2 * linux/kernel/posix_timers.c
5 * 2002-10-15 Posix Clocks & timers
6 * by George Anzinger george@mvista.com
8 * Copyright (C) 2002 2003 by MontaVista Software.
10 * 2004-06-01 Fix CLOCK_REALTIME clock/timer TIMER_ABSTIME bug.
11 * Copyright (C) 2004 Boris Hu
13 * This program is free software; you can redistribute it and/or modify
14 * it under the terms of the GNU General Public License as published by
15 * the Free Software Foundation; either version 2 of the License, or (at
16 * your option) any later version.
18 * This program is distributed in the hope that it will be useful, but
19 * WITHOUT ANY WARRANTY; without even the implied warranty of
20 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
21 * General Public License for more details.
23 * You should have received a copy of the GNU General Public License
24 * along with this program; if not, write to the Free Software
25 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
27 * MontaVista Software | 1237 East Arques Avenue | Sunnyvale | CA 94085 | USA
30 /* These are all the functions necessary to implement
31 * POSIX clocks & timers
34 #include <linux/smp_lock.h>
35 #include <linux/interrupt.h>
36 #include <linux/slab.h>
37 #include <linux/time.h>
39 #include <asm/uaccess.h>
40 #include <asm/semaphore.h>
41 #include <linux/list.h>
42 #include <linux/init.h>
43 #include <linux/compiler.h>
44 #include <linux/idr.h>
45 #include <linux/posix-timers.h>
46 #include <linux/syscalls.h>
47 #include <linux/wait.h>
48 #include <linux/workqueue.h>
49 #include <linux/module.h>
51 #ifndef div_long_long_rem
52 #include <asm/div64.h>
54 #define div_long_long_rem(dividend,divisor,remainder) ({ \
55 u64 result = dividend; \
56 *remainder = do_div(result,divisor); \
60 #define CLOCK_REALTIME_RES TICK_NSEC /* In nano seconds. */
62 static inline u64
mpy_l_X_l_ll(unsigned long mpy1
,unsigned long mpy2
)
64 return (u64
)mpy1
* mpy2
;
67 * Management arrays for POSIX timers. Timers are kept in slab memory
68 * Timer ids are allocated by an external routine that keeps track of the
69 * id and the timer. The external interface is:
71 * void *idr_find(struct idr *idp, int id); to find timer_id <id>
72 * int idr_get_new(struct idr *idp, void *ptr); to get a new id and
74 * void idr_remove(struct idr *idp, int id); to release <id>
75 * void idr_init(struct idr *idp); to initialize <idp>
77 * The idr_get_new *may* call slab for more memory so it must not be
78 * called under a spin lock. Likewise idr_remore may release memory
79 * (but it may be ok to do this under a lock...).
80 * idr_find is just a memory look up and is quite fast. A -1 return
81 * indicates that the requested id does not exist.
85 * Lets keep our timers in a slab cache :-)
87 static kmem_cache_t
*posix_timers_cache
;
88 static struct idr posix_timers_id
;
89 static DEFINE_SPINLOCK(idr_lock
);
92 * we assume that the new SIGEV_THREAD_ID shares no bits with the other
93 * SIGEV values. Here we put out an error if this assumption fails.
95 #if SIGEV_THREAD_ID != (SIGEV_THREAD_ID & \
96 ~(SIGEV_SIGNAL | SIGEV_NONE | SIGEV_THREAD))
97 #error "SIGEV_THREAD_ID must not share bit with other SIGEV values!"
102 * The timer ID is turned into a timer address by idr_find().
103 * Verifying a valid ID consists of:
105 * a) checking that idr_find() returns other than -1.
106 * b) checking that the timer id matches the one in the timer itself.
107 * c) that the timer owner is in the callers thread group.
111 * CLOCKs: The POSIX standard calls for a couple of clocks and allows us
112 * to implement others. This structure defines the various
113 * clocks and allows the possibility of adding others. We
114 * provide an interface to add clocks to the table and expect
115 * the "arch" code to add at least one clock that is high
116 * resolution. Here we define the standard CLOCK_REALTIME as a
117 * 1/HZ resolution clock.
119 * RESOLUTION: Clock resolution is used to round up timer and interval
120 * times, NOT to report clock times, which are reported with as
121 * much resolution as the system can muster. In some cases this
122 * resolution may depend on the underlying clock hardware and
123 * may not be quantifiable until run time, and only then is the
124 * necessary code is written. The standard says we should say
125 * something about this issue in the documentation...
127 * FUNCTIONS: The CLOCKs structure defines possible functions to handle
128 * various clock functions. For clocks that use the standard
129 * system timer code these entries should be NULL. This will
130 * allow dispatch without the overhead of indirect function
131 * calls. CLOCKS that depend on other sources (e.g. WWV or GPS)
132 * must supply functions here, even if the function just returns
133 * ENOSYS. The standard POSIX timer management code assumes the
134 * following: 1.) The k_itimer struct (sched.h) is used for the
135 * timer. 2.) The list, it_lock, it_clock, it_id and it_process
136 * fields are not modified by timer code.
138 * At this time all functions EXCEPT clock_nanosleep can be
139 * redirected by the CLOCKS structure. Clock_nanosleep is in
140 * there, but the code ignores it.
142 * Permissions: It is assumed that the clock_settime() function defined
143 * for each clock will take care of permission checks. Some
144 * clocks may be set able by any user (i.e. local process
145 * clocks) others not. Currently the only set able clock we
146 * have is CLOCK_REALTIME and its high res counter part, both of
147 * which we beg off on and pass to do_sys_settimeofday().
150 static struct k_clock posix_clocks
[MAX_CLOCKS
];
152 * We only have one real clock that can be set so we need only one abs list,
153 * even if we should want to have several clocks with differing resolutions.
155 static struct k_clock_abs abs_list
= {.list
= LIST_HEAD_INIT(abs_list
.list
),
156 .lock
= SPIN_LOCK_UNLOCKED
};
158 static void posix_timer_fn(unsigned long);
159 static u64
do_posix_clock_monotonic_gettime_parts(
160 struct timespec
*tp
, struct timespec
*mo
);
161 int do_posix_clock_monotonic_gettime(struct timespec
*tp
);
162 static int do_posix_clock_monotonic_get(clockid_t
, struct timespec
*tp
);
164 static struct k_itimer
*lock_timer(timer_t timer_id
, unsigned long *flags
);
166 static inline void unlock_timer(struct k_itimer
*timr
, unsigned long flags
)
168 spin_unlock_irqrestore(&timr
->it_lock
, flags
);
172 * Call the k_clock hook function if non-null, or the default function.
