
->leader
)
979 disassociate_ctty(1);
981 module_put(task_thread_info(tsk
)->exec_domain
->module
);
983 module_put(tsk
->binfmt
->module
);
985 proc_exit_connector(tsk
);
986 exit_task_namespaces(tsk
);
989 mpol_free(tsk
->mempolicy
);
990 tsk
->mempolicy
= NULL
;
994 * This must happen late, after the PID is not
997 if (unlikely(!list_empty(&tsk
->pi_state_list
)))
998 exit_pi_state_list(tsk
);
999 if (unlikely(current
->pi_state_cache
))
1000 kfree(current
->pi_state_cache
);
1003 * Make sure we are holding no locks:
1005 debug_check_no_locks_held(tsk
);
1007 * We can do this unlocked here. The futex code uses this flag
1008 * just to verify whether the pi state cleanup has been done
1009 * or not. In the worst case it loops once more.
1011 tsk
->flags
|= PF_EXITPIDONE
;
1013 if (tsk
->io_context
)
1016 if (tsk
->splice_pipe
)
1017 __free_pipe_info(tsk
->splice_pipe
);
1020 /* causes final put_task_struct in finish_task_switch(). */
1021 tsk
->state
= TASK_DEAD
;
1025 /* Avoid "noreturn function does return". */
1027 cpu_relax(); /* For when BUG is null */
1030 EXPORT_SYMBOL_GPL(do_exit
);
1032 NORET_TYPE
void complete_and_exit(struct completion
*comp
, long code
)
1040 EXPORT_SYMBOL(complete_and_exit
);
1042 asmlinkage
long sys_exit(int error_code
)
1044 do_exit((error_code
&0xff)<<8);
1048 * Take down every thread in the group. This is called by fatal signals
1049 * as well as by sys_exit_group (below).
1052 do_group_exit(int exit_code
)
1054 BUG_ON(exit_code
& 0x80); /* core dumps don't get here */
1056 if (current
->signal
->flags
& SIGNAL_GROUP_EXIT
)
1057 exit_code
= current
->signal
->group_exit_code
;
1058 else if (!thread_group_empty(current
)) {
1059 struct signal_struct
*const sig
= current
->signal
;
1060 struct sighand_struct
*const sighand
= current
->sighand
;
1061 spin_lock_irq(&sighand
->siglock
);
1062 if (sig
->flags
& SIGNAL_GROUP_EXIT
)
1063 /* Another thread got here before we took the lock. */
1064 exit_code
= sig
->group_exit_code
;
1066 sig
->group_exit_code
= exit_code
;
1067 zap_other_threads(current
);
1069 spin_unlock_irq(&sighand
->siglock
);
1077 * this kills every thread in the thread group. Note that any externally
1078 * wait4()-ing process will get the correct exit code - even if this
1079 * thread is not the thread group leader.
1081 asmlinkage
void sys_exit_group(int error_code
)
1083 do_group_exit((error_code
& 0xff) << 8);
1086 static int eligible_child(pid_t pid
, int options
, struct task_struct
*p
)
1094 if (process_group(p
) != process_group(current
))
1096 } else if (pid
!= -1) {
1097 if (process_group(p
) != -pid
)
1102 * Do not consider detached threads that are
1105 if (p
->exit_signal
== -1 && !p
->ptrace
)
1108 /* Wait for all children (clone and not) if __WALL is set;
1109 * otherwise, wait for clone children *only* if __WCLONE is
1110 * set; otherwise, wait for non-clone children *only*. (Note:
1111 * A "clone" child here is one that reports to its parent
1112 * using a signal other than SIGCHLD.) */
1113 if (((p
->exit_signal
!= SIGCHLD
) ^ ((options
& __WCLONE
) != 0))
1114 && !(options
& __WALL
))
1117 * Do not consider thread group leaders that are
1118 * in a non-empty thread group:
1120 if (delay_group_leader(p
))
1123 err
= security_task_wait(p
);
1130 static int wait_noreap_copyout(struct task_struct
*p
, pid_t pid
, uid_t uid
,
1131 int why
, int status
,
1132 struct siginfo __user
*infop
,
1133 struct rusage __user
*rusagep
)
1135 int retval
= rusagep
? getrusage(p
, RUSAGE_BOTH
, rusagep
) : 0;
1139 retval
= put_user(SIGCHLD
, &infop
->si_signo
);
1141 retval
= put_user(0, &infop
->si_errno
);
1143 retval
= put_user((short)why
, &infop
->si_code
);
1145 retval
= put_user(pid
, &infop
->si_pid
);
1147 retval
= put_user(uid
, &infop
->si_uid
);
1149 retval
= put_user(status
, &infop
->si_status
);
1156 * Handle sys_wait4 work for one task in state EXIT_ZOMBIE. We hold
1157 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold
1158 * the lock and this task is uninteresting. If we return nonzero, we have
1159 * released the lock and the system call should return.
