2 * Linux INET6 implementation
3 * Forwarding Information Database
6 * Pedro Roque <roque@di.fc.ul.pt>
8 * This program is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU General Public License
10 * as published by the Free Software Foundation; either version
11 * 2 of the License, or (at your option) any later version.
16 * Yuji SEKIYA @USAGI: Support default route on router node;
17 * remove ip6_null_entry from the top of
19 * Ville Nuorvala: Fixed routing subtrees.
21 #include <linux/errno.h>
22 #include <linux/types.h>
23 #include <linux/net.h>
24 #include <linux/route.h>
25 #include <linux/netdevice.h>
26 #include <linux/in6.h>
27 #include <linux/init.h>
28 #include <linux/list.h>
31 #include <linux/proc_fs.h>
35 #include <net/ndisc.h>
36 #include <net/addrconf.h>
38 #include <net/ip6_fib.h>
39 #include <net/ip6_route.h>
44 #define RT6_TRACE(x...) printk(KERN_DEBUG x)
46 #define RT6_TRACE(x...) do { ; } while (0)
49 static struct kmem_cache
* fib6_node_kmem __read_mostly
;
53 #ifdef CONFIG_IPV6_SUBTREES
64 struct fib6_walker_t w
;
66 int (*func
)(struct rt6_info
*, void *arg
);
70 static DEFINE_RWLOCK(fib6_walker_lock
);
72 #ifdef CONFIG_IPV6_SUBTREES
73 #define FWS_INIT FWS_S
75 #define FWS_INIT FWS_L
78 static void fib6_prune_clones(struct net
*net
, struct fib6_node
*fn
,
80 static struct rt6_info
*fib6_find_prefix(struct net
*net
, struct fib6_node
*fn
);
81 static struct fib6_node
*fib6_repair_tree(struct net
*net
, struct fib6_node
*fn
);
82 static int fib6_walk(struct fib6_walker_t
*w
);
83 static int fib6_walk_continue(struct fib6_walker_t
*w
);
86 * A routing update causes an increase of the serial number on the
87 * affected subtree. This allows for cached routes to be asynchronously
88 * tested when modifications are made to the destination cache as a
89 * result of redirects, path MTU changes, etc.
92 static __u32 rt_sernum
;
94 static void fib6_gc_timer_cb(unsigned long arg
);
96 static struct fib6_walker_t fib6_walker_list
= {
97 .prev
= &fib6_walker_list
,
98 .next
= &fib6_walker_list
,
101 #define FOR_WALKERS(w) for ((w)=fib6_walker_list.next; (w) != &fib6_walker_list; (w)=(w)->next)
103 static inline void fib6_walker_link(struct fib6_walker_t
*w
)
105 write_lock_bh(&fib6_walker_lock
);
106 w
->next
= fib6_walker_list
.next
;
107 w
->prev
= &fib6_walker_list
;
110 write_unlock_bh(&fib6_walker_lock
);
113 static inline void fib6_walker_unlink(struct fib6_walker_t
*w
)
115 write_lock_bh(&fib6_walker_lock
);
116 w
->next
->prev
= w
->prev
;
117 w
->prev
->next
= w
->next
;
118 w
->prev
= w
->next
= w
;
119 write_unlock_bh(&fib6_walker_lock
);
121 static __inline__ u32
fib6_new_sernum(void)
130 * Auxiliary address test functions for the radix tree.
132 * These assume a 32bit processor (although it will work on
140 static __inline__ __be32
addr_bit_set(void *token
, int fn_bit
)
142 __be32
*addr
= token
;
144 return htonl(1 << ((~fn_bit
)&0x1F)) & addr
[fn_bit
>>5];
147 static __inline__
struct fib6_node
* node_alloc(void)
149 struct fib6_node
*fn
;
151 fn
= kmem_cache_zalloc(fib6_node_kmem
, GFP_ATOMIC
);
156 static __inline__
void node_free(struct fib6_node
* fn
)
158 kmem_cache_free(fib6_node_kmem
, fn
);
161 static __inline__
void rt6_release(struct rt6_info
*rt
)
163 if (atomic_dec_and_test(&rt
->rt6i_ref
))
164 dst_free(&rt
->u
.dst
);
167 #ifdef CONFIG_IPV6_MULTIPLE_TABLES
168 #define FIB_TABLE_HASHSZ 256
170 #define FIB_TABLE_HASHSZ 1
173 static void fib6_link_table(struct net
*net
, struct fib6_table
*tb
)
178 * Initialize table lock at a single place to give lockdep a key,
179 * tables aren't visible prior to being linked to the list.
181 rwlock_init(&tb
->tb6_lock
);
183 h
= tb
->tb6_id
& (FIB_TABLE_HASHSZ
- 1);
186 * No protection necessary, this is the only list mutatation
187 * operation, tables never disappear once they exist.