174 #define CLOCK_DISPATCH(clock, call, arglist) \
175 ((clock) < 0 ? posix_cpu_##call arglist : \
176 (posix_clocks[clock].call != NULL \
177 ? (*posix_clocks[clock].call) arglist : common_##call arglist))
180 * Default clock hook functions when the struct k_clock passed
181 * to register_posix_clock leaves a function pointer null.
183 * The function common_CALL is the default implementation for
184 * the function pointer CALL in struct k_clock.
187 static inline int common_clock_getres(clockid_t which_clock
,
191 tp
->tv_nsec
= posix_clocks
[which_clock
].res
;
195 static inline int common_clock_get(clockid_t which_clock
, struct timespec
*tp
)
201 static inline int common_clock_set(clockid_t which_clock
, struct timespec
*tp
)
203 return do_sys_settimeofday(tp
, NULL
);
206 static inline int common_timer_create(struct k_itimer
*new_timer
)
208 INIT_LIST_HEAD(&new_timer
->it
.real
.abs_timer_entry
);
209 init_timer(&new_timer
->it
.real
.timer
);
210 new_timer
->it
.real
.timer
.data
= (unsigned long) new_timer
;
211 new_timer
->it
.real
.timer
.function
= posix_timer_fn
;
216 * These ones are defined below.
218 static int common_nsleep(clockid_t
, int flags
, struct timespec
*t
);
219 static void common_timer_get(struct k_itimer
*, struct itimerspec
*);
220 static int common_timer_set(struct k_itimer
*, int,
221 struct itimerspec
*, struct itimerspec
*);
222 static int common_timer_del(struct k_itimer
*timer
);
225 * Return nonzero iff we know a priori this clockid_t value is bogus.
227 static inline int invalid_clockid(clockid_t which_clock
)
229 if (which_clock
< 0) /* CPU clock, posix_cpu_* will check it */
231 if ((unsigned) which_clock
>= MAX_CLOCKS
)
233 if (posix_clocks
[which_clock
].clock_getres
!= NULL
)
235 #ifndef CLOCK_DISPATCH_DIRECT
236 if (posix_clocks
[which_clock
].res
!= 0)
244 * Initialize everything, well, just everything in Posix clocks/timers ;)
246 static __init
int init_posix_timers(void)
248 struct k_clock clock_realtime
= {.res
= CLOCK_REALTIME_RES
,
249 .abs_struct
= &abs_list
251 struct k_clock clock_monotonic
= {.res
= CLOCK_REALTIME_RES
,
253 .clock_get
= do_posix_clock_monotonic_get
,
254 .clock_set
= do_posix_clock_nosettime
257 register_posix_clock(CLOCK_REALTIME
, &clock_realtime
);
258 register_posix_clock(CLOCK_MONOTONIC
, &clock_monotonic
);
260 posix_timers_cache
= kmem_cache_create("posix_timers_cache",
261 sizeof (struct k_itimer
), 0, 0, NULL
, NULL
);
262 idr_init(&posix_timers_id
);
266 __initcall(init_posix_timers
);
268 static void tstojiffie(struct timespec
*tp
, int res
, u64
*jiff
)
270 long sec
= tp
->tv_sec
;
271 long nsec
= tp
->tv_nsec
+ res
- 1;
273 if (nsec
> NSEC_PER_SEC
) {
275 nsec
-= NSEC_PER_SEC
;
279 * The scaling constants are defined in <linux/time.h>
280 * The difference between there and here is that we do the
281 * res rounding and compute a 64-bit result (well so does that
282 * but it then throws away the high bits).
284 *jiff
= (mpy_l_X_l_ll(sec
, SEC_CONVERSION
) +
285 (mpy_l_X_l_ll(nsec
, NSEC_CONVERSION
) >>
286 (NSEC_JIFFIE_SC
- SEC_JIFFIE_SC
))) >> SEC_JIFFIE_SC
;
290 * This function adjusts the timer as needed as a result of the clock
291 * being set. It should only be called for absolute timers, and then
292 * under the abs_list lock. It computes the time difference and sets
293 * the new jiffies value in the timer. It also updates the timers
294 * reference wall_to_monotonic value. It is complicated by the fact
295 * that tstojiffies() only handles positive times and it needs to work
296 * with both positive and negative times. Also, for negative offsets,
297 * we need to defeat the res round up.
299 * Return is true if there is a new time, else false.
301 static long add_clockset_delta(struct k_itimer
*timr
,
302 struct timespec
*new_wall_to
)
304 struct timespec delta
;
308 set_normalized_timespec(&delta
,
309 new_wall_to
->tv_sec
-
310 timr
->it
.real
.wall_to_prev
.tv_sec
,
311 new_wall_to
->tv_nsec
-
312 timr
->it
.real
.wall_to_prev
.tv_nsec
);
313 if (likely(!(delta
.tv_sec
| delta
.tv_nsec
)))
315 if (delta
.tv_sec
< 0) {
316 set_normalized_timespec(&delta
,
319 posix_clocks
[timr
->it_clock
].res
);
322 tstojiffie(&delta
, posix_clocks
[timr
->it_clock
].res
, &exp
);
323 timr
->it
.real
.wall_to_prev
= *new_wall_to
;
324 timr
->it
.real
.timer
.expires
+= (sign
? -exp
: exp
);
328 static void remove_from_abslist(struct k_itimer
*timr
)
330 if (!list_empty(&timr
->it
.real
.abs_timer_entry
)) {
331 spin_lock(&abs_list
.lock
);
332 list_del_init(&timr
->it
.real
.abs_timer_entry
);
333 spin_unlock(&abs_list
.lock
);
337 static void schedule_next_timer(struct k_itimer
*timr
)
339 struct timespec new_wall_to
;
340 struct now_struct now
;
344 * Set up the timer for the next interval (if there is one).
