2 * SLUB: A slab allocator that limits cache line use instead of queuing
3 * objects in per cpu and per node lists.
5 * The allocator synchronizes using per slab locks and only
6 * uses a centralized lock to manage a pool of partial slabs.
8 * (C) 2007 SGI, Christoph Lameter
12 #include <linux/module.h>
13 #include <linux/bit_spinlock.h>
14 #include <linux/interrupt.h>
15 #include <linux/bitops.h>
16 #include <linux/slab.h>
17 #include <linux/proc_fs.h>
18 #include <linux/seq_file.h>
19 #include <linux/cpu.h>
20 #include <linux/cpuset.h>
21 #include <linux/mempolicy.h>
22 #include <linux/ctype.h>
23 #include <linux/debugobjects.h>
24 #include <linux/kallsyms.h>
25 #include <linux/memory.h>
26 #include <linux/math64.h>
27 #include <linux/fault-inject.h>
34 * The slab_lock protects operations on the object of a particular
35 * slab and its metadata in the page struct. If the slab lock
36 * has been taken then no allocations nor frees can be performed
37 * on the objects in the slab nor can the slab be added or removed
38 * from the partial or full lists since this would mean modifying
39 * the page_struct of the slab.
41 * The list_lock protects the partial and full list on each node and
42 * the partial slab counter. If taken then no new slabs may be added or
43 * removed from the lists nor make the number of partial slabs be modified.
44 * (Note that the total number of slabs is an atomic value that may be
45 * modified without taking the list lock).
47 * The list_lock is a centralized lock and thus we avoid taking it as
48 * much as possible. As long as SLUB does not have to handle partial
49 * slabs, operations can continue without any centralized lock. F.e.
50 * allocating a long series of objects that fill up slabs does not require
53 * The lock order is sometimes inverted when we are trying to get a slab
54 * off a list. We take the list_lock and then look for a page on the list
55 * to use. While we do that objects in the slabs may be freed. We can
56 * only operate on the slab if we have also taken the slab_lock. So we use
57 * a slab_trylock() on the slab. If trylock was successful then no frees
58 * can occur anymore and we can use the slab for allocations etc. If the
59 * slab_trylock() does not succeed then frees are in progress in the slab and
60 * we must stay away from it for a while since we may cause a bouncing
61 * cacheline if we try to acquire the lock. So go onto the next slab.
62 * If all pages are busy then we may allocate a new slab instead of reusing
63 * a partial slab. A new slab has noone operating on it and thus there is
64 * no danger of cacheline contention.
66 * Interrupts are disabled during allocation and deallocation in order to
67 * make the slab allocator safe to use in the context of an irq. In addition
68 * interrupts are disabled to ensure that the processor does not change
69 * while handling per_cpu slabs, due to kernel preemption.
71 * SLUB assigns one slab for allocation to each processor.
72 * Allocations only occur from these slabs called cpu slabs.
74 * Slabs with free elements are kept on a partial list and during regular
75 * operations no list for full slabs is used. If an object in a full slab is
76 * freed then the slab will show up again on the partial lists.
77 * We track full slabs for debugging purposes though because otherwise we
78 * cannot scan all objects.
80 * Slabs are freed when they become empty. Teardown and setup is
81 * minimal so we rely on the page allocators per cpu caches for
82 * fast frees and allocs.
84 * Overloading of page flags that are otherwise used for LRU management.
86 * PageActive The slab is frozen and exempt from list processing.
87 * This means that the slab is dedicated to a purpose
88 * such as satisfying allocations for a specific
89 * processor. Objects may be freed in the slab while
90 * it is frozen but slab_free will then skip the usual
91 * list operations. It is up to the processor holding
92 * the slab to integrate the slab into the slab lists
93 * when the slab is no longer needed.
95 * One use of this flag is to mark slabs that are
96 * used for allocations. Then such a slab becomes a cpu
97 * slab. The cpu slab may be equipped with an additional
98 * freelist that allows lockless access to
99 * free objects in addition to the regular freelist
100 * that requires the slab lock.
102 * PageError Slab requires special handling due to debug
103 * options set. This moves slab handling out of
104 * the fast path and disables lockless freelists.
107 #ifdef CONFIG_SLUB_DEBUG
114 * Issues still to be resolved:
116 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
118 * - Variable sizing of the per node arrays
121 /* Enable to test recovery from slab corruption on boot */
122 #undef SLUB_RESILIENCY_TEST
125 * Mininum number of partial slabs. These will be left on the partial
126 * lists even if they are empty. kmem_cache_shrink may reclaim them.
128 #define MIN_PARTIAL 5
131 * Maximum number of desirable partial slabs.
132 * The existence of more partial slabs makes kmem_cache_shrink
133 * sort the partial list by the number of objects in the.
135 #define MAX_PARTIAL 10
137 #define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \
138 SLAB_POISON | SLAB_STORE_USER)
141 * Set of flags that will prevent slab merging
143 #define SLUB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
144 SLAB_TRACE | SLAB_DESTROY_BY_RCU)
146 #define SLUB_MERGE_SAME (SLAB_DEBUG_FREE | SLAB_RECLAIM_ACCOUNT | \
149 #ifndef ARCH_KMALLOC_MINALIGN
150 #define ARCH_KMALLOC_MINALIGN __alignof__(unsigned long long)
153 #ifndef ARCH_SLAB_MINALIGN
154 #define ARCH_SLAB_MINALIGN __alignof__(unsigned long long)
158 #define OO_MASK ((1 << OO_SHIFT) - 1)
159 #define MAX_OBJS_PER_PAGE 65535 /* since page.objects is u16 */
161 /* Internal SLUB flags */
162 #define __OBJECT_POISON 0x80000000 /* Poison object */
163 #define __SYSFS_ADD_DEFERRED 0x40000000 /* Not yet visible via sysfs */
165 static int kmem_size
= sizeof(struct kmem_cache
);
168 static struct notifier_block slab_notifier
;
172 DOWN
, /* No slab functionality available */
173 PARTIAL
, /* kmem_cache_open() works but kmalloc does not */
174 UP
, /* Everything works but does not show up in sysfs */
178 /* A list of all slab caches on the system */
179 static DECLARE_RWSEM(slub_lock
);
180 static LIST_HEAD(slab_caches
);
183 * Tracking user of a slab.
186 unsigned long addr
; /* Called from address */
187 int cpu
; /* Was running on cpu */
188 int pid
; /* Pid context */
189 unsigned long when
; /* When did the operation occur */
192 enum track_item
{ TRACK_ALLOC
, TRACK_FREE
};
194 #ifdef CONFIG_SLUB_DEBUG
195 static int sysfs_slab_add(struct kmem_cache
*);
196 static int sysfs_slab_alias(struct kmem_cache
*, const char *);
197 static void sysfs_slab_remove(struct kmem_cache
*);
200 static inline int sysfs_slab_add(struct kmem_cache
*s
) { return 0; }
201 static inline int sysfs_slab_alias(struct kmem_cache
*s
, const char *p
)
203 static inline void sysfs_slab_remove(struct kmem_cache
*s
)
210 static inline void stat(struct kmem_cache_cpu
*c
, enum stat_item si
)
212 #ifdef CONFIG_SLUB_STATS
217 /********************************************************************
218 * Core slab cache functions
219 *******************************************************************/
221 int slab_is_available(void)
223 return slab_state
>= UP
;
226 static inline struct kmem_cache_node
*get_node(struct kmem_cache
*s
, int node
)
229 return s
->node
[node
];
231 return &s
->local_node
;
235 static inline struct kmem_cache_cpu
*get_cpu_slab(struct kmem_cache
*s
, int cpu
)
238 return s
->cpu_slab
[cpu
];
244 /* Verify that a pointer has an address that is valid within a slab page */
245 static inline int check_valid_pointer(struct kmem_cache
*s
,
246 struct page
*page
, const void *object
)
253 base
= page_address(page
);
254 if (object
< base
|| object
>= base
+ page
->objects
* s
->size
||
255 (object
- base
) % s
->size
) {
263 * Slow version of get and set free pointer.
265 * This version requires touching the cache lines of kmem_cache which
266 * we avoid to do in the fast alloc free paths. There we obtain the offset
267 * from the page struct.
269 static inline void *get_freepointer(struct kmem_cache
*s
, void *object
)
271 return *(void **)(object
+ s
->offset
);
274 static inline void set_freepointer(struct kmem_cache
*s
, void *object
, void *fp
)
276 *(void **)(object
+ s
->offset
) = fp
;
279 /* Loop over all objects in a slab */
280 #define for_each_object(__p, __s, __addr, __objects) \
281 for (__p = (__addr); __p < (__addr) + (__objects) * (__s)->size;\
285 #define for_each_free_object(__p, __s, __free) \
286 for (__p = (__free); __p; __p = get_freepointer((__s), __p))
288 /* Determine object index from a given position */
289 static inline int slab_index(void *p
, struct kmem_cache
*s
, void *addr
)
291 return (p
- addr
) / s
->size
;
294 static inline struct kmem_cache_order_objects
oo_make(int order
,
297 struct kmem_cache_order_objects x
= {
298 (order
<< OO_SHIFT
) + (PAGE_SIZE
<< order
) / size
304 static inline int oo_order(struct kmem_cache_order_objects x
)
306 return x
.x
>> OO_SHIFT
;
309 static inline int oo_objects(struct kmem_cache_order_objects x
)
311 return x
.x
& OO_MASK
;
314 #ifdef CONFIG_SLUB_DEBUG
318 #ifdef CONFIG_SLUB_DEBUG_ON
319 static int slub_debug
= DEBUG_DEFAULT_FLAGS
;
321 static int slub_debug
;
324 static char *slub_debug_slabs
;
329 static void print_section(char *text
, u8
*addr
, unsigned int length
)
337 for (i
= 0; i
< length
; i
++) {
339 printk(KERN_ERR
"%8s 0x%p: ", text
, addr
+ i
);
342 printk(KERN_CONT
" %02x", addr
[i
]);
344 ascii
[offset
] = isgraph(addr
[i
]) ? addr
[i
] : '.';
346 printk(KERN_CONT
" %s\n", ascii
);
353 printk(KERN_CONT
" ");
357 printk(KERN_CONT
" %s\n", ascii
);
361 static struct track
*get_track(struct kmem_cache
*s
, void *object
,
362 enum track_item alloc
)
367 p
= object
+ s
->offset
+ sizeof(void *);
369 p
= object
+ s
->inuse
;
374 static void set_track(struct kmem_cache
*s
, void *object
,
375 enum track_item alloc
, unsigned long addr
)
377 struct track
*p
= get_track(s
, object
, alloc
);
381 p
->cpu
= smp_processor_id();
382 p
->pid
= current
->pid
;
385 memset(p
, 0, sizeof(struct track
));
388 static void init_tracking(struct kmem_cache
*s
, void *object
)
390 if (!(s
->flags
& SLAB_STORE_USER
))
393 set_track(s
, object
, TRACK_FREE
, 0UL);
394 set_track(s
, object
, TRACK_ALLOC
, 0UL);
397 static void print_track(const char *s
, struct track
*t
)
402 printk(KERN_ERR
"INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
403 s
, (void *)t
->addr
, jiffies
- t
->when
, t
->cpu
, t
->pid
);
406 static void print_tracking(struct kmem_cache
*s
, void *object
)
408 if (!(s
->flags
& SLAB_STORE_USER
))
411 print_track("Allocated", get_track(s
, object
, TRACK_ALLOC
));
412 print_track("Freed", get_track(s
, object
, TRACK_FREE
));
415 static void print_page_info(struct page
*page
)
417 printk(KERN_ERR
"INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
418 page
, page
->objects
, page
->inuse
, page
->freelist
, page
->flags
);
422 static void slab_bug(struct kmem_cache
*s
, char *fmt
, ...)
428 vsnprintf(buf
, sizeof(buf
), fmt
, args
);
430 printk(KERN_ERR
"========================================"
431 "=====================================\n");
432 printk(KERN_ERR
"BUG %s: %s\n", s
->name
, buf
);
433 printk(KERN_ERR
"----------------------------------------"
434 "-------------------------------------\n\n");
437 static void slab_fix(struct kmem_cache
*s
, char *fmt
, ...)
443 vsnprintf(buf
, sizeof(buf
), fmt
, args
);
445 printk(KERN_ERR
"FIX %s: %s\n", s
->name
, buf
);
448 static void print_trailer(struct kmem_cache
*s
, struct page
*page
, u8
*p
)
450 unsigned int off
; /* Offset of last byte */
451 u8
*addr
= page_address(page
);
453 print_tracking(s
, p
);
455 print_page_info(page
);
457 printk(KERN_ERR
"INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
458 p
, p
- addr
, get_freepointer(s
, p
));
461 print_section("Bytes b4", p
- 16, 16);
463 print_section("Object", p
, min_t(unsigned long, s
->objsize
, PAGE_SIZE
));
465 if (s
->flags
& SLAB_RED_ZONE
)
466 print_section("Redzone", p
+ s
->objsize
,
467 s
->inuse
- s
->objsize
);
470 off
= s
->offset
+ sizeof(void *);
474 if (s
->flags
& SLAB_STORE_USER
)
475 off
+= 2 * sizeof(struct track
);
478 /* Beginning of the filler is the free pointer */
479 print_section("Padding", p
+ off
, s
->size
- off
);
484 static void object_err(struct kmem_cache
*s
, struct page
*page
,
485 u8
*object
, char *reason
)
487 slab_bug(s
, "%s", reason
);
488 print_trailer(s
, page
, object
);
491 static void slab_err(struct kmem_cache
*s
, struct page
*page
, char *fmt
, ...)
497 vsnprintf(buf
, sizeof(buf
), fmt
, args
);
499 slab_bug(s
, "%s", buf
);
500 print_page_info(page
);
504 static void init_object(struct kmem_cache
*s
, void *object
, int active
)
508 if (s
->flags
& __OBJECT_POISON
) {
509 memset(p
, POISON_FREE
, s
->objsize
- 1);
510 p
[s
->objsize
- 1] = POISON_END
;
513 if (s
->flags
& SLAB_RED_ZONE
)
514 memset(p
+ s
->objsize
,
515 active
? SLUB_RED_ACTIVE
: SLUB_RED_INACTIVE
,
516 s
->inuse
- s
->objsize
);
519 static u8
*check_bytes(u8
*start
, unsigned int value
, unsigned int bytes
)
522 if (*start
!= (u8
)value
)
530 static void restore_bytes(struct kmem_cache
*s
, char *message
, u8 data
,
531 void *from
, void *to
)
533 slab_fix(s
, "Restoring 0x%p-0x%p=0x%x\n", from
, to
- 1, data
);
534 memset(from
, data
, to
- from
);
537 static int check_bytes_and_report(struct kmem_cache
*s
, struct page
*page
,
538 u8
*object
, char *what
,
539 u8
*start
, unsigned int value
, unsigned int bytes
)
544 fault
= check_bytes(start
, value
, bytes
);
549 while (end
> fault
&& end
[-1] == value
)
552 slab_bug(s
, "%s overwritten", what
);
553 printk(KERN_ERR
"INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
554 fault
, end
- 1, fault
[0], value
);
555 print_trailer(s
, page
, object
);
557 restore_bytes(s
, what
, value
, fault
, end
);
565 * Bytes of the object to be managed.
566 * If the freepointer may overlay the object then the free
567 * pointer is the first word of the object.
569 * Poisoning uses 0x6b (POISON_FREE) and the last byte is
572 * object + s->objsize
573 * Padding to reach word boundary. This is also used for Redzoning.
574 * Padding is extended by another word if Redzoning is enabled and
577 * We fill with 0xbb (RED_INACTIVE) for inactive objects and with
578 * 0xcc (RED_ACTIVE) for objects in use.
581 * Meta data starts here.