189 hlist_add_head_rcu(&tb
->tb6_hlist
, &net
->ipv6
.fib_table_hash
[h
]);
192 #ifdef CONFIG_IPV6_MULTIPLE_TABLES
194 static struct fib6_table
*fib6_alloc_table(struct net
*net
, u32 id
)
196 struct fib6_table
*table
;
198 table
= kzalloc(sizeof(*table
), GFP_ATOMIC
);
201 table
->tb6_root
.leaf
= net
->ipv6
.ip6_null_entry
;
202 table
->tb6_root
.fn_flags
= RTN_ROOT
| RTN_TL_ROOT
| RTN_RTINFO
;
208 struct fib6_table
*fib6_new_table(struct net
*net
, u32 id
)
210 struct fib6_table
*tb
;
214 tb
= fib6_get_table(net
, id
);
218 tb
= fib6_alloc_table(net
, id
);
220 fib6_link_table(net
, tb
);
225 struct fib6_table
*fib6_get_table(struct net
*net
, u32 id
)
227 struct fib6_table
*tb
;
228 struct hlist_head
*head
;
229 struct hlist_node
*node
;
234 h
= id
& (FIB_TABLE_HASHSZ
- 1);
236 head
= &net
->ipv6
.fib_table_hash
[h
];
237 hlist_for_each_entry_rcu(tb
, node
, head
, tb6_hlist
) {
238 if (tb
->tb6_id
== id
) {
248 static void fib6_tables_init(struct net
*net
)
250 fib6_link_table(net
, net
->ipv6
.fib6_main_tbl
);
251 fib6_link_table(net
, net
->ipv6
.fib6_local_tbl
);
255 struct fib6_table
*fib6_new_table(struct net
*net
, u32 id
)
257 return fib6_get_table(net
, id
);
260 struct fib6_table
*fib6_get_table(struct net
*net
, u32 id
)
262 return net
->ipv6
.fib6_main_tbl
;
265 struct dst_entry
*fib6_rule_lookup(struct net
*net
, struct flowi
*fl
,
266 int flags
, pol_lookup_t lookup
)
268 return (struct dst_entry
*) lookup(net
, net
->ipv6
.fib6_main_tbl
, fl
, flags
);
271 static void fib6_tables_init(struct net
*net
)
273 fib6_link_table(net
, net
->ipv6
.fib6_main_tbl
);
278 static int fib6_dump_node(struct fib6_walker_t
*w
)
283 for (rt
= w
->leaf
; rt
; rt
= rt
->u
.dst
.rt6_next
) {
284 res
= rt6_dump_route(rt
, w
->args
);
286 /* Frame is full, suspend walking */
296 static void fib6_dump_end(struct netlink_callback
*cb
)
298 struct fib6_walker_t
*w
= (void*)cb
->args
[2];
304 cb
->done
= (void*)cb
->args
[3];
308 static int fib6_dump_done(struct netlink_callback
*cb
)
311 return cb
->done
? cb
->done(cb
) : 0;
314 static int fib6_dump_table(struct fib6_table
*table
, struct sk_buff
*skb
,
315 struct netlink_callback
*cb
)
317 struct fib6_walker_t
*w
;
320 w
= (void *)cb
->args
[2];
321 w
->root
= &table
->tb6_root
;
323 if (cb
->args
[4] == 0) {
324 read_lock_bh(&table
->tb6_lock
);
326 read_unlock_bh(&table
->tb6_lock
);
330 read_lock_bh(&table
->tb6_lock
);
331 res
= fib6_walk_continue(w
);
332 read_unlock_bh(&table
->tb6_lock
);
335 fib6_walker_unlink(w
);
338 fib6_walker_unlink(w
);
345 static int inet6_dump_fib(struct sk_buff
*skb
, struct netlink_callback
*cb
)
347 struct net
*net
= sock_net(skb
->sk
);
349 unsigned int e
= 0, s_e
;
350 struct rt6_rtnl_dump_arg arg
;
351 struct fib6_walker_t
*w
;
352 struct fib6_table
*tb
;
353 struct hlist_node
*node
;
354 struct hlist_head
*head
;
360 w
= (void *)cb
->args
[2];
364 * 1. hook callback destructor.
366 cb
->args
[3] = (long)cb
->done
;
367 cb
->done
= fib6_dump_done
;
370 * 2. allocate and initialize walker.