345 * Note: this code uses the abs_timer_lock to protect
346 * it.real.wall_to_prev and must hold it until exp is set, not exactly
349 * This function is used for CLOCK_REALTIME* and
350 * CLOCK_MONOTONIC* timers. If we ever want to handle other
351 * CLOCKs, the calling code (do_schedule_next_timer) would need
352 * to pull the "clock" info from the timer and dispatch the
353 * "other" CLOCKs "next timer" code (which, I suppose should
354 * also be added to the k_clock structure).
356 if (!timr
->it
.real
.incr
)
360 seq
= read_seqbegin(&xtime_lock
);
361 new_wall_to
= wall_to_monotonic
;
363 } while (read_seqretry(&xtime_lock
, seq
));
365 if (!list_empty(&timr
->it
.real
.abs_timer_entry
)) {
366 spin_lock(&abs_list
.lock
);
367 add_clockset_delta(timr
, &new_wall_to
);
369 posix_bump_timer(timr
, now
);
371 spin_unlock(&abs_list
.lock
);
373 posix_bump_timer(timr
, now
);
375 timr
->it_overrun_last
= timr
->it_overrun
;
376 timr
->it_overrun
= -1;
377 ++timr
->it_requeue_pending
;
378 add_timer(&timr
->it
.real
.timer
);
382 * This function is exported for use by the signal deliver code. It is
383 * called just prior to the info block being released and passes that
384 * block to us. It's function is to update the overrun entry AND to
385 * restart the timer. It should only be called if the timer is to be
386 * restarted (i.e. we have flagged this in the sys_private entry of the
389 * To protect aginst the timer going away while the interrupt is queued,
390 * we require that the it_requeue_pending flag be set.
392 void do_schedule_next_timer(struct siginfo
*info
)
394 struct k_itimer
*timr
;
397 timr
= lock_timer(info
->si_tid
, &flags
);
399 if (!timr
|| timr
->it_requeue_pending
!= info
->si_sys_private
)
402 if (timr
->it_clock
< 0) /* CPU clock */
403 posix_cpu_timer_schedule(timr
);
405 schedule_next_timer(timr
);
406 info
->si_overrun
= timr
->it_overrun_last
;
409 unlock_timer(timr
, flags
);
412 int posix_timer_event(struct k_itimer
*timr
,int si_private
)
414 memset(&timr
->sigq
->info
, 0, sizeof(siginfo_t
));
415 timr
->sigq
->info
.si_sys_private
= si_private
;
417 * Send signal to the process that owns this timer.
419 * This code assumes that all the possible abs_lists share the
420 * same lock (there is only one list at this time). If this is
421 * not the case, the CLOCK info would need to be used to find
422 * the proper abs list lock.
425 timr
->sigq
->info
.si_signo
= timr
->it_sigev_signo
;
426 timr
->sigq
->info
.si_errno
= 0;
427 timr
->sigq
->info
.si_code
= SI_TIMER
;
428 timr
->sigq
->info
.si_tid
= timr
->it_id
;
429 timr
->sigq
->info
.si_value
= timr
->it_sigev_value
;
431 if (timr
->it_sigev_notify
& SIGEV_THREAD_ID
) {
432 struct task_struct
*leader
;
433 int ret
= send_sigqueue(timr
->it_sigev_signo
, timr
->sigq
,
436 if (likely(ret
>= 0))
439 timr
->it_sigev_notify
= SIGEV_SIGNAL
;
440 leader
= timr
->it_process
->group_leader
;
441 put_task_struct(timr
->it_process
);
442 timr
->it_process
= leader
;
445 return send_group_sigqueue(timr
->it_sigev_signo
, timr
->sigq
,
448 EXPORT_SYMBOL_GPL(posix_timer_event
);
451 * This function gets called when a POSIX.1b interval timer expires. It
452 * is used as a callback from the kernel internal timer. The
453 * run_timer_list code ALWAYS calls with interrupts on.
455 * This code is for CLOCK_REALTIME* and CLOCK_MONOTONIC* timers.
457 static void posix_timer_fn(unsigned long __data
)
459 struct k_itimer
*timr
= (struct k_itimer
*) __data
;
462 struct timespec delta
, new_wall_to
;
466 spin_lock_irqsave(&timr
->it_lock
, flags
);
467 if (!list_empty(&timr
->it
.real
.abs_timer_entry
)) {
468 spin_lock(&abs_list
.lock
);
470 seq
= read_seqbegin(&xtime_lock
);
471 new_wall_to
= wall_to_monotonic
;
472 } while (read_seqretry(&xtime_lock
, seq
));
473 set_normalized_timespec(&delta
,
475 timr
->it
.real
.wall_to_prev
.tv_sec
,
476 new_wall_to
.tv_nsec
-
477 timr
->it
.real
.wall_to_prev
.tv_nsec
);
478 if (likely((delta
.tv_sec
| delta
.tv_nsec
) == 0)) {
479 /* do nothing, timer is on time */
480 } else if (delta
.tv_sec
< 0) {
481 /* do nothing, timer is already late */
483 /* timer is early due to a clock set */
485 posix_clocks
[timr
->it_clock
].res
,
487 timr
->it
.real
.wall_to_prev
= new_wall_to
;
488 timr
->it
.real
.timer
.expires
+= exp
;
489 add_timer(&timr
->it
.real
.timer
);
492 spin_unlock(&abs_list
.lock
);
498 if (timr
->it
.real
.incr
)
499 si_private
= ++timr
->it_requeue_pending
;
501 remove_from_abslist(timr
);
504 if (posix_timer_event(timr
, si_private
))
506 * signal was not sent because of sig_ignor
507 * we will not get a call back to restart it AND
508 * it should be restarted.
