4 * Basic PIO and command management functionality.
6 * This code was split off from ide.c. See ide.c for history and original
9 * This program is free software; you can redistribute it and/or modify it
10 * under the terms of the GNU General Public License as published by the
11 * Free Software Foundation; either version 2, or (at your option) any
14 * This program is distributed in the hope that it will be useful, but
15 * WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
17 * General Public License for more details.
19 * For the avoidance of doubt the "preferred form" of this code is one which
20 * is in an open non patent encumbered format. Where cryptographic key signing
21 * forms part of the process of creating an executable the information
22 * including keys needed to generate an equivalently functional executable
23 * are deemed to be part of the source code.
27 #include <linux/module.h>
28 #include <linux/types.h>
29 #include <linux/string.h>
30 #include <linux/kernel.h>
31 #include <linux/timer.h>
33 #include <linux/interrupt.h>
34 #include <linux/major.h>
35 #include <linux/errno.h>
36 #include <linux/genhd.h>
37 #include <linux/blkpg.h>
38 #include <linux/slab.h>
39 #include <linux/init.h>
40 #include <linux/pci.h>
41 #include <linux/delay.h>
42 #include <linux/ide.h>
43 #include <linux/completion.h>
44 #include <linux/reboot.h>
45 #include <linux/cdrom.h>
46 #include <linux/seq_file.h>
47 #include <linux/device.h>
48 #include <linux/kmod.h>
49 #include <linux/scatterlist.h>
51 #include <asm/byteorder.h>
53 #include <asm/uaccess.h>
55 #include <asm/bitops.h>
57 static int __ide_end_request(ide_drive_t
*drive
, struct request
*rq
,
58 int uptodate
, int nr_sectors
)
63 * if failfast is set on a request, override number of sectors and
64 * complete the whole request right now
66 if (blk_noretry_request(rq
) && end_io_error(uptodate
))
67 nr_sectors
= rq
->hard_nr_sectors
;
69 if (!blk_fs_request(rq
) && end_io_error(uptodate
) && !rq
->errors
)
73 * decide whether to reenable DMA -- 3 is a random magic for now,
74 * if we DMA timeout more than 3 times, just stay in PIO
76 if (drive
->state
== DMA_PIO_RETRY
&& drive
->retry_pio
<= 3) {
78 HWGROUP(drive
)->hwif
->ide_dma_on(drive
);
81 if (!end_that_request_first(rq
, uptodate
, nr_sectors
)) {
82 add_disk_randomness(rq
->rq_disk
);
83 if (!list_empty(&rq
->queuelist
))
84 blkdev_dequeue_request(rq
);
85 HWGROUP(drive
)->rq
= NULL
;
86 end_that_request_last(rq
, uptodate
);
94 * ide_end_request - complete an IDE I/O
95 * @drive: IDE device for the I/O
97 * @nr_sectors: number of sectors completed
99 * This is our end_request wrapper function. We complete the I/O
100 * update random number input and dequeue the request, which if
101 * it was tagged may be out of order.
104 int ide_end_request (ide_drive_t
*drive
, int uptodate
, int nr_sectors
)
111 * room for locking improvements here, the calls below don't
112 * need the queue lock held at all
114 spin_lock_irqsave(&ide_lock
, flags
);
115 rq
= HWGROUP(drive
)->rq
;
118 nr_sectors
= rq
->hard_cur_sectors
;
120 ret
= __ide_end_request(drive
, rq
, uptodate
, nr_sectors
);
122 spin_unlock_irqrestore(&ide_lock
, flags
);
125 EXPORT_SYMBOL(ide_end_request
);
128 * Power Management state machine. This one is rather trivial for now,
129 * we should probably add more, like switching back to PIO on suspend
130 * to help some BIOSes, re-do the door locking on resume, etc...
134 ide_pm_flush_cache
= ide_pm_state_start_suspend
,
137 idedisk_pm_restore_pio
= ide_pm_state_start_resume
,
142 static void ide_complete_power_step(ide_drive_t
*drive
, struct request
*rq
, u8 stat
, u8 error
)
144 struct request_pm_state
*pm
= rq
->data
;
146 if (drive
->media
!= ide_disk
)
149 switch (pm
->pm_step
) {
150 case ide_pm_flush_cache
: /* Suspend step 1 (flush cache) complete */
151 if (pm
->pm_state
== PM_EVENT_FREEZE
)
152 pm
->pm_step
= ide_pm_state_completed
;
154 pm
->pm_step
= idedisk_pm_standby
;
156 case idedisk_pm_standby
: /* Suspend step 2 (standby) complete */
157 pm
->pm_step
= ide_pm_state_completed
;
159 case idedisk_pm_restore_pio
: /* Resume step 1 complete */
160 pm
->pm_step
= idedisk_pm_idle
;
162 case idedisk_pm_idle
: /* Resume step 2 (idle) complete */
163 pm
->pm_step
= ide_pm_restore_dma
;
168 static ide_startstop_t
ide_start_power_step(ide_drive_t
*drive
, struct request
*rq
)
170 struct request_pm_state
*pm
= rq
->data
;
171 ide_task_t
*args
= rq
->special
;
173 memset(args
, 0, sizeof(*args
));
175 if (drive
->media
!= ide_disk
) {
177 * skip idedisk_pm_restore_pio and idedisk_pm_idle for ATAPI
180 if (pm
->pm_step
== idedisk_pm_restore_pio
)
181 pm
->pm_step
= ide_pm_restore_dma
;
184 switch (pm
->pm_step
) {
185 case ide_pm_flush_cache
: /* Suspend step 1 (flush cache) */
186 if (drive
->media
!= ide_disk
)
188 /* Not supported? Switch to next step now. */
189 if (!drive
->wcache
|| !ide_id_has_flush_cache(drive
->id
)) {
190 ide_complete_power_step(drive
, rq
, 0, 0);
193 if (ide_id_has_flush_cache_ext(drive
->id
))
194 args
->tfRegister
[IDE_COMMAND_OFFSET
] = WIN_FLUSH_CACHE_EXT
;
196 args
->tfRegister
[IDE_COMMAND_OFFSET
] = WIN_FLUSH_CACHE
;
197 args
->command_type
= IDE_DRIVE_TASK_NO_DATA
;
198 args
->handler
= &task_no_data_intr
;
199 return do_rw_taskfile(drive
, args
);
201 case idedisk_pm_standby
: /* Suspend step 2 (standby) */
202 args
->tfRegister
[IDE_COMMAND_OFFSET
] = WIN_STANDBYNOW1
;
203 args
->command_type
= IDE_DRIVE_TASK_NO_DATA
;
204 args
->handler
= &task_no_data_intr
;
205 return do_rw_taskfile(drive
, args
);
207 case idedisk_pm_restore_pio
: /* Resume step 1 (restore PIO) */
208 if (drive
->hwif
->tuneproc
!= NULL
)
209 drive
->hwif
->tuneproc(drive
, 255);
210 ide_complete_power_step(drive
, rq
, 0, 0);
213 case idedisk_pm_idle
: /* Resume step 2 (idle) */
214 args
->tfRegister
[IDE_COMMAND_OFFSET
] = WIN_IDLEIMMEDIATE
;
215 args
->command_type
= IDE_DRIVE_TASK_NO_DATA
;
216 args
->handler
= task_no_data_intr
;
217 return do_rw_taskfile(drive
, args
);
219 case ide_pm_restore_dma
: /* Resume step 3 (restore DMA) */
221 * Right now, all we do is call hwif->ide_dma_check(drive),
222 * we could be smarter and check for current xfer_speed
223 * in struct drive etc...
