netdev: convert ni65 to net_device_ops
[linux-2.6/mini2440.git] / mm / slub.c
blobc65a4edafc3343e83a2513f8edab9b0ed82f3ab5
1 /*
2 * SLUB: A slab allocator that limits cache line use instead of queuing
3 * objects in per cpu and per node lists.
5 * The allocator synchronizes using per slab locks and only
6 * uses a centralized lock to manage a pool of partial slabs.
8 * (C) 2007 SGI, Christoph Lameter
9 */
11 #include <linux/mm.h>
12 #include <linux/module.h>
13 #include <linux/bit_spinlock.h>
14 #include <linux/interrupt.h>
15 #include <linux/bitops.h>
16 #include <linux/slab.h>
17 #include <linux/proc_fs.h>
18 #include <linux/seq_file.h>
19 #include <linux/cpu.h>
20 #include <linux/cpuset.h>
21 #include <linux/mempolicy.h>
22 #include <linux/ctype.h>
23 #include <linux/debugobjects.h>
24 #include <linux/kallsyms.h>
25 #include <linux/memory.h>
26 #include <linux/math64.h>
27 #include <linux/fault-inject.h>
30 * Lock order:
31 * 1. slab_lock(page)
32 * 2. slab->list_lock
34 * The slab_lock protects operations on the object of a particular
35 * slab and its metadata in the page struct. If the slab lock
36 * has been taken then no allocations nor frees can be performed
37 * on the objects in the slab nor can the slab be added or removed
38 * from the partial or full lists since this would mean modifying
39 * the page_struct of the slab.
41 * The list_lock protects the partial and full list on each node and
42 * the partial slab counter. If taken then no new slabs may be added or
43 * removed from the lists nor make the number of partial slabs be modified.
44 * (Note that the total number of slabs is an atomic value that may be
45 * modified without taking the list lock).
47 * The list_lock is a centralized lock and thus we avoid taking it as
48 * much as possible. As long as SLUB does not have to handle partial
49 * slabs, operations can continue without any centralized lock. F.e.
50 * allocating a long series of objects that fill up slabs does not require
51 * the list lock.
53 * The lock order is sometimes inverted when we are trying to get a slab
54 * off a list. We take the list_lock and then look for a page on the list
55 * to use. While we do that objects in the slabs may be freed. We can
56 * only operate on the slab if we have also taken the slab_lock. So we use
57 * a slab_trylock() on the slab. If trylock was successful then no frees
58 * can occur anymore and we can use the slab for allocations etc. If the
59 * slab_trylock() does not succeed then frees are in progress in the slab and
60 * we must stay away from it for a while since we may cause a bouncing
61 * cacheline if we try to acquire the lock. So go onto the next slab.
62 * If all pages are busy then we may allocate a new slab instead of reusing
63 * a partial slab. A new slab has noone operating on it and thus there is
64 * no danger of cacheline contention.
66 * Interrupts are disabled during allocation and deallocation in order to
67 * make the slab allocator safe to use in the context of an irq. In addition
68 * interrupts are disabled to ensure that the processor does not change
69 * while handling per_cpu slabs, due to kernel preemption.
71 * SLUB assigns one slab for allocation to each processor.
72 * Allocations only occur from these slabs called cpu slabs.
74 * Slabs with free elements are kept on a partial list and during regular
75 * operations no list for full slabs is used. If an object in a full slab is
76 * freed then the slab will show up again on the partial lists.
77 * We track full slabs for debugging purposes though because otherwise we
78 * cannot scan all objects.
80 * Slabs are freed when they become empty. Teardown and setup is
81 * minimal so we rely on the page allocators per cpu caches for
82 * fast frees and allocs.
84 * Overloading of page flags that are otherwise used for LRU management.
86 * PageActive The slab is frozen and exempt from list processing.
87 * This means that the slab is dedicated to a purpose
88 * such as satisfying allocations for a specific
89 * processor. Objects may be freed in the slab while
90 * it is frozen but slab_free will then skip the usual
91 * list operations. It is up to the processor holding
92 * the slab to integrate the slab into the slab lists
93 * when the slab is no longer needed.
95 * One use of this flag is to mark slabs that are
96 * used for allocations. Then such a slab becomes a cpu
97 * slab. The cpu slab may be equipped with an additional
98 * freelist that allows lockless access to
99 * free objects in addition to the regular freelist
100 * that requires the slab lock.
102 * PageError Slab requires special handling due to debug
103 * options set. This moves slab handling out of
104 * the fast path and disables lockless freelists.
107 #ifdef CONFIG_SLUB_DEBUG
108 #define SLABDEBUG 1
109 #else
110 #define SLABDEBUG 0
111 #endif
114 * Issues still to be resolved:
116 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
118 * - Variable sizing of the per node arrays
121 /* Enable to test recovery from slab corruption on boot */
122 #undef SLUB_RESILIENCY_TEST
125 * Mininum number of partial slabs. These will be left on the partial
126 * lists even if they are empty. kmem_cache_shrink may reclaim them.
128 #define MIN_PARTIAL 5
131 * Maximum number of desirable partial slabs.
132 * The existence of more partial slabs makes kmem_cache_shrink
133 * sort the partial list by the number of objects in the.
135 #define MAX_PARTIAL 10
137 #define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \
138 SLAB_POISON | SLAB_STORE_USER)
141 * Set of flags that will prevent slab merging
143 #define SLUB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
144 SLAB_TRACE | SLAB_DESTROY_BY_RCU)
146 #define SLUB_MERGE_SAME (SLAB_DEBUG_FREE | SLAB_RECLAIM_ACCOUNT | \
147 SLAB_CACHE_DMA)
149 #ifndef ARCH_KMALLOC_MINALIGN
150 #define ARCH_KMALLOC_MINALIGN __alignof__(unsigned long long)
151 #endif
153 #ifndef ARCH_SLAB_MINALIGN
154 #define ARCH_SLAB_MINALIGN __alignof__(unsigned long long)
155 #endif
157 #define OO_SHIFT 16
158 #define OO_MASK ((1 << OO_SHIFT) - 1)
159 #define MAX_OBJS_PER_PAGE 65535 /* since page.objects is u16 */
161 /* Internal SLUB flags */
162 #define __OBJECT_POISON 0x80000000 /* Poison object */
163 #define __SYSFS_ADD_DEFERRED 0x40000000 /* Not yet visible via sysfs */
165 static int kmem_size = sizeof(struct kmem_cache);
167 #ifdef CONFIG_SMP
168 static struct notifier_block slab_notifier;
169 #endif
171 static enum {
172 DOWN, /* No slab functionality available */
173 PARTIAL, /* kmem_cache_open() works but kmalloc does not */
174 UP, /* Everything works but does not show up in sysfs */
175 SYSFS /* Sysfs up */
176 } slab_state = DOWN;
178 /* A list of all slab caches on the system */
179 static DECLARE_RWSEM(slub_lock);
180 static LIST_HEAD(slab_caches);
183 * Tracking user of a slab.
185 struct track {
186 unsigned long addr; /* Called from address */
187 int cpu; /* Was running on cpu */
188 int pid; /* Pid context */
189 unsigned long when; /* When did the operation occur */
192 enum track_item { TRACK_ALLOC, TRACK_FREE };
194 #ifdef CONFIG_SLUB_DEBUG
195 static int sysfs_slab_add(struct kmem_cache *);
196 static int sysfs_slab_alias(struct kmem_cache *, const char *);
197 static void sysfs_slab_remove(struct kmem_cache *);
199 #else
200 static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
201 static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
202 { return 0; }
203 static inline void sysfs_slab_remove(struct kmem_cache *s)
205 kfree(s);
208 #endif
210 static inline void stat(struct kmem_cache_cpu *c, enum stat_item si)
212 #ifdef CONFIG_SLUB_STATS
213 c->stat[si]++;
214 #endif
217 /********************************************************************
218 * Core slab cache functions
219 *******************************************************************/
221 int slab_is_available(void)
223 return slab_state >= UP;
226 static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node)
228 #ifdef CONFIG_NUMA
229 return s->node[node];
230 #else
231 return &s->local_node;
232 #endif
235 static inline struct kmem_cache_cpu *get_cpu_slab(struct kmem_cache *s, int cpu)
237 #ifdef CONFIG_SMP
238 return s->cpu_slab[cpu];
239 #else
240 return &s->cpu_slab;
241 #endif
244 /* Verify that a pointer has an address that is valid within a slab page */
245 static inline int check_valid_pointer(struct kmem_cache *s,
246 struct page *page, const void *object)
248 void *base;
250 if (!object)
251 return 1;
253 base = page_address(page);
254 if (object < base || object >= base + page->objects * s->size ||
255 (object - base) % s->size) {
256 return 0;
259 return 1;
263 * Slow version of get and set free pointer.
265 * This version requires touching the cache lines of kmem_cache which
266 * we avoid to do in the fast alloc free paths. There we obtain the offset
267 * from the page struct.
269 static inline void *get_freepointer(struct kmem_cache *s, void *object)
271 return *(void **)(object + s->offset);
274 static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
276 *(void **)(object + s->offset) = fp;
279 /* Loop over all objects in a slab */
280 #define for_each_object(__p, __s, __addr, __objects) \
281 for (__p = (__addr); __p < (__addr) + (__objects) * (__s)->size;\
282 __p += (__s)->size)
284 /* Scan freelist */
285 #define for_each_free_object(__p, __s, __free) \
286 for (__p = (__free); __p; __p = get_freepointer((__s), __p))
288 /* Determine object index from a given position */
289 static inline int slab_index(void *p, struct kmem_cache *s, void *addr)
291 return (p - addr) / s->size;
294 static inline struct kmem_cache_order_objects oo_make(int order,
295 unsigned long size)
297 struct kmem_cache_order_objects x = {
298 (order << OO_SHIFT) + (PAGE_SIZE << order) / size
301 return x;
304 static inline int oo_order(struct kmem_cache_order_objects x)
306 return x.x >> OO_SHIFT;
309 static inline int oo_objects(struct kmem_cache_order_objects x)
311 return x.x & OO_MASK;
314 #ifdef CONFIG_SLUB_DEBUG
316 * Debug settings:
318 #ifdef CONFIG_SLUB_DEBUG_ON
319 static int slub_debug = DEBUG_DEFAULT_FLAGS;
320 #else
321 static int slub_debug;
322 #endif
324 static char *slub_debug_slabs;
327 * Object debugging
329 static void print_section(char *text, u8 *addr, unsigned int length)
331 int i, offset;
332 int newline = 1;
333 char ascii[17];
335 ascii[16] = 0;
337 for (i = 0; i < length; i++) {
338 if (newline) {
339 printk(KERN_ERR "%8s 0x%p: ", text, addr + i);
340 newline = 0;
342 printk(KERN_CONT " %02x", addr[i]);
343 offset = i % 16;
344 ascii[offset] = isgraph(addr[i]) ? addr[i] : '.';
345 if (offset == 15) {
346 printk(KERN_CONT " %s\n", ascii);
347 newline = 1;
350 if (!newline) {
351 i %= 16;
352 while (i < 16) {
353 printk(KERN_CONT " ");
354 ascii[i] = ' ';
355 i++;
357 printk(KERN_CONT " %s\n", ascii);
361 static struct track *get_track(struct kmem_cache *s, void *object,
362 enum track_item alloc)
364 struct track *p;
366 if (s->offset)
367 p = object + s->offset + sizeof(void *);
368 else
369 p = object + s->inuse;
371 return p + alloc;
374 static void set_track(struct kmem_cache *s, void *object,
375 enum track_item alloc, unsigned long addr)
377 struct track *p = get_track(s, object, alloc);
379 if (addr) {
380 p->addr = addr;
381 p->cpu = smp_processor_id();
382 p->pid = current->pid;
383 p->when = jiffies;
384 } else
385 memset(p, 0, sizeof(struct track));
388 static void init_tracking(struct kmem_cache *s, void *object)
390 if (!(s->flags & SLAB_STORE_USER))
391 return;
393 set_track(s, object, TRACK_FREE, 0UL);
394 set_track(s, object, TRACK_ALLOC, 0UL);
397 static void print_track(const char *s, struct track *t)
399 if (!t->addr)
400 return;
402 printk(KERN_ERR "INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
403 s, (void *)t->addr, jiffies - t->when, t->cpu, t->pid);
406 static void print_tracking(struct kmem_cache *s, void *object)
408 if (!(s->flags & SLAB_STORE_USER))
409 return;
411 print_track("Allocated", get_track(s, object, TRACK_ALLOC));
412 print_track("Freed", get_track(s, object, TRACK_FREE));
415 static void print_page_info(struct page *page)
417 printk(KERN_ERR "INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
418 page, page->objects, page->inuse, page->freelist, page->flags);
422 static void slab_bug(struct kmem_cache *s, char *fmt, ...)
424 va_list args;
425 char buf[100];
427 va_start(args, fmt);
428 vsnprintf(buf, sizeof(buf), fmt, args);
429 va_end(args);
430 printk(KERN_ERR "========================================"
431 "=====================================\n");
432 printk(KERN_ERR "BUG %s: %s\n", s->name, buf);
433 printk(KERN_ERR "----------------------------------------"
434 "-------------------------------------\n\n");
437 static void slab_fix(struct kmem_cache *s, char *fmt, ...)
439 va_list args;
440 char buf[100];
442 va_start(args, fmt);
443 vsnprintf(buf, sizeof(buf), fmt, args);
444 va_end(args);
445 printk(KERN_ERR "FIX %s: %s\n", s->name, buf);
448 static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
450 unsigned int off; /* Offset of last byte */
451 u8 *addr = page_address(page);
453 print_tracking(s, p);
455 print_page_info(page);
457 printk(KERN_ERR "INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
458 p, p - addr, get_freepointer(s, p));
460 if (p > addr + 16)
461 print_section("Bytes b4", p - 16, 16);
463 print_section("Object", p, min_t(unsigned long, s->objsize, PAGE_SIZE));
465 if (s->flags & SLAB_RED_ZONE)
466 print_section("Redzone", p + s->objsize,
467 s->inuse - s->objsize);
469 if (s->offset)
470 off = s->offset + sizeof(void *);
471 else
472 off = s->inuse;
474 if (s->flags & SLAB_STORE_USER)
475 off += 2 * sizeof(struct track);
477 if (off != s->size)
478 /* Beginning of the filler is the free pointer */
479 print_section("Padding", p + off, s->size - off);
481 dump_stack();
484 static void object_err(struct kmem_cache *s, struct page *page,
485 u8 *object, char *reason)
487 slab_bug(s, "%s", reason);
488 print_trailer(s, page, object);
491 static void slab_err(struct kmem_cache *s, struct page *page, char *fmt, ...)
493 va_list args;
494 char buf[100];
496 va_start(args, fmt);
497 vsnprintf(buf, sizeof(buf), fmt, args);
498 va_end(args);
499 slab_bug(s, "%s", buf);
500 print_page_info(page);
501 dump_stack();
504 static void init_object(struct kmem_cache *s, void *object, int active)
506 u8 *p = object;
508 if (s->flags & __OBJECT_POISON) {
509 memset(p, POISON_FREE, s->objsize - 1);
510 p[s->objsize - 1] = POISON_END;
513 if (s->flags & SLAB_RED_ZONE)
514 memset(p + s->objsize,
515 active ? SLUB_RED_ACTIVE : SLUB_RED_INACTIVE,
516 s->inuse - s->objsize);
519 static u8 *check_bytes(u8 *start, unsigned int value, unsigned int bytes)
521 while (bytes) {
522 if (*start != (u8)value)
523 return start;
524 start++;
525 bytes--;
527 return NULL;
530 static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
531 void *from, void *to)
533 slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
534 memset(from, data, to - from);
537 static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
538 u8 *object, char *what,
539 u8 *start, unsigned int value, unsigned int bytes)
541 u8 *fault;
542 u8 *end;
544 fault = check_bytes(start, value, bytes);
545 if (!fault)
546 return 1;
548 end = start + bytes;
549 while (end > fault && end[-1] == value)
550 end--;
552 slab_bug(s, "%s overwritten", what);
553 printk(KERN_ERR "INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
554 fault, end - 1, fault[0], value);
555 print_trailer(s, page, object);
557 restore_bytes(s, what, value, fault, end);
558 return 0;
562 * Object layout:
564 * object address
565 * Bytes of the object to be managed.
566 * If the freepointer may overlay the object then the free
567 * pointer is the first word of the object.
