2 * linux/mm/page_alloc.c
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
17 #include <linux/config.h>
18 #include <linux/stddef.h>
20 #include <linux/swap.h>
21 #include <linux/interrupt.h>
22 #include <linux/pagemap.h>
23 #include <linux/bootmem.h>
24 #include <linux/compiler.h>
25 #include <linux/kernel.h>
26 #include <linux/module.h>
27 #include <linux/suspend.h>
28 #include <linux/pagevec.h>
29 #include <linux/blkdev.h>
30 #include <linux/slab.h>
31 #include <linux/notifier.h>
32 #include <linux/topology.h>
33 #include <linux/sysctl.h>
34 #include <linux/cpu.h>
35 #include <linux/cpuset.h>
36 #include <linux/memory_hotplug.h>
37 #include <linux/nodemask.h>
38 #include <linux/vmalloc.h>
39 #include <linux/mempolicy.h>
41 #include <asm/tlbflush.h>
45 * MCD - HACK: Find somewhere to initialize this EARLY, or make this
48 nodemask_t node_online_map __read_mostly
= { { [0] = 1UL } };
49 EXPORT_SYMBOL(node_online_map
);
50 nodemask_t node_possible_map __read_mostly
= NODE_MASK_ALL
;
51 EXPORT_SYMBOL(node_possible_map
);
52 unsigned long totalram_pages __read_mostly
;
53 unsigned long totalhigh_pages __read_mostly
;
54 unsigned long totalreserve_pages __read_mostly
;
56 int percpu_pagelist_fraction
;
58 static void __free_pages_ok(struct page
*page
, unsigned int order
);
61 * results with 256, 32 in the lowmem_reserve sysctl:
62 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
63 * 1G machine -> (16M dma, 784M normal, 224M high)
64 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
65 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
66 * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
68 * TBD: should special case ZONE_DMA32 machines here - in those we normally
69 * don't need any ZONE_NORMAL reservation
71 int sysctl_lowmem_reserve_ratio
[MAX_NR_ZONES
-1] = { 256, 256, 32 };
73 EXPORT_SYMBOL(totalram_pages
);
76 * Used by page_zone() to look up the address of the struct zone whose
77 * id is encoded in the upper bits of page->flags
79 struct zone
*zone_table
[1 << ZONETABLE_SHIFT
] __read_mostly
;
80 EXPORT_SYMBOL(zone_table
);
82 static char *zone_names
[MAX_NR_ZONES
] = { "DMA", "DMA32", "Normal", "HighMem" };
83 int min_free_kbytes
= 1024;
85 unsigned long __initdata nr_kernel_pages
;
86 unsigned long __initdata nr_all_pages
;
88 #ifdef CONFIG_DEBUG_VM
89 static int page_outside_zone_boundaries(struct zone
*zone
, struct page
*page
)
93 unsigned long pfn
= page_to_pfn(page
);
96 seq
= zone_span_seqbegin(zone
);
97 if (pfn
>= zone
->zone_start_pfn
+ zone
->spanned_pages
)
99 else if (pfn
< zone
->zone_start_pfn
)
101 } while (zone_span_seqretry(zone
, seq
));
106 static int page_is_consistent(struct zone
*zone
, struct page
*page
)
108 #ifdef CONFIG_HOLES_IN_ZONE
109 if (!pfn_valid(page_to_pfn(page
)))
112 if (zone
!= page_zone(page
))
118 * Temporary debugging check for pages not lying within a given zone.
120 static int bad_range(struct zone
*zone
, struct page
*page
)
122 if (page_outside_zone_boundaries(zone
, page
))
124 if (!page_is_consistent(zone
, page
))
131 static inline int bad_range(struct zone
*zone
, struct page
*page
)
137 static void bad_page(struct page
*page
)
139 printk(KERN_EMERG
"Bad page state in process '%s'\n"
140 KERN_EMERG
"page:%p flags:0x%0*lx mapping:%p mapcount:%d count:%d\n"
141 KERN_EMERG
"Trying to fix it up, but a reboot is needed\n"
142 KERN_EMERG
"Backtrace:\n",
143 current
->comm
, page
, (int)(2*sizeof(unsigned long)),
144 (unsigned long)page
->flags
, page
->mapping
,
145 page_mapcount(page
), page_count(page
));
147 page
->flags
&= ~(1 << PG_lru
|
157 set_page_count(page
, 0);
158 reset_page_mapcount(page
);
159 page
->mapping
= NULL
;
160 add_taint(TAINT_BAD_PAGE
);
164 * Higher-order pages are called "compound pages". They are structured thusly:
166 * The first PAGE_SIZE page is called the "head page".
168 * The remaining PAGE_SIZE pages are called "tail pages".
170 * All pages have PG_compound set. All pages have their ->private pointing at
171 * the head page (even the head page has this).
173 * The first tail page's ->lru.next holds the address of the compound page's
174 * put_page() function. Its ->lru.prev holds the order of allocation.
175 * This usage means that zero-order pages may not be compound.
178 static void free_compound_page(struct page
*page
)
180 __free_pages_ok(page
, (unsigned long)page
[1].lru
.prev
);
183 static void prep_compound_page(struct page
*page
, unsigned long order
)
186 int nr_pages
= 1 << order
;
188 page
[1].lru
.next
= (void *)free_compound_page
; /* set dtor */
189 page
[1].lru
.prev
= (void *)order
;
190 for (i
= 0; i
< nr_pages
; i
++) {
191 struct page
*p
= page
+ i
;
193 __SetPageCompound(p
);
194 set_page_private(p
, (unsigned long)page
);
198 static void destroy_compound_page(struct page
*page
, unsigned long order
)
201 int nr_pages
= 1 << order
;
203 if (unlikely((unsigned long)page
[1].lru
.prev
!= order
))
206 for (i
= 0; i
< nr_pages
; i
++) {
207 struct page
*p
= page
+ i
;
209 if (unlikely(!PageCompound(p
) |
210 (page_private(p
) != (unsigned long)page
)))
212 __ClearPageCompound(p
);
216 static inline void prep_zero_page(struct page
*page
, int order
, gfp_t gfp_flags
)
220 BUG_ON((gfp_flags
& (__GFP_WAIT
| __GFP_HIGHMEM
)) == __GFP_HIGHMEM
);
222 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
223 * and __GFP_HIGHMEM from hard or soft interrupt context.
225 BUG_ON((gfp_flags
& __GFP_HIGHMEM
) && in_interrupt());
226 for (i
= 0; i
< (1 << order
); i
++)
227 clear_highpage(page
+ i
);
231 * function for dealing with page's order in buddy system.
232 * zone->lock is already acquired when we use these.
233 * So, we don't need atomic page->flags operations here.
235 static inline unsigned long page_order(struct page
*page
)
237 return page_private(page
);
240 static inline void set_page_order(struct page
*page
, int order
)
242 set_page_private(page
, order
);
243 __SetPageBuddy(page
);
246 static inline void rmv_page_order(struct page
*page
)
248 __ClearPageBuddy(page
);
249 set_page_private(page
, 0);
253 * Locate the struct page for both the matching buddy in our
254 * pair (buddy1) and the combined O(n+1) page they form (page).
256 * 1) Any buddy B1 will have an order O twin B2 which satisfies
257 * the following equation:
259 * For example, if the starting buddy (buddy2) is #8 its order
261 * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
263 * 2) Any buddy B will have an order O+1 parent P which
264 * satisfies the following equation:
267 * Assumption: *_mem_map is contigious at least up to MAX_ORDER
269 static inline struct page
*
270 __page_find_buddy(struct page
*page
, unsigned long page_idx
, unsigned int order
)
272 unsigned long buddy_idx
= page_idx
^ (1 << order
);
274 return page
+ (buddy_idx
- page_idx
);
277 static inline unsigned long
278 __find_combined_index(unsigned long page_idx
, unsigned int order
)
280 return (page_idx
& ~(1 << order
));
284 * This function checks whether a page is free && is the buddy
285 * we can do coalesce a page and its buddy if
286 * (a) the buddy is not in a hole &&
287 * (b) the buddy is in the buddy system &&
288 * (c) a page and its buddy have the same order.
290 * For recording whether a page is in the buddy system, we use PG_buddy.
291 * Setting, clearing, and testing PG_buddy is serialized by zone->lock.
293 * For recording page's order, we use page_private(page).
295 static inline int page_is_buddy(struct page
*page
, int order
)
297 #ifdef CONFIG_HOLES_IN_ZONE
298 if (!pfn_valid(page_to_pfn(page
)))
302 if (PageBuddy(page
) && page_order(page
) == order
) {
303 BUG_ON(page_count(page
) != 0);
310 * Freeing function for a buddy system allocator.
312 * The concept of a buddy system is to maintain direct-mapped table
313 * (containing bit values) for memory blocks of various "orders".
314 * The bottom level table contains the map for the smallest allocatable
315 * units of memory (here, pages), and each level above it describes
316 * pairs of units from the levels below, hence, "buddies".
317 * At a high level, all that happens here is marking the table entry
318 * at the bottom level available, and propagating the changes upward
319 * as necessary, plus some accounting needed to play nicely with other
320 * parts of the VM system.
321 * At each level, we keep a list of pages, which are heads of continuous
322 * free pages of length of (1 << order) and marked with PG_buddy. Page's
323 * order is recorded in page_private(page) field.
324 * So when we are allocating or freeing one, we can derive the state of the
325 * other. That is, if we allocate a small block, and both were
326 * free, the remainder of the region must be split into blocks.
327 * If a block is freed, and its buddy is also free, then this
328 * triggers coalescing into a block of larger size.