225 if ((drive
->id
->capability
& 1) == 0)
227 if (drive
->hwif
->ide_dma_check
== NULL
)
229 drive
->hwif
->ide_dma_check(drive
);
232 pm
->pm_step
= ide_pm_state_completed
;
237 * ide_end_dequeued_request - complete an IDE I/O
238 * @drive: IDE device for the I/O
240 * @nr_sectors: number of sectors completed
242 * Complete an I/O that is no longer on the request queue. This
243 * typically occurs when we pull the request and issue a REQUEST_SENSE.
244 * We must still finish the old request but we must not tamper with the
245 * queue in the meantime.
247 * NOTE: This path does not handle barrier, but barrier is not supported
251 int ide_end_dequeued_request(ide_drive_t
*drive
, struct request
*rq
,
252 int uptodate
, int nr_sectors
)
257 spin_lock_irqsave(&ide_lock
, flags
);
259 BUG_ON(!blk_rq_started(rq
));
262 * if failfast is set on a request, override number of sectors and
263 * complete the whole request right now
265 if (blk_noretry_request(rq
) && end_io_error(uptodate
))
266 nr_sectors
= rq
->hard_nr_sectors
;
268 if (!blk_fs_request(rq
) && end_io_error(uptodate
) && !rq
->errors
)
272 * decide whether to reenable DMA -- 3 is a random magic for now,
273 * if we DMA timeout more than 3 times, just stay in PIO
275 if (drive
->state
== DMA_PIO_RETRY
&& drive
->retry_pio
<= 3) {
277 HWGROUP(drive
)->hwif
->ide_dma_on(drive
);
280 if (!end_that_request_first(rq
, uptodate
, nr_sectors
)) {
281 add_disk_randomness(rq
->rq_disk
);
282 if (blk_rq_tagged(rq
))
283 blk_queue_end_tag(drive
->queue
, rq
);
284 end_that_request_last(rq
, uptodate
);
287 spin_unlock_irqrestore(&ide_lock
, flags
);
290 EXPORT_SYMBOL_GPL(ide_end_dequeued_request
);
294 * ide_complete_pm_request - end the current Power Management request
295 * @drive: target drive
298 * This function cleans up the current PM request and stops the queue
301 static void ide_complete_pm_request (ide_drive_t
*drive
, struct request
*rq
)
306 printk("%s: completing PM request, %s\n", drive
->name
,
307 blk_pm_suspend_request(rq
) ? "suspend" : "resume");
309 spin_lock_irqsave(&ide_lock
, flags
);
310 if (blk_pm_suspend_request(rq
)) {
311 blk_stop_queue(drive
->queue
);
314 blk_start_queue(drive
->queue
);
316 blkdev_dequeue_request(rq
);
317 HWGROUP(drive
)->rq
= NULL
;
318 end_that_request_last(rq
, 1);
319 spin_unlock_irqrestore(&ide_lock
, flags
);
323 * FIXME: probably move this somewhere else, name is bad too :)
325 u64
ide_get_error_location(ide_drive_t
*drive
, char *args
)
336 if (ide_id_has_flush_cache_ext(drive
->id
)) {
337 low
= (hcyl
<< 16) | (lcyl
<< 8) | sect
;
338 HWIF(drive
)->OUTB(drive
->ctl
|0x80, IDE_CONTROL_REG
);
339 high
= ide_read_24(drive
);
341 u8 cur
= HWIF(drive
)->INB(IDE_SELECT_REG
);
344 low
= (hcyl
<< 16) | (lcyl
<< 8) | sect
;
346 low
= hcyl
* drive
->head
* drive
->sect
;
347 low
+= lcyl
* drive
->sect
;
352 sector
= ((u64
) high
<< 24) | low
;
355 EXPORT_SYMBOL(ide_get_error_location
);
358 * ide_end_drive_cmd - end an explicit drive command
363 * Clean up after success/failure of an explicit drive command.
364 * These get thrown onto the queue so they are synchronized with
365 * real I/O operations on the drive.
367 * In LBA48 mode we have to read the register set twice to get
368 * all the extra information out.
371 void ide_end_drive_cmd (ide_drive_t
*drive
, u8 stat
, u8 err
)
373 ide_hwif_t
*hwif
= HWIF(drive
);
377 spin_lock_irqsave(&ide_lock
, flags
);
378 rq
= HWGROUP(drive
)->rq
;
379 spin_unlock_irqrestore(&ide_lock
, flags
);
381 if (rq
->cmd_type
== REQ_TYPE_ATA_CMD
) {
382 u8
*args
= (u8
*) rq
->buffer
;
384 rq
->errors
= !OK_STAT(stat
,READY_STAT
,BAD_STAT
);
389 args
[2] = hwif
->INB(IDE_NSECTOR_REG
);
391 } else if (rq
->cmd_type
== REQ_TYPE_ATA_TASK
) {
392 u8
*args
= (u8
*) rq
->buffer
;
394 rq
->errors
= !OK_STAT(stat
,READY_STAT
,BAD_STAT
);
399 args
[2] = hwif
->INB(IDE_NSECTOR_REG
);
400 args
[3] = hwif
->INB(IDE_SECTOR_REG
);
401 args
[4] = hwif
->INB(IDE_LCYL_REG
);
402 args
[5] = hwif
->INB(IDE_HCYL_REG
);
403 args
[6] = hwif
->INB(IDE_SELECT_REG
);
405 } else if (rq
->cmd_type
== REQ_TYPE_ATA_TASKFILE
) {
406 ide_task_t
*args
= (ide_task_t
*) rq
->special
;
408 rq
->errors
= !OK_STAT(stat
,READY_STAT
,BAD_STAT
);
411 if (args
->tf_in_flags
.b
.data
) {
412 u16 data
= hwif
->INW(IDE_DATA_REG
);
413 args
->tfRegister
[IDE_DATA_OFFSET
] = (data
) & 0xFF;
414 args
->hobRegister
[IDE_DATA_OFFSET
] = (data
>> 8) & 0xFF;
416 args
->tfRegister
[IDE_ERROR_OFFSET
] = err
;
417 /* be sure we're looking at the low order bits */
418 hwif
->OUTB(drive
->ctl
& ~0x80, IDE_CONTROL_REG
);
419 args
->tfRegister
[IDE_NSECTOR_OFFSET
] = hwif
->INB(IDE_NSECTOR_REG
);
420 args
->tfRegister
[IDE_SECTOR_OFFSET
] = hwif
->INB(IDE_SECTOR_REG
);
421 args
->tfRegister
[IDE_LCYL_OFFSET
] = hwif
->INB(IDE_LCYL_REG
);
422 args
->tfRegister
[IDE_HCYL_OFFSET
] = hwif
->INB(IDE_HCYL_REG
);
423 args
->tfRegister
[IDE_SELECT_OFFSET
] = hwif
->INB(IDE_SELECT_REG
);
424 args
->tfRegister
[IDE_STATUS_OFFSET
] = stat
;
426 if (drive
->addressing
== 1) {
427 hwif
->OUTB(drive
->ctl
|0x80, IDE_CONTROL_REG
);
428 args
->hobRegister
[IDE_FEATURE_OFFSET
] = hwif
->INB(IDE_FEATURE_REG
);
429 args
->hobRegister
[IDE_NSECTOR_OFFSET
] = hwif
->INB(IDE_NSECTOR_REG
);
430 args
->hobRegister
[IDE_SECTOR_OFFSET
] = hwif
->INB(IDE_SECTOR_REG
);
431 args
->hobRegister
[IDE_LCYL_OFFSET
] = hwif
->INB(IDE_LCYL_REG
);
432 args
->hobRegister
[IDE_HCYL_OFFSET
] = hwif
->INB(IDE_HCYL_REG
);
435 } else if (blk_pm_request(rq
)) {
436 struct request_pm_state
*pm
= rq
->data
;
438 printk("%s: complete_power_step(step: %d, stat: %x, err: %x)\n",
439 drive
->name
, rq
->pm
->pm_step
, stat
, err
);
441 ide_complete_power_step(drive
, rq
, stat
, err
);
442 if (pm
->pm_step
== ide_pm_state_completed
)
443 ide_complete_pm_request(drive
, rq
);
447 spin_lock_irqsave(&ide_lock
, flags
);
448 blkdev_dequeue_request(rq
);
449 HWGROUP(drive
)->rq
= NULL
;
451 end_that_request_last(rq
, !rq
->errors
);
452 spin_unlock_irqrestore(&ide_lock
, flags
);
455 EXPORT_SYMBOL(ide_end_drive_cmd
);
458 * try_to_flush_leftover_data - flush junk
459 * @drive: drive to flush
461 * try_to_flush_leftover_data() is invoked in response to a drive
462 * unexpectedly having its DRQ_STAT bit set. As an alternative to
463 * resetting the drive, this routine tries to clear the condition
464 * by read a sector's worth of data from the drive. Of course,
465 * this may not help if the drive is *waiting* for data from *us*.