569 * Poisoning uses 0x6b (POISON_FREE) and the last byte is
570 * 0xa5 (POISON_END)
572 * object + s->objsize
573 * Padding to reach word boundary. This is also used for Redzoning.
574 * Padding is extended by another word if Redzoning is enabled and
575 * objsize == inuse.
577 * We fill with 0xbb (RED_INACTIVE) for inactive objects and with
578 * 0xcc (RED_ACTIVE) for objects in use.
580 * object + s->inuse
581 * Meta data starts here.
583 * A. Free pointer (if we cannot overwrite object on free)
584 * B. Tracking data for SLAB_STORE_USER
585 * C. Padding to reach required alignment boundary or at mininum
586 * one word if debugging is on to be able to detect writes
587 * before the word boundary.
589 * Padding is done using 0x5a (POISON_INUSE)
591 * object + s->size
592 * Nothing is used beyond s->size.
594 * If slabcaches are merged then the objsize and inuse boundaries are mostly
595 * ignored. And therefore no slab options that rely on these boundaries
596 * may be used with merged slabcaches.
599 static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
601 unsigned long off = s->inuse; /* The end of info */
603 if (s->offset)
604 /* Freepointer is placed after the object. */
605 off += sizeof(void *);
607 if (s->flags & SLAB_STORE_USER)
608 /* We also have user information there */
609 off += 2 * sizeof(struct track);
611 if (s->size == off)
612 return 1;
614 return check_bytes_and_report(s, page, p, "Object padding",
615 p + off, POISON_INUSE, s->size - off);
618 /* Check the pad bytes at the end of a slab page */
619 static int slab_pad_check(struct kmem_cache *s, struct page *page)
621 u8 *start;
622 u8 *fault;
623 u8 *end;
624 int length;
625 int remainder;
627 if (!(s->flags & SLAB_POISON))
628 return 1;
630 start = page_address(page);
631 length = (PAGE_SIZE << compound_order(page));
632 end = start + length;
633 remainder = length % s->size;
634 if (!remainder)
635 return 1;
637 fault = check_bytes(end - remainder, POISON_INUSE, remainder);
638 if (!fault)
639 return 1;
640 while (end > fault && end[-1] == POISON_INUSE)
641 end--;
643 slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1);
644 print_section("Padding", end - remainder, remainder);
646 restore_bytes(s, "slab padding", POISON_INUSE, start, end);
647 return 0;
650 static int check_object(struct kmem_cache *s, struct page *page,
651 void *object, int active)
653 u8 *p = object;
654 u8 *endobject = object + s->objsize;
656 if (s->flags & SLAB_RED_ZONE) {
657 unsigned int red =
658 active ? SLUB_RED_ACTIVE : SLUB_RED_INACTIVE;
660 if (!check_bytes_and_report(s, page, object, "Redzone",
661 endobject, red, s->inuse - s->objsize))
662 return 0;
663 } else {
664 if ((s->flags & SLAB_POISON) && s->objsize < s->inuse) {
665 check_bytes_and_report(s, page, p, "Alignment padding",
666 endobject, POISON_INUSE, s->inuse - s->objsize);
670 if (s->flags & SLAB_POISON) {
671 if (!active && (s->flags & __OBJECT_POISON) &&
672 (!check_bytes_and_report(s, page, p, "Poison", p,
673 POISON_FREE, s->objsize - 1) ||
674 !check_bytes_and_report(s, page, p, "Poison",
675 p + s->objsize - 1, POISON_END, 1)))
676 return 0;
678 * check_pad_bytes cleans up on its own.
680 check_pad_bytes(s, page, p);
683 if (!s->offset && active)
685 * Object and freepointer overlap. Cannot check
686 * freepointer while object is allocated.
688 return 1;
690 /* Check free pointer validity */
691 if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
692 object_err(s, page, p, "Freepointer corrupt");
694 * No choice but to zap it and thus lose the remainder
695 * of the free objects in this slab. May cause
696 * another error because the object count is now wrong.
698 set_freepointer(s, p, NULL);
699 return 0;
701 return 1;
704 static int check_slab(struct kmem_cache *s, struct page *page)
706 int maxobj;
708 VM_BUG_ON(!irqs_disabled());
710 if (!PageSlab(page)) {
711 slab_err(s, page, "Not a valid slab page");
712 return 0;
715 maxobj = (PAGE_SIZE << compound_order(page)) / s->size;
716 if (page->objects > maxobj) {
717 slab_err(s, page, "objects %u > max %u",
718 s->name, page->objects, maxobj);
719 return 0;
721 if (page->inuse > page->objects) {
722 slab_err(s, page, "inuse %u > max %u",
723 s->name, page->inuse, page->objects);
724 return 0;
726 /* Slab_pad_check fixes things up after itself */
727 slab_pad_check(s, page);
728 return 1;
732 * Determine if a certain object on a page is on the freelist. Must hold the
733 * slab lock to guarantee that the chains are in a consistent state.
735 static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
737 int nr = 0;
738 void *fp = page->freelist;
739 void *object = NULL;
740 unsigned long max_objects;
742 while (fp && nr <= page->objects) {
743 if (fp == search)
744 return 1;
745 if (!check_valid_pointer(s, page, fp)) {
746 if (object) {
747 object_err(s, page, object,
748 "Freechain corrupt");
749 set_freepointer(s, object, NULL);
750 break;
751 } else {
752 slab_err(s, page, "Freepointer corrupt");
753 page->freelist = NULL;
754 page->inuse = page->objects;
755 slab_fix(s, "Freelist cleared");
756 return 0;
758 break;
760 object = fp;
761 fp = get_freepointer(s, object);
762 nr++;
765 max_objects = (PAGE_SIZE << compound_order(page)) / s->size;
766 if (max_objects > MAX_OBJS_PER_PAGE)
767 max_objects = MAX_OBJS_PER_PAGE;
769 if (page->objects != max_objects) {
770 slab_err(s, page, "Wrong number of objects. Found %d but "
771 "should be %d", page->objects, max_objects);
772 page->objects = max_objects;
773 slab_fix(s, "Number of objects adjusted.");
775 if (page->inuse != page->objects - nr) {
776 slab_err(s, page, "Wrong object count. Counter is %d but "
777 "counted were %d", page->inuse, page->objects - nr);
778 page->inuse = page->objects - nr;
779 slab_fix(s, "Object count adjusted.");
781 return search == NULL;
784 static void trace(struct kmem_cache *s, struct page *page, void *object,
785 int alloc)
787 if (s->flags & SLAB_TRACE) {
788 printk(KERN_INFO "TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
789 s->name,
790 alloc ? "alloc" : "free",
791 object, page->inuse,
792 page->freelist);
794 if (!alloc)
795 print_section("Object", (void *)object, s->objsize);
797 dump_stack();
802 * Tracking of fully allocated slabs for debugging purposes.
804 static void add_full(struct kmem_cache_node *n, struct page *page)
806 spin_lock(&n->list_lock);
807 list_add(&page->lru, &n->full);
808 spin_unlock(&n->list_lock);
811 static void remove_full(struct kmem_cache *s, struct page *page)
813 struct kmem_cache_node *n;
815 if (!(s->flags & SLAB_STORE_USER))
816 return;
818 n = get_node(s, page_to_nid(page));
820 spin_lock(&n->list_lock);
821 list_del(&page->lru);
822 spin_unlock(&n->list_lock);
825 /* Tracking of the number of slabs for debugging purposes */
826 static inline unsigned long slabs_node(struct kmem_cache *s, int node)
828 struct kmem_cache_node *n = get_node(s, node);
830 return atomic_long_read(&n->nr_slabs);
833 static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
835 struct kmem_cache_node *n = get_node(s, node);
838 * May be called early in order to allocate a slab for the
839 * kmem_cache_node structure. Solve the chicken-egg
840 * dilemma by deferring the increment of the count during
841 * bootstrap (see early_kmem_cache_node_alloc).
843 if (!NUMA_BUILD || n) {
844 atomic_long_inc(&n->nr_slabs);
845 atomic_long_add(objects, &n->total_objects);
848 static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
850 struct kmem_cache_node *n = get_node(s, node);
852 atomic_long_dec(&n->nr_slabs);
853 atomic_long_sub(objects, &n->total_objects);
856 /* Object debug checks for alloc/free paths */
857 static void setup_object_debug(struct kmem_cache *s, struct page *page,
858 void *object)
860 if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
861 return;
863 init_object(s, object, 0);
864 init_tracking(s, object);
867 static int alloc_debug_processing(struct kmem_cache *s, struct page *page,
868 void *object, unsigned long addr)
870 if (!check_slab(s, page))
871 goto bad;
873 if (!on_freelist(s, page, object)) {
874 object_err(s, page, object, "Object already allocated");
875 goto bad;
878 if (!check_valid_pointer(s, page, object)) {
879 object_err(s, page, object, "Freelist Pointer check fails");
880 goto bad;
883 if (!check_object(s, page, object, 0))
884 goto bad;
886 /* Success perform special debug activities for allocs */
887 if (s->flags & SLAB_STORE_USER)
888 set_track(s, object, TRACK_ALLOC, addr);
889 trace(s, page, object, 1);
890 init_object(s, object, 1);
891 return 1;
893 bad:
894 if (PageSlab(page)) {
896 * If this is a slab page then lets do the best we can
897 * to avoid issues in the future. Marking all objects
898 * as used avoids touching the remaining objects.
900 slab_fix(s, "Marking all objects used");
901 page->inuse = page->objects;
902 page->freelist = NULL;
904 return 0;
907 static int free_debug_processing(struct kmem_cache *s, struct page *page,
908 void *object, unsigned long addr)
910 if (!check_slab(s, page))
911 goto fail;
913 if (!check_valid_pointer(s, page, object)) {
914 slab_err(s, page, "Invalid object pointer 0x%p", object);
915 goto fail;
918 if (on_freelist(s, page, object)) {
919 object_err(s, page, object, "Object already free");
920 goto fail;
923 if (!check_object(s, page, object, 1))
924 return 0;
926 if (unlikely(s != page->slab)) {
927 if (!PageSlab(page)) {
928 slab_err(s, page, "Attempt to free object(0x%p) "
929 "outside of slab", object);
930 } else if (!page->slab) {
931 printk(KERN_ERR
932 "SLUB <none>: no slab for object 0x%p.\n",
933 object);
934 dump_stack();
935 } else
936 object_err(s, page, object,
937 "page slab pointer corrupt.");
938 goto fail;
941 /* Special debug activities for freeing objects */
942 if (!PageSlubFrozen(page) && !page->freelist)
943 remove_full(s, page);
944 if (s->flags & SLAB_STORE_USER)
945 set_track(s, object, TRACK_FREE, addr);
946 trace(s, page, object, 0);
947 init_object(s, object, 0);
948 return 1;
950 fail:
951 slab_fix(s, "Object at 0x%p not freed", object);
952 return 0;
955 static int __init setup_slub_debug(char *str)
957 slub_debug = DEBUG_DEFAULT_FLAGS;
958 if (*str++ != '=' || !*str)
960 * No options specified. Switch on full debugging.
962 goto out;
964 if (*str == ',')
966 * No options but restriction on slabs. This means full
967 * debugging for slabs matching a pattern.
969 goto check_slabs;
971 slub_debug = 0;
972 if (*str == '-')
974 * Switch off all debugging measures.
976 goto out;
979 * Determine which debug features should be switched on
981 for (; *str && *str != ','; str++) {
982 switch (tolower(*str)) {
983 case 'f':
984 slub_debug |= SLAB_DEBUG_FREE;
985 break;
986 case 'z':
987 slub_debug |= SLAB_RED_ZONE;
988 break;
989 case 'p':
990 slub_debug |= SLAB_POISON;
991 break;
992 case 'u':
993 slub_debug |= SLAB_STORE_USER;
994 break;
995 case 't':
996 slub_debug |= SLAB_TRACE;
997 break;
998 default:
999 printk(KERN_ERR "slub_debug option '%c' "
1000 "unknown. skipped\n", *str);
1004 check_slabs:
1005 if (*str == ',')
1006 slub_debug_slabs = str + 1;
1007 out:
1008 return 1;
1011 __setup("slub_debug", setup_slub_debug);
1013 static unsigned long kmem_cache_flags(unsigned long objsize,
1014 unsigned long flags, const char *name,
1015 void (*ctor)(void *))
1018 * Enable debugging if selected on the kernel commandline.
1020 if (slub_debug && (!slub_debug_slabs ||
1021 strncmp(slub_debug_slabs, name, strlen(slub_debug_slabs)) == 0))
1022 flags |= slub_debug;
1024 return flags;
1026 #else
1027 static inline void setup_object_debug(struct kmem_cache *s,
1028 struct page *page, void *object) {}
1030 static inline int alloc_debug_processing(struct kmem_cache *s,
1031 struct page *page, void *object, unsigned long addr) { return 0; }
1033 static inline int free_debug_processing(struct kmem_cache *s,
1034 struct page *page, void *object, unsigned long addr) { return 0; }
1036 static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
1037 { return 1; }
1038 static inline int check_object(struct kmem_cache *s, struct page *page,
1039 void *object, int active) { return 1; }
1040 static inline void add_full(struct kmem_cache_node *n, struct page *page) {}
1041 static inline unsigned long kmem_cache_flags(unsigned long objsize,
1042 unsigned long flags, const char *name,
1043 void (*ctor)(void *))
1045 return flags;
1047 #define slub_debug 0
1049 static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1050 { return 0; }
1051 static inline void inc_slabs_node(struct kmem_cache *s, int node,
1052 int objects) {}
1053 static inline void dec_slabs_node(struct kmem_cache *s, int node,
1054 int objects) {}
1055 #endif
1058 * Slab allocation and freeing
1060 static inline struct page *alloc_slab_page(gfp_t flags, int node,
1061 struct kmem_cache_order_objects oo)
1063 int order = oo_order(oo);
1065 if (node == -1)
1066 return alloc_pages(flags, order);
1067 else
1068 return alloc_pages_node(node, flags, order);
1071 static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
1073 struct page *page;
1074 struct kmem_cache_order_objects oo = s->oo;
1076 flags |= s->allocflags;
1078 page = alloc_slab_page(flags | __GFP_NOWARN | __GFP_NORETRY, node,
1079 oo);
1080 if (unlikely(!page)) {
1081 oo = s->min;
1083 * Allocation may have failed due to fragmentation.