333 static inline void __free_one_page(struct page
*page
,
334 struct zone
*zone
, unsigned int order
)
336 unsigned long page_idx
;
337 int order_size
= 1 << order
;
339 if (unlikely(PageCompound(page
)))
340 destroy_compound_page(page
, order
);
342 page_idx
= page_to_pfn(page
) & ((1 << MAX_ORDER
) - 1);
344 BUG_ON(page_idx
& (order_size
- 1));
345 BUG_ON(bad_range(zone
, page
));
347 zone
->free_pages
+= order_size
;
348 while (order
< MAX_ORDER
-1) {
349 unsigned long combined_idx
;
350 struct free_area
*area
;
353 buddy
= __page_find_buddy(page
, page_idx
, order
);
354 if (!page_is_buddy(buddy
, order
))
355 break; /* Move the buddy up one level. */
357 list_del(&buddy
->lru
);
358 area
= zone
->free_area
+ order
;
360 rmv_page_order(buddy
);
361 combined_idx
= __find_combined_index(page_idx
, order
);
362 page
= page
+ (combined_idx
- page_idx
);
363 page_idx
= combined_idx
;
366 set_page_order(page
, order
);
367 list_add(&page
->lru
, &zone
->free_area
[order
].free_list
);
368 zone
->free_area
[order
].nr_free
++;
371 static inline int free_pages_check(struct page
*page
)
373 if (unlikely(page_mapcount(page
) |
374 (page
->mapping
!= NULL
) |
375 (page_count(page
) != 0) |
389 __ClearPageDirty(page
);
391 * For now, we report if PG_reserved was found set, but do not
392 * clear it, and do not free the page. But we shall soon need
393 * to do more, for when the ZERO_PAGE count wraps negative.
395 return PageReserved(page
);
399 * Frees a list of pages.
400 * Assumes all pages on list are in same zone, and of same order.
401 * count is the number of pages to free.
403 * If the zone was previously in an "all pages pinned" state then look to
404 * see if this freeing clears that state.
406 * And clear the zone's pages_scanned counter, to hold off the "all pages are
407 * pinned" detection logic.
409 static void free_pages_bulk(struct zone
*zone
, int count
,
410 struct list_head
*list
, int order
)
412 spin_lock(&zone
->lock
);
413 zone
->all_unreclaimable
= 0;
414 zone
->pages_scanned
= 0;
418 BUG_ON(list_empty(list
));
419 page
= list_entry(list
->prev
, struct page
, lru
);
420 /* have to delete it as __free_one_page list manipulates */
421 list_del(&page
->lru
);
422 __free_one_page(page
, zone
, order
);
424 spin_unlock(&zone
->lock
);
427 static void free_one_page(struct zone
*zone
, struct page
*page
, int order
)
430 list_add(&page
->lru
, &list
);
431 free_pages_bulk(zone
, 1, &list
, order
);
434 static void __free_pages_ok(struct page
*page
, unsigned int order
)
440 arch_free_page(page
, order
);
441 if (!PageHighMem(page
))
442 mutex_debug_check_no_locks_freed(page_address(page
),
445 for (i
= 0 ; i
< (1 << order
) ; ++i
)
446 reserved
+= free_pages_check(page
+ i
);
450 kernel_map_pages(page
, 1 << order
, 0);
451 local_irq_save(flags
);
452 __mod_page_state(pgfree
, 1 << order
);
453 free_one_page(page_zone(page
), page
, order
);
454 local_irq_restore(flags
);
458 * permit the bootmem allocator to evade page validation on high-order frees
460 void fastcall __init
__free_pages_bootmem(struct page
*page
, unsigned int order
)
463 __ClearPageReserved(page
);
464 set_page_count(page
, 0);
465 set_page_refcounted(page
);
471 for (loop
= 0; loop
< BITS_PER_LONG
; loop
++) {
472 struct page
*p
= &page
[loop
];
474 if (loop
+ 1 < BITS_PER_LONG
)
476 __ClearPageReserved(p
);
477 set_page_count(p
, 0);
480 set_page_refcounted(page
);
481 __free_pages(page
, order
);
487 * The order of subdivision here is critical for the IO subsystem.
488 * Please do not alter this order without good reasons and regression
489 * testing. Specifically, as large blocks of memory are subdivided,
490 * the order in which smaller blocks are delivered depends on the order
491 * they're subdivided in this function. This is the primary factor
492 * influencing the order in which pages are delivered to the IO
493 * subsystem according to empirical testing, and this is also justified
494 * by considering the behavior of a buddy system containing a single
495 * large block of memory acted on by a series of small allocations.
496 * This behavior is a critical factor in sglist merging's success.
500 static inline void expand(struct zone
*zone
, struct page
*page
,
501 int low
, int high
, struct free_area
*area
)
503 unsigned long size
= 1 << high
;
509 BUG_ON(bad_range(zone
, &page
[size
]));
510 list_add(&page
[size
].lru
, &area
->free_list
);
512 set_page_order(&page
[size
], high
);
517 * This page is about to be returned from the page allocator
519 static int prep_new_page(struct page
*page
, int order
, gfp_t gfp_flags
)
521 if (unlikely(page_mapcount(page
) |
522 (page
->mapping
!= NULL
) |
523 (page_count(page
) != 0) |
539 * For now, we report if PG_reserved was found set, but do not
540 * clear it, and do not allocate the page: as a safety net.
542 if (PageReserved(page
))
545 page
->flags
&= ~(1 << PG_uptodate
| 1 << PG_error
|
546 1 << PG_referenced
| 1 << PG_arch_1
|
547 1 << PG_checked
| 1 << PG_mappedtodisk
);
548 set_page_private(page
, 0);
549 set_page_refcounted(page
);
550 kernel_map_pages(page
, 1 << order
, 1);
552 if (gfp_flags
& __GFP_ZERO
)
553 prep_zero_page(page
, order
, gfp_flags
);
555 if (order
&& (gfp_flags
& __GFP_COMP
))
556 prep_compound_page(page
, order
);
562 * Do the hard work of removing an element from the buddy allocator.
563 * Call me with the zone->lock already held.
565 static struct page
*__rmqueue(struct zone
*zone
, unsigned int order
)
567 struct free_area
* area
;
568 unsigned int current_order
;
571 for (current_order
= order
; current_order
< MAX_ORDER
; ++current_order
) {
572 area
= zone
->free_area
+ current_order
;
573 if (list_empty(&area
->free_list
))
576 page
= list_entry(area
->free_list
.next
, struct page
, lru
);
577 list_del(&page
->lru
);
578 rmv_page_order(page
);
580 zone
->free_pages
-= 1UL << order
;
581 expand(zone
, page
, order
, current_order
, area
);
589 * Obtain a specified number of elements from the buddy allocator, all under
590 * a single hold of the lock, for efficiency. Add them to the supplied list.
591 * Returns the number of new pages which were placed at *list.
593 static int rmqueue_bulk(struct zone
*zone
, unsigned int order
,
594 unsigned long count
, struct list_head
*list
)
598 spin_lock(&zone
->lock
);
599 for (i
= 0; i
< count
; ++i
) {
600 struct page
*page
= __rmqueue(zone
, order
);
601 if (unlikely(page
== NULL
))
603 list_add_tail(&page
->lru
, list
);
605 spin_unlock(&zone
->lock
);
611 * Called from the slab reaper to drain pagesets on a particular node that
612 * belong to the currently executing processor.
613 * Note that this function must be called with the thread pinned to
614 * a single processor.
616 void drain_node_pages(int nodeid
)
621 for (z
= 0; z
< MAX_NR_ZONES
; z
++) {
622 struct zone
*zone
= NODE_DATA(nodeid
)->node_zones
+ z
;
623 struct per_cpu_pageset
*pset
;
625 pset
= zone_pcp(zone
, smp_processor_id());
626 for (i
= 0; i
< ARRAY_SIZE(pset
->pcp
); i
++) {
627 struct per_cpu_pages
*pcp
;
631 local_irq_save(flags
);
632 free_pages_bulk(zone
, pcp
->count
, &pcp
->list
, 0);
634 local_irq_restore(flags
);
641 #if defined(CONFIG_PM) || defined(CONFIG_HOTPLUG_CPU)
642 static void __drain_pages(unsigned int cpu
)
648 for_each_zone(zone
) {
649 struct per_cpu_pageset
*pset
;
651 pset
= zone_pcp(zone
, cpu
);
652 for (i
= 0; i
< ARRAY_SIZE(pset
->pcp
); i
++) {
653 struct per_cpu_pages
*pcp
;
656 local_irq_save(flags
);
657 free_pages_bulk(zone
, pcp
->count
, &pcp
->list
, 0);
659 local_irq_restore(flags
);
663 #endif /* CONFIG_PM || CONFIG_HOTPLUG_CPU */
667 void mark_free_pages(struct zone
*zone
)
669 unsigned long zone_pfn
, flags
;
671 struct list_head
*curr
;
673 if (!zone
->spanned_pages
)
676 spin_lock_irqsave(&zone
->lock
, flags
);
677 for (zone_pfn
= 0; zone_pfn
< zone
->spanned_pages
; ++zone_pfn
)
678 ClearPageNosaveFree(pfn_to_page(zone_pfn
+ zone
->zone_start_pfn
));
680 for (order
= MAX_ORDER
- 1; order
>= 0; --order
)
681 list_for_each(curr
, &zone
->free_area
[order
].free_list
) {
682 unsigned long start_pfn
, i
;
684 start_pfn
= page_to_pfn(list_entry(curr
, struct page
, lru
));
686 for (i
=0; i
< (1<<order
); i
++)
687 SetPageNosaveFree(pfn_to_page(start_pfn
+i
));
689 spin_unlock_irqrestore(&zone
->lock
, flags
);
693 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
695 void drain_local_pages(void)
699 local_irq_save(flags
);
700 __drain_pages(smp_processor_id());
701 local_irq_restore(flags
);
703 #endif /* CONFIG_PM */
705 static void zone_statistics(struct zonelist
*zonelist
, struct zone
*z
, int cpu
)
708 pg_data_t
*pg
= z
->zone_pgdat
;
709 pg_data_t
*orig
= zonelist
->zones
[0]->zone_pgdat
;
710 struct per_cpu_pageset
*p
;
712 p
= zone_pcp(z
, cpu
);
717 zone_pcp(zonelist
->zones
[0], cpu
)->numa_foreign
++;
719 if (pg
== NODE_DATA(numa_node_id()))
727 * Free a 0-order page
729 static void fastcall
free_hot_cold_page(struct page
*page
, int cold
)
731 struct zone
*zone
= page_zone(page
);
732 struct per_cpu_pages
*pcp
;
735 arch_free_page(page
, 0);
738 page
->mapping
= NULL
;
739 if (free_pages_check(page
))
742 kernel_map_pages(page
, 1, 0);
744 pcp
= &zone_pcp(zone
, get_cpu())->pcp
[cold
];
745 local_irq_save(flags
);
746 __inc_page_state(pgfree
);
747 list_add(&page
->lru
, &pcp
->list
);
749 if (pcp
->count
>= pcp
->high
) {
750 free_pages_bulk(zone
, pcp
->batch
, &pcp
->list
, 0);
751 pcp
->count
-= pcp
->batch
;
753 local_irq_restore(flags
);
757 void fastcall
free_hot_page(struct page
*page
)
759 free_hot_cold_page(page
, 0);
762 void fastcall
free_cold_page(struct page
*page
)
764 free_hot_cold_page(page
, 1);
768 * split_page takes a non-compound higher-order page, and splits it into
769 * n (1<<order) sub-pages: page[0..n]
770 * Each sub-page must be freed individually.