583 * A. Free pointer (if we cannot overwrite object on free)
584 * B. Tracking data for SLAB_STORE_USER
585 * C. Padding to reach required alignment boundary or at mininum
586 * one word if debugging is on to be able to detect writes
587 * before the word boundary.
589 * Padding is done using 0x5a (POISON_INUSE)
592 * Nothing is used beyond s->size.
594 * If slabcaches are merged then the objsize and inuse boundaries are mostly
595 * ignored. And therefore no slab options that rely on these boundaries
596 * may be used with merged slabcaches.
599 static int check_pad_bytes(struct kmem_cache
*s
, struct page
*page
, u8
*p
)
601 unsigned long off
= s
->inuse
; /* The end of info */
604 /* Freepointer is placed after the object. */
605 off
+= sizeof(void *);
607 if (s
->flags
& SLAB_STORE_USER
)
608 /* We also have user information there */
609 off
+= 2 * sizeof(struct track
);
614 return check_bytes_and_report(s
, page
, p
, "Object padding",
615 p
+ off
, POISON_INUSE
, s
->size
- off
);
618 /* Check the pad bytes at the end of a slab page */
619 static int slab_pad_check(struct kmem_cache
*s
, struct page
*page
)
627 if (!(s
->flags
& SLAB_POISON
))
630 start
= page_address(page
);
631 length
= (PAGE_SIZE
<< compound_order(page
));
632 end
= start
+ length
;
633 remainder
= length
% s
->size
;
637 fault
= check_bytes(end
- remainder
, POISON_INUSE
, remainder
);
640 while (end
> fault
&& end
[-1] == POISON_INUSE
)
643 slab_err(s
, page
, "Padding overwritten. 0x%p-0x%p", fault
, end
- 1);
644 print_section("Padding", end
- remainder
, remainder
);
646 restore_bytes(s
, "slab padding", POISON_INUSE
, start
, end
);
650 static int check_object(struct kmem_cache
*s
, struct page
*page
,
651 void *object
, int active
)
654 u8
*endobject
= object
+ s
->objsize
;
656 if (s
->flags
& SLAB_RED_ZONE
) {
658 active
? SLUB_RED_ACTIVE
: SLUB_RED_INACTIVE
;
660 if (!check_bytes_and_report(s
, page
, object
, "Redzone",
661 endobject
, red
, s
->inuse
- s
->objsize
))
664 if ((s
->flags
& SLAB_POISON
) && s
->objsize
< s
->inuse
) {
665 check_bytes_and_report(s
, page
, p
, "Alignment padding",
666 endobject
, POISON_INUSE
, s
->inuse
- s
->objsize
);
670 if (s
->flags
& SLAB_POISON
) {
671 if (!active
&& (s
->flags
& __OBJECT_POISON
) &&
672 (!check_bytes_and_report(s
, page
, p
, "Poison", p
,
673 POISON_FREE
, s
->objsize
- 1) ||
674 !check_bytes_and_report(s
, page
, p
, "Poison",
675 p
+ s
->objsize
- 1, POISON_END
, 1)))
678 * check_pad_bytes cleans up on its own.
680 check_pad_bytes(s
, page
, p
);
683 if (!s
->offset
&& active
)
685 * Object and freepointer overlap. Cannot check
686 * freepointer while object is allocated.
690 /* Check free pointer validity */
691 if (!check_valid_pointer(s
, page
, get_freepointer(s
, p
))) {
692 object_err(s
, page
, p
, "Freepointer corrupt");
694 * No choice but to zap it and thus lose the remainder
695 * of the free objects in this slab. May cause
696 * another error because the object count is now wrong.
698 set_freepointer(s
, p
, NULL
);
704 static int check_slab(struct kmem_cache
*s
, struct page
*page
)
708 VM_BUG_ON(!irqs_disabled());
710 if (!PageSlab(page
)) {
711 slab_err(s
, page
, "Not a valid slab page");
715 maxobj
= (PAGE_SIZE
<< compound_order(page
)) / s
->size
;
716 if (page
->objects
> maxobj
) {
717 slab_err(s
, page
, "objects %u > max %u",
718 s
->name
, page
->objects
, maxobj
);
721 if (page
->inuse
> page
->objects
) {
722 slab_err(s
, page
, "inuse %u > max %u",
723 s
->name
, page
->inuse
, page
->objects
);
726 /* Slab_pad_check fixes things up after itself */
727 slab_pad_check(s
, page
);
732 * Determine if a certain object on a page is on the freelist. Must hold the
733 * slab lock to guarantee that the chains are in a consistent state.
735 static int on_freelist(struct kmem_cache
*s
, struct page
*page
, void *search
)
738 void *fp
= page
->freelist
;
740 unsigned long max_objects
;
742 while (fp
&& nr
<= page
->objects
) {
745 if (!check_valid_pointer(s
, page
, fp
)) {
747 object_err(s
, page
, object
,
748 "Freechain corrupt");
749 set_freepointer(s
, object
, NULL
);
752 slab_err(s
, page
, "Freepointer corrupt");
753 page
->freelist
= NULL
;
754 page
->inuse
= page
->objects
;
755 slab_fix(s
, "Freelist cleared");
761 fp
= get_freepointer(s
, object
);
765 max_objects
= (PAGE_SIZE
<< compound_order(page
)) / s
->size
;
766 if (max_objects
> MAX_OBJS_PER_PAGE
)
767 max_objects
= MAX_OBJS_PER_PAGE
;
769 if (page
->objects
!= max_objects
) {
770 slab_err(s
, page
, "Wrong number of objects. Found %d but "
771 "should be %d", page
->objects
, max_objects
);
772 page
->objects
= max_objects
;
773 slab_fix(s
, "Number of objects adjusted.");
775 if (page
->inuse
!= page
->objects
- nr
) {
776 slab_err(s
, page
, "Wrong object count. Counter is %d but "
777 "counted were %d", page
->inuse
, page
->objects
- nr
);
778 page
->inuse
= page
->objects
- nr
;
779 slab_fix(s
, "Object count adjusted.");
781 return search
== NULL
;
784 static void trace(struct kmem_cache
*s
, struct page
*page
, void *object
,
787 if (s
->flags
& SLAB_TRACE
) {
788 printk(KERN_INFO
"TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
790 alloc
? "alloc" : "free",
795 print_section("Object", (void *)object
, s
->objsize
);
802 * Tracking of fully allocated slabs for debugging purposes.
804 static void add_full(struct kmem_cache_node
*n
, struct page
*page
)
806 spin_lock(&n
->list_lock
);
807 list_add(&page
->lru
, &n
->full
);
808 spin_unlock(&n
->list_lock
);
811 static void remove_full(struct kmem_cache
*s
, struct page
*page
)
813 struct kmem_cache_node
*n
;
815 if (!(s
->flags
& SLAB_STORE_USER
))
818 n
= get_node(s
, page_to_nid(page
));
820 spin_lock(&n
->list_lock
);
821 list_del(&page
->lru
);
822 spin_unlock(&n
->list_lock
);
825 /* Tracking of the number of slabs for debugging purposes */
826 static inline unsigned long slabs_node(struct kmem_cache
*s
, int node
)
828 struct kmem_cache_node
*n
= get_node(s
, node
);
830 return atomic_long_read(&n
->nr_slabs
);
833 static inline void inc_slabs_node(struct kmem_cache
*s
, int node
, int objects
)
835 struct kmem_cache_node
*n
= get_node(s
, node
);
838 * May be called early in order to allocate a slab for the
839 * kmem_cache_node structure. Solve the chicken-egg
840 * dilemma by deferring the increment of the count during
841 * bootstrap (see early_kmem_cache_node_alloc).
843 if (!NUMA_BUILD
|| n
) {
844 atomic_long_inc(&n
->nr_slabs
);
845 atomic_long_add(objects
, &n
->total_objects
);
848 static inline void dec_slabs_node(struct kmem_cache
*s
, int node
, int objects
)
850 struct kmem_cache_node
*n
= get_node(s
, node
);
852 atomic_long_dec(&n
->nr_slabs
);
853 atomic_long_sub(objects
, &n
->total_objects
);
856 /* Object debug checks for alloc/free paths */
857 static void setup_object_debug(struct kmem_cache
*s
, struct page
*page
,
860 if (!(s
->flags
& (SLAB_STORE_USER
|SLAB_RED_ZONE
|__OBJECT_POISON
)))
863 init_object(s
, object
, 0);
864 init_tracking(s
, object
);
867 static int alloc_debug_processing(struct kmem_cache
*s
, struct page
*page
,
868 void *object
, unsigned long addr
)
870 if (!check_slab(s
, page
))
873 if (!on_freelist(s
, page
, object
)) {
874 object_err(s
, page
, object
, "Object already allocated");
878 if (!check_valid_pointer(s
, page
, object
)) {
879 object_err(s
, page
, object
, "Freelist Pointer check fails");
883 if (!check_object(s
, page
, object
, 0))
886 /* Success perform special debug activities for allocs */
887 if (s
->flags
& SLAB_STORE_USER
)
888 set_track(s
, object
, TRACK_ALLOC
, addr
);
889 trace(s
, page
, object
, 1);
890 init_object(s
, object
, 1);
894 if (PageSlab(page
)) {
896 * If this is a slab page then lets do the best we can
897 * to avoid issues in the future. Marking all objects
898 * as used avoids touching the remaining objects.
900 slab_fix(s
, "Marking all objects used");
901 page
->inuse
= page
->objects
;
902 page
->freelist
= NULL
;
907 static int free_debug_processing(struct kmem_cache
*s
, struct page
*page
,
908 void *object
, unsigned long addr
)
910 if (!check_slab(s
, page
))
913 if (!check_valid_pointer(s
, page
, object
)) {
914 slab_err(s
, page
, "Invalid object pointer 0x%p", object
);
918 if (on_freelist(s
, page
, object
)) {
919 object_err(s
, page
, object
, "Object already free");
923 if (!check_object(s
, page
, object
, 1))
926 if (unlikely(s
!= page
->slab
)) {
927 if (!PageSlab(page
)) {
928 slab_err(s
, page
, "Attempt to free object(0x%p) "
929 "outside of slab", object
);
930 } else if (!page
->slab
) {
932 "SLUB <none>: no slab for object 0x%p.\n",
936 object_err(s
, page
, object
,
937 "page slab pointer corrupt.");
941 /* Special debug activities for freeing objects */
942 if (!PageSlubFrozen(page
) && !page
->freelist
)
943 remove_full(s
, page
);
944 if (s
->flags
& SLAB_STORE_USER
)
945 set_track(s
, object
, TRACK_FREE
, addr
);
946 trace(s
, page
, object
, 0);
947 init_object(s
, object
, 0);
951 slab_fix(s
, "Object at 0x%p not freed", object
);
955 static int __init
setup_slub_debug(char *str
)
957 slub_debug
= DEBUG_DEFAULT_FLAGS
;
958 if (*str
++ != '=' || !*str
)
960 * No options specified. Switch on full debugging.
966 * No options but restriction on slabs. This means full
967 * debugging for slabs matching a pattern.
974 * Switch off all debugging measures.
979 * Determine which debug features should be switched on
981 for (; *str
&& *str
!= ','; str
++) {
982 switch (tolower(*str
)) {
984 slub_debug
|= SLAB_DEBUG_FREE
;
987 slub_debug
|= SLAB_RED_ZONE
;
990 slub_debug
|= SLAB_POISON
;
993 slub_debug
|= SLAB_STORE_USER
;
996 slub_debug
|= SLAB_TRACE
;
999 printk(KERN_ERR
"slub_debug option '%c' "
1000 "unknown. skipped\n", *str
);
1006 slub_debug_slabs
= str
+ 1;
1011 __setup("slub_debug", setup_slub_debug
);
1013 static unsigned long kmem_cache_flags(unsigned long objsize
,
1014 unsigned long flags
, const char *name
,
1015 void (*ctor
)(void *))
1018 * Enable debugging if selected on the kernel commandline.
1020 if (slub_debug
&& (!slub_debug_slabs
||
1021 strncmp(slub_debug_slabs
, name
, strlen(slub_debug_slabs
)) == 0))
1022 flags
|= slub_debug
;
1027 static inline void setup_object_debug(struct kmem_cache
*s
,
1028 struct page
*page
, void *object
) {}
1030 static inline int alloc_debug_processing(struct kmem_cache
*s
,
1031 struct page
*page
, void *object
, unsigned long addr
) { return 0; }
1033 static inline int free_debug_processing(struct kmem_cache
*s
,
1034 struct page
*page
, void *object
, unsigned long addr
) { return 0; }
1036 static inline int slab_pad_check(struct kmem_cache
*s
, struct page
*page
)
1038 static inline int check_object(struct kmem_cache
*s
, struct page
*page
,
1039 void *object
, int active
) { return 1; }
1040 static inline void add_full(struct kmem_cache_node
*n
, struct page
*page
) {}
1041 static inline unsigned long kmem_cache_flags(unsigned long objsize
,
1042 unsigned long flags
, const char *name
,
1043 void (*ctor
)(void *))
1047 #define slub_debug 0
1049 static inline unsigned long slabs_node(struct kmem_cache
*s
, int node
)
1051 static inline void inc_slabs_node(struct kmem_cache
*s
, int node
,
1053 static inline void dec_slabs_node(struct kmem_cache
*s
, int node
,
1058 * Slab allocation and freeing
1060 static inline struct page
*alloc_slab_page(gfp_t flags
, int node
,
1061 struct kmem_cache_order_objects oo
)
1063 int order
= oo_order(oo
);
1066 return alloc_pages(flags
, order
);
1068 return alloc_pages_node(node
, flags
, order
);
1071 static struct page
*allocate_slab(struct kmem_cache
*s
, gfp_t flags
, int node
)
1074 struct kmem_cache_order_objects oo
= s
->oo
;
1076 flags
|= s
->allocflags
;
1078 page
= alloc_slab_page(flags
| __GFP_NOWARN
| __GFP_NORETRY
, node
,
1080 if (unlikely(!page
)) {
1083 * Allocation may have failed due to fragmentation.
1084 * Try a lower order alloc if possible
1086 page
= alloc_slab_page(flags
, node
, oo
);
1090 stat(get_cpu_slab(s
, raw_smp_processor_id()), ORDER_FALLBACK
);
1092 page
->objects
= oo_objects(oo
);
1093 mod_zone_page_state(page_zone(page
),
1094 (s
->flags
& SLAB_RECLAIM_ACCOUNT
) ?
1095 NR_SLAB_RECLAIMABLE
: NR_SLAB_UNRECLAIMABLE
,
1101 static void setup_object(struct kmem_cache
*s
, struct page
*page
,
1104 setup_object_debug(s
, page
, object
);
1105 if (unlikely(s
->ctor
))
1109 static struct page
*new_slab(struct kmem_cache
*s
, gfp_t flags
, int node
)
1116 BUG_ON(flags
& GFP_SLAB_BUG_MASK
);
1118 page
= allocate_slab(s
,
1119 flags
& (GFP_RECLAIM_MASK
| GFP_CONSTRAINT_MASK
), node
);
1123 inc_slabs_node(s
, page_to_nid(page
), page
->objects
);
1125 page
->flags
|= 1 << PG_slab
;
1126 if (s
->flags
& (SLAB_DEBUG_FREE
| SLAB_RED_ZONE
| SLAB_POISON
|
1127 SLAB_STORE_USER
| SLAB_TRACE
))
1128 __SetPageSlubDebug(page
);
1130 start
= page_address(page
);
1132 if (unlikely(s
->flags
& SLAB_POISON
))
1133 memset(start
, POISON_INUSE
, PAGE_SIZE
<< compound_order(page
));
1136 for_each_object(p
, s
, start
, page
->objects
) {
1137 setup_object(s
, page
, last
);
1138 set_freepointer(s
, last
, p
);
1141 setup_object(s
, page
, last
);
1142 set_freepointer(s
, last
, NULL
);
1144 page
->freelist
= start
;
1150 static void __free_slab(struct kmem_cache
*s
, struct page
*page
)
1152 int order
= compound_order(page
);
1153 int pages
= 1 << order
;
1155 if (unlikely(SLABDEBUG
&& PageSlubDebug(page
))) {
1158 slab_pad_check(s
, page
);
1159 for_each_object(p
, s
, page_address(page
),
1161 check_object(s
, page
, p
, 0);
1162 __ClearPageSlubDebug(page
);
1165 mod_zone_page_state(page_zone(page
),
1166 (s
->flags
& SLAB_RECLAIM_ACCOUNT
) ?
