USB: fix usb-serial device naming bug
[linux-2.6/mini2440.git] / arch / powerpc / kernel / process.c
blobf3d4dd580dd69fe20a04dd4762866ad0f82d51ea
1 /*
2 * Derived from "arch/i386/kernel/process.c"
3 * Copyright (C) 1995 Linus Torvalds
5 * Updated and modified by Cort Dougan (cort@cs.nmt.edu) and
6 * Paul Mackerras (paulus@cs.anu.edu.au)
8 * PowerPC version
9 * Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
11 * This program is free software; you can redistribute it and/or
12 * modify it under the terms of the GNU General Public License
13 * as published by the Free Software Foundation; either version
14 * 2 of the License, or (at your option) any later version.
17 #include <linux/errno.h>
18 #include <linux/sched.h>
19 #include <linux/kernel.h>
20 #include <linux/mm.h>
21 #include <linux/smp.h>
22 #include <linux/smp_lock.h>
23 #include <linux/stddef.h>
24 #include <linux/unistd.h>
25 #include <linux/ptrace.h>
26 #include <linux/slab.h>
27 #include <linux/user.h>
28 #include <linux/elf.h>
29 #include <linux/init.h>
30 #include <linux/prctl.h>
31 #include <linux/init_task.h>
32 #include <linux/module.h>
33 #include <linux/kallsyms.h>
34 #include <linux/mqueue.h>
35 #include <linux/hardirq.h>
36 #include <linux/utsname.h>
38 #include <asm/pgtable.h>
39 #include <asm/uaccess.h>
40 #include <asm/system.h>
41 #include <asm/io.h>
42 #include <asm/processor.h>
43 #include <asm/mmu.h>
44 #include <asm/prom.h>
45 #include <asm/machdep.h>
46 #include <asm/time.h>
47 #include <asm/syscalls.h>
48 #ifdef CONFIG_PPC64
49 #include <asm/firmware.h>
50 #endif
52 extern unsigned long _get_SP(void);
54 #ifndef CONFIG_SMP
55 struct task_struct *last_task_used_math = NULL;
56 struct task_struct *last_task_used_altivec = NULL;
57 struct task_struct *last_task_used_spe = NULL;
58 #endif
61 * Make sure the floating-point register state in the
62 * the thread_struct is up to date for task tsk.
64 void flush_fp_to_thread(struct task_struct *tsk)
66 if (tsk->thread.regs) {
68 * We need to disable preemption here because if we didn't,
69 * another process could get scheduled after the regs->msr
70 * test but before we have finished saving the FP registers
71 * to the thread_struct. That process could take over the
72 * FPU, and then when we get scheduled again we would store
73 * bogus values for the remaining FP registers.
75 preempt_disable();
76 if (tsk->thread.regs->msr & MSR_FP) {
77 #ifdef CONFIG_SMP
79 * This should only ever be called for current or
80 * for a stopped child process. Since we save away
81 * the FP register state on context switch on SMP,
82 * there is something wrong if a stopped child appears
83 * to still have its FP state in the CPU registers.
85 BUG_ON(tsk != current);
86 #endif
87 giveup_fpu(current);
89 preempt_enable();
93 void enable_kernel_fp(void)
95 WARN_ON(preemptible());
97 #ifdef CONFIG_SMP
98 if (current->thread.regs && (current->thread.regs->msr & MSR_FP))
99 giveup_fpu(current);
100 else
101 giveup_fpu(NULL); /* just enables FP for kernel */
102 #else
103 giveup_fpu(last_task_used_math);
104 #endif /* CONFIG_SMP */
106 EXPORT_SYMBOL(enable_kernel_fp);
108 int dump_task_fpu(struct task_struct *tsk, elf_fpregset_t *fpregs)
110 if (!tsk->thread.regs)
111 return 0;
112 flush_fp_to_thread(current);
114 memcpy(fpregs, &tsk->thread.fpr[0], sizeof(*fpregs));
116 return 1;
119 #ifdef CONFIG_ALTIVEC
120 void enable_kernel_altivec(void)
122 WARN_ON(preemptible());
124 #ifdef CONFIG_SMP
125 if (current->thread.regs && (current->thread.regs->msr & MSR_VEC))
126 giveup_altivec(current);
127 else
128 giveup_altivec(NULL); /* just enable AltiVec for kernel - force */
129 #else
130 giveup_altivec(last_task_used_altivec);
131 #endif /* CONFIG_SMP */
133 EXPORT_SYMBOL(enable_kernel_altivec);
136 * Make sure the VMX/Altivec register state in the
137 * the thread_struct is up to date for task tsk.
