2 * Dynamic DMA mapping support.
4 * This implementation is a fallback for platforms that do not support
5 * I/O TLBs (aka DMA address translation hardware).
6 * Copyright (C) 2000 Asit Mallick <Asit.K.Mallick@intel.com>
7 * Copyright (C) 2000 Goutham Rao <goutham.rao@intel.com>
8 * Copyright (C) 2000, 2003 Hewlett-Packard Co
9 * David Mosberger-Tang <davidm@hpl.hp.com>
11 * 03/05/07 davidm Switch from PCI-DMA to generic device DMA API.
12 * 00/12/13 davidm Rename to swiotlb.c and add mark_clean() to avoid
13 * unnecessary i-cache flushing.
14 * 04/07/.. ak Better overflow handling. Assorted fixes.
15 * 05/09/10 linville Add support for syncing ranges, support syncing for
16 * DMA_BIDIRECTIONAL mappings, miscellaneous cleanup.
17 * 08/12/11 beckyb Add highmem support
20 #include <linux/cache.h>
21 #include <linux/dma-mapping.h>
23 #include <linux/module.h>
24 #include <linux/spinlock.h>
25 #include <linux/string.h>
26 #include <linux/swiotlb.h>
27 #include <linux/pfn.h>
28 #include <linux/types.h>
29 #include <linux/ctype.h>
30 #include <linux/highmem.h>
34 #include <asm/scatterlist.h>
36 #include <linux/init.h>
37 #include <linux/bootmem.h>
38 #include <linux/iommu-helper.h>
40 #define OFFSET(val,align) ((unsigned long) \
41 ( (val) & ( (align) - 1)))
43 #define SLABS_PER_PAGE (1 << (PAGE_SHIFT - IO_TLB_SHIFT))
46 * Minimum IO TLB size to bother booting with. Systems with mainly
47 * 64bit capable cards will only lightly use the swiotlb. If we can't
48 * allocate a contiguous 1MB, we're probably in trouble anyway.
50 #define IO_TLB_MIN_SLABS ((1<<20) >> IO_TLB_SHIFT)
53 * Enumeration for sync targets
55 enum dma_sync_target
{
63 * Used to do a quick range check in swiotlb_unmap_single and
64 * swiotlb_sync_single_*, to see if the memory was in fact allocated by this
67 static char *io_tlb_start
, *io_tlb_end
;
70 * The number of IO TLB blocks (in groups of 64) betweeen io_tlb_start and
71 * io_tlb_end. This is command line adjustable via setup_io_tlb_npages.
73 static unsigned long io_tlb_nslabs
;
76 * When the IOMMU overflows we return a fallback buffer. This sets the size.
78 static unsigned long io_tlb_overflow
= 32*1024;
80 void *io_tlb_overflow_buffer
;
83 * This is a free list describing the number of free entries available from
86 static unsigned int *io_tlb_list
;
87 static unsigned int io_tlb_index
;
90 * We need to save away the original address corresponding to a mapped entry
91 * for the sync operations.