467 static void try_to_flush_leftover_data (ide_drive_t
*drive
)
469 int i
= (drive
->mult_count
? drive
->mult_count
: 1) * SECTOR_WORDS
;
471 if (drive
->media
!= ide_disk
)
475 u32 wcount
= (i
> 16) ? 16 : i
;
478 HWIF(drive
)->ata_input_data(drive
, buffer
, wcount
);
482 static void ide_kill_rq(ide_drive_t
*drive
, struct request
*rq
)
487 drv
= *(ide_driver_t
**)rq
->rq_disk
->private_data
;
488 drv
->end_request(drive
, 0, 0);
490 ide_end_request(drive
, 0, 0);
493 static ide_startstop_t
ide_ata_error(ide_drive_t
*drive
, struct request
*rq
, u8 stat
, u8 err
)
495 ide_hwif_t
*hwif
= drive
->hwif
;
497 if (stat
& BUSY_STAT
|| ((stat
& WRERR_STAT
) && !drive
->nowerr
)) {
498 /* other bits are useless when BUSY */
499 rq
->errors
|= ERROR_RESET
;
500 } else if (stat
& ERR_STAT
) {
501 /* err has different meaning on cdrom and tape */
502 if (err
== ABRT_ERR
) {
503 if (drive
->select
.b
.lba
&&
504 /* some newer drives don't support WIN_SPECIFY */
505 hwif
->INB(IDE_COMMAND_REG
) == WIN_SPECIFY
)
507 } else if ((err
& BAD_CRC
) == BAD_CRC
) {
508 /* UDMA crc error, just retry the operation */
510 } else if (err
& (BBD_ERR
| ECC_ERR
)) {
511 /* retries won't help these */
512 rq
->errors
= ERROR_MAX
;
513 } else if (err
& TRK0_ERR
) {
514 /* help it find track zero */
515 rq
->errors
|= ERROR_RECAL
;
519 if ((stat
& DRQ_STAT
) && rq_data_dir(rq
) == READ
&& hwif
->err_stops_fifo
== 0)
520 try_to_flush_leftover_data(drive
);
522 if (hwif
->INB(IDE_STATUS_REG
) & (BUSY_STAT
|DRQ_STAT
))
524 hwif
->OUTB(WIN_IDLEIMMEDIATE
, IDE_COMMAND_REG
);
526 if (rq
->errors
>= ERROR_MAX
|| blk_noretry_request(rq
))
527 ide_kill_rq(drive
, rq
);
529 if ((rq
->errors
& ERROR_RESET
) == ERROR_RESET
) {
531 return ide_do_reset(drive
);
533 if ((rq
->errors
& ERROR_RECAL
) == ERROR_RECAL
)
534 drive
->special
.b
.recalibrate
= 1;
540 static ide_startstop_t
ide_atapi_error(ide_drive_t
*drive
, struct request
*rq
, u8 stat
, u8 err
)
542 ide_hwif_t
*hwif
= drive
->hwif
;
544 if (stat
& BUSY_STAT
|| ((stat
& WRERR_STAT
) && !drive
->nowerr
)) {
545 /* other bits are useless when BUSY */
546 rq
->errors
|= ERROR_RESET
;
548 /* add decoding error stuff */
551 if (hwif
->INB(IDE_STATUS_REG
) & (BUSY_STAT
|DRQ_STAT
))
553 hwif
->OUTB(WIN_IDLEIMMEDIATE
, IDE_COMMAND_REG
);
555 if (rq
->errors
>= ERROR_MAX
) {
556 ide_kill_rq(drive
, rq
);
558 if ((rq
->errors
& ERROR_RESET
) == ERROR_RESET
) {
560 return ide_do_reset(drive
);
569 __ide_error(ide_drive_t
*drive
, struct request
*rq
, u8 stat
, u8 err
)
571 if (drive
->media
== ide_disk
)
572 return ide_ata_error(drive
, rq
, stat
, err
);
573 return ide_atapi_error(drive
, rq
, stat
, err
);
576 EXPORT_SYMBOL_GPL(__ide_error
);
579 * ide_error - handle an error on the IDE
580 * @drive: drive the error occurred on
581 * @msg: message to report
584 * ide_error() takes action based on the error returned by the drive.
585 * For normal I/O that may well include retries. We deal with
586 * both new-style (taskfile) and old style command handling here.
587 * In the case of taskfile command handling there is work left to
591 ide_startstop_t
ide_error (ide_drive_t
*drive
, const char *msg
, u8 stat
)
596 err
= ide_dump_status(drive
, msg
, stat
);
598 if ((rq
= HWGROUP(drive
)->rq
) == NULL
)
601 /* retry only "normal" I/O: */
602 if (!blk_fs_request(rq
)) {
604 ide_end_drive_cmd(drive
, stat
, err
);
611 drv
= *(ide_driver_t
**)rq
->rq_disk
->private_data
;
612 return drv
->error(drive
, rq
, stat
, err
);
614 return __ide_error(drive
, rq
, stat
, err
);
617 EXPORT_SYMBOL_GPL(ide_error
);
619 ide_startstop_t
__ide_abort(ide_drive_t
*drive
, struct request
*rq
)
621 if (drive
->media
!= ide_disk
)
622 rq
->errors
|= ERROR_RESET
;
624 ide_kill_rq(drive
, rq
);
629 EXPORT_SYMBOL_GPL(__ide_abort
);
632 * ide_abort - abort pending IDE operations
633 * @drive: drive the error occurred on
634 * @msg: message to report
636 * ide_abort kills and cleans up when we are about to do a
637 * host initiated reset on active commands. Longer term we
638 * want handlers to have sensible abort handling themselves
640 * This differs fundamentally from ide_error because in
641 * this case the command is doing just fine when we
645 ide_startstop_t
ide_abort(ide_drive_t
*drive
, const char *msg
)
649 if (drive
== NULL
|| (rq
= HWGROUP(drive
)->rq
) == NULL
)
652 /* retry only "normal" I/O: */
653 if (!blk_fs_request(rq
)) {
655 ide_end_drive_cmd(drive
, BUSY_STAT
, 0);
662 drv
= *(ide_driver_t
**)rq
->rq_disk
->private_data
;
663 return drv
->abort(drive
, rq
);
665 return __ide_abort(drive
, rq
);
669 * ide_cmd - issue a simple drive command
670 * @drive: drive the command is for
672 * @nsect: sector byte
673 * @handler: handler for the command completion
675 * Issue a simple drive command with interrupts.
676 * The drive must be selected beforehand.