139 void flush_altivec_to_thread(struct task_struct *tsk)
141 if (tsk->thread.regs) {
142 preempt_disable();
143 if (tsk->thread.regs->msr & MSR_VEC) {
144 #ifdef CONFIG_SMP
145 BUG_ON(tsk != current);
146 #endif
147 giveup_altivec(current);
149 preempt_enable();
153 int dump_task_altivec(struct pt_regs *regs, elf_vrregset_t *vrregs)
155 flush_altivec_to_thread(current);
156 memcpy(vrregs, &current->thread.vr[0], sizeof(*vrregs));
157 return 1;
159 #endif /* CONFIG_ALTIVEC */
161 #ifdef CONFIG_SPE
163 void enable_kernel_spe(void)
165 WARN_ON(preemptible());
167 #ifdef CONFIG_SMP
168 if (current->thread.regs && (current->thread.regs->msr & MSR_SPE))
169 giveup_spe(current);
170 else
171 giveup_spe(NULL); /* just enable SPE for kernel - force */
172 #else
173 giveup_spe(last_task_used_spe);
174 #endif /* __SMP __ */
176 EXPORT_SYMBOL(enable_kernel_spe);
178 void flush_spe_to_thread(struct task_struct *tsk)
180 if (tsk->thread.regs) {
181 preempt_disable();
182 if (tsk->thread.regs->msr & MSR_SPE) {
183 #ifdef CONFIG_SMP
184 BUG_ON(tsk != current);
185 #endif
186 giveup_spe(current);
188 preempt_enable();
192 int dump_spe(struct pt_regs *regs, elf_vrregset_t *evrregs)
194 flush_spe_to_thread(current);
195 /* We copy u32 evr[32] + u64 acc + u32 spefscr -> 35 */
196 memcpy(evrregs, &current->thread.evr[0], sizeof(u32) * 35);
197 return 1;
199 #endif /* CONFIG_SPE */
201 #ifndef CONFIG_SMP
203 * If we are doing lazy switching of CPU state (FP, altivec or SPE),
204 * and the current task has some state, discard it.
206 void discard_lazy_cpu_state(void)
208 preempt_disable();
209 if (last_task_used_math == current)
210 last_task_used_math = NULL;
211 #ifdef CONFIG_ALTIVEC
212 if (last_task_used_altivec == current)
213 last_task_used_altivec = NULL;
214 #endif /* CONFIG_ALTIVEC */
215 #ifdef CONFIG_SPE
216 if (last_task_used_spe == current)
217 last_task_used_spe = NULL;
218 #endif
219 preempt_enable();
221 #endif /* CONFIG_SMP */
223 #ifdef CONFIG_PPC_MERGE /* XXX for now */
224 int set_dabr(unsigned long dabr)
226 if (ppc_md.set_dabr)
227 return ppc_md.set_dabr(dabr);
229 mtspr(SPRN_DABR, dabr);
230 return 0;
232 #endif
234 #ifdef CONFIG_PPC64
235 DEFINE_PER_CPU(struct cpu_usage, cpu_usage_array);
236 static DEFINE_PER_CPU(unsigned long, current_dabr);
237 #endif
239 struct task_struct *__switch_to(struct task_struct *prev,
240 struct task_struct *new)
242 struct thread_struct *new_thread, *old_thread;
243 unsigned long flags;
244 struct task_struct *last;
246 #ifdef CONFIG_SMP
247 /* avoid complexity of lazy save/restore of fpu
248 * by just saving it every time we switch out if
249 * this task used the fpu during the last quantum.
251 * If it tries to use the fpu again, it'll trap and
252 * reload its fp regs. So we don't have to do a restore
253 * every switch, just a save.