510 schedule_next_timer(timr
);
512 unlock_timer(timr
, flags
); /* hold thru abs lock to keep irq off */
516 static inline struct task_struct
* good_sigevent(sigevent_t
* event
)
518 struct task_struct
*rtn
= current
->group_leader
;
520 if ((event
->sigev_notify
& SIGEV_THREAD_ID
) &&
521 (!(rtn
= find_task_by_pid(event
->sigev_notify_thread_id
)) ||
522 rtn
->tgid
!= current
->tgid
||
523 (event
->sigev_notify
& ~SIGEV_THREAD_ID
) != SIGEV_SIGNAL
))
526 if (((event
->sigev_notify
& ~SIGEV_THREAD_ID
) != SIGEV_NONE
) &&
527 ((event
->sigev_signo
<= 0) || (event
->sigev_signo
> SIGRTMAX
)))
533 void register_posix_clock(clockid_t clock_id
, struct k_clock
*new_clock
)
535 if ((unsigned) clock_id
>= MAX_CLOCKS
) {
536 printk("POSIX clock register failed for clock_id %d\n",
541 posix_clocks
[clock_id
] = *new_clock
;
543 EXPORT_SYMBOL_GPL(register_posix_clock
);
545 static struct k_itimer
* alloc_posix_timer(void)
547 struct k_itimer
*tmr
;
548 tmr
= kmem_cache_alloc(posix_timers_cache
, GFP_KERNEL
);
551 memset(tmr
, 0, sizeof (struct k_itimer
));
552 if (unlikely(!(tmr
->sigq
= sigqueue_alloc()))) {
553 kmem_cache_free(posix_timers_cache
, tmr
);
560 #define IT_ID_NOT_SET 0
561 static void release_posix_timer(struct k_itimer
*tmr
, int it_id_set
)
565 spin_lock_irqsave(&idr_lock
, flags
);
566 idr_remove(&posix_timers_id
, tmr
->it_id
);
567 spin_unlock_irqrestore(&idr_lock
, flags
);
569 sigqueue_free(tmr
->sigq
);
570 if (unlikely(tmr
->it_process
) &&
571 tmr
->it_sigev_notify
== (SIGEV_SIGNAL
|SIGEV_THREAD_ID
))
572 put_task_struct(tmr
->it_process
);
573 kmem_cache_free(posix_timers_cache
, tmr
);
576 /* Create a POSIX.1b interval timer. */
579 sys_timer_create(clockid_t which_clock
,
580 struct sigevent __user
*timer_event_spec
,
581 timer_t __user
* created_timer_id
)
584 struct k_itimer
*new_timer
= NULL
;
586 struct task_struct
*process
= NULL
;
589 int it_id_set
= IT_ID_NOT_SET
;
591 if (invalid_clockid(which_clock
))
594 new_timer
= alloc_posix_timer();
595 if (unlikely(!new_timer
))
598 spin_lock_init(&new_timer
->it_lock
);
600 if (unlikely(!idr_pre_get(&posix_timers_id
, GFP_KERNEL
))) {
604 spin_lock_irq(&idr_lock
);
605 error
= idr_get_new(&posix_timers_id
,
608 spin_unlock_irq(&idr_lock
);
609 if (error
== -EAGAIN
)
613 * Wierd looking, but we return EAGAIN if the IDR is
614 * full (proper POSIX return value for this)
620 it_id_set
= IT_ID_SET
;
621 new_timer
->it_id
= (timer_t
) new_timer_id
;
622 new_timer
->it_clock
= which_clock
;
623 new_timer
->it_overrun
= -1;
624 error
= CLOCK_DISPATCH(which_clock
, timer_create
, (new_timer
));
629 * return the timer_id now. The next step is hard to
630 * back out if there is an error.
632 if (copy_to_user(created_timer_id
,
633 &new_timer_id
, sizeof (new_timer_id
))) {
637 if (timer_event_spec
) {
638 if (copy_from_user(&event
, timer_event_spec
, sizeof (event
))) {
642 new_timer
->it_sigev_notify
= event
.sigev_notify
;
643 new_timer
->it_sigev_signo
= event
.sigev_signo
;
644 new_timer
->it_sigev_value
= event
.sigev_value
;
646 read_lock(&tasklist_lock
);
647 if ((process
= good_sigevent(&event
))) {
649 * We may be setting up this process for another
650 * thread. It may be exiting. To catch this
651 * case the we check the PF_EXITING flag. If
652 * the flag is not set, the siglock will catch
653 * him before it is too late (in exit_itimers).
655 * The exec case is a bit more invloved but easy
656 * to code. If the process is in our thread
657 * group (and it must be or we would not allow
658 * it here) and is doing an exec, it will cause
659 * us to be killed. In this case it will wait
660 * for us to die which means we can finish this
661 * linkage with our last gasp. I.e. no code :)
663 spin_lock_irqsave(&process
->sighand
->siglock
, flags
);
664 if (!(process
->flags
& PF_EXITING
)) {
665 new_timer
->it_process
= process
;
666 list_add(&new_timer
->list
,
667 &process
->signal
->posix_timers
);
668 spin_unlock_irqrestore(&process
->sighand
->siglock
, flags
);
669 if (new_timer
->it_sigev_notify
== (SIGEV_SIGNAL
|SIGEV_THREAD_ID
))
670 get_task_struct(process
);
672 spin_unlock_irqrestore(&process
->sighand
->siglock
, flags
);
676 read_unlock(&tasklist_lock
);
682 new_timer
->it_sigev_notify
= SIGEV_SIGNAL
;
683 new_timer
->it_sigev_signo
= SIGALRM
;
684 new_timer
->it_sigev_value
.sival_int
= new_timer
->it_id
;
685 process
= current
->group_leader
;
686 spin_lock_irqsave(&process
->sighand
->siglock
, flags
);
687 new_timer
->it_process
= process
;
688 list_add(&new_timer
->list
, &process
->signal
->posix_timers
);
689 spin_unlock_irqrestore(&process
->sighand
->siglock
, flags
);
693 * In the case of the timer belonging to another task, after
694 * the task is unlocked, the timer is owned by the other task
695 * and may cease to exist at any time. Don't use or modify
696 * new_timer after the unlock call.
701 release_posix_timer(new_timer
, it_id_set
);
709 * This function checks the elements of a timespec structure.
712 * ts : Pointer to the timespec structure to check
715 * If a NULL pointer was passed in, or the tv_nsec field was less than 0
716 * or greater than NSEC_PER_SEC, or the tv_sec field was less than 0,
717 * this function returns 0. Otherwise it returns 1.
719 static int good_timespec(const struct timespec
*ts
)
721 if ((!ts
) || (ts
->tv_sec
< 0) ||
722 ((unsigned) ts
->tv_nsec
>= NSEC_PER_SEC
))
728 * Locking issues: We need to protect the result of the id look up until
729 * we get the timer locked down so it is not deleted under us. The
730 * removal is done under the idr spinlock so we use that here to bridge
731 * the find to the timer lock. To avoid a dead lock, the timer id MUST
732 * be release with out holding the timer lock.