679 static void ide_cmd (ide_drive_t
*drive
, u8 cmd
, u8 nsect
,
680 ide_handler_t
*handler
)
682 ide_hwif_t
*hwif
= HWIF(drive
);
684 hwif
->OUTB(drive
->ctl
,IDE_CONTROL_REG
); /* clear nIEN */
685 SELECT_MASK(drive
,0);
686 hwif
->OUTB(nsect
,IDE_NSECTOR_REG
);
687 ide_execute_command(drive
, cmd
, handler
, WAIT_CMD
, NULL
);
691 * drive_cmd_intr - drive command completion interrupt
692 * @drive: drive the completion interrupt occurred on
694 * drive_cmd_intr() is invoked on completion of a special DRIVE_CMD.
695 * We do any necessary data reading and then wait for the drive to
696 * go non busy. At that point we may read the error data and complete
700 static ide_startstop_t
drive_cmd_intr (ide_drive_t
*drive
)
702 struct request
*rq
= HWGROUP(drive
)->rq
;
703 ide_hwif_t
*hwif
= HWIF(drive
);
704 u8
*args
= (u8
*) rq
->buffer
;
705 u8 stat
= hwif
->INB(IDE_STATUS_REG
);
708 local_irq_enable_in_hardirq();
709 if ((stat
& DRQ_STAT
) && args
&& args
[3]) {
710 u8 io_32bit
= drive
->io_32bit
;
712 hwif
->ata_input_data(drive
, &args
[4], args
[3] * SECTOR_WORDS
);
713 drive
->io_32bit
= io_32bit
;
714 while (((stat
= hwif
->INB(IDE_STATUS_REG
)) & BUSY_STAT
) && retries
--)
718 if (!OK_STAT(stat
, READY_STAT
, BAD_STAT
))
719 return ide_error(drive
, "drive_cmd", stat
);
720 /* calls ide_end_drive_cmd */
721 ide_end_drive_cmd(drive
, stat
, hwif
->INB(IDE_ERROR_REG
));
725 static void ide_init_specify_cmd(ide_drive_t
*drive
, ide_task_t
*task
)
727 task
->tfRegister
[IDE_NSECTOR_OFFSET
] = drive
->sect
;
728 task
->tfRegister
[IDE_SECTOR_OFFSET
] = drive
->sect
;
729 task
->tfRegister
[IDE_LCYL_OFFSET
] = drive
->cyl
;
730 task
->tfRegister
[IDE_HCYL_OFFSET
] = drive
->cyl
>>8;
731 task
->tfRegister
[IDE_SELECT_OFFSET
] = ((drive
->head
-1)|drive
->select
.all
)&0xBF;
732 task
->tfRegister
[IDE_COMMAND_OFFSET
] = WIN_SPECIFY
;
734 task
->handler
= &set_geometry_intr
;
737 static void ide_init_restore_cmd(ide_drive_t
*drive
, ide_task_t
*task
)
739 task
->tfRegister
[IDE_NSECTOR_OFFSET
] = drive
->sect
;
740 task
->tfRegister
[IDE_COMMAND_OFFSET
] = WIN_RESTORE
;
742 task
->handler
= &recal_intr
;
745 static void ide_init_setmult_cmd(ide_drive_t
*drive
, ide_task_t
*task
)
747 task
->tfRegister
[IDE_NSECTOR_OFFSET
] = drive
->mult_req
;
748 task
->tfRegister
[IDE_COMMAND_OFFSET
] = WIN_SETMULT
;
750 task
->handler
= &set_multmode_intr
;
753 static ide_startstop_t
ide_disk_special(ide_drive_t
*drive
)
755 special_t
*s
= &drive
->special
;
758 memset(&args
, 0, sizeof(ide_task_t
));
759 args
.command_type
= IDE_DRIVE_TASK_NO_DATA
;
761 if (s
->b
.set_geometry
) {
762 s
->b
.set_geometry
= 0;
763 ide_init_specify_cmd(drive
, &args
);
764 } else if (s
->b
.recalibrate
) {
765 s
->b
.recalibrate
= 0;
766 ide_init_restore_cmd(drive
, &args
);
767 } else if (s
->b
.set_multmode
) {
768 s
->b
.set_multmode
= 0;
769 if (drive
->mult_req
> drive
->id
->max_multsect
)
770 drive
->mult_req
= drive
->id
->max_multsect
;
771 ide_init_setmult_cmd(drive
, &args
);
773 int special
= s
->all
;
775 printk(KERN_ERR
"%s: bad special flag: 0x%02x\n", drive
->name
, special
);
779 do_rw_taskfile(drive
, &args
);
785 * do_special - issue some special commands
786 * @drive: drive the command is for
788 * do_special() is used to issue WIN_SPECIFY, WIN_RESTORE, and WIN_SETMULT
789 * commands to a drive. It used to do much more, but has been scaled
793 static ide_startstop_t
do_special (ide_drive_t
*drive
)
795 special_t
*s
= &drive
->special
;
798 printk("%s: do_special: 0x%02x\n", drive
->name
, s
->all
);
802 if (HWIF(drive
)->tuneproc
!= NULL
)
803 HWIF(drive
)->tuneproc(drive
, drive
->tune_req
);
806 if (drive
->media
== ide_disk
)
807 return ide_disk_special(drive
);
815 void ide_map_sg(ide_drive_t
*drive
, struct request
*rq
)
817 ide_hwif_t
*hwif
= drive
->hwif
;
818 struct scatterlist
*sg
= hwif
->sg_table
;
820 if (hwif
->sg_mapped
) /* needed by ide-scsi */
823 if (rq
->cmd_type
!= REQ_TYPE_ATA_TASKFILE
) {
824 hwif
->sg_nents
= blk_rq_map_sg(drive
->queue
, rq
, sg
);
826 sg_init_one(sg
, rq
->buffer
, rq
->nr_sectors
* SECTOR_SIZE
);
831 EXPORT_SYMBOL_GPL(ide_map_sg
);
833 void ide_init_sg_cmd(ide_drive_t
*drive
, struct request
*rq
)
835 ide_hwif_t
*hwif
= drive
->hwif
;
837 hwif
->nsect
= hwif
->nleft
= rq
->nr_sectors
;
838 hwif
->cursg
= hwif
->cursg_ofs
= 0;
841 EXPORT_SYMBOL_GPL(ide_init_sg_cmd
);
844 * execute_drive_command - issue special drive command
845 * @drive: the drive to issue the command on
846 * @rq: the request structure holding the command
848 * execute_drive_cmd() issues a special drive command, usually
849 * initiated by ioctl() from the external hdparm program. The
850 * command can be a drive command, drive task or taskfile
851 * operation. Weirdly you can call it with NULL to wait for
852 * all commands to finish. Don't do this as that is due to change
855 static ide_startstop_t
execute_drive_cmd (ide_drive_t
*drive
,
858 ide_hwif_t
*hwif
= HWIF(drive
);
859 if (rq
->cmd_type
== REQ_TYPE_ATA_TASKFILE
) {
860 ide_task_t
*args
= rq
->special
;
865 hwif
->data_phase
= args
->data_phase
;
867 switch (hwif
->data_phase
) {
868 case TASKFILE_MULTI_OUT
:
870 case TASKFILE_MULTI_IN
:
872 ide_init_sg_cmd(drive
, rq
);
873 ide_map_sg(drive
, rq
);
878 if (args
->tf_out_flags
.all
!= 0)
879 return flagged_taskfile(drive
, args
);
880 return do_rw_taskfile(drive
, args
);
881 } else if (rq
->cmd_type
== REQ_TYPE_ATA_TASK
) {
882 u8
*args
= rq
->buffer
;
888 printk("%s: DRIVE_TASK_CMD ", drive
->name
);
889 printk("cmd=0x%02x ", args
[0]);
890 printk("fr=0x%02x ", args
[1]);
891 printk("ns=0x%02x ", args
[2]);
892 printk("sc=0x%02x ", args
[3]);
893 printk("lcyl=0x%02x ", args
[4]);
894 printk("hcyl=0x%02x ", args
[5]);
895 printk("sel=0x%02x\n", args
[6]);
897 hwif
->OUTB(args
[1], IDE_FEATURE_REG
);
898 hwif
->OUTB(args
[3], IDE_SECTOR_REG
);
899 hwif
->OUTB(args
[4], IDE_LCYL_REG
);
900 hwif
->OUTB(args
[5], IDE_HCYL_REG
);
901 sel
= (args
[6] & ~0x10);
902 if (drive
->select
.b
.unit
)
904 hwif
->OUTB(sel
, IDE_SELECT_REG
);
905 ide_cmd(drive
, args
[0], args
[2], &drive_cmd_intr
);
907 } else if (rq
->cmd_type
== REQ_TYPE_ATA_CMD
) {
908 u8
*args
= rq
->buffer
;
913 printk("%s: DRIVE_CMD ", drive
->name
);
914 printk("cmd=0x%02x ", args
[0]);
915 printk("sc=0x%02x ", args
[1]);
916 printk("fr=0x%02x ", args
[2]);
917 printk("xx=0x%02x\n", args
[3]);
919 if (args
[0] == WIN_SMART
) {
920 hwif
->OUTB(0x4f, IDE_LCYL_REG
);
921 hwif
->OUTB(0xc2, IDE_HCYL_REG
);
922 hwif
->OUTB(args
[2],IDE_FEATURE_REG
);
923 hwif
->OUTB(args
[1],IDE_SECTOR_REG
);
924 ide_cmd(drive
, args
[0], args
[3], &drive_cmd_intr
);
927 hwif
->OUTB(args
[2],IDE_FEATURE_REG
);
928 ide_cmd(drive
, args
[0], args
[1], &drive_cmd_intr
);
934 * NULL is actually a valid way of waiting for
935 * all current requests to be flushed from the queue.