1084 * Try a lower order alloc if possible
1086 page = alloc_slab_page(flags, node, oo);
1087 if (!page)
1088 return NULL;
1090 stat(get_cpu_slab(s, raw_smp_processor_id()), ORDER_FALLBACK);
1092 page->objects = oo_objects(oo);
1093 mod_zone_page_state(page_zone(page),
1094 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1095 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1096 1 << oo_order(oo));
1098 return page;
1101 static void setup_object(struct kmem_cache *s, struct page *page,
1102 void *object)
1104 setup_object_debug(s, page, object);
1105 if (unlikely(s->ctor))
1106 s->ctor(object);
1109 static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
1111 struct page *page;
1112 void *start;
1113 void *last;
1114 void *p;
1116 BUG_ON(flags & GFP_SLAB_BUG_MASK);
1118 page = allocate_slab(s,
1119 flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
1120 if (!page)
1121 goto out;
1123 inc_slabs_node(s, page_to_nid(page), page->objects);
1124 page->slab = s;
1125 page->flags |= 1 << PG_slab;
1126 if (s->flags & (SLAB_DEBUG_FREE | SLAB_RED_ZONE | SLAB_POISON |
1127 SLAB_STORE_USER | SLAB_TRACE))
1128 __SetPageSlubDebug(page);
1130 start = page_address(page);
1132 if (unlikely(s->flags & SLAB_POISON))
1133 memset(start, POISON_INUSE, PAGE_SIZE << compound_order(page));
1135 last = start;
1136 for_each_object(p, s, start, page->objects) {
1137 setup_object(s, page, last);
1138 set_freepointer(s, last, p);
1139 last = p;
1141 setup_object(s, page, last);
1142 set_freepointer(s, last, NULL);
1144 page->freelist = start;
1145 page->inuse = 0;
1146 out:
1147 return page;
1150 static void __free_slab(struct kmem_cache *s, struct page *page)
1152 int order = compound_order(page);
1153 int pages = 1 << order;
1155 if (unlikely(SLABDEBUG && PageSlubDebug(page))) {
1156 void *p;
1158 slab_pad_check(s, page);
1159 for_each_object(p, s, page_address(page),
1160 page->objects)
1161 check_object(s, page, p, 0);
1162 __ClearPageSlubDebug(page);
1165 mod_zone_page_state(page_zone(page),
1166 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1167 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1168 -pages);
1170 __ClearPageSlab(page);
1171 reset_page_mapcount(page);
1172 __free_pages(page, order);
1175 static void rcu_free_slab(struct rcu_head *h)
1177 struct page *page;
1179 page = container_of((struct list_head *)h, struct page, lru);
1180 __free_slab(page->slab, page);
1183 static void free_slab(struct kmem_cache *s, struct page *page)
1185 if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) {
1187 * RCU free overloads the RCU head over the LRU
1189 struct rcu_head *head = (void *)&page->lru;
1191 call_rcu(head, rcu_free_slab);
1192 } else
1193 __free_slab(s, page);
1196 static void discard_slab(struct kmem_cache *s, struct page *page)
1198 dec_slabs_node(s, page_to_nid(page), page->objects);
1199 free_slab(s, page);
1203 * Per slab locking using the pagelock
1205 static __always_inline void slab_lock(struct page *page)
1207 bit_spin_lock(PG_locked, &page->flags);
1210 static __always_inline void slab_unlock(struct page *page)
1212 __bit_spin_unlock(PG_locked, &page->flags);
1215 static __always_inline int slab_trylock(struct page *page)
1217 int rc = 1;
1219 rc = bit_spin_trylock(PG_locked, &page->flags);
1220 return rc;
1224 * Management of partially allocated slabs
1226 static void add_partial(struct kmem_cache_node *n,
1227 struct page *page, int tail)
1229 spin_lock(&n->list_lock);
1230 n->nr_partial++;
1231 if (tail)
1232 list_add_tail(&page->lru, &n->partial);
1233 else
1234 list_add(&page->lru, &n->partial);
1235 spin_unlock(&n->list_lock);
1238 static void remove_partial(struct kmem_cache *s, struct page *page)
1240 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1242 spin_lock(&n->list_lock);
1243 list_del(&page->lru);
1244 n->nr_partial--;
1245 spin_unlock(&n->list_lock);
1249 * Lock slab and remove from the partial list.
1251 * Must hold list_lock.
1253 static inline int lock_and_freeze_slab(struct kmem_cache_node *n,
1254 struct page *page)
1256 if (slab_trylock(page)) {
1257 list_del(&page->lru);
1258 n->nr_partial--;
1259 __SetPageSlubFrozen(page);
1260 return 1;
1262 return 0;
1266 * Try to allocate a partial slab from a specific node.
1268 static struct page *get_partial_node(struct kmem_cache_node *n)
1270 struct page *page;
1273 * Racy check. If we mistakenly see no partial slabs then we
1274 * just allocate an empty slab. If we mistakenly try to get a
1275 * partial slab and there is none available then get_partials()
1276 * will return NULL.
1278 if (!n || !n->nr_partial)
1279 return NULL;
1281 spin_lock(&n->list_lock);
1282 list_for_each_entry(page, &n->partial, lru)
1283 if (lock_and_freeze_slab(n, page))
1284 goto out;
1285 page = NULL;
1286 out:
1287 spin_unlock(&n->list_lock);
1288 return page;
1292 * Get a page from somewhere. Search in increasing NUMA distances.
1294 static struct page *get_any_partial(struct kmem_cache *s, gfp_t flags)
1296 #ifdef CONFIG_NUMA
1297 struct zonelist *zonelist;
1298 struct zoneref *z;
1299 struct zone *zone;
1300 enum zone_type high_zoneidx = gfp_zone(flags);
1301 struct page *page;
1304 * The defrag ratio allows a configuration of the tradeoffs between
1305 * inter node defragmentation and node local allocations. A lower
1306 * defrag_ratio increases the tendency to do local allocations
1307 * instead of attempting to obtain partial slabs from other nodes.
1309 * If the defrag_ratio is set to 0 then kmalloc() always
1310 * returns node local objects. If the ratio is higher then kmalloc()
1311 * may return off node objects because partial slabs are obtained
1312 * from other nodes and filled up.
1314 * If /sys/kernel/slab/xx/defrag_ratio is set to 100 (which makes
1315 * defrag_ratio = 1000) then every (well almost) allocation will
1316 * first attempt to defrag slab caches on other nodes. This means
1317 * scanning over all nodes to look for partial slabs which may be
1318 * expensive if we do it every time we are trying to find a slab
1319 * with available objects.
1321 if (!s->remote_node_defrag_ratio ||
1322 get_cycles() % 1024 > s->remote_node_defrag_ratio)
1323 return NULL;
1325 zonelist = node_zonelist(slab_node(current->mempolicy), flags);
1326 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
1327 struct kmem_cache_node *n;
1329 n = get_node(s, zone_to_nid(zone));
1331 if (n && cpuset_zone_allowed_hardwall(zone, flags) &&
1332 n->nr_partial > s->min_partial) {
1333 page = get_partial_node(n);
1334 if (page)
1335 return page;
1338 #endif
1339 return NULL;
1343 * Get a partial page, lock it and return it.
1345 static struct page *get_partial(struct kmem_cache *s, gfp_t flags, int node)
1347 struct page *page;
1348 int searchnode = (node == -1) ? numa_node_id() : node;
1350 page = get_partial_node(get_node(s, searchnode));
1351 if (page || (flags & __GFP_THISNODE))
1352 return page;
1354 return get_any_partial(s, flags);
1358 * Move a page back to the lists.
1360 * Must be called with the slab lock held.
1362 * On exit the slab lock will have been dropped.
1364 static void unfreeze_slab(struct kmem_cache *s, struct page *page, int tail)
1366 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1367 struct kmem_cache_cpu *c = get_cpu_slab(s, smp_processor_id());
1369 __ClearPageSlubFrozen(page);
1370 if (page->inuse) {
1372 if (page->freelist) {
1373 add_partial(n, page, tail);
1374 stat(c, tail ? DEACTIVATE_TO_TAIL : DEACTIVATE_TO_HEAD);
1375 } else {
1376 stat(c, DEACTIVATE_FULL);
1377 if (SLABDEBUG && PageSlubDebug(page) &&
1378 (s->flags & SLAB_STORE_USER))
1379 add_full(n, page);
1381 slab_unlock(page);
1382 } else {
1383 stat(c, DEACTIVATE_EMPTY);
1384 if (n->nr_partial < s->min_partial) {
1386 * Adding an empty slab to the partial slabs in order
1387 * to avoid page allocator overhead. This slab needs
1388 * to come after the other slabs with objects in
1389 * so that the others get filled first. That way the
1390 * size of the partial list stays small.
1392 * kmem_cache_shrink can reclaim any empty slabs from
1393 * the partial list.
1395 add_partial(n, page, 1);
1396 slab_unlock(page);
1397 } else {
1398 slab_unlock(page);
1399 stat(get_cpu_slab(s, raw_smp_processor_id()), FREE_SLAB);
1400 discard_slab(s, page);
1406 * Remove the cpu slab
1408 static void deactivate_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
1410 struct page *page = c->page;
1411 int tail = 1;
1413 if (page->freelist)
1414 stat(c, DEACTIVATE_REMOTE_FREES);
1416 * Merge cpu freelist into slab freelist. Typically we get here
1417 * because both freelists are empty. So this is unlikely
1418 * to occur.
1420 while (unlikely(c->freelist)) {
1421 void **object;
1423 tail = 0; /* Hot objects. Put the slab first */
1425 /* Retrieve object from cpu_freelist */
1426 object = c->freelist;
1427 c->freelist = c->freelist[c->offset];
1429 /* And put onto the regular freelist */
1430 object[c->offset] = page->freelist;
1431 page->freelist = object;
1432 page->inuse--;
1434 c->page = NULL;
1435 unfreeze_slab(s, page, tail);
1438 static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
1440 stat(c, CPUSLAB_FLUSH);
1441 slab_lock(c->page);
1442 deactivate_slab(s, c);
1446 * Flush cpu slab.
1448 * Called from IPI handler with interrupts disabled.
1450 static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
1452 struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
1454 if (likely(c && c->page))
1455 flush_slab(s, c);
1458 static void flush_cpu_slab(void *d)
1460 struct kmem_cache *s = d;
1462 __flush_cpu_slab(s, smp_processor_id());
1465 static void flush_all(struct kmem_cache *s)
1467 on_each_cpu(flush_cpu_slab, s, 1);
1471 * Check if the objects in a per cpu structure fit numa
1472 * locality expectations.
1474 static inline int node_match(struct kmem_cache_cpu *c, int node)
1476 #ifdef CONFIG_NUMA
1477 if (node != -1 && c->node != node)
1478 return 0;
1479 #endif
1480 return 1;
1484 * Slow path. The lockless freelist is empty or we need to perform
1485 * debugging duties.
1487 * Interrupts are disabled.
1489 * Processing is still very fast if new objects have been freed to the
1490 * regular freelist. In that case we simply take over the regular freelist
1491 * as the lockless freelist and zap the regular freelist.
1493 * If that is not working then we fall back to the partial lists. We take the
1494 * first element of the freelist as the object to allocate now and move the
1495 * rest of the freelist to the lockless freelist.
1497 * And if we were unable to get a new slab from the partial slab lists then
1498 * we need to allocate a new slab. This is the slowest path since it involves
1499 * a call to the page allocator and the setup of a new slab.
1501 static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
1502 unsigned long addr, struct kmem_cache_cpu *c)
1504 void **object;
1505 struct page *new;
1507 /* We handle __GFP_ZERO in the caller */
1508 gfpflags &= ~__GFP_ZERO;
1510 if (!c->page)
1511 goto new_slab;
1513 slab_lock(c->page);
1514 if (unlikely(!node_match(c, node)))
1515 goto another_slab;
1517 stat(c, ALLOC_REFILL);
1519 load_freelist:
1520 object = c->page->freelist;
1521 if (unlikely(!object))
1522 goto another_slab;
1523 if (unlikely(SLABDEBUG && PageSlubDebug(c->page)))
1524 goto debug;
1526 c->freelist = object[c->offset];
1527 c->page->inuse = c->page->objects;
1528 c->page->freelist = NULL;
1529 c->node = page_to_nid(c->page);
1530 unlock_out:
1531 slab_unlock(c->page);
1532 stat(c, ALLOC_SLOWPATH);
1533 return object;
1535 another_slab:
1536 deactivate_slab(s, c);
1538 new_slab:
1539 new = get_partial(s, gfpflags, node);
1540 if (new) {
1541 c->page = new;
1542 stat(c, ALLOC_FROM_PARTIAL);
1543 goto load_freelist;
1546 if (gfpflags & __GFP_WAIT)
1547 local_irq_enable();
1549 new = new_slab(s, gfpflags, node);
1551 if (gfpflags & __GFP_WAIT)
1552 local_irq_disable();
1554 if (new) {
1555 c = get_cpu_slab(s, smp_processor_id());
1556 stat(c, ALLOC_SLAB);
1557 if (c->page)
1558 flush_slab(s, c);
1559 slab_lock(new);
1560 __SetPageSlubFrozen(new);
1561 c->page = new;
1562 goto load_freelist;
1564 return NULL;
1565 debug:
1566 if (!alloc_debug_processing(s, c->page, object, addr))
1567 goto another_slab;
1569 c->page->inuse++;
1570 c->page->freelist = object[c->offset];
1571 c->node = -1;
1572 goto unlock_out;
1576 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
1577 * have the fastpath folded into their functions. So no function call
1578 * overhead for requests that can be satisfied on the fastpath.
1580 * The fastpath works by first checking if the lockless freelist can be used.
1581 * If not then __slab_alloc is called for slow processing.
1583 * Otherwise we can simply pick the next object from the lockless free list.
1585 static __always_inline void *slab_alloc(struct kmem_cache *s,
1586 gfp_t gfpflags, int node, unsigned long addr)
1588 void **object;
1589 struct kmem_cache_cpu *c;
1590 unsigned long flags;
1591 unsigned int objsize;
1593 might_sleep_if(gfpflags & __GFP_WAIT);
1595 if (should_failslab(s->objsize, gfpflags))
1596 return NULL;
1598 local_irq_save(flags);
1599 c = get_cpu_slab(s, smp_processor_id());
1600 objsize = c->objsize;
1601 if (unlikely(!c->freelist || !node_match(c, node)))
1603 object = __slab_alloc(s, gfpflags, node, addr, c);
1605 else {
1606 object = c->freelist;
1607 c->freelist = object[c->offset];
1608 stat(c, ALLOC_FASTPATH);
1610 local_irq_restore(flags);
1612 if (unlikely((gfpflags & __GFP_ZERO) && object))
1613 memset(object, 0, objsize);
1615 return object;
1618 void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
1620 return slab_alloc(s, gfpflags, -1, _RET_IP_);
1622 EXPORT_SYMBOL(kmem_cache_alloc);
1624 #ifdef CONFIG_NUMA
1625 void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
1627 return slab_alloc(s, gfpflags, node, _RET_IP_);
1629 EXPORT_SYMBOL(kmem_cache_alloc_node);
1630 #endif
1633 * Slow patch handling. This may still be called frequently since objects
1634 * have a longer lifetime than the cpu slabs in most processing loads.
1636 * So we still attempt to reduce cache line usage. Just take the slab
1637 * lock and free the item. If there is no additional partial page
1638 * handling required then we can return immediately.
1640 static void __slab_free(struct kmem_cache *s, struct page *page,
1641 void *x, unsigned long addr, unsigned int offset)
1643 void *prior;
1644 void **object = (void *)x;
1645 struct kmem_cache_cpu *c;
1647 c = get_cpu_slab(s, raw_smp_processor_id());
1648 stat(c, FREE_SLOWPATH);
1649 slab_lock(page);
1651 if (unlikely(SLABDEBUG && PageSlubDebug(page)))
1652 goto debug;
1654 checks_ok:
1655 prior = object[offset] = page->freelist;
1656 page->freelist = object;
1657 page->inuse--;
1659 if (unlikely(PageSlubFrozen(page))) {
1660 stat(c, FREE_FROZEN);
1661 goto out_unlock;
1664 if (unlikely(!page->inuse))
1665 goto slab_empty;
1668 * Objects left in the slab. If it was not on the partial list before
1669 * then add it.
1671 if (unlikely(!prior)) {
1672 add_partial(get_node(s, page_to_nid(page)), page, 1);
1673 stat(c, FREE_ADD_PARTIAL);
1676 out_unlock:
1677 slab_unlock(page);
1678 return;
1680 slab_empty:
1681 if (prior) {
1683 * Slab still on the partial list.
1685 remove_partial(s, page);
1686 stat(c, FREE_REMOVE_PARTIAL);
1688 slab_unlock(page);
1689 stat(c, FREE_SLAB);
1690 discard_slab(s, page);
1691 return;
1693 debug:
1694 if (!free_debug_processing(s, page, x, addr))
1695 goto out_unlock;
1696 goto checks_ok;
1700 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
1701 * can perform fastpath freeing without additional function calls.
1703 * The fastpath is only possible if we are freeing to the current cpu slab
1704 * of this processor. This typically the case if we have just allocated
1705 * the item before.
1707 * If fastpath is not possible then fall back to __slab_free where we deal
1708 * with all sorts of special processing.
1710 static __always_inline void slab_free(struct kmem_cache *s,
1711 struct page *page, void *x, unsigned long addr)
1713 void **object = (void *)x;
1714 struct kmem_cache_cpu *c;
1715 unsigned long flags;
1717 local_irq_save(flags);
1718 c = get_cpu_slab(s, smp_processor_id());
1719 debug_check_no_locks_freed(object, c->objsize);
1720 if (!(s->flags & SLAB_DEBUG_OBJECTS))
1721 debug_check_no_obj_freed(object, c->objsize);
1722 if (likely(page == c->page && c->node >= 0)) {
1723 object[c->offset] = c->freelist;
1724 c->freelist = object;
1725 stat(c, FREE_FASTPATH);
1726 } else
1727 __slab_free(s, page, x, addr, c->offset);
1729 local_irq_restore(flags);
1732 void kmem_cache_free(struct kmem_cache *s, void *x)
1734 struct page *page;
1736 page = virt_to_head_page(x);
1738 slab_free(s, page, x, _RET_IP_);
1740 EXPORT_SYMBOL(kmem_cache_free);
1742 /* Figure out on which slab page the object resides */
1743 static struct page *get_object_page(const void *x)
1745 struct page *page = virt_to_head_page(x);
1747 if (!PageSlab(page))
1748 return NULL;
1750 return page;
1754 * Object placement in a slab is made very easy because we always start at
1755 * offset 0. If we tune the size of the object to the alignment then we can
1756 * get the required alignment by putting one properly sized object after
1757 * another.