1161 static int wait_task_zombie(struct task_struct
*p
, int noreap
,
1162 struct siginfo __user
*infop
,
1163 int __user
*stat_addr
, struct rusage __user
*ru
)
1165 unsigned long state
;
1166 int retval
, status
, traced
;
1168 if (unlikely(noreap
)) {
1171 int exit_code
= p
->exit_code
;
1174 if (unlikely(p
->exit_state
!= EXIT_ZOMBIE
))
1176 if (unlikely(p
->exit_signal
== -1 && p
->ptrace
== 0))
1179 read_unlock(&tasklist_lock
);
1180 if ((exit_code
& 0x7f) == 0) {
1182 status
= exit_code
>> 8;
1184 why
= (exit_code
& 0x80) ? CLD_DUMPED
: CLD_KILLED
;
1185 status
= exit_code
& 0x7f;
1187 return wait_noreap_copyout(p
, pid
, uid
, why
,
1192 * Try to move the task's state to DEAD
1193 * only one thread is allowed to do this:
1195 state
= xchg(&p
->exit_state
, EXIT_DEAD
);
1196 if (state
!= EXIT_ZOMBIE
) {
1197 BUG_ON(state
!= EXIT_DEAD
);
1201 /* traced means p->ptrace, but not vice versa */
1202 traced
= (p
->real_parent
!= p
->parent
);
1204 if (likely(!traced
)) {
1205 struct signal_struct
*psig
;
1206 struct signal_struct
*sig
;
1209 * The resource counters for the group leader are in its
1210 * own task_struct. Those for dead threads in the group
1211 * are in its signal_struct, as are those for the child
1212 * processes it has previously reaped. All these
1213 * accumulate in the parent's signal_struct c* fields.
1215 * We don't bother to take a lock here to protect these
1216 * p->signal fields, because they are only touched by
1217 * __exit_signal, which runs with tasklist_lock
1218 * write-locked anyway, and so is excluded here. We do
1219 * need to protect the access to p->parent->signal fields,
1220 * as other threads in the parent group can be right
1221 * here reaping other children at the same time.
1223 spin_lock_irq(&p
->parent
->sighand
->siglock
);
1224 psig
= p
->parent
->signal
;
1227 cputime_add(psig
->cutime
,
1228 cputime_add(p
->utime
,
1229 cputime_add(sig
->utime
,
1232 cputime_add(psig
->cstime
,
1233 cputime_add(p
->stime
,
1234 cputime_add(sig
->stime
,
1237 cputime_add(psig
->cgtime
,
1238 cputime_add(p
->gtime
,
1239 cputime_add(sig
->gtime
,
1242 p
->min_flt
+ sig
->min_flt
+ sig
->cmin_flt
;
1244 p
->maj_flt
+ sig
->maj_flt
+ sig
->cmaj_flt
;
1246 p
->nvcsw
+ sig
->nvcsw
+ sig
->cnvcsw
;
1248 p
->nivcsw
+ sig
->nivcsw
+ sig
->cnivcsw
;
1250 task_io_get_inblock(p
) +
1251 sig
->inblock
+ sig
->cinblock
;
1253 task_io_get_oublock(p
) +
1254 sig
->oublock
+ sig
->coublock
;
1255 spin_unlock_irq(&p
->parent
->sighand
->siglock
);
1259 * Now we are sure this task is interesting, and no other
1260 * thread can reap it because we set its state to EXIT_DEAD.