938 printk("%s: DRIVE_CMD (null)\n", drive
->name
);
940 ide_end_drive_cmd(drive
,
941 hwif
->INB(IDE_STATUS_REG
),
942 hwif
->INB(IDE_ERROR_REG
));
946 static void ide_check_pm_state(ide_drive_t
*drive
, struct request
*rq
)
948 struct request_pm_state
*pm
= rq
->data
;
950 if (blk_pm_suspend_request(rq
) &&
951 pm
->pm_step
== ide_pm_state_start_suspend
)
952 /* Mark drive blocked when starting the suspend sequence. */
954 else if (blk_pm_resume_request(rq
) &&
955 pm
->pm_step
== ide_pm_state_start_resume
) {
957 * The first thing we do on wakeup is to wait for BSY bit to
958 * go away (with a looong timeout) as a drive on this hwif may
959 * just be POSTing itself.
960 * We do that before even selecting as the "other" device on
961 * the bus may be broken enough to walk on our toes at this
966 printk("%s: Wakeup request inited, waiting for !BSY...\n", drive
->name
);
968 rc
= ide_wait_not_busy(HWIF(drive
), 35000);
970 printk(KERN_WARNING
"%s: bus not ready on wakeup\n", drive
->name
);
972 HWIF(drive
)->OUTB(8, HWIF(drive
)->io_ports
[IDE_CONTROL_OFFSET
]);
973 rc
= ide_wait_not_busy(HWIF(drive
), 100000);
975 printk(KERN_WARNING
"%s: drive not ready on wakeup\n", drive
->name
);
980 * start_request - start of I/O and command issuing for IDE
982 * start_request() initiates handling of a new I/O request. It
983 * accepts commands and I/O (read/write) requests. It also does
984 * the final remapping for weird stuff like EZDrive. Once
985 * device mapper can work sector level the EZDrive stuff can go away
987 * FIXME: this function needs a rename
990 static ide_startstop_t
start_request (ide_drive_t
*drive
, struct request
*rq
)
992 ide_startstop_t startstop
;
995 BUG_ON(!blk_rq_started(rq
));
998 printk("%s: start_request: current=0x%08lx\n",
999 HWIF(drive
)->name
, (unsigned long) rq
);
1002 /* bail early if we've exceeded max_failures */
1003 if (drive
->max_failures
&& (drive
->failures
> drive
->max_failures
)) {
1008 if (blk_fs_request(rq
) &&
1009 (drive
->media
== ide_disk
|| drive
->media
== ide_floppy
)) {
1010 block
+= drive
->sect0
;
1012 /* Yecch - this will shift the entire interval,
1013 possibly killing some innocent following sector */
1014 if (block
== 0 && drive
->remap_0_to_1
== 1)
1015 block
= 1; /* redirect MBR access to EZ-Drive partn table */
1017 if (blk_pm_request(rq
))
1018 ide_check_pm_state(drive
, rq
);
1020 SELECT_DRIVE(drive
);
1021 if (ide_wait_stat(&startstop
, drive
, drive
->ready_stat
, BUSY_STAT
|DRQ_STAT
, WAIT_READY
)) {
1022 printk(KERN_ERR
"%s: drive not ready for command\n", drive
->name
);
1025 if (!drive
->special
.all
) {
1028 if (rq
->cmd_type
== REQ_TYPE_ATA_CMD
||
1029 rq
->cmd_type
== REQ_TYPE_ATA_TASK
||
1030 rq
->cmd_type
== REQ_TYPE_ATA_TASKFILE
)
1031 return execute_drive_cmd(drive
, rq
);
1032 else if (blk_pm_request(rq
)) {
1033 struct request_pm_state
*pm
= rq
->data
;
1035 printk("%s: start_power_step(step: %d)\n",
1036 drive
->name
, rq
->pm
->pm_step
);
1038 startstop
= ide_start_power_step(drive
, rq
);
1039 if (startstop
== ide_stopped
&&
1040 pm
->pm_step
== ide_pm_state_completed
)
1041 ide_complete_pm_request(drive
, rq
);
1045 drv
= *(ide_driver_t
**)rq
->rq_disk
->private_data
;
1046 return drv
->do_request(drive
, rq
, block
);
1048 return do_special(drive
);
1050 ide_kill_rq(drive
, rq
);
1055 * ide_stall_queue - pause an IDE device
1056 * @drive: drive to stall
1057 * @timeout: time to stall for (jiffies)
1059 * ide_stall_queue() can be used by a drive to give excess bandwidth back
1060 * to the hwgroup by sleeping for timeout jiffies.
1063 void ide_stall_queue (ide_drive_t
*drive
, unsigned long timeout
)
1065 if (timeout
> WAIT_WORSTCASE
)
1066 timeout
= WAIT_WORSTCASE
;
1067 drive
->sleep
= timeout
+ jiffies
;
1068 drive
->sleeping
= 1;
1071 EXPORT_SYMBOL(ide_stall_queue
);
1073 #define WAKEUP(drive) ((drive)->service_start + 2 * (drive)->service_time)
1076 * choose_drive - select a drive to service
1077 * @hwgroup: hardware group to select on
1079 * choose_drive() selects the next drive which will be serviced.
1080 * This is necessary because the IDE layer can't issue commands
1081 * to both drives on the same cable, unlike SCSI.
1084 static inline ide_drive_t
*choose_drive (ide_hwgroup_t
*hwgroup
)
1086 ide_drive_t
*drive
, *best
;
1090 drive
= hwgroup
->drive
;
1093 * drive is doing pre-flush, ordered write, post-flush sequence. even
1094 * though that is 3 requests, it must be seen as a single transaction.