772 * Note: this is probably too low level an operation for use in drivers.
773 * Please consult with lkml before using this in your driver.
775 void split_page(struct page
*page
, unsigned int order
)
779 BUG_ON(PageCompound(page
));
780 BUG_ON(!page_count(page
));
781 for (i
= 1; i
< (1 << order
); i
++)
782 set_page_refcounted(page
+ i
);
786 * Really, prep_compound_page() should be called from __rmqueue_bulk(). But
787 * we cheat by calling it from here, in the order > 0 path. Saves a branch
790 static struct page
*buffered_rmqueue(struct zonelist
*zonelist
,
791 struct zone
*zone
, int order
, gfp_t gfp_flags
)
795 int cold
= !!(gfp_flags
& __GFP_COLD
);
800 if (likely(order
== 0)) {
801 struct per_cpu_pages
*pcp
;
803 pcp
= &zone_pcp(zone
, cpu
)->pcp
[cold
];
804 local_irq_save(flags
);
806 pcp
->count
+= rmqueue_bulk(zone
, 0,
807 pcp
->batch
, &pcp
->list
);
808 if (unlikely(!pcp
->count
))
811 page
= list_entry(pcp
->list
.next
, struct page
, lru
);
812 list_del(&page
->lru
);
815 spin_lock_irqsave(&zone
->lock
, flags
);
816 page
= __rmqueue(zone
, order
);
817 spin_unlock(&zone
->lock
);
822 __mod_page_state_zone(zone
, pgalloc
, 1 << order
);
823 zone_statistics(zonelist
, zone
, cpu
);
824 local_irq_restore(flags
);
827 BUG_ON(bad_range(zone
, page
));
828 if (prep_new_page(page
, order
, gfp_flags
))
833 local_irq_restore(flags
);
838 #define ALLOC_NO_WATERMARKS 0x01 /* don't check watermarks at all */
839 #define ALLOC_WMARK_MIN 0x02 /* use pages_min watermark */
840 #define ALLOC_WMARK_LOW 0x04 /* use pages_low watermark */
841 #define ALLOC_WMARK_HIGH 0x08 /* use pages_high watermark */
842 #define ALLOC_HARDER 0x10 /* try to alloc harder */
843 #define ALLOC_HIGH 0x20 /* __GFP_HIGH set */
844 #define ALLOC_CPUSET 0x40 /* check for correct cpuset */
847 * Return 1 if free pages are above 'mark'. This takes into account the order
850 int zone_watermark_ok(struct zone
*z
, int order
, unsigned long mark
,
851 int classzone_idx
, int alloc_flags
)
853 /* free_pages my go negative - that's OK */
854 long min
= mark
, free_pages
= z
->free_pages
- (1 << order
) + 1;
857 if (alloc_flags
& ALLOC_HIGH
)
859 if (alloc_flags
& ALLOC_HARDER
)
862 if (free_pages
<= min
+ z
->lowmem_reserve
[classzone_idx
])
864 for (o
= 0; o
< order
; o
++) {
865 /* At the next order, this order's pages become unavailable */
866 free_pages
-= z
->free_area
[o
].nr_free
<< o
;
868 /* Require fewer higher order pages to be free */
871 if (free_pages
<= min
)
878 * get_page_from_freeliest goes through the zonelist trying to allocate
882 get_page_from_freelist(gfp_t gfp_mask
, unsigned int order
,
883 struct zonelist
*zonelist
, int alloc_flags
)
885 struct zone
**z
= zonelist
->zones
;
886 struct page
*page
= NULL
;
887 int classzone_idx
= zone_idx(*z
);
890 * Go through the zonelist once, looking for a zone with enough free.
891 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
894 if ((alloc_flags
& ALLOC_CPUSET
) &&
895 !cpuset_zone_allowed(*z
, gfp_mask
))
898 if (!(alloc_flags
& ALLOC_NO_WATERMARKS
)) {
900 if (alloc_flags
& ALLOC_WMARK_MIN
)
901 mark
= (*z
)->pages_min
;
902 else if (alloc_flags
& ALLOC_WMARK_LOW
)
903 mark
= (*z
)->pages_low
;
905 mark
= (*z
)->pages_high
;
906 if (!zone_watermark_ok(*z
, order
, mark
,
907 classzone_idx
, alloc_flags
))
908 if (!zone_reclaim_mode
||
909 !zone_reclaim(*z
, gfp_mask
, order
))
913 page
= buffered_rmqueue(zonelist
, *z
, order
, gfp_mask
);
917 } while (*(++z
) != NULL
);
922 * This is the 'heart' of the zoned buddy allocator.
924 struct page
* fastcall
925 __alloc_pages(gfp_t gfp_mask
, unsigned int order
,
926 struct zonelist
*zonelist
)
928 const gfp_t wait
= gfp_mask
& __GFP_WAIT
;
931 struct reclaim_state reclaim_state
;
932 struct task_struct
*p
= current
;
935 int did_some_progress
;
937 might_sleep_if(wait
);
940 z
= zonelist
->zones
; /* the list of zones suitable for gfp_mask */
942 if (unlikely(*z
== NULL
)) {
943 /* Should this ever happen?? */
947 page
= get_page_from_freelist(gfp_mask
|__GFP_HARDWALL
, order
,
948 zonelist
, ALLOC_WMARK_LOW
|ALLOC_CPUSET
);
953 if (cpuset_zone_allowed(*z
, gfp_mask
))
954 wakeup_kswapd(*z
, order
);
958 * OK, we're below the kswapd watermark and have kicked background
959 * reclaim. Now things get more complex, so set up alloc_flags according
960 * to how we want to proceed.
962 * The caller may dip into page reserves a bit more if the caller
963 * cannot run direct reclaim, or if the caller has realtime scheduling
964 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
965 * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH).
967 alloc_flags
= ALLOC_WMARK_MIN
;
968 if ((unlikely(rt_task(p
)) && !in_interrupt()) || !wait
)
969 alloc_flags
|= ALLOC_HARDER
;
970 if (gfp_mask
& __GFP_HIGH
)
971 alloc_flags
|= ALLOC_HIGH
;
972 alloc_flags
|= ALLOC_CPUSET
;
975 * Go through the zonelist again. Let __GFP_HIGH and allocations
976 * coming from realtime tasks go deeper into reserves.
978 * This is the last chance, in general, before the goto nopage.
979 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
980 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
982 page
= get_page_from_freelist(gfp_mask
, order
, zonelist
, alloc_flags
);
986 /* This allocation should allow future memory freeing. */
988 if (((p
->flags
& PF_MEMALLOC
) || unlikely(test_thread_flag(TIF_MEMDIE
)))
989 && !in_interrupt()) {
990 if (!(gfp_mask
& __GFP_NOMEMALLOC
)) {
992 /* go through the zonelist yet again, ignoring mins */
993 page
= get_page_from_freelist(gfp_mask
, order
,
994 zonelist
, ALLOC_NO_WATERMARKS
);
997 if (gfp_mask
& __GFP_NOFAIL
) {
998 blk_congestion_wait(WRITE
, HZ
/50);
1005 /* Atomic allocations - we can't balance anything */
1012 /* We now go into synchronous reclaim */
1013 cpuset_memory_pressure_bump();
1014 p
->flags
|= PF_MEMALLOC
;
1015 reclaim_state
.reclaimed_slab
= 0;
1016 p
->reclaim_state
= &reclaim_state
;
1018 did_some_progress
= try_to_free_pages(zonelist
->zones
, gfp_mask
);
1020 p
->reclaim_state
= NULL
;
1021 p
->flags
&= ~PF_MEMALLOC
;
1025 if (likely(did_some_progress
)) {
1026 page
= get_page_from_freelist(gfp_mask
, order
,
1027 zonelist
, alloc_flags
);
1030 } else if ((gfp_mask
& __GFP_FS
) && !(gfp_mask
& __GFP_NORETRY
)) {
1032 * Go through the zonelist yet one more time, keep
1033 * very high watermark here, this is only to catch
1034 * a parallel oom killing, we must fail if we're still
1035 * under heavy pressure.
1037 page
= get_page_from_freelist(gfp_mask
|__GFP_HARDWALL
, order
,
1038 zonelist
, ALLOC_WMARK_HIGH
|ALLOC_CPUSET
);
1042 out_of_memory(zonelist
, gfp_mask
, order
);
1047 * Don't let big-order allocations loop unless the caller explicitly
1048 * requests that. Wait for some write requests to complete then retry.
1050 * In this implementation, __GFP_REPEAT means __GFP_NOFAIL for order
1051 * <= 3, but that may not be true in other implementations.
1054 if (!(gfp_mask
& __GFP_NORETRY
)) {
1055 if ((order
<= 3) || (gfp_mask
& __GFP_REPEAT
))
1057 if (gfp_mask
& __GFP_NOFAIL
)
1061 blk_congestion_wait(WRITE
, HZ
/50);
1066 if (!(gfp_mask
& __GFP_NOWARN
) && printk_ratelimit()) {
1067 printk(KERN_WARNING
"%s: page allocation failure."
1068 " order:%d, mode:0x%x\n",
1069 p
->comm
, order
, gfp_mask
);
1077 EXPORT_SYMBOL(__alloc_pages
);
1080 * Common helper functions.