254 * -- Cort
256 if (prev->thread.regs && (prev->thread.regs->msr & MSR_FP))
257 giveup_fpu(prev);
258 #ifdef CONFIG_ALTIVEC
260 * If the previous thread used altivec in the last quantum
261 * (thus changing altivec regs) then save them.
262 * We used to check the VRSAVE register but not all apps
263 * set it, so we don't rely on it now (and in fact we need
264 * to save & restore VSCR even if VRSAVE == 0). -- paulus
266 * On SMP we always save/restore altivec regs just to avoid the
267 * complexity of changing processors.
268 * -- Cort
270 if (prev->thread.regs && (prev->thread.regs->msr & MSR_VEC))
271 giveup_altivec(prev);
272 #endif /* CONFIG_ALTIVEC */
273 #ifdef CONFIG_SPE
275 * If the previous thread used spe in the last quantum
276 * (thus changing spe regs) then save them.
278 * On SMP we always save/restore spe regs just to avoid the
279 * complexity of changing processors.
281 if ((prev->thread.regs && (prev->thread.regs->msr & MSR_SPE)))
282 giveup_spe(prev);
283 #endif /* CONFIG_SPE */
285 #else /* CONFIG_SMP */
286 #ifdef CONFIG_ALTIVEC
287 /* Avoid the trap. On smp this this never happens since
288 * we don't set last_task_used_altivec -- Cort
290 if (new->thread.regs && last_task_used_altivec == new)
291 new->thread.regs->msr |= MSR_VEC;
292 #endif /* CONFIG_ALTIVEC */
293 #ifdef CONFIG_SPE
294 /* Avoid the trap. On smp this this never happens since
295 * we don't set last_task_used_spe
297 if (new->thread.regs && last_task_used_spe == new)
298 new->thread.regs->msr |= MSR_SPE;
299 #endif /* CONFIG_SPE */
301 #endif /* CONFIG_SMP */
303 #ifdef CONFIG_PPC64 /* for now */
304 if (unlikely(__get_cpu_var(current_dabr) != new->thread.dabr)) {
305 set_dabr(new->thread.dabr);
306 __get_cpu_var(current_dabr) = new->thread.dabr;
309 flush_tlb_pending();
310 #endif
312 new_thread = &new->thread;
313 old_thread = &current->thread;
315 #ifdef CONFIG_PPC64
317 * Collect processor utilization data per process
319 if (firmware_has_feature(FW_FEATURE_SPLPAR)) {
320 struct cpu_usage *cu = &__get_cpu_var(cpu_usage_array);
321 long unsigned start_tb, current_tb;
322 start_tb = old_thread->start_tb;
323 cu->current_tb = current_tb = mfspr(SPRN_PURR);
324 old_thread->accum_tb += (current_tb - start_tb);
325 new_thread->start_tb = current_tb;
327 #endif
329 local_irq_save(flags);
331 account_system_vtime(current);
332 account_process_vtime(current);
333 calculate_steal_time();
335 last = _switch(old_thread, new_thread);
337 local_irq_restore(flags);
339 return last;
342 static int instructions_to_print = 16;
344 static void show_instructions(struct pt_regs *regs)
346 int i;
347 unsigned long pc = regs->nip - (instructions_to_print * 3 / 4 *
348 sizeof(int));
350 printk("Instruction dump:");
352 for (i = 0; i < instructions_to_print; i++) {
353 int instr;
355 if (!(i % 8))
356 printk("\n");
358 /* We use __get_user here *only* to avoid an OOPS on a
359 * bad address because the pc *should* only be a
360 * kernel address.