1759 * Notice that the allocation order determines the sizes of the per cpu
1760 * caches. Each processor has always one slab available for allocations.
1761 * Increasing the allocation order reduces the number of times that slabs
1762 * must be moved on and off the partial lists and is therefore a factor in
1763 * locking overhead.
1767 * Mininum / Maximum order of slab pages. This influences locking overhead
1768 * and slab fragmentation. A higher order reduces the number of partial slabs
1769 * and increases the number of allocations possible without having to
1770 * take the list_lock.
1772 static int slub_min_order;
1773 static int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
1774 static int slub_min_objects;
1777 * Merge control. If this is set then no merging of slab caches will occur.
1778 * (Could be removed. This was introduced to pacify the merge skeptics.)
1780 static int slub_nomerge;
1783 * Calculate the order of allocation given an slab object size.
1785 * The order of allocation has significant impact on performance and other
1786 * system components. Generally order 0 allocations should be preferred since
1787 * order 0 does not cause fragmentation in the page allocator. Larger objects
1788 * be problematic to put into order 0 slabs because there may be too much
1789 * unused space left. We go to a higher order if more than 1/16th of the slab
1790 * would be wasted.
1792 * In order to reach satisfactory performance we must ensure that a minimum
1793 * number of objects is in one slab. Otherwise we may generate too much
1794 * activity on the partial lists which requires taking the list_lock. This is
1795 * less a concern for large slabs though which are rarely used.
1797 * slub_max_order specifies the order where we begin to stop considering the
1798 * number of objects in a slab as critical. If we reach slub_max_order then
1799 * we try to keep the page order as low as possible. So we accept more waste
1800 * of space in favor of a small page order.
1802 * Higher order allocations also allow the placement of more objects in a
1803 * slab and thereby reduce object handling overhead. If the user has
1804 * requested a higher mininum order then we start with that one instead of
1805 * the smallest order which will fit the object.
1807 static inline int slab_order(int size, int min_objects,
1808 int max_order, int fract_leftover)
1810 int order;
1811 int rem;
1812 int min_order = slub_min_order;
1814 if ((PAGE_SIZE << min_order) / size > MAX_OBJS_PER_PAGE)
1815 return get_order(size * MAX_OBJS_PER_PAGE) - 1;
1817 for (order = max(min_order,
1818 fls(min_objects * size - 1) - PAGE_SHIFT);
1819 order <= max_order; order++) {
1821 unsigned long slab_size = PAGE_SIZE << order;
1823 if (slab_size < min_objects * size)
1824 continue;
1826 rem = slab_size % size;
1828 if (rem <= slab_size / fract_leftover)
1829 break;
1833 return order;
1836 static inline int calculate_order(int size)
1838 int order;
1839 int min_objects;
1840 int fraction;
1841 int max_objects;
1844 * Attempt to find best configuration for a slab. This
1845 * works by first attempting to generate a layout with
1846 * the best configuration and backing off gradually.
1848 * First we reduce the acceptable waste in a slab. Then
1849 * we reduce the minimum objects required in a slab.
1851 min_objects = slub_min_objects;
1852 if (!min_objects)
1853 min_objects = 4 * (fls(nr_cpu_ids) + 1);
1854 max_objects = (PAGE_SIZE << slub_max_order)/size;
1855 min_objects = min(min_objects, max_objects);
1857 while (min_objects > 1) {
1858 fraction = 16;
1859 while (fraction >= 4) {
1860 order = slab_order(size, min_objects,
1861 slub_max_order, fraction);
1862 if (order <= slub_max_order)
1863 return order;
1864 fraction /= 2;
1866 min_objects --;
1870 * We were unable to place multiple objects in a slab. Now
1871 * lets see if we can place a single object there.
1873 order = slab_order(size, 1, slub_max_order, 1);
1874 if (order <= slub_max_order)
1875 return order;
1878 * Doh this slab cannot be placed using slub_max_order.
1880 order = slab_order(size, 1, MAX_ORDER, 1);
1881 if (order <= MAX_ORDER)
1882 return order;
1883 return -ENOSYS;
1887 * Figure out what the alignment of the objects will be.
1889 static unsigned long calculate_alignment(unsigned long flags,
1890 unsigned long align, unsigned long size)
1893 * If the user wants hardware cache aligned objects then follow that
1894 * suggestion if the object is sufficiently large.
1896 * The hardware cache alignment cannot override the specified
1897 * alignment though. If that is greater then use it.
1899 if (flags & SLAB_HWCACHE_ALIGN) {
1900 unsigned long ralign = cache_line_size();
1901 while (size <= ralign / 2)
1902 ralign /= 2;
1903 align = max(align, ralign);
1906 if (align < ARCH_SLAB_MINALIGN)
1907 align = ARCH_SLAB_MINALIGN;
1909 return ALIGN(align, sizeof(void *));
1912 static void init_kmem_cache_cpu(struct kmem_cache *s,
1913 struct kmem_cache_cpu *c)
1915 c->page = NULL;
1916 c->freelist = NULL;
1917 c->node = 0;
1918 c->offset = s->offset / sizeof(void *);
1919 c->objsize = s->objsize;
1920 #ifdef CONFIG_SLUB_STATS
1921 memset(c->stat, 0, NR_SLUB_STAT_ITEMS * sizeof(unsigned));
1922 #endif
1925 static void
1926 init_kmem_cache_node(struct kmem_cache_node *n, struct kmem_cache *s)
1928 n->nr_partial = 0;
1929 spin_lock_init(&n->list_lock);
1930 INIT_LIST_HEAD(&n->partial);
1931 #ifdef CONFIG_SLUB_DEBUG
1932 atomic_long_set(&n->nr_slabs, 0);
1933 atomic_long_set(&n->total_objects, 0);
1934 INIT_LIST_HEAD(&n->full);
1935 #endif
1938 #ifdef CONFIG_SMP
1940 * Per cpu array for per cpu structures.
1942 * The per cpu array places all kmem_cache_cpu structures from one processor
1943 * close together meaning that it becomes possible that multiple per cpu
1944 * structures are contained in one cacheline. This may be particularly
1945 * beneficial for the kmalloc caches.
1947 * A desktop system typically has around 60-80 slabs. With 100 here we are
1948 * likely able to get per cpu structures for all caches from the array defined
1949 * here. We must be able to cover all kmalloc caches during bootstrap.
1951 * If the per cpu array is exhausted then fall back to kmalloc
1952 * of individual cachelines. No sharing is possible then.
1954 #define NR_KMEM_CACHE_CPU 100
1956 static DEFINE_PER_CPU(struct kmem_cache_cpu,
1957 kmem_cache_cpu)[NR_KMEM_CACHE_CPU];
1959 static DEFINE_PER_CPU(struct kmem_cache_cpu *, kmem_cache_cpu_free);
1960 static DECLARE_BITMAP(kmem_cach_cpu_free_init_once, CONFIG_NR_CPUS);
1962 static struct kmem_cache_cpu *alloc_kmem_cache_cpu(struct kmem_cache *s,
1963 int cpu, gfp_t flags)
1965 struct kmem_cache_cpu *c = per_cpu(kmem_cache_cpu_free, cpu);
1967 if (c)
1968 per_cpu(kmem_cache_cpu_free, cpu) =
1969 (void *)c->freelist;
1970 else {
1971 /* Table overflow: So allocate ourselves */
1972 c = kmalloc_node(
1973 ALIGN(sizeof(struct kmem_cache_cpu), cache_line_size()),
1974 flags, cpu_to_node(cpu));
1975 if (!c)
1976 return NULL;
1979 init_kmem_cache_cpu(s, c);
1980 return c;
1983 static void free_kmem_cache_cpu(struct kmem_cache_cpu *c, int cpu)
1985 if (c < per_cpu(kmem_cache_cpu, cpu) ||
1986 c >= per_cpu(kmem_cache_cpu, cpu) + NR_KMEM_CACHE_CPU) {
1987 kfree(c);
1988 return;
1990 c->freelist = (void *)per_cpu(kmem_cache_cpu_free, cpu);
1991 per_cpu(kmem_cache_cpu_free, cpu) = c;
1994 static void free_kmem_cache_cpus(struct kmem_cache *s)
1996 int cpu;
1998 for_each_online_cpu(cpu) {
1999 struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
2001 if (c) {
2002 s->cpu_slab[cpu] = NULL;
2003 free_kmem_cache_cpu(c, cpu);
2008 static int alloc_kmem_cache_cpus(struct kmem_cache *s, gfp_t flags)
2010 int cpu;
2012 for_each_online_cpu(cpu) {
2013 struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
2015 if (c)
2016 continue;
2018 c = alloc_kmem_cache_cpu(s, cpu, flags);
2019 if (!c) {
2020 free_kmem_cache_cpus(s);
2021 return 0;
2023 s->cpu_slab[cpu] = c;
2025 return 1;
2029 * Initialize the per cpu array.
2031 static void init_alloc_cpu_cpu(int cpu)
2033 int i;
2035 if (cpumask_test_cpu(cpu, to_cpumask(kmem_cach_cpu_free_init_once)))
2036 return;
2038 for (i = NR_KMEM_CACHE_CPU - 1; i >= 0; i--)
2039 free_kmem_cache_cpu(&per_cpu(kmem_cache_cpu, cpu)[i], cpu);
2041 cpumask_set_cpu(cpu, to_cpumask(kmem_cach_cpu_free_init_once));
2044 static void __init init_alloc_cpu(void)
2046 int cpu;
2048 for_each_online_cpu(cpu)
2049 init_alloc_cpu_cpu(cpu);
2052 #else
2053 static inline void free_kmem_cache_cpus(struct kmem_cache *s) {}
2054 static inline void init_alloc_cpu(void) {}
2056 static inline int alloc_kmem_cache_cpus(struct kmem_cache *s, gfp_t flags)
2058 init_kmem_cache_cpu(s, &s->cpu_slab);
2059 return 1;
2061 #endif
2063 #ifdef CONFIG_NUMA
2065 * No kmalloc_node yet so do it by hand. We know that this is the first
2066 * slab on the node for this slabcache. There are no concurrent accesses
2067 * possible.
2069 * Note that this function only works on the kmalloc_node_cache
2070 * when allocating for the kmalloc_node_cache. This is used for bootstrapping
2071 * memory on a fresh node that has no slab structures yet.
2073 static void early_kmem_cache_node_alloc(gfp_t gfpflags, int node)
2075 struct page *page;
2076 struct kmem_cache_node *n;
2077 unsigned long flags;
2079 BUG_ON(kmalloc_caches->size < sizeof(struct kmem_cache_node));
2081 page = new_slab(kmalloc_caches, gfpflags, node);
2083 BUG_ON(!page);
2084 if (page_to_nid(page) != node) {
2085 printk(KERN_ERR "SLUB: Unable to allocate memory from "
2086 "node %d\n", node);
2087 printk(KERN_ERR "SLUB: Allocating a useless per node structure "
2088 "in order to be able to continue\n");
2091 n = page->freelist;
2092 BUG_ON(!n);
2093 page->freelist = get_freepointer(kmalloc_caches, n);
2094 page->inuse++;
2095 kmalloc_caches->node[node] = n;
2096 #ifdef CONFIG_SLUB_DEBUG
2097 init_object(kmalloc_caches, n, 1);
2098 init_tracking(kmalloc_caches, n);
2099 #endif
2100 init_kmem_cache_node(n, kmalloc_caches);
2101 inc_slabs_node(kmalloc_caches, node, page->objects);
2104 * lockdep requires consistent irq usage for each lock
2105 * so even though there cannot be a race this early in
2106 * the boot sequence, we still disable irqs.
2108 local_irq_save(flags);
2109 add_partial(n, page, 0);
2110 local_irq_restore(flags);
2113 static void free_kmem_cache_nodes(struct kmem_cache *s)
2115 int node;
2117 for_each_node_state(node, N_NORMAL_MEMORY) {
2118 struct kmem_cache_node *n = s->node[node];
2119 if (n && n != &s->local_node)
2120 kmem_cache_free(kmalloc_caches, n);
2121 s->node[node] = NULL;
2125 static int init_kmem_cache_nodes(struct kmem_cache *s, gfp_t gfpflags)
2127 int node;
2128 int local_node;
2130 if (slab_state >= UP)
2131 local_node = page_to_nid(virt_to_page(s));
2132 else
2133 local_node = 0;
2135 for_each_node_state(node, N_NORMAL_MEMORY) {
2136 struct kmem_cache_node *n;
2138 if (local_node == node)
2139 n = &s->local_node;
2140 else {
2141 if (slab_state == DOWN) {
2142 early_kmem_cache_node_alloc(gfpflags, node);
2143 continue;
2145 n = kmem_cache_alloc_node(kmalloc_caches,
2146 gfpflags, node);
2148 if (!n) {
2149 free_kmem_cache_nodes(s);
2150 return 0;
2154 s->node[node] = n;
2155 init_kmem_cache_node(n, s);
2157 return 1;
2159 #else
2160 static void free_kmem_cache_nodes(struct kmem_cache *s)
2164 static int init_kmem_cache_nodes(struct kmem_cache *s, gfp_t gfpflags)
2166 init_kmem_cache_node(&s->local_node, s);
2167 return 1;
2169 #endif
2171 static void set_min_partial(struct kmem_cache *s, unsigned long min)
2173 if (min < MIN_PARTIAL)
2174 min = MIN_PARTIAL;
2175 else if (min > MAX_PARTIAL)
2176 min = MAX_PARTIAL;
2177 s->min_partial = min;
2181 * calculate_sizes() determines the order and the distribution of data within
2182 * a slab object.
2184 static int calculate_sizes(struct kmem_cache *s, int forced_order)
2186 unsigned long flags = s->flags;
2187 unsigned long size = s->objsize;
2188 unsigned long align = s->align;
2189 int order;
2192 * Round up object size to the next word boundary. We can only
2193 * place the free pointer at word boundaries and this determines
2194 * the possible location of the free pointer.
2196 size = ALIGN(size, sizeof(void *));
2198 #ifdef CONFIG_SLUB_DEBUG
2200 * Determine if we can poison the object itself. If the user of
2201 * the slab may touch the object after free or before allocation
2202 * then we should never poison the object itself.
2204 if ((flags & SLAB_POISON) && !(flags & SLAB_DESTROY_BY_RCU) &&
2205 !s->ctor)
2206 s->flags |= __OBJECT_POISON;
2207 else
2208 s->flags &= ~__OBJECT_POISON;
2212 * If we are Redzoning then check if there is some space between the
2213 * end of the object and the free pointer. If not then add an
2214 * additional word to have some bytes to store Redzone information.
2216 if ((flags & SLAB_RED_ZONE) && size == s->objsize)
2217 size += sizeof(void *);
2218 #endif
2221 * With that we have determined the number of bytes in actual use
2222 * by the object. This is the potential offset to the free pointer.
2224 s->inuse = size;
2226 if (((flags & (SLAB_DESTROY_BY_RCU | SLAB_POISON)) ||
2227 s->ctor)) {
2229 * Relocate free pointer after the object if it is not
2230 * permitted to overwrite the first word of the object on
2231 * kmem_cache_free.
2233 * This is the case if we do RCU, have a constructor or
2234 * destructor or are poisoning the objects.
2236 s->offset = size;
2237 size += sizeof(void *);
2240 #ifdef CONFIG_SLUB_DEBUG
2241 if (flags & SLAB_STORE_USER)
2243 * Need to store information about allocs and frees after
2244 * the object.
2246 size += 2 * sizeof(struct track);
2248 if (flags & SLAB_RED_ZONE)
2250 * Add some empty padding so that we can catch
2251 * overwrites from earlier objects rather than let
2252 * tracking information or the free pointer be
2253 * corrupted if a user writes before the start
2254 * of the object.
2256 size += sizeof(void *);
2257 #endif
2260 * Determine the alignment based on various parameters that the
2261 * user specified and the dynamic determination of cache line size
2262 * on bootup.
2264 align = calculate_alignment(flags, align, s->objsize);
2267 * SLUB stores one object immediately after another beginning from
2268 * offset 0. In order to align the objects we have to simply size
2269 * each object to conform to the alignment.