1167 NR_SLAB_RECLAIMABLE
: NR_SLAB_UNRECLAIMABLE
,
1170 __ClearPageSlab(page
);
1171 reset_page_mapcount(page
);
1172 __free_pages(page
, order
);
1175 static void rcu_free_slab(struct rcu_head
*h
)
1179 page
= container_of((struct list_head
*)h
, struct page
, lru
);
1180 __free_slab(page
->slab
, page
);
1183 static void free_slab(struct kmem_cache
*s
, struct page
*page
)
1185 if (unlikely(s
->flags
& SLAB_DESTROY_BY_RCU
)) {
1187 * RCU free overloads the RCU head over the LRU
1189 struct rcu_head
*head
= (void *)&page
->lru
;
1191 call_rcu(head
, rcu_free_slab
);
1193 __free_slab(s
, page
);
1196 static void discard_slab(struct kmem_cache
*s
, struct page
*page
)
1198 dec_slabs_node(s
, page_to_nid(page
), page
->objects
);
1203 * Per slab locking using the pagelock
1205 static __always_inline
void slab_lock(struct page
*page
)
1207 bit_spin_lock(PG_locked
, &page
->flags
);
1210 static __always_inline
void slab_unlock(struct page
*page
)
1212 __bit_spin_unlock(PG_locked
, &page
->flags
);
1215 static __always_inline
int slab_trylock(struct page
*page
)
1219 rc
= bit_spin_trylock(PG_locked
, &page
->flags
);
1224 * Management of partially allocated slabs
1226 static void add_partial(struct kmem_cache_node
*n
,
1227 struct page
*page
, int tail
)
1229 spin_lock(&n
->list_lock
);
1232 list_add_tail(&page
->lru
, &n
->partial
);
1234 list_add(&page
->lru
, &n
->partial
);
1235 spin_unlock(&n
->list_lock
);
1238 static void remove_partial(struct kmem_cache
*s
, struct page
*page
)
1240 struct kmem_cache_node
*n
= get_node(s
, page_to_nid(page
));
1242 spin_lock(&n
->list_lock
);
1243 list_del(&page
->lru
);
1245 spin_unlock(&n
->list_lock
);
1249 * Lock slab and remove from the partial list.
1251 * Must hold list_lock.
1253 static inline int lock_and_freeze_slab(struct kmem_cache_node
*n
,
1256 if (slab_trylock(page
)) {
1257 list_del(&page
->lru
);
1259 __SetPageSlubFrozen(page
);
1266 * Try to allocate a partial slab from a specific node.
1268 static struct page
*get_partial_node(struct kmem_cache_node
*n
)
1273 * Racy check. If we mistakenly see no partial slabs then we
1274 * just allocate an empty slab. If we mistakenly try to get a
1275 * partial slab and there is none available then get_partials()
1278 if (!n
|| !n
->nr_partial
)
1281 spin_lock(&n
->list_lock
);
1282 list_for_each_entry(page
, &n
->partial
, lru
)
1283 if (lock_and_freeze_slab(n
, page
))
1287 spin_unlock(&n
->list_lock
);
1292 * Get a page from somewhere. Search in increasing NUMA distances.
1294 static struct page
*get_any_partial(struct kmem_cache
*s
, gfp_t flags
)
1297 struct zonelist
*zonelist
;
1300 enum zone_type high_zoneidx
= gfp_zone(flags
);
1304 * The defrag ratio allows a configuration of the tradeoffs between
1305 * inter node defragmentation and node local allocations. A lower
1306 * defrag_ratio increases the tendency to do local allocations
1307 * instead of attempting to obtain partial slabs from other nodes.
1309 * If the defrag_ratio is set to 0 then kmalloc() always
1310 * returns node local objects. If the ratio is higher then kmalloc()
1311 * may return off node objects because partial slabs are obtained
1312 * from other nodes and filled up.
1314 * If /sys/kernel/slab/xx/defrag_ratio is set to 100 (which makes
1315 * defrag_ratio = 1000) then every (well almost) allocation will
1316 * first attempt to defrag slab caches on other nodes. This means
1317 * scanning over all nodes to look for partial slabs which may be
1318 * expensive if we do it every time we are trying to find a slab
1319 * with available objects.
1321 if (!s
->remote_node_defrag_ratio
||
1322 get_cycles() % 1024 > s
->remote_node_defrag_ratio
)
1325 zonelist
= node_zonelist(slab_node(current
->mempolicy
), flags
);
1326 for_each_zone_zonelist(zone
, z
, zonelist
, high_zoneidx
) {
1327 struct kmem_cache_node
*n
;
1329 n
= get_node(s
, zone_to_nid(zone
));
1331 if (n
&& cpuset_zone_allowed_hardwall(zone
, flags
) &&
1332 n
->nr_partial
> s
->min_partial
) {
1333 page
= get_partial_node(n
);
1343 * Get a partial page, lock it and return it.
1345 static struct page
*get_partial(struct kmem_cache
*s
, gfp_t flags
, int node
)
1348 int searchnode
= (node
== -1) ? numa_node_id() : node
;
1350 page
= get_partial_node(get_node(s
, searchnode
));
1351 if (page
|| (flags
& __GFP_THISNODE
))
1354 return get_any_partial(s
, flags
);
1358 * Move a page back to the lists.
1360 * Must be called with the slab lock held.
1362 * On exit the slab lock will have been dropped.
1364 static void unfreeze_slab(struct kmem_cache
*s
, struct page
*page
, int tail
)
1366 struct kmem_cache_node
*n
= get_node(s
, page_to_nid(page
));
1367 struct kmem_cache_cpu
*c
= get_cpu_slab(s
, smp_processor_id());
1369 __ClearPageSlubFrozen(page
);
1372 if (page
->freelist
) {
1373 add_partial(n
, page
, tail
);
1374 stat(c
, tail
? DEACTIVATE_TO_TAIL
: DEACTIVATE_TO_HEAD
);
1376 stat(c
, DEACTIVATE_FULL
);
1377 if (SLABDEBUG
&& PageSlubDebug(page
) &&
1378 (s
->flags
& SLAB_STORE_USER
))
1383 stat(c
, DEACTIVATE_EMPTY
);
1384 if (n
->nr_partial
< s
->min_partial
) {
1386 * Adding an empty slab to the partial slabs in order
1387 * to avoid page allocator overhead. This slab needs
1388 * to come after the other slabs with objects in
1389 * so that the others get filled first. That way the
1390 * size of the partial list stays small.
1392 * kmem_cache_shrink can reclaim any empty slabs from
1395 add_partial(n
, page
, 1);
1399 stat(get_cpu_slab(s
, raw_smp_processor_id()), FREE_SLAB
);
1400 discard_slab(s
, page
);
1406 * Remove the cpu slab
1408 static void deactivate_slab(struct kmem_cache
*s
, struct kmem_cache_cpu
*c
)
1410 struct page
*page
= c
->page
;
1414 stat(c
, DEACTIVATE_REMOTE_FREES
);
1416 * Merge cpu freelist into slab freelist. Typically we get here
1417 * because both freelists are empty. So this is unlikely
1420 while (unlikely(c
->freelist
)) {
1423 tail
= 0; /* Hot objects. Put the slab first */
1425 /* Retrieve object from cpu_freelist */
1426 object
= c
->freelist
;
1427 c
->freelist
= c
->freelist
[c
->offset
];
1429 /* And put onto the regular freelist */
1430 object
[c
->offset
] = page
->freelist
;
1431 page
->freelist
= object
;
1435 unfreeze_slab(s
, page
, tail
);
1438 static inline void flush_slab(struct kmem_cache
*s
, struct kmem_cache_cpu
*c
)
1440 stat(c
, CPUSLAB_FLUSH
);
1442 deactivate_slab(s
, c
);
1448 * Called from IPI handler with interrupts disabled.
1450 static inline void __flush_cpu_slab(struct kmem_cache
*s
, int cpu
)
1452 struct kmem_cache_cpu
*c
= get_cpu_slab(s
, cpu
);
1454 if (likely(c
&& c
->page
))
1458 static void flush_cpu_slab(void *d
)
1460 struct kmem_cache
*s
= d
;
1462 __flush_cpu_slab(s
, smp_processor_id());
1465 static void flush_all(struct kmem_cache
*s
)
1467 on_each_cpu(flush_cpu_slab
, s
, 1);
1471 * Check if the objects in a per cpu structure fit numa
1472 * locality expectations.
1474 static inline int node_match(struct kmem_cache_cpu
*c
, int node
)
1477 if (node
!= -1 && c
->node
!= node
)
1484 * Slow path. The lockless freelist is empty or we need to perform
1487 * Interrupts are disabled.
1489 * Processing is still very fast if new objects have been freed to the
1490 * regular freelist. In that case we simply take over the regular freelist
1491 * as the lockless freelist and zap the regular freelist.
1493 * If that is not working then we fall back to the partial lists. We take the
1494 * first element of the freelist as the object to allocate now and move the
1495 * rest of the freelist to the lockless freelist.
1497 * And if we were unable to get a new slab from the partial slab lists then
1498 * we need to allocate a new slab. This is the slowest path since it involves
1499 * a call to the page allocator and the setup of a new slab.
1501 static void *__slab_alloc(struct kmem_cache
*s
, gfp_t gfpflags
, int node
,
1502 unsigned long addr
, struct kmem_cache_cpu
*c
)
1507 /* We handle __GFP_ZERO in the caller */
1508 gfpflags
&= ~__GFP_ZERO
;
1514 if (unlikely(!node_match(c
, node
)))
1517 stat(c
, ALLOC_REFILL
);
1520 object
= c
->page
->freelist
;
1521 if (unlikely(!object
))
1523 if (unlikely(SLABDEBUG
&& PageSlubDebug(c
->page
)))
1526 c
->freelist
= object
[c
->offset
];
1527 c
->page
->inuse
= c
->page
->objects
;
1528 c
->page
->freelist
= NULL
;
1529 c
->node
= page_to_nid(c
->page
);
1531 slab_unlock(c
->page
);
1532 stat(c
, ALLOC_SLOWPATH
);
1536 deactivate_slab(s
, c
);
1539 new = get_partial(s
, gfpflags
, node
);
1542 stat(c
, ALLOC_FROM_PARTIAL
);
1546 if (gfpflags
& __GFP_WAIT
)
1549 new = new_slab(s
, gfpflags
, node
);
1551 if (gfpflags
& __GFP_WAIT
)
1552 local_irq_disable();
1555 c
= get_cpu_slab(s
, smp_processor_id());
1556 stat(c
, ALLOC_SLAB
);
1560 __SetPageSlubFrozen(new);
1566 if (!alloc_debug_processing(s
, c
->page
, object
, addr
))
1570 c
->page
->freelist
= object
[c
->offset
];
1576 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
1577 * have the fastpath folded into their functions. So no function call
1578 * overhead for requests that can be satisfied on the fastpath.
1580 * The fastpath works by first checking if the lockless freelist can be used.
1581 * If not then __slab_alloc is called for slow processing.
1583 * Otherwise we can simply pick the next object from the lockless free list.
1585 static __always_inline
void *slab_alloc(struct kmem_cache
*s
,
1586 gfp_t gfpflags
, int node
, unsigned long addr
)
1589 struct kmem_cache_cpu
*c
;
1590 unsigned long flags
;
1591 unsigned int objsize
;
1593 might_sleep_if(gfpflags
& __GFP_WAIT
);
1595 if (should_failslab(s
->objsize
, gfpflags
))
1598 local_irq_save(flags
);
1599 c
= get_cpu_slab(s
, smp_processor_id());
1600 objsize
= c
->objsize
;
1601 if (unlikely(!c
->freelist
|| !node_match(c
, node
)))
1603 object
= __slab_alloc(s
, gfpflags
, node
, addr
, c
);
1606 object
= c
->freelist
;
1607 c
->freelist
= object
[c
->offset
];
1608 stat(c
, ALLOC_FASTPATH
);
1610 local_irq_restore(flags
);
1612 if (unlikely((gfpflags
& __GFP_ZERO
) && object
))
1613 memset(object
, 0, objsize
);
1618 void *kmem_cache_alloc(struct kmem_cache
*s
, gfp_t gfpflags
)
1620 return slab_alloc(s
, gfpflags
, -1, _RET_IP_
);
1622 EXPORT_SYMBOL(kmem_cache_alloc
);
1625 void *kmem_cache_alloc_node(struct kmem_cache
*s
, gfp_t gfpflags
, int node
)
1627 return slab_alloc(s
, gfpflags
, node
, _RET_IP_
);
1629 EXPORT_SYMBOL(kmem_cache_alloc_node
);
1633 * Slow patch handling. This may still be called frequently since objects
1634 * have a longer lifetime than the cpu slabs in most processing loads.
1636 * So we still attempt to reduce cache line usage. Just take the slab
1637 * lock and free the item. If there is no additional partial page
1638 * handling required then we can return immediately.
1640 static void __slab_free(struct kmem_cache
*s
, struct page
*page
,
1641 void *x
, unsigned long addr
, unsigned int offset
)
1644 void **object
= (void *)x
;
1645 struct kmem_cache_cpu
*c
;
1647 c
= get_cpu_slab(s
, raw_smp_processor_id());
1648 stat(c
, FREE_SLOWPATH
);
1651 if (unlikely(SLABDEBUG
&& PageSlubDebug(page
)))
1655 prior
= object
[offset
] = page
->freelist
;
1656 page
->freelist
= object
;
1659 if (unlikely(PageSlubFrozen(page
))) {
1660 stat(c
, FREE_FROZEN
);
1664 if (unlikely(!page
->inuse
))
1668 * Objects left in the slab. If it was not on the partial list before
1671 if (unlikely(!prior
)) {
1672 add_partial(get_node(s
, page_to_nid(page
)), page
, 1);
1673 stat(c
, FREE_ADD_PARTIAL
);
1683 * Slab still on the partial list.
1685 remove_partial(s
, page
);
1686 stat(c
, FREE_REMOVE_PARTIAL
);
1690 discard_slab(s
, page
);
1694 if (!free_debug_processing(s
, page
, x
, addr
))
1700 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
1701 * can perform fastpath freeing without additional function calls.
1703 * The fastpath is only possible if we are freeing to the current cpu slab
1704 * of this processor. This typically the case if we have just allocated
1707 * If fastpath is not possible then fall back to __slab_free where we deal
1708 * with all sorts of special processing.
