2 * linux/drivers/video/pxafb.c
4 * Copyright (C) 1999 Eric A. Thomas.
5 * Copyright (C) 2004 Jean-Frederic Clere.
6 * Copyright (C) 2004 Ian Campbell.
7 * Copyright (C) 2004 Jeff Lackey.
8 * Based on sa1100fb.c Copyright (C) 1999 Eric A. Thomas
10 * Based on acornfb.c Copyright (C) Russell King.
12 * This file is subject to the terms and conditions of the GNU General Public
13 * License. See the file COPYING in the main directory of this archive for
16 * Intel PXA250/210 LCD Controller Frame Buffer Driver
18 * Please direct your questions and comments on this driver to the following
21 * linux-arm-kernel@lists.arm.linux.org.uk
25 #include <linux/module.h>
26 #include <linux/moduleparam.h>
27 #include <linux/kernel.h>
28 #include <linux/sched.h>
29 #include <linux/errno.h>
30 #include <linux/string.h>
31 #include <linux/interrupt.h>
32 #include <linux/slab.h>
34 #include <linux/delay.h>
35 #include <linux/init.h>
36 #include <linux/ioport.h>
37 #include <linux/cpufreq.h>
38 #include <linux/platform_device.h>
39 #include <linux/dma-mapping.h>
41 #include <asm/hardware.h>
44 #include <asm/uaccess.h>
45 #include <asm/div64.h>
46 #include <asm/arch/pxa-regs.h>
47 #include <asm/arch/bitfield.h>
48 #include <asm/arch/pxafb.h>
51 * Complain if VAR is out of range.
57 /* Bits which should not be set in machine configuration structures */
58 #define LCCR0_INVALID_CONFIG_MASK (LCCR0_OUM|LCCR0_BM|LCCR0_QDM|LCCR0_DIS|LCCR0_EFM|LCCR0_IUM|LCCR0_SFM|LCCR0_LDM|LCCR0_ENB)
59 #define LCCR3_INVALID_CONFIG_MASK (LCCR3_HSP|LCCR3_VSP|LCCR3_PCD|LCCR3_BPP)
61 static void (*pxafb_backlight_power
)(int);
62 static void (*pxafb_lcd_power
)(int, struct fb_var_screeninfo
*);
64 static int pxafb_activate_var(struct fb_var_screeninfo
*var
, struct pxafb_info
*);
65 static void set_ctrlr_state(struct pxafb_info
*fbi
, u_int state
);
67 #ifdef CONFIG_FB_PXA_PARAMETERS
68 #define PXAFB_OPTIONS_SIZE 256
69 static char g_options
[PXAFB_OPTIONS_SIZE
] __initdata
= "";
72 static inline void pxafb_schedule_work(struct pxafb_info
*fbi
, u_int state
)
76 local_irq_save(flags
);
78 * We need to handle two requests being made at the same time.
79 * There are two important cases:
80 * 1. When we are changing VT (C_REENABLE) while unblanking (C_ENABLE)
81 * We must perform the unblanking, which will do our REENABLE for us.
82 * 2. When we are blanking, but immediately unblank before we have
83 * blanked. We do the "REENABLE" thing here as well, just to be sure.
85 if (fbi
->task_state
== C_ENABLE
&& state
== C_REENABLE
)
87 if (fbi
->task_state
== C_DISABLE
&& state
== C_ENABLE
)
90 if (state
!= (u_int
)-1) {
91 fbi
->task_state
= state
;
92 schedule_work(&fbi
->task
);
94 local_irq_restore(flags
);
97 static inline u_int
chan_to_field(u_int chan
, struct fb_bitfield
*bf
)
100 chan
>>= 16 - bf
->length
;
101 return chan
<< bf
->offset
;
105 pxafb_setpalettereg(u_int regno
, u_int red
, u_int green
, u_int blue
,
106 u_int trans
, struct fb_info
*info
)
108 struct pxafb_info
*fbi
= (struct pxafb_info
*)info
;
111 if (regno
< fbi
->palette_size
) {
112 if (fbi
->fb
.var
.grayscale
) {
113 val
= ((blue
>> 8) & 0x00ff);
115 val
= ((red
>> 0) & 0xf800);
116 val
|= ((green
>> 5) & 0x07e0);
117 val
|= ((blue
>> 11) & 0x001f);
119 fbi
->palette_cpu
[regno
] = val
;
126 pxafb_setcolreg(u_int regno
, u_int red
, u_int green
, u_int blue
,
127 u_int trans
, struct fb_info
*info
)
129 struct pxafb_info
*fbi
= (struct pxafb_info
*)info
;
134 * If inverse mode was selected, invert all the colours
135 * rather than the register number. The register number
136 * is what you poke into the framebuffer to produce the
137 * colour you requested.
139 if (fbi
->cmap_inverse
) {
141 green
= 0xffff - green
;
142 blue
= 0xffff - blue
;
146 * If greyscale is true, then we convert the RGB value
147 * to greyscale no matter what visual we are using.
149 if (fbi
->fb
.var
.grayscale
)
150 red
= green
= blue
= (19595 * red
+ 38470 * green
+
153 switch (fbi
->fb
.fix
.visual
) {
154 case FB_VISUAL_TRUECOLOR
:
156 * 16-bit True Colour. We encode the RGB value
157 * according to the RGB bitfield information.
160 u32
*pal
= fbi
->fb
.pseudo_palette
;
162 val
= chan_to_field(red
, &fbi
->fb
.var
.red
);
163 val
|= chan_to_field(green
, &fbi
->fb
.var
.green
);
164 val
|= chan_to_field(blue
, &fbi
->fb
.var
.blue
);
171 case FB_VISUAL_STATIC_PSEUDOCOLOR
:
172 case FB_VISUAL_PSEUDOCOLOR
:
173 ret
= pxafb_setpalettereg(regno
, red
, green
, blue
, trans
, info
);
181 * pxafb_bpp_to_lccr3():
182 * Convert a bits per pixel value to the correct bit pattern for LCCR3
184 static int pxafb_bpp_to_lccr3(struct fb_var_screeninfo
*var
)
187 switch (var
->bits_per_pixel
) {
188 case 1: ret
= LCCR3_1BPP
; break;
189 case 2: ret
= LCCR3_2BPP
; break;
190 case 4: ret
= LCCR3_4BPP
; break;
191 case 8: ret
= LCCR3_8BPP
; break;
192 case 16: ret
= LCCR3_16BPP
; break;
197 #ifdef CONFIG_CPU_FREQ
199 * pxafb_display_dma_period()
200 * Calculate the minimum period (in picoseconds) between two DMA
201 * requests for the LCD controller. If we hit this, it means we're
202 * doing nothing but LCD DMA.
204 static unsigned int pxafb_display_dma_period(struct fb_var_screeninfo
*var
)
207 * Period = pixclock * bits_per_byte * bytes_per_transfer
208 * / memory_bits_per_pixel;
210 return var
->pixclock
* 8 * 16 / var
->bits_per_pixel
;
213 extern unsigned int get_clk_frequency_khz(int info
);
217 * Select the smallest mode that allows the desired resolution to be
218 * displayed. If desired parameters can be rounded up.