372 w
= kzalloc(sizeof(*w
), GFP_ATOMIC
);
375 w
->func
= fib6_dump_node
;
376 cb
->args
[2] = (long)w
;
384 for (h
= s_h
; h
< FIB_TABLE_HASHSZ
; h
++, s_e
= 0) {
386 head
= &net
->ipv6
.fib_table_hash
[h
];
387 hlist_for_each_entry(tb
, node
, head
, tb6_hlist
) {
390 res
= fib6_dump_table(tb
, skb
, cb
);
401 res
= res
< 0 ? res
: skb
->len
;
410 * return the appropriate node for a routing tree "add" operation
411 * by either creating and inserting or by returning an existing
415 static struct fib6_node
* fib6_add_1(struct fib6_node
*root
, void *addr
,
416 int addrlen
, int plen
,
419 struct fib6_node
*fn
, *in
, *ln
;
420 struct fib6_node
*pn
= NULL
;
424 __u32 sernum
= fib6_new_sernum();
426 RT6_TRACE("fib6_add_1\n");
428 /* insert node in tree */
433 key
= (struct rt6key
*)((u8
*)fn
->leaf
+ offset
);
438 if (plen
< fn
->fn_bit
||
439 !ipv6_prefix_equal(&key
->addr
, addr
, fn
->fn_bit
))
446 if (plen
== fn
->fn_bit
) {
447 /* clean up an intermediate node */
448 if ((fn
->fn_flags
& RTN_RTINFO
) == 0) {
449 rt6_release(fn
->leaf
);
453 fn
->fn_sernum
= sernum
;
459 * We have more bits to go
462 /* Try to walk down on tree. */
463 fn
->fn_sernum
= sernum
;
464 dir
= addr_bit_set(addr
, fn
->fn_bit
);
466 fn
= dir
? fn
->right
: fn
->left
;
470 * We walked to the bottom of tree.
471 * Create new leaf node without children.
481 ln
->fn_sernum
= sernum
;
493 * split since we don't have a common prefix anymore or
494 * we have a less significant route.
495 * we've to insert an intermediate node on the list
496 * this new node will point to the one we need to create
502 /* find 1st bit in difference between the 2 addrs.
504 See comment in __ipv6_addr_diff: bit may be an invalid value,
505 but if it is >= plen, the value is ignored in any case.
508 bit
= __ipv6_addr_diff(addr
, &key
->addr
, addrlen
);
513 * (new leaf node)[ln] (old node)[fn]
519 if (in
== NULL
|| ln
== NULL
) {
528 * new intermediate node.
530 * be off since that an address that chooses one of
531 * the branches would not match less specific routes
532 * in the other branch
539 atomic_inc(&in
->leaf
->rt6i_ref
);
541 in
->fn_sernum
= sernum
;
543 /* update parent pointer */
554 ln
->fn_sernum
= sernum
;
556 if (addr_bit_set(addr
, bit
)) {
563 } else { /* plen <= bit */
566 * (new leaf node)[ln]
568 * (old node)[fn] NULL
580 ln
->fn_sernum
= sernum
;
587 if (addr_bit_set(&key
->addr
, plen
))
598 * Insert routing information in a node.
601 static int fib6_add_rt2node(struct fib6_node
*fn
, struct rt6_info
*rt
,
602 struct nl_info
*info
)
604 struct rt6_info
*iter
= NULL
;
605 struct rt6_info
**ins
;
609 for (iter
= fn
->leaf
; iter
; iter
=iter
->u
.dst
.rt6_next
) {
611 * Search for duplicates
614 if (iter
->rt6i_metric
== rt
->rt6i_metric
) {
616 * Same priority level
619 if (iter
->rt6i_dev
== rt
->rt6i_dev
&&
620 iter
->rt6i_idev
== rt
->rt6i_idev
&&
621 ipv6_addr_equal(&iter
->rt6i_gateway
,
622 &rt
->rt6i_gateway
)) {
623 if (!(iter
->rt6i_flags
&RTF_EXPIRES
))
625 iter
->rt6i_expires
= rt
->rt6i_expires
;
626 if (!(rt
->rt6i_flags
&RTF_EXPIRES
)) {
627 iter
->rt6i_flags
&= ~RTF_EXPIRES
;
628 iter
->rt6i_expires
= 0;
634 if (iter
->rt6i_metric
> rt
->rt6i_metric
)
637 ins
= &iter
->u
.dst
.rt6_next
;
640 /* Reset round-robin state, if necessary */
641 if (ins
== &fn
->leaf
)
648 rt
->u
.dst
.rt6_next
= iter
;
651 atomic_inc(&rt
->rt6i_ref
);
652 inet6_rt_notify(RTM_NEWROUTE
, rt
, info
);
653 info
->nl_net
->ipv6
.rt6_stats
->fib_rt_entries
++;
655 if ((fn
->fn_flags
& RTN_RTINFO
) == 0) {
656 info
->nl_net
->ipv6
.rt6_stats
->fib_route_nodes
++;
657 fn
->fn_flags
|= RTN_RTINFO
;
663 static __inline__
void fib6_start_gc(struct net
*net
, struct rt6_info
*rt
)
665 if (!timer_pending(&net
->ipv6
.ip6_fib_timer
) &&
666 (rt
->rt6i_flags
& (RTF_EXPIRES
|RTF_CACHE
)))
667 mod_timer(&net
->ipv6
.ip6_fib_timer
,
668 jiffies
+ net
->ipv6
.sysctl
.ip6_rt_gc_interval
);
671 void fib6_force_start_gc(struct net
*net
)
673 if (!timer_pending(&net
->ipv6
.ip6_fib_timer
))
674 mod_timer(&net
->ipv6
.ip6_fib_timer
,
675 jiffies
+ net
->ipv6
.sysctl
.ip6_rt_gc_interval
);
679 * Add routing information to the routing tree.