1710 static __always_inline
void slab_free(struct kmem_cache
*s
,
1711 struct page
*page
, void *x
, unsigned long addr
)
1713 void **object
= (void *)x
;
1714 struct kmem_cache_cpu
*c
;
1715 unsigned long flags
;
1717 local_irq_save(flags
);
1718 c
= get_cpu_slab(s
, smp_processor_id());
1719 debug_check_no_locks_freed(object
, c
->objsize
);
1720 if (!(s
->flags
& SLAB_DEBUG_OBJECTS
))
1721 debug_check_no_obj_freed(object
, c
->objsize
);
1722 if (likely(page
== c
->page
&& c
->node
>= 0)) {
1723 object
[c
->offset
] = c
->freelist
;
1724 c
->freelist
= object
;
1725 stat(c
, FREE_FASTPATH
);
1727 __slab_free(s
, page
, x
, addr
, c
->offset
);
1729 local_irq_restore(flags
);
1732 void kmem_cache_free(struct kmem_cache
*s
, void *x
)
1736 page
= virt_to_head_page(x
);
1738 slab_free(s
, page
, x
, _RET_IP_
);
1740 EXPORT_SYMBOL(kmem_cache_free
);
1742 /* Figure out on which slab page the object resides */
1743 static struct page
*get_object_page(const void *x
)
1745 struct page
*page
= virt_to_head_page(x
);
1747 if (!PageSlab(page
))
1754 * Object placement in a slab is made very easy because we always start at
1755 * offset 0. If we tune the size of the object to the alignment then we can
1756 * get the required alignment by putting one properly sized object after
1759 * Notice that the allocation order determines the sizes of the per cpu
1760 * caches. Each processor has always one slab available for allocations.
1761 * Increasing the allocation order reduces the number of times that slabs
1762 * must be moved on and off the partial lists and is therefore a factor in
1767 * Mininum / Maximum order of slab pages. This influences locking overhead
1768 * and slab fragmentation. A higher order reduces the number of partial slabs
1769 * and increases the number of allocations possible without having to
1770 * take the list_lock.
1772 static int slub_min_order
;
1773 static int slub_max_order
= PAGE_ALLOC_COSTLY_ORDER
;
1774 static int slub_min_objects
;
1777 * Merge control. If this is set then no merging of slab caches will occur.
1778 * (Could be removed. This was introduced to pacify the merge skeptics.)
1780 static int slub_nomerge
;
1783 * Calculate the order of allocation given an slab object size.
1785 * The order of allocation has significant impact on performance and other
1786 * system components. Generally order 0 allocations should be preferred since
1787 * order 0 does not cause fragmentation in the page allocator. Larger objects
1788 * be problematic to put into order 0 slabs because there may be too much
1789 * unused space left. We go to a higher order if more than 1/16th of the slab
1792 * In order to reach satisfactory performance we must ensure that a minimum
1793 * number of objects is in one slab. Otherwise we may generate too much
1794 * activity on the partial lists which requires taking the list_lock. This is
1795 * less a concern for large slabs though which are rarely used.
1797 * slub_max_order specifies the order where we begin to stop considering the
1798 * number of objects in a slab as critical. If we reach slub_max_order then
1799 * we try to keep the page order as low as possible. So we accept more waste
1800 * of space in favor of a small page order.
1802 * Higher order allocations also allow the placement of more objects in a
1803 * slab and thereby reduce object handling overhead. If the user has
1804 * requested a higher mininum order then we start with that one instead of
1805 * the smallest order which will fit the object.
1807 static inline int slab_order(int size
, int min_objects
,
1808 int max_order
, int fract_leftover
)
1812 int min_order
= slub_min_order
;
1814 if ((PAGE_SIZE
<< min_order
) / size
> MAX_OBJS_PER_PAGE
)
1815 return get_order(size
* MAX_OBJS_PER_PAGE
) - 1;
1817 for (order
= max(min_order
,
1818 fls(min_objects
* size
- 1) - PAGE_SHIFT
);
1819 order
<= max_order
; order
++) {
1821 unsigned long slab_size
= PAGE_SIZE
<< order
;
1823 if (slab_size
< min_objects
* size
)
1826 rem
= slab_size
% size
;
1828 if (rem
<= slab_size
/ fract_leftover
)
1836 static inline int calculate_order(int size
)
1844 * Attempt to find best configuration for a slab. This
1845 * works by first attempting to generate a layout with
1846 * the best configuration and backing off gradually.
1848 * First we reduce the acceptable waste in a slab. Then
1849 * we reduce the minimum objects required in a slab.
1851 min_objects
= slub_min_objects
;
1853 min_objects
= 4 * (fls(nr_cpu_ids
) + 1);
1854 max_objects
= (PAGE_SIZE
<< slub_max_order
)/size
;
1855 min_objects
= min(min_objects
, max_objects
);
1857 while (min_objects
> 1) {
1859 while (fraction
>= 4) {
1860 order
= slab_order(size
, min_objects
,
1861 slub_max_order
, fraction
);
1862 if (order
<= slub_max_order
)
1870 * We were unable to place multiple objects in a slab. Now
1871 * lets see if we can place a single object there.
1873 order
= slab_order(size
, 1, slub_max_order
, 1);
1874 if (order
<= slub_max_order
)
1878 * Doh this slab cannot be placed using slub_max_order.
1880 order
= slab_order(size
, 1, MAX_ORDER
, 1);
1881 if (order
<= MAX_ORDER
)
1887 * Figure out what the alignment of the objects will be.
1889 static unsigned long calculate_alignment(unsigned long flags
,
1890 unsigned long align
, unsigned long size
)
1893 * If the user wants hardware cache aligned objects then follow that
1894 * suggestion if the object is sufficiently large.
1896 * The hardware cache alignment cannot override the specified
1897 * alignment though. If that is greater then use it.
1899 if (flags
& SLAB_HWCACHE_ALIGN
) {
1900 unsigned long ralign
= cache_line_size();
1901 while (size
<= ralign
/ 2)
1903 align
= max(align
, ralign
);
1906 if (align
< ARCH_SLAB_MINALIGN
)
1907 align
= ARCH_SLAB_MINALIGN
;
1909 return ALIGN(align
, sizeof(void *));
1912 static void init_kmem_cache_cpu(struct kmem_cache
*s
,
1913 struct kmem_cache_cpu
*c
)
1918 c
->offset
= s
->offset
/ sizeof(void *);
1919 c
->objsize
= s
->objsize
;
1920 #ifdef CONFIG_SLUB_STATS
1921 memset(c
->stat
, 0, NR_SLUB_STAT_ITEMS
* sizeof(unsigned));
1926 init_kmem_cache_node(struct kmem_cache_node
*n
, struct kmem_cache
*s
)
1929 spin_lock_init(&n
->list_lock
);
1930 INIT_LIST_HEAD(&n
->partial
);
1931 #ifdef CONFIG_SLUB_DEBUG
1932 atomic_long_set(&n
->nr_slabs
, 0);
1933 atomic_long_set(&n
->total_objects
, 0);
1934 INIT_LIST_HEAD(&n
->full
);
1940 * Per cpu array for per cpu structures.
1942 * The per cpu array places all kmem_cache_cpu structures from one processor
1943 * close together meaning that it becomes possible that multiple per cpu
1944 * structures are contained in one cacheline. This may be particularly
1945 * beneficial for the kmalloc caches.
1947 * A desktop system typically has around 60-80 slabs. With 100 here we are
1948 * likely able to get per cpu structures for all caches from the array defined
1949 * here. We must be able to cover all kmalloc caches during bootstrap.
1951 * If the per cpu array is exhausted then fall back to kmalloc
1952 * of individual cachelines. No sharing is possible then.
1954 #define NR_KMEM_CACHE_CPU 100
1956 static DEFINE_PER_CPU(struct kmem_cache_cpu
,
1957 kmem_cache_cpu
)[NR_KMEM_CACHE_CPU
];
1959 static DEFINE_PER_CPU(struct kmem_cache_cpu
*, kmem_cache_cpu_free
);
1960 static DECLARE_BITMAP(kmem_cach_cpu_free_init_once
, CONFIG_NR_CPUS
);
1962 static struct kmem_cache_cpu
*alloc_kmem_cache_cpu(struct kmem_cache
*s
,
1963 int cpu
, gfp_t flags
)
1965 struct kmem_cache_cpu
*c
= per_cpu(kmem_cache_cpu_free
, cpu
);
1968 per_cpu(kmem_cache_cpu_free
, cpu
) =
1969 (void *)c
->freelist
;
1971 /* Table overflow: So allocate ourselves */
1973 ALIGN(sizeof(struct kmem_cache_cpu
), cache_line_size()),
1974 flags
, cpu_to_node(cpu
));
1979 init_kmem_cache_cpu(s
, c
);
1983 static void free_kmem_cache_cpu(struct kmem_cache_cpu
*c
, int cpu
)
1985 if (c
< per_cpu(kmem_cache_cpu
, cpu
) ||
1986 c
>= per_cpu(kmem_cache_cpu
, cpu
) + NR_KMEM_CACHE_CPU
) {
1990 c
->freelist
= (void *)per_cpu(kmem_cache_cpu_free
, cpu
);
1991 per_cpu(kmem_cache_cpu_free
, cpu
) = c
;
1994 static void free_kmem_cache_cpus(struct kmem_cache
*s
)
1998 for_each_online_cpu(cpu
) {
1999 struct kmem_cache_cpu
*c
= get_cpu_slab(s
, cpu
);
2002 s
->cpu_slab
[cpu
] = NULL
;
2003 free_kmem_cache_cpu(c
, cpu
);
2008 static int alloc_kmem_cache_cpus(struct kmem_cache
*s
, gfp_t flags
)
2012 for_each_online_cpu(cpu
) {
2013 struct kmem_cache_cpu
*c
= get_cpu_slab(s
, cpu
);
2018 c
= alloc_kmem_cache_cpu(s
, cpu
, flags
);
2020 free_kmem_cache_cpus(s
);
2023 s
->cpu_slab
[cpu
] = c
;
2029 * Initialize the per cpu array.
2031 static void init_alloc_cpu_cpu(int cpu
)
2035 if (cpumask_test_cpu(cpu
, to_cpumask(kmem_cach_cpu_free_init_once
)))
2038 for (i
= NR_KMEM_CACHE_CPU
- 1; i
>= 0; i
--)
2039 free_kmem_cache_cpu(&per_cpu(kmem_cache_cpu
, cpu
)[i
], cpu
);
2041 cpumask_set_cpu(cpu
, to_cpumask(kmem_cach_cpu_free_init_once
));
2044 static void __init
init_alloc_cpu(void)
2048 for_each_online_cpu(cpu
)
2049 init_alloc_cpu_cpu(cpu
);
2053 static inline void free_kmem_cache_cpus(struct kmem_cache
*s
) {}
2054 static inline void init_alloc_cpu(void) {}
2056 static inline int alloc_kmem_cache_cpus(struct kmem_cache
*s
, gfp_t flags
)
2058 init_kmem_cache_cpu(s
, &s
->cpu_slab
);
2065 * No kmalloc_node yet so do it by hand. We know that this is the first
2066 * slab on the node for this slabcache. There are no concurrent accesses
2069 * Note that this function only works on the kmalloc_node_cache
2070 * when allocating for the kmalloc_node_cache. This is used for bootstrapping
2071 * memory on a fresh node that has no slab structures yet.
2073 static void early_kmem_cache_node_alloc(gfp_t gfpflags
, int node
)
2076 struct kmem_cache_node
*n
;
2077 unsigned long flags
;
2079 BUG_ON(kmalloc_caches
->size
< sizeof(struct kmem_cache_node
));
2081 page
= new_slab(kmalloc_caches
, gfpflags
, node
);
2084 if (page_to_nid(page
) != node
) {
2085 printk(KERN_ERR
"SLUB: Unable to allocate memory from "
2087 printk(KERN_ERR
"SLUB: Allocating a useless per node structure "
2088 "in order to be able to continue\n");
2093 page
->freelist
= get_freepointer(kmalloc_caches
, n
);
2095 kmalloc_caches
->node
[node
] = n
;
2096 #ifdef CONFIG_SLUB_DEBUG
2097 init_object(kmalloc_caches
, n
, 1);
2098 init_tracking(kmalloc_caches
, n
);
2100 init_kmem_cache_node(n
, kmalloc_caches
);
2101 inc_slabs_node(kmalloc_caches
, node
, page
->objects
);
2104 * lockdep requires consistent irq usage for each lock
2105 * so even though there cannot be a race this early in
2106 * the boot sequence, we still disable irqs.
2108 local_irq_save(flags
);
2109 add_partial(n
, page
, 0);
2110 local_irq_restore(flags
);
2113 static void free_kmem_cache_nodes(struct kmem_cache
*s
)
2117 for_each_node_state(node
, N_NORMAL_MEMORY
) {
2118 struct kmem_cache_node
*n
= s
->node
[node
];
2119 if (n
&& n
!= &s
->local_node
)
2120 kmem_cache_free(kmalloc_caches
, n
);
2121 s
->node
[node
] = NULL
;
2125 static int init_kmem_cache_nodes(struct kmem_cache
*s
, gfp_t gfpflags
)
2130 if (slab_state
>= UP
)
2131 local_node
= page_to_nid(virt_to_page(s
));
2135 for_each_node_state(node
, N_NORMAL_MEMORY
) {
2136 struct kmem_cache_node
*n
;
2138 if (local_node
== node
)
2141 if (slab_state
== DOWN
) {
2142 early_kmem_cache_node_alloc(gfpflags
, node
);
2145 n
= kmem_cache_alloc_node(kmalloc_caches
,
2149 free_kmem_cache_nodes(s
);
2155 init_kmem_cache_node(n
, s
);
2160 static void free_kmem_cache_nodes(struct kmem_cache
*s
)
2164 static int init_kmem_cache_nodes(struct kmem_cache
*s
, gfp_t gfpflags
)
2166 init_kmem_cache_node(&s
->local_node
, s
);
2171 static void set_min_partial(struct kmem_cache
*s
, unsigned long min
)
2173 if (min
< MIN_PARTIAL
)
2175 else if (min
> MAX_PARTIAL
)
2177 s
->min_partial
= min
;
2181 * calculate_sizes() determines the order and the distribution of data within
2184 static int calculate_sizes(struct kmem_cache
*s
, int forced_order
)
2186 unsigned long flags
= s
->flags
;
2187 unsigned long size
= s
->objsize
;
2188 unsigned long align
= s
->align
;
2192 * Round up object size to the next word boundary. We can only
2193 * place the free pointer at word boundaries and this determines
2194 * the possible location of the free pointer.
2196 size
= ALIGN(size
, sizeof(void *));
2198 #ifdef CONFIG_SLUB_DEBUG
2200 * Determine if we can poison the object itself. If the user of
2201 * the slab may touch the object after free or before allocation
2202 * then we should never poison the object itself.
2204 if ((flags
& SLAB_POISON
) && !(flags
& SLAB_DESTROY_BY_RCU
) &&
2206 s
->flags
|= __OBJECT_POISON
;
2208 s
->flags
&= ~__OBJECT_POISON
;
2212 * If we are Redzoning then check if there is some space between the
2213 * end of the object and the free pointer. If not then add an
2214 * additional word to have some bytes to store Redzone information.
2216 if ((flags
& SLAB_RED_ZONE
) && size
== s
->objsize
)
2217 size
+= sizeof(void *);
2221 * With that we have determined the number of bytes in actual use
2222 * by the object. This is the potential offset to the free pointer.
2226 if (((flags
& (SLAB_DESTROY_BY_RCU
| SLAB_POISON
)) ||
2229 * Relocate free pointer after the object if it is not
2230 * permitted to overwrite the first word of the object on
2233 * This is the case if we do RCU, have a constructor or
2234 * destructor or are poisoning the objects.
2237 size
+= sizeof(void *);
2240 #ifdef CONFIG_SLUB_DEBUG
2241 if (flags
& SLAB_STORE_USER
)
2243 * Need to store information about allocs and frees after
2246 size
+= 2 * sizeof(struct track
);
2248 if (flags
& SLAB_RED_ZONE
)
2250 * Add some empty padding so that we can catch
2251 * overwrites from earlier objects rather than let
2252 * tracking information or the free pointer be
2253 * corrupted if a user writes before the start
2256 size
+= sizeof(void *);
2260 * Determine the alignment based on various parameters that the
2261 * user specified and the dynamic determination of cache line size
2264 align
= calculate_alignment(flags
, align
, s
->objsize
);
2267 * SLUB stores one object immediately after another beginning from
2268 * offset 0. In order to align the objects we have to simply size
2269 * each object to conform to the alignment.