362 if (!__kernel_text_address(pc) ||
363 __get_user(instr, (unsigned int __user *)pc)) {
364 printk("XXXXXXXX ");
365 } else {
366 if (regs->nip == pc)
367 printk("<%08x> ", instr);
368 else
369 printk("%08x ", instr);
372 pc += sizeof(int);
375 printk("\n");
378 static struct regbit {
379 unsigned long bit;
380 const char *name;
381 } msr_bits[] = {
382 {MSR_EE, "EE"},
383 {MSR_PR, "PR"},
384 {MSR_FP, "FP"},
385 {MSR_ME, "ME"},
386 {MSR_IR, "IR"},
387 {MSR_DR, "DR"},
388 {0, NULL}
391 static void printbits(unsigned long val, struct regbit *bits)
393 const char *sep = "";
395 printk("<");
396 for (; bits->bit; ++bits)
397 if (val & bits->bit) {
398 printk("%s%s", sep, bits->name);
399 sep = ",";
401 printk(">");
404 #ifdef CONFIG_PPC64
405 #define REG "%016lX"
406 #define REGS_PER_LINE 4
407 #define LAST_VOLATILE 13
408 #else
409 #define REG "%08lX"
410 #define REGS_PER_LINE 8
411 #define LAST_VOLATILE 12
412 #endif
414 void show_regs(struct pt_regs * regs)
416 int i, trap;
418 printk("NIP: "REG" LR: "REG" CTR: "REG"\n",
419 regs->nip, regs->link, regs->ctr);
420 printk("REGS: %p TRAP: %04lx %s (%s)\n",
421 regs, regs->trap, print_tainted(), init_utsname()->release);
422 printk("MSR: "REG" ", regs->msr);
423 printbits(regs->msr, msr_bits);
424 printk(" CR: %08lX XER: %08lX\n", regs->ccr, regs->xer);
425 trap = TRAP(regs);
426 if (trap == 0x300 || trap == 0x600)
427 printk("DAR: "REG", DSISR: "REG"\n", regs->dar, regs->dsisr);
428 printk("TASK = %p[%d] '%s' THREAD: %p",
429 current, current->pid, current->comm, task_thread_info(current));
431 #ifdef CONFIG_SMP
432 printk(" CPU: %d", smp_processor_id());
433 #endif /* CONFIG_SMP */
435 for (i = 0; i < 32; i++) {
436 if ((i % REGS_PER_LINE) == 0)
437 printk("\n" KERN_INFO "GPR%02d: ", i);
438 printk(REG " ", regs->gpr[i]);
439 if (i == LAST_VOLATILE && !FULL_REGS(regs))
440 break;
442 printk("\n");
443 #ifdef CONFIG_KALLSYMS
445 * Lookup NIP late so we have the best change of getting the
446 * above info out without failing
448 printk("NIP ["REG"] ", regs->nip);
449 print_symbol("%s\n", regs->nip);
450 printk("LR ["REG"] ", regs->link);
451 print_symbol("%s\n", regs->link);
452 #endif
453 show_stack(current, (unsigned long *) regs->gpr[1]);
454 if (!user_mode(regs))
455 show_instructions(regs);
458 void exit_thread(void)
460 discard_lazy_cpu_state();
463 void flush_thread(void)
465 #ifdef CONFIG_PPC64
466 struct thread_info *t = current_thread_info();
468 if (t->flags & _TIF_ABI_PENDING)
469 t->flags ^= (_TIF_ABI_PENDING | _TIF_32BIT);
470 #endif
472 discard_lazy_cpu_state();
474 #ifdef CONFIG_PPC64 /* for now */
475 if (current->thread.dabr) {
476 current->thread.dabr = 0;
477 set_dabr(0);
479 #endif
482 void
483 release_thread(struct task_struct *t)
488 * This gets called before we allocate a new thread and copy
489 * the current task into it.
491 void prepare_to_copy(struct task_struct *tsk)
493 flush_fp_to_thread(current);
494 flush_altivec_to_thread(current);
495 flush_spe_to_thread(current);
499 * Copy a thread..