680 * <destination addr>/<source addr>
681 * with source addr info in sub-trees
684 int fib6_add(struct fib6_node
*root
, struct rt6_info
*rt
, struct nl_info
*info
)
686 struct fib6_node
*fn
, *pn
= NULL
;
689 fn
= fib6_add_1(root
, &rt
->rt6i_dst
.addr
, sizeof(struct in6_addr
),
690 rt
->rt6i_dst
.plen
, offsetof(struct rt6_info
, rt6i_dst
));
697 #ifdef CONFIG_IPV6_SUBTREES
698 if (rt
->rt6i_src
.plen
) {
699 struct fib6_node
*sn
;
701 if (fn
->subtree
== NULL
) {
702 struct fib6_node
*sfn
;
714 /* Create subtree root node */
719 sfn
->leaf
= info
->nl_net
->ipv6
.ip6_null_entry
;
720 atomic_inc(&info
->nl_net
->ipv6
.ip6_null_entry
->rt6i_ref
);
721 sfn
->fn_flags
= RTN_ROOT
;
722 sfn
->fn_sernum
= fib6_new_sernum();
724 /* Now add the first leaf node to new subtree */
726 sn
= fib6_add_1(sfn
, &rt
->rt6i_src
.addr
,
727 sizeof(struct in6_addr
), rt
->rt6i_src
.plen
,
728 offsetof(struct rt6_info
, rt6i_src
));
731 /* If it is failed, discard just allocated
732 root, and then (in st_failure) stale node
739 /* Now link new subtree to main tree */
743 sn
= fib6_add_1(fn
->subtree
, &rt
->rt6i_src
.addr
,
744 sizeof(struct in6_addr
), rt
->rt6i_src
.plen
,
745 offsetof(struct rt6_info
, rt6i_src
));
751 if (fn
->leaf
== NULL
) {
753 atomic_inc(&rt
->rt6i_ref
);
759 err
= fib6_add_rt2node(fn
, rt
, info
);
762 fib6_start_gc(info
->nl_net
, rt
);
763 if (!(rt
->rt6i_flags
&RTF_CACHE
))
764 fib6_prune_clones(info
->nl_net
, pn
, rt
);
769 #ifdef CONFIG_IPV6_SUBTREES
771 * If fib6_add_1 has cleared the old leaf pointer in the
772 * super-tree leaf node we have to find a new one for it.
774 if (pn
!= fn
&& pn
->leaf
== rt
) {
776 atomic_dec(&rt
->rt6i_ref
);
778 if (pn
!= fn
&& !pn
->leaf
&& !(pn
->fn_flags
& RTN_RTINFO
)) {
779 pn
->leaf
= fib6_find_prefix(info
->nl_net
, pn
);
782 WARN_ON(pn
->leaf
== NULL
);
783 pn
->leaf
= info
->nl_net
->ipv6
.ip6_null_entry
;
786 atomic_inc(&pn
->leaf
->rt6i_ref
);
789 dst_free(&rt
->u
.dst
);
793 #ifdef CONFIG_IPV6_SUBTREES
794 /* Subtree creation failed, probably main tree node
795 is orphan. If it is, shoot it.
798 if (fn
&& !(fn
->fn_flags
& (RTN_RTINFO
|RTN_ROOT
)))
799 fib6_repair_tree(info
->nl_net
, fn
);
800 dst_free(&rt
->u
.dst
);
806 * Routing tree lookup
811 int offset
; /* key offset on rt6_info */
812 struct in6_addr
*addr
; /* search key */
815 static struct fib6_node
* fib6_lookup_1(struct fib6_node
*root
,
816 struct lookup_args
*args
)
818 struct fib6_node
*fn
;
821 if (unlikely(args
->offset
== 0))
831 struct fib6_node
*next
;
833 dir
= addr_bit_set(args
->addr
, fn
->fn_bit
);
835 next
= dir
? fn
->right
: fn
->left
;
846 if (FIB6_SUBTREE(fn
) || fn
->fn_flags
& RTN_RTINFO
) {
849 key
= (struct rt6key
*) ((u8
*) fn
->leaf
+
852 if (ipv6_prefix_equal(&key
->addr
, args
->addr
, key
->plen
)) {
853 #ifdef CONFIG_IPV6_SUBTREES
855 fn
= fib6_lookup_1(fn
->subtree
, args
+ 1);
857 if (!fn
|| fn
->fn_flags
& RTN_RTINFO
)
862 if (fn
->fn_flags
& RTN_ROOT
)
871 struct fib6_node
* fib6_lookup(struct fib6_node
*root
, struct in6_addr
*daddr
,
872 struct in6_addr
*saddr
)
874 struct fib6_node
*fn
;
875 struct lookup_args args
[] = {
877 .offset
= offsetof(struct rt6_info
, rt6i_dst
),
880 #ifdef CONFIG_IPV6_SUBTREES
882 .offset
= offsetof(struct rt6_info
, rt6i_src
),
887 .offset
= 0, /* sentinel */
891 fn
= fib6_lookup_1(root
, daddr