220 static struct pxafb_mode_info
*pxafb_getmode(struct pxafb_mach_info
*mach
, struct fb_var_screeninfo
*var
)
222 struct pxafb_mode_info
*mode
= NULL
;
223 struct pxafb_mode_info
*modelist
= mach
->modes
;
224 unsigned int best_x
= 0xffffffff, best_y
= 0xffffffff;
227 for (i
= 0 ; i
< mach
->num_modes
; i
++) {
228 if (modelist
[i
].xres
>= var
->xres
&& modelist
[i
].yres
>= var
->yres
&&
229 modelist
[i
].xres
< best_x
&& modelist
[i
].yres
< best_y
&&
230 modelist
[i
].bpp
>= var
->bits_per_pixel
) {
231 best_x
= modelist
[i
].xres
;
232 best_y
= modelist
[i
].yres
;
240 static void pxafb_setmode(struct fb_var_screeninfo
*var
, struct pxafb_mode_info
*mode
)
242 var
->xres
= mode
->xres
;
243 var
->yres
= mode
->yres
;
244 var
->bits_per_pixel
= mode
->bpp
;
245 var
->pixclock
= mode
->pixclock
;
246 var
->hsync_len
= mode
->hsync_len
;
247 var
->left_margin
= mode
->left_margin
;
248 var
->right_margin
= mode
->right_margin
;
249 var
->vsync_len
= mode
->vsync_len
;
250 var
->upper_margin
= mode
->upper_margin
;
251 var
->lower_margin
= mode
->lower_margin
;
252 var
->sync
= mode
->sync
;
253 var
->grayscale
= mode
->cmap_greyscale
;
254 var
->xres_virtual
= var
->xres
;
255 var
->yres_virtual
= var
->yres
;
260 * Get the video params out of 'var'. If a value doesn't fit, round it up,
261 * if it's too big, return -EINVAL.
263 * Round up in the following order: bits_per_pixel, xres,
264 * yres, xres_virtual, yres_virtual, xoffset, yoffset, grayscale,
265 * bitfields, horizontal timing, vertical timing.
267 static int pxafb_check_var(struct fb_var_screeninfo
*var
, struct fb_info
*info
)
269 struct pxafb_info
*fbi
= (struct pxafb_info
*)info
;
270 struct pxafb_mach_info
*inf
= fbi
->dev
->platform_data
;
272 if (var
->xres
< MIN_XRES
)
273 var
->xres
= MIN_XRES
;
274 if (var
->yres
< MIN_YRES
)
275 var
->yres
= MIN_YRES
;
277 if (inf
->fixed_modes
) {
278 struct pxafb_mode_info
*mode
;
280 mode
= pxafb_getmode(inf
, var
);
283 pxafb_setmode(var
, mode
);
285 if (var
->xres
> inf
->modes
->xres
)
287 if (var
->yres
> inf
->modes
->yres
)
289 if (var
->bits_per_pixel
> inf
->modes
->bpp
)
294 max(var
->xres_virtual
, var
->xres
);
296 max(var
->yres_virtual
, var
->yres
);
299 * Setup the RGB parameters for this display.
301 * The pixel packing format is described on page 7-11 of the
302 * PXA2XX Developer's Manual.
304 if (var
->bits_per_pixel
== 16) {
305 var
->red
.offset
= 11; var
->red
.length
= 5;
306 var
->green
.offset
= 5; var
->green
.length
= 6;
307 var
->blue
.offset
= 0; var
->blue
.length
= 5;
308 var
->transp
.offset
= var
->transp
.length
= 0;
310 var
->red
.offset
= var
->green
.offset
= var
->blue
.offset
= var
->transp
.offset
= 0;
312 var
->green
.length
= 8;
313 var
->blue
.length
= 8;
314 var
->transp
.length
= 0;
317 #ifdef CONFIG_CPU_FREQ
318 pr_debug("pxafb: dma period = %d ps, clock = %d kHz\n",
319 pxafb_display_dma_period(var
),
320 get_clk_frequency_khz(0));
326 static inline void pxafb_set_truecolor(u_int is_true_color
)
328 pr_debug("pxafb: true_color = %d\n", is_true_color
);
329 // do your machine-specific setup if needed
334 * Set the user defined part of the display for the specified console
336 static int pxafb_set_par(struct fb_info
*info
)
338 struct pxafb_info
*fbi
= (struct pxafb_info
*)info
;
339 struct fb_var_screeninfo
*var
= &info
->var
;
340 unsigned long palette_mem_size
;
342 pr_debug("pxafb: set_par\n");
344 if (var
->bits_per_pixel
== 16)
345 fbi
->fb
.fix
.visual
= FB_VISUAL_TRUECOLOR
;
346 else if (!fbi
->cmap_static
)
347 fbi
->fb
.fix
.visual
= FB_VISUAL_PSEUDOCOLOR
;
350 * Some people have weird ideas about wanting static
351 * pseudocolor maps. I suspect their user space
352 * applications are broken.
354 fbi
->fb
.fix
.visual
= FB_VISUAL_STATIC_PSEUDOCOLOR
;
357 fbi
->fb
.fix
.line_length
= var
->xres_virtual
*
358 var
->bits_per_pixel
/ 8;
359 if (var
->bits_per_pixel
== 16)
360 fbi
->palette_size
= 0;
362 fbi
->palette_size
= var
->bits_per_pixel
== 1 ? 4 : 1 << var
->bits_per_pixel
;
364 palette_mem_size
= fbi
->palette_size
* sizeof(u16
);
366 pr_debug("pxafb: palette_mem_size = 0x%08lx\n", palette_mem_size
);
368 fbi
->palette_cpu
= (u16
*)(fbi
->map_cpu
+ PAGE_SIZE
- palette_mem_size
);
369 fbi
->palette_dma
= fbi
->map_dma
+ PAGE_SIZE
- palette_mem_size
;
372 * Set (any) board control register to handle new color depth
374 pxafb_set_truecolor(fbi
->fb
.fix
.visual
== FB_VISUAL_TRUECOLOR
);
376 if (fbi
->fb
.var
.bits_per_pixel
== 16)
377 fb_dealloc_cmap(&fbi
->fb
.cmap
);
379 fb_alloc_cmap(&fbi
->fb
.cmap
, 1<<fbi
->fb
.var
.bits_per_pixel
, 0);
381 pxafb_activate_var(var
, fbi
);
387 * Formal definition of the VESA spec:
389 * This refers to the state of the display when it is in full operation
391 * This defines an optional operating state of minimal power reduction with
392 * the shortest recovery time
394 * This refers to a level of power management in which substantial power
395 * reduction is achieved by the display. The display can have a longer
396 * recovery time from this state than from the Stand-by state
398 * This indicates that the display is consuming the lowest level of power
399 * and is non-operational. Recovery from this state may optionally require
400 * the user to manually power on the monitor
402 * Now, the fbdev driver adds an additional state, (blank), where they
403 * turn off the video (maybe by colormap tricks), but don't mess with the
404 * video itself: think of it semantically between on and Stand-By.
406 * So here's what we should do in our fbdev blank routine:
408 * VESA_NO_BLANKING (mode 0) Video on, front/back light on
409 * VESA_VSYNC_SUSPEND (mode 1) Video on, front/back light off
410 * VESA_HSYNC_SUSPEND (mode 2) Video on, front/back light off
411 * VESA_POWERDOWN (mode 3) Video off, front/back light off
413 * This will match the matrox implementation.
418 * Blank the display by setting all palette values to zero. Note, the
419 * 16 bpp mode does not really use the palette, so this will not
420 * blank the display in all modes.