2271 size
= ALIGN(size
, align
);
2273 if (forced_order
>= 0)
2274 order
= forced_order
;
2276 order
= calculate_order(size
);
2283 s
->allocflags
|= __GFP_COMP
;
2285 if (s
->flags
& SLAB_CACHE_DMA
)
2286 s
->allocflags
|= SLUB_DMA
;
2288 if (s
->flags
& SLAB_RECLAIM_ACCOUNT
)
2289 s
->allocflags
|= __GFP_RECLAIMABLE
;
2292 * Determine the number of objects per slab
2294 s
->oo
= oo_make(order
, size
);
2295 s
->min
= oo_make(get_order(size
), size
);
2296 if (oo_objects(s
->oo
) > oo_objects(s
->max
))
2299 return !!oo_objects(s
->oo
);
2303 static int kmem_cache_open(struct kmem_cache
*s
, gfp_t gfpflags
,
2304 const char *name
, size_t size
,
2305 size_t align
, unsigned long flags
,
2306 void (*ctor
)(void *))
2308 memset(s
, 0, kmem_size
);
2313 s
->flags
= kmem_cache_flags(size
, flags
, name
, ctor
);
2315 if (!calculate_sizes(s
, -1))
2319 * The larger the object size is, the more pages we want on the partial
2320 * list to avoid pounding the page allocator excessively.
2322 set_min_partial(s
, ilog2(s
->size
));
2325 s
->remote_node_defrag_ratio
= 1000;
2327 if (!init_kmem_cache_nodes(s
, gfpflags
& ~SLUB_DMA
))
2330 if (alloc_kmem_cache_cpus(s
, gfpflags
& ~SLUB_DMA
))
2332 free_kmem_cache_nodes(s
);
2334 if (flags
& SLAB_PANIC
)
2335 panic("Cannot create slab %s size=%lu realsize=%u "
2336 "order=%u offset=%u flags=%lx\n",
2337 s
->name
, (unsigned long)size
, s
->size
, oo_order(s
->oo
),
2343 * Check if a given pointer is valid
2345 int kmem_ptr_validate(struct kmem_cache
*s
, const void *object
)
2349 page
= get_object_page(object
);
2351 if (!page
|| s
!= page
->slab
)
2352 /* No slab or wrong slab */
2355 if (!check_valid_pointer(s
, page
, object
))
2359 * We could also check if the object is on the slabs freelist.
2360 * But this would be too expensive and it seems that the main
2361 * purpose of kmem_ptr_valid() is to check if the object belongs
2362 * to a certain slab.
2366 EXPORT_SYMBOL(kmem_ptr_validate
);
2369 * Determine the size of a slab object
2371 unsigned int kmem_cache_size(struct kmem_cache
*s
)
2375 EXPORT_SYMBOL(kmem_cache_size
);
2377 const char *kmem_cache_name(struct kmem_cache
*s
)
2381 EXPORT_SYMBOL(kmem_cache_name
);
2383 static void list_slab_objects(struct kmem_cache
*s
, struct page
*page
,
2386 #ifdef CONFIG_SLUB_DEBUG
2387 void *addr
= page_address(page
);
2389 DECLARE_BITMAP(map
, page
->objects
);
2391 bitmap_zero(map
, page
->objects
);
2392 slab_err(s
, page
, "%s", text
);
2394 for_each_free_object(p
, s
, page
->freelist
)
2395 set_bit(slab_index(p
, s
, addr
), map
);
2397 for_each_object(p
, s
, addr
, page
->objects
) {
2399 if (!test_bit(slab_index(p
, s
, addr
), map
)) {
2400 printk(KERN_ERR
"INFO: Object 0x%p @offset=%tu\n",
2402 print_tracking(s
, p
);
2410 * Attempt to free all partial slabs on a node.
2412 static void free_partial(struct kmem_cache
*s
, struct kmem_cache_node
*n
)
2414 unsigned long flags
;
2415 struct page
*page
, *h
;
2417 spin_lock_irqsave(&n
->list_lock
, flags
);
2418 list_for_each_entry_safe(page
, h
, &n
->partial
, lru
) {
2420 list_del(&page
->lru
);
2421 discard_slab(s
, page
);
2424 list_slab_objects(s
, page
,
2425 "Objects remaining on kmem_cache_close()");
2428 spin_unlock_irqrestore(&n
->list_lock
, flags
);
2432 * Release all resources used by a slab cache.
2434 static inline int kmem_cache_close(struct kmem_cache
*s
)
2440 /* Attempt to free all objects */
2441 free_kmem_cache_cpus(s
);
2442 for_each_node_state(node
, N_NORMAL_MEMORY
) {
2443 struct kmem_cache_node
*n
= get_node(s
, node
);
2446 if (n
->nr_partial
|| slabs_node(s
, node
))
2449 free_kmem_cache_nodes(s
);
2454 * Close a cache and release the kmem_cache structure
2455 * (must be used for caches created using kmem_cache_create)
2457 void kmem_cache_destroy(struct kmem_cache
*s
)
2459 down_write(&slub_lock
);
2463 up_write(&slub_lock
);
2464 if (kmem_cache_close(s
)) {
2465 printk(KERN_ERR
"SLUB %s: %s called for cache that "
2466 "still has objects.\n", s
->name
, __func__
);
2469 sysfs_slab_remove(s
);
2471 up_write(&slub_lock
);
2473 EXPORT_SYMBOL(kmem_cache_destroy
);
2475 /********************************************************************
2477 *******************************************************************/
2479 struct kmem_cache kmalloc_caches
[SLUB_PAGE_SHIFT
] __cacheline_aligned
;
2480 EXPORT_SYMBOL(kmalloc_caches
);
2482 static int __init
setup_slub_min_order(char *str
)
2484 get_option(&str
, &slub_min_order
);
2489 __setup("slub_min_order=", setup_slub_min_order
);
2491 static int __init
setup_slub_max_order(char *str
)
2493 get_option(&str
, &slub_max_order
);
2498 __setup("slub_max_order=", setup_slub_max_order
);
2500 static int __init
setup_slub_min_objects(char *str
)
2502 get_option(&str
, &slub_min_objects
);
2507 __setup("slub_min_objects=", setup_slub_min_objects
);
2509 static int __init
setup_slub_nomerge(char *str
)
2515 __setup("slub_nomerge", setup_slub_nomerge
);
2517 static struct kmem_cache
*create_kmalloc_cache(struct kmem_cache
*s
,
2518 const char *name
, int size
, gfp_t gfp_flags
)
2520 unsigned int flags
= 0;
2522 if (gfp_flags
& SLUB_DMA
)
2523 flags
= SLAB_CACHE_DMA
;
2525 down_write(&slub_lock
);
2526 if (!kmem_cache_open(s
, gfp_flags
, name
, size
, ARCH_KMALLOC_MINALIGN
,
2530 list_add(&s
->list
, &slab_caches
);
2531 up_write(&slub_lock
);
2532 if (sysfs_slab_add(s
))
2537 panic("Creation of kmalloc slab %s size=%d failed.\n", name
, size
);
2540 #ifdef CONFIG_ZONE_DMA
2541 static struct kmem_cache
*kmalloc_caches_dma
[SLUB_PAGE_SHIFT
];
2543 static void sysfs_add_func(struct work_struct
*w
)
2545 struct kmem_cache
*s
;
2547 down_write(&slub_lock
);
2548 list_for_each_entry(s
, &slab_caches
, list
) {
2549 if (s
->flags
& __SYSFS_ADD_DEFERRED
) {
2550 s
->flags
&= ~__SYSFS_ADD_DEFERRED
;
2554 up_write(&slub_lock
);
2557 static DECLARE_WORK(sysfs_add_work
, sysfs_add_func
);
2559 static noinline
struct kmem_cache
*dma_kmalloc_cache(int index
, gfp_t flags
)
2561 struct kmem_cache
*s
;
2565 s
= kmalloc_caches_dma
[index
];
2569 /* Dynamically create dma cache */
2570 if (flags
& __GFP_WAIT
)
2571 down_write(&slub_lock
);
2573 if (!down_write_trylock(&slub_lock
))
2577 if (kmalloc_caches_dma
[index
])
2580 realsize
= kmalloc_caches
[index
].objsize
;
2581 text
= kasprintf(flags
& ~SLUB_DMA
, "kmalloc_dma-%d",
2582 (unsigned int)realsize
);
2583 s
= kmalloc(kmem_size
, flags
& ~SLUB_DMA
);
2585 if (!s
|| !text
|| !kmem_cache_open(s
, flags
, text
,
2586 realsize
, ARCH_KMALLOC_MINALIGN
,
2587 SLAB_CACHE_DMA
|__SYSFS_ADD_DEFERRED
, NULL
)) {
2593 list_add(&s
->list
, &slab_caches
);
2594 kmalloc_caches_dma
[index
] = s
;
2596 schedule_work(&sysfs_add_work
);
2599 up_write(&slub_lock
);
2601 return kmalloc_caches_dma
[index
];
2606 * Conversion table for small slabs sizes / 8 to the index in the
2607 * kmalloc array. This is necessary for slabs < 192 since we have non power
2608 * of two cache sizes there. The size of larger slabs can be determined using
2611 static s8 size_index
[24] = {
2638 static struct kmem_cache
*get_slab(size_t size
, gfp_t flags
)
2644 return ZERO_SIZE_PTR
;
2646 index
= size_index
[(size
- 1) / 8];
2648 index
= fls(size
- 1);
2650 #ifdef CONFIG_ZONE_DMA
2651 if (unlikely((flags
& SLUB_DMA
)))
2652 return dma_kmalloc_cache(index
, flags
);
2655 return &kmalloc_caches
[index
];
2658 void *__kmalloc(size_t size
, gfp_t flags
)
2660 struct kmem_cache
*s
;
2662 if (unlikely(size
> SLUB_MAX_SIZE
))
2663 return kmalloc_large(size
, flags
);
2665 s
= get_slab(size
, flags
);
2667 if (unlikely(ZERO_OR_NULL_PTR(s
)))
2670 return slab_alloc(s
, flags
, -1, _RET_IP_
);
2672 EXPORT_SYMBOL(__kmalloc
);
2674 static void *kmalloc_large_node(size_t size
, gfp_t flags
, int node
)
2676 struct page
*page
= alloc_pages_node(node
, flags
| __GFP_COMP
,
2680 return page_address(page
);
2686 void *__kmalloc_node(size_t size
, gfp_t flags
, int node
)
2688 struct kmem_cache
*s
;
2690 if (unlikely(size
> SLUB_MAX_SIZE
))
2691 return kmalloc_large_node(size
, flags
, node
);
2693 s
= get_slab(size
, flags
);
2695 if (unlikely(ZERO_OR_NULL_PTR(s
)))
2698 return slab_alloc(s
, flags
, node
, _RET_IP_
);
2700 EXPORT_SYMBOL(__kmalloc_node
);
2703 size_t ksize(const void *object
)
2706 struct kmem_cache
*s
;
2708 if (unlikely(object
== ZERO_SIZE_PTR
))
2711 page
= virt_to_head_page(object
);
2713 if (unlikely(!PageSlab(page
))) {
2714 WARN_ON(!PageCompound(page
));
2715 return PAGE_SIZE
<< compound_order(page
);
2719 #ifdef CONFIG_SLUB_DEBUG
2721 * Debugging requires use of the padding between object
2722 * and whatever may come after it.
2724 if (s
->flags
& (SLAB_RED_ZONE
| SLAB_POISON
))
2729 * If we have the need to store the freelist pointer
2730 * back there or track user information then we can
2731 * only use the space before that information.
2733 if (s
->flags
& (SLAB_DESTROY_BY_RCU
| SLAB_STORE_USER
))
2736 * Else we can use all the padding etc for the allocation
2740 EXPORT_SYMBOL(ksize
);
2742 void kfree(const void *x
)
2745 void *object
= (void *)x
;
2747 if (unlikely(ZERO_OR_NULL_PTR(x
)))
2750 page
= virt_to_head_page(x
);
2751 if (unlikely(!PageSlab(page
))) {
2752 BUG_ON(!PageCompound(page
));
2756 slab_free(page
->slab
, page
, object
, _RET_IP_
);
2758 EXPORT_SYMBOL(kfree
);
2761 * kmem_cache_shrink removes empty slabs from the partial lists and sorts
2762 * the remaining slabs by the number of items in use. The slabs with the
2763 * most items in use come first. New allocations will then fill those up
2764 * and thus they can be removed from the partial lists.
2766 * The slabs with the least items are placed last. This results in them
2767 * being allocated from last increasing the chance that the last objects
2768 * are freed in them.
2770 int kmem_cache_shrink(struct kmem_cache
*s
)
2774 struct kmem_cache_node
*n
;
2777 int objects
= oo_objects(s
->max
);
2778 struct list_head
*slabs_by_inuse
=
2779 kmalloc(sizeof(struct list_head
) * objects
, GFP_KERNEL
);
2780 unsigned long flags
;
2782 if (!slabs_by_inuse
)
2786 for_each_node_state(node
, N_NORMAL_MEMORY
) {
2787 n
= get_node(s
, node
);
2792 for (i
= 0; i
< objects
; i
++)
2793 INIT_LIST_HEAD(slabs_by_inuse
+ i
);
2795 spin_lock_irqsave(&n
->list_lock
, flags
);
2798 * Build lists indexed by the items in use in each slab.
2800 * Note that concurrent frees may occur while we hold the
2801 * list_lock. page->inuse here is the upper limit.
2803 list_for_each_entry_safe(page
, t
, &n
->partial
, lru
) {
2804 if (!page
->inuse
&& slab_trylock(page
)) {
2806 * Must hold slab lock here because slab_free
2807 * may have freed the last object and be
2808 * waiting to release the slab.
2810 list_del(&page
->lru
);
2813 discard_slab(s
, page
);
2815 list_move(&page
->lru
,
2816 slabs_by_inuse
+ page
->inuse
);
2821 * Rebuild the partial list with the slabs filled up most
2822 * first and the least used slabs at the end.
2824 for (i
= objects
- 1; i
>= 0; i
--)
2825 list_splice(slabs_by_inuse
+ i
, n
->partial
.prev
);
2827 spin_unlock_irqrestore(&n
->list_lock
, flags
);
2830 kfree(slabs_by_inuse
);
2833 EXPORT_SYMBOL(kmem_cache_shrink
);
2835 #if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)
2836 static int slab_mem_going_offline_callback(void *arg
)
2838 struct kmem_cache
*s
;
2840 down_read(&slub_lock
);
2841 list_for_each_entry(s
, &slab_caches
, list
)
2842 kmem_cache_shrink(s
);
2843 up_read(&slub_lock
);
2848 static void slab_mem_offline_callback(void *arg
)
2850 struct kmem_cache_node
*n
;
2851 struct kmem_cache
*s
;
2852 struct memory_notify
*marg
= arg
;
2855 offline_node
= marg
->status_change_nid
;
2858 * If the node still has available memory. we need kmem_cache_node
2861 if (offline_node
< 0)
2864 down_read(&slub_lock
);
2865 list_for_each_entry(s
, &slab_caches
, list
) {
2866 n
= get_node(s
, offline_node
);
2869 * if n->nr_slabs > 0, slabs still exist on the node
2870 * that is going down. We were unable to free them,
2871 * and offline_pages() function shoudn't call this
2872 * callback. So, we must fail.
