2 * IDE ATAPI streaming tape driver.
4 * Copyright (C) 1995-1999 Gadi Oxman <gadio@netvision.net.il>
5 * Copyright (C) 2003-2005 Bartlomiej Zolnierkiewicz
7 * This driver was constructed as a student project in the software laboratory
8 * of the faculty of electrical engineering in the Technion - Israel's
9 * Institute Of Technology, with the guide of Avner Lottem and Dr. Ilana David.
11 * It is hereby placed under the terms of the GNU general public license.
12 * (See linux/COPYING).
14 * For a historical changelog see
15 * Documentation/ide/ChangeLog.ide-tape.1995-2002
18 #define IDETAPE_VERSION "1.20"
20 #include <linux/module.h>
21 #include <linux/types.h>
22 #include <linux/string.h>
23 #include <linux/kernel.h>
24 #include <linux/delay.h>
25 #include <linux/timer.h>
27 #include <linux/interrupt.h>
28 #include <linux/jiffies.h>
29 #include <linux/major.h>
30 #include <linux/errno.h>
31 #include <linux/genhd.h>
32 #include <linux/slab.h>
33 #include <linux/pci.h>
34 #include <linux/ide.h>
35 #include <linux/smp_lock.h>
36 #include <linux/completion.h>
37 #include <linux/bitops.h>
38 #include <linux/mutex.h>
39 #include <scsi/scsi.h>
41 #include <asm/byteorder.h>
42 #include <linux/irq.h>
43 #include <linux/uaccess.h>
45 #include <asm/unaligned.h>
46 #include <linux/mtio.h>
49 /* output errors only */
51 /* output all sense key/asc */
53 /* info regarding all chrdev-related procedures */
54 DBG_CHRDEV
= (1 << 2),
55 /* all remaining procedures */
57 /* buffer alloc info (pc_stack & rq_stack) */
58 DBG_PCRQ_STACK
= (1 << 4),
61 /* define to see debug info */
62 #define IDETAPE_DEBUG_LOG 0
65 #define debug_log(lvl, fmt, args...) \
67 if (tape->debug_mask & lvl) \
68 printk(KERN_INFO "ide-tape: " fmt, ## args); \
71 #define debug_log(lvl, fmt, args...) do {} while (0)
74 /**************************** Tunable parameters *****************************/
78 * Pipelined mode parameters.
80 * We try to use the minimum number of stages which is enough to keep the tape
81 * constantly streaming. To accomplish that, we implement a feedback loop around
82 * the maximum number of stages:
84 * We start from MIN maximum stages (we will not even use MIN stages if we don't
85 * need them), increment it by RATE*(MAX-MIN) whenever we sense that the
86 * pipeline is empty, until we reach the optimum value or until we reach MAX.
88 * Setting the following parameter to 0 is illegal: the pipelined mode cannot be
89 * disabled (idetape_calculate_speeds() divides by tape->max_stages.)
91 #define IDETAPE_MIN_PIPELINE_STAGES 1
92 #define IDETAPE_MAX_PIPELINE_STAGES 400
93 #define IDETAPE_INCREASE_STAGES_RATE 20
96 * After each failed packet command we issue a request sense command and retry
97 * the packet command IDETAPE_MAX_PC_RETRIES times.
99 * Setting IDETAPE_MAX_PC_RETRIES to 0 will disable retries.
101 #define IDETAPE_MAX_PC_RETRIES 3
104 * With each packet command, we allocate a buffer of IDETAPE_PC_BUFFER_SIZE
105 * bytes. This is used for several packet commands (Not for READ/WRITE commands)
107 #define IDETAPE_PC_BUFFER_SIZE 256
110 * In various places in the driver, we need to allocate storage
111 * for packet commands and requests, which will remain valid while
112 * we leave the driver to wait for an interrupt or a timeout event.
114 #define IDETAPE_PC_STACK (10 + IDETAPE_MAX_PC_RETRIES)
117 * Some drives (for example, Seagate STT3401A Travan) require a very long
118 * timeout, because they don't return an interrupt or clear their busy bit
119 * until after the command completes (even retension commands).