422 static int pxafb_blank(int blank
, struct fb_info
*info
)
424 struct pxafb_info
*fbi
= (struct pxafb_info
*)info
;
427 pr_debug("pxafb: blank=%d\n", blank
);
430 case FB_BLANK_POWERDOWN
:
431 case FB_BLANK_VSYNC_SUSPEND
:
432 case FB_BLANK_HSYNC_SUSPEND
:
433 case FB_BLANK_NORMAL
:
434 if (fbi
->fb
.fix
.visual
== FB_VISUAL_PSEUDOCOLOR
||
435 fbi
->fb
.fix
.visual
== FB_VISUAL_STATIC_PSEUDOCOLOR
)
436 for (i
= 0; i
< fbi
->palette_size
; i
++)
437 pxafb_setpalettereg(i
, 0, 0, 0, 0, info
);
439 pxafb_schedule_work(fbi
, C_DISABLE
);
440 //TODO if (pxafb_blank_helper) pxafb_blank_helper(blank);
443 case FB_BLANK_UNBLANK
:
444 //TODO if (pxafb_blank_helper) pxafb_blank_helper(blank);
445 if (fbi
->fb
.fix
.visual
== FB_VISUAL_PSEUDOCOLOR
||
446 fbi
->fb
.fix
.visual
== FB_VISUAL_STATIC_PSEUDOCOLOR
)
447 fb_set_cmap(&fbi
->fb
.cmap
, info
);
448 pxafb_schedule_work(fbi
, C_ENABLE
);
453 static int pxafb_mmap(struct fb_info
*info
,
454 struct vm_area_struct
*vma
)
456 struct pxafb_info
*fbi
= (struct pxafb_info
*)info
;
457 unsigned long off
= vma
->vm_pgoff
<< PAGE_SHIFT
;
459 if (off
< info
->fix
.smem_len
) {
461 return dma_mmap_writecombine(fbi
->dev
, vma
, fbi
->map_cpu
,
462 fbi
->map_dma
, fbi
->map_size
);
467 static struct fb_ops pxafb_ops
= {
468 .owner
= THIS_MODULE
,
469 .fb_check_var
= pxafb_check_var
,
470 .fb_set_par
= pxafb_set_par
,
471 .fb_setcolreg
= pxafb_setcolreg
,
472 .fb_fillrect
= cfb_fillrect
,
473 .fb_copyarea
= cfb_copyarea
,
474 .fb_imageblit
= cfb_imageblit
,
475 .fb_blank
= pxafb_blank
,
476 .fb_mmap
= pxafb_mmap
,
480 * Calculate the PCD value from the clock rate (in picoseconds).
481 * We take account of the PPCR clock setting.
482 * From PXA Developer's Manual:
493 * LCLK = LCD/Memory Clock
496 * PixelClock here is in Hz while the pixclock argument given is the
497 * period in picoseconds. Hence PixelClock = 1 / ( pixclock * 10^-12 )
499 * The function get_lclk_frequency_10khz returns LCLK in units of
500 * 10khz. Calling the result of this function lclk gives us the
503 * PCD = (lclk * 10^4 ) * ( pixclock * 10^-12 )
504 * -------------------------------------- - 1
507 * Factoring the 10^4 and 10^-12 out gives 10^-8 == 1 / 100000000 as used below.
509 static inline unsigned int get_pcd(unsigned int pixclock
)
511 unsigned long long pcd
;
513 /* FIXME: Need to take into account Double Pixel Clock mode
514 * (DPC) bit? or perhaps set it based on the various clock
517 pcd
= (unsigned long long)get_lcdclk_frequency_10khz() * pixclock
;
518 do_div(pcd
, 100000000 * 2);
519 /* no need for this, since we should subtract 1 anyway. they cancel */
520 /* pcd += 1; */ /* make up for integer math truncations */
521 return (unsigned int)pcd
;
525 * Some touchscreens need hsync information from the video driver to
526 * function correctly. We export it here.
528 static inline void set_hsync_time(struct pxafb_info
*fbi
, unsigned int pcd
)
530 unsigned long long htime
;
532 if ((pcd
== 0) || (fbi
->fb
.var
.hsync_len
== 0)) {
537 htime
= (unsigned long long)get_lcdclk_frequency_10khz() * 10000;
538 do_div(htime
, pcd
* fbi
->fb
.var
.hsync_len
);
539 fbi
->hsync_time
= htime
;
542 unsigned long pxafb_get_hsync_time(struct device
*dev
)
544 struct pxafb_info
*fbi
= dev_get_drvdata(dev
);
546 /* If display is blanked/suspended, hsync isn't active */
547 if (!fbi
|| (fbi
->state
!= C_ENABLE
))
550 return fbi
->hsync_time
;
552 EXPORT_SYMBOL(pxafb_get_hsync_time
);
555 * pxafb_activate_var():
556 * Configures LCD Controller based on entries in var parameter. Settings are
557 * only written to the controller if changes were made.
559 static int pxafb_activate_var(struct fb_var_screeninfo
*var
, struct pxafb_info
*fbi
)
561 struct pxafb_lcd_reg new_regs
;
563 u_int lines_per_panel
, pcd
= get_pcd(var
->pixclock
);
565 pr_debug("pxafb: Configuring PXA LCD\n");
567 pr_debug("var: xres=%d hslen=%d lm=%d rm=%d\n",
568 var
->xres
, var
->hsync_len
,
569 var
->left_margin
, var
->right_margin
);
570 pr_debug("var: yres=%d vslen=%d um=%d bm=%d\n",
571 var
->yres
, var
->vsync_len
,
572 var
->upper_margin
, var
->lower_margin
);
573 pr_debug("var: pixclock=%d pcd=%d\n", var
->pixclock
, pcd
);
576 if (var
->xres
< 16 || var
->xres
> 1024)
577 printk(KERN_ERR
"%s: invalid xres %d\n",
578 fbi
->fb
.fix
.id
, var
->xres
);
579 switch(var
->bits_per_pixel
) {
587 printk(KERN_ERR
"%s: invalid bit depth %d\n",
588 fbi
->fb
.fix
.id
, var
->bits_per_pixel
);
591 if (var
->hsync_len
< 1 || var
->hsync_len
> 64)
592 printk(KERN_ERR
"%s: invalid hsync_len %d\n",
593 fbi
->fb
.fix
.id
, var
->hsync_len
);
594 if (var
->left_margin
< 1 || var
->left_margin
> 255)
595 printk(KERN_ERR
"%s: invalid left_margin %d\n",
596 fbi
->fb
.fix
.id
, var
->left_margin
);
597 if (var
->right_margin
< 1 || var
->right_margin
> 255)
598 printk(KERN_ERR
"%s: invalid right_margin %d\n",
599 fbi
->fb
.fix
.id
, var
->right_margin
);
600 if (var
->yres
< 1 || var
->yres
> 1024)
601 printk(KERN_ERR
"%s: invalid yres %d\n",
602 fbi
->fb
.fix
.id
, var
->yres
);
603 if (var
->vsync_len
< 1 || var
->vsync_len
> 64)
604 printk(KERN_ERR
"%s: invalid vsync_len %d\n",
605 fbi
->fb
.fix
.id
, var
->vsync_len
);
606 if (var
->upper_margin
< 0 || var
->upper_margin
> 255)
607 printk(KERN_ERR
"%s: invalid upper_margin %d\n",
608 fbi
->fb
.fix
.id
, var
->upper_margin
);
609 if (var
->lower_margin
< 0 || var
->lower_margin
> 255)
610 printk(KERN_ERR
"%s: invalid lower_margin %d\n",
611 fbi
->fb
.fix
.id
, var
->lower_margin
);
614 new_regs
.lccr0
= fbi
->lccr0
|
615 (LCCR0_LDM
| LCCR0_SFM
| LCCR0_IUM
| LCCR0_EFM
|
616 LCCR0_QDM
| LCCR0_BM
| LCCR0_OUM
);
619 LCCR1_DisWdth(var
->xres
) +
620 LCCR1_HorSnchWdth(var
->hsync_len
) +
621 LCCR1_BegLnDel(var
->left_margin
) +
622 LCCR1_EndLnDel(var
->right_margin
);
625 * If we have a dual scan LCD, we need to halve
626 * the YRES parameter.