501 int copy_thread(int nr, unsigned long clone_flags, unsigned long usp,
502 unsigned long unused, struct task_struct *p,
503 struct pt_regs *regs)
505 struct pt_regs *childregs, *kregs;
506 extern void ret_from_fork(void);
507 unsigned long sp = (unsigned long)task_stack_page(p) + THREAD_SIZE;
509 CHECK_FULL_REGS(regs);
510 /* Copy registers */
511 sp -= sizeof(struct pt_regs);
512 childregs = (struct pt_regs *) sp;
513 *childregs = *regs;
514 if ((childregs->msr & MSR_PR) == 0) {
515 /* for kernel thread, set `current' and stackptr in new task */
516 childregs->gpr[1] = sp + sizeof(struct pt_regs);
517 #ifdef CONFIG_PPC32
518 childregs->gpr[2] = (unsigned long) p;
519 #else
520 clear_tsk_thread_flag(p, TIF_32BIT);
521 #endif
522 p->thread.regs = NULL; /* no user register state */
523 } else {
524 childregs->gpr[1] = usp;
525 p->thread.regs = childregs;
526 if (clone_flags & CLONE_SETTLS) {
527 #ifdef CONFIG_PPC64
528 if (!test_thread_flag(TIF_32BIT))
529 childregs->gpr[13] = childregs->gpr[6];
530 else
531 #endif
532 childregs->gpr[2] = childregs->gpr[6];
535 childregs->gpr[3] = 0; /* Result from fork() */
536 sp -= STACK_FRAME_OVERHEAD;
539 * The way this works is that at some point in the future
540 * some task will call _switch to switch to the new task.
541 * That will pop off the stack frame created below and start
542 * the new task running at ret_from_fork. The new task will
543 * do some house keeping and then return from the fork or clone
544 * system call, using the stack frame created above.
546 sp -= sizeof(struct pt_regs);
547 kregs = (struct pt_regs *) sp;
548 sp -= STACK_FRAME_OVERHEAD;
549 p->thread.ksp = sp;
551 #ifdef CONFIG_PPC64
552 if (cpu_has_feature(CPU_FTR_SLB)) {
553 unsigned long sp_vsid = get_kernel_vsid(sp);
554 unsigned long llp = mmu_psize_defs[mmu_linear_psize].sllp;
556 sp_vsid <<= SLB_VSID_SHIFT;
557 sp_vsid |= SLB_VSID_KERNEL | llp;
558 p->thread.ksp_vsid = sp_vsid;
562 * The PPC64 ABI makes use of a TOC to contain function
563 * pointers. The function (ret_from_except) is actually a pointer
564 * to the TOC entry. The first entry is a pointer to the actual
565 * function.
567 kregs->nip = *((unsigned long *)ret_from_fork);
568 #else
569 kregs->nip = (unsigned long)ret_from_fork;
570 p->thread.last_syscall = -1;
571 #endif
573 return 0;
577 * Set up a thread for executing a new program
579 void start_thread(struct pt_regs *regs, unsigned long start, unsigned long sp)
581 #ifdef CONFIG_PPC64
582 unsigned long load_addr = regs->gpr[2]; /* saved by ELF_PLAT_INIT */
583 #endif
585 set_fs(USER_DS);
588 * If we exec out of a kernel thread then thread.regs will not be
589 * set. Do it now.
591 if (!current->thread.regs) {
592 struct pt_regs *regs = task_stack_page(current) + THREAD_SIZE;
593 current->thread.regs = regs - 1;
596 memset(regs->gpr, 0, sizeof(regs->gpr));
597 regs->ctr = 0;
598 regs->link = 0;
599 regs->xer = 0;
600 regs->ccr = 0;
601 regs->gpr[1] = sp;
603 #ifdef CONFIG_PPC32
604 regs->mq = 0;
605 regs->nip = start;
606 regs->msr = MSR_USER;
607 #else
608 if (!test_thread_flag(TIF_32BIT)) {
609 unsigned long entry, toc;
611 /* start is a relocated pointer to the function descriptor for
612 * the elf _start routine. The first entry in the function
613 * descriptor is the entry address of _start and the second
614 * entry is the TOC value we need to use.
616 __get_user(entry, (unsigned long __user *)start);
617 __get_user(toc, (unsigned long __user *)start+1);
619 /* Check whether the e_entry function descriptor entries
620 * need to be relocated before we can use them.