734 static struct k_itimer
* lock_timer(timer_t timer_id
, unsigned long *flags
)
736 struct k_itimer
*timr
;
738 * Watch out here. We do a irqsave on the idr_lock and pass the
739 * flags part over to the timer lock. Must not let interrupts in
740 * while we are moving the lock.
743 spin_lock_irqsave(&idr_lock
, *flags
);
744 timr
= (struct k_itimer
*) idr_find(&posix_timers_id
, (int) timer_id
);
746 spin_lock(&timr
->it_lock
);
747 spin_unlock(&idr_lock
);
749 if ((timr
->it_id
!= timer_id
) || !(timr
->it_process
) ||
750 timr
->it_process
->tgid
!= current
->tgid
) {
751 unlock_timer(timr
, *flags
);
755 spin_unlock_irqrestore(&idr_lock
, *flags
);
761 * Get the time remaining on a POSIX.1b interval timer. This function
762 * is ALWAYS called with spin_lock_irq on the timer, thus it must not
765 * We have a couple of messes to clean up here. First there is the case
766 * of a timer that has a requeue pending. These timers should appear to
767 * be in the timer list with an expiry as if we were to requeue them
770 * The second issue is the SIGEV_NONE timer which may be active but is
771 * not really ever put in the timer list (to save system resources).
772 * This timer may be expired, and if so, we will do it here. Otherwise
773 * it is the same as a requeue pending timer WRT to what we should
777 common_timer_get(struct k_itimer
*timr
, struct itimerspec
*cur_setting
)
779 unsigned long expires
;
780 struct now_struct now
;
783 expires
= timr
->it
.real
.timer
.expires
;
784 while ((volatile long) (timr
->it
.real
.timer
.expires
) != expires
);
789 ((timr
->it_sigev_notify
& ~SIGEV_THREAD_ID
) == SIGEV_NONE
) &&
790 !timr
->it
.real
.incr
&&
791 posix_time_before(&timr
->it
.real
.timer
, &now
))
792 timr
->it
.real
.timer
.expires
= expires
= 0;
794 if (timr
->it_requeue_pending
& REQUEUE_PENDING
||
795 (timr
->it_sigev_notify
& ~SIGEV_THREAD_ID
) == SIGEV_NONE
) {
796 posix_bump_timer(timr
, now
);
797 expires
= timr
->it
.real
.timer
.expires
;
800 if (!timer_pending(&timr
->it
.real
.timer
))
803 expires
-= now
.jiffies
;
805 jiffies_to_timespec(expires
, &cur_setting
->it_value
);
806 jiffies_to_timespec(timr
->it
.real
.incr
, &cur_setting
->it_interval
);
808 if (cur_setting
->it_value
.tv_sec
< 0) {
809 cur_setting
->it_value
.tv_nsec
= 1;
810 cur_setting
->it_value
.tv_sec
= 0;
814 /* Get the time remaining on a POSIX.1b interval timer. */
816 sys_timer_gettime(timer_t timer_id
, struct itimerspec __user
*setting
)
818 struct k_itimer
*timr
;
819 struct itimerspec cur_setting
;
822 timr
= lock_timer(timer_id
, &flags
);
826 CLOCK_DISPATCH(timr
->it_clock
, timer_get
, (timr
, &cur_setting
));
828 unlock_timer(timr
, flags
);
830 if (copy_to_user(setting
, &cur_setting
, sizeof (cur_setting
)))
836 * Get the number of overruns of a POSIX.1b interval timer. This is to
837 * be the overrun of the timer last delivered. At the same time we are
838 * accumulating overruns on the next timer. The overrun is frozen when
839 * the signal is delivered, either at the notify time (if the info block
840 * is not queued) or at the actual delivery time (as we are informed by
841 * the call back to do_schedule_next_timer(). So all we need to do is
842 * to pick up the frozen overrun.
846 sys_timer_getoverrun(timer_t timer_id
)
848 struct k_itimer
*timr
;
852 timr
= lock_timer(timer_id
, &flags
);
856 overrun
= timr
->it_overrun_last
;
857 unlock_timer(timr
, flags
);
862 * Adjust for absolute time
864 * If absolute time is given and it is not CLOCK_MONOTONIC, we need to
865 * adjust for the offset between the timer clock (CLOCK_MONOTONIC) and
866 * what ever clock he is using.
868 * If it is relative time, we need to add the current (CLOCK_MONOTONIC)
869 * time to it to get the proper time for the timer.
871 static int adjust_abs_time(struct k_clock
*clock
, struct timespec
*tp
,
872 int abs
, u64
*exp
, struct timespec
*wall_to
)
875 struct timespec oc
= *tp
;
881 * The mask pick up the 4 basic clocks
883 if (!((clock
- &posix_clocks
[0]) & ~CLOCKS_MASK
)) {
884 jiffies_64_f
= do_posix_clock_monotonic_gettime_parts(
887 * If we are doing a MONOTONIC clock
889 if((clock
- &posix_clocks
[0]) & CLOCKS_MONO
){
890 now
.tv_sec
+= wall_to
->tv_sec
;
891 now
.tv_nsec
+= wall_to
->tv_nsec
;
895 * Not one of the basic clocks
897 clock
->clock_get(clock
- posix_clocks
, &now
);
898 jiffies_64_f
= get_jiffies_64();
901 * Take away now to get delta and normalize
903 set_normalized_timespec(&oc
, oc
.tv_sec
- now
.tv_sec
,
904 oc
.tv_nsec
- now
.tv_nsec
);
906 jiffies_64_f
= get_jiffies_64();
909 * Check if the requested time is prior to now (if so set now)
912 oc
.tv_sec
= oc
.tv_nsec
= 0;
914 if (oc
.tv_sec
| oc
.tv_nsec
)
915 set_normalized_timespec(&oc
, oc
.tv_sec
,
916 oc
.tv_nsec
+ clock
->res
);
917 tstojiffie(&oc
, clock
->res
, exp
);
920 * Check if the requested time is more than the timer code
921 * can handle (if so we error out but return the value too).