93 static phys_addr_t
*io_tlb_orig_addr
;
96 * Protect the above data structures in the map and unmap calls
98 static DEFINE_SPINLOCK(io_tlb_lock
);
101 setup_io_tlb_npages(char *str
)
104 io_tlb_nslabs
= simple_strtoul(str
, &str
, 0);
105 /* avoid tail segment of size < IO_TLB_SEGSIZE */
106 io_tlb_nslabs
= ALIGN(io_tlb_nslabs
, IO_TLB_SEGSIZE
);
110 if (!strcmp(str
, "force"))
114 __setup("swiotlb=", setup_io_tlb_npages
);
115 /* make io_tlb_overflow tunable too? */
117 void * __weak __init
swiotlb_alloc_boot(size_t size
, unsigned long nslabs
)
119 return alloc_bootmem_low_pages(size
);
122 void * __weak
swiotlb_alloc(unsigned order
, unsigned long nslabs
)
124 return (void *)__get_free_pages(GFP_DMA
| __GFP_NOWARN
, order
);
127 dma_addr_t __weak
swiotlb_phys_to_bus(struct device
*hwdev
, phys_addr_t paddr
)
132 phys_addr_t __weak
swiotlb_bus_to_phys(dma_addr_t baddr
)
137 static dma_addr_t
swiotlb_virt_to_bus(struct device
*hwdev
,
138 volatile void *address
)
140 return swiotlb_phys_to_bus(hwdev
, virt_to_phys(address
));
143 static void *swiotlb_bus_to_virt(dma_addr_t address
)
145 return phys_to_virt(swiotlb_bus_to_phys(address
));
148 int __weak
swiotlb_arch_range_needs_mapping(void *ptr
, size_t size
)
153 static void swiotlb_print_info(unsigned long bytes
)
155 phys_addr_t pstart
, pend
;
157 pstart
= virt_to_phys(io_tlb_start
);
158 pend
= virt_to_phys(io_tlb_end
);
160 printk(KERN_INFO
"Placing %luMB software IO TLB between %p - %p\n",
161 bytes
>> 20, io_tlb_start
, io_tlb_end
);
162 printk(KERN_INFO
"software IO TLB at phys %#llx - %#llx\n",
163 (unsigned long long)pstart
,
164 (unsigned long long)pend
);
168 * Statically reserve bounce buffer space and initialize bounce buffer data
169 * structures for the software IO TLB used to implement the DMA API.
172 swiotlb_init_with_default_size(size_t default_size
)
174 unsigned long i
, bytes
;
176 if (!io_tlb_nslabs
) {
177 io_tlb_nslabs
= (default_size
>> IO_TLB_SHIFT
);
178 io_tlb_nslabs
= ALIGN(io_tlb_nslabs
, IO_TLB_SEGSIZE
);
181 bytes
= io_tlb_nslabs
<< IO_TLB_SHIFT
;
184 * Get IO TLB memory from the low pages
186 io_tlb_start
= swiotlb_alloc_boot(bytes
, io_tlb_nslabs
);
188 panic("Cannot allocate SWIOTLB buffer");
189 io_tlb_end
= io_tlb_start
+ bytes
;
192 * Allocate and initialize the free list array. This array is used
193 * to find contiguous free memory regions of size up to IO_TLB_SEGSIZE
194 * between io_tlb_start and io_tlb_end.
196 io_tlb_list
= alloc_bootmem(io_tlb_nslabs
* sizeof(int));
197 for (i
= 0; i
< io_tlb_nslabs
; i
++)
198 io_tlb_list
[i
] = IO_TLB_SEGSIZE
- OFFSET(i
, IO_TLB_SEGSIZE
);
200 io_tlb_orig_addr
= alloc_bootmem(io_tlb_nslabs
* sizeof(phys_addr_t
));
203 * Get the overflow emergency buffer
205 io_tlb_overflow_buffer
= alloc_bootmem_low(io_tlb_overflow
);
206 if (!io_tlb_overflow_buffer
)
207 panic("Cannot allocate SWIOTLB overflow buffer!\n");
209 swiotlb_print_info(bytes
);
215 swiotlb_init_with_default_size(64 * (1<<20)); /* default to 64MB */
219 * Systems with larger DMA zones (those that don't support ISA) can
220 * initialize the swiotlb later using the slab allocator if needed.
221 * This should be just like above, but with some error catching.
224 swiotlb_late_init_with_default_size(size_t default_size
)
226 unsigned long i
, bytes
, req_nslabs
= io_tlb_nslabs
;
229 if (!io_tlb_nslabs
) {
230 io_tlb_nslabs
= (default_size
>> IO_TLB_SHIFT
);
231 io_tlb_nslabs
= ALIGN(io_tlb_nslabs
, IO_TLB_SEGSIZE
);
235 * Get IO TLB memory from the low pages
237 order
= get_order(io_tlb_nslabs
<< IO_TLB_SHIFT
);
238 io_tlb_nslabs
= SLABS_PER_PAGE
<< order
;
239 bytes
= io_tlb_nslabs
<< IO_TLB_SHIFT
;
241 while ((SLABS_PER_PAGE
<< order
) > IO_TLB_MIN_SLABS
) {
242 io_tlb_start
= swiotlb_alloc(order
, io_tlb_nslabs
);
251 if (order
!= get_order(bytes
)) {
252 printk(KERN_WARNING
"Warning: only able to allocate %ld MB "
253 "for software IO TLB\n", (PAGE_SIZE
<< order
) >> 20);
254 io_tlb_nslabs
= SLABS_PER_PAGE
<< order
;
255 bytes
= io_tlb_nslabs
<< IO_TLB_SHIFT
;
257 io_tlb_end
= io_tlb_start
+ bytes
;
258 memset(io_tlb_start
, 0, bytes
);
261 * Allocate and initialize the free list array. This array is used
262 * to find contiguous free memory regions of size up to IO_TLB_SEGSIZE
263 * between io_tlb_start and io_tlb_end.