622 if (load_addr != 0) {
623 entry += load_addr;
624 toc += load_addr;
626 regs->nip = entry;
627 regs->gpr[2] = toc;
628 regs->msr = MSR_USER64;
629 } else {
630 regs->nip = start;
631 regs->gpr[2] = 0;
632 regs->msr = MSR_USER32;
634 #endif
636 discard_lazy_cpu_state();
637 memset(current->thread.fpr, 0, sizeof(current->thread.fpr));
638 current->thread.fpscr.val = 0;
639 #ifdef CONFIG_ALTIVEC
640 memset(current->thread.vr, 0, sizeof(current->thread.vr));
641 memset(&current->thread.vscr, 0, sizeof(current->thread.vscr));
642 current->thread.vscr.u[3] = 0x00010000; /* Java mode disabled */
643 current->thread.vrsave = 0;
644 current->thread.used_vr = 0;
645 #endif /* CONFIG_ALTIVEC */
646 #ifdef CONFIG_SPE
647 memset(current->thread.evr, 0, sizeof(current->thread.evr));
648 current->thread.acc = 0;
649 current->thread.spefscr = 0;
650 current->thread.used_spe = 0;
651 #endif /* CONFIG_SPE */
654 #define PR_FP_ALL_EXCEPT (PR_FP_EXC_DIV | PR_FP_EXC_OVF | PR_FP_EXC_UND \
655 | PR_FP_EXC_RES | PR_FP_EXC_INV)
657 int set_fpexc_mode(struct task_struct *tsk, unsigned int val)
659 struct pt_regs *regs = tsk->thread.regs;
661 /* This is a bit hairy. If we are an SPE enabled processor
662 * (have embedded fp) we store the IEEE exception enable flags in
663 * fpexc_mode. fpexc_mode is also used for setting FP exception
664 * mode (asyn, precise, disabled) for 'Classic' FP. */
665 if (val & PR_FP_EXC_SW_ENABLE) {
666 #ifdef CONFIG_SPE
667 tsk->thread.fpexc_mode = val &
668 (PR_FP_EXC_SW_ENABLE | PR_FP_ALL_EXCEPT);
669 return 0;
670 #else
671 return -EINVAL;
672 #endif
675 /* on a CONFIG_SPE this does not hurt us. The bits that
676 * __pack_fe01 use do not overlap with bits used for
677 * PR_FP_EXC_SW_ENABLE. Additionally, the MSR[FE0,FE1] bits
678 * on CONFIG_SPE implementations are reserved so writing to
679 * them does not change anything */
680 if (val > PR_FP_EXC_PRECISE)
681 return -EINVAL;
682 tsk->thread.fpexc_mode = __pack_fe01(val);
683 if (regs != NULL && (regs->msr & MSR_FP) != 0)
684 regs->msr = (regs->msr & ~(MSR_FE0|MSR_FE1))
685 | tsk->thread.fpexc_mode;
686 return 0;
689 int get_fpexc_mode(struct task_struct *tsk, unsigned long adr)
691 unsigned int val;
693 if (tsk->thread.fpexc_mode & PR_FP_EXC_SW_ENABLE)
694 #ifdef CONFIG_SPE
695 val = tsk->thread.fpexc_mode;
696 #else
697 return -EINVAL;
698 #endif
699 else
700 val = __unpack_fe01(tsk->thread.fpexc_mode);
701 return put_user(val, (unsigned int __user *) adr);
704 int set_endian(struct task_struct *tsk, unsigned int val)
706 struct pt_regs *regs = tsk->thread.regs;
708 if ((val == PR_ENDIAN_LITTLE && !cpu_has_feature(CPU_FTR_REAL_LE)) ||
709 (val == PR_ENDIAN_PPC_LITTLE && !cpu_has_feature(CPU_FTR_PPC_LE)))
710 return -EINVAL;
712 if (regs == NULL)
713 return -EINVAL;
715 if (val == PR_ENDIAN_BIG)
716 regs->msr &= ~MSR_LE;
717 else if (val == PR_ENDIAN_LITTLE || val == PR_ENDIAN_PPC_LITTLE)
718 regs->msr |= MSR_LE;
719 else
720 return -EINVAL;
722 return 0;
725 int get_endian(struct task_struct *tsk, unsigned long adr)
727 struct pt_regs *regs = tsk->thread.regs;