628 lines_per_panel
= var
->yres
;
629 if ((fbi
->lccr0
& LCCR0_SDS
) == LCCR0_Dual
)
630 lines_per_panel
/= 2;
633 LCCR2_DisHght(lines_per_panel
) +
634 LCCR2_VrtSnchWdth(var
->vsync_len
) +
635 LCCR2_BegFrmDel(var
->upper_margin
) +
636 LCCR2_EndFrmDel(var
->lower_margin
);
638 new_regs
.lccr3
= fbi
->lccr3
|
639 pxafb_bpp_to_lccr3(var
) |
640 (var
->sync
& FB_SYNC_HOR_HIGH_ACT
? LCCR3_HorSnchH
: LCCR3_HorSnchL
) |
641 (var
->sync
& FB_SYNC_VERT_HIGH_ACT
? LCCR3_VrtSnchH
: LCCR3_VrtSnchL
);
644 new_regs
.lccr3
|= LCCR3_PixClkDiv(pcd
);
646 pr_debug("nlccr0 = 0x%08x\n", new_regs
.lccr0
);
647 pr_debug("nlccr1 = 0x%08x\n", new_regs
.lccr1
);
648 pr_debug("nlccr2 = 0x%08x\n", new_regs
.lccr2
);
649 pr_debug("nlccr3 = 0x%08x\n", new_regs
.lccr3
);
651 /* Update shadow copy atomically */
652 local_irq_save(flags
);
654 /* setup dma descriptors */
655 fbi
->dmadesc_fblow_cpu
= (struct pxafb_dma_descriptor
*)((unsigned int)fbi
->palette_cpu
- 3*16);
656 fbi
->dmadesc_fbhigh_cpu
= (struct pxafb_dma_descriptor
*)((unsigned int)fbi
->palette_cpu
- 2*16);
657 fbi
->dmadesc_palette_cpu
= (struct pxafb_dma_descriptor
*)((unsigned int)fbi
->palette_cpu
- 1*16);
659 fbi
->dmadesc_fblow_dma
= fbi
->palette_dma
- 3*16;
660 fbi
->dmadesc_fbhigh_dma
= fbi
->palette_dma
- 2*16;
661 fbi
->dmadesc_palette_dma
= fbi
->palette_dma
- 1*16;
663 #define BYTES_PER_PANEL (lines_per_panel * fbi->fb.fix.line_length)
665 /* populate descriptors */
666 fbi
->dmadesc_fblow_cpu
->fdadr
= fbi
->dmadesc_fblow_dma
;
667 fbi
->dmadesc_fblow_cpu
->fsadr
= fbi
->screen_dma
+ BYTES_PER_PANEL
;
668 fbi
->dmadesc_fblow_cpu
->fidr
= 0;
669 fbi
->dmadesc_fblow_cpu
->ldcmd
= BYTES_PER_PANEL
;
671 fbi
->fdadr1
= fbi
->dmadesc_fblow_dma
; /* only used in dual-panel mode */
673 fbi
->dmadesc_fbhigh_cpu
->fsadr
= fbi
->screen_dma
;
674 fbi
->dmadesc_fbhigh_cpu
->fidr
= 0;
675 fbi
->dmadesc_fbhigh_cpu
->ldcmd
= BYTES_PER_PANEL
;
677 fbi
->dmadesc_palette_cpu
->fsadr
= fbi
->palette_dma
;
678 fbi
->dmadesc_palette_cpu
->fidr
= 0;
679 fbi
->dmadesc_palette_cpu
->ldcmd
= (fbi
->palette_size
* 2) | LDCMD_PAL
;
681 if (var
->bits_per_pixel
== 16) {
682 /* palette shouldn't be loaded in true-color mode */
683 fbi
->dmadesc_fbhigh_cpu
->fdadr
= fbi
->dmadesc_fbhigh_dma
;
684 fbi
->fdadr0
= fbi
->dmadesc_fbhigh_dma
; /* no pal just fbhigh */
685 /* init it to something, even though we won't be using it */
686 fbi
->dmadesc_palette_cpu
->fdadr
= fbi
->dmadesc_palette_dma
;
688 fbi
->dmadesc_palette_cpu
->fdadr
= fbi
->dmadesc_fbhigh_dma
;
689 fbi
->dmadesc_fbhigh_cpu
->fdadr
= fbi
->dmadesc_palette_dma
;
690 fbi
->fdadr0
= fbi
->dmadesc_palette_dma
; /* flips back and forth between pal and fbhigh */
694 pr_debug("fbi->dmadesc_fblow_cpu = 0x%p\n", fbi
->dmadesc_fblow_cpu
);
695 pr_debug("fbi->dmadesc_fbhigh_cpu = 0x%p\n", fbi
->dmadesc_fbhigh_cpu
);
696 pr_debug("fbi->dmadesc_palette_cpu = 0x%p\n", fbi
->dmadesc_palette_cpu
);
697 pr_debug("fbi->dmadesc_fblow_dma = 0x%x\n", fbi
->dmadesc_fblow_dma
);
698 pr_debug("fbi->dmadesc_fbhigh_dma = 0x%x\n", fbi
->dmadesc_fbhigh_dma
);
699 pr_debug("fbi->dmadesc_palette_dma = 0x%x\n", fbi
->dmadesc_palette_dma
);
701 pr_debug("fbi->dmadesc_fblow_cpu->fdadr = 0x%x\n", fbi
->dmadesc_fblow_cpu
->fdadr
);
702 pr_debug("fbi->dmadesc_fbhigh_cpu->fdadr = 0x%x\n", fbi
->dmadesc_fbhigh_cpu
->fdadr
);
703 pr_debug("fbi->dmadesc_palette_cpu->fdadr = 0x%x\n", fbi
->dmadesc_palette_cpu
->fdadr
);
705 pr_debug("fbi->dmadesc_fblow_cpu->fsadr = 0x%x\n", fbi
->dmadesc_fblow_cpu
->fsadr
);
706 pr_debug("fbi->dmadesc_fbhigh_cpu->fsadr = 0x%x\n", fbi
->dmadesc_fbhigh_cpu
->fsadr
);
707 pr_debug("fbi->dmadesc_palette_cpu->fsadr = 0x%x\n", fbi
->dmadesc_palette_cpu
->fsadr
);
709 pr_debug("fbi->dmadesc_fblow_cpu->ldcmd = 0x%x\n", fbi
->dmadesc_fblow_cpu
->ldcmd
);
710 pr_debug("fbi->dmadesc_fbhigh_cpu->ldcmd = 0x%x\n", fbi
->dmadesc_fbhigh_cpu
->ldcmd
);
711 pr_debug("fbi->dmadesc_palette_cpu->ldcmd = 0x%x\n", fbi
->dmadesc_palette_cpu
->ldcmd
);
714 fbi
->reg_lccr0
= new_regs
.lccr0
;
715 fbi
->reg_lccr1
= new_regs
.lccr1
;
716 fbi
->reg_lccr2
= new_regs
.lccr2
;
717 fbi
->reg_lccr3
= new_regs
.lccr3
;
718 set_hsync_time(fbi
, pcd
);
719 local_irq_restore(flags
);
722 * Only update the registers if the controller is enabled
723 * and something has changed.