265 io_tlb_list
= (unsigned int *)__get_free_pages(GFP_KERNEL
,
266 get_order(io_tlb_nslabs
* sizeof(int)));
270 for (i
= 0; i
< io_tlb_nslabs
; i
++)
271 io_tlb_list
[i
] = IO_TLB_SEGSIZE
- OFFSET(i
, IO_TLB_SEGSIZE
);
274 io_tlb_orig_addr
= (phys_addr_t
*)
275 __get_free_pages(GFP_KERNEL
,
276 get_order(io_tlb_nslabs
*
277 sizeof(phys_addr_t
)));
278 if (!io_tlb_orig_addr
)
281 memset(io_tlb_orig_addr
, 0, io_tlb_nslabs
* sizeof(phys_addr_t
));
284 * Get the overflow emergency buffer
286 io_tlb_overflow_buffer
= (void *)__get_free_pages(GFP_DMA
,
287 get_order(io_tlb_overflow
));
288 if (!io_tlb_overflow_buffer
)
291 swiotlb_print_info(bytes
);
296 free_pages((unsigned long)io_tlb_orig_addr
,
297 get_order(io_tlb_nslabs
* sizeof(phys_addr_t
)));
298 io_tlb_orig_addr
= NULL
;
300 free_pages((unsigned long)io_tlb_list
, get_order(io_tlb_nslabs
*
305 free_pages((unsigned long)io_tlb_start
, order
);
308 io_tlb_nslabs
= req_nslabs
;
313 address_needs_mapping(struct device
*hwdev
, dma_addr_t addr
, size_t size
)
315 return !is_buffer_dma_capable(dma_get_mask(hwdev
), addr
, size
);
318 static inline int range_needs_mapping(void *ptr
, size_t size
)
320 return swiotlb_force
|| swiotlb_arch_range_needs_mapping(ptr
, size
);
323 static int is_swiotlb_buffer(char *addr
)
325 return addr
>= io_tlb_start
&& addr
< io_tlb_end
;
329 * Bounce: copy the swiotlb buffer back to the original dma location
331 static void swiotlb_bounce(phys_addr_t phys
, char *dma_addr
, size_t size
,
332 enum dma_data_direction dir
)
334 unsigned long pfn
= PFN_DOWN(phys
);
336 if (PageHighMem(pfn_to_page(pfn
))) {
337 /* The buffer does not have a mapping. Map it in and copy */
338 unsigned int offset
= phys
& ~PAGE_MASK
;
344 sz
= min(PAGE_SIZE
- offset
, size
);
346 local_irq_save(flags
);
347 buffer
= kmap_atomic(pfn_to_page(pfn
),
349 if (dir
== DMA_TO_DEVICE
)
350 memcpy(dma_addr
, buffer
+ offset
, sz
);
352 memcpy(buffer
+ offset
, dma_addr
, sz
);
353 kunmap_atomic(buffer
, KM_BOUNCE_READ
);
354 local_irq_restore(flags
);
362 if (dir
== DMA_TO_DEVICE
)
363 memcpy(dma_addr
, phys_to_virt(phys
), size
);
365 memcpy(phys_to_virt(phys
), dma_addr
, size
);
370 * Allocates bounce buffer and returns its kernel virtual address.