2874 BUG_ON(slabs_node(s
, offline_node
));
2876 s
->node
[offline_node
] = NULL
;
2877 kmem_cache_free(kmalloc_caches
, n
);
2880 up_read(&slub_lock
);
2883 static int slab_mem_going_online_callback(void *arg
)
2885 struct kmem_cache_node
*n
;
2886 struct kmem_cache
*s
;
2887 struct memory_notify
*marg
= arg
;
2888 int nid
= marg
->status_change_nid
;
2892 * If the node's memory is already available, then kmem_cache_node is
2893 * already created. Nothing to do.
2899 * We are bringing a node online. No memory is available yet. We must
2900 * allocate a kmem_cache_node structure in order to bring the node
2903 down_read(&slub_lock
);
2904 list_for_each_entry(s
, &slab_caches
, list
) {
2906 * XXX: kmem_cache_alloc_node will fallback to other nodes
2907 * since memory is not yet available from the node that
2910 n
= kmem_cache_alloc(kmalloc_caches
, GFP_KERNEL
);
2915 init_kmem_cache_node(n
, s
);
2919 up_read(&slub_lock
);
2923 static int slab_memory_callback(struct notifier_block
*self
,
2924 unsigned long action
, void *arg
)
2929 case MEM_GOING_ONLINE
:
2930 ret
= slab_mem_going_online_callback(arg
);
2932 case MEM_GOING_OFFLINE
:
2933 ret
= slab_mem_going_offline_callback(arg
);
2936 case MEM_CANCEL_ONLINE
:
2937 slab_mem_offline_callback(arg
);
2940 case MEM_CANCEL_OFFLINE
:
2944 ret
= notifier_from_errno(ret
);
2950 #endif /* CONFIG_MEMORY_HOTPLUG */
2952 /********************************************************************
2953 * Basic setup of slabs
2954 *******************************************************************/
2956 void __init
kmem_cache_init(void)
2965 * Must first have the slab cache available for the allocations of the
2966 * struct kmem_cache_node's. There is special bootstrap code in
2967 * kmem_cache_open for slab_state == DOWN.
2969 create_kmalloc_cache(&kmalloc_caches
[0], "kmem_cache_node",
2970 sizeof(struct kmem_cache_node
), GFP_KERNEL
);
2971 kmalloc_caches
[0].refcount
= -1;
2974 hotplug_memory_notifier(slab_memory_callback
, SLAB_CALLBACK_PRI
);
2977 /* Able to allocate the per node structures */
2978 slab_state
= PARTIAL
;
2980 /* Caches that are not of the two-to-the-power-of size */
2981 if (KMALLOC_MIN_SIZE
<= 64) {
2982 create_kmalloc_cache(&kmalloc_caches
[1],
2983 "kmalloc-96", 96, GFP_KERNEL
);
2985 create_kmalloc_cache(&kmalloc_caches
[2],
2986 "kmalloc-192", 192, GFP_KERNEL
);
2990 for (i
= KMALLOC_SHIFT_LOW
; i
< SLUB_PAGE_SHIFT
; i
++) {
2991 create_kmalloc_cache(&kmalloc_caches
[i
],
2992 "kmalloc", 1 << i
, GFP_KERNEL
);
2998 * Patch up the size_index table if we have strange large alignment
2999 * requirements for the kmalloc array. This is only the case for
3000 * MIPS it seems. The standard arches will not generate any code here.
3002 * Largest permitted alignment is 256 bytes due to the way we
3003 * handle the index determination for the smaller caches.
3005 * Make sure that nothing crazy happens if someone starts tinkering
3006 * around with ARCH_KMALLOC_MINALIGN
3008 BUILD_BUG_ON(KMALLOC_MIN_SIZE
> 256 ||
3009 (KMALLOC_MIN_SIZE
& (KMALLOC_MIN_SIZE
- 1)));
3011 for (i
= 8; i
< KMALLOC_MIN_SIZE
; i
+= 8)
3012 size_index
[(i
- 1) / 8] = KMALLOC_SHIFT_LOW
;
3014 if (KMALLOC_MIN_SIZE
== 128) {
3016 * The 192 byte sized cache is not used if the alignment
3017 * is 128 byte. Redirect kmalloc to use the 256 byte cache
3020 for (i
= 128 + 8; i
<= 192; i
+= 8)
3021 size_index
[(i
- 1) / 8] = 8;
3026 /* Provide the correct kmalloc names now that the caches are up */
3027 for (i
= KMALLOC_SHIFT_LOW
; i
< SLUB_PAGE_SHIFT
; i
++)
3028 kmalloc_caches
[i
]. name
=
3029 kasprintf(GFP_KERNEL
, "kmalloc-%d", 1 << i
);
3032 register_cpu_notifier(&slab_notifier
);
3033 kmem_size
= offsetof(struct kmem_cache
, cpu_slab
) +
3034 nr_cpu_ids
* sizeof(struct kmem_cache_cpu
*);
3036 kmem_size
= sizeof(struct kmem_cache
);
3040 "SLUB: Genslabs=%d, HWalign=%d, Order=%d-%d, MinObjects=%d,"
3041 " CPUs=%d, Nodes=%d\n",
3042 caches
, cache_line_size(),
3043 slub_min_order
, slub_max_order
, slub_min_objects
,
3044 nr_cpu_ids
, nr_node_ids
);
3048 * Find a mergeable slab cache
3050 static int slab_unmergeable(struct kmem_cache
*s
)
3052 if (slub_nomerge
|| (s
->flags
& SLUB_NEVER_MERGE
))
3059 * We may have set a slab to be unmergeable during bootstrap.
3061 if (s
->refcount
< 0)
3067 static struct kmem_cache
*find_mergeable(size_t size
,
3068 size_t align
, unsigned long flags
, const char *name
,
3069 void (*ctor
)(void *))
3071 struct kmem_cache
*s
;
3073 if (slub_nomerge
|| (flags
& SLUB_NEVER_MERGE
))
3079 size
= ALIGN(size
, sizeof(void *));
3080 align
= calculate_alignment(flags
, align
, size
);
3081 size
= ALIGN(size
, align
);
3082 flags
= kmem_cache_flags(size
, flags
, name
, NULL
);
3084 list_for_each_entry(s
, &slab_caches
, list
) {
3085 if (slab_unmergeable(s
))
3091 if ((flags
& SLUB_MERGE_SAME
) != (s
->flags
& SLUB_MERGE_SAME
))
3094 * Check if alignment is compatible.
3095 * Courtesy of Adrian Drzewiecki
3097 if ((s
->size
& ~(align
- 1)) != s
->size
)
3100 if (s
->size
- size
>= sizeof(void *))
3108 struct kmem_cache
*kmem_cache_create(const char *name
, size_t size
,
3109 size_t align
, unsigned long flags
, void (*ctor
)(void *))
3111 struct kmem_cache
*s
;
3113 down_write(&slub_lock
);
3114 s
= find_mergeable(size
, align
, flags
, name
, ctor
);
3120 * Adjust the object sizes so that we clear
3121 * the complete object on kzalloc.
3123 s
->objsize
= max(s
->objsize
, (int)size
);
3126 * And then we need to update the object size in the
3127 * per cpu structures
3129 for_each_online_cpu(cpu
)
3130 get_cpu_slab(s
, cpu
)->objsize
= s
->objsize
;
3132 s
->inuse
= max_t(int, s
->inuse
, ALIGN(size
, sizeof(void *)));
3133 up_write(&slub_lock
);
3135 if (sysfs_slab_alias(s
, name
)) {
3136 down_write(&slub_lock
);
3138 up_write(&slub_lock
);
3144 s
= kmalloc(kmem_size
, GFP_KERNEL
);
3146 if (kmem_cache_open(s
, GFP_KERNEL
, name
,
3147 size
, align
, flags
, ctor
)) {
3148 list_add(&s
->list
, &slab_caches
);
3149 up_write(&slub_lock
);
3150 if (sysfs_slab_add(s
)) {
3151 down_write(&slub_lock
);
3153 up_write(&slub_lock
);
3161 up_write(&slub_lock
);
3164 if (flags
& SLAB_PANIC
)
3165 panic("Cannot create slabcache %s\n", name
);
3170 EXPORT_SYMBOL(kmem_cache_create
);
3174 * Use the cpu notifier to insure that the cpu slabs are flushed when
3177 static int __cpuinit
slab_cpuup_callback(struct notifier_block
*nfb
,
3178 unsigned long action
, void *hcpu
)
3180 long cpu
= (long)hcpu
;
3181 struct kmem_cache
*s
;
3182 unsigned long flags
;
3185 case CPU_UP_PREPARE
:
3186 case CPU_UP_PREPARE_FROZEN
:
3187 init_alloc_cpu_cpu(cpu
);
3188 down_read(&slub_lock
);
3189 list_for_each_entry(s
, &slab_caches
, list
)
3190 s
->cpu_slab
[cpu
] = alloc_kmem_cache_cpu(s
, cpu
,
3192 up_read(&slub_lock
);
3195 case CPU_UP_CANCELED
:
3196 case CPU_UP_CANCELED_FROZEN
:
3198 case CPU_DEAD_FROZEN
:
3199 down_read(&slub_lock
);
3200 list_for_each_entry(s
, &slab_caches
, list
) {
3201 struct kmem_cache_cpu
*c
= get_cpu_slab(s
, cpu
);
3203 local_irq_save(flags
);
3204 __flush_cpu_slab(s
, cpu
);
3205 local_irq_restore(flags
);
3206 free_kmem_cache_cpu(c
, cpu
);
3207 s
->cpu_slab
[cpu
] = NULL
;
3209 up_read(&slub_lock
);
3217 static struct notifier_block __cpuinitdata slab_notifier
= {
3218 .notifier_call
= slab_cpuup_callback
3223 void *__kmalloc_track_caller(size_t size
, gfp_t gfpflags
, unsigned long caller
)
3225 struct kmem_cache
*s
;
3227 if (unlikely(size
> SLUB_MAX_SIZE
))
3228 return kmalloc_large(size
, gfpflags
);
3230 s
= get_slab(size
, gfpflags
);
3232 if (unlikely(ZERO_OR_NULL_PTR(s
)))
3235 return slab_alloc(s
, gfpflags
, -1, caller
);
3238 void *__kmalloc_node_track_caller(size_t size
, gfp_t gfpflags
,
3239 int node
, unsigned long caller
)
3241 struct kmem_cache
*s
;
3243 if (unlikely(size
> SLUB_MAX_SIZE
))
3244 return kmalloc_large_node(size
, gfpflags
, node
);
3246 s
= get_slab(size
, gfpflags
);
3248 if (unlikely(ZERO_OR_NULL_PTR(s
)))
3251 return slab_alloc(s
, gfpflags
, node
, caller
);
3254 #ifdef CONFIG_SLUB_DEBUG
3255 static unsigned long count_partial(struct kmem_cache_node
*n
,
3256 int (*get_count
)(struct page
*))
3258 unsigned long flags
;
3259 unsigned long x
= 0;
3262 spin_lock_irqsave(&n
->list_lock
, flags
);
3263 list_for_each_entry(page
, &n
->partial
, lru
)
3264 x
+= get_count(page
);
3265 spin_unlock_irqrestore(&n
->list_lock
, flags
);
3269 static int count_inuse(struct page
*page
)
3274 static int count_total(struct page
*page
)
3276 return page
->objects
;
3279 static int count_free(struct page
*page
)
3281 return page
->objects
- page
->inuse
;
3284 static int validate_slab(struct kmem_cache
*s
, struct page
*page
,
3288 void *addr
= page_address(page
);
3290 if (!check_slab(s
, page
) ||
3291 !on_freelist(s
, page
, NULL
))
3294 /* Now we know that a valid freelist exists */
3295 bitmap_zero(map
, page
->objects
);
3297 for_each_free_object(p
, s
, page
->freelist
) {
3298 set_bit(slab_index(p
, s
, addr
), map
);
3299 if (!check_object(s
, page
, p
, 0))
3303 for_each_object(p
, s
, addr
, page
->objects
)
3304 if (!test_bit(slab_index(p
, s
, addr
), map
))
3305 if (!check_object(s
, page
, p
, 1))
3310 static void validate_slab_slab(struct kmem_cache
*s
, struct page
*page
,
3313 if (slab_trylock(page
)) {
3314 validate_slab(s
, page
, map
);
3317 printk(KERN_INFO
"SLUB %s: Skipped busy slab 0x%p\n",
3320 if (s
->flags
& DEBUG_DEFAULT_FLAGS
) {
3321 if (!PageSlubDebug(page
))
3322 printk(KERN_ERR
"SLUB %s: SlubDebug not set "
3323 "on slab 0x%p\n", s
->name
, page
);
3325 if (PageSlubDebug(page
))
3326 printk(KERN_ERR
"SLUB %s: SlubDebug set on "
3327 "slab 0x%p\n", s
->name
, page
);
3331 static int validate_slab_node(struct kmem_cache
*s
,
3332 struct kmem_cache_node
*n
, unsigned long *map
)
3334 unsigned long count
= 0;
3336 unsigned long flags
;
3338 spin_lock_irqsave(&n
->list_lock
, flags
);
3340 list_for_each_entry(page
, &n
->partial
, lru
) {
3341 validate_slab_slab(s
, page
, map
);
3344 if (count
!= n
->nr_partial
)
3345 printk(KERN_ERR
"SLUB %s: %ld partial slabs counted but "
3346 "counter=%ld\n", s
->name
, count
, n
->nr_partial
);
3348 if (!(s
->flags
& SLAB_STORE_USER
))
3351 list_for_each_entry(page
, &n
->full
, lru
) {
3352 validate_slab_slab(s
, page
, map
);
3355 if (count
!= atomic_long_read(&n
->nr_slabs
))
3356 printk(KERN_ERR
"SLUB: %s %ld slabs counted but "
3357 "counter=%ld\n", s
->name
, count
,
3358 atomic_long_read(&n
->nr_slabs
));
3361 spin_unlock_irqrestore(&n
->list_lock
, flags
);
3365 static long validate_slab_cache(struct kmem_cache
*s
)
3368 unsigned long count
= 0;
3369 unsigned long *map
= kmalloc(BITS_TO_LONGS(oo_objects(s
->max
)) *
3370 sizeof(unsigned long), GFP_KERNEL
);
3376 for_each_node_state(node
, N_NORMAL_MEMORY
) {
3377 struct kmem_cache_node
*n
= get_node(s
, node
);
3379 count
+= validate_slab_node(s
, n
, map
);
3385 #ifdef SLUB_RESILIENCY_TEST
3386 static void resiliency_test(void)
3390 printk(KERN_ERR
"SLUB resiliency testing\n");
3391 printk(KERN_ERR
"-----------------------\n");
3392 printk(KERN_ERR
"A. Corruption after allocation\n");
3394 p
= kzalloc(16, GFP_KERNEL
);
3396 printk(KERN_ERR
"\n1. kmalloc-16: Clobber Redzone/next pointer"
3397 " 0x12->0x%p\n\n", p
+ 16);
3399 validate_slab_cache(kmalloc_caches
+ 4);
3401 /* Hmmm... The next two are dangerous */
3402 p
= kzalloc(32, GFP_KERNEL
);
3403 p
[32 + sizeof(void *)] = 0x34;
3404 printk(KERN_ERR
"\n2. kmalloc-32: Clobber next pointer/next slab"
3405 " 0x34 -> -0x%p\n", p
);
3407 "If allocated object is overwritten then not detectable\n\n");
3409 validate_slab_cache(kmalloc_caches
+ 5);
3410 p
= kzalloc(64, GFP_KERNEL
);
3411 p
+= 64 + (get_cycles() & 0xff) * sizeof(void *);
3413 printk(KERN_ERR
"\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
3416 "If allocated object is overwritten then not detectable\n\n");
3417 validate_slab_cache(kmalloc_caches
+ 6);
3419 printk(KERN_ERR
"\nB. Corruption after free\n");
3420 p
= kzalloc(128, GFP_KERNEL
);
3423 printk(KERN_ERR
"1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p
);
3424 validate_slab_cache(kmalloc_caches
+ 7);
3426 p
= kzalloc(256, GFP_KERNEL
);
3429 printk(KERN_ERR
"\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n",
3431 validate_slab_cache(kmalloc_caches
+ 8);
3433 p
= kzalloc(512, GFP_KERNEL
);
3436 printk(KERN_ERR
"\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p
);
3437 validate_slab_cache(kmalloc_caches
+ 9);
3440 static void resiliency_test(void) {};
3444 * Generate lists of code addresses where slabcache objects are allocated
3449 unsigned long count
;
3456 DECLARE_BITMAP(cpus
, NR_CPUS
);
3462 unsigned long count
;
3463 struct location
*loc
;
3466 static void free_loc_track(struct loc_track
*t
)
3469 free_pages((unsigned long)t
->loc
,
3470 get_order(sizeof(struct location
) * t
->max
));
3473 static int alloc_loc_track(struct loc_track
*t
, unsigned long max
, gfp_t flags
)
3478 order
= get_order(sizeof(struct location
) * max
);
3480 l
= (void *)__get_free_pages(flags
, order
);
3485 memcpy(l
, t
->loc
, sizeof(struct location
) * t
->count
);
3493 static int add_location(struct loc_track
*t
, struct kmem_cache
*s
,
3494 const struct track
*track
)
3496 long start
, end
, pos
;
3498 unsigned long caddr
;
3499 unsigned long age
= jiffies
- track
->when
;
3505 pos
= start
+ (end
- start
+ 1) / 2;
3508 * There is nothing at "end". If we end up there
3509 * we need to add something to before end.