923 if (*exp
> ((u64
)MAX_JIFFY_OFFSET
))
925 * This is a considered response, not exactly in
926 * line with the standard (in fact it is silent on
927 * possible overflows). We assume such a large
928 * value is ALMOST always a programming error and
929 * try not to compound it by setting a really dumb
934 * return the actual jiffies expire time, full 64 bits
936 *exp
+= jiffies_64_f
;
940 /* Set a POSIX.1b interval timer. */
941 /* timr->it_lock is taken. */
943 common_timer_set(struct k_itimer
*timr
, int flags
,
944 struct itimerspec
*new_setting
, struct itimerspec
*old_setting
)
946 struct k_clock
*clock
= &posix_clocks
[timr
->it_clock
];
950 common_timer_get(timr
, old_setting
);
952 /* disable the timer */
953 timr
->it
.real
.incr
= 0;
955 * careful here. If smp we could be in the "fire" routine which will
956 * be spinning as we hold the lock. But this is ONLY an SMP issue.
958 if (try_to_del_timer_sync(&timr
->it
.real
.timer
) < 0) {
961 * It can only be active if on an other cpu. Since
962 * we have cleared the interval stuff above, it should
963 * clear once we release the spin lock. Of course once
964 * we do that anything could happen, including the
965 * complete melt down of the timer. So return with
966 * a "retry" exit status.
972 remove_from_abslist(timr
);
974 timr
->it_requeue_pending
= (timr
->it_requeue_pending
+ 2) &
976 timr
->it_overrun_last
= 0;
977 timr
->it_overrun
= -1;
979 *switch off the timer when it_value is zero
981 if (!new_setting
->it_value
.tv_sec
&& !new_setting
->it_value
.tv_nsec
) {
982 timr
->it
.real
.timer
.expires
= 0;
986 if (adjust_abs_time(clock
,
987 &new_setting
->it_value
, flags
& TIMER_ABSTIME
,
988 &expire_64
, &(timr
->it
.real
.wall_to_prev
))) {
991 timr
->it
.real
.timer
.expires
= (unsigned long)expire_64
;
992 tstojiffie(&new_setting
->it_interval
, clock
->res
, &expire_64
);
993 timr
->it
.real
.incr
= (unsigned long)expire_64
;
996 * We do not even queue SIGEV_NONE timers! But we do put them
997 * in the abs list so we can do that right.
999 if (((timr
->it_sigev_notify
& ~SIGEV_THREAD_ID
) != SIGEV_NONE
))
1000 add_timer(&timr
->it
.real
.timer
);
1002 if (flags
& TIMER_ABSTIME
&& clock
->abs_struct
) {
1003 spin_lock(&clock
->abs_struct
->lock
);
1004 list_add_tail(&(timr
->it
.real
.abs_timer_entry
),
1005 &(clock
->abs_struct
->list
));
1006 spin_unlock(&clock
->abs_struct
->lock
);
1011 /* Set a POSIX.1b interval timer */
1013 sys_timer_settime(timer_t timer_id
, int flags
,
1014 const struct itimerspec __user
*new_setting
,
1015 struct itimerspec __user
*old_setting
)
1017 struct k_itimer
*timr
;
1018 struct itimerspec new_spec
, old_spec
;
1021 struct itimerspec
*rtn
= old_setting
? &old_spec
: NULL
;
1026 if (copy_from_user(&new_spec
, new_setting
, sizeof (new_spec
)))
1029 if ((!good_timespec(&new_spec
.it_interval
)) ||
1030 (!good_timespec(&new_spec
.it_value
)))
1033 timr
= lock_timer(timer_id
, &flag
);
1037 error
= CLOCK_DISPATCH(timr
->it_clock
, timer_set
,
1038 (timr
, flags
, &new_spec
, rtn
));
1040 unlock_timer(timr
, flag
);
1041 if (error
== TIMER_RETRY
) {
1042 rtn
= NULL
; // We already got the old time...
1046 if (old_setting
&& !error
&& copy_to_user(old_setting
,
1047 &old_spec
, sizeof (old_spec
)))
1053 static inline int common_timer_del(struct k_itimer
*timer
)
1055 timer
->it
.real
.incr
= 0;
1057 if (try_to_del_timer_sync(&timer
->it
.real
.timer
) < 0) {
1060 * It can only be active if on an other cpu. Since
1061 * we have cleared the interval stuff above, it should
1062 * clear once we release the spin lock. Of course once
1063 * we do that anything could happen, including the
1064 * complete melt down of the timer. So return with
1065 * a "retry" exit status.
1071 remove_from_abslist(timer
);
1076 static inline int timer_delete_hook(struct k_itimer
*timer
)
1078 return CLOCK_DISPATCH(timer
->it_clock
, timer_del
, (timer
));
1081 /* Delete a POSIX.1b interval timer. */
1083 sys_timer_delete(timer_t timer_id
)
1085 struct k_itimer
*timer
;
1092 timer
= lock_timer(timer_id
, &flags
);
1097 error
= timer_delete_hook(timer
);
1099 if (error
== TIMER_RETRY
) {
1100 unlock_timer(timer
, flags
);
1104 timer_delete_hook(timer
);
1106 spin_lock(¤t
->sighand
->siglock
);
1107 list_del(&timer
->list
);
1108 spin_unlock(¤t
->sighand
->siglock
);
1110 * This keeps any tasks waiting on the spin lock from thinking
1111 * they got something (see the lock code above).
1113 if (timer
->it_process
) {
1114 if (timer
->it_sigev_notify
== (SIGEV_SIGNAL
|SIGEV_THREAD_ID
))
1115 put_task_struct(timer
->it_process
);
1116 timer
->it_process
= NULL
;
1118 unlock_timer(timer
, flags
);
1119 release_posix_timer(timer
, IT_ID_SET
);
1123 * return timer owned by the process, used by exit_itimers
1125 static inline void itimer_delete(struct k_itimer
*timer
)
1127 unsigned long flags
;
1133 spin_lock_irqsave(&timer
->it_lock
, flags
);
1136 error
= timer_delete_hook(timer
);
1138 if (error
== TIMER_RETRY
) {
1139 unlock_timer(timer
, flags
);
1143 timer_delete_hook(timer
);
1145 list_del(&timer
->list
);
1147 * This keeps any tasks waiting on the spin lock from thinking
1148 * they got something (see the lock code above).
1150 if (timer
->it_process
) {
1151 if (timer
->it_sigev_notify
== (SIGEV_SIGNAL
|SIGEV_THREAD_ID
))
1152 put_task_struct(timer
->it_process
);
1153 timer
->it_process
= NULL
;
1155 unlock_timer(timer
, flags
);
1156 release_posix_timer(timer
, IT_ID_SET
);
1160 * This is called by do_exit or de_thread, only when there are no more
1161 * references to the shared signal_struct.