121 #define IDETAPE_WAIT_CMD (900*HZ)
124 * The following parameter is used to select the point in the internal tape fifo
125 * in which we will start to refill the buffer. Decreasing the following
126 * parameter will improve the system's latency and interactive response, while
127 * using a high value might improve system throughput.
129 #define IDETAPE_FIFO_THRESHOLD 2
132 * DSC polling parameters.
134 * Polling for DSC (a single bit in the status register) is a very important
135 * function in ide-tape. There are two cases in which we poll for DSC:
137 * 1. Before a read/write packet command, to ensure that we can transfer data
138 * from/to the tape's data buffers, without causing an actual media access.
139 * In case the tape is not ready yet, we take out our request from the device
140 * request queue, so that ide.c could service requests from the other device
141 * on the same interface in the meantime.
143 * 2. After the successful initialization of a "media access packet command",
144 * which is a command that can take a long time to complete (the interval can
145 * range from several seconds to even an hour). Again, we postpone our request
146 * in the middle to free the bus for the other device. The polling frequency
147 * here should be lower than the read/write frequency since those media access
148 * commands are slow. We start from a "fast" frequency - IDETAPE_DSC_MA_FAST
149 * (1 second), and if we don't receive DSC after IDETAPE_DSC_MA_THRESHOLD
150 * (5 min), we switch it to a lower frequency - IDETAPE_DSC_MA_SLOW (1 min).
152 * We also set a timeout for the timer, in case something goes wrong. The
153 * timeout should be longer then the maximum execution time of a tape operation.
157 #define IDETAPE_DSC_RW_MIN 5*HZ/100 /* 50 msec */
158 #define IDETAPE_DSC_RW_MAX 40*HZ/100 /* 400 msec */
159 #define IDETAPE_DSC_RW_TIMEOUT 2*60*HZ /* 2 minutes */
160 #define IDETAPE_DSC_MA_FAST 2*HZ /* 2 seconds */
161 #define IDETAPE_DSC_MA_THRESHOLD 5*60*HZ /* 5 minutes */
162 #define IDETAPE_DSC_MA_SLOW 30*HZ /* 30 seconds */
163 #define IDETAPE_DSC_MA_TIMEOUT 2*60*60*HZ /* 2 hours */
165 /*************************** End of tunable parameters ***********************/
167 /* Read/Write error simulation */
168 #define SIMULATE_ERRORS 0
170 /* tape directions */
172 IDETAPE_DIR_NONE
= (1 << 0),
173 IDETAPE_DIR_READ
= (1 << 1),
174 IDETAPE_DIR_WRITE
= (1 << 2),
180 struct idetape_bh
*b_reqnext
;
184 /* Tape door status */
185 #define DOOR_UNLOCKED 0
186 #define DOOR_LOCKED 1
187 #define DOOR_EXPLICITLY_LOCKED 2
189 /* Some defines for the SPACE command */
190 #define IDETAPE_SPACE_OVER_FILEMARK 1
191 #define IDETAPE_SPACE_TO_EOD 3
193 /* Some defines for the LOAD UNLOAD command */
194 #define IDETAPE_LU_LOAD_MASK 1
195 #define IDETAPE_LU_RETENSION_MASK 2
196 #define IDETAPE_LU_EOT_MASK 4
199 * Special requests for our block device strategy routine.
201 * In order to service a character device command, we add special requests to
202 * the tail of our block device request queue and wait for their completion.
206 REQ_IDETAPE_PC1
= (1 << 0), /* packet command (first stage) */
207 REQ_IDETAPE_PC2
= (1 << 1), /* packet command (second stage) */
208 REQ_IDETAPE_READ
= (1 << 2),
209 REQ_IDETAPE_WRITE
= (1 << 3),
212 /* Error codes returned in rq->errors to the higher part of the driver. */
213 #define IDETAPE_ERROR_GENERAL 101
214 #define IDETAPE_ERROR_FILEMARK 102
215 #define IDETAPE_ERROR_EOD 103
217 /* Structures related to the SELECT SENSE / MODE SENSE packet commands. */
218 #define IDETAPE_BLOCK_DESCRIPTOR 0
219 #