? args
: args
+ 1);
893 if (fn
== NULL
|| fn
->fn_flags
& RTN_TL_ROOT
)
900 * Get node with specified destination prefix (and source prefix,
901 * if subtrees are used)
905 static struct fib6_node
* fib6_locate_1(struct fib6_node
*root
,
906 struct in6_addr
*addr
,
907 int plen
, int offset
)
909 struct fib6_node
*fn
;
911 for (fn
= root
; fn
; ) {
912 struct rt6key
*key
= (struct rt6key
*)((u8
*)fn
->leaf
+ offset
);
917 if (plen
< fn
->fn_bit
||
918 !ipv6_prefix_equal(&key
->addr
, addr
, fn
->fn_bit
))
921 if (plen
== fn
->fn_bit
)
925 * We have more bits to go
927 if (addr_bit_set(addr
, fn
->fn_bit
))
935 struct fib6_node
* fib6_locate(struct fib6_node
*root
,
936 struct in6_addr
*daddr
, int dst_len
,
937 struct in6_addr
*saddr
, int src_len
)
939 struct fib6_node
*fn
;
941 fn
= fib6_locate_1(root
, daddr
, dst_len
,
942 offsetof(struct rt6_info
, rt6i_dst
));
944 #ifdef CONFIG_IPV6_SUBTREES
946 WARN_ON(saddr
== NULL
);
947 if (fn
&& fn
->subtree
)
948 fn
= fib6_locate_1(fn
->subtree
, saddr
, src_len
,
949 offsetof(struct rt6_info
, rt6i_src
));
953 if (fn
&& fn
->fn_flags
&RTN_RTINFO
)
965 static struct rt6_info
*fib6_find_prefix(struct net
*net
, struct fib6_node
*fn
)
967 if (fn
->fn_flags
&RTN_ROOT
)
968 return net
->ipv6
.ip6_null_entry
;
972 return fn
->left
->leaf
;
975 return fn
->right
->leaf
;
977 fn
= FIB6_SUBTREE(fn
);
983 * Called to trim the tree of intermediate nodes when possible. "fn"
984 * is the node we want to try and remove.
987 static struct fib6_node
*fib6_repair_tree(struct net
*net
,
988 struct fib6_node
*fn
)
992 struct fib6_node
*child
, *pn
;
993 struct fib6_walker_t
*w
;
997 RT6_TRACE("fixing tree: plen=%d iter=%d\n", fn
->fn_bit
, iter
);
1000 WARN_ON(fn
->fn_flags
& RTN_RTINFO
);
1001 WARN_ON(fn
->fn_flags
& RTN_TL_ROOT
);
1002 WARN_ON(fn
->leaf
!= NULL
);
1006 if (fn
->right
) child
= fn
->right
, children
|= 1;
1007 if (fn
->left
) child
= fn
->left
, children
|= 2;
1009 if (children
== 3 || FIB6_SUBTREE(fn
)
1010 #ifdef CONFIG_IPV6_SUBTREES
1011 /* Subtree root (i.e. fn) may have one child */
1012 || (children
&& fn
->fn_flags
&RTN_ROOT
)
1015 fn
->leaf
= fib6_find_prefix(net
, fn
);
1017 if (fn
->leaf
==NULL
) {
1019 fn
->leaf
= net
->ipv6
.ip6_null_entry
;
1022 atomic_inc(&fn
->leaf
->rt6i_ref
);
1027 #ifdef CONFIG_IPV6_SUBTREES
1028 if (FIB6_SUBTREE(pn
) == fn
) {
1029 WARN_ON(!(fn
->fn_flags
& RTN_ROOT
));
1030 FIB6_SUBTREE(pn
) = NULL
;
1033 WARN_ON(fn
->fn_flags
& RTN_ROOT
);
1035 if (pn
->right
== fn
) pn
->right
= child
;
1036 else if (pn
->left
== fn
) pn
->left
= child
;
1044 #ifdef CONFIG_IPV6_SUBTREES
1048 read_lock(&fib6_walker_lock
);
1050 if (child
== NULL
) {
1051 if (w
->root
== fn
) {
1052 w
->root
= w
->node
= NULL
;
1053 RT6_TRACE("W %p adjusted by delroot 1\n", w
);
1054 } else if (w
->node
== fn
) {
1055 RT6_TRACE("W %p adjusted by delnode 1, s=%d/%d\n", w
, w
->state
, nstate
);
1060 if (w
->root
== fn
) {
1062 RT6_TRACE("W %p adjusted by delroot 2\n", w
);
1064 if (w
->node
== fn
) {
1067 RT6_TRACE("W %p adjusted by delnode 2, s=%d\n", w
, w
->state
);
1068 w
->state
= w
->state
>=FWS_R
? FWS_U
: FWS_INIT
;
1070 RT6_TRACE("W %p adjusted by delnode 2, s=%d\n", w
, w
->state
);
1071 w
->state
= w
->state
>=FWS_C
? FWS_U
: FWS_INIT
;
1076 read_unlock(&fib6_walker_lock
);
1079 if (pn
->fn_flags
&RTN_RTINFO
|| FIB6_SUBTREE(pn