1262 read_unlock(&tasklist_lock
);
1264 retval
= ru
? getrusage(p
, RUSAGE_BOTH
, ru
) : 0;
1265 status
= (p
->signal
->flags
& SIGNAL_GROUP_EXIT
)
1266 ? p
->signal
->group_exit_code
: p
->exit_code
;
1267 if (!retval
&& stat_addr
)
1268 retval
= put_user(status
, stat_addr
);
1269 if (!retval
&& infop
)
1270 retval
= put_user(SIGCHLD
, &infop
->si_signo
);
1271 if (!retval
&& infop
)
1272 retval
= put_user(0, &infop
->si_errno
);
1273 if (!retval
&& infop
) {
1276 if ((status
& 0x7f) == 0) {
1280 why
= (status
& 0x80) ? CLD_DUMPED
: CLD_KILLED
;
1283 retval
= put_user((short)why
, &infop
->si_code
);
1285 retval
= put_user(status
, &infop
->si_status
);
1287 if (!retval
&& infop
)
1288 retval
= put_user(p
->pid
, &infop
->si_pid
);
1289 if (!retval
&& infop
)
1290 retval
= put_user(p
->uid
, &infop
->si_uid
);
1295 write_lock_irq(&tasklist_lock
);
1296 /* We dropped tasklist, ptracer could die and untrace */
1299 * If this is not a detached task, notify the parent.
1300 * If it's still not detached after that, don't release
1303 if (p
->exit_signal
!= -1) {
1304 do_notify_parent(p
, p
->exit_signal
);
1305 if (p
->exit_signal
!= -1) {
1306 p
->exit_state
= EXIT_ZOMBIE
;
1310 write_unlock_irq(&tasklist_lock
);
1319 * Handle sys_wait4 work for one task in state TASK_STOPPED. We hold
1320 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold
1321 * the lock and this task is uninteresting. If we return nonzero, we have
1322 * released the lock and the system call should return.
1324 static int wait_task_stopped(struct task_struct
*p
, int delayed_group_leader
,
1325 int noreap
, struct siginfo __user
*infop
,
1326 int __user
*stat_addr
, struct rusage __user
*ru
)
1328 int retval
, exit_code
;
1332 if (delayed_group_leader
&& !(p
->ptrace
& PT_PTRACED
) &&
1333 p
->signal
->group_stop_count
> 0)
1335 * A group stop is in progress and this is the group leader.
1336 * We won't report until all threads have stopped.
1341 * Now we are pretty sure this task is interesting.
1342 * Make sure it doesn't get reaped out from under us while we
1343 * give up the lock and then examine it below. We don't want to
1344 * keep holding onto the tasklist_lock while we call getrusage and
1345 * possibly take page faults for user memory.
1348 read_unlock(&tasklist_lock
);
1350 if (unlikely(noreap
)) {
1353 int why
= (p
->ptrace
& PT_PTRACED
) ? CLD_TRAPPED
: CLD_STOPPED
;
1355 exit_code
= p
->exit_code
;
1356 if (unlikely(!exit_code
) ||
1357 unlikely(p
->state
& TASK_TRACED
))
1359 return wait_noreap_copyout(p
, pid
, uid
,
1360 why
, (exit_code
<< 8) | 0x7f,
1364 write_lock_irq(&tasklist_lock
);
1367 * This uses xchg to be atomic with the thread resuming and setting
1368 * it. It must also be done with the write lock held to prevent a
1369 * race with the EXIT_ZOMBIE case.
1371 exit_code
= xchg(&p
->exit_code
, 0);
1372 if (unlikely(p
->exit_state
)) {
1374 * The task resumed and then died. Let the next iteration
1375 * catch it in EXIT_ZOMBIE. Note that exit_code might
1376 * already be zero here if it resumed and did _exit(0).
1377 * The task itself is dead and won't touch exit_code again;
1378 * other processors in this function are locked out.
1380 p
->exit_code
= exit_code
;
1383 if (unlikely(exit_code
== 0)) {
1385 * Another thread in this function got to it first, or it
1386 * resumed, or it resumed and then died.
1388 write_unlock_irq(&tasklist_lock
);
1392 * We are returning to the wait loop without having successfully
1393 * removed the process and having released the lock. We cannot
1394 * continue, since the "p" task pointer is potentially stale.