373 map_single(struct device
*hwdev
, phys_addr_t phys
, size_t size
, int dir
)
377 unsigned int nslots
, stride
, index
, wrap
;
379 unsigned long start_dma_addr
;
381 unsigned long offset_slots
;
382 unsigned long max_slots
;
384 mask
= dma_get_seg_boundary(hwdev
);
385 start_dma_addr
= swiotlb_virt_to_bus(hwdev
, io_tlb_start
) & mask
;
387 offset_slots
= ALIGN(start_dma_addr
, 1 << IO_TLB_SHIFT
) >> IO_TLB_SHIFT
;
390 * Carefully handle integer overflow which can occur when mask == ~0UL.
393 ? ALIGN(mask
+ 1, 1 << IO_TLB_SHIFT
) >> IO_TLB_SHIFT
394 : 1UL << (BITS_PER_LONG
- IO_TLB_SHIFT
);
397 * For mappings greater than a page, we limit the stride (and
398 * hence alignment) to a page size.
400 nslots
= ALIGN(size
, 1 << IO_TLB_SHIFT
) >> IO_TLB_SHIFT
;
401 if (size
> PAGE_SIZE
)
402 stride
= (1 << (PAGE_SHIFT
- IO_TLB_SHIFT
));
409 * Find suitable number of IO TLB entries size that will fit this
410 * request and allocate a buffer from that IO TLB pool.
412 spin_lock_irqsave(&io_tlb_lock
, flags
);
413 index
= ALIGN(io_tlb_index
, stride
);
414 if (index
>= io_tlb_nslabs
)
419 while (iommu_is_span_boundary(index
, nslots
, offset_slots
,
422 if (index
>= io_tlb_nslabs
)
429 * If we find a slot that indicates we have 'nslots' number of
430 * contiguous buffers, we allocate the buffers from that slot
431 * and mark the entries as '0' indicating unavailable.
433 if (io_tlb_list
[index
] >= nslots
) {
436 for (i
= index
; i
< (int) (index
+ nslots
); i
++)
438 for (i
= index
- 1; (OFFSET(i
, IO_TLB_SEGSIZE
) != IO_TLB_SEGSIZE
- 1) && io_tlb_list
[i
]; i
--)
439 io_tlb_list
[i
] = ++count
;
440 dma_addr
= io_tlb_start
+ (index
<< IO_TLB_SHIFT
);
443 * Update the indices to avoid searching in the next
446 io_tlb_index
= ((index
+ nslots
) < io_tlb_nslabs
447 ? (index
+ nslots
) : 0);
452 if (index
>= io_tlb_nslabs
)
454 } while (index
!= wrap
);
457 spin_unlock_irqrestore(&io_tlb_lock
, flags
);
460 spin_unlock_irqrestore(&io_tlb_lock
, flags
);
463 * Save away the mapping from the original address to the DMA address.
464 * This is needed when we sync the memory. Then we sync the buffer if
467 for (i
= 0; i
< nslots
; i
++)
468 io_tlb_orig_addr
[index
+i
] = phys
+ (i
<< IO_TLB_SHIFT
);
469 if (dir
== DMA_TO_DEVICE
|| dir
== DMA_BIDIRECTIONAL
)
470 swiotlb_bounce(phys
, dma_addr
, size
, DMA_TO_DEVICE
);
476 * dma_addr is the kernel virtual address of the bounce buffer to unmap.
479 unmap_single(struct device
*hwdev
, char *dma_addr
, size_t size
, int dir
)
482 int i
, count
, nslots
= ALIGN(size
, 1 << IO_TLB_SHIFT
) >> IO_TLB_SHIFT
;
483 int index
= (dma_addr
- io_tlb_start
) >> IO_TLB_SHIFT
;
484 phys_addr_t phys
= io_tlb_orig_addr
[index
];
487 * First, sync the memory before unmapping the entry
489 if (phys
&& ((dir
== DMA_FROM_DEVICE
) || (dir
== DMA_BIDIRECTIONAL
)))
490 swiotlb_bounce(phys
, dma_addr
, size
, DMA_FROM_DEVICE
);
493 * Return the buffer to the free list by setting the corresponding
494 * entries to indicate the number of contigous entries available.
495 * While returning the entries to the free list, we merge the entries
496 * with slots below and above the pool being returned.
498 spin_lock_irqsave(&io_tlb_lock
, flags
);
500 count
= ((index
+ nslots
) < ALIGN(index
+ 1, IO_TLB_SEGSIZE
) ?