))
1082 rt6_release(pn
->leaf
);
1088 static void fib6_del_route(struct fib6_node
*fn
, struct rt6_info
**rtp
,
1089 struct nl_info
*info
)
1091 struct fib6_walker_t
*w
;
1092 struct rt6_info
*rt
= *rtp
;
1093 struct net
*net
= info
->nl_net
;
1095 RT6_TRACE("fib6_del_route\n");
1098 *rtp
= rt
->u
.dst
.rt6_next
;
1099 rt
->rt6i_node
= NULL
;
1100 net
->ipv6
.rt6_stats
->fib_rt_entries
--;
1101 net
->ipv6
.rt6_stats
->fib_discarded_routes
++;
1103 /* Reset round-robin state, if necessary */
1104 if (fn
->rr_ptr
== rt
)
1107 /* Adjust walkers */
1108 read_lock(&fib6_walker_lock
);
1110 if (w
->state
== FWS_C
&& w
->leaf
== rt
) {
1111 RT6_TRACE("walker %p adjusted by delroute\n", w
);
1112 w
->leaf
= rt
->u
.dst
.rt6_next
;
1113 if (w
->leaf
== NULL
)
1117 read_unlock(&fib6_walker_lock
);
1119 rt
->u
.dst
.rt6_next
= NULL
;
1121 /* If it was last route, expunge its radix tree node */
1122 if (fn
->leaf
== NULL
) {
1123 fn
->fn_flags
&= ~RTN_RTINFO
;
1124 net
->ipv6
.rt6_stats
->fib_route_nodes
--;
1125 fn
= fib6_repair_tree(net
, fn
);
1128 if (atomic_read(&rt
->rt6i_ref
) != 1) {
1129 /* This route is used as dummy address holder in some split
1130 * nodes. It is not leaked, but it still holds other resources,
1131 * which must be released in time. So, scan ascendant nodes
1132 * and replace dummy references to this route with references
1133 * to still alive ones.
1136 if (!(fn
->fn_flags
&RTN_RTINFO
) && fn
->leaf
== rt
) {
1137 fn
->leaf
= fib6_find_prefix(net
, fn
);
1138 atomic_inc(&fn
->leaf
->rt6i_ref
);
1143 /* No more references are possible at this point. */
1144 BUG_ON(atomic_read(&rt
->rt6i_ref
) != 1);
1147 inet6_rt_notify(RTM_DELROUTE
, rt
, info
);
1151 int fib6_del(struct rt6_info
*rt
, struct nl_info
*info
)
1153 struct net
*net
= info
->nl_net
;
1154 struct fib6_node
*fn
= rt
->rt6i_node
;
1155 struct rt6_info
**rtp
;
1158 if (rt
->u
.dst
.obsolete
>0) {
1159 WARN_ON(fn
!= NULL
);
1163 if (fn
== NULL
|| rt
== net
->ipv6
.ip6_null_entry
)
1166 WARN_ON(!(fn
->fn_flags
& RTN_RTINFO
));
1168 if (!(rt
->rt6i_flags
&RTF_CACHE
)) {
1169 struct fib6_node
*pn
= fn
;
1170 #ifdef CONFIG_IPV6_SUBTREES
1171 /* clones of this route might be in another subtree */
1172 if (rt
->rt6i_src
.plen
) {
1173 while (!(pn
->fn_flags
&RTN_ROOT
))
1178 fib6_prune_clones(info
->nl_net
, pn
, rt
);
1182 * Walk the leaf entries looking for ourself
1185 for (rtp
= &fn
->leaf
; *rtp
; rtp
= &(*rtp
)->u
.dst
.rt6_next
) {
1187 fib6_del_route(fn
, rtp
, info
);
1195 * Tree traversal function.
1197 * Certainly, it is not interrupt safe.
1198 * However, it is internally reenterable wrt itself and fib6_add/fib6_del.
1199 * It means, that we can modify tree during walking
1200 * and use this function for garbage collection, clone pruning,
1201 * cleaning tree when a device goes down etc. etc.
1203 * It guarantees that every node will be traversed,
1204 * and that it will be traversed only once.
1206 * Callback function w->func may return:
1207 * 0 -> continue walking.
1208 * positive value -> walking is suspended (used by tree dumps,
1209 * and probably by gc, if it will be split to several slices)
1210 * negative value -> terminate walking.
1212 * The function itself returns:
1213 * 0 -> walk is complete.
1214 * >0 -> walk is incomplete (i.e. suspended)
1215 * <0 -> walk is terminated by an error.