3514 caddr
= t
->loc
[pos
].addr
;
3515 if (track
->addr
== caddr
) {
3521 if (age
< l
->min_time
)
3523 if (age
> l
->max_time
)
3526 if (track
->pid
< l
->min_pid
)
3527 l
->min_pid
= track
->pid
;
3528 if (track
->pid
> l
->max_pid
)
3529 l
->max_pid
= track
->pid
;
3531 cpumask_set_cpu(track
->cpu
,
3532 to_cpumask(l
->cpus
));
3534 node_set(page_to_nid(virt_to_page(track
)), l
->nodes
);
3538 if (track
->addr
< caddr
)
3545 * Not found. Insert new tracking element.
3547 if (t
->count
>= t
->max
&& !alloc_loc_track(t
, 2 * t
->max
, GFP_ATOMIC
))
3553 (t
->count
- pos
) * sizeof(struct location
));
3556 l
->addr
= track
->addr
;
3560 l
->min_pid
= track
->pid
;
3561 l
->max_pid
= track
->pid
;
3562 cpumask_clear(to_cpumask(l
->cpus
));
3563 cpumask_set_cpu(track
->cpu
, to_cpumask(l
->cpus
));
3564 nodes_clear(l
->nodes
);
3565 node_set(page_to_nid(virt_to_page(track
)), l
->nodes
);
3569 static void process_slab(struct loc_track
*t
, struct kmem_cache
*s
,
3570 struct page
*page
, enum track_item alloc
)
3572 void *addr
= page_address(page
);
3573 DECLARE_BITMAP(map
, page
->objects
);
3576 bitmap_zero(map
, page
->objects
);
3577 for_each_free_object(p
, s
, page
->freelist
)
3578 set_bit(slab_index(p
, s
, addr
), map
);
3580 for_each_object(p
, s
, addr
, page
->objects
)
3581 if (!test_bit(slab_index(p
, s
, addr
), map
))
3582 add_location(t
, s
, get_track(s
, p
, alloc
));
3585 static int list_locations(struct kmem_cache
*s
, char *buf
,
3586 enum track_item alloc
)
3590 struct loc_track t
= { 0, 0, NULL
};
3593 if (!alloc_loc_track(&t
, PAGE_SIZE
/ sizeof(struct location
),
3595 return sprintf(buf
, "Out of memory\n");
3597 /* Push back cpu slabs */
3600 for_each_node_state(node
, N_NORMAL_MEMORY
) {
3601 struct kmem_cache_node
*n
= get_node(s
, node
);
3602 unsigned long flags
;
3605 if (!atomic_long_read(&n
->nr_slabs
))
3608 spin_lock_irqsave(&n
->list_lock
, flags
);
3609 list_for_each_entry(page
, &n
->partial
, lru
)
3610 process_slab(&t
, s
, page
, alloc
);
3611 list_for_each_entry(page
, &n
->full
, lru
)
3612 process_slab(&t
, s
, page
, alloc
);
3613 spin_unlock_irqrestore(&n
->list_lock
, flags
);
3616 for (i
= 0; i
< t
.count
; i
++) {
3617 struct location
*l
= &t
.loc
[i
];
3619 if (len
> PAGE_SIZE
- KSYM_SYMBOL_LEN
- 100)
3621 len
+= sprintf(buf
+ len
, "%7ld ", l
->count
);
3624 len
+= sprint_symbol(buf
+ len
, (unsigned long)l
->addr
);
3626 len
+= sprintf(buf
+ len
, "<not-available>");
3628 if (l
->sum_time
!= l
->min_time
) {
3629 len
+= sprintf(buf
+ len
, " age=%ld/%ld/%ld",
3631 (long)div_u64(l
->sum_time
, l
->count
),
3634 len
+= sprintf(buf
+ len
, " age=%ld",
3637 if (l
->min_pid
!= l
->max_pid
)
3638 len
+= sprintf(buf
+ len
, " pid=%ld-%ld",
3639 l
->min_pid
, l
->max_pid
);
3641 len
+= sprintf(buf
+ len
, " pid=%ld",
3644 if (num_online_cpus() > 1 &&
3645 !cpumask_empty(to_cpumask(l
->cpus
)) &&
3646 len
< PAGE_SIZE
- 60) {
3647 len
+= sprintf(buf
+ len
, " cpus=");
3648 len
+= cpulist_scnprintf(buf
+ len
, PAGE_SIZE
- len
- 50,
3649 to_cpumask(l
->cpus
));
3652 if (num_online_nodes() > 1 && !nodes_empty(l
->nodes
) &&
3653 len
< PAGE_SIZE
- 60) {
3654 len
+= sprintf(buf
+ len
, " nodes=");
3655 len
+= nodelist_scnprintf(buf
+ len
, PAGE_SIZE
- len
- 50,
3659 len
+= sprintf(buf
+ len
, "\n");
3664 len
+= sprintf(buf
, "No data\n");
3668 enum slab_stat_type
{
3669 SL_ALL
, /* All slabs */
3670 SL_PARTIAL
, /* Only partially allocated slabs */
3671 SL_CPU
, /* Only slabs used for cpu caches */
3672 SL_OBJECTS
, /* Determine allocated objects not slabs */
3673 SL_TOTAL
/* Determine object capacity not slabs */
3676 #define SO_ALL (1 << SL_ALL)
3677 #define SO_PARTIAL (1 << SL_PARTIAL)
3678 #define SO_CPU (1 << SL_CPU)
3679 #define SO_OBJECTS (1 << SL_OBJECTS)
3680 #define SO_TOTAL (1 << SL_TOTAL)
3682 static ssize_t
show_slab_objects(struct kmem_cache
*s
,
3683 char *buf
, unsigned long flags
)
3685 unsigned long total
= 0;
3688 unsigned long *nodes
;
3689 unsigned long *per_cpu
;
3691 nodes
= kzalloc(2 * sizeof(unsigned long) * nr_node_ids
, GFP_KERNEL
);
3694 per_cpu
= nodes
+ nr_node_ids
;
3696 if (flags
& SO_CPU
) {
3699 for_each_possible_cpu(cpu
) {
3700 struct kmem_cache_cpu
*c
= get_cpu_slab(s
, cpu
);
3702 if (!c
|| c
->node
< 0)
3706 if (flags
& SO_TOTAL
)
3707 x
= c
->page
->objects
;
3708 else if (flags
& SO_OBJECTS
)
3714 nodes
[c
->node
] += x
;
3720 if (flags
& SO_ALL
) {
3721 for_each_node_state(node
, N_NORMAL_MEMORY
) {
3722 struct kmem_cache_node
*n
= get_node(s
, node
);
3724 if (flags
& SO_TOTAL
)
3725 x
= atomic_long_read(&n
->total_objects
);
3726 else if (flags
& SO_OBJECTS
)
3727 x
= atomic_long_read(&n
->total_objects
) -
3728 count_partial(n
, count_free
);
3731 x
= atomic_long_read(&n
->nr_slabs
);
3736 } else if (flags
& SO_PARTIAL
) {
3737 for_each_node_state(node
, N_NORMAL_MEMORY
) {
3738 struct kmem_cache_node
*n
= get_node(s
, node
);
3740 if (flags
& SO_TOTAL
)
3741 x
= count_partial(n
, count_total
);
3742 else if (flags
& SO_OBJECTS
)
3743 x
= count_partial(n
, count_inuse
);
3750 x
= sprintf(buf
, "%lu", total
);
3752 for_each_node_state(node
, N_NORMAL_MEMORY
)
3754 x
+= sprintf(buf
+ x
, " N%d=%lu",
3758 return x
+ sprintf(buf
+ x
, "\n");
3761 static int any_slab_objects(struct kmem_cache
*s
)
3765 for_each_online_node(node
) {
3766 struct kmem_cache_node
*n
= get_node(s
, node
);
3771 if (atomic_long_read(&n
->total_objects
))
3777 #define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
3778 #define to_slab(n) container_of(n, struct kmem_cache, kobj);
3780 struct slab_attribute
{
3781 struct attribute attr
;
3782 ssize_t (*show
)(struct kmem_cache
*s
, char *buf
);
3783 ssize_t (*store
)(struct kmem_cache
*s
, const char *x
, size_t count
);
3786 #define SLAB_ATTR_RO(_name) \
3787 static struct slab_attribute _name##_attr = __ATTR_RO(_name)
3789 #define SLAB_ATTR(_name) \
3790 static struct slab_attribute _name##_attr = \
3791 __ATTR(_name, 0644, _name##_show, _name##_store)
3793 static ssize_t
slab_size_show(struct kmem_cache
*s
, char *buf
)
3795 return sprintf(buf
, "%d\n", s
->size
);
3797 SLAB_ATTR_RO(slab_size
);
3799 static ssize_t
align_show(struct kmem_cache
*s
, char *buf
)
3801 return sprintf(buf
, "%d\n", s
->align
);
3803 SLAB_ATTR_RO(align
);
3805 static ssize_t
object_size_show(struct kmem_cache
*s
, char *buf
)
3807 return sprintf(buf
, "%d\n", s
->objsize
);
3809 SLAB_ATTR_RO(object_size
);
3811 static ssize_t
objs_per_slab_show(struct kmem_cache
*s
, char *buf
)
3813 return sprintf(buf
, "%d\n", oo_objects(s
->oo
));
3815 SLAB_ATTR_RO(objs_per_slab
);
3817 static ssize_t
order_store(struct kmem_cache
*s
,
3818 const char *buf
, size_t length
)
3820 unsigned long order
;
3823 err
= strict_strtoul(buf
, 10, &order
);
3827 if (order
> slub_max_order
|| order
< slub_min_order
)
3830 calculate_sizes(s
, order
);
3834 static ssize_t
order_show(struct kmem_cache
*s
, char *buf
)
3836 return sprintf(buf
, "%d\n", oo_order(s
->oo
));
3840 static ssize_t
min_partial_show(struct kmem_cache
*s
, char *buf
)
3842 return sprintf(buf
, "%lu\n", s
->min_partial
);
3845 static ssize_t
min_partial_store(struct kmem_cache
*s
, const char *buf
,
3851 err
= strict_strtoul(buf
, 10, &min
);
3855 set_min_partial(s
, min
);
3858 SLAB_ATTR(min_partial
);
3860 static ssize_t
ctor_show(struct kmem_cache
*s
, char *buf
)
3863 int n
= sprint_symbol(buf
, (unsigned long)s
->ctor
);
3865 return n
+ sprintf(buf
+ n
, "\n");
3871 static ssize_t
aliases_show(struct kmem_cache
*s
, char *buf
)
3873 return sprintf(buf
, "%d\n", s
->refcount
- 1);
3875 SLAB_ATTR_RO(aliases
);
3877 static ssize_t
slabs_show(struct kmem_cache
*s
, char *buf
)
3879 return show_slab_objects(s
, buf
, SO_ALL
);
3881 SLAB_ATTR_RO(slabs
);
3883 static ssize_t
partial_show(struct kmem_cache
*s
, char *buf
)
3885 return show_slab_objects(s
, buf
, SO_PARTIAL
);
3887 SLAB_ATTR_RO(partial
);
3889 static ssize_t
cpu_slabs_show(struct kmem_cache
*s
, char *buf
)
3891 return show_slab_objects(s
, buf
, SO_CPU
);
3893 SLAB_ATTR_RO(cpu_slabs
);
3895 static ssize_t
objects_show(struct kmem_cache
*s
, char *buf
)
3897 return show_slab_objects(s
, buf
, SO_ALL
|SO_OBJECTS
);
3899 SLAB_ATTR_RO(objects
);
3901 static ssize_t
objects_partial_show(struct kmem_cache
*s
, char *buf
)
3903 return show_slab_objects(s
, buf
, SO_PARTIAL
|SO_OBJECTS
);
3905 SLAB_ATTR_RO(objects_partial
);
3907 static ssize_t
total_objects_show(struct kmem_cache
*s
, char *buf
)
3909 return show_slab_objects(s
, buf
, SO_ALL
|SO_TOTAL
);
3911 SLAB_ATTR_RO(total_objects
);
3913 static ssize_t
sanity_checks_show(struct kmem_cache
*s
, char *buf
)
3915 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_DEBUG_FREE
));
3918 static ssize_t
sanity_checks_store(struct kmem_cache
*s
,
3919 const char *buf
, size_t length
)
3921 s
->flags
&= ~SLAB_DEBUG_FREE
;
3923 s
->flags
|= SLAB_DEBUG_FREE
;
3926 SLAB_ATTR(sanity_checks
);
3928 static ssize_t
trace_show(struct kmem_cache
*s
, char *buf
)
3930 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_TRACE
));
3933 static ssize_t
trace_store(struct kmem_cache
*s
, const char *buf
,
3936 s
->flags
&= ~SLAB_TRACE
;
3938 s
->flags
|= SLAB_TRACE
;
3943 static ssize_t
reclaim_account_show(struct kmem_cache
*s
, char *buf
)
3945 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_RECLAIM_ACCOUNT
));
3948 static ssize_t
reclaim_account_store(struct kmem_cache
*s
,
3949 const char *buf
, size_t length
)
3951 s
->flags
&= ~SLAB_RECLAIM_ACCOUNT
;
3953 s
->flags
|= SLAB_RECLAIM_ACCOUNT
;
3956 SLAB_ATTR(reclaim_account
);
3958 static ssize_t
hwcache_align_show(struct kmem_cache
*s
, char *buf
)
3960 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_HWCACHE_ALIGN
));
3962 SLAB_ATTR_RO(hwcache_align
);
3964 #ifdef CONFIG_ZONE_DMA
3965 static ssize_t
cache_dma_show(struct kmem_cache
*s
, char *buf
)
3967 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_CACHE_DMA
));
3969 SLAB_ATTR_RO(cache_dma
);
3972 static ssize_t
destroy_by_rcu_show(struct kmem_cache
*s
, char *buf
)
3974 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_DESTROY_BY_RCU
));
3976 SLAB_ATTR_RO(destroy_by_rcu
);
3978 static ssize_t
red_zone_show(struct kmem_cache
*s
, char *buf
)
3980 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_RED_ZONE
));
3983 static ssize_t
red_zone_store(struct kmem_cache
*s
,
3984 const char *buf
, size_t length
)
3986 if (any_slab_objects(s
))
3989 s
->flags
&= ~SLAB_RED_ZONE
;
3991 s
->flags
|= SLAB_RED_ZONE
;
3992 calculate_sizes(s
, -1);
3995 SLAB_ATTR(red_zone
);
3997 static ssize_t
poison_show(struct kmem_cache
*s
, char *buf
)
3999 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_POISON
));
4002 static ssize_t
poison_store(struct kmem_cache
*s
,
4003 const char *buf
, size_t length
)
4005 if (any_slab_objects(s
))
4008 s
->flags
&= ~SLAB_POISON
;
4010 s
->flags
|= SLAB_POISON
;
4011 calculate_sizes(s
, -1);
4016 static ssize_t
store_user_show(struct kmem_cache
*s
, char *buf
)