1095 * we must not preempt this drive until that is complete
1097 if (blk_queue_flushing(drive
->queue
)) {
1099 * small race where queue could get replugged during
1100 * the 3-request flush cycle, just yank the plug since
1101 * we want it to finish asap
1103 blk_remove_plug(drive
->queue
);
1108 if ((!drive
->sleeping
|| time_after_eq(jiffies
, drive
->sleep
))
1109 && !elv_queue_empty(drive
->queue
)) {
1111 || (drive
->sleeping
&& (!best
->sleeping
|| time_before(drive
->sleep
, best
->sleep
)))
1112 || (!best
->sleeping
&& time_before(WAKEUP(drive
), WAKEUP(best
))))
1114 if (!blk_queue_plugged(drive
->queue
))
1118 } while ((drive
= drive
->next
) != hwgroup
->drive
);
1119 if (best
&& best
->nice1
&& !best
->sleeping
&& best
!= hwgroup
->drive
&& best
->service_time
> WAIT_MIN_SLEEP
) {
1120 long t
= (signed long)(WAKEUP(best
) - jiffies
);
1121 if (t
>= WAIT_MIN_SLEEP
) {
1123 * We *may* have some time to spare, but first let's see if
1124 * someone can potentially benefit from our nice mood today..
1128 if (!drive
->sleeping
1129 && time_before(jiffies
- best
->service_time
, WAKEUP(drive
))
1130 && time_before(WAKEUP(drive
), jiffies
+ t
))
1132 ide_stall_queue(best
, min_t(long, t
, 10 * WAIT_MIN_SLEEP
));
1135 } while ((drive
= drive
->next
) != best
);
1142 * Issue a new request to a drive from hwgroup
1143 * Caller must have already done spin_lock_irqsave(&ide_lock, ..);
1145 * A hwgroup is a serialized group of IDE interfaces. Usually there is
1146 * exactly one hwif (interface) per hwgroup, but buggy controllers (eg. CMD640)
1147 * may have both interfaces in a single hwgroup to "serialize" access.
1148 * Or possibly multiple ISA interfaces can share a common IRQ by being grouped
1149 * together into one hwgroup for serialized access.
1151 * Note also that several hwgroups can end up sharing a single IRQ,
1152 * possibly along with many other devices. This is especially common in
1153 * PCI-based systems with off-board IDE controller cards.
1155 * The IDE driver uses the single global ide_lock spinlock to protect
1156 * access to the request queues, and to protect the hwgroup->busy flag.
1158 * The first thread into the driver for a particular hwgroup sets the
1159 * hwgroup->busy flag to indicate that this hwgroup is now active,
1160 * and then initiates processing of the top request from the request queue.
1162 * Other threads attempting entry notice the busy setting, and will simply
1163 * queue their new requests and exit immediately. Note that hwgroup->busy
1164 * remains set even when the driver is merely awaiting the next interrupt.
1165 * Thus, the meaning is "this hwgroup is busy processing a request".
1167 * When processing of a request completes, the completing thread or IRQ-handler
1168 * will start the next request from the queue. If no more work remains,
1169 * the driver will clear the hwgroup->busy flag and exit.
1171 * The ide_lock (spinlock) is used to protect all access to the
1172 * hwgroup->busy flag, but is otherwise not needed for most processing in
1173 * the driver. This makes the driver much more friendlier to shared IRQs
1174 * than previous designs, while remaining 100% (?) SMP safe and capable.
1176 static void ide_do_request (ide_hwgroup_t
*hwgroup
, int masked_irq
)
1181 ide_startstop_t startstop
;
1184 /* for atari only: POSSIBLY BROKEN HERE(?) */
1185 ide_get_lock(ide_intr
, hwgroup
);
1187 /* caller must own ide_lock */
1188 BUG_ON(!irqs_disabled());
1190 while (!hwgroup
->busy
) {
1192 drive
= choose_drive(hwgroup
);
1193 if (drive
== NULL
) {
1195 unsigned long sleep
= 0; /* shut up, gcc */
1197 drive
= hwgroup
->drive
;
1199 if (drive
->sleeping
&& (!sleeping
|| time_before(drive
->sleep
, sleep
))) {
1201 sleep
= drive
->sleep
;
1203 } while ((drive
= drive
->next
) != hwgroup
->drive
);
1206 * Take a short snooze, and then wake up this hwgroup again.
1207 * This gives other hwgroups on the same a chance to
1208 * play fairly with us, just in case there are big differences
1209 * in relative throughputs.. don't want to hog the cpu too much.
1211 if (time_before(sleep
, jiffies
+ WAIT_MIN_SLEEP
))
1212 sleep
= jiffies
+ WAIT_MIN_SLEEP
;
1214 if (timer_pending(&hwgroup
->timer
))
1215 printk(KERN_CRIT
"ide_set_handler: timer already active\n");
1217 /* so that ide_timer_expiry knows what to do */
1218 hwgroup
->sleeping
= 1;
1219 mod_timer(&hwgroup
->timer
, sleep
);
1220 /* we purposely leave hwgroup->busy==1
1223 /* Ugly, but how can we sleep for the lock
1224 * otherwise? perhaps from tq_disk?
1227 /* for atari only */
1232 /* no more work for this hwgroup (for now) */
1237 if (hwgroup
->hwif
->sharing_irq
&&
1238 hwif
!= hwgroup
->hwif
&&
1239 hwif
->io_ports
[IDE_CONTROL_OFFSET
]) {
1240 /* set nIEN for previous hwif */
1241 SELECT_INTERRUPT(drive
);
1243 hwgroup
->hwif
= hwif
;
1244 hwgroup
->drive
= drive
;
1245 drive
->sleeping
= 0;
1246 drive
->service_start
= jiffies
;
1248 if (blk_queue_plugged(drive
->queue
)) {
1249 printk(KERN_ERR
"ide: huh? queue was plugged!\n");
1254 * we know that the queue isn't empty, but this can happen
1255 * if the q->prep_rq_fn() decides to kill a request
1257 rq
= elv_next_request(drive
->queue
);
1264 * Sanity: don't accept a request that isn't a PM request
1265 * if we are currently power managed. This is very important as
1266 * blk_stop_queue() doesn't prevent the elv_next_request()
1267 * above to return us whatever is in the queue. Since we call
1268 * ide_do_request() ourselves, we end up taking requests while
1269 * the queue is blocked...
1271 * We let requests forced at head of queue with ide-preempt
1272 * though. I hope that doesn't happen too much, hopefully not
1273 * unless the subdriver triggers such a thing in its own PM
1276 * We count how many times we loop here to make sure we service
1277 * all drives in the hwgroup without looping for ever
1279 if (drive
->blocked
&& !blk_pm_request(rq
) && !(rq
->cmd_flags
& REQ_PREEMPT
)) {
1280 drive
= drive
->next
? drive
->next
: hwgroup
->drive
;
1281 if (loops
++ < 4 && !blk_queue_plugged(drive
->queue
))
1283 /* We clear busy, there should be no pending ATA command at this point. */
1291 * Some systems have trouble with IDE IRQs arriving while
1292 * the driver is still setting things up. So, here we disable
1293 * the IRQ used by this interface while the request is being started.
1294 * This may look bad at first, but pretty much the same thing
1295 * happens anyway when any interrupt comes in, IDE or otherwise
1296 * -- the kernel masks the IRQ while it is being handled.