1082 fastcall
unsigned long __get_free_pages(gfp_t gfp_mask
, unsigned int order
)
1085 page
= alloc_pages(gfp_mask
, order
);
1088 return (unsigned long) page_address(page
);
1091 EXPORT_SYMBOL(__get_free_pages
);
1093 fastcall
unsigned long get_zeroed_page(gfp_t gfp_mask
)
1098 * get_zeroed_page() returns a 32-bit address, which cannot represent
1101 BUG_ON((gfp_mask
& __GFP_HIGHMEM
) != 0);
1103 page
= alloc_pages(gfp_mask
| __GFP_ZERO
, 0);
1105 return (unsigned long) page_address(page
);
1109 EXPORT_SYMBOL(get_zeroed_page
);
1111 void __pagevec_free(struct pagevec
*pvec
)
1113 int i
= pagevec_count(pvec
);
1116 free_hot_cold_page(pvec
->pages
[i
], pvec
->cold
);
1119 fastcall
void __free_pages(struct page
*page
, unsigned int order
)
1121 if (put_page_testzero(page
)) {
1123 free_hot_page(page
);
1125 __free_pages_ok(page
, order
);
1129 EXPORT_SYMBOL(__free_pages
);
1131 fastcall
void free_pages(unsigned long addr
, unsigned int order
)
1134 BUG_ON(!virt_addr_valid((void *)addr
));
1135 __free_pages(virt_to_page((void *)addr
), order
);
1139 EXPORT_SYMBOL(free_pages
);
1142 * Total amount of free (allocatable) RAM:
1144 unsigned int nr_free_pages(void)
1146 unsigned int sum
= 0;
1150 sum
+= zone
->free_pages
;
1155 EXPORT_SYMBOL(nr_free_pages
);
1158 unsigned int nr_free_pages_pgdat(pg_data_t
*pgdat
)
1160 unsigned int i
, sum
= 0;
1162 for (i
= 0; i
< MAX_NR_ZONES
; i
++)
1163 sum
+= pgdat
->node_zones
[i
].free_pages
;
1169 static unsigned int nr_free_zone_pages(int offset
)
1171 /* Just pick one node, since fallback list is circular */
1172 pg_data_t
*pgdat
= NODE_DATA(numa_node_id());
1173 unsigned int sum
= 0;
1175 struct zonelist
*zonelist
= pgdat
->node_zonelists
+ offset
;
1176 struct zone
**zonep
= zonelist
->zones
;
1179 for (zone
= *zonep
++; zone
; zone
= *zonep
++) {
1180 unsigned long size
= zone
->present_pages
;
1181 unsigned long high
= zone
->pages_high
;
1190 * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL
1192 unsigned int nr_free_buffer_pages(void)
1194 return nr_free_zone_pages(gfp_zone(GFP_USER
));
1198 * Amount of free RAM allocatable within all zones
1200 unsigned int nr_free_pagecache_pages(void)
1202 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER
));
1205 #ifdef CONFIG_HIGHMEM
1206 unsigned int nr_free_highpages (void)
1209 unsigned int pages
= 0;
1211 for_each_online_pgdat(pgdat
)
1212 pages
+= pgdat
->node_zones
[ZONE_HIGHMEM
].free_pages
;
1219 static void show_node(struct zone
*zone
)
1221 printk("Node %d ", zone
->zone_pgdat
->node_id
);
1224 #define show_node(zone) do { } while (0)
1228 * Accumulate the page_state information across all CPUs.
1229 * The result is unavoidably approximate - it can change
1230 * during and after execution of this function.
1232 static DEFINE_PER_CPU(struct page_state
, page_states
) = {0};
1234 atomic_t nr_pagecache
= ATOMIC_INIT(0);
1235 EXPORT_SYMBOL(nr_pagecache
);
1237 DEFINE_PER_CPU(long, nr_pagecache_local
) = 0;
1240 static void __get_page_state(struct page_state
*ret
, int nr
, cpumask_t
*cpumask
)
1244 memset(ret
, 0, nr
* sizeof(unsigned long));
1245 cpus_and(*cpumask
, *cpumask
, cpu_online_map
);
1247 for_each_cpu_mask(cpu
, *cpumask
) {
1253 in
= (unsigned long *)&per_cpu(page_states
, cpu
);
1255 next_cpu
= next_cpu(cpu
, *cpumask
);
1256 if (likely(next_cpu
< NR_CPUS
))
1257 prefetch(&per_cpu(page_states
, next_cpu
));
1259 out
= (unsigned long *)ret
;
1260 for (off
= 0; off
< nr
; off
++)
1265 void get_page_state_node(struct page_state
*ret
, int node
)
1268 cpumask_t mask
= node_to_cpumask(node
);
1270 nr
= offsetof(struct page_state
, GET_PAGE_STATE_LAST
);
1271 nr
/= sizeof(unsigned long);
1273 __get_page_state(ret
, nr
+1, &mask
);
1276 void get_page_state(struct page_state
*ret
)
1279 cpumask_t mask
= CPU_MASK_ALL
;
1281 nr
= offsetof(struct page_state
, GET_PAGE_STATE_LAST
);
1282 nr
/= sizeof(unsigned long);
1284 __get_page_state(ret
, nr
+ 1, &mask
);
1287 void get_full_page_state(struct page_state
*ret
)
1289 cpumask_t mask
= CPU_MASK_ALL
;
1291 __get_page_state(ret
, sizeof(*ret
) / sizeof(unsigned long), &mask
);
1294 unsigned long read_page_state_offset(unsigned long offset
)
1296 unsigned long ret
= 0;
1299 for_each_online_cpu(cpu
) {
1302 in
= (unsigned long)&per_cpu(page_states
, cpu
) + offset
;
1303 ret
+= *((unsigned long *)in
);
1308 void __mod_page_state_offset(unsigned long offset
, unsigned long delta
)
1312 ptr
= &__get_cpu_var(page_states
);
1313 *(unsigned long *)(ptr
+ offset
) += delta
;
1315 EXPORT_SYMBOL(__mod_page_state_offset
);
1317 void mod_page_state_offset(unsigned long offset
, unsigned long delta
)
1319 unsigned long flags
;
1322 local_irq_save(flags
);
1323 ptr
= &__get_cpu_var(page_states
);
1324 *(unsigned long *)(ptr
+ offset
) += delta
;
1325 local_irq_restore(flags
);
1327 EXPORT_SYMBOL(mod_page_state_offset
);
1329 void __get_zone_counts(unsigned long *active
, unsigned long *inactive
,
1330 unsigned long *free
, struct pglist_data
*pgdat
)
1332 struct zone
*zones
= pgdat
->node_zones
;
1338 for (i
= 0; i
< MAX_NR_ZONES
; i
++) {
1339 *active
+= zones
[i
].nr_active
;
1340 *inactive
+= zones
[i
].nr_inactive
;
1341 *free
+= zones
[i
].free_pages
;
1345 void get_zone_counts(unsigned long *active
,
1346 unsigned long *inactive
, unsigned long *free
)
1348 struct pglist_data
*pgdat
;
1353 for_each_online_pgdat(pgdat
) {
1354 unsigned long l
, m
, n
;
1355 __get_zone_counts(&l
, &m
, &n
, pgdat
);
1362 void si_meminfo(struct sysinfo
*val
)
1364 val
->totalram
= totalram_pages
;
1366 val
->freeram
= nr_free_pages();
1367 val
->bufferram
= nr_blockdev_pages();
1368 #ifdef CONFIG_HIGHMEM
1369 val
->totalhigh
= totalhigh_pages
;
1370 val
->freehigh
= nr_free_highpages();
1375 val
->mem_unit
= PAGE_SIZE
;
1378 EXPORT_SYMBOL(si_meminfo
);
1381 void si_meminfo_node(struct sysinfo
*val
, int nid
)
1383 pg_data_t
*pgdat
= NODE_DATA(nid
);
1385 val
->totalram
= pgdat
->node_present_pages
;
1386 val
->freeram
= nr_free_pages_pgdat(pgdat
);
1387 val
->totalhigh
= pgdat
->node_zones
[ZONE_HIGHMEM
].present_pages
;
1388 val
->freehigh
= pgdat
->node_zones
[ZONE_HIGHMEM
].free_pages
;
1389 val
->mem_unit
= PAGE_SIZE
;
1393 #define K(x) ((x) << (PAGE_SHIFT-10))
1396 * Show free area list (used inside shift_scroll-lock stuff)
1397 * We also calculate the percentage fragmentation. We do this by counting the
1398 * memory on each free list with the exception of the first item on the list.
1400 void show_free_areas(void)
1402 struct page_state ps
;
1403 int cpu
, temperature
;
1404 unsigned long active
;
1405 unsigned long inactive
;
1409 for_each_zone(zone
) {
1411 printk("%s per-cpu:", zone
->name
);
1413 if (!populated_zone(zone
)) {
1419 for_each_online_cpu(cpu
) {
1420 struct per_cpu_pageset
*pageset
;
1422 pageset
= zone_pcp(zone
, cpu
);
1424 for (temperature
= 0; temperature
< 2; temperature
++)
1425 printk("cpu %d %s: high %d, batch %d used:%d\n",
1427 temperature
? "cold" : "hot",
1428 pageset
->pcp
[temperature
].high
,
1429 pageset
->pcp
[temperature
].batch
,
1430 pageset
->pcp
[temperature
].count
);
1434 get_page_state(&ps
);
1435 get_zone_counts(&active
, &inactive
, &free
);
1437 printk("Free pages: %11ukB (%ukB HighMem)\n",
1439 K(nr_free_highpages()));
1441 printk("Active:%lu inactive:%lu dirty:%lu writeback:%lu "
1442 "unstable:%lu free:%u slab:%lu mapped:%lu pagetables:%lu\n",
1451 ps
.nr_page_table_pages
);
1453 for_each_zone(zone
) {
1465 " pages_scanned:%lu"
1466 " all_unreclaimable? %s"
1469 K(zone
->free_pages
),
1472 K(zone
->pages_high
),
1474 K(zone
->nr_inactive
),
1475 K(zone
->present_pages
),
1476 zone
->pages_scanned
,
1477 (zone
->all_unreclaimable
? "yes" : "no")
1479 printk("lowmem_reserve[]:");
1480 for (i
= 0; i
< MAX_NR_ZONES
; i
++)
1481 printk(" %lu", zone
->lowmem_reserve
[i
]);
1485 for_each_zone(zone
) {
1486 unsigned long nr
, flags
, order
, total
= 0;
1489 printk("%s: ", zone
->name
);
1490 if (!populated_zone(zone
)) {
1495 spin_lock_irqsave(&zone
->lock
, flags
);
1496 for (order
= 0; order
< MAX_ORDER
; order
++) {
1497 nr
= zone
->free_area
[order
].nr_free
;
1498 total
+= nr
<< order
;
1499 printk("%lu*%lukB ", nr
, K(1UL) << order
);
1501 spin_unlock_irqrestore(&zone
->lock
, flags
);
1502 printk("= %lukB\n", K(total
));
1505 show_swap_cache_info();
1509 * Builds allocation fallback zone lists.