1396 * Return -EAGAIN, and do_wait() will restart the loop from the
1397 * beginning. Do _not_ re-acquire the lock.
1402 /* move to end of parent's list to avoid starvation */
1406 write_unlock_irq(&tasklist_lock
);
1408 retval
= ru
? getrusage(p
, RUSAGE_BOTH
, ru
) : 0;
1409 if (!retval
&& stat_addr
)
1410 retval
= put_user((exit_code
<< 8) | 0x7f, stat_addr
);
1411 if (!retval
&& infop
)
1412 retval
= put_user(SIGCHLD
, &infop
->si_signo
);
1413 if (!retval
&& infop
)
1414 retval
= put_user(0, &infop
->si_errno
);
1415 if (!retval
&& infop
)
1416 retval
= put_user((short)((p
->ptrace
& PT_PTRACED
)
1417 ? CLD_TRAPPED
: CLD_STOPPED
),
1419 if (!retval
&& infop
)
1420 retval
= put_user(exit_code
, &infop
->si_status
);
1421 if (!retval
&& infop
)
1422 retval
= put_user(p
->pid
, &infop
->si_pid
);
1423 if (!retval
&& infop
)
1424 retval
= put_user(p
->uid
, &infop
->si_uid
);
1434 * Handle do_wait work for one task in a live, non-stopped state.
1435 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold
1436 * the lock and this task is uninteresting. If we return nonzero, we have
1437 * released the lock and the system call should return.
1439 static int wait_task_continued(struct task_struct
*p
, int noreap
,
1440 struct siginfo __user
*infop
,
1441 int __user
*stat_addr
, struct rusage __user
*ru
)
1447 if (!(p
->signal
->flags
& SIGNAL_STOP_CONTINUED
))
1450 spin_lock_irq(&p
->sighand
->siglock
);
1451 /* Re-check with the lock held. */
1452 if (!(p
->signal
->flags
& SIGNAL_STOP_CONTINUED
)) {
1453 spin_unlock_irq(&p
->sighand
->siglock
);
1457 p
->signal
->flags
&= ~SIGNAL_STOP_CONTINUED
;
1458 spin_unlock_irq(&p
->sighand
->siglock
);
1463 read_unlock(&tasklist_lock
);
1466 retval
= ru
? getrusage(p
, RUSAGE_BOTH
, ru
) : 0;
1468 if (!retval
&& stat_addr
)
1469 retval
= put_user(0xffff, stat_addr
);
1473 retval
= wait_noreap_copyout(p
, pid
, uid
,
1474 CLD_CONTINUED
, SIGCONT
,
1476 BUG_ON(retval
== 0);
1483 static inline int my_ptrace_child(struct task_struct
*p
)
1485 if (!(p
->ptrace
& PT_PTRACED
))
1487 if (!(p
->ptrace
& PT_ATTACHED
))
1490 * This child was PTRACE_ATTACH'd. We should be seeing it only if
1491 * we are the attacher. If we are the real parent, this is a race
1492 * inside ptrace_attach. It is waiting for the tasklist_lock,
1493 * which we have to switch the parent links, but has already set
1494 * the flags in p->ptrace.
1496 return (p
->parent
!= p
->real_parent
);
1499 static long do_wait(pid_t pid
, int options
, struct siginfo __user
*infop
,
1500 int __user
*stat_addr
, struct rusage __user
*ru
)
1502 DECLARE_WAITQUEUE(wait
, current
);
1503 struct task_struct
*tsk
;
1505 int allowed
, denied
;
1507 add_wait_queue(¤t
->signal
->wait_chldexit
,&wait
);
1510 * We will set this flag if we see any child that might later
1511 * match our criteria, even if we are not able to reap it yet.
1514 allowed
= denied
= 0;
1515 current
->state
= TASK_INTERRUPTIBLE
;
1516 read_lock(&tasklist_lock
);
1519 struct task_struct
*p
;
1520 struct list_head
*_p
;
1523 list_for_each(_p
,&tsk
->children
) {
1524 p
= list_entry(_p
, struct task_struct
, sibling
);
1526 ret
= eligible_child(pid
, options
, p
);
1530 if (unlikely(ret
< 0)) {
1539 * When we hit the race with PTRACE_ATTACH,
1540 * we will not report this child. But the
1541 * race means it has not yet been moved to
1542 * our ptrace_children list, so we need to
1543 * set the flag here to avoid a spurious ECHILD
1544 * when the race happens with the only child.