1298 if (masked_irq
!= IDE_NO_IRQ
&& hwif
->irq
!= masked_irq
)
1299 disable_irq_nosync(hwif
->irq
);
1300 spin_unlock(&ide_lock
);
1301 local_irq_enable_in_hardirq();
1302 /* allow other IRQs while we start this request */
1303 startstop
= start_request(drive
, rq
);
1304 spin_lock_irq(&ide_lock
);
1305 if (masked_irq
!= IDE_NO_IRQ
&& hwif
->irq
!= masked_irq
)
1306 enable_irq(hwif
->irq
);
1307 if (startstop
== ide_stopped
)
1313 * Passes the stuff to ide_do_request
1315 void do_ide_request(request_queue_t
*q
)
1317 ide_drive_t
*drive
= q
->queuedata
;
1319 ide_do_request(HWGROUP(drive
), IDE_NO_IRQ
);
1323 * un-busy the hwgroup etc, and clear any pending DMA status. we want to
1324 * retry the current request in pio mode instead of risking tossing it
1327 static ide_startstop_t
ide_dma_timeout_retry(ide_drive_t
*drive
, int error
)
1329 ide_hwif_t
*hwif
= HWIF(drive
);
1331 ide_startstop_t ret
= ide_stopped
;
1334 * end current dma transaction
1338 printk(KERN_WARNING
"%s: DMA timeout error\n", drive
->name
);
1339 (void)HWIF(drive
)->ide_dma_end(drive
);
1340 ret
= ide_error(drive
, "dma timeout error",
1341 hwif
->INB(IDE_STATUS_REG
));
1343 printk(KERN_WARNING
"%s: DMA timeout retry\n", drive
->name
);
1344 (void) hwif
->ide_dma_timeout(drive
);
1348 * disable dma for now, but remember that we did so because of
1349 * a timeout -- we'll reenable after we finish this next request
1350 * (or rather the first chunk of it) in pio.
1353 drive
->state
= DMA_PIO_RETRY
;
1354 (void) hwif
->ide_dma_off_quietly(drive
);
1357 * un-busy drive etc (hwgroup->busy is cleared on return) and
1358 * make sure request is sane
1360 rq
= HWGROUP(drive
)->rq
;
1365 HWGROUP(drive
)->rq
= NULL
;
1372 rq
->sector
= rq
->bio
->bi_sector
;
1373 rq
->current_nr_sectors
= bio_iovec(rq
->bio
)->bv_len
>> 9;
1374 rq
->hard_cur_sectors
= rq
->current_nr_sectors
;
1375 rq
->buffer
= bio_data(rq
->bio
);
1381 * ide_timer_expiry - handle lack of an IDE interrupt
1382 * @data: timer callback magic (hwgroup)
1384 * An IDE command has timed out before the expected drive return
1385 * occurred. At this point we attempt to clean up the current
1386 * mess. If the current handler includes an expiry handler then
1387 * we invoke the expiry handler, and providing it is happy the
1388 * work is done. If that fails we apply generic recovery rules
1389 * invoking the handler and checking the drive DMA status. We
1390 * have an excessively incestuous relationship with the DMA
1391 * logic that wants cleaning up.
1394 void ide_timer_expiry (unsigned long data
)
1396 ide_hwgroup_t
*hwgroup
= (ide_hwgroup_t
*) data
;
1397 ide_handler_t
*handler
;
1398 ide_expiry_t
*expiry
;
1399 unsigned long flags
;
1400 unsigned long wait
= -1;
1402 spin_lock_irqsave(&ide_lock
, flags
);
1404 if ((handler
= hwgroup
->handler
) == NULL
) {
1406 * Either a marginal timeout occurred
1407 * (got the interrupt just as timer expired),
1408 * or we were "sleeping" to give other devices a chance.
1409 * Either way, we don't really want to complain about anything.
1411 if (hwgroup
->sleeping
) {
1412 hwgroup
->sleeping
= 0;
1416 ide_drive_t
*drive
= hwgroup
->drive
;
1418 printk(KERN_ERR
"ide_timer_expiry: hwgroup->drive was NULL\n");
1419 hwgroup
->handler
= NULL
;
1422 ide_startstop_t startstop
= ide_stopped
;
1423 if (!hwgroup
->busy
) {
1424 hwgroup
->busy
= 1; /* paranoia */
1425 printk(KERN_ERR
"%s: ide_timer_expiry: hwgroup->busy was 0 ??\n", drive
->name
);
1427 if ((expiry
= hwgroup
->expiry
) != NULL
) {
1429 if ((wait
= expiry(drive
)) > 0) {
1431 hwgroup
->timer
.expires
= jiffies
+ wait
;
1432 add_timer(&hwgroup
->timer
);
1433 spin_unlock_irqrestore(&ide_lock
, flags
);
1437 hwgroup
->handler
= NULL
;
1439 * We need to simulate a real interrupt when invoking
1440 * the handler() function, which means we need to
1441 * globally mask the specific IRQ:
1443 spin_unlock(&ide_lock
);
1445 #if DISABLE_IRQ_NOSYNC
1446 disable_irq_nosync(hwif
->irq
);
1448 /* disable_irq_nosync ?? */
1449 disable_irq(hwif
->irq
);
1450 #endif /* DISABLE_IRQ_NOSYNC */
1452 * as if we were handling an interrupt */
1453 local_irq_disable();
1454 if (hwgroup
->polling
) {
1455 startstop
= handler(drive
);
1456 } else if (drive_is_ready(drive
)) {
1457 if (drive
->waiting_for_dma
)
1458 (void) hwgroup
->hwif
->ide_dma_lostirq(drive
);
1459 (void)ide_ack_intr(hwif
);
1460 printk(KERN_WARNING
"%s: lost interrupt\n", drive
->name
);
1461 startstop
= handler(drive
);
1463 if (drive
->waiting_for_dma
) {
1464 startstop
= ide_dma_timeout_retry(drive
, wait
);
1467 ide_error(drive
, "irq timeout", hwif
->INB(IDE_STATUS_REG
));
1469 drive
->service_time
= jiffies
- drive
->service_start
;
1470 spin_lock_irq(&ide_lock
);
1471 enable_irq(hwif
->irq
);
1472 if (startstop
== ide_stopped
)
1476 ide_do_request(hwgroup
, IDE_NO_IRQ
);
1477 spin_unlock_irqrestore(&ide_lock
, flags
);
1481 * unexpected_intr - handle an unexpected IDE interrupt
1482 * @irq: interrupt line
1483 * @hwgroup: hwgroup being processed
1485 * There's nothing really useful we can do with an unexpected interrupt,
1486 * other than reading the status register (to clear it), and logging it.
1487 * There should be no way that an irq can happen before we're ready for it,
1488 * so we needn't worry much about losing an "important" interrupt here.
1490 * On laptops (and "green" PCs), an unexpected interrupt occurs whenever
1491 * the drive enters "idle", "standby", or "sleep" mode, so if the status
1492 * looks "good", we just ignore the interrupt completely.
1494 * This routine assumes __cli() is in effect when called.
1496 * If an unexpected interrupt happens on irq15 while we are handling irq14
1497 * and if the two interfaces are "serialized" (CMD640), then it looks like
1498 * we could screw up by interfering with a new request being set up for
1501 * In reality, this is a non-issue. The new command is not sent unless
1502 * the drive is ready to accept one, in which case we know the drive is
1503 * not trying to interrupt us. And ide_set_handler() is always invoked
1504 * before completing the issuance of any new drive command, so we will not
1505 * be accidentally invoked as a result of any valid command completion
1508 * Note that we must walk the entire hwgroup here. We know which hwif
1509 * is doing the current command, but we don't know which hwif burped
1513 static void unexpected_intr (int irq
, ide_hwgroup_t
*hwgroup
)
1516 ide_hwif_t
*hwif
= hwgroup
->hwif
;
1519 * handle the unexpected interrupt
1522 if (hwif
->irq
== irq
) {
1523 stat
= hwif
->INB(hwif
->io_ports
[IDE_STATUS_OFFSET
]);
1524 if (!OK_STAT(stat
, READY_STAT
, BAD_STAT
)) {
1525 /* Try to not flood the console with msgs */
1526 static unsigned long last_msgtime
, count
;
1528 if (time_after(jiffies
, last_msgtime
+ HZ
)) {
1529 last_msgtime
= jiffies
;
1530 printk(KERN_ERR
"%s%s: unexpected interrupt, "
1531 "status=0x%02x, count=%ld\n",
1533 (hwif
->next
==hwgroup
->hwif
) ? "" : "(?)", stat
, count
);
1537 } while ((hwif
= hwif
->next
) != hwgroup
->hwif
);
1541 * ide_intr - default IDE interrupt handler
1542 * @irq: interrupt number
1543 * @dev_id: hwif group
1544 * @regs: unused weirdness from the kernel irq layer
1546 * This is the default IRQ handler for the IDE layer. You should
1547 * not need to override it. If you do be aware it is subtle in
1550 * hwgroup->hwif is the interface in the group currently performing
1551 * a command. hwgroup->drive is the drive and hwgroup->handler is
1552 * the IRQ handler to call. As we issue a command the handlers
1553 * step through multiple states, reassigning the handler to the
1554 * next step in the process. Unlike a smart SCSI controller IDE
1555 * expects the main processor to sequence the various transfer
1556 * stages. We also manage a poll timer to catch up with most
1557 * timeout situations. There are still a few where the handlers
1558 * don't ever decide to give up.