1511 * Add all populated zones of a node to the zonelist.
1513 static int __init
build_zonelists_node(pg_data_t
*pgdat
,
1514 struct zonelist
*zonelist
, int nr_zones
, int zone_type
)
1518 BUG_ON(zone_type
> ZONE_HIGHMEM
);
1521 zone
= pgdat
->node_zones
+ zone_type
;
1522 if (populated_zone(zone
)) {
1523 #ifndef CONFIG_HIGHMEM
1524 BUG_ON(zone_type
> ZONE_NORMAL
);
1526 zonelist
->zones
[nr_zones
++] = zone
;
1527 check_highest_zone(zone_type
);
1531 } while (zone_type
>= 0);
1535 static inline int highest_zone(int zone_bits
)
1537 int res
= ZONE_NORMAL
;
1538 if (zone_bits
& (__force
int)__GFP_HIGHMEM
)
1540 if (zone_bits
& (__force
int)__GFP_DMA32
)
1542 if (zone_bits
& (__force
int)__GFP_DMA
)
1548 #define MAX_NODE_LOAD (num_online_nodes())
1549 static int __initdata node_load
[MAX_NUMNODES
];
1551 * find_next_best_node - find the next node that should appear in a given node's fallback list
1552 * @node: node whose fallback list we're appending
1553 * @used_node_mask: nodemask_t of already used nodes
1555 * We use a number of factors to determine which is the next node that should
1556 * appear on a given node's fallback list. The node should not have appeared
1557 * already in @node's fallback list, and it should be the next closest node
1558 * according to the distance array (which contains arbitrary distance values
1559 * from each node to each node in the system), and should also prefer nodes
1560 * with no CPUs, since presumably they'll have very little allocation pressure
1561 * on them otherwise.
1562 * It returns -1 if no node is found.
1564 static int __init
find_next_best_node(int node
, nodemask_t
*used_node_mask
)
1567 int min_val
= INT_MAX
;
1570 /* Use the local node if we haven't already */
1571 if (!node_isset(node
, *used_node_mask
)) {
1572 node_set(node
, *used_node_mask
);
1576 for_each_online_node(n
) {
1579 /* Don't want a node to appear more than once */
1580 if (node_isset(n
, *used_node_mask
))
1583 /* Use the distance array to find the distance */
1584 val
= node_distance(node
, n
);
1586 /* Penalize nodes under us ("prefer the next node") */
1589 /* Give preference to headless and unused nodes */
1590 tmp
= node_to_cpumask(n
);
1591 if (!cpus_empty(tmp
))
1592 val
+= PENALTY_FOR_NODE_WITH_CPUS
;
1594 /* Slight preference for less loaded node */
1595 val
*= (MAX_NODE_LOAD
*MAX_NUMNODES
);
1596 val
+= node_load
[n
];
1598 if (val
< min_val
) {
1605 node_set(best_node
, *used_node_mask
);
1610 static void __init
build_zonelists(pg_data_t
*pgdat
)
1612 int i
, j
, k
, node
, local_node
;
1613 int prev_node
, load
;
1614 struct zonelist
*zonelist
;
1615 nodemask_t used_mask
;
1617 /* initialize zonelists */
1618 for (i
= 0; i
< GFP_ZONETYPES
; i
++) {
1619 zonelist
= pgdat
->node_zonelists
+ i
;
1620 zonelist
->zones
[0] = NULL
;
1623 /* NUMA-aware ordering of nodes */
1624 local_node
= pgdat
->node_id
;
1625 load
= num_online_nodes();
1626 prev_node
= local_node
;
1627 nodes_clear(used_mask
);
1628 while ((node
= find_next_best_node(local_node
, &used_mask
)) >= 0) {
1629 int distance
= node_distance(local_node
, node
);
1632 * If another node is sufficiently far away then it is better
1633 * to reclaim pages in a zone before going off node.
1635 if (distance
> RECLAIM_DISTANCE
)
1636 zone_reclaim_mode
= 1;
1639 * We don't want to pressure a particular node.
1640 * So adding penalty to the first node in same
1641 * distance group to make it round-robin.
1644 if (distance
!= node_distance(local_node
, prev_node
))
1645 node_load
[node
] += load
;
1648 for (i
= 0; i
< GFP_ZONETYPES
; i
++) {
1649 zonelist
= pgdat
->node_zonelists
+ i
;
1650 for (j
= 0; zonelist
->zones
[j
] != NULL
; j
++);
1652 k
= highest_zone(i
);
1654 j
= build_zonelists_node(NODE_DATA(node
), zonelist
, j
, k
);
1655 zonelist
->zones
[j
] = NULL
;
1660 #else /* CONFIG_NUMA */
1662 static void __init
build_zonelists(pg_data_t
*pgdat
)
1664 int i
, j
, k
, node
, local_node
;
1666 local_node
= pgdat
->node_id
;
1667 for (i
= 0; i
< GFP_ZONETYPES
; i
++) {
1668 struct zonelist
*zonelist
;
1670 zonelist
= pgdat
->node_zonelists
+ i
;
1673 k
= highest_zone(i
);
1674 j
= build_zonelists_node(pgdat
, zonelist
, j
, k
);
1676 * Now we build the zonelist so that it contains the zones
1677 * of all the other nodes.
1678 * We don't want to pressure a particular node, so when
1679 * building the zones for node N, we make sure that the
1680 * zones coming right after the local ones are those from
1681 * node N+1 (modulo N)
1683 for (node
= local_node
+ 1; node
< MAX_NUMNODES
; node
++) {
1684 if (!node_online(node
))
1686 j
= build_zonelists_node(NODE_DATA(node
), zonelist
, j
, k
);
1688 for (node
= 0; node
< local_node
; node
++) {
1689 if (!node_online(node
))
1691 j
= build_zonelists_node(NODE_DATA(node
), zonelist
, j
, k
);
1694 zonelist
->zones
[j
] = NULL
;
1698 #endif /* CONFIG_NUMA */
1700 void __init
build_all_zonelists(void)
1704 for_each_online_node(i
)
1705 build_zonelists(NODE_DATA(i
));
1706 printk("Built %i zonelists\n", num_online_nodes());
1707 cpuset_init_current_mems_allowed();
1711 * Helper functions to size the waitqueue hash table.
1712 * Essentially these want to choose hash table sizes sufficiently
1713 * large so that collisions trying to wait on pages are rare.
1714 * But in fact, the number of active page waitqueues on typical
1715 * systems is ridiculously low, less than 200. So this is even
1716 * conservative, even though it seems large.
1718 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
1719 * waitqueues, i.e. the size of the waitq table given the number of pages.
1721 #define PAGES_PER_WAITQUEUE 256
1723 static inline unsigned long wait_table_size(unsigned long pages
)
1725 unsigned long size
= 1;
1727 pages
/= PAGES_PER_WAITQUEUE
;
1729 while (size
< pages
)
1733 * Once we have dozens or even hundreds of threads sleeping
1734 * on IO we've got bigger problems than wait queue collision.
1735 * Limit the size of the wait table to a reasonable size.
1737 size
= min(size
, 4096UL);
1739 return max(size
, 4UL);
1743 * This is an integer logarithm so that shifts can be used later
1744 * to extract the more random high bits from the multiplicative
1745 * hash function before the remainder is taken.
1747 static inline unsigned long wait_table_bits(unsigned long size
)
1752 #define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
1754 static void __init
calculate_zone_totalpages(struct pglist_data
*pgdat
,
1755 unsigned long *zones_size
, unsigned long *zholes_size
)
1757 unsigned long realtotalpages
, totalpages
= 0;
1760 for (i
= 0; i
< MAX_NR_ZONES
; i
++)
1761 totalpages
+= zones_size
[i
];
1762 pgdat
->node_spanned_pages
= totalpages
;
1764 realtotalpages
= totalpages
;
1766 for (i
= 0; i
< MAX_NR_ZONES
; i
++)
1767 realtotalpages
-= zholes_size
[i
];
1768 pgdat
->node_present_pages
= realtotalpages
;
1769 printk(KERN_DEBUG
"On node %d totalpages: %lu\n", pgdat
->node_id
, realtotalpages
);
1774 * Initially all pages are reserved - free ones are freed
1775 * up by free_all_bootmem() once the early boot process is
1776 * done. Non-atomic initialization, single-pass.
1778 void __meminit
memmap_init_zone(unsigned long size
, int nid
, unsigned long zone
,
1779 unsigned long start_pfn
)
1782 unsigned long end_pfn
= start_pfn
+ size
;
1785 for (pfn
= start_pfn
; pfn
< end_pfn
; pfn
++) {
1786 if (!early_pfn_valid(pfn
))
1788 page
= pfn_to_page(pfn
);
1789 set_page_links(page
, zone
, nid
, pfn
);
1790 init_page_count(page
);
1791 reset_page_mapcount(page
);
1792 SetPageReserved(page
);
1793 INIT_LIST_HEAD(&page
->lru
);
1794 #ifdef WANT_PAGE_VIRTUAL
1795 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
1796 if (!is_highmem_idx(zone
))
1797 set_page_address(page
, __va(pfn
<< PAGE_SHIFT
));
1802 void zone_init_free_lists(struct pglist_data
*pgdat
, struct zone
*zone
,
1806 for (order
= 0; order
< MAX_ORDER
; order
++) {
1807 INIT_LIST_HEAD(&zone
->free_area
[order
].free_list
);
1808 zone
->free_area
[order
].nr_free
= 0;
1812 #define ZONETABLE_INDEX(x, zone_nr) ((x << ZONES_SHIFT) | zone_nr)
1813 void zonetable_add(struct zone
*zone
, int nid
, int zid
, unsigned long pfn
,
1816 unsigned long snum
= pfn_to_section_nr(pfn
);
1817 unsigned long end
= pfn_to_section_nr(pfn
+ size
);
1820 zone_table
[ZONETABLE_INDEX(nid
, zid
)] = zone
;
1822 for (; snum
<= end
; snum
++)
1823 zone_table
[ZONETABLE_INDEX(snum
, zid
)] = zone
;
1826 #ifndef __HAVE_ARCH_MEMMAP_INIT
1827 #define memmap_init(size, nid, zone, start_pfn) \
1828 memmap_init_zone((size), (nid), (zone), (start_pfn))
1831 static int __cpuinit
zone_batchsize(struct zone
*zone
)
1836 * The per-cpu-pages pools are set to around 1000th of the
1837 * size of the zone. But no more than 1/2 of a meg.