1218 static int fib6_walk_continue(struct fib6_walker_t
*w
)
1220 struct fib6_node
*fn
, *pn
;
1227 if (w
->prune
&& fn
!= w
->root
&&
1228 fn
->fn_flags
&RTN_RTINFO
&& w
->state
< FWS_C
) {
1233 #ifdef CONFIG_IPV6_SUBTREES
1235 if (FIB6_SUBTREE(fn
)) {
1236 w
->node
= FIB6_SUBTREE(fn
);
1244 w
->state
= FWS_INIT
;
1250 w
->node
= fn
->right
;
1251 w
->state
= FWS_INIT
;
1257 if (w
->leaf
&& fn
->fn_flags
&RTN_RTINFO
) {
1258 int err
= w
->func(w
);
1269 #ifdef CONFIG_IPV6_SUBTREES
1270 if (FIB6_SUBTREE(pn
) == fn
) {
1271 WARN_ON(!(fn
->fn_flags
& RTN_ROOT
));
1276 if (pn
->left
== fn
) {
1280 if (pn
->right
== fn
) {
1282 w
->leaf
= w
->node
->leaf
;
1292 static int fib6_walk(struct fib6_walker_t
*w
)
1296 w
->state
= FWS_INIT
;
1299 fib6_walker_link(w
);
1300 res
= fib6_walk_continue(w
);
1302 fib6_walker_unlink(w
);
1306 static int fib6_clean_node(struct fib6_walker_t
*w
)
1309 struct rt6_info
*rt
;
1310 struct fib6_cleaner_t
*c
= container_of(w
, struct fib6_cleaner_t
, w
);
1311 struct nl_info info
= {
1315 for (rt
= w
->leaf
; rt
; rt
= rt
->u
.dst
.rt6_next
) {
1316 res
= c
->func(rt
, c
->arg
);
1319 res
= fib6_del(rt
, &info
);
1322 printk(KERN_DEBUG
"fib6_clean_node: del failed: rt=%p@%p err=%d\n", rt
, rt
->rt6i_node
, res
);
1335 * Convenient frontend to tree walker.
1337 * func is called on each route.
1338 * It may return -1 -> delete this route.
1339 * 0 -> continue walking
1341 * prune==1 -> only immediate children of node (certainly,
1342 * ignoring pure split nodes) will be scanned.
1345 static void fib6_clean_tree(struct net
*net
, struct fib6_node
*root
,
1346 int (*func
)(struct rt6_info
*, void *arg
),
1347 int prune
, void *arg
)
1349 struct fib6_cleaner_t c
;
1352 c
.w
.func
= fib6_clean_node
;
1361 void fib6_clean_all(struct net
*net
, int (*func
)(struct rt6_info
*, void *arg
),
1362 int prune
, void *arg
)
1364 struct fib6_table
*table
;
1365 struct hlist_node
*node
;
1366 struct hlist_head
*head
;
1370 for (h
= 0; h
< FIB_TABLE_HASHSZ
; h
++) {
1371 head
= &net
->ipv6
.fib_table_hash
[h
];
1372 hlist_for_each_entry_rcu(table
, node
, head
, tb6_hlist
) {
1373 write_lock_bh(&table
->tb6_lock
);
1374 fib6_clean_tree(net
, &table
->tb6_root
,
1376 write_unlock_bh(&table
->tb6_lock
);
1382 static int fib6_prune_clone(struct rt6_info
*rt
, void *arg
)
1384 if (rt
->rt6i_flags
& RTF_CACHE
) {
1385 RT6_TRACE("pruning clone %p\n", rt
);
1392 static void fib6_prune_clones(struct net
*net
, struct fib6_node
*fn
,
1393 struct rt6_info
*rt
)
1395 fib6_clean_tree(net
, fn
, fib6_prune_clone
, 1, rt
);
1399 * Garbage collection
1402 static struct fib6_gc_args
1408 static int fib6_age(struct rt6_info
*rt
, void *arg
)
1410 unsigned long now
= jiffies
;
1413 * check addrconf expiration here.
1414 * Routes are expired even if they are in use.
1416 * Also age clones. Note, that clones are aged out
1417 * only if they are not in use now.