2271 size = ALIGN(size, align);
2272 s->size = size;
2273 if (forced_order >= 0)
2274 order = forced_order;
2275 else
2276 order = calculate_order(size);
2278 if (order < 0)
2279 return 0;
2281 s->allocflags = 0;
2282 if (order)
2283 s->allocflags |= __GFP_COMP;
2285 if (s->flags & SLAB_CACHE_DMA)
2286 s->allocflags |= SLUB_DMA;
2288 if (s->flags & SLAB_RECLAIM_ACCOUNT)
2289 s->allocflags |= __GFP_RECLAIMABLE;
2292 * Determine the number of objects per slab
2294 s->oo = oo_make(order, size);
2295 s->min = oo_make(get_order(size), size);
2296 if (oo_objects(s->oo) > oo_objects(s->max))
2297 s->max = s->oo;
2299 return !!oo_objects(s->oo);
2303 static int kmem_cache_open(struct kmem_cache *s, gfp_t gfpflags,
2304 const char *name, size_t size,
2305 size_t align, unsigned long flags,
2306 void (*ctor)(void *))
2308 memset(s, 0, kmem_size);
2309 s->name = name;
2310 s->ctor = ctor;
2311 s->objsize = size;
2312 s->align = align;
2313 s->flags = kmem_cache_flags(size, flags, name, ctor);
2315 if (!calculate_sizes(s, -1))
2316 goto error;
2319 * The larger the object size is, the more pages we want on the partial
2320 * list to avoid pounding the page allocator excessively.
2322 set_min_partial(s, ilog2(s->size));
2323 s->refcount = 1;
2324 #ifdef CONFIG_NUMA
2325 s->remote_node_defrag_ratio = 1000;
2326 #endif
2327 if (!init_kmem_cache_nodes(s, gfpflags & ~SLUB_DMA))
2328 goto error;
2330 if (alloc_kmem_cache_cpus(s, gfpflags & ~SLUB_DMA))
2331 return 1;
2332 free_kmem_cache_nodes(s);
2333 error:
2334 if (flags & SLAB_PANIC)
2335 panic("Cannot create slab %s size=%lu realsize=%u "
2336 "order=%u offset=%u flags=%lx\n",
2337 s->name, (unsigned long)size, s->size, oo_order(s->oo),
2338 s->offset, flags);
2339 return 0;
2343 * Check if a given pointer is valid
2345 int kmem_ptr_validate(struct kmem_cache *s, const void *object)
2347 struct page *page;
2349 page = get_object_page(object);
2351 if (!page || s != page->slab)
2352 /* No slab or wrong slab */
2353 return 0;
2355 if (!check_valid_pointer(s, page, object))
2356 return 0;
2359 * We could also check if the object is on the slabs freelist.
2360 * But this would be too expensive and it seems that the main
2361 * purpose of kmem_ptr_valid() is to check if the object belongs
2362 * to a certain slab.
2364 return 1;
2366 EXPORT_SYMBOL(kmem_ptr_validate);
2369 * Determine the size of a slab object
2371 unsigned int kmem_cache_size(struct kmem_cache *s)
2373 return s->objsize;
2375 EXPORT_SYMBOL(kmem_cache_size);
2377 const char *kmem_cache_name(struct kmem_cache *s)
2379 return s->name;
2381 EXPORT_SYMBOL(kmem_cache_name);
2383 static void list_slab_objects(struct kmem_cache *s, struct page *page,
2384 const char *text)
2386 #ifdef CONFIG_SLUB_DEBUG
2387 void *addr = page_address(page);
2388 void *p;
2389 DECLARE_BITMAP(map, page->objects);
2391 bitmap_zero(map, page->objects);
2392 slab_err(s, page, "%s", text);
2393 slab_lock(page);
2394 for_each_free_object(p, s, page->freelist)
2395 set_bit(slab_index(p, s, addr), map);
2397 for_each_object(p, s, addr, page->objects) {
2399 if (!test_bit(slab_index(p, s, addr), map)) {
2400 printk(KERN_ERR "INFO: Object 0x%p @offset=%tu\n",
2401 p, p - addr);
2402 print_tracking(s, p);
2405 slab_unlock(page);
2406 #endif
2410 * Attempt to free all partial slabs on a node.
2412 static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
2414 unsigned long flags;
2415 struct page *page, *h;
2417 spin_lock_irqsave(&n->list_lock, flags);
2418 list_for_each_entry_safe(page, h, &n->partial, lru) {
2419 if (!page->inuse) {
2420 list_del(&page->lru);
2421 discard_slab(s, page);
2422 n->nr_partial--;
2423 } else {
2424 list_slab_objects(s, page,
2425 "Objects remaining on kmem_cache_close()");
2428 spin_unlock_irqrestore(&n->list_lock, flags);
2432 * Release all resources used by a slab cache.
2434 static inline int kmem_cache_close(struct kmem_cache *s)
2436 int node;
2438 flush_all(s);
2440 /* Attempt to free all objects */
2441 free_kmem_cache_cpus(s);
2442 for_each_node_state(node, N_NORMAL_MEMORY) {
2443 struct kmem_cache_node *n = get_node(s, node);
2445 free_partial(s, n);
2446 if (n->nr_partial || slabs_node(s, node))
2447 return 1;
2449 free_kmem_cache_nodes(s);
2450 return 0;
2454 * Close a cache and release the kmem_cache structure
2455 * (must be used for caches created using kmem_cache_create)
2457 void kmem_cache_destroy(struct kmem_cache *s)
2459 down_write(&slub_lock);
2460 s->refcount--;
2461 if (!s->refcount) {
2462 list_del(&s->list);
2463 up_write(&slub_lock);
2464 if (kmem_cache_close(s)) {
2465 printk(KERN_ERR "SLUB %s: %s called for cache that "
2466 "still has objects.\n", s->name, __func__);
2467 dump_stack();
2469 sysfs_slab_remove(s);
2470 } else
2471 up_write(&slub_lock);
2473 EXPORT_SYMBOL(kmem_cache_destroy);
2475 /********************************************************************
2476 * Kmalloc subsystem
2477 *******************************************************************/
2479 struct kmem_cache kmalloc_caches[SLUB_PAGE_SHIFT] __cacheline_aligned;
2480 EXPORT_SYMBOL(kmalloc_caches);
2482 static int __init setup_slub_min_order(char *str)
2484 get_option(&str, &slub_min_order);
2486 return 1;
2489 __setup("slub_min_order=", setup_slub_min_order);
2491 static int __init setup_slub_max_order(char *str)
2493 get_option(&str, &slub_max_order);
2495 return 1;
2498 __setup("slub_max_order=", setup_slub_max_order);
2500 static int __init setup_slub_min_objects(char *str)
2502 get_option(&str, &slub_min_objects);
2504 return 1;
2507 __setup("slub_min_objects=", setup_slub_min_objects);
2509 static int __init setup_slub_nomerge(char *str)
2511 slub_nomerge = 1;
2512 return 1;
2515 __setup("slub_nomerge", setup_slub_nomerge);
2517 static struct kmem_cache *create_kmalloc_cache(struct kmem_cache *s,
2518 const char *name, int size, gfp_t gfp_flags)
2520 unsigned int flags = 0;
2522 if (gfp_flags & SLUB_DMA)
2523 flags = SLAB_CACHE_DMA;
2525 down_write(&slub_lock);
2526 if (!kmem_cache_open(s, gfp_flags, name, size, ARCH_KMALLOC_MINALIGN,
2527 flags, NULL))
2528 goto panic;
2530 list_add(&s->list, &slab_caches);
2531 up_write(&slub_lock);
2532 if (sysfs_slab_add(s))
2533 goto panic;
2534 return s;
2536 panic:
2537 panic("Creation of kmalloc slab %s size=%d failed.\n", name, size);
2540 #ifdef CONFIG_ZONE_DMA
2541 static struct kmem_cache *kmalloc_caches_dma[SLUB_PAGE_SHIFT];
2543 static void sysfs_add_func(struct work_struct *w)
2545 struct kmem_cache *s;
2547 down_write(&slub_lock);
2548 list_for_each_entry(s, &slab_caches, list) {
2549 if (s->flags & __SYSFS_ADD_DEFERRED) {
2550 s->flags &= ~__SYSFS_ADD_DEFERRED;
2551 sysfs_slab_add(s);
2554 up_write(&slub_lock);
2557 static DECLARE_WORK(sysfs_add_work, sysfs_add_func);
2559 static noinline struct kmem_cache *dma_kmalloc_cache(int index, gfp_t flags)
2561 struct kmem_cache *s;
2562 char *text;
2563 size_t realsize;
2565 s = kmalloc_caches_dma[index];
2566 if (s)
2567 return s;
2569 /* Dynamically create dma cache */
2570 if (flags & __GFP_WAIT)
2571 down_write(&slub_lock);
2572 else {
2573 if (!down_write_trylock(&slub_lock))
2574 goto out;
2577 if (kmalloc_caches_dma[index])
2578 goto unlock_out;
2580 realsize = kmalloc_caches[index].objsize;
2581 text = kasprintf(flags & ~SLUB_DMA, "kmalloc_dma-%d",
2582 (unsigned int)realsize);
2583 s = kmalloc(kmem_size, flags & ~SLUB_DMA);
2585 if (!s || !text || !kmem_cache_open(s, flags, text,
2586 realsize, ARCH_KMALLOC_MINALIGN,
2587 SLAB_CACHE_DMA|__SYSFS_ADD_DEFERRED, NULL)) {
2588 kfree(s);
2589 kfree(text);
2590 goto unlock_out;
2593 list_add(&s->list, &slab_caches);
2594 kmalloc_caches_dma[index] = s;
2596 schedule_work(&sysfs_add_work);
2598 unlock_out:
2599 up_write(&slub_lock);
2600 out:
2601 return kmalloc_caches_dma[index];
2603 #endif
2606 * Conversion table for small slabs sizes / 8 to the index in the
2607 * kmalloc array. This is necessary for slabs < 192 since we have non power
2608 * of two cache sizes there. The size of larger slabs can be determined using
2609 * fls.
2611 static s8 size_index[24] = {
2612 3, /* 8 */
2613 4, /* 16 */
2614 5, /* 24 */
2615 5, /* 32 */
2616 6, /* 40 */
2617 6, /* 48 */
2618 6, /* 56 */
2619 6, /* 64 */
2620 1, /* 72 */
2621 1, /* 80 */
2622 1, /* 88 */
2623 1, /* 96 */
2624 7, /* 104 */
2625 7, /* 112 */
2626 7, /* 120 */
2627 7, /* 128 */
2628 2, /* 136 */
2629 2, /* 144 */
2630 2, /* 152 */
2631 2, /* 160 */
2632 2, /* 168 */
2633 2, /* 176 */
2634 2, /* 184 */
2635 2 /* 192 */
2638 static struct kmem_cache *get_slab(size_t size, gfp_t flags)
2640 int index;
2642 if (size <= 192) {
2643 if (!size)
2644 return ZERO_SIZE_PTR;
2646 index = size_index[(size - 1) / 8];
2647 } else
2648 index = fls(size - 1);
2650 #ifdef CONFIG_ZONE_DMA
2651 if (unlikely((flags & SLUB_DMA)))
2652 return dma_kmalloc_cache(index, flags);
2654 #endif
2655 return &kmalloc_caches[index];
2658 void *__kmalloc(size_t size, gfp_t flags)
2660 struct kmem_cache *s;
2662 if (unlikely(size > SLUB_MAX_SIZE))
2663 return kmalloc_large(size, flags);
2665 s = get_slab(size, flags);
2667 if (unlikely(ZERO_OR_NULL_PTR(s)))
2668 return s;
2670 return slab_alloc(s, flags, -1, _RET_IP_);
2672 EXPORT_SYMBOL(__kmalloc);
2674 static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
2676 struct page *page = alloc_pages_node(node, flags | __GFP_COMP,
2677 get_order(size));
2679 if (page)
2680 return page_address(page);
2681 else
2682 return NULL;
2685 #ifdef CONFIG_NUMA
2686 void *__kmalloc_node(size_t size, gfp_t flags, int node)
2688 struct kmem_cache *s;
2690 if (unlikely(size > SLUB_MAX_SIZE))
2691 return kmalloc_large_node(size, flags, node);
2693 s = get_slab(size, flags);
2695 if (unlikely(ZERO_OR_NULL_PTR(s)))
2696 return s;
2698 return slab_alloc(s, flags, node, _RET_IP_);
2700 EXPORT_SYMBOL(__kmalloc_node);
2701 #endif
2703 size_t ksize(const void *object)
2705 struct page *page;
2706 struct kmem_cache *s;
2708 if (unlikely(object == ZERO_SIZE_PTR))
2709 return 0;
2711 page = virt_to_head_page(object);
2713 if (unlikely(!PageSlab(page))) {
2714 WARN_ON(!PageCompound(page));
2715 return PAGE_SIZE << compound_order(page);
2717 s = page->slab;
2719 #ifdef CONFIG_SLUB_DEBUG
2721 * Debugging requires use of the padding between object
2722 * and whatever may come after it.
2724 if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
2725 return s->objsize;
2727 #endif
2729 * If we have the need to store the freelist pointer
2730 * back there or track user information then we can
2731 * only use the space before that information.
2733 if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER))
2734 return s->inuse;
2736 * Else we can use all the padding etc for the allocation
2738 return s->size;
2740 EXPORT_SYMBOL(ksize);
2742 void kfree(const void *x)
2744 struct page *page;
2745 void *object = (void *)x;
2747 if (unlikely(ZERO_OR_NULL_PTR(x)))
2748 return;
2750 page = virt_to_head_page(x);
2751 if (unlikely(!PageSlab(page))) {
2752 BUG_ON(!PageCompound(page));
2753 put_page(page);
2754 return;
2756 slab_free(page->slab, page, object, _RET_IP_);
2758 EXPORT_SYMBOL(kfree);
2761 * kmem_cache_shrink removes empty slabs from the partial lists and sorts
2762 * the remaining slabs by the number of items in use. The slabs with the
2763 * most items in use come first. New allocations will then fill those up
2764 * and thus they can be removed from the partial lists.
2766 * The slabs with the least items are placed last. This results in them
2767 * being allocated from last increasing the chance that the last objects
2768 * are freed in them.
2770 int kmem_cache_shrink(struct kmem_cache *s)
2772 int node;
2773 int i;
2774 struct kmem_cache_node *n;
2775 struct page *page;
2776 struct page *t;
2777 int objects = oo_objects(s->max);
2778 struct list_head *slabs_by_inuse =
2779 kmalloc(sizeof(struct list_head) * objects, GFP_KERNEL);
2780 unsigned long flags;
2782 if (!slabs_by_inuse)
2783 return -ENOMEM;
2785 flush_all(s);
2786 for_each_node_state(node, N_NORMAL_MEMORY) {
2787 n = get_node(s, node);
2789 if (!n->nr_partial)
2790 continue;
2792 for (i = 0; i < objects; i++)
2793 INIT_LIST_HEAD(slabs_by_inuse + i);
2795 spin_lock_irqsave(&n->list_lock, flags);
2798 * Build lists indexed by the items in use in each slab.
2800 * Note that concurrent frees may occur while we hold the
2801 * list_lock. page->inuse here is the upper limit.
2803 list_for_each_entry_safe(page, t, &n->partial, lru) {
2804 if (!page->inuse && slab_trylock(page)) {
2806 * Must hold slab lock here because slab_free
2807 * may have freed the last object and be
2808 * waiting to release the slab.
2810 list_del(&page->lru);
2811 n->nr_partial--;
2812 slab_unlock(page);
2813 discard_slab(s, page);
2814 } else {
2815 list_move(&page->lru,
2816 slabs_by_inuse + page->inuse);
2821 * Rebuild the partial list with the slabs filled up most
2822 * first and the least used slabs at the end.
2824 for (i = objects - 1; i >= 0; i--)
2825 list_splice(slabs_by_inuse + i, n->partial.prev);
2827 spin_unlock_irqrestore(&n->list_lock, flags);
2830 kfree(slabs_by_inuse);
2831 return 0;
2833 EXPORT_SYMBOL(kmem_cache_shrink);
2835 #if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)
2836 static int slab_mem_going_offline_callback(void *arg)
2838 struct kmem_cache *s;
2840 down_read(&slub_lock);
2841 list_for_each_entry(s, &slab_caches, list)
2842 kmem_cache_shrink(s);
2843 up_read(&slub_lock);
2845 return 0;
2848 static void slab_mem_offline_callback(void *arg)
2850 struct kmem_cache_node *n;
2851 struct kmem_cache *s;
2852 struct memory_notify *marg = arg;
2853 int offline_node;
2855 offline_node = marg->status_change_nid;
2858 * If the node still has available memory. we need kmem_cache_node
2859 * for it yet.