1839 * OK, so we don't know how big the cache is. So guess.
1841 batch
= zone
->present_pages
/ 1024;
1842 if (batch
* PAGE_SIZE
> 512 * 1024)
1843 batch
= (512 * 1024) / PAGE_SIZE
;
1844 batch
/= 4; /* We effectively *= 4 below */
1849 * Clamp the batch to a 2^n - 1 value. Having a power
1850 * of 2 value was found to be more likely to have
1851 * suboptimal cache aliasing properties in some cases.
1853 * For example if 2 tasks are alternately allocating
1854 * batches of pages, one task can end up with a lot
1855 * of pages of one half of the possible page colors
1856 * and the other with pages of the other colors.
1858 batch
= (1 << (fls(batch
+ batch
/2)-1)) - 1;
1863 inline void setup_pageset(struct per_cpu_pageset
*p
, unsigned long batch
)
1865 struct per_cpu_pages
*pcp
;
1867 memset(p
, 0, sizeof(*p
));
1869 pcp
= &p
->pcp
[0]; /* hot */
1871 pcp
->high
= 6 * batch
;
1872 pcp
->batch
= max(1UL, 1 * batch
);
1873 INIT_LIST_HEAD(&pcp
->list
);
1875 pcp
= &p
->pcp
[1]; /* cold*/
1877 pcp
->high
= 2 * batch
;
1878 pcp
->batch
= max(1UL, batch
/2);
1879 INIT_LIST_HEAD(&pcp
->list
);
1883 * setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist
1884 * to the value high for the pageset p.
1887 static void setup_pagelist_highmark(struct per_cpu_pageset
*p
,
1890 struct per_cpu_pages
*pcp
;
1892 pcp
= &p
->pcp
[0]; /* hot list */
1894 pcp
->batch
= max(1UL, high
/4);
1895 if ((high
/4) > (PAGE_SHIFT
* 8))
1896 pcp
->batch
= PAGE_SHIFT
* 8;
1902 * Boot pageset table. One per cpu which is going to be used for all
1903 * zones and all nodes. The parameters will be set in such a way
1904 * that an item put on a list will immediately be handed over to
1905 * the buddy list. This is safe since pageset manipulation is done
1906 * with interrupts disabled.
1908 * Some NUMA counter updates may also be caught by the boot pagesets.
1910 * The boot_pagesets must be kept even after bootup is complete for
1911 * unused processors and/or zones. They do play a role for bootstrapping
1912 * hotplugged processors.
1914 * zoneinfo_show() and maybe other functions do
1915 * not check if the processor is online before following the pageset pointer.
1916 * Other parts of the kernel may not check if the zone is available.
1918 static struct per_cpu_pageset boot_pageset
[NR_CPUS
];
1921 * Dynamically allocate memory for the
1922 * per cpu pageset array in struct zone.
1924 static int __cpuinit
process_zones(int cpu
)
1926 struct zone
*zone
, *dzone
;
1928 for_each_zone(zone
) {
1930 zone_pcp(zone
, cpu
) = kmalloc_node(sizeof(struct per_cpu_pageset
),
1931 GFP_KERNEL
, cpu_to_node(cpu
));
1932 if (!zone_pcp(zone
, cpu
))
1935 setup_pageset(zone_pcp(zone
, cpu
), zone_batchsize(zone
));
1937 if (percpu_pagelist_fraction
)
1938 setup_pagelist_highmark(zone_pcp(zone
, cpu
),
1939 (zone
->present_pages
/ percpu_pagelist_fraction
));
1944 for_each_zone(dzone
) {
1947 kfree(zone_pcp(dzone
, cpu
));
1948 zone_pcp(dzone
, cpu
) = NULL
;
1953 static inline void free_zone_pagesets(int cpu
)
1957 for_each_zone(zone
) {
1958 struct per_cpu_pageset
*pset
= zone_pcp(zone
, cpu
);
1960 zone_pcp(zone
, cpu
) = NULL
;
1965 static int pageset_cpuup_callback(struct notifier_block
*nfb
,
1966 unsigned long action
,
1969 int cpu
= (long)hcpu
;
1970 int ret
= NOTIFY_OK
;
1973 case CPU_UP_PREPARE
:
1974 if (process_zones(cpu
))
1977 case CPU_UP_CANCELED
:
1979 free_zone_pagesets(cpu
);
1987 static struct notifier_block pageset_notifier
=
1988 { &pageset_cpuup_callback
, NULL
, 0 };
1990 void __init
setup_per_cpu_pageset(void)
1994 /* Initialize per_cpu_pageset for cpu 0.
1995 * A cpuup callback will do this for every cpu
1996 * as it comes online
1998 err
= process_zones(smp_processor_id());
2000 register_cpu_notifier(&pageset_notifier
);
2006 void zone_wait_table_init(struct zone
*zone
, unsigned long zone_size_pages
)
2009 struct pglist_data
*pgdat
= zone
->zone_pgdat
;
2012 * The per-page waitqueue mechanism uses hashed waitqueues
2015 zone
->wait_table_size
= wait_table_size(zone_size_pages
);
2016 zone
->wait_table_bits
= wait_table_bits(zone
->wait_table_size
);
2017 zone
->wait_table
= (wait_queue_head_t
*)
2018 alloc_bootmem_node(pgdat
, zone
->wait_table_size
2019 * sizeof(wait_queue_head_t
));
2021 for(i
= 0; i
< zone
->wait_table_size
; ++i
)
2022 init_waitqueue_head(zone
->wait_table
+ i
);
2025 static __meminit
void zone_pcp_init(struct zone
*zone
)
2028 unsigned long batch
= zone_batchsize(zone
);
2030 for (cpu
= 0; cpu
< NR_CPUS
; cpu
++) {
2032 /* Early boot. Slab allocator not functional yet */
2033 zone_pcp(zone
, cpu
) = &boot_pageset
[cpu
];
2034 setup_pageset(&boot_pageset
[cpu
],0);
2036 setup_pageset(zone_pcp(zone
,cpu
), batch
);
2039 if (zone
->present_pages
)
2040 printk(KERN_DEBUG
" %s zone: %lu pages, LIFO batch:%lu\n",
2041 zone
->name
, zone
->present_pages
, batch
);
2044 static __meminit
void init_currently_empty_zone(struct zone
*zone
,
2045 unsigned long zone_start_pfn
, unsigned long size
)
2047 struct pglist_data
*pgdat
= zone
->zone_pgdat
;
2049 zone_wait_table_init(zone
, size
);
2050 pgdat
->nr_zones
= zone_idx(zone
) + 1;
2052 zone
->zone_start_pfn
= zone_start_pfn
;
2054 memmap_init(size
, pgdat
->node_id
, zone_idx(zone
), zone_start_pfn
);
2056 zone_init_free_lists(pgdat
, zone
, zone
->spanned_pages
);
2060 * Set up the zone data structures:
2061 * - mark all pages reserved
2062 * - mark all memory queues empty
2063 * - clear the memory bitmaps
2065 static void __init
free_area_init_core(struct pglist_data
*pgdat
,
2066 unsigned long *zones_size
, unsigned long *zholes_size
)
2069 int nid
= pgdat
->node_id
;
2070 unsigned long zone_start_pfn
= pgdat
->node_start_pfn
;
2072 pgdat_resize_init(pgdat
);
2073 pgdat
->nr_zones
= 0;
2074 init_waitqueue_head(&pgdat
->kswapd_wait
);
2075 pgdat
->kswapd_max_order
= 0;
2077 for (j
= 0; j
< MAX_NR_ZONES
; j
++) {
2078 struct zone
*zone
= pgdat
->node_zones
+ j
;
2079 unsigned long size
, realsize
;
2081 realsize
= size
= zones_size
[j
];
2083 realsize
-= zholes_size
[j
];
2085 if (j
< ZONE_HIGHMEM
)
2086 nr_kernel_pages
+= realsize
;
2087 nr_all_pages
+= realsize
;
2089 zone
->spanned_pages
= size
;
2090 zone
->present_pages
= realsize
;
2091 zone
->name
= zone_names
[j
];
2092 spin_lock_init(&zone
->lock
);
2093 spin_lock_init(&zone
->lru_lock
);
2094 zone_seqlock_init(zone
);
2095 zone
->zone_pgdat
= pgdat
;
2096 zone
->free_pages
= 0;
2098 zone
->temp_priority
= zone
->prev_priority
= DEF_PRIORITY
;
2100 zone_pcp_init(zone
);
2101 INIT_LIST_HEAD(&zone
->active_list
);
2102 INIT_LIST_HEAD(&zone
->inactive_list
);
2103 zone
->nr_scan_active
= 0;
2104 zone
->nr_scan_inactive
= 0;
2105 zone
->nr_active
= 0;
2106 zone
->nr_inactive
= 0;
2107 atomic_set(&zone
->reclaim_in_progress
, 0);
2111 zonetable_add(zone
, nid
, j
, zone_start_pfn
, size
);
2112 init_currently_empty_zone(zone
, zone_start_pfn
, size
);
2113 zone_start_pfn
+= size
;
2117 static void __init
alloc_node_mem_map(struct pglist_data
*pgdat
)
2119 /* Skip empty nodes */
2120 if (!pgdat
->node_spanned_pages
)
2123 #ifdef CONFIG_FLAT_NODE_MEM_MAP
2124 /* ia64 gets its own node_mem_map, before this, without bootmem */
2125 if (!pgdat
->node_mem_map
) {
2129 size
= (pgdat
->node_spanned_pages
+ 1) * sizeof(struct page
);
2130 map
= alloc_remap(pgdat
->node_id
, size
);
2132 map
= alloc_bootmem_node(pgdat
, size
);
2133 pgdat
->node_mem_map
= map
;
2135 #ifdef CONFIG_FLATMEM
2137 * With no DISCONTIG, the global mem_map is just set as node 0's
2139 if (pgdat
== NODE_DATA(0))
2140 mem_map
= NODE_DATA(0)->node_mem_map
;
2142 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
2145 void __init
free_area_init_node(int nid
, struct pglist_data
*pgdat
,
2146 unsigned long *zones_size
, unsigned long node_start_pfn
,
2147 unsigned long *zholes_size
)
2149 pgdat
->node_id
= nid
;
2150 pgdat
->node_start_pfn
= node_start_pfn
;
2151 calculate_zone_totalpages(pgdat
, zones_size
, zholes_size
);
2153 alloc_node_mem_map(pgdat
);
2155 free_area_init_core(pgdat
, zones_size
, zholes_size
);
2158 #ifndef CONFIG_NEED_MULTIPLE_NODES
2159 static bootmem_data_t contig_bootmem_data
;
2160 struct pglist_data contig_page_data
= { .bdata
= &contig_bootmem_data
};
2162 EXPORT_SYMBOL(contig_page_data
);
2165 void __init
free_area_init(unsigned long *zones_size
)
2167 free_area_init_node(0, NODE_DATA(0), zones_size
,
2168 __pa(PAGE_OFFSET
) >> PAGE_SHIFT
, NULL
);
2171 #ifdef CONFIG_PROC_FS
2173 #include <linux/seq_file.h>
2175 static void *frag_start(struct seq_file
*m
, loff_t
*pos
)
2179 for (pgdat
= first_online_pgdat();
2181 pgdat
= next_online_pgdat(pgdat
))
2187 static void *frag_next(struct seq_file
*m
, void *arg
, loff_t
*pos
)
2189 pg_data_t
*pgdat
= (pg_data_t
*)arg
;
2192 return next_online_pgdat(pgdat
);
2195 static void frag_stop(struct seq_file
*m
, void *arg
)
2200 * This walks the free areas for each zone.