1560 * The handler eventually returns ide_stopped to indicate the
1561 * request completed. At this point we issue the next request
1562 * on the hwgroup and the process begins again.
1565 irqreturn_t
ide_intr (int irq
, void *dev_id
)
1567 unsigned long flags
;
1568 ide_hwgroup_t
*hwgroup
= (ide_hwgroup_t
*)dev_id
;
1571 ide_handler_t
*handler
;
1572 ide_startstop_t startstop
;
1574 spin_lock_irqsave(&ide_lock
, flags
);
1575 hwif
= hwgroup
->hwif
;
1577 if (!ide_ack_intr(hwif
)) {
1578 spin_unlock_irqrestore(&ide_lock
, flags
);
1582 if ((handler
= hwgroup
->handler
) == NULL
|| hwgroup
->polling
) {
1584 * Not expecting an interrupt from this drive.
1585 * That means this could be:
1586 * (1) an interrupt from another PCI device
1587 * sharing the same PCI INT# as us.
1588 * or (2) a drive just entered sleep or standby mode,
1589 * and is interrupting to let us know.
1590 * or (3) a spurious interrupt of unknown origin.
1592 * For PCI, we cannot tell the difference,
1593 * so in that case we just ignore it and hope it goes away.
1595 * FIXME: unexpected_intr should be hwif-> then we can
1596 * remove all the ifdef PCI crap
1598 #ifdef CONFIG_BLK_DEV_IDEPCI
1599 if (hwif
->pci_dev
&& !hwif
->pci_dev
->vendor
)
1600 #endif /* CONFIG_BLK_DEV_IDEPCI */
1603 * Probably not a shared PCI interrupt,
1604 * so we can safely try to do something about it:
1606 unexpected_intr(irq
, hwgroup
);
1607 #ifdef CONFIG_BLK_DEV_IDEPCI
1610 * Whack the status register, just in case
1611 * we have a leftover pending IRQ.
1613 (void) hwif
->INB(hwif
->io_ports
[IDE_STATUS_OFFSET
]);
1614 #endif /* CONFIG_BLK_DEV_IDEPCI */
1616 spin_unlock_irqrestore(&ide_lock
, flags
);
1619 drive
= hwgroup
->drive
;
1622 * This should NEVER happen, and there isn't much
1623 * we could do about it here.
1625 * [Note - this can occur if the drive is hot unplugged]
1627 spin_unlock_irqrestore(&ide_lock
, flags
);
1630 if (!drive_is_ready(drive
)) {
1632 * This happens regularly when we share a PCI IRQ with
1633 * another device. Unfortunately, it can also happen
1634 * with some buggy drives that trigger the IRQ before
1635 * their status register is up to date. Hopefully we have
1636 * enough advance overhead that the latter isn't a problem.
1638 spin_unlock_irqrestore(&ide_lock
, flags
);
1641 if (!hwgroup
->busy
) {
1642 hwgroup
->busy
= 1; /* paranoia */
1643 printk(KERN_ERR
"%s: ide_intr: hwgroup->busy was 0 ??\n", drive
->name
);
1645 hwgroup
->handler
= NULL
;
1646 del_timer(&hwgroup
->timer
);
1647 spin_unlock(&ide_lock
);
1650 local_irq_enable_in_hardirq();
1651 /* service this interrupt, may set handler for next interrupt */
1652 startstop
= handler(drive
);
1653 spin_lock_irq(&ide_lock
);
1656 * Note that handler() may have set things up for another
1657 * interrupt to occur soon, but it cannot happen until
1658 * we exit from this routine, because it will be the
1659 * same irq as is currently being serviced here, and Linux
1660 * won't allow another of the same (on any CPU) until we return.
1662 drive
->service_time
= jiffies
- drive
->service_start
;
1663 if (startstop
== ide_stopped
) {
1664 if (hwgroup
->handler
== NULL
) { /* paranoia */
1666 ide_do_request(hwgroup
, hwif
->irq
);
1668 printk(KERN_ERR
"%s: ide_intr: huh? expected NULL handler "
1669 "on exit\n", drive
->name
);
1672 spin_unlock_irqrestore(&ide_lock
, flags
);
1677 * ide_init_drive_cmd - initialize a drive command request
1678 * @rq: request object
1680 * Initialize a request before we fill it in and send it down to
1681 * ide_do_drive_cmd. Commands must be set up by this function. Right
1682 * now it doesn't do a lot, but if that changes abusers will have a
1686 void ide_init_drive_cmd (struct request
*rq
)
1688 memset(rq
, 0, sizeof(*rq
));
1689 rq
->cmd_type
= REQ_TYPE_ATA_CMD
;
1693 EXPORT_SYMBOL(ide_init_drive_cmd
);
1696 * ide_do_drive_cmd - issue IDE special command
1697 * @drive: device to issue command
1698 * @rq: request to issue
1699 * @action: action for processing
1701 * This function issues a special IDE device request
1702 * onto the request queue.
1704 * If action is ide_wait, then the rq is queued at the end of the
1705 * request queue, and the function sleeps until it has been processed.
1706 * This is for use when invoked from an ioctl handler.
1708 * If action is ide_preempt, then the rq is queued at the head of
1709 * the request queue, displacing the currently-being-processed
1710 * request and this function returns immediately without waiting
1711 * for the new rq to be completed. This is VERY DANGEROUS, and is
1712 * intended for careful use by the ATAPI tape/cdrom driver code.
1714 * If action is ide_end, then the rq is queued at the end of the
1715 * request queue, and the function returns immediately without waiting
1716 * for the new rq to be completed. This is again intended for careful
1717 * use by the ATAPI tape/cdrom driver code.
1720 int ide_do_drive_cmd (ide_drive_t
*drive
, struct request
*rq
, ide_action_t action
)
1722 unsigned long flags
;
1723 ide_hwgroup_t
*hwgroup
= HWGROUP(drive
);
1724 DECLARE_COMPLETION_ONSTACK(wait
);
1725 int where
= ELEVATOR_INSERT_BACK
, err
;
1726 int must_wait
= (action
== ide_wait
|| action
== ide_head_wait
);
1731 * we need to hold an extra reference to request for safe inspection
1736 rq
->end_io_data
= &wait
;
1737 rq
->end_io
= blk_end_sync_rq
;
1740 spin_lock_irqsave(&ide_lock
, flags
);
1741 if (action
== ide_preempt
)
1743 if (action
== ide_preempt
|| action
== ide_head_wait
) {
1744 where
= ELEVATOR_INSERT_FRONT
;
1745 rq
->cmd_flags
|= REQ_PREEMPT
;
1747 __elv_add_request(drive
->queue
, rq
, where
, 0);
1748 ide_do_request(hwgroup
, IDE_NO_IRQ
);
1749 spin_unlock_irqrestore(&ide_lock
, flags
);
1753 wait_for_completion(&wait
);
1757 blk_put_request(rq
);
1763 EXPORT_SYMBOL(ide_do_drive_cmd
);