501 io_tlb_list
[index
+ nslots
] : 0);
503 * Step 1: return the slots to the free list, merging the
504 * slots with superceeding slots
506 for (i
= index
+ nslots
- 1; i
>= index
; i
--)
507 io_tlb_list
[i
] = ++count
;
509 * Step 2: merge the returned slots with the preceding slots,
510 * if available (non zero)
512 for (i
= index
- 1; (OFFSET(i
, IO_TLB_SEGSIZE
) != IO_TLB_SEGSIZE
-1) && io_tlb_list
[i
]; i
--)
513 io_tlb_list
[i
] = ++count
;
515 spin_unlock_irqrestore(&io_tlb_lock
, flags
);
519 sync_single(struct device
*hwdev
, char *dma_addr
, size_t size
,
522 int index
= (dma_addr
- io_tlb_start
) >> IO_TLB_SHIFT
;
523 phys_addr_t phys
= io_tlb_orig_addr
[index
];
525 phys
+= ((unsigned long)dma_addr
& ((1 << IO_TLB_SHIFT
) - 1));
529 if (likely(dir
== DMA_FROM_DEVICE
|| dir
== DMA_BIDIRECTIONAL
))
530 swiotlb_bounce(phys
, dma_addr
, size
, DMA_FROM_DEVICE
);
532 BUG_ON(dir
!= DMA_TO_DEVICE
);
534 case SYNC_FOR_DEVICE
:
535 if (likely(dir
== DMA_TO_DEVICE
|| dir
== DMA_BIDIRECTIONAL
))
536 swiotlb_bounce(phys
, dma_addr
, size
, DMA_TO_DEVICE
);
538 BUG_ON(dir
!= DMA_FROM_DEVICE
);
546 swiotlb_alloc_coherent(struct device
*hwdev
, size_t size
,
547 dma_addr_t
*dma_handle
, gfp_t flags
)
551 int order
= get_order(size
);
552 u64 dma_mask
= DMA_32BIT_MASK
;
554 if (hwdev
&& hwdev
->coherent_dma_mask
)
555 dma_mask
= hwdev
->coherent_dma_mask
;
557 ret
= (void *)__get_free_pages(flags
, order
);
559 !is_buffer_dma_capable(dma_mask
, swiotlb_virt_to_bus(hwdev
, ret
),
562 * The allocated memory isn't reachable by the device.
563 * Fall back on swiotlb_map_single().
565 free_pages((unsigned long) ret
, order
);
570 * We are either out of memory or the device can't DMA
571 * to GFP_DMA memory; fall back on
572 * swiotlb_map_single(), which will grab memory from
573 * the lowest available address range.
575 ret
= map_single(hwdev
, 0, size
, DMA_FROM_DEVICE
);
580 memset(ret
, 0, size
);
581 dev_addr
= swiotlb_virt_to_bus(hwdev
, ret
);
583 /* Confirm address can be DMA'd by device */
584 if (!is_buffer_dma_capable(dma_mask
, dev_addr
, size
)) {
585 printk("hwdev DMA mask = 0x%016Lx, dev_addr = 0x%016Lx\n",
586 (unsigned long long)dma_mask
,
587 (unsigned long long)dev_addr
);
589 /* DMA_TO_DEVICE to avoid memcpy in unmap_single */
590 unmap_single(hwdev
, ret
, size
, DMA_TO_DEVICE
);
593 *dma_handle
= dev_addr
;
596 EXPORT_SYMBOL(swiotlb_alloc_coherent
);
599 swiotlb_free_coherent(struct device
*hwdev
, size_t size
, void *vaddr
,
600 dma_addr_t dma_handle
)
602 WARN_ON(irqs_disabled());
603 if (!is_swiotlb_buffer(vaddr
))
604 free_pages((unsigned long) vaddr
, get_order(size
));
606 /* DMA_TO_DEVICE to avoid memcpy in unmap_single */
607 unmap_single(hwdev
, vaddr
, size
, DMA_TO_DEVICE
);
609 EXPORT_SYMBOL(swiotlb_free_coherent
);
612 swiotlb_full(struct device
*dev
, size_t size
, int dir
, int do_panic
)
615 * Ran out of IOMMU space for this operation. This is very bad.