2202 static int frag_show(struct seq_file
*m
, void *arg
)
2204 pg_data_t
*pgdat
= (pg_data_t
*)arg
;
2206 struct zone
*node_zones
= pgdat
->node_zones
;
2207 unsigned long flags
;
2210 for (zone
= node_zones
; zone
- node_zones
< MAX_NR_ZONES
; ++zone
) {
2211 if (!populated_zone(zone
))
2214 spin_lock_irqsave(&zone
->lock
, flags
);
2215 seq_printf(m
, "Node %d, zone %8s ", pgdat
->node_id
, zone
->name
);
2216 for (order
= 0; order
< MAX_ORDER
; ++order
)
2217 seq_printf(m
, "%6lu ", zone
->free_area
[order
].nr_free
);
2218 spin_unlock_irqrestore(&zone
->lock
, flags
);
2224 struct seq_operations fragmentation_op
= {
2225 .start
= frag_start
,
2232 * Output information about zones in @pgdat.
2234 static int zoneinfo_show(struct seq_file
*m
, void *arg
)
2236 pg_data_t
*pgdat
= arg
;
2238 struct zone
*node_zones
= pgdat
->node_zones
;
2239 unsigned long flags
;
2241 for (zone
= node_zones
; zone
- node_zones
< MAX_NR_ZONES
; zone
++) {
2244 if (!populated_zone(zone
))
2247 spin_lock_irqsave(&zone
->lock
, flags
);
2248 seq_printf(m
, "Node %d, zone %8s", pgdat
->node_id
, zone
->name
);
2256 "\n scanned %lu (a: %lu i: %lu)"
2265 zone
->pages_scanned
,
2266 zone
->nr_scan_active
, zone
->nr_scan_inactive
,
2267 zone
->spanned_pages
,
2268 zone
->present_pages
);
2270 "\n protection: (%lu",
2271 zone
->lowmem_reserve
[0]);
2272 for (i
= 1; i
< ARRAY_SIZE(zone
->lowmem_reserve
); i
++)
2273 seq_printf(m
, ", %lu", zone
->lowmem_reserve
[i
]);
2277 for_each_online_cpu(i
) {
2278 struct per_cpu_pageset
*pageset
;
2281 pageset
= zone_pcp(zone
, i
);
2282 for (j
= 0; j
< ARRAY_SIZE(pageset
->pcp
); j
++) {
2283 if (pageset
->pcp
[j
].count
)
2286 if (j
== ARRAY_SIZE(pageset
->pcp
))
2288 for (j
= 0; j
< ARRAY_SIZE(pageset
->pcp
); j
++) {
2290 "\n cpu: %i pcp: %i"
2295 pageset
->pcp
[j
].count
,
2296 pageset
->pcp
[j
].high
,
2297 pageset
->pcp
[j
].batch
);
2303 "\n numa_foreign: %lu"
2304 "\n interleave_hit: %lu"
2305 "\n local_node: %lu"
2306 "\n other_node: %lu",
2309 pageset
->numa_foreign
,
2310 pageset
->interleave_hit
,
2311 pageset
->local_node
,
2312 pageset
->other_node
);
2316 "\n all_unreclaimable: %u"
2317 "\n prev_priority: %i"
2318 "\n temp_priority: %i"
2319 "\n start_pfn: %lu",
2320 zone
->all_unreclaimable
,
2321 zone
->prev_priority
,
2322 zone
->temp_priority
,
2323 zone
->zone_start_pfn
);
2324 spin_unlock_irqrestore(&zone
->lock
, flags
);
2330 struct seq_operations zoneinfo_op
= {
2331 .start
= frag_start
, /* iterate over all zones. The same as in
2335 .show
= zoneinfo_show
,
2338 static char *vmstat_text
[] = {
2342 "nr_page_table_pages",
2373 "pgscan_kswapd_high",
2374 "pgscan_kswapd_normal",
2375 "pgscan_kswapd_dma32",
2376 "pgscan_kswapd_dma",
2378 "pgscan_direct_high",
2379 "pgscan_direct_normal",
2380 "pgscan_direct_dma32",
2381 "pgscan_direct_dma",
2386 "kswapd_inodesteal",
2394 static void *vmstat_start(struct seq_file
*m
, loff_t
*pos
)
2396 struct page_state
*ps
;
2398 if (*pos
>= ARRAY_SIZE(vmstat_text
))
2401 ps
= kmalloc(sizeof(*ps
), GFP_KERNEL
);
2404 return ERR_PTR(-ENOMEM
);
2405 get_full_page_state(ps
);
2406 ps
->pgpgin
/= 2; /* sectors -> kbytes */
2408 return (unsigned long *)ps
+ *pos
;
2411 static void *vmstat_next(struct seq_file
*m
, void *arg
, loff_t
*pos
)
2414 if (*pos
>= ARRAY_SIZE(vmstat_text
))
2416 return (unsigned long *)m
->private + *pos
;
2419 static int vmstat_show(struct seq_file
*m
, void *arg
)
2421 unsigned long *l
= arg
;
2422 unsigned long off
= l
- (unsigned long *)m
->private;
2424 seq_printf(m
, "%s %lu\n", vmstat_text
[off
], *l
);
2428 static void vmstat_stop(struct seq_file
*m
, void *arg
)
2434 struct seq_operations vmstat_op
= {
2435 .start
= vmstat_start
,
2436 .next
= vmstat_next
,
2437 .stop
= vmstat_stop
,
2438 .show
= vmstat_show
,
2441 #endif /* CONFIG_PROC_FS */
2443 #ifdef CONFIG_HOTPLUG_CPU
2444 static int page_alloc_cpu_notify(struct notifier_block
*self
,
2445 unsigned long action
, void *hcpu
)
2447 int cpu
= (unsigned long)hcpu
;
2449 unsigned long *src
, *dest
;
2451 if (action
== CPU_DEAD
) {
2454 /* Drain local pagecache count. */
2455 count
= &per_cpu(nr_pagecache_local
, cpu
);
2456 atomic_add(*count
, &nr_pagecache
);
2458 local_irq_disable();
2461 /* Add dead cpu's page_states to our own. */
2462 dest
= (unsigned long *)&__get_cpu_var(page_states
);
2463 src
= (unsigned long *)&per_cpu(page_states
, cpu
);
2465 for (i
= 0; i
< sizeof(struct page_state
)/sizeof(unsigned long);
2475 #endif /* CONFIG_HOTPLUG_CPU */
2477 void __init
page_alloc_init(void)
2479 hotcpu_notifier(page_alloc_cpu_notify
, 0);
2483 * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
2484 * or min_free_kbytes changes.
2486 static void calculate_totalreserve_pages(void)
2488 struct pglist_data
*pgdat
;
2489 unsigned long reserve_pages
= 0;
2492 for_each_online_pgdat(pgdat
) {
2493 for (i
= 0; i
< MAX_NR_ZONES
; i
++) {
2494 struct zone
*zone
= pgdat
->node_zones
+ i
;
2495 unsigned long max
= 0;
2497 /* Find valid and maximum lowmem_reserve in the zone */
2498 for (j
= i
; j
< MAX_NR_ZONES
; j
++) {
2499 if (zone
->lowmem_reserve
[j
] > max
)
2500 max
= zone
->lowmem_reserve
[j
];
2503 /* we treat pages_high as reserved pages. */
2504 max
+= zone
->pages_high
;
2506 if (max
> zone
->present_pages
)
2507 max
= zone
->present_pages
;
2508 reserve_pages
+= max
;
2511 totalreserve_pages
= reserve_pages
;
2515 * setup_per_zone_lowmem_reserve - called whenever
2516 * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone
2517 * has a correct pages reserved value, so an adequate number of
2518 * pages are left in the zone after a successful __alloc_pages().