1420 if (rt
->rt6i_flags
&RTF_EXPIRES
&& rt
->rt6i_expires
) {
1421 if (time_after(now
, rt
->rt6i_expires
)) {
1422 RT6_TRACE("expiring %p\n", rt
);
1426 } else if (rt
->rt6i_flags
& RTF_CACHE
) {
1427 if (atomic_read(&rt
->u
.dst
.__refcnt
) == 0 &&
1428 time_after_eq(now
, rt
->u
.dst
.lastuse
+ gc_args
.timeout
)) {
1429 RT6_TRACE("aging clone %p\n", rt
);
1431 } else if ((rt
->rt6i_flags
& RTF_GATEWAY
) &&
1432 (!(rt
->rt6i_nexthop
->flags
& NTF_ROUTER
))) {
1433 RT6_TRACE("purging route %p via non-router but gateway\n",
1443 static DEFINE_SPINLOCK(fib6_gc_lock
);
1445 void fib6_run_gc(unsigned long expires
, struct net
*net
)
1447 if (expires
!= ~0UL) {
1448 spin_lock_bh(&fib6_gc_lock
);
1449 gc_args
.timeout
= expires
? (int)expires
:
1450 net
->ipv6
.sysctl
.ip6_rt_gc_interval
;
1452 if (!spin_trylock_bh(&fib6_gc_lock
)) {
1453 mod_timer(&net
->ipv6
.ip6_fib_timer
, jiffies
+ HZ
);
1456 gc_args
.timeout
= net
->ipv6
.sysctl
.ip6_rt_gc_interval
;
1459 gc_args
.more
= icmp6_dst_gc();
1461 fib6_clean_all(net
, fib6_age
, 0, NULL
);
1464 mod_timer(&net
->ipv6
.ip6_fib_timer
,
1465 round_jiffies(jiffies
1466 + net
->ipv6
.sysctl
.ip6_rt_gc_interval
));
1468 del_timer(&net
->ipv6
.ip6_fib_timer
);
1469 spin_unlock_bh(&fib6_gc_lock
);
1472 static void fib6_gc_timer_cb(unsigned long arg
)
1474 fib6_run_gc(0, (struct net
*)arg
);
1477 static int fib6_net_init(struct net
*net
)
1479 setup_timer(&net
->ipv6
.ip6_fib_timer
, fib6_gc_timer_cb
, (unsigned long)net
);
1481 net
->ipv6
.rt6_stats
= kzalloc(sizeof(*net
->ipv6
.rt6_stats
), GFP_KERNEL
);
1482 if (!net
->ipv6
.rt6_stats
)
1485 net
->ipv6
.fib_table_hash
= kcalloc(FIB_TABLE_HASHSZ
,
1486 sizeof(*net
->ipv6
.fib_table_hash
),
1488 if (!net
->ipv6
.fib_table_hash
)
1491 net
->ipv6
.fib6_main_tbl
= kzalloc(sizeof(*net
->ipv6
.fib6_main_tbl
),
1493 if (!net
->ipv6
.fib6_main_tbl
)
1494 goto out_fib_table_hash
;
1496 net
->ipv6
.fib6_main_tbl
->tb6_id
= RT6_TABLE_MAIN
;
1497 net
->ipv6
.fib6_main_tbl
->tb6_root
.leaf
= net
->ipv6
.ip6_null_entry
;
1498 net
->ipv6
.fib6_main_tbl
->tb6_root
.fn_flags
=
1499 RTN_ROOT
| RTN_TL_ROOT
| RTN_RTINFO
;
1501 #ifdef CONFIG_IPV6_MULTIPLE_TABLES
1502 net
->ipv6
.fib6_local_tbl
= kzalloc(sizeof(*net
->ipv6
.fib6_local_tbl
),
1504 if (!net
->ipv6
.fib6_local_tbl
)
1505 goto out_fib6_main_tbl
;
1506 net
->ipv6
.fib6_local_tbl
->tb6_id
= RT6_TABLE_LOCAL
;
1507 net
->ipv6
.fib6_local_tbl
->tb6_root
.leaf
= net
->ipv6
.ip6_null_entry
;
1508 net
->ipv6
.fib6_local_tbl
->tb6_root
.fn_flags
=
1509 RTN_ROOT
| RTN_TL_ROOT
| RTN_RTINFO
;
1511 fib6_tables_init(net
);
1515 #ifdef CONFIG_IPV6_MULTIPLE_TABLES
1517 kfree(net
->ipv6
.fib6_main_tbl
);
1520 kfree(net
->ipv6
.fib_table_hash
);
1522 kfree(net
->ipv6
.rt6_stats
);
1527 static void fib6_net_exit(struct net
*net
)
1529 rt6_ifdown(net
, NULL
);
1530 del_timer_sync(&net
->ipv6
.ip6_fib_timer
);
1532 #ifdef CONFIG_IPV6_MULTIPLE_TABLES
1533 kfree(net
->ipv6
.fib6_local_tbl
);
1535 kfree(net
->ipv6
.fib6_main_tbl
);
1536 kfree(net
->ipv6
.fib_table_hash
);
1537 kfree(net
->ipv6
.rt6_stats
);
1540 static struct pernet_operations fib6_net_ops
= {
1541 .init
= fib6_net_init
,
1542 .exit
= fib6_net_exit
,
1545 int __init
fib6_init(void)
1549 fib6_node_kmem
= kmem_cache_create("fib6_nodes",
1550 sizeof(struct fib6_node
),
1551 0, SLAB_HWCACHE_ALIGN
,
1553 if (!fib6_node_kmem
)
1556 ret
= register_pernet_subsys(&fib6_net_ops
);
1558 goto out_kmem_cache_create
;
1560 ret
= __rtnl_register(PF_INET6
, RTM_GETROUTE
, NULL
, inet6_dump_fib
);
1562 goto out_unregister_subsys
;
1566 out_unregister_subsys
:
1567 unregister_pernet_subsys(&fib6_net_ops
);
1568 out_kmem_cache_create
:
1569 kmem_cache_destroy(fib6_node_kmem
);
1573 void fib6_gc_cleanup(void)
1575 unregister_pernet_subsys(&fib6_net_ops
);
1576 kmem_cache_destroy(fib6_node_kmem
);