728 unsigned int val;
730 if (!cpu_has_feature(CPU_FTR_PPC_LE) &&
731 !cpu_has_feature(CPU_FTR_REAL_LE))
732 return -EINVAL;
734 if (regs == NULL)
735 return -EINVAL;
737 if (regs->msr & MSR_LE) {
738 if (cpu_has_feature(CPU_FTR_REAL_LE))
739 val = PR_ENDIAN_LITTLE;
740 else
741 val = PR_ENDIAN_PPC_LITTLE;
742 } else
743 val = PR_ENDIAN_BIG;
745 return put_user(val, (unsigned int __user *)adr);
748 int set_unalign_ctl(struct task_struct *tsk, unsigned int val)
750 tsk->thread.align_ctl = val;
751 return 0;
754 int get_unalign_ctl(struct task_struct *tsk, unsigned long adr)
756 return put_user(tsk->thread.align_ctl, (unsigned int __user *)adr);
759 #define TRUNC_PTR(x) ((typeof(x))(((unsigned long)(x)) & 0xffffffff))
761 int sys_clone(unsigned long clone_flags, unsigned long usp,
762 int __user *parent_tidp, void __user *child_threadptr,
763 int __user *child_tidp, int p6,
764 struct pt_regs *regs)
766 CHECK_FULL_REGS(regs);
767 if (usp == 0)
768 usp = regs->gpr[1]; /* stack pointer for child */
769 #ifdef CONFIG_PPC64
770 if (test_thread_flag(TIF_32BIT)) {
771 parent_tidp = TRUNC_PTR(parent_tidp);
772 child_tidp = TRUNC_PTR(child_tidp);
774 #endif
775 return do_fork(clone_flags, usp, regs, 0, parent_tidp, child_tidp);
778 int sys_fork(unsigned long p1, unsigned long p2, unsigned long p3,
779 unsigned long p4, unsigned long p5, unsigned long p6,
780 struct pt_regs *regs)
782 CHECK_FULL_REGS(regs);
783 return do_fork(SIGCHLD, regs->gpr[1], regs, 0, NULL, NULL);
786 int sys_vfork(unsigned long p1, unsigned long p2, unsigned long p3,
787 unsigned long p4, unsigned long p5, unsigned long p6,
788 struct pt_regs *regs)
790 CHECK_FULL_REGS(regs);
791 return do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, regs->gpr[1],
792 regs, 0, NULL, NULL);
795 int sys_execve(unsigned long a0, unsigned long a1, unsigned long a2,
796 unsigned long a3, unsigned long a4, unsigned long a5,
797 struct pt_regs *regs)
799 int error;
800 char *filename;
802 filename = getname((char __user *) a0);
803 error = PTR_ERR(filename);
804 if (IS_ERR(filename))
805 goto out;
806 flush_fp_to_thread(current);
807 flush_altivec_to_thread(current);
808 flush_spe_to_thread(current);
809 error = do_execve(filename, (char __user * __user *) a1,
810 (char __user * __user *) a2, regs);
811 if (error == 0) {
812 task_lock(current);
813 current->ptrace &= ~PT_DTRACE;
814 task_unlock(current);
816 putname(filename);
817 out:
818 return error;
821 int validate_sp(unsigned long sp, struct task_struct *p,
822 unsigned long nbytes)
824 unsigned long stack_page = (unsigned long)task_stack_page(p);
826 if (sp >= stack_page + sizeof(struct thread_struct)
827 && sp <= stack_page + THREAD_SIZE - nbytes)
828 return 1;
830 #ifdef CONFIG_IRQSTACKS
831 stack_page = (unsigned long) hardirq_ctx[task_cpu(p)];
832 if (sp >= stack_page + sizeof(struct thread_struct)
833 && sp <= stack_page + THREAD_SIZE - nbytes)
834 return 1;
836 stack_page = (unsigned long) softirq_ctx[task_cpu(p)];
837 if (sp >= stack_page + sizeof(struct thread_struct)