1547 if (!my_ptrace_child(p
))
1552 * It's stopped now, so it might later
1553 * continue, exit, or stop again.
1556 if (!(options
& WUNTRACED
) &&
1557 !my_ptrace_child(p
))
1559 retval
= wait_task_stopped(p
, ret
== 2,
1560 (options
& WNOWAIT
),
1563 if (retval
== -EAGAIN
)
1565 if (retval
!= 0) /* He released the lock. */
1570 if (p
->exit_state
== EXIT_DEAD
)
1572 // case EXIT_ZOMBIE:
1573 if (p
->exit_state
== EXIT_ZOMBIE
) {
1575 * Eligible but we cannot release
1579 goto check_continued
;
1580 if (!likely(options
& WEXITED
))
1582 retval
= wait_task_zombie(
1583 p
, (options
& WNOWAIT
),
1584 infop
, stat_addr
, ru
);
1585 /* He released the lock. */
1592 * It's running now, so it might later
1593 * exit, stop, or stop and then continue.
1596 if (!unlikely(options
& WCONTINUED
))
1598 retval
= wait_task_continued(
1599 p
, (options
& WNOWAIT
),
1600 infop
, stat_addr
, ru
);
1601 if (retval
!= 0) /* He released the lock. */
1607 list_for_each(_p
, &tsk
->ptrace_children
) {
1608 p
= list_entry(_p
, struct task_struct
,
1610 if (!eligible_child(pid
, options
, p
))
1616 if (options
& __WNOTHREAD
)
1618 tsk
= next_thread(tsk
);
1619 BUG_ON(tsk
->signal
!= current
->signal
);
1620 } while (tsk
!= current
);
1622 read_unlock(&tasklist_lock
);
1625 if (options
& WNOHANG
)
1627 retval
= -ERESTARTSYS
;
1628 if (signal_pending(current
))
1634 if (unlikely(denied
) && !allowed
)
1637 current
->state
= TASK_RUNNING
;
1638 remove_wait_queue(¤t
->signal
->wait_chldexit
,&wait
);
1644 * For a WNOHANG return, clear out all the fields
1645 * we would set so the user can easily tell the
1649 retval
= put_user(0, &infop
->si_signo
);
1651 retval
= put_user(0, &infop
->si_errno
);
1653 retval
= put_user(0, &infop
->si_code
);
1655 retval
= put_user(0, &infop
->si_pid
);
1657 retval
= put_user(0, &infop
->si_uid
);
1659 retval
= put_user(0, &infop
->si_status
);
1665 asmlinkage
long sys_waitid(int which
, pid_t pid
,
1666 struct siginfo __user
*infop
, int options
,
1667 struct rusage __user
*ru
)
1671 if (options
& ~(WNOHANG
|WNOWAIT
|WEXITED
|WSTOPPED
|WCONTINUED
))
1673 if (!(options
& (WEXITED
|WSTOPPED
|WCONTINUED
)))
1693 ret
= do_wait(pid
, options
, infop
, NULL
, ru
);
1695 /* avoid REGPARM breakage on x86: */
1696 prevent_tail_call(ret
);
1700 asmlinkage
long sys_wait4(pid_t pid
, int __user
*stat_addr
,
1701 int options
, struct rusage __user
*ru
)
1705 if (options
& ~(WNOHANG
|WUNTRACED
|WCONTINUED
|
1706 __WNOTHREAD
|__WCLONE
|__WALL
))
1708 ret
= do_wait(pid
, options
| WEXITED
, NULL
, stat_addr
, ru
);
1710 /* avoid REGPARM breakage on x86: */
1711 prevent_tail_call(ret
);
1715 #ifdef __ARCH_WANT_SYS_WAITPID
1718 * sys_waitpid() remains for compatibility. waitpid() should be
1719 * implemented by calling sys_wait4() from libc.a.
1721 asmlinkage
long sys_waitpid(pid_t pid
, int __user
*stat_addr
, int options
)
1723 return sys_wait4(pid
, stat_addr
, options
, NULL
);