1163 void exit_itimers(struct signal_struct
*sig
)
1165 struct k_itimer
*tmr
;
1167 while (!list_empty(&sig
->posix_timers
)) {
1168 tmr
= list_entry(sig
->posix_timers
.next
, struct k_itimer
, list
);
1174 * And now for the "clock" calls
1176 * These functions are called both from timer functions (with the timer
1177 * spin_lock_irq() held and from clock calls with no locking. They must
1178 * use the save flags versions of locks.
1182 * We do ticks here to avoid the irq lock ( they take sooo long).
1183 * The seqlock is great here. Since we a reader, we don't really care
1184 * if we are interrupted since we don't take lock that will stall us or
1185 * any other cpu. Voila, no irq lock is needed.
1189 static u64
do_posix_clock_monotonic_gettime_parts(
1190 struct timespec
*tp
, struct timespec
*mo
)
1196 seq
= read_seqbegin(&xtime_lock
);
1198 *mo
= wall_to_monotonic
;
1201 } while(read_seqretry(&xtime_lock
, seq
));
1206 static int do_posix_clock_monotonic_get(clockid_t clock
, struct timespec
*tp
)
1208 struct timespec wall_to_mono
;
1210 do_posix_clock_monotonic_gettime_parts(tp
, &wall_to_mono
);
1212 tp
->tv_sec
+= wall_to_mono
.tv_sec
;
1213 tp
->tv_nsec
+= wall_to_mono
.tv_nsec
;
1215 if ((tp
->tv_nsec
- NSEC_PER_SEC
) > 0) {
1216 tp
->tv_nsec
-= NSEC_PER_SEC
;
1222 int do_posix_clock_monotonic_gettime(struct timespec
*tp
)
1224 return do_posix_clock_monotonic_get(CLOCK_MONOTONIC
, tp
);
1227 int do_posix_clock_nosettime(clockid_t clockid
, struct timespec
*tp
)
1231 EXPORT_SYMBOL_GPL(do_posix_clock_nosettime
);
1233 int do_posix_clock_notimer_create(struct k_itimer
*timer
)
1237 EXPORT_SYMBOL_GPL(do_posix_clock_notimer_create
);
1239 int do_posix_clock_nonanosleep(clockid_t clock
, int flags
, struct timespec
*t
)
1242 return -EOPNOTSUPP
; /* aka ENOTSUP in userland for POSIX */
1243 #else /* parisc does define it separately. */
1247 EXPORT_SYMBOL_GPL(do_posix_clock_nonanosleep
);
1250 sys_clock_settime(clockid_t which_clock
, const struct timespec __user
*tp
)
1252 struct timespec new_tp
;
1254 if (invalid_clockid(which_clock
))
1256 if (copy_from_user(&new_tp
, tp
, sizeof (*tp
)))
1259 return CLOCK_DISPATCH(which_clock
, clock_set
, (which_clock
, &new_tp
));
1263 sys_clock_gettime(clockid_t which_clock
, struct timespec __user
*tp
)
1265 struct timespec kernel_tp
;
1268 if (invalid_clockid(which_clock
))
1270 error
= CLOCK_DISPATCH(which_clock
, clock_get
,
1271 (which_clock
, &kernel_tp
));
1272 if (!error
&& copy_to_user(tp
, &kernel_tp
, sizeof (kernel_tp
)))
1280 sys_clock_getres(clockid_t which_clock
, struct timespec __user
*tp
)
1282 struct timespec rtn_tp
;
1285 if (invalid_clockid(which_clock
))
1288 error
= CLOCK_DISPATCH(which_clock
, clock_getres
,
1289 (which_clock
, &rtn_tp
));
1291 if (!error
&& tp
&& copy_to_user(tp
, &rtn_tp
, sizeof (rtn_tp
))) {
1299 * The standard says that an absolute nanosleep call MUST wake up at
1300 * the requested time in spite of clock settings. Here is what we do:
1301 * For each nanosleep call that needs it (only absolute and not on
1302 * CLOCK_MONOTONIC* (as it can not be set)) we thread a little structure
1303 * into the "nanosleep_abs_list". All we need is the task_struct pointer.
1304 * When ever the clock is set we just wake up all those tasks. The rest
1305 * is done by the while loop in clock_nanosleep().
1307 * On locking, clock_was_set() is called from update_wall_clock which
1308 * holds (or has held for it) a write_lock_irq( xtime_lock) and is
1309 * called from the timer bh code. Thus we need the irq save locks.
1311 * Also, on the call from update_wall_clock, that is done as part of a
1312 * softirq thing. We don't want to delay the system that much (possibly
1313 * long list of timers to fix), so we defer that work to keventd.
1316 static DECLARE_WAIT_QUEUE_HEAD(nanosleep_abs_wqueue
);
1317 static DECLARE_WORK(clock_was_set_work
, (void(*)(void*))clock_was_set
, NULL
);
1319 static DECLARE_MUTEX(clock_was_set_lock
);
1321 void clock_was_set(void)
1323 struct k_itimer
*timr
;
1324 struct timespec new_wall_to
;
1325 LIST_HEAD(cws_list
);
1329 if (unlikely(in_interrupt())) {
1330 schedule_work(&clock_was_set_work
);
1333 wake_up_all(&nanosleep_abs_wqueue
);
1336 * Check if there exist TIMER_ABSTIME timers to correct.
1338 * Notes on locking: This code is run in task context with irq
1339 * on. We CAN be interrupted! All other usage of the abs list
1340 * lock is under the timer lock which holds the irq lock as
1341 * well. We REALLY don't want to scan the whole list with the
1342 * interrupt system off, AND we would like a sequence lock on
1343 * this code as well. Since we assume that the clock will not
1344 * be set often, it seems ok to take and release the irq lock
1345 * for each timer. In fact add_timer will do this, so this is
1346 * not an issue. So we know when we are done, we will move the
1347 * whole list to a new location. Then as we process each entry,
1348 * we will move it to the actual list again. This way, when our
1349 * copy is empty, we are done. We are not all that concerned
1350 * about preemption so we will use a semaphore lock to protect
1351 * aginst reentry. This way we will not stall another
1352 * processor. It is possible that this may delay some timers
1353 * that should have expired, given the new clock, but even this
1354 * will be minimal as we will always update to the current time,
1355 * even if it was set by a task that is waiting for entry to
1356 * this code. Timers that expire too early will be caught by
1357 * the expire code and restarted.