2861 if (offline_node < 0)
2862 return;
2864 down_read(&slub_lock);
2865 list_for_each_entry(s, &slab_caches, list) {
2866 n = get_node(s, offline_node);
2867 if (n) {
2869 * if n->nr_slabs > 0, slabs still exist on the node
2870 * that is going down. We were unable to free them,
2871 * and offline_pages() function shoudn't call this
2872 * callback. So, we must fail.
2874 BUG_ON(slabs_node(s, offline_node));
2876 s->node[offline_node] = NULL;
2877 kmem_cache_free(kmalloc_caches, n);
2880 up_read(&slub_lock);
2883 static int slab_mem_going_online_callback(void *arg)
2885 struct kmem_cache_node *n;
2886 struct kmem_cache *s;
2887 struct memory_notify *marg = arg;
2888 int nid = marg->status_change_nid;
2889 int ret = 0;
2892 * If the node's memory is already available, then kmem_cache_node is
2893 * already created. Nothing to do.
2895 if (nid < 0)
2896 return 0;
2899 * We are bringing a node online. No memory is available yet. We must
2900 * allocate a kmem_cache_node structure in order to bring the node
2901 * online.
2903 down_read(&slub_lock);
2904 list_for_each_entry(s, &slab_caches, list) {
2906 * XXX: kmem_cache_alloc_node will fallback to other nodes
2907 * since memory is not yet available from the node that
2908 * is brought up.
2910 n = kmem_cache_alloc(kmalloc_caches, GFP_KERNEL);
2911 if (!n) {
2912 ret = -ENOMEM;
2913 goto out;
2915 init_kmem_cache_node(n, s);
2916 s->node[nid] = n;
2918 out:
2919 up_read(&slub_lock);
2920 return ret;
2923 static int slab_memory_callback(struct notifier_block *self,
2924 unsigned long action, void *arg)
2926 int ret = 0;
2928 switch (action) {
2929 case MEM_GOING_ONLINE:
2930 ret = slab_mem_going_online_callback(arg);
2931 break;
2932 case MEM_GOING_OFFLINE:
2933 ret = slab_mem_going_offline_callback(arg);
2934 break;
2935 case MEM_OFFLINE:
2936 case MEM_CANCEL_ONLINE:
2937 slab_mem_offline_callback(arg);
2938 break;
2939 case MEM_ONLINE:
2940 case MEM_CANCEL_OFFLINE:
2941 break;
2943 if (ret)
2944 ret = notifier_from_errno(ret);
2945 else
2946 ret = NOTIFY_OK;
2947 return ret;
2950 #endif /* CONFIG_MEMORY_HOTPLUG */
2952 /********************************************************************
2953 * Basic setup of slabs
2954 *******************************************************************/
2956 void __init kmem_cache_init(void)
2958 int i;
2959 int caches = 0;
2961 init_alloc_cpu();
2963 #ifdef CONFIG_NUMA
2965 * Must first have the slab cache available for the allocations of the
2966 * struct kmem_cache_node's. There is special bootstrap code in
2967 * kmem_cache_open for slab_state == DOWN.
2969 create_kmalloc_cache(&kmalloc_caches[0], "kmem_cache_node",
2970 sizeof(struct kmem_cache_node), GFP_KERNEL);
2971 kmalloc_caches[0].refcount = -1;
2972 caches++;
2974 hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
2975 #endif
2977 /* Able to allocate the per node structures */
2978 slab_state = PARTIAL;
2980 /* Caches that are not of the two-to-the-power-of size */
2981 if (KMALLOC_MIN_SIZE <= 64) {
2982 create_kmalloc_cache(&kmalloc_caches[1],
2983 "kmalloc-96", 96, GFP_KERNEL);
2984 caches++;
2985 create_kmalloc_cache(&kmalloc_caches[2],
2986 "kmalloc-192", 192, GFP_KERNEL);
2987 caches++;
2990 for (i = KMALLOC_SHIFT_LOW; i < SLUB_PAGE_SHIFT; i++) {
2991 create_kmalloc_cache(&kmalloc_caches[i],
2992 "kmalloc", 1 << i, GFP_KERNEL);
2993 caches++;
2998 * Patch up the size_index table if we have strange large alignment
2999 * requirements for the kmalloc array. This is only the case for
3000 * MIPS it seems. The standard arches will not generate any code here.
3002 * Largest permitted alignment is 256 bytes due to the way we
3003 * handle the index determination for the smaller caches.
3005 * Make sure that nothing crazy happens if someone starts tinkering
3006 * around with ARCH_KMALLOC_MINALIGN
3008 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 ||
3009 (KMALLOC_MIN_SIZE & (KMALLOC_MIN_SIZE - 1)));
3011 for (i = 8; i < KMALLOC_MIN_SIZE; i += 8)
3012 size_index[(i - 1) / 8] = KMALLOC_SHIFT_LOW;
3014 if (KMALLOC_MIN_SIZE == 128) {
3016 * The 192 byte sized cache is not used if the alignment
3017 * is 128 byte. Redirect kmalloc to use the 256 byte cache
3018 * instead.
3020 for (i = 128 + 8; i <= 192; i += 8)
3021 size_index[(i - 1) / 8] = 8;
3024 slab_state = UP;
3026 /* Provide the correct kmalloc names now that the caches are up */
3027 for (i = KMALLOC_SHIFT_LOW; i < SLUB_PAGE_SHIFT; i++)
3028 kmalloc_caches[i]. name =
3029 kasprintf(GFP_KERNEL, "kmalloc-%d", 1 << i);
3031 #ifdef CONFIG_SMP
3032 register_cpu_notifier(&slab_notifier);
3033 kmem_size = offsetof(struct kmem_cache, cpu_slab) +
3034 nr_cpu_ids * sizeof(struct kmem_cache_cpu *);
3035 #else
3036 kmem_size = sizeof(struct kmem_cache);
3037 #endif
3039 printk(KERN_INFO
3040 "SLUB: Genslabs=%d, HWalign=%d, Order=%d-%d, MinObjects=%d,"
3041 " CPUs=%d, Nodes=%d\n",
3042 caches, cache_line_size(),
3043 slub_min_order, slub_max_order, slub_min_objects,
3044 nr_cpu_ids, nr_node_ids);
3048 * Find a mergeable slab cache
3050 static int slab_unmergeable(struct kmem_cache *s)
3052 if (slub_nomerge || (s->flags & SLUB_NEVER_MERGE))
3053 return 1;
3055 if (s->ctor)
3056 return 1;
3059 * We may have set a slab to be unmergeable during bootstrap.
3061 if (s->refcount < 0)
3062 return 1;
3064 return 0;
3067 static struct kmem_cache *find_mergeable(size_t size,
3068 size_t align, unsigned long flags, const char *name,
3069 void (*ctor)(void *))
3071 struct kmem_cache *s;
3073 if (slub_nomerge || (flags & SLUB_NEVER_MERGE))
3074 return NULL;
3076 if (ctor)
3077 return NULL;
3079 size = ALIGN(size, sizeof(void *));
3080 align = calculate_alignment(flags, align, size);
3081 size = ALIGN(size, align);
3082 flags = kmem_cache_flags(size, flags, name, NULL);
3084 list_for_each_entry(s, &slab_caches, list) {
3085 if (slab_unmergeable(s))
3086 continue;
3088 if (size > s->size)
3089 continue;
3091 if ((flags & SLUB_MERGE_SAME) != (s->flags & SLUB_MERGE_SAME))
3092 continue;
3094 * Check if alignment is compatible.
3095 * Courtesy of Adrian Drzewiecki
3097 if ((s->size & ~(align - 1)) != s->size)
3098 continue;
3100 if (s->size - size >= sizeof(void *))
3101 continue;
3103 return s;
3105 return NULL;
3108 struct kmem_cache *kmem_cache_create(const char *name, size_t size,
3109 size_t align, unsigned long flags, void (*ctor)(void *))
3111 struct kmem_cache *s;
3113 down_write(&slub_lock);
3114 s = find_mergeable(size, align, flags, name, ctor);
3115 if (s) {
3116 int cpu;
3118 s->refcount++;
3120 * Adjust the object sizes so that we clear
3121 * the complete object on kzalloc.
3123 s->objsize = max(s->objsize, (int)size);
3126 * And then we need to update the object size in the
3127 * per cpu structures
3129 for_each_online_cpu(cpu)
3130 get_cpu_slab(s, cpu)->objsize = s->objsize;
3132 s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *)));
3133 up_write(&slub_lock);
3135 if (sysfs_slab_alias(s, name)) {
3136 down_write(&slub_lock);
3137 s->refcount--;
3138 up_write(&slub_lock);
3139 goto err;
3141 return s;
3144 s = kmalloc(kmem_size, GFP_KERNEL);
3145 if (s) {
3146 if (kmem_cache_open(s, GFP_KERNEL, name,
3147 size, align, flags, ctor)) {
3148 list_add(&s->list, &slab_caches);
3149 up_write(&slub_lock);
3150 if (sysfs_slab_add(s)) {
3151 down_write(&slub_lock);
3152 list_del(&s->list);
3153 up_write(&slub_lock);
3154 kfree(s);
3155 goto err;
3157 return s;
3159 kfree(s);
3161 up_write(&slub_lock);
3163 err:
3164 if (flags & SLAB_PANIC)
3165 panic("Cannot create slabcache %s\n", name);
3166 else
3167 s = NULL;
3168 return s;
3170 EXPORT_SYMBOL(kmem_cache_create);
3172 #ifdef CONFIG_SMP
3174 * Use the cpu notifier to insure that the cpu slabs are flushed when
3175 * necessary.
3177 static int __cpuinit slab_cpuup_callback(struct notifier_block *nfb,
3178 unsigned long action, void *hcpu)
3180 long cpu = (long)hcpu;
3181 struct kmem_cache *s;
3182 unsigned long flags;
3184 switch (action) {
3185 case CPU_UP_PREPARE:
3186 case CPU_UP_PREPARE_FROZEN:
3187 init_alloc_cpu_cpu(cpu);
3188 down_read(&slub_lock);
3189 list_for_each_entry(s, &slab_caches, list)
3190 s->cpu_slab[cpu] = alloc_kmem_cache_cpu(s, cpu,
3191 GFP_KERNEL);
3192 up_read(&slub_lock);
3193 break;
3195 case CPU_UP_CANCELED:
3196 case CPU_UP_CANCELED_FROZEN:
3197 case CPU_DEAD:
3198 case CPU_DEAD_FROZEN:
3199 down_read(&slub_lock);
3200 list_for_each_entry(s, &slab_caches, list) {
3201 struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
3203 local_irq_save(flags);
3204 __flush_cpu_slab(s, cpu);
3205 local_irq_restore(flags);
3206 free_kmem_cache_cpu(c, cpu);
3207 s->cpu_slab[cpu] = NULL;
3209 up_read(&slub_lock);
3210 break;
3211 default:
3212 break;
3214 return NOTIFY_OK;
3217 static struct notifier_block __cpuinitdata slab_notifier = {
3218 .notifier_call = slab_cpuup_callback
3221 #endif
3223 void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller)
3225 struct kmem_cache *s;
3227 if (unlikely(size > SLUB_MAX_SIZE))
3228 return kmalloc_large(size, gfpflags);
3230 s = get_slab(size, gfpflags);
3232 if (unlikely(ZERO_OR_NULL_PTR(s)))
3233 return s;
3235 return slab_alloc(s, gfpflags, -1, caller);
3238 void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
3239 int node, unsigned long caller)
3241 struct kmem_cache *s;
3243 if (unlikely(size > SLUB_MAX_SIZE))
3244 return kmalloc_large_node(size, gfpflags, node);
3246 s = get_slab(size, gfpflags);
3248 if (unlikely(ZERO_OR_NULL_PTR(s)))
3249 return s;
3251 return slab_alloc(s, gfpflags, node, caller);
3254 #ifdef CONFIG_SLUB_DEBUG
3255 static unsigned long count_partial(struct kmem_cache_node *n,
3256 int (*get_count)(struct page *))
3258 unsigned long flags;
3259 unsigned long x = 0;
3260 struct page *page;
3262 spin_lock_irqsave(&n->list_lock, flags);
3263 list_for_each_entry(page, &n->partial, lru)
3264 x += get_count(page);
3265 spin_unlock_irqrestore(&n->list_lock, flags);
3266 return x;
3269 static int count_inuse(struct page *page)
3271 return page->inuse;
3274 static int count_total(struct page *page)
3276 return page->objects;
3279 static int count_free(struct page *page)
3281 return page->objects - page->inuse;
3284 static int validate_slab(struct kmem_cache *s, struct page *page,
3285 unsigned long *map)
3287 void *p;
3288 void *addr = page_address(page);
3290 if (!check_slab(s, page) ||
3291 !on_freelist(s, page, NULL))
3292 return 0;
3294 /* Now we know that a valid freelist exists */
3295 bitmap_zero(map, page->objects);
3297 for_each_free_object(p, s, page->freelist) {
3298 set_bit(slab_index(p, s, addr), map);
3299 if (!check_object(s, page, p, 0))
3300 return 0;
3303 for_each_object(p, s, addr, page->objects)
3304 if (!test_bit(slab_index(p, s, addr), map))
3305 if (!check_object(s, page, p, 1))
3306 return 0;
3307 return 1;
3310 static void validate_slab_slab(struct kmem_cache *s, struct page *page,
3311 unsigned long *map)
3313 if (slab_trylock(page)) {
3314 validate_slab(s, page, map);
3315 slab_unlock(page);
3316 } else
3317 printk(KERN_INFO "SLUB %s: Skipped busy slab 0x%p\n",
3318 s->name, page);
3320 if (s->flags & DEBUG_DEFAULT_FLAGS) {
3321 if (!PageSlubDebug(page))
3322 printk(KERN_ERR "SLUB %s: SlubDebug not set "
3323 "on slab 0x%p\n", s->name, page);
3324 } else {
3325 if (PageSlubDebug(page))
3326 printk(KERN_ERR "SLUB %s: SlubDebug set on "
3327 "slab 0x%p\n", s->name, page);
3331 static int validate_slab_node(struct kmem_cache *s,
3332 struct kmem_cache_node *n, unsigned long *map)
3334 unsigned long count = 0;
3335 struct page *page;
3336 unsigned long flags;
3338 spin_lock_irqsave(&n->list_lock, flags);
3340 list_for_each_entry(page, &n->partial, lru) {
3341 validate_slab_slab(s, page, map);
3342 count++;
3344 if (count != n->nr_partial)
3345 printk(KERN_ERR "SLUB %s: %ld partial slabs counted but "
3346 "counter=%ld\n", s->name, count, n->nr_partial);
3348 if (!(s->flags & SLAB_STORE_USER))
3349 goto out;
3351 list_for_each_entry(page, &n->full, lru) {
3352 validate_slab_slab(s, page, map);
3353 count++;
3355 if (count != atomic_long_read(&n->nr_slabs))
3356 printk(KERN_ERR "SLUB: %s %ld slabs counted but "
3357 "counter=%ld\n", s->name, count,
3358 atomic_long_read(&n->nr_slabs));
3360 out:
3361 spin_unlock_irqrestore(&n->list_lock, flags);
3362 return count;
3365 static long validate_slab_cache(struct kmem_cache *s)
3367 int node;
3368 unsigned long count = 0;
3369 unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
3370 sizeof(unsigned long), GFP_KERNEL);
3372 if (!map)
3373 return -ENOMEM;
3375 flush_all(s);
3376 for_each_node_state(node, N_NORMAL_MEMORY) {
3377 struct kmem_cache_node *n = get_node(s, node);
3379 count += validate_slab_node(s, n, map);
3381 kfree(map);
3382 return count;
3385 #ifdef SLUB_RESILIENCY_TEST
3386 static void resiliency_test(void)
3388 u8 *p;
3390 printk(KERN_ERR "SLUB resiliency testing\n");
3391 printk(KERN_ERR "-----------------------\n");
3392 printk(KERN_ERR "A. Corruption after allocation\n");
3394 p = kzalloc(16, GFP_KERNEL);
3395 p[16] = 0x12;
3396 printk(KERN_ERR "\n1. kmalloc-16: Clobber Redzone/next pointer"
3397 " 0x12->0x%p\n\n", p + 16);
3399 validate_slab_cache(kmalloc_caches + 4);
3401 /* Hmmm... The next two are dangerous */
3402 p = kzalloc(32, GFP_KERNEL);
3403 p[32 + sizeof(void *)] = 0x34;
3404 printk(KERN_ERR "\n2. kmalloc-32: Clobber next pointer/next slab"
3405 " 0x34 -> -0x%p\n", p);
3406 printk(KERN_ERR
3407 "If allocated object is overwritten then not detectable\n\n");
3409 validate_slab_cache(kmalloc_caches + 5);
3410 p = kzalloc(64, GFP_KERNEL);
3411 p += 64 + (get_cycles() & 0xff) * sizeof(void *);
3412 *p = 0x56;
3413 printk(KERN_ERR "\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
3415 printk(KERN_ERR
3416 "If allocated object is overwritten then not detectable\n\n");
3417 validate_slab_cache(kmalloc_caches + 6);
3419 printk(KERN_ERR "\nB. Corruption after free\n");
3420 p = kzalloc(128, GFP_KERNEL);
3421 kfree(p);
3422 *p = 0x78;
3423 printk(KERN_ERR "1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
3424 validate_slab_cache(kmalloc_caches + 7);
3426 p = kzalloc(256, GFP_KERNEL);
3427 kfree(p);
3428 p[50] = 0x9a;
3429 printk(KERN_ERR "\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n",
3431 validate_slab_cache(kmalloc_caches + 8);
3433 p = kzalloc(512, GFP_KERNEL);
3434 kfree(p);
3435 p[512] = 0xab;
3436 printk(KERN_ERR "\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
3437 validate_slab_cache(kmalloc_caches + 9);
3439 #else
3440 static void resiliency_test(void) {};
3441 #endif
3444 * Generate lists of code addresses where slabcache objects are allocated
3445 * and freed.