616 * Unfortunately the drivers cannot handle this operation properly.
617 * unless they check for dma_mapping_error (most don't)
618 * When the mapping is small enough return a static buffer to limit
619 * the damage, or panic when the transfer is too big.
621 printk(KERN_ERR
"DMA: Out of SW-IOMMU space for %zu bytes at "
622 "device %s\n", size
, dev
? dev_name(dev
) : "?");
624 if (size
> io_tlb_overflow
&& do_panic
) {
625 if (dir
== DMA_FROM_DEVICE
|| dir
== DMA_BIDIRECTIONAL
)
626 panic("DMA: Memory would be corrupted\n");
627 if (dir
== DMA_TO_DEVICE
|| dir
== DMA_BIDIRECTIONAL
)
628 panic("DMA: Random memory would be DMAed\n");
633 * Map a single buffer of the indicated size for DMA in streaming mode. The
634 * physical address to use is returned.
636 * Once the device is given the dma address, the device owns this memory until
637 * either swiotlb_unmap_single or swiotlb_dma_sync_single is performed.
640 swiotlb_map_single_attrs(struct device
*hwdev
, void *ptr
, size_t size
,
641 int dir
, struct dma_attrs
*attrs
)
643 dma_addr_t dev_addr
= swiotlb_virt_to_bus(hwdev
, ptr
);
646 BUG_ON(dir
== DMA_NONE
);
648 * If the pointer passed in happens to be in the device's DMA window,
649 * we can safely return the device addr and not worry about bounce
652 if (!address_needs_mapping(hwdev
, dev_addr
, size
) &&
653 !range_needs_mapping(ptr
, size
))
657 * Oh well, have to allocate and map a bounce buffer.
659 map
= map_single(hwdev
, virt_to_phys(ptr
), size
, dir
);
661 swiotlb_full(hwdev
, size
, dir
, 1);
662 map
= io_tlb_overflow_buffer
;
665 dev_addr
= swiotlb_virt_to_bus(hwdev
, map
);
668 * Ensure that the address returned is DMA'ble
670 if (address_needs_mapping(hwdev
, dev_addr
, size
))
671 panic("map_single: bounce buffer is not DMA'ble");
675 EXPORT_SYMBOL(swiotlb_map_single_attrs
);
678 swiotlb_map_single(struct device
*hwdev
, void *ptr
, size_t size
, int dir
)
680 return swiotlb_map_single_attrs(hwdev
, ptr
, size
, dir
, NULL
);
682 EXPORT_SYMBOL(swiotlb_map_single
);
685 * Unmap a single streaming mode DMA translation. The dma_addr and size must
686 * match what was provided for in a previous swiotlb_map_single call. All
687 * other usages are undefined.
689 * After this call, reads by the cpu to the buffer are guaranteed to see
690 * whatever the device wrote there.
693 swiotlb_unmap_single_attrs(struct device
*hwdev
, dma_addr_t dev_addr
,
694 size_t size
, int dir
, struct dma_attrs
*attrs
)
696 char *dma_addr
= swiotlb_bus_to_virt(dev_addr
);
698 BUG_ON(dir
== DMA_NONE
);
699 if (is_swiotlb_buffer(dma_addr
))
700 unmap_single(hwdev
, dma_addr
, size
, dir
);
701 else if (dir
== DMA_FROM_DEVICE
)
702 dma_mark_clean(dma_addr
, size
);
704 EXPORT_SYMBOL(swiotlb_unmap_single_attrs
);
707 swiotlb_unmap_single(struct device
*hwdev
, dma_addr_t dev_addr
, size_t size
,
710 return swiotlb_unmap_single_attrs(hwdev
, dev_addr
, size
, dir
, NULL
);
712 EXPORT_SYMBOL(swiotlb_unmap_single
);
715 * Make physical memory consistent for a single streaming mode DMA translation
718 * If you perform a swiotlb_map_single() but wish to interrogate the buffer
719 * using the cpu, yet do not wish to teardown the dma mapping, you must
720 * call this function before doing so. At the next point you give the dma
721 * address back to the card, you must first perform a
722 * swiotlb_dma_sync_for_device, and then the device again owns the buffer
725 swiotlb_sync_single(struct device
*hwdev
, dma_addr_t dev_addr
,
726 size_t size
, int dir
, int target
)
728 char *dma_addr
= swiotlb_bus_to_virt(dev_addr