725 if ((LCCR0
!= fbi
->reg_lccr0
) || (LCCR1
!= fbi
->reg_lccr1
) ||
726 (LCCR2
!= fbi
->reg_lccr2
) || (LCCR3
!= fbi
->reg_lccr3
) ||
727 (FDADR0
!= fbi
->fdadr0
) || (FDADR1
!= fbi
->fdadr1
))
728 pxafb_schedule_work(fbi
, C_REENABLE
);
734 * NOTE! The following functions are purely helpers for set_ctrlr_state.
735 * Do not call them directly; set_ctrlr_state does the correct serialisation
736 * to ensure that things happen in the right way 100% of time time.
739 static inline void __pxafb_backlight_power(struct pxafb_info
*fbi
, int on
)
741 pr_debug("pxafb: backlight o%s\n", on
? "n" : "ff");
743 if (pxafb_backlight_power
)
744 pxafb_backlight_power(on
);
747 static inline void __pxafb_lcd_power(struct pxafb_info
*fbi
, int on
)
749 pr_debug("pxafb: LCD power o%s\n", on
? "n" : "ff");
752 pxafb_lcd_power(on
, &fbi
->fb
.var
);
755 static void pxafb_setup_gpio(struct pxafb_info
*fbi
)
758 unsigned int lccr0
= fbi
->lccr0
;
761 * setup is based on type of panel supported
764 /* 4 bit interface */
765 if ((lccr0
& LCCR0_CMS
) == LCCR0_Mono
&&
766 (lccr0
& LCCR0_SDS
) == LCCR0_Sngl
&&
767 (lccr0
& LCCR0_DPD
) == LCCR0_4PixMono
)
770 /* 8 bit interface */
771 else if (((lccr0
& LCCR0_CMS
) == LCCR0_Mono
&&
772 ((lccr0
& LCCR0_SDS
) == LCCR0_Dual
|| (lccr0
& LCCR0_DPD
) == LCCR0_8PixMono
)) ||
773 ((lccr0
& LCCR0_CMS
) == LCCR0_Color
&&
774 (lccr0
& LCCR0_PAS
) == LCCR0_Pas
&& (lccr0
& LCCR0_SDS
) == LCCR0_Sngl
))
777 /* 16 bit interface */
778 else if ((lccr0
& LCCR0_CMS
) == LCCR0_Color
&&
779 ((lccr0
& LCCR0_SDS
) == LCCR0_Dual
|| (lccr0
& LCCR0_PAS
) == LCCR0_Act
))
783 printk(KERN_ERR
"pxafb_setup_gpio: unable to determine bits per pixel\n");
787 for (gpio
= 58; ldd_bits
; gpio
++, ldd_bits
--)
788 pxa_gpio_mode(gpio
| GPIO_ALT_FN_2_OUT
);
789 pxa_gpio_mode(GPIO74_LCD_FCLK_MD
);
790 pxa_gpio_mode(GPIO75_LCD_LCLK_MD
);
791 pxa_gpio_mode(GPIO76_LCD_PCLK_MD
);
792 pxa_gpio_mode(GPIO77_LCD_ACBIAS_MD
);
795 static void pxafb_enable_controller(struct pxafb_info
*fbi
)
797 pr_debug("pxafb: Enabling LCD controller\n");
798 pr_debug("fdadr0 0x%08x\n", (unsigned int) fbi
->fdadr0
);
799 pr_debug("fdadr1 0x%08x\n", (unsigned int) fbi
->fdadr1
);
800 pr_debug("reg_lccr0 0x%08x\n", (unsigned int) fbi
->reg_lccr0
);
801 pr_debug("reg_lccr1 0x%08x\n", (unsigned int) fbi
->reg_lccr1
);
802 pr_debug("reg_lccr2 0x%08x\n", (unsigned int) fbi
->reg_lccr2
);
803 pr_debug("reg_lccr3 0x%08x\n", (unsigned int) fbi
->reg_lccr3
);
805 /* enable LCD controller clock */
806 pxa_set_cken(CKEN16_LCD
, 1);
808 /* Sequence from 11.7.10 */
809 LCCR3
= fbi
->reg_lccr3
;
810 LCCR2
= fbi
->reg_lccr2
;
811 LCCR1
= fbi
->reg_lccr1
;
812 LCCR0
= fbi
->reg_lccr0
& ~LCCR0_ENB
;
814 FDADR0
= fbi
->fdadr0
;
815 FDADR1
= fbi
->fdadr1
;
818 pr_debug("FDADR0 0x%08x\n", (unsigned int) FDADR0
);
819 pr_debug("FDADR1 0x%08x\n", (unsigned int) FDADR1
);
820 pr_debug("LCCR0 0x%08x\n", (unsigned int) LCCR0
);
821 pr_debug("LCCR1 0x%08x\n", (unsigned int) LCCR1
);
822 pr_debug("LCCR2 0x%08x\n", (unsigned int) LCCR2
);
823 pr_debug("LCCR3 0x%08x\n", (unsigned int) LCCR3
);
826 static void pxafb_disable_controller(struct pxafb_info
*fbi
)
828 DECLARE_WAITQUEUE(wait
, current
);
830 pr_debug("pxafb: disabling LCD controller\n");
832 set_current_state(TASK_UNINTERRUPTIBLE
);
833 add_wait_queue(&fbi
->ctrlr_wait
, &wait
);
835 LCSR
= 0xffffffff; /* Clear LCD Status Register */
836 LCCR0
&= ~LCCR0_LDM
; /* Enable LCD Disable Done Interrupt */
837 LCCR0
|= LCCR0_DIS
; /* Disable LCD Controller */
839 schedule_timeout(200 * HZ
/ 1000);
840 remove_wait_queue(&fbi
->ctrlr_wait
, &wait
);
842 /* disable LCD controller clock */
843 pxa_set_cken(CKEN16_LCD
, 0);
847 * pxafb_handle_irq: Handle 'LCD DONE' interrupts.
849 static irqreturn_t
pxafb_handle_irq(int irq
, void *dev_id
)
851 struct pxafb_info
*fbi
= dev_id
;
852 unsigned int lcsr
= LCSR
;
854 if (lcsr
& LCSR_LDD
) {
856 wake_up(&fbi
->ctrlr_wait
);
864 * This function must be called from task context only, since it will
865 * sleep when disabling the LCD controller, or if we get two contending
866 * processes trying to alter state.
868 static void set_ctrlr_state(struct pxafb_info
*fbi
, u_int state
)
872 down(&fbi
->ctrlr_sem
);
874 old_state
= fbi
->state
;
877 * Hack around fbcon initialisation.
879 if (old_state
== C_STARTUP
&& state
== C_REENABLE
)
883 case C_DISABLE_CLKCHANGE
:
885 * Disable controller for clock change. If the
886 * controller is already disabled, then do nothing.
888 if (old_state
!= C_DISABLE
&& old_state
!= C_DISABLE_PM
) {
890 //TODO __pxafb_lcd_power(fbi, 0);
891 pxafb_disable_controller(fbi
);
900 if (old_state
!= C_DISABLE
) {
902 __pxafb_backlight_power(fbi
, 0);
903 __pxafb_lcd_power(fbi
, 0);
904 if (old_state
!= C_DISABLE_CLKCHANGE
)
905 pxafb_disable_controller(fbi
);
909 case C_ENABLE_CLKCHANGE
:
911 * Enable the controller after clock change. Only
912 * do this if we were disabled for the clock change.