838 && sp <= stack_page + THREAD_SIZE - nbytes)
839 return 1;
840 #endif
842 return 0;
845 #ifdef CONFIG_PPC64
846 #define MIN_STACK_FRAME 112 /* same as STACK_FRAME_OVERHEAD, in fact */
847 #define FRAME_LR_SAVE 2
848 #define INT_FRAME_SIZE (sizeof(struct pt_regs) + STACK_FRAME_OVERHEAD + 288)
849 #define REGS_MARKER 0x7265677368657265ul
850 #define FRAME_MARKER 12
851 #else
852 #define MIN_STACK_FRAME 16
853 #define FRAME_LR_SAVE 1
854 #define INT_FRAME_SIZE (sizeof(struct pt_regs) + STACK_FRAME_OVERHEAD)
855 #define REGS_MARKER 0x72656773ul
856 #define FRAME_MARKER 2
857 #endif
859 EXPORT_SYMBOL(validate_sp);
861 unsigned long get_wchan(struct task_struct *p)
863 unsigned long ip, sp;
864 int count = 0;
866 if (!p || p == current || p->state == TASK_RUNNING)
867 return 0;
869 sp = p->thread.ksp;
870 if (!validate_sp(sp, p, MIN_STACK_FRAME))
871 return 0;
873 do {
874 sp = *(unsigned long *)sp;
875 if (!validate_sp(sp, p, MIN_STACK_FRAME))
876 return 0;
877 if (count > 0) {
878 ip = ((unsigned long *)sp)[FRAME_LR_SAVE];
879 if (!in_sched_functions(ip))
880 return ip;
882 } while (count++ < 16);
883 return 0;
886 static int kstack_depth_to_print = 64;
888 void show_stack(struct task_struct *tsk, unsigned long *stack)
890 unsigned long sp, ip, lr, newsp;
891 int count = 0;
892 int firstframe = 1;
894 sp = (unsigned long) stack;
895 if (tsk == NULL)
896 tsk = current;
897 if (sp == 0) {
898 if (tsk == current)
899 asm("mr %0,1" : "=r" (sp));
900 else
901 sp = tsk->thread.ksp;
904 lr = 0;
905 printk("Call Trace:\n");
906 do {
907 if (!validate_sp(sp, tsk, MIN_STACK_FRAME))
908 return;
910 stack = (unsigned long *) sp;
911 newsp = stack[0];
912 ip = stack[FRAME_LR_SAVE];
913 if (!firstframe || ip != lr) {
914 printk("["REG"] ["REG"] ", sp, ip);
915 print_symbol("%s", ip);
916 if (firstframe)
917 printk(" (unreliable)");
918 printk("\n");
920 firstframe = 0;
923 * See if this is an exception frame.
924 * We look for the "regshere" marker in the current frame.
926 if (validate_sp(sp, tsk, INT_FRAME_SIZE)
927 && stack[FRAME_MARKER] == REGS_MARKER) {
928 struct pt_regs *regs = (struct pt_regs *)
929 (sp + STACK_FRAME_OVERHEAD);
930 printk("--- Exception: %lx", regs->trap);
931 print_symbol(" at %s\n", regs->nip);
932 lr = regs->link;
933 print_symbol(" LR = %s\n", lr);
934 firstframe = 1;
937 sp = newsp;
938 } while (count++ < kstack_depth_to_print);
941 void dump_stack(void)
943 show_stack(current, NULL);
945 EXPORT_SYMBOL(dump_stack);
947 #ifdef CONFIG_PPC64
948 void ppc64_runlatch_on(void)
950 unsigned long ctrl;
952 if (cpu_has_feature(CPU_FTR_CTRL) && !test_thread_flag(TIF_RUNLATCH)) {
953 HMT_medium();
955 ctrl = mfspr(SPRN_CTRLF);
956 ctrl |= CTRL_RUNLATCH;
957 mtspr(SPRN_CTRLT, ctrl);
959 set_thread_flag(TIF_RUNLATCH);
963 void ppc64_runlatch_off(void)
965 unsigned long ctrl;
967 if (cpu_has_feature(CPU_FTR_CTRL) && test_thread_flag(TIF_RUNLATCH)) {
968 HMT_medium();
970 clear_thread_flag(TIF_RUNLATCH);
972 ctrl = mfspr(SPRN_CTRLF);
973 ctrl &= ~CTRL_RUNLATCH;
974 mtspr(SPRN_CTRLT, ctrl);
977 #endif