2520 static void setup_per_zone_lowmem_reserve(void)
2522 struct pglist_data
*pgdat
;
2525 for_each_online_pgdat(pgdat
) {
2526 for (j
= 0; j
< MAX_NR_ZONES
; j
++) {
2527 struct zone
*zone
= pgdat
->node_zones
+ j
;
2528 unsigned long present_pages
= zone
->present_pages
;
2530 zone
->lowmem_reserve
[j
] = 0;
2532 for (idx
= j
-1; idx
>= 0; idx
--) {
2533 struct zone
*lower_zone
;
2535 if (sysctl_lowmem_reserve_ratio
[idx
] < 1)
2536 sysctl_lowmem_reserve_ratio
[idx
] = 1;
2538 lower_zone
= pgdat
->node_zones
+ idx
;
2539 lower_zone
->lowmem_reserve
[j
] = present_pages
/
2540 sysctl_lowmem_reserve_ratio
[idx
];
2541 present_pages
+= lower_zone
->present_pages
;
2546 /* update totalreserve_pages */
2547 calculate_totalreserve_pages();
2551 * setup_per_zone_pages_min - called when min_free_kbytes changes. Ensures
2552 * that the pages_{min,low,high} values for each zone are set correctly
2553 * with respect to min_free_kbytes.
2555 void setup_per_zone_pages_min(void)
2557 unsigned long pages_min
= min_free_kbytes
>> (PAGE_SHIFT
- 10);
2558 unsigned long lowmem_pages
= 0;
2560 unsigned long flags
;
2562 /* Calculate total number of !ZONE_HIGHMEM pages */
2563 for_each_zone(zone
) {
2564 if (!is_highmem(zone
))
2565 lowmem_pages
+= zone
->present_pages
;
2568 for_each_zone(zone
) {
2570 spin_lock_irqsave(&zone
->lru_lock
, flags
);
2571 tmp
= (pages_min
* zone
->present_pages
) / lowmem_pages
;
2572 if (is_highmem(zone
)) {
2574 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
2575 * need highmem pages, so cap pages_min to a small
2578 * The (pages_high-pages_low) and (pages_low-pages_min)
2579 * deltas controls asynch page reclaim, and so should
2580 * not be capped for highmem.
2584 min_pages
= zone
->present_pages
/ 1024;
2585 if (min_pages
< SWAP_CLUSTER_MAX
)
2586 min_pages
= SWAP_CLUSTER_MAX
;
2587 if (min_pages
> 128)
2589 zone
->pages_min
= min_pages
;
2592 * If it's a lowmem zone, reserve a number of pages
2593 * proportionate to the zone's size.
2595 zone
->pages_min
= tmp
;
2598 zone
->pages_low
= zone
->pages_min
+ tmp
/ 4;
2599 zone
->pages_high
= zone
->pages_min
+ tmp
/ 2;
2600 spin_unlock_irqrestore(&zone
->lru_lock
, flags
);
2603 /* update totalreserve_pages */
2604 calculate_totalreserve_pages();
2608 * Initialise min_free_kbytes.
2610 * For small machines we want it small (128k min). For large machines
2611 * we want it large (64MB max). But it is not linear, because network
2612 * bandwidth does not increase linearly with machine size. We use
2614 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
2615 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
2631 static int __init
init_per_zone_pages_min(void)
2633 unsigned long lowmem_kbytes
;
2635 lowmem_kbytes
= nr_free_buffer_pages() * (PAGE_SIZE
>> 10);
2637 min_free_kbytes
= int_sqrt(lowmem_kbytes
* 16);
2638 if (min_free_kbytes
< 128)
2639 min_free_kbytes
= 128;
2640 if (min_free_kbytes
> 65536)
2641 min_free_kbytes
= 65536;
2642 setup_per_zone_pages_min();
2643 setup_per_zone_lowmem_reserve();
2646 module_init(init_per_zone_pages_min
)
2649 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
2650 * that we can call two helper functions whenever min_free_kbytes
2653 int min_free_kbytes_sysctl_handler(ctl_table
*table
, int write
,
2654 struct file
*file
, void __user
*buffer
, size_t *length
, loff_t
*ppos
)
2656 proc_dointvec(table
, write
, file
, buffer
, length
, ppos
);
2657 setup_per_zone_pages_min();
2662 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
2663 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
2664 * whenever sysctl_lowmem_reserve_ratio changes.
2666 * The reserve ratio obviously has absolutely no relation with the
2667 * pages_min watermarks. The lowmem reserve ratio can only make sense
2668 * if in function of the boot time zone sizes.
2670 int lowmem_reserve_ratio_sysctl_handler(ctl_table
*table
, int write
,
2671 struct file
*file
, void __user
*buffer
, size_t *length
, loff_t
*ppos
)
2673 proc_dointvec_minmax(table
, write
, file
, buffer
, length
, ppos
);
2674 setup_per_zone_lowmem_reserve();
2679 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
2680 * cpu. It is the fraction of total pages in each zone that a hot per cpu pagelist
2681 * can have before it gets flushed back to buddy allocator.
2684 int percpu_pagelist_fraction_sysctl_handler(ctl_table
*table
, int write
,
2685 struct file
*file
, void __user
*buffer
, size_t *length
, loff_t
*ppos
)
2691 ret
= proc_dointvec_minmax(table
, write
, file
, buffer
, length
, ppos
);
2692 if (!write
|| (ret
== -EINVAL
))
2694 for_each_zone(zone
) {
2695 for_each_online_cpu(cpu
) {
2697 high
= zone
->present_pages
/ percpu_pagelist_fraction
;
2698 setup_pagelist_highmark(zone_pcp(zone
, cpu
), high
);
2704 __initdata
int hashdist
= HASHDIST_DEFAULT
;
2707 static int __init
set_hashdist(char *str
)
2711 hashdist
= simple_strtoul(str
, &str
, 0);
2714 __setup("hashdist=", set_hashdist
);
2718 * allocate a large system hash table from bootmem
2719 * - it is assumed that the hash table must contain an exact power-of-2
2720 * quantity of entries
2721 * - limit is the number of hash buckets, not the total allocation size
2723 void *__init
alloc_large_system_hash(const char *tablename
,
2724 unsigned long bucketsize
,
2725 unsigned long numentries
,
2728 unsigned int *_hash_shift
,
2729 unsigned int *_hash_mask
,
2730 unsigned long limit
)
2732 unsigned long long max
= limit
;
2733 unsigned long log2qty
, size
;
2736 /* allow the kernel cmdline to have a say */
2738 /* round applicable memory size up to nearest megabyte */
2739 numentries
= (flags
& HASH_HIGHMEM
) ? nr_all_pages
: nr_kernel_pages
;
2740 numentries
+= (1UL << (20 - PAGE_SHIFT
)) - 1;
2741 numentries
>>= 20 - PAGE_SHIFT
;
2742 numentries
<<= 20 - PAGE_SHIFT
;
2744 /* limit to 1 bucket per 2^scale bytes of low memory */
2745 if (scale
> PAGE_SHIFT
)
2746 numentries
>>= (scale
- PAGE_SHIFT
);
2748 numentries
<<= (PAGE_SHIFT
- scale
);
2750 numentries
= roundup_pow_of_two(numentries
);
2752 /* limit allocation size to 1/16 total memory by default */
2754 max
= ((unsigned long long)nr_all_pages
<< PAGE_SHIFT
) >> 4;
2755 do_div(max
, bucketsize
);
2758 if (numentries
> max
)
2761 log2qty
= long_log2(numentries
);
2764 size
= bucketsize
<< log2qty
;
2765 if (flags
& HASH_EARLY
)
2766 table
= alloc_bootmem(size
);
2768 table
= __vmalloc(size
, GFP_ATOMIC
, PAGE_KERNEL
);
2770 unsigned long order
;
2771 for (order
= 0; ((1UL << order
) << PAGE_SHIFT
) < size
; order
++)
2773 table
= (void*) __get_free_pages(GFP_ATOMIC
, order
);
2775 } while (!table
&& size
> PAGE_SIZE
&& --log2qty
);
2778 panic("Failed to allocate %s hash table\n", tablename
);
2780 printk("%s hash table entries: %d (order: %d, %lu bytes)\n",
2783 long_log2(size
) - PAGE_SHIFT
,
2787 *_hash_shift
= log2qty
;
2789 *_hash_mask
= (1 << log2qty
) - 1;
2794 #ifdef CONFIG_OUT_OF_LINE_PFN_TO_PAGE
2796 * pfn <-> page translation. out-of-line version.
2797 * (see asm-generic/memory_model.h)
2799 #if defined(CONFIG_FLATMEM)
2800 struct page
*pfn_to_page(unsigned long pfn
)
2802 return mem_map
+ (pfn
- ARCH_PFN_OFFSET
);
2804 unsigned long page_to_pfn(struct page
*page
)
2806 return (page
- mem_map
) + ARCH_PFN_OFFSET
;
2808 #elif defined(CONFIG_DISCONTIGMEM)
2809 struct page
*pfn_to_page(unsigned long pfn
)
2811 int nid
= arch_pfn_to_nid(pfn
);
2812 return NODE_DATA(nid
)->node_mem_map
+ arch_local_page_offset(pfn
,nid
);
2814 unsigned long page_to_pfn(struct page
*page
)
2816 struct pglist_data
*pgdat
= NODE_DATA(page_to_nid(page
));
2817 return (page
- pgdat
->node_mem_map
) + pgdat
->node_start_pfn
;
2819 #elif defined(CONFIG_SPARSEMEM)
2820 struct page
*pfn_to_page(unsigned long pfn
)
2822 return __section_mem_map_addr(__pfn_to_section(pfn
)) + pfn
;
2825 unsigned long page_to_pfn(struct page
*page
)
2827 long section_id
= page_to_section(page
);
2828 return page
- __section_mem_map_addr(__nr_to_section(section_id
));
2830 #endif /* CONFIG_FLATMEM/DISCONTIGMME/SPARSEMEM */
2831 EXPORT_SYMBOL(pfn_to_page
);
2832 EXPORT_SYMBOL(page_to_pfn
);
2833 #endif /* CONFIG_OUT_OF_LINE_PFN_TO_PAGE */