3448 struct location {
3449 unsigned long count;
3450 unsigned long addr;
3451 long long sum_time;
3452 long min_time;
3453 long max_time;
3454 long min_pid;
3455 long max_pid;
3456 DECLARE_BITMAP(cpus, NR_CPUS);
3457 nodemask_t nodes;
3460 struct loc_track {
3461 unsigned long max;
3462 unsigned long count;
3463 struct location *loc;
3466 static void free_loc_track(struct loc_track *t)
3468 if (t->max)
3469 free_pages((unsigned long)t->loc,
3470 get_order(sizeof(struct location) * t->max));
3473 static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
3475 struct location *l;
3476 int order;
3478 order = get_order(sizeof(struct location) * max);
3480 l = (void *)__get_free_pages(flags, order);
3481 if (!l)
3482 return 0;
3484 if (t->count) {
3485 memcpy(l, t->loc, sizeof(struct location) * t->count);
3486 free_loc_track(t);
3488 t->max = max;
3489 t->loc = l;
3490 return 1;
3493 static int add_location(struct loc_track *t, struct kmem_cache *s,
3494 const struct track *track)
3496 long start, end, pos;
3497 struct location *l;
3498 unsigned long caddr;
3499 unsigned long age = jiffies - track->when;
3501 start = -1;
3502 end = t->count;
3504 for ( ; ; ) {
3505 pos = start + (end - start + 1) / 2;
3508 * There is nothing at "end". If we end up there
3509 * we need to add something to before end.
3511 if (pos == end)
3512 break;
3514 caddr = t->loc[pos].addr;
3515 if (track->addr == caddr) {
3517 l = &t->loc[pos];
3518 l->count++;
3519 if (track->when) {
3520 l->sum_time += age;
3521 if (age < l->min_time)
3522 l->min_time = age;
3523 if (age > l->max_time)
3524 l->max_time = age;
3526 if (track->pid < l->min_pid)
3527 l->min_pid = track->pid;
3528 if (track->pid > l->max_pid)
3529 l->max_pid = track->pid;
3531 cpumask_set_cpu(track->cpu,
3532 to_cpumask(l->cpus));
3534 node_set(page_to_nid(virt_to_page(track)), l->nodes);
3535 return 1;
3538 if (track->addr < caddr)
3539 end = pos;
3540 else
3541 start = pos;
3545 * Not found. Insert new tracking element.
3547 if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
3548 return 0;
3550 l = t->loc + pos;
3551 if (pos < t->count)
3552 memmove(l + 1, l,
3553 (t->count - pos) * sizeof(struct location));
3554 t->count++;
3555 l->count = 1;
3556 l->addr = track->addr;
3557 l->sum_time = age;
3558 l->min_time = age;
3559 l->max_time = age;
3560 l->min_pid = track->pid;
3561 l->max_pid = track->pid;
3562 cpumask_clear(to_cpumask(l->cpus));
3563 cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
3564 nodes_clear(l->nodes);
3565 node_set(page_to_nid(virt_to_page(track)), l->nodes);
3566 return 1;
3569 static void process_slab(struct loc_track *t, struct kmem_cache *s,
3570 struct page *page, enum track_item alloc)
3572 void *addr = page_address(page);
3573 DECLARE_BITMAP(map, page->objects);
3574 void *p;
3576 bitmap_zero(map, page->objects);
3577 for_each_free_object(p, s, page->freelist)
3578 set_bit(slab_index(p, s, addr), map);
3580 for_each_object(p, s, addr, page->objects)
3581 if (!test_bit(slab_index(p, s, addr), map))
3582 add_location(t, s, get_track(s, p, alloc));
3585 static int list_locations(struct kmem_cache *s, char *buf,
3586 enum track_item alloc)
3588 int len = 0;
3589 unsigned long i;
3590 struct loc_track t = { 0, 0, NULL };
3591 int node;
3593 if (!alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
3594 GFP_TEMPORARY))
3595 return sprintf(buf, "Out of memory\n");
3597 /* Push back cpu slabs */
3598 flush_all(s);
3600 for_each_node_state(node, N_NORMAL_MEMORY) {
3601 struct kmem_cache_node *n = get_node(s, node);
3602 unsigned long flags;
3603 struct page *page;
3605 if (!atomic_long_read(&n->nr_slabs))
3606 continue;
3608 spin_lock_irqsave(&n->list_lock, flags);
3609 list_for_each_entry(page, &n->partial, lru)
3610 process_slab(&t, s, page, alloc);
3611 list_for_each_entry(page, &n->full, lru)
3612 process_slab(&t, s, page, alloc);
3613 spin_unlock_irqrestore(&n->list_lock, flags);
3616 for (i = 0; i < t.count; i++) {
3617 struct location *l = &t.loc[i];
3619 if (len > PAGE_SIZE - KSYM_SYMBOL_LEN - 100)
3620 break;
3621 len += sprintf(buf + len, "%7ld ", l->count);
3623 if (l->addr)
3624 len += sprint_symbol(buf + len, (unsigned long)l->addr);
3625 else
3626 len += sprintf(buf + len, "<not-available>");
3628 if (l->sum_time != l->min_time) {
3629 len += sprintf(buf + len, " age=%ld/%ld/%ld",
3630 l->min_time,
3631 (long)div_u64(l->sum_time, l->count),
3632 l->max_time);
3633 } else
3634 len += sprintf(buf + len, " age=%ld",
3635 l->min_time);
3637 if (l->min_pid != l->max_pid)
3638 len += sprintf(buf + len, " pid=%ld-%ld",
3639 l->min_pid, l->max_pid);
3640 else
3641 len += sprintf(buf + len, " pid=%ld",
3642 l->min_pid);
3644 if (num_online_cpus() > 1 &&
3645 !cpumask_empty(to_cpumask(l->cpus)) &&
3646 len < PAGE_SIZE - 60) {
3647 len += sprintf(buf + len, " cpus=");
3648 len += cpulist_scnprintf(buf + len, PAGE_SIZE - len - 50,
3649 to_cpumask(l->cpus));
3652 if (num_online_nodes() > 1 && !nodes_empty(l->nodes) &&
3653 len < PAGE_SIZE - 60) {
3654 len += sprintf(buf + len, " nodes=");
3655 len += nodelist_scnprintf(buf + len, PAGE_SIZE - len - 50,
3656 l->nodes);
3659 len += sprintf(buf + len, "\n");
3662 free_loc_track(&t);
3663 if (!t.count)
3664 len += sprintf(buf, "No data\n");
3665 return len;
3668 enum slab_stat_type {
3669 SL_ALL, /* All slabs */
3670 SL_PARTIAL, /* Only partially allocated slabs */
3671 SL_CPU, /* Only slabs used for cpu caches */
3672 SL_OBJECTS, /* Determine allocated objects not slabs */
3673 SL_TOTAL /* Determine object capacity not slabs */
3676 #define SO_ALL (1 << SL_ALL)
3677 #define SO_PARTIAL (1 << SL_PARTIAL)
3678 #define SO_CPU (1 << SL_CPU)
3679 #define SO_OBJECTS (1 << SL_OBJECTS)
3680 #define SO_TOTAL (1 << SL_TOTAL)
3682 static ssize_t show_slab_objects(struct kmem_cache *s,
3683 char *buf, unsigned long flags)
3685 unsigned long total = 0;
3686 int node;
3687 int x;
3688 unsigned long *nodes;
3689 unsigned long *per_cpu;
3691 nodes = kzalloc(2 * sizeof(unsigned long) * nr_node_ids, GFP_KERNEL);
3692 if (!nodes)
3693 return -ENOMEM;
3694 per_cpu = nodes + nr_node_ids;
3696 if (flags & SO_CPU) {
3697 int cpu;
3699 for_each_possible_cpu(cpu) {
3700 struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
3702 if (!c || c->node < 0)
3703 continue;
3705 if (c->page) {
3706 if (flags & SO_TOTAL)
3707 x = c->page->objects;
3708 else if (flags & SO_OBJECTS)
3709 x = c->page->inuse;
3710 else
3711 x = 1;
3713 total += x;
3714 nodes[c->node] += x;
3716 per_cpu[c->node]++;
3720 if (flags & SO_ALL) {
3721 for_each_node_state(node, N_NORMAL_MEMORY) {
3722 struct kmem_cache_node *n = get_node(s, node);
3724 if (flags & SO_TOTAL)
3725 x = atomic_long_read(&n->total_objects);
3726 else if (flags & SO_OBJECTS)
3727 x = atomic_long_read(&n->total_objects) -
3728 count_partial(n, count_free);
3730 else
3731 x = atomic_long_read(&n->nr_slabs);
3732 total += x;
3733 nodes[node] += x;
3736 } else if (flags & SO_PARTIAL) {
3737 for_each_node_state(node, N_NORMAL_MEMORY) {
3738 struct kmem_cache_node *n = get_node(s, node);
3740 if (flags & SO_TOTAL)
3741 x = count_partial(n, count_total);
3742 else if (flags & SO_OBJECTS)
3743 x = count_partial(n, count_inuse);
3744 else
3745 x = n->nr_partial;
3746 total += x;
3747 nodes[node] += x;
3750 x = sprintf(buf, "%lu", total);
3751 #ifdef CONFIG_NUMA
3752 for_each_node_state(node, N_NORMAL_MEMORY)
3753 if (nodes[node])
3754 x += sprintf(buf + x, " N%d=%lu",
3755 node, nodes[node]);
3756 #endif
3757 kfree(nodes);
3758 return x + sprintf(buf + x, "\n");
3761 static int any_slab_objects(struct kmem_cache *s)
3763 int node;
3765 for_each_online_node(node) {
3766 struct kmem_cache_node *n = get_node(s, node);
3768 if (!n)
3769 continue;
3771 if (atomic_long_read(&n->total_objects))
3772 return 1;
3774 return 0;
3777 #define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
3778 #define to_slab(n) container_of(n, struct kmem_cache, kobj);
3780 struct slab_attribute {
3781 struct attribute attr;
3782 ssize_t (*show)(struct kmem_cache *s, char *buf);
3783 ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
3786 #define SLAB_ATTR_RO(_name) \
3787 static struct slab_attribute _name##_attr = __ATTR_RO(_name)
3789 #define SLAB_ATTR(_name) \
3790 static struct slab_attribute _name##_attr = \
3791 __ATTR(_name, 0644, _name##_show, _name##_store)
3793 static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
3795 return sprintf(buf, "%d\n", s->size);
3797 SLAB_ATTR_RO(slab_size);
3799 static ssize_t align_show(struct kmem_cache *s, char *buf)
3801 return sprintf(buf, "%d\n", s->align);
3803 SLAB_ATTR_RO(align);
3805 static ssize_t object_size_show(struct kmem_cache *s, char *buf)
3807 return sprintf(buf, "%d\n", s->objsize);
3809 SLAB_ATTR_RO(object_size);
3811 static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
3813 return sprintf(buf, "%d\n", oo_objects(s->oo));
3815 SLAB_ATTR_RO(objs_per_slab);
3817 static ssize_t order_store(struct kmem_cache *s,
3818 const char *buf, size_t length)
3820 unsigned long order;
3821 int err;
3823 err = strict_strtoul(buf, 10, &order);
3824 if (err)
3825 return err;
3827 if (order > slub_max_order || order < slub_min_order)
3828 return -EINVAL;
3830 calculate_sizes(s, order);
3831 return length;
3834 static ssize_t order_show(struct kmem_cache *s, char *buf)
3836 return sprintf(buf, "%d\n", oo_order(s->oo));
3838 SLAB_ATTR(order);
3840 static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
3842 return sprintf(buf, "%lu\n", s->min_partial);
3845 static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
3846 size_t length)
3848 unsigned long min;
3849 int err;
3851 err = strict_strtoul(buf, 10, &min);
3852 if (err)
3853 return err;
3855 set_min_partial(s, min);
3856 return length;
3858 SLAB_ATTR(min_partial);
3860 static ssize_t ctor_show(struct kmem_cache *s, char *buf)
3862 if (s->ctor) {
3863 int n = sprint_symbol(buf, (unsigned long)s->ctor);
3865 return n + sprintf(buf + n, "\n");
3867 return 0;
3869 SLAB_ATTR_RO(ctor);
3871 static ssize_t aliases_show(struct kmem_cache *s, char *buf)
3873 return sprintf(buf, "%d\n", s->refcount - 1);
3875 SLAB_ATTR_RO(aliases);
3877 static ssize_t slabs_show(struct kmem_cache *s, char *buf)
3879 return show_slab_objects(s, buf, SO_ALL);
3881 SLAB_ATTR_RO(slabs);
3883 static ssize_t partial_show(struct kmem_cache *s, char *buf)
3885 return show_slab_objects(s, buf, SO_PARTIAL);
3887 SLAB_ATTR_RO(partial);
3889 static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
3891 return show_slab_objects(s, buf, SO_CPU);
3893 SLAB_ATTR_RO(cpu_slabs);
3895 static ssize_t objects_show(struct kmem_cache *s, char *buf)
3897 return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
3899 SLAB_ATTR_RO(objects);
3901 static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
3903 return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
3905 SLAB_ATTR_RO(objects_partial);
3907 static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
3909 return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
3911 SLAB_ATTR_RO(total_objects);
3913 static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
3915 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DEBUG_FREE));
3918 static ssize_t sanity_checks_store(struct kmem_cache *s,
3919 const char *buf, size_t length)
3921 s->flags &= ~SLAB_DEBUG_FREE;
3922 if (buf[0] == '1')
3923 s->flags |= SLAB_DEBUG_FREE;
3924 return length;
3926 SLAB_ATTR(sanity_checks);
3928 static ssize_t trace_show(struct kmem_cache *s, char *buf)
3930 return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
3933 static ssize_t trace_store(struct kmem_cache *s, const char *buf,
3934 size_t length)
3936 s->flags &= ~SLAB_TRACE;
3937 if (buf[0] == '1')
3938 s->flags |= SLAB_TRACE;
3939 return length;
3941 SLAB_ATTR(trace);
3943 static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
3945 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
3948 static ssize_t reclaim_account_store(struct kmem_cache *s,
3949 const char *buf, size_t length)
3951 s->flags &= ~SLAB_RECLAIM_ACCOUNT;
3952 if (buf[0] == '1')
3953 s->flags |= SLAB_RECLAIM_ACCOUNT;
3954 return length;
3956 SLAB_ATTR(reclaim_account);
3958 static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
3960 return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
3962 SLAB_ATTR_RO(hwcache_align);
3964 #ifdef CONFIG_ZONE_DMA
3965 static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
3967 return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
3969 SLAB_ATTR_RO(cache_dma);
3970 #endif
3972 static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
3974 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DESTROY_BY_RCU));
3976 SLAB_ATTR_RO(destroy_by_rcu);
3978 static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
3980 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
3983 static ssize_t red_zone_store(struct kmem_cache *s,
3984 const char *buf, size_t length)
3986 if (any_slab_objects(s))
3987 return -EBUSY;
3989 s->flags &= ~SLAB_RED_ZONE;
3990 if (buf[0] == '1')
3991 s->flags |= SLAB_RED_ZONE;
3992 calculate_sizes(s, -1);
3993 return length;
3995 SLAB_ATTR(red_zone);
3997 static ssize_t poison_show(struct kmem_cache *s, char *buf)