4018 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_STORE_USER
));
4021 static ssize_t
store_user_store(struct kmem_cache
*s
,
4022 const char *buf
, size_t length
)
4024 if (any_slab_objects(s
))
4027 s
->flags
&= ~SLAB_STORE_USER
;
4029 s
->flags
|= SLAB_STORE_USER
;
4030 calculate_sizes(s
, -1);
4033 SLAB_ATTR(store_user
);
4035 static ssize_t
validate_show(struct kmem_cache
*s
, char *buf
)
4040 static ssize_t
validate_store(struct kmem_cache
*s
,
4041 const char *buf
, size_t length
)
4045 if (buf
[0] == '1') {
4046 ret
= validate_slab_cache(s
);
4052 SLAB_ATTR(validate
);
4054 static ssize_t
shrink_show(struct kmem_cache
*s
, char *buf
)
4059 static ssize_t
shrink_store(struct kmem_cache
*s
,
4060 const char *buf
, size_t length
)
4062 if (buf
[0] == '1') {
4063 int rc
= kmem_cache_shrink(s
);
4073 static ssize_t
alloc_calls_show(struct kmem_cache
*s
, char *buf
)
4075 if (!(s
->flags
& SLAB_STORE_USER
))
4077 return list_locations(s
, buf
, TRACK_ALLOC
);
4079 SLAB_ATTR_RO(alloc_calls
);
4081 static ssize_t
free_calls_show(struct kmem_cache
*s
, char *buf
)
4083 if (!(s
->flags
& SLAB_STORE_USER
))
4085 return list_locations(s
, buf
, TRACK_FREE
);
4087 SLAB_ATTR_RO(free_calls
);
4090 static ssize_t
remote_node_defrag_ratio_show(struct kmem_cache
*s
, char *buf
)
4092 return sprintf(buf
, "%d\n", s
->remote_node_defrag_ratio
/ 10);
4095 static ssize_t
remote_node_defrag_ratio_store(struct kmem_cache
*s
,
4096 const char *buf
, size_t length
)
4098 unsigned long ratio
;
4101 err
= strict_strtoul(buf
, 10, &ratio
);
4106 s
->remote_node_defrag_ratio
= ratio
* 10;
4110 SLAB_ATTR(remote_node_defrag_ratio
);
4113 #ifdef CONFIG_SLUB_STATS
4114 static int show_stat(struct kmem_cache
*s
, char *buf
, enum stat_item si
)
4116 unsigned long sum
= 0;
4119 int *data
= kmalloc(nr_cpu_ids
* sizeof(int), GFP_KERNEL
);
4124 for_each_online_cpu(cpu
) {
4125 unsigned x
= get_cpu_slab(s
, cpu
)->stat
[si
];
4131 len
= sprintf(buf
, "%lu", sum
);
4134 for_each_online_cpu(cpu
) {
4135 if (data
[cpu
] && len
< PAGE_SIZE
- 20)
4136 len
+= sprintf(buf
+ len
, " C%d=%u", cpu
, data
[cpu
]);
4140 return len
+ sprintf(buf
+ len
, "\n");
4143 #define STAT_ATTR(si, text) \
4144 static ssize_t text##_show(struct kmem_cache *s, char *buf) \
4146 return show_stat(s, buf, si); \
4148 SLAB_ATTR_RO(text); \
4150 STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
4151 STAT_ATTR(ALLOC_SLOWPATH
, alloc_slowpath
);
4152 STAT_ATTR(FREE_FASTPATH
, free_fastpath
);
4153 STAT_ATTR(FREE_SLOWPATH
, free_slowpath
);
4154 STAT_ATTR(FREE_FROZEN
, free_frozen
);
4155 STAT_ATTR(FREE_ADD_PARTIAL
, free_add_partial
);
4156 STAT_ATTR(FREE_REMOVE_PARTIAL
, free_remove_partial
);
4157 STAT_ATTR(ALLOC_FROM_PARTIAL
, alloc_from_partial
);
4158 STAT_ATTR(ALLOC_SLAB
, alloc_slab
);
4159 STAT_ATTR(ALLOC_REFILL
, alloc_refill
);
4160 STAT_ATTR(FREE_SLAB
, free_slab
);
4161 STAT_ATTR(CPUSLAB_FLUSH
, cpuslab_flush
);
4162 STAT_ATTR(DEACTIVATE_FULL
, deactivate_full
);
4163 STAT_ATTR(DEACTIVATE_EMPTY
, deactivate_empty
);
4164 STAT_ATTR(DEACTIVATE_TO_HEAD
, deactivate_to_head
);
4165 STAT_ATTR(DEACTIVATE_TO_TAIL
, deactivate_to_tail
);
4166 STAT_ATTR(DEACTIVATE_REMOTE_FREES
, deactivate_remote_frees
);
4167 STAT_ATTR(ORDER_FALLBACK
, order_fallback
);
4170 static struct attribute
*slab_attrs
[] = {
4171 &slab_size_attr
.attr
,
4172 &object_size_attr
.attr
,
4173 &objs_per_slab_attr
.attr
,
4175 &min_partial_attr
.attr
,
4177 &objects_partial_attr
.attr
,
4178 &total_objects_attr
.attr
,
4181 &cpu_slabs_attr
.attr
,
4185 &sanity_checks_attr
.attr
,
4187 &hwcache_align_attr
.attr
,
4188 &reclaim_account_attr
.attr
,
4189 &destroy_by_rcu_attr
.attr
,
4190 &red_zone_attr
.attr
,
4192 &store_user_attr
.attr
,
4193 &validate_attr
.attr
,
4195 &alloc_calls_attr
.attr
,
4196 &free_calls_attr
.attr
,
4197 #ifdef CONFIG_ZONE_DMA
4198 &cache_dma_attr
.attr
,
4201 &remote_node_defrag_ratio_attr
.attr
,
4203 #ifdef CONFIG_SLUB_STATS
4204 &alloc_fastpath_attr
.attr
,
4205 &alloc_slowpath_attr
.attr
,
4206 &free_fastpath_attr
.attr
,
4207 &free_slowpath_attr
.attr
,
4208 &free_frozen_attr
.attr
,
4209 &free_add_partial_attr
.attr
,
4210 &free_remove_partial_attr
.attr
,
4211 &alloc_from_partial_attr
.attr
,
4212 &alloc_slab_attr
.attr
,
4213 &alloc_refill_attr
.attr
,
4214 &free_slab_attr
.attr
,
4215 &cpuslab_flush_attr
.attr
,
4216 &deactivate_full_attr
.attr
,
4217 &deactivate_empty_attr
.attr
,
4218 &deactivate_to_head_attr
.attr
,
4219 &deactivate_to_tail_attr
.attr
,
4220 &deactivate_remote_frees_attr
.attr
,
4221 &order_fallback_attr
.attr
,
4226 static struct attribute_group slab_attr_group
= {
4227 .attrs
= slab_attrs
,
4230 static ssize_t
slab_attr_show(struct kobject
*kobj
,
4231 struct attribute
*attr
,
4234 struct slab_attribute
*attribute
;
4235 struct kmem_cache
*s
;
4238 attribute
= to_slab_attr(attr
);
4241 if (!attribute
->show
)
4244 err
= attribute
->show(s
, buf
);
4249 static ssize_t
slab_attr_store(struct kobject
*kobj
,
4250 struct attribute
*attr
,
4251 const char *buf
, size_t len
)
4253 struct slab_attribute
*attribute
;
4254 struct kmem_cache
*s
;
4257 attribute
= to_slab_attr(attr
);
4260 if (!attribute
->store
)
4263 err
= attribute
->store(s
, buf
, len
);
4268 static void kmem_cache_release(struct kobject
*kobj
)
4270 struct kmem_cache
*s
= to_slab(kobj
);
4275 static struct sysfs_ops slab_sysfs_ops
= {
4276 .show
= slab_attr_show
,
4277 .store
= slab_attr_store
,
4280 static struct kobj_type slab_ktype
= {
4281 .sysfs_ops
= &slab_sysfs_ops
,
4282 .release
= kmem_cache_release
4285 static int uevent_filter(struct kset
*kset
, struct kobject
*kobj
)
4287 struct kobj_type
*ktype
= get_ktype(kobj
);
4289 if (ktype
== &slab_ktype
)
4294 static struct kset_uevent_ops slab_uevent_ops
= {
4295 .filter
= uevent_filter
,
4298 static struct kset
*slab_kset
;
4300 #define ID_STR_LENGTH 64
4302 /* Create a unique string id for a slab cache:
4304 * Format :[flags-]size
4306 static char *create_unique_id(struct kmem_cache
*s
)
4308 char *name
= kmalloc(ID_STR_LENGTH
, GFP_KERNEL
);
4315 * First flags affecting slabcache operations. We will only
4316 * get here for aliasable slabs so we do not need to support
4317 * too many flags. The flags here must cover all flags that
4318 * are matched during merging to guarantee that the id is
4321 if (s
->flags
& SLAB_CACHE_DMA
)
4323 if (s
->flags
& SLAB_RECLAIM_ACCOUNT
)
4325 if (s
->flags
& SLAB_DEBUG_FREE
)
4329 p
+= sprintf(p
, "%07d", s
->size
);
4330 BUG_ON(p
> name
+ ID_STR_LENGTH
- 1);
4334 static int sysfs_slab_add(struct kmem_cache
*s
)
4340 if (slab_state
< SYSFS
)
4341 /* Defer until later */
4344 unmergeable
= slab_unmergeable(s
);
4347 * Slabcache can never be merged so we can use the name proper.
4348 * This is typically the case for debug situations. In that
4349 * case we can catch duplicate names easily.
4351 sysfs_remove_link(&slab_kset
->kobj
, s
->name
);
4355 * Create a unique name for the slab as a target
4358 name
= create_unique_id(s
);
4361 s
->kobj
.kset
= slab_kset
;
4362 err
= kobject_init_and_add(&s
->kobj
, &slab_ktype
, NULL
, name
);
4364 kobject_put(&s
->kobj
);
4368 err
= sysfs_create_group(&s
->kobj
, &slab_attr_group
);
4371 kobject_uevent(&s
->kobj
, KOBJ_ADD
);
4373 /* Setup first alias */
4374 sysfs_slab_alias(s
, s
->name
);
4380 static void sysfs_slab_remove(struct kmem_cache
*s
)
4382 kobject_uevent(&s
->kobj
, KOBJ_REMOVE
);
4383 kobject_del(&s
->kobj
);
4384 kobject_put(&s
->kobj
);
4388 * Need to buffer aliases during bootup until sysfs becomes
4389 * available lest we lose that information.
4391 struct saved_alias
{
4392 struct kmem_cache
*s
;
4394 struct saved_alias
*next
;
4397 static struct saved_alias
*alias_list
;
4399 static int sysfs_slab_alias(struct kmem_cache
*s
, const char *name
)
4401 struct saved_alias
*al
;
4403 if (slab_state
== SYSFS
) {
4405 * If we have a leftover link then remove it.
4407 sysfs_remove_link(&slab_kset
->kobj
, name
);
4408 return sysfs_create_link(&slab_kset
->kobj
, &s
->kobj
, name
);
4411 al
= kmalloc(sizeof(struct saved_alias
), GFP_KERNEL
);
4417 al
->next
= alias_list
;
4422 static int __init
slab_sysfs_init(void)
4424 struct kmem_cache
*s
;
4427 slab_kset
= kset_create_and_add("slab", &slab_uevent_ops
, kernel_kobj
);
4429 printk(KERN_ERR
"Cannot register slab subsystem.\n");
4435 list_for_each_entry(s
, &slab_caches
, list
) {
4436 err
= sysfs_slab_add(s
);
4438 printk(KERN_ERR
"SLUB: Unable to add boot slab %s"
4439 " to sysfs\n", s
->name
);
4442 while (alias_list
) {
4443 struct saved_alias
*al
= alias_list
;
4445 alias_list
= alias_list
->next
;
4446 err
= sysfs_slab_alias(al
->s
, al
->name
);
4448 printk(KERN_ERR
"SLUB: Unable to add boot slab alias"
4449 " %s to sysfs\n", s
->name
);
4457 __initcall(slab_sysfs_init
);
4461 * The /proc/slabinfo ABI
4463 #ifdef CONFIG_SLABINFO
4464 static void print_slabinfo_header(struct seq_file
*m
)
4466 seq_puts(m
, "slabinfo - version: 2.1\n");
4467 seq_puts(m
, "# name <active_objs> <num_objs> <objsize> "
4468 "<objperslab> <pagesperslab>");
4469 seq_puts(m
, " : tunables <limit> <batchcount> <sharedfactor>");
4470 seq_puts(m
, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
4474 static void *s_start(struct seq_file
*m
, loff_t
*pos
)
4478 down_read(&slub_lock
);
4480 print_slabinfo_header(m
);
4482 return seq_list_start(&slab_caches
, *pos
);
4485 static void *s_next(struct seq_file
*m
, void *p
, loff_t
*pos
)
4487 return seq_list_next(p
, &slab_caches
, pos
);
4490 static void s_stop(struct seq_file
*m
, void *p
)
4492 up_read(&slub_lock
);
4495 static int s_show(struct seq_file
*m
, void *p
)
4497 unsigned long nr_partials
= 0;
4498 unsigned long nr_slabs
= 0;
4499 unsigned long nr_inuse
= 0;
4500 unsigned long nr_objs
= 0;
4501 unsigned long nr_free
= 0;
4502 struct kmem_cache
*s
;
4505 s
= list_entry(p
, struct kmem_cache
, list
);
4507 for_each_online_node(node
) {
4508 struct kmem_cache_node
*n
= get_node(s
, node
);
4513 nr_partials
+= n
->nr_partial
;
4514 nr_slabs
+= atomic_long_read(&n
->nr_slabs
);
4515 nr_objs
+= atomic_long_read(&n
->total_objects
);
4516 nr_free
+= count_partial(n
, count_free
);
4519 nr_inuse
= nr_objs
- nr_free
;
4521 seq_printf(m
, "%-17s %6lu %6lu %6u %4u %4d", s
->name
, nr_inuse
,
4522 nr_objs
, s
->size
, oo_objects(s
->oo
),
4523 (1 << oo_order(s
->oo
)));
4524 seq_printf(m
, " : tunables %4u %4u %4u", 0, 0, 0);
4525 seq_printf(m
, " : slabdata %6lu %6lu %6lu", nr_slabs
, nr_slabs
,
4531 static const struct seq_operations slabinfo_op
= {
4538 static int slabinfo_open(struct inode
*inode
, struct file
*file
)
4540 return seq_open(file
, &slabinfo_op
);
4543 static const struct file_operations proc_slabinfo_operations
= {
4544 .open
= slabinfo_open
,
4546 .llseek
= seq_lseek
,
4547 .release
= seq_release
,
4550 static int __init
slab_proc_init(void)
4552 proc_create("slabinfo",S_IWUSR
|S_IRUGO
,NULL
,&proc_slabinfo_operations
);
4555 module_init(slab_proc_init
);
4556 #endif /* CONFIG_SLABINFO */