914 if (old_state
== C_DISABLE_CLKCHANGE
) {
915 fbi
->state
= C_ENABLE
;
916 pxafb_enable_controller(fbi
);
917 //TODO __pxafb_lcd_power(fbi, 1);
923 * Re-enable the controller only if it was already
924 * enabled. This is so we reprogram the control
927 if (old_state
== C_ENABLE
) {
928 __pxafb_lcd_power(fbi
, 0);
929 pxafb_disable_controller(fbi
);
930 pxafb_setup_gpio(fbi
);
931 pxafb_enable_controller(fbi
);
932 __pxafb_lcd_power(fbi
, 1);
938 * Re-enable the controller after PM. This is not
939 * perfect - think about the case where we were doing
940 * a clock change, and we suspended half-way through.
942 if (old_state
!= C_DISABLE_PM
)
948 * Power up the LCD screen, enable controller, and
949 * turn on the backlight.
951 if (old_state
!= C_ENABLE
) {
952 fbi
->state
= C_ENABLE
;
953 pxafb_setup_gpio(fbi
);
954 pxafb_enable_controller(fbi
);
955 __pxafb_lcd_power(fbi
, 1);
956 __pxafb_backlight_power(fbi
, 1);
964 * Our LCD controller task (which is called when we blank or unblank)
967 static void pxafb_task(struct work_struct
*work
)
969 struct pxafb_info
*fbi
=
970 container_of(work
, struct pxafb_info
, task
);
971 u_int state
= xchg(&fbi
->task_state
, -1);
973 set_ctrlr_state(fbi
, state
);
976 #ifdef CONFIG_CPU_FREQ
978 * CPU clock speed change handler. We need to adjust the LCD timing
979 * parameters when the CPU clock is adjusted by the power management
982 * TODO: Determine why f->new != 10*get_lclk_frequency_10khz()
985 pxafb_freq_transition(struct notifier_block
*nb
, unsigned long val
, void *data
)
987 struct pxafb_info
*fbi
= TO_INF(nb
, freq_transition
);
988 //TODO struct cpufreq_freqs *f = data;
992 case CPUFREQ_PRECHANGE
:
993 set_ctrlr_state(fbi
, C_DISABLE_CLKCHANGE
);
996 case CPUFREQ_POSTCHANGE
:
997 pcd
= get_pcd(fbi
->fb
.var
.pixclock
);
998 set_hsync_time(fbi
, pcd
);
999 fbi
->reg_lccr3
= (fbi
->reg_lccr3
& ~0xff) | LCCR3_PixClkDiv(pcd
);
1000 set_ctrlr_state(fbi
, C_ENABLE_CLKCHANGE
);
1007 pxafb_freq_policy(struct notifier_block
*nb
, unsigned long val
, void *data
)
1009 struct pxafb_info
*fbi
= TO_INF(nb
, freq_policy
);
1010 struct fb_var_screeninfo
*var
= &fbi
->fb
.var
;
1011 struct cpufreq_policy
*policy
= data
;
1014 case CPUFREQ_ADJUST
:
1015 case CPUFREQ_INCOMPATIBLE
:
1016 printk(KERN_DEBUG
"min dma period: %d ps, "
1017 "new clock %d kHz\n", pxafb_display_dma_period(var
),
1019 // TODO: fill in min/max values
1022 case CPUFREQ_NOTIFY
:
1023 printk(KERN_ERR
"%s: got CPUFREQ_NOTIFY\n", __FUNCTION__
);
1025 /* todo: panic if min/max values aren't fulfilled
1026 * [can't really happen unless there's a bug in the
1027 * CPU policy verification process *
1038 * Power management hooks. Note that we won't be called from IRQ context,
1039 * unlike the blank functions above, so we may sleep.
1041 static int pxafb_suspend(struct platform_device
*dev
, pm_message_t state
)
1043 struct pxafb_info
*fbi
= platform_get_drvdata(dev
);
1045 set_ctrlr_state(fbi
, C_DISABLE_PM
);
1049 static int pxafb_resume(struct platform_device
*dev
)
1051 struct pxafb_info
*fbi
= platform_get_drvdata(dev
);
1053 set_ctrlr_state(fbi
, C_ENABLE_PM
);
1057 #define pxafb_suspend NULL
1058 #define pxafb_resume NULL
1062 * pxafb_map_video_memory():
1063 * Allocates the DRAM memory for the frame buffer. This buffer is
1064 * remapped into a non-cached, non-buffered, memory region to
1065 * allow palette and pixel writes to occur without flushing the
1066 * cache. Once this area is remapped, all virtual memory
1067 * access to the video memory should occur at the new region.
1069 static int __init
pxafb_map_video_memory(struct pxafb_info
*fbi
)
1071 u_long palette_mem_size
;
1074 * We reserve one page for the palette, plus the size
1075 * of the framebuffer.
1077 fbi
->map_size
= PAGE_ALIGN(fbi
->fb
.fix
.smem_len
+ PAGE_SIZE
);
1078 fbi
->map_cpu
= dma_alloc_writecombine(fbi
->dev
, fbi
->map_size
,
1079 &fbi
->map_dma
, GFP_KERNEL
);
1082 /* prevent initial garbage on screen */
1083 memset(fbi
->map_cpu
, 0, fbi
->map_size
);
1084 fbi
->fb
.screen_base
= fbi
->map_cpu
+ PAGE_SIZE
;
1085 fbi
->screen_dma
= fbi
->map_dma
+ PAGE_SIZE
;
1087 * FIXME: this is actually the wrong thing to place in
1088 * smem_start. But fbdev suffers from the problem that
1089 * it needs an API which doesn't exist (in this case,
1090 * dma_writecombine_mmap)
1092 fbi
->fb
.fix
.smem_start
= fbi
->screen_dma
;
1094 fbi
->palette_size
= fbi
->fb
.var
.bits_per_pixel
== 8 ? 256 : 16;
1096 palette_mem_size
= fbi
->palette_size
* sizeof(u16
);
1097 pr_debug("pxafb: palette_mem_size = 0x%08lx\n", palette_mem_size
);
1099 fbi
->palette_cpu
= (u16
*)(fbi
->map_cpu
+ PAGE_SIZE
- palette_mem_size
);
1100 fbi
->palette_dma
= fbi
->map_dma
+ PAGE_SIZE
- palette_mem_size
;
1103 return fbi
->map_cpu
? 0 : -ENOMEM
;
1106 static struct pxafb_info
* __init
pxafb_init_fbinfo(struct device
*dev
)
1108 struct pxafb_info
*fbi
;
1110 struct pxafb_mach_info
*inf
= dev
->platform_data
;
1111 struct pxafb_mode_info
*mode
= inf
->modes
;
1114 /* Alloc the pxafb_info and pseudo_palette in one step */
1115 fbi
= kmalloc(sizeof(struct pxafb_info
) + sizeof(u32
) * 16, GFP_KERNEL
);
1119 memset(fbi
, 0, sizeof(struct pxafb_info
));
1122 strcpy(fbi
->fb
.fix
.id