3999 return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
4002 static ssize_t poison_store(struct kmem_cache *s,
4003 const char *buf, size_t length)
4005 if (any_slab_objects(s))
4006 return -EBUSY;
4008 s->flags &= ~SLAB_POISON;
4009 if (buf[0] == '1')
4010 s->flags |= SLAB_POISON;
4011 calculate_sizes(s, -1);
4012 return length;
4014 SLAB_ATTR(poison);
4016 static ssize_t store_user_show(struct kmem_cache *s, char *buf)
4018 return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
4021 static ssize_t store_user_store(struct kmem_cache *s,
4022 const char *buf, size_t length)
4024 if (any_slab_objects(s))
4025 return -EBUSY;
4027 s->flags &= ~SLAB_STORE_USER;
4028 if (buf[0] == '1')
4029 s->flags |= SLAB_STORE_USER;
4030 calculate_sizes(s, -1);
4031 return length;
4033 SLAB_ATTR(store_user);
4035 static ssize_t validate_show(struct kmem_cache *s, char *buf)
4037 return 0;
4040 static ssize_t validate_store(struct kmem_cache *s,
4041 const char *buf, size_t length)
4043 int ret = -EINVAL;
4045 if (buf[0] == '1') {
4046 ret = validate_slab_cache(s);
4047 if (ret >= 0)
4048 ret = length;
4050 return ret;
4052 SLAB_ATTR(validate);
4054 static ssize_t shrink_show(struct kmem_cache *s, char *buf)
4056 return 0;
4059 static ssize_t shrink_store(struct kmem_cache *s,
4060 const char *buf, size_t length)
4062 if (buf[0] == '1') {
4063 int rc = kmem_cache_shrink(s);
4065 if (rc)
4066 return rc;
4067 } else
4068 return -EINVAL;
4069 return length;
4071 SLAB_ATTR(shrink);
4073 static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
4075 if (!(s->flags & SLAB_STORE_USER))
4076 return -ENOSYS;
4077 return list_locations(s, buf, TRACK_ALLOC);
4079 SLAB_ATTR_RO(alloc_calls);
4081 static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
4083 if (!(s->flags & SLAB_STORE_USER))
4084 return -ENOSYS;
4085 return list_locations(s, buf, TRACK_FREE);
4087 SLAB_ATTR_RO(free_calls);
4089 #ifdef CONFIG_NUMA
4090 static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
4092 return sprintf(buf, "%d\n", s->remote_node_defrag_ratio / 10);
4095 static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
4096 const char *buf, size_t length)
4098 unsigned long ratio;
4099 int err;
4101 err = strict_strtoul(buf, 10, &ratio);
4102 if (err)
4103 return err;
4105 if (ratio <= 100)
4106 s->remote_node_defrag_ratio = ratio * 10;
4108 return length;
4110 SLAB_ATTR(remote_node_defrag_ratio);
4111 #endif
4113 #ifdef CONFIG_SLUB_STATS
4114 static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
4116 unsigned long sum = 0;
4117 int cpu;
4118 int len;
4119 int *data = kmalloc(nr_cpu_ids * sizeof(int), GFP_KERNEL);
4121 if (!data)
4122 return -ENOMEM;
4124 for_each_online_cpu(cpu) {
4125 unsigned x = get_cpu_slab(s, cpu)->stat[si];
4127 data[cpu] = x;
4128 sum += x;
4131 len = sprintf(buf, "%lu", sum);
4133 #ifdef CONFIG_SMP
4134 for_each_online_cpu(cpu) {
4135 if (data[cpu] && len < PAGE_SIZE - 20)
4136 len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]);
4138 #endif
4139 kfree(data);
4140 return len + sprintf(buf + len, "\n");
4143 #define STAT_ATTR(si, text) \
4144 static ssize_t text##_show(struct kmem_cache *s, char *buf) \
4146 return show_stat(s, buf, si); \
4148 SLAB_ATTR_RO(text); \
4150 STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
4151 STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
4152 STAT_ATTR(FREE_FASTPATH, free_fastpath);
4153 STAT_ATTR(FREE_SLOWPATH, free_slowpath);
4154 STAT_ATTR(FREE_FROZEN, free_frozen);
4155 STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
4156 STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
4157 STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
4158 STAT_ATTR(ALLOC_SLAB, alloc_slab);
4159 STAT_ATTR(ALLOC_REFILL, alloc_refill);
4160 STAT_ATTR(FREE_SLAB, free_slab);
4161 STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
4162 STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
4163 STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
4164 STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
4165 STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
4166 STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
4167 STAT_ATTR(ORDER_FALLBACK, order_fallback);
4168 #endif
4170 static struct attribute *slab_attrs[] = {
4171 &slab_size_attr.attr,
4172 &object_size_attr.attr,
4173 &objs_per_slab_attr.attr,
4174 &order_attr.attr,
4175 &min_partial_attr.attr,
4176 &objects_attr.attr,
4177 &objects_partial_attr.attr,
4178 &total_objects_attr.attr,
4179 &slabs_attr.attr,
4180 &partial_attr.attr,
4181 &cpu_slabs_attr.attr,
4182 &ctor_attr.attr,
4183 &aliases_attr.attr,
4184 &align_attr.attr,
4185 &sanity_checks_attr.attr,
4186 &trace_attr.attr,
4187 &hwcache_align_attr.attr,
4188 &reclaim_account_attr.attr,
4189 &destroy_by_rcu_attr.attr,
4190 &red_zone_attr.attr,
4191 &poison_attr.attr,
4192 &store_user_attr.attr,
4193 &validate_attr.attr,
4194 &shrink_attr.attr,
4195 &alloc_calls_attr.attr,
4196 &free_calls_attr.attr,
4197 #ifdef CONFIG_ZONE_DMA
4198 &cache_dma_attr.attr,
4199 #endif
4200 #ifdef CONFIG_NUMA
4201 &remote_node_defrag_ratio_attr.attr,
4202 #endif
4203 #ifdef CONFIG_SLUB_STATS
4204 &alloc_fastpath_attr.attr,
4205 &alloc_slowpath_attr.attr,
4206 &free_fastpath_attr.attr,
4207 &free_slowpath_attr.attr,
4208 &free_frozen_attr.attr,
4209 &free_add_partial_attr.attr,
4210 &free_remove_partial_attr.attr,
4211 &alloc_from_partial_attr.attr,
4212 &alloc_slab_attr.attr,
4213 &alloc_refill_attr.attr,
4214 &free_slab_attr.attr,
4215 &cpuslab_flush_attr.attr,
4216 &deactivate_full_attr.attr,
4217 &deactivate_empty_attr.attr,
4218 &deactivate_to_head_attr.attr,
4219 &deactivate_to_tail_attr.attr,
4220 &deactivate_remote_frees_attr.attr,
4221 &order_fallback_attr.attr,
4222 #endif
4223 NULL
4226 static struct attribute_group slab_attr_group = {
4227 .attrs = slab_attrs,
4230 static ssize_t slab_attr_show(struct kobject *kobj,
4231 struct attribute *attr,
4232 char *buf)
4234 struct slab_attribute *attribute;
4235 struct kmem_cache *s;
4236 int err;
4238 attribute = to_slab_attr(attr);
4239 s = to_slab(kobj);
4241 if (!attribute->show)
4242 return -EIO;
4244 err = attribute->show(s, buf);
4246 return err;
4249 static ssize_t slab_attr_store(struct kobject *kobj,
4250 struct attribute *attr,
4251 const char *buf, size_t len)
4253 struct slab_attribute *attribute;
4254 struct kmem_cache *s;
4255 int err;
4257 attribute = to_slab_attr(attr);
4258 s = to_slab(kobj);
4260 if (!attribute->store)
4261 return -EIO;
4263 err = attribute->store(s, buf, len);
4265 return err;
4268 static void kmem_cache_release(struct kobject *kobj)
4270 struct kmem_cache *s = to_slab(kobj);
4272 kfree(s);
4275 static struct sysfs_ops slab_sysfs_ops = {
4276 .show = slab_attr_show,
4277 .store = slab_attr_store,
4280 static struct kobj_type slab_ktype = {
4281 .sysfs_ops = &slab_sysfs_ops,
4282 .release = kmem_cache_release
4285 static int uevent_filter(struct kset *kset, struct kobject *kobj)
4287 struct kobj_type *ktype = get_ktype(kobj);
4289 if (ktype == &slab_ktype)
4290 return 1;
4291 return 0;
4294 static struct kset_uevent_ops slab_uevent_ops = {
4295 .filter = uevent_filter,
4298 static struct kset *slab_kset;
4300 #define ID_STR_LENGTH 64
4302 /* Create a unique string id for a slab cache:
4304 * Format :[flags-]size
4306 static char *create_unique_id(struct kmem_cache *s)
4308 char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
4309 char *p = name;
4311 BUG_ON(!name);
4313 *p++ = ':';
4315 * First flags affecting slabcache operations. We will only
4316 * get here for aliasable slabs so we do not need to support
4317 * too many flags. The flags here must cover all flags that
4318 * are matched during merging to guarantee that the id is
4319 * unique.
4321 if (s->flags & SLAB_CACHE_DMA)
4322 *p++ = 'd';
4323 if (s->flags & SLAB_RECLAIM_ACCOUNT)
4324 *p++ = 'a';
4325 if (s->flags & SLAB_DEBUG_FREE)
4326 *p++ = 'F';
4327 if (p != name + 1)
4328 *p++ = '-';
4329 p += sprintf(p, "%07d", s->size);
4330 BUG_ON(p > name + ID_STR_LENGTH - 1);
4331 return name;
4334 static int sysfs_slab_add(struct kmem_cache *s)
4336 int err;
4337 const char *name;
4338 int unmergeable;
4340 if (slab_state < SYSFS)
4341 /* Defer until later */
4342 return 0;
4344 unmergeable = slab_unmergeable(s);
4345 if (unmergeable) {
4347 * Slabcache can never be merged so we can use the name proper.
4348 * This is typically the case for debug situations. In that
4349 * case we can catch duplicate names easily.
4351 sysfs_remove_link(&slab_kset->kobj, s->name);
4352 name = s->name;
4353 } else {
4355 * Create a unique name for the slab as a target
4356 * for the symlinks.
4358 name = create_unique_id(s);
4361 s->kobj.kset = slab_kset;
4362 err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, name);
4363 if (err) {
4364 kobject_put(&s->kobj);
4365 return err;
4368 err = sysfs_create_group(&s->kobj, &slab_attr_group);
4369 if (err)
4370 return err;
4371 kobject_uevent(&s->kobj, KOBJ_ADD);
4372 if (!unmergeable) {
4373 /* Setup first alias */
4374 sysfs_slab_alias(s, s->name);
4375 kfree(name);
4377 return 0;
4380 static void sysfs_slab_remove(struct kmem_cache *s)
4382 kobject_uevent(&s->kobj, KOBJ_REMOVE);
4383 kobject_del(&s->kobj);
4384 kobject_put(&s->kobj);
4388 * Need to buffer aliases during bootup until sysfs becomes
4389 * available lest we lose that information.
4391 struct saved_alias {
4392 struct kmem_cache *s;
4393 const char *name;
4394 struct saved_alias *next;
4397 static struct saved_alias *alias_list;
4399 static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
4401 struct saved_alias *al;
4403 if (slab_state == SYSFS) {
4405 * If we have a leftover link then remove it.
4407 sysfs_remove_link(&slab_kset->kobj, name);
4408 return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
4411 al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
4412 if (!al)
4413 return -ENOMEM;
4415 al->s = s;
4416 al->name = name;
4417 al->next = alias_list;
4418 alias_list = al;
4419 return 0;
4422 static int __init slab_sysfs_init(void)
4424 struct kmem_cache *s;
4425 int err;
4427 slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj);
4428 if (!slab_kset) {
4429 printk(KERN_ERR "Cannot register slab subsystem.\n");
4430 return -ENOSYS;
4433 slab_state = SYSFS;
4435 list_for_each_entry(s, &slab_caches, list) {
4436 err = sysfs_slab_add(s);
4437 if (err)
4438 printk(KERN_ERR "SLUB: Unable to add boot slab %s"
4439 " to sysfs\n", s->name);
4442 while (alias_list) {
4443 struct saved_alias *al = alias_list;
4445 alias_list = alias_list->next;
4446 err = sysfs_slab_alias(al->s, al->name);
4447 if (err)
4448 printk(KERN_ERR "SLUB: Unable to add boot slab alias"
4449 " %s to sysfs\n", s->name);
4450 kfree(al);
4453 resiliency_test();
4454 return 0;
4457 __initcall(slab_sysfs_init);
4458 #endif
4461 * The /proc/slabinfo ABI
4463 #ifdef CONFIG_SLABINFO
4464 static void print_slabinfo_header(struct seq_file *m)
4466 seq_puts(m, "slabinfo - version: 2.1\n");
4467 seq_puts(m, "# name <active_objs> <num_objs> <objsize> "
4468 "<objperslab> <pagesperslab>");
4469 seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
4470 seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
4471 seq_putc(m, '\n');
4474 static void *s_start(struct seq_file *m, loff_t *pos)
4476 loff_t n = *pos;
4478 down_read(&slub_lock);
4479 if (!n)
4480 print_slabinfo_header(m);
4482 return seq_list_start(&slab_caches, *pos);
4485 static void *s_next(struct seq_file *m, void *p, loff_t *pos)
4487 return seq_list_next(p, &slab_caches, pos);
4490 static void s_stop(struct seq_file *m, void *p)
4492 up_read(&slub_lock);
4495 static int s_show(struct seq_file *m, void *p)
4497 unsigned long nr_partials = 0;
4498 unsigned long nr_slabs = 0;
4499 unsigned long nr_inuse = 0;
4500 unsigned long nr_objs = 0;
4501 unsigned long nr_free = 0;
4502 struct kmem_cache *s;
4503 int node;
4505 s = list_entry(p, struct kmem_cache, list);
4507 for_each_online_node(node) {
4508 struct kmem_cache_node *n = get_node(s, node);
4510 if (!n)
4511 continue;
4513 nr_partials += n->nr_partial;
4514 nr_slabs += atomic_long_read(&n->nr_slabs);
4515 nr_objs += atomic_long_read(&n->total_objects);
4516 nr_free += count_partial(n, count_free);
4519 nr_inuse = nr_objs - nr_free;
4521 seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d", s->name, nr_inuse,
4522 nr_objs, s->size, oo_objects(s->oo),
4523 (1 << oo_order(s->oo)));
4524 seq_printf(m, " : tunables %4u %4u %4u", 0, 0, 0);
4525 seq_printf(m, " : slabdata %6lu %6lu %6lu", nr_slabs, nr_slabs,
4526 0UL);
4527 seq_putc(m, '\n');
4528 return 0;
4531 static const struct seq_operations slabinfo_op = {
4532 .start = s_start,
4533 .next = s_next,
4534 .stop = s_stop,
4535 .show = s_show,
4538 static int slabinfo_open(struct inode *inode, struct file *file)
4540 return seq_open(file, &slabinfo_op);
4543 static const struct file_operations proc_slabinfo_operations = {
4544 .open = slabinfo_open,
4545 .read = seq_read,
4546 .llseek = seq_lseek,
4547 .release = seq_release,
4550 static int __init slab_proc_init(void)
4552 proc_create("slabinfo",S_IWUSR|S_IRUGO,NULL,&proc_slabinfo_operations);
4553 return 0;
4555 module_init(slab_proc_init);
4556 #endif /* CONFIG_SLABINFO */