1359 * Absolute timers that repeat are left in the abs list while
1360 * waiting for the task to pick up the signal. This means we
1361 * may find timers that are not in the "add_timer" list, but are
1362 * in the abs list. We do the same thing for these, save
1363 * putting them back in the "add_timer" list. (Note, these are
1364 * left in the abs list mainly to indicate that they are
1365 * ABSOLUTE timers, a fact that is used by the re-arm code, and
1366 * for which we have no other flag.)
1370 down(&clock_was_set_lock
);
1371 spin_lock_irq(&abs_list
.lock
);
1372 list_splice_init(&abs_list
.list
, &cws_list
);
1373 spin_unlock_irq(&abs_list
.lock
);
1376 seq
= read_seqbegin(&xtime_lock
);
1377 new_wall_to
= wall_to_monotonic
;
1378 } while (read_seqretry(&xtime_lock
, seq
));
1380 spin_lock_irq(&abs_list
.lock
);
1381 if (list_empty(&cws_list
)) {
1382 spin_unlock_irq(&abs_list
.lock
);
1385 timr
= list_entry(cws_list
.next
, struct k_itimer
,
1386 it
.real
.abs_timer_entry
);
1388 list_del_init(&timr
->it
.real
.abs_timer_entry
);
1389 if (add_clockset_delta(timr
, &new_wall_to
) &&
1390 del_timer(&timr
->it
.real
.timer
)) /* timer run yet? */
1391 add_timer(&timr
->it
.real
.timer
);
1392 list_add(&timr
->it
.real
.abs_timer_entry
, &abs_list
.list
);
1393 spin_unlock_irq(&abs_list
.lock
);
1396 up(&clock_was_set_lock
);
1399 long clock_nanosleep_restart(struct restart_block
*restart_block
);
1402 sys_clock_nanosleep(clockid_t which_clock
, int flags
,
1403 const struct timespec __user
*rqtp
,
1404 struct timespec __user
*rmtp
)
1407 struct restart_block
*restart_block
=
1408 &(current_thread_info()->restart_block
);
1411 if (invalid_clockid(which_clock
))
1414 if (copy_from_user(&t
, rqtp
, sizeof (struct timespec
)))
1417 if ((unsigned) t
.tv_nsec
>= NSEC_PER_SEC
|| t
.tv_sec
< 0)
1421 * Do this here as nsleep function does not have the real address.
1423 restart_block
->arg1
= (unsigned long)rmtp
;
1425 ret
= CLOCK_DISPATCH(which_clock
, nsleep
, (which_clock
, flags
, &t
));
1427 if ((ret
== -ERESTART_RESTARTBLOCK
) && rmtp
&&
1428 copy_to_user(rmtp
, &t
, sizeof (t
)))
1434 static int common_nsleep(clockid_t which_clock
,
1435 int flags
, struct timespec
*tsave
)
1437 struct timespec t
, dum
;
1438 DECLARE_WAITQUEUE(abs_wqueue
, current
);
1439 u64 rq_time
= (u64
)0;
1442 struct restart_block
*restart_block
=
1443 ¤t_thread_info()->restart_block
;
1445 abs_wqueue
.flags
= 0;
1446 abs
= flags
& TIMER_ABSTIME
;
1448 if (restart_block
->fn
== clock_nanosleep_restart
) {
1450 * Interrupted by a non-delivered signal, pick up remaining
1451 * time and continue. Remaining time is in arg2 & 3.
1453 restart_block
->fn
= do_no_restart_syscall
;
1455 rq_time
= restart_block
->arg3
;
1456 rq_time
= (rq_time
<< 32) + restart_block
->arg2
;
1459 left
= rq_time
- get_jiffies_64();
1461 return 0; /* Already passed */
1464 if (abs
&& (posix_clocks
[which_clock
].clock_get
!=
1465 posix_clocks
[CLOCK_MONOTONIC
].clock_get
))
1466 add_wait_queue(&nanosleep_abs_wqueue
, &abs_wqueue
);
1470 if (abs
|| !rq_time
) {
1471 adjust_abs_time(&posix_clocks
[which_clock
], &t
, abs
,
1475 left
= rq_time
- get_jiffies_64();
1476 if (left
>= (s64
)MAX_JIFFY_OFFSET
)
1477 left
= (s64
)MAX_JIFFY_OFFSET
;
1481 schedule_timeout_interruptible(left
);
1483 left
= rq_time
- get_jiffies_64();
1484 } while (left
> (s64
)0 && !test_thread_flag(TIF_SIGPENDING
));
1486 if (abs_wqueue
.task_list
.next
)
1487 finish_wait(&nanosleep_abs_wqueue
, &abs_wqueue
);
1489 if (left
> (s64
)0) {
1492 * Always restart abs calls from scratch to pick up any
1493 * clock shifting that happened while we are away.
1496 return -ERESTARTNOHAND
;
1499 tsave
->tv_sec
= div_long_long_rem(left
,
1503 * Restart works by saving the time remaing in
1504 * arg2 & 3 (it is 64-bits of jiffies). The other
1505 * info we need is the clock_id (saved in arg0).
1506 * The sys_call interface needs the users
1507 * timespec return address which _it_ saves in arg1.
1508 * Since we have cast the nanosleep call to a clock_nanosleep
1509 * both can be restarted with the same code.
1511 restart_block
->fn
= clock_nanosleep_restart
;
1512 restart_block
->arg0
= which_clock
;
1516 restart_block
->arg2
= rq_time
& 0xffffffffLL
;
1517 restart_block
->arg3
= rq_time
>> 32;
1519 return -ERESTART_RESTARTBLOCK
;
1525 * This will restart clock_nanosleep.
1528 clock_nanosleep_restart(struct restart_block
*restart_block
)
1531 int ret
= common_nsleep(restart_block
->arg0
, 0, &t
);
1533 if ((ret
== -ERESTART_RESTARTBLOCK
) && restart_block
->arg1
&&
1534 copy_to_user((struct timespec __user
*)(restart_block
->arg1
), &t
,