, PXA_NAME
);
1124 fbi
->fb
.fix
.type
= FB_TYPE_PACKED_PIXELS
;
1125 fbi
->fb
.fix
.type_aux
= 0;
1126 fbi
->fb
.fix
.xpanstep
= 0;
1127 fbi
->fb
.fix
.ypanstep
= 0;
1128 fbi
->fb
.fix
.ywrapstep
= 0;
1129 fbi
->fb
.fix
.accel
= FB_ACCEL_NONE
;
1131 fbi
->fb
.var
.nonstd
= 0;
1132 fbi
->fb
.var
.activate
= FB_ACTIVATE_NOW
;
1133 fbi
->fb
.var
.height
= -1;
1134 fbi
->fb
.var
.width
= -1;
1135 fbi
->fb
.var
.accel_flags
= 0;
1136 fbi
->fb
.var
.vmode
= FB_VMODE_NONINTERLACED
;
1138 fbi
->fb
.fbops
= &pxafb_ops
;
1139 fbi
->fb
.flags
= FBINFO_DEFAULT
;
1143 addr
= addr
+ sizeof(struct pxafb_info
);
1144 fbi
->fb
.pseudo_palette
= addr
;
1146 pxafb_setmode(&fbi
->fb
.var
, mode
);
1148 fbi
->cmap_inverse
= inf
->cmap_inverse
;
1149 fbi
->cmap_static
= inf
->cmap_static
;
1151 fbi
->lccr0
= inf
->lccr0
;
1152 fbi
->lccr3
= inf
->lccr3
;
1153 fbi
->state
= C_STARTUP
;
1154 fbi
->task_state
= (u_char
)-1;
1156 for (i
= 0; i
< inf
->num_modes
; i
++) {
1157 smemlen
= mode
[i
].xres
* mode
[i
].yres
* mode
[i
].bpp
/ 8;
1158 if (smemlen
> fbi
->fb
.fix
.smem_len
)
1159 fbi
->fb
.fix
.smem_len
= smemlen
;
1162 init_waitqueue_head(&fbi
->ctrlr_wait
);
1163 INIT_WORK(&fbi
->task
, pxafb_task
);
1164 init_MUTEX(&fbi
->ctrlr_sem
);
1169 #ifdef CONFIG_FB_PXA_PARAMETERS
1170 static int __init
pxafb_parse_options(struct device
*dev
, char *options
)
1172 struct pxafb_mach_info
*inf
= dev
->platform_data
;
1175 if (!options
|| !*options
)
1178 dev_dbg(dev
, "options are \"%s\"\n", options
? options
: "null");
1180 /* could be made table driven or similar?... */
1181 while ((this_opt
= strsep(&options
, ",")) != NULL
) {
1182 if (!strncmp(this_opt
, "mode:", 5)) {
1183 const char *name
= this_opt
+5;
1184 unsigned int namelen
= strlen(name
);
1185 int res_specified
= 0, bpp_specified
= 0;
1186 unsigned int xres
= 0, yres
= 0, bpp
= 0;
1187 int yres_specified
= 0;
1189 for (i
= namelen
-1; i
>= 0; i
--) {
1193 if (!bpp_specified
&& !yres_specified
) {
1194 bpp
= simple_strtoul(&name
[i
+1], NULL
, 0);
1200 if (!yres_specified
) {
1201 yres
= simple_strtoul(&name
[i
+1], NULL
, 0);
1212 if (i
< 0 && yres_specified
) {
1213 xres
= simple_strtoul(name
, NULL
, 0);
1217 if (res_specified
) {
1218 dev_info(dev
, "overriding resolution: %dx%d\n", xres
, yres
);
1219 inf
->modes
[0].xres
= xres
; inf
->modes
[0].yres
= yres
;
1228 inf
->modes
[0].bpp
= bpp
;
1229 dev_info(dev
, "overriding bit depth: %d\n", bpp
);
1232 dev_err(dev
, "Depth %d is not valid\n", bpp
);
1234 } else if (!strncmp(this_opt
, "pixclock:", 9)) {
1235 inf
->modes
[0].pixclock
= simple_strtoul(this_opt
+9, NULL
, 0);
1236 dev_info(dev
, "override pixclock: %ld\n", inf
->modes
[0].pixclock
);
1237 } else if (!strncmp(this_opt
, "left:", 5)) {
1238 inf
->modes
[0].left_margin
= simple_strtoul(this_opt
+5, NULL
, 0);
1239 dev_info(dev
, "override left: %u\n", inf
->modes
[0].left_margin
);
1240 } else if (!strncmp(this_opt
, "right:", 6)) {
1241 inf
->modes
[0].right_margin
= simple_strtoul(this_opt
+6, NULL
, 0);
1242 dev_info(dev
, "override right: %u\n", inf
->modes
[0].right_margin
);
1243 } else if (!strncmp(this_opt
, "upper:", 6)) {
1244 inf
->modes
[0].upper_margin
= simple_strtoul(this_opt
+6, NULL
, 0);
1245 dev_info(dev
, "override upper: %u\n", inf
->modes
[0].upper_margin
);
1246 } else if (!strncmp(this_opt
, "lower:", 6)) {
1247 inf
->modes
[0].lower_margin
= simple_strtoul(this_opt
+6, NULL
, 0);
1248 dev_info(dev
, "override lower: %u\n", inf
->modes
[0].lower_margin
);
1249 } else if (!strncmp(this_opt
, "hsynclen:", 9)) {
1250 inf
->modes
[0].hsync_len
= simple_strtoul(this_opt
+9, NULL
, 0);
1251 dev_info(dev
, "override hsynclen: %u\n", inf
->modes
[0].hsync_len
);
1252 } else if (!strncmp(this_opt
, "vsynclen:", 9)) {
1253 inf
->modes
[0].vsync_len
= simple_strtoul(this_opt
+9, NULL
, 0);
1254 dev_info(dev
, "override vsynclen: %u\n", inf
->modes
[0].vsync_len
);
1255 } else if (!strncmp(this_opt
, "hsync:", 6)) {
1256 if (simple_strtoul(this_opt
+6, NULL
, 0) == 0) {
1257 dev_info(dev
, "override hsync: Active Low\n");
1258 inf
->modes
[0].sync
&= ~FB_SYNC_HOR_HIGH_ACT
;
1260 dev_info(dev
, "override hsync: Active High\n");
1261 inf
->modes
[0].sync
|= FB_SYNC_HOR_HIGH_ACT
;
1263 } else if (!strncmp(this_opt
, "vsync:", 6)) {
1264 if (simple_strtoul(this_opt
+6, NULL
, 0) == 0) {
1265 dev_info(dev
, "override vsync: Active Low\n");
1266 inf
->modes
[0].sync
&= ~FB_SYNC_VERT_HIGH_ACT
;
1268 dev_info(dev
, "override vsync: Active High\n");
1269 inf
->modes
[0].sync
|= FB_SYNC_VERT_HIGH_ACT
;
1271 } else if (!strncmp(this_opt
, "dpc:", 4)) {
1272 if (simple_strtoul(this_opt
+4, NULL
, 0) == 0) {
1273 dev_info(dev
, "override double pixel clock: false\n");
1274 inf
->lccr3
&= ~LCCR3_DPC
;
1276 dev_info(dev
, "override double pixel clock: true\n");
1277 inf
->lccr3
|= LCCR3_DPC
;
1279 } else if (!strncmp(this_opt
, "outputen:", 9)) {
1280 if (simple_strtoul(this_opt
+9, NULL
, 0) == 0) {
1281 dev_info(dev
, "override output enable: active low\n");
1282 inf
->lccr3
= (inf
->lccr3
& ~LCCR3_OEP
) | LCCR3_OutEnL
;
1284 dev_info(dev
, "override output enable: active high\n");
1285 inf
->lccr3
= (inf
->lccr3
& ~LCCR3_OEP
) | LCCR3_OutEnH
;
1287 } else if (!strncmp(this_opt