);
730 BUG_ON(dir
== DMA_NONE
);
731 if (is_swiotlb_buffer(dma_addr
))
732 sync_single(hwdev
, dma_addr
, size
, dir
, target
);
733 else if (dir
== DMA_FROM_DEVICE
)
734 dma_mark_clean(dma_addr
, size
);
738 swiotlb_sync_single_for_cpu(struct device
*hwdev
, dma_addr_t dev_addr
,
739 size_t size
, int dir
)
741 swiotlb_sync_single(hwdev
, dev_addr
, size
, dir
, SYNC_FOR_CPU
);
743 EXPORT_SYMBOL(swiotlb_sync_single_for_cpu
);
746 swiotlb_sync_single_for_device(struct device
*hwdev
, dma_addr_t dev_addr
,
747 size_t size
, int dir
)
749 swiotlb_sync_single(hwdev
, dev_addr
, size
, dir
, SYNC_FOR_DEVICE
);
751 EXPORT_SYMBOL(swiotlb_sync_single_for_device
);
754 * Same as above, but for a sub-range of the mapping.
757 swiotlb_sync_single_range(struct device
*hwdev
, dma_addr_t dev_addr
,
758 unsigned long offset
, size_t size
,
761 char *dma_addr
= swiotlb_bus_to_virt(dev_addr
) + offset
;
763 BUG_ON(dir
== DMA_NONE
);
764 if (is_swiotlb_buffer(dma_addr
))
765 sync_single(hwdev
, dma_addr
, size
, dir
, target
);
766 else if (dir
== DMA_FROM_DEVICE
)
767 dma_mark_clean(dma_addr
, size
);
771 swiotlb_sync_single_range_for_cpu(struct device
*hwdev
, dma_addr_t dev_addr
,
772 unsigned long offset
, size_t size
, int dir
)
774 swiotlb_sync_single_range(hwdev
, dev_addr
, offset
, size
, dir
,
777 EXPORT_SYMBOL_GPL(swiotlb_sync_single_range_for_cpu
);
780 swiotlb_sync_single_range_for_device(struct device
*hwdev
, dma_addr_t dev_addr
,
781 unsigned long offset
, size_t size
, int dir
)
783 swiotlb_sync_single_range(hwdev
, dev_addr
, offset
, size
, dir
,
786 EXPORT_SYMBOL_GPL(swiotlb_sync_single_range_for_device
);
789 * Map a set of buffers described by scatterlist in streaming mode for DMA.
790 * This is the scatter-gather version of the above swiotlb_map_single
791 * interface. Here the scatter gather list elements are each tagged with the
792 * appropriate dma address and length. They are obtained via
793 * sg_dma_{address,length}(SG).
795 * NOTE: An implementation may be able to use a smaller number of
796 * DMA address/length pairs than there are SG table elements.
797 * (for example via virtual mapping capabilities)
798 * The routine returns the number of addr/length pairs actually
799 * used, at most nents.
801 * Device ownership issues as mentioned above for swiotlb_map_single are the
805 swiotlb_map_sg_attrs(struct device
*hwdev
, struct scatterlist
*sgl
, int nelems
,
806 int dir
, struct dma_attrs
*attrs
)
808 struct scatterlist
*sg
;
811 BUG_ON(dir
== DMA_NONE
);
813 for_each_sg(sgl
, sg
, nelems
, i
) {
814 void *addr
= sg_virt(sg
);
815 dma_addr_t dev_addr
= swiotlb_virt_to_bus(hwdev
, addr
);
817 if (range_needs_mapping(addr
, sg
->length
) ||
818 address_needs_mapping(hwdev
, dev_addr
, sg
->length
)) {
819 void *map
= map_single(hwdev
, sg_phys(sg
),
822 /* Don't panic here, we expect map_sg users
823 to do proper error handling. */
824 swiotlb_full(hwdev
, sg
->length
, dir
, 0);
825 swiotlb_unmap_sg_attrs(hwdev
, sgl
, i
, dir
,
827 sgl
[0].dma_length
= 0;
830 sg
->dma_address
= swiotlb_virt_to_bus(hwdev
, map
);
832 sg
->dma_address
= dev_addr
;
833 sg
->dma_length
= sg
->length
;
837 EXPORT_SYMBOL(swiotlb_map_sg_attrs
);
840 swiotlb_map_sg(struct device
*hwdev
, struct scatterlist
*sgl
, int nelems
,
843 return swiotlb_map_sg_attrs(hwdev
, sgl
, nelems
, dir
, NULL
);
845 EXPORT_SYMBOL(swiotlb_map_sg
);
848 * Unmap a set of streaming mode DMA translations. Again, cpu read rules
849 * concerning calls here are the same as for swiotlb_unmap_single() above.
852 swiotlb_unmap_sg_attrs(struct device
*hwdev
, struct scatterlist
*sgl
,
853 int nelems
, int dir
, struct dma_attrs
*attrs
)
855 struct scatterlist
*sg
;
858 BUG_ON(dir
== DMA_NONE
);
860 for_each_sg(sgl
, sg
, nelems
, i
) {
861 if (sg
->dma_address
!= swiotlb_virt_to_bus(hwdev
, sg_virt(sg
)))
862 unmap_single(hwdev
, swiotlb_bus_to_virt(sg
->dma_address
),
863 sg
->dma_length
, dir
);
864 else if (dir
== DMA_FROM_DEVICE
)
865 dma_mark_clean(sg_virt(sg
), sg
->dma_length
);
868 EXPORT_SYMBOL(swiotlb_unmap_sg_attrs
);
871 swiotlb_unmap_sg(struct device
*hwdev
, struct scatterlist
*sgl
, int nelems
,
874 return swiotlb_unmap_sg_attrs(hwdev
, sgl
, nelems
, dir
, NULL
);
876 EXPORT_SYMBOL(swiotlb_unmap_sg
);
879 * Make physical memory consistent for a set of streaming mode DMA translations
882 * The same as swiotlb_sync_single_* but for a scatter-gather list, same rules
886 swiotlb_sync_sg(struct device
*hwdev
, struct scatterlist
*sgl
,
887 int nelems
, int dir
, int target
)
889 struct scatterlist
*sg
;
892 BUG_ON(dir
== DMA_NONE
);
894 for_each_sg(sgl
, sg
, nelems
, i
) {
895 if (sg
->dma_address
!= swiotlb_virt_to_bus(hwdev
, sg_virt(sg
)))
896 sync_single(hwdev
, swiotlb_bus_to_virt(sg
->dma_address
),
897 sg
->dma_length
, dir
, target
);
898 else if (dir
== DMA_FROM_DEVICE
)
899 dma_mark_clean(sg_virt(sg
), sg
->dma_length
);
904 swiotlb_sync_sg_for_cpu(struct device
*hwdev
, struct scatterlist
*sg
,
907 swiotlb_sync_sg(hwdev
, sg
, nelems
, dir
, SYNC_FOR_CPU
);
909 EXPORT_SYMBOL(swiotlb_sync_sg_for_cpu
);
912 swiotlb_sync_sg_for_device(struct device
*hwdev
, struct scatterlist
*sg
,
915 swiotlb_sync_sg(hwdev
, sg
, nelems
, dir
, SYNC_FOR_DEVICE
);
917 EXPORT_SYMBOL(swiotlb_sync_sg_for_device
);
920 swiotlb_dma_mapping_error(struct device
*hwdev
, dma_addr_t dma_addr
)
922 return (dma_addr
== swiotlb_virt_to_bus(hwdev
, io_tlb_overflow_buffer
));
924 EXPORT_SYMBOL(swiotlb_dma_mapping_error
);
927 * Return whether the given device DMA address mask can be supported
928 * properly. For example, if your device can only drive the low 24-bits
929 * during bus mastering, then you would pass 0x00ffffff as the mask to
933 swiotlb_dma_supported(struct device
*hwdev
, u64 mask
)
935 return swiotlb_virt_to_bus(hwdev
, io_tlb_end
- 1) <= mask
;
937 EXPORT_SYMBOL(swiotlb_dma_supported
);