, "pixclockpol:", 12)) {
1288 if (simple_strtoul(this_opt
+12, NULL
, 0) == 0) {
1289 dev_info(dev
, "override pixel clock polarity: falling edge\n");
1290 inf
->lccr3
= (inf
->lccr3
& ~LCCR3_PCP
) | LCCR3_PixFlEdg
;
1292 dev_info(dev
, "override pixel clock polarity: rising edge\n");
1293 inf
->lccr3
= (inf
->lccr3
& ~LCCR3_PCP
) | LCCR3_PixRsEdg
;
1295 } else if (!strncmp(this_opt
, "color", 5)) {
1296 inf
->lccr0
= (inf
->lccr0
& ~LCCR0_CMS
) | LCCR0_Color
;
1297 } else if (!strncmp(this_opt
, "mono", 4)) {
1298 inf
->lccr0
= (inf
->lccr0
& ~LCCR0_CMS
) | LCCR0_Mono
;
1299 } else if (!strncmp(this_opt
, "active", 6)) {
1300 inf
->lccr0
= (inf
->lccr0
& ~LCCR0_PAS
) | LCCR0_Act
;
1301 } else if (!strncmp(this_opt
, "passive", 7)) {
1302 inf
->lccr0
= (inf
->lccr0
& ~LCCR0_PAS
) | LCCR0_Pas
;
1303 } else if (!strncmp(this_opt
, "single", 6)) {
1304 inf
->lccr0
= (inf
->lccr0
& ~LCCR0_SDS
) | LCCR0_Sngl
;
1305 } else if (!strncmp(this_opt
, "dual", 4)) {
1306 inf
->lccr0
= (inf
->lccr0
& ~LCCR0_SDS
) | LCCR0_Dual
;
1307 } else if (!strncmp(this_opt
, "4pix", 4)) {
1308 inf
->lccr0
= (inf
->lccr0
& ~LCCR0_DPD
) | LCCR0_4PixMono
;
1309 } else if (!strncmp(this_opt
, "8pix", 4)) {
1310 inf
->lccr0
= (inf
->lccr0
& ~LCCR0_DPD
) | LCCR0_8PixMono
;
1312 dev_err(dev
, "unknown option: %s\n", this_opt
);
1321 int __init
pxafb_probe(struct platform_device
*dev
)
1323 struct pxafb_info
*fbi
;
1324 struct pxafb_mach_info
*inf
;
1327 dev_dbg(&dev
->dev
, "pxafb_probe\n");
1329 inf
= dev
->dev
.platform_data
;
1335 #ifdef CONFIG_FB_PXA_PARAMETERS
1336 ret
= pxafb_parse_options(&dev
->dev
, g_options
);
1342 /* Check for various illegal bit-combinations. Currently only
1343 * a warning is given. */
1345 if (inf
->lccr0
& LCCR0_INVALID_CONFIG_MASK
)
1346 dev_warn(&dev
->dev
, "machine LCCR0 setting contains illegal bits: %08x\n",
1347 inf
->lccr0
& LCCR0_INVALID_CONFIG_MASK
);
1348 if (inf
->lccr3
& LCCR3_INVALID_CONFIG_MASK
)
1349 dev_warn(&dev
->dev
, "machine LCCR3 setting contains illegal bits: %08x\n",
1350 inf
->lccr3
& LCCR3_INVALID_CONFIG_MASK
);
1351 if (inf
->lccr0
& LCCR0_DPD
&&
1352 ((inf
->lccr0
& LCCR0_PAS
) != LCCR0_Pas
||
1353 (inf
->lccr0
& LCCR0_SDS
) != LCCR0_Sngl
||
1354 (inf
->lccr0
& LCCR0_CMS
) != LCCR0_Mono
))
1355 dev_warn(&dev
->dev
, "Double Pixel Data (DPD) mode is only valid in passive mono"
1356 " single panel mode\n");
1357 if ((inf
->lccr0
& LCCR0_PAS
) == LCCR0_Act
&&
1358 (inf
->lccr0
& LCCR0_SDS
) == LCCR0_Dual
)
1359 dev_warn(&dev
->dev
, "Dual panel only valid in passive mode\n");
1360 if ((inf
->lccr0
& LCCR0_PAS
) == LCCR0_Pas
&&
1361 (inf
->modes
->upper_margin
|| inf
->modes
->lower_margin
))
1362 dev_warn(&dev
->dev
, "Upper and lower margins must be 0 in passive mode\n");
1365 dev_dbg(&dev
->dev
, "got a %dx%dx%d LCD\n",inf
->modes
->xres
, inf
->modes
->yres
, inf
->modes
->bpp
);
1366 if (inf
->modes
->xres
== 0 || inf
->modes
->yres
== 0 || inf
->modes
->bpp
== 0) {
1367 dev_err(&dev
->dev
, "Invalid resolution or bit depth\n");
1371 pxafb_backlight_power
= inf
->pxafb_backlight_power
;
1372 pxafb_lcd_power
= inf
->pxafb_lcd_power
;
1373 fbi
= pxafb_init_fbinfo(&dev
->dev
);
1375 dev_err(&dev
->dev
, "Failed to initialize framebuffer device\n");
1376 ret
= -ENOMEM
; // only reason for pxafb_init_fbinfo to fail is kmalloc
1380 /* Initialize video memory */
1381 ret
= pxafb_map_video_memory(fbi
);
1383 dev_err(&dev
->dev
, "Failed to allocate video RAM: %d\n", ret
);
1388 ret
= request_irq(IRQ_LCD
, pxafb_handle_irq
, IRQF_DISABLED
, "LCD", fbi
);
1390 dev_err(&dev
->dev
, "request_irq failed: %d\n", ret
);
1396 * This makes sure that our colour bitfield
1397 * descriptors are correctly initialised.
1399 pxafb_check_var(&fbi
->fb
.var
, &fbi
->fb
);
1400 pxafb_set_par(&fbi
->fb
);
1402 platform_set_drvdata(dev
, fbi
);
1404 ret
= register_framebuffer(&fbi
->fb
);
1406 dev_err(&dev
->dev
, "Failed to register framebuffer device: %d\n", ret
);
1414 #ifdef CONFIG_CPU_FREQ
1415 fbi
->freq_transition
.notifier_call
= pxafb_freq_transition
;
1416 fbi
->freq_policy
.notifier_call
= pxafb_freq_policy
;
1417 cpufreq_register_notifier(&fbi
->freq_transition
, CPUFREQ_TRANSITION_NOTIFIER
);
1418 cpufreq_register_notifier(&fbi
->freq_policy
, CPUFREQ_POLICY_NOTIFIER
);
1422 * Ok, now enable the LCD controller
1424 set_ctrlr_state(fbi
, C_ENABLE
);
1429 platform_set_drvdata(dev
, NULL
);
1434 static struct platform_driver pxafb_driver
= {
1435 .probe
= pxafb_probe
,
1437 .suspend
= pxafb_suspend
,
1438 .resume
= pxafb_resume
,
1441 .name
= "pxa2xx-fb",
1446 int __devinit
pxafb_setup(char *options
)
1448 # ifdef CONFIG_FB_PXA_PARAMETERS
1450 strlcpy(g_options
, options
, sizeof(g_options
));
1455 # ifdef CONFIG_FB_PXA_PARAMETERS
1456 module_param_string(options
, g_options
, sizeof(g_options
), 0);
1457 MODULE_PARM_DESC(options
, "LCD parameters (see Documentation/fb/pxafb.txt)");
1461 int __devinit
pxafb_init(void)
1464 char *option
= NULL
;
1466 if (fb_get_options("pxafb", &option
))
1468 pxafb_setup(option
);
1470 return platform_driver_register(&pxafb_driver
);
1473 module_init(pxafb_init
);
1475 MODULE_DESCRIPTION("loadable framebuffer driver for PXA");
1476 MODULE_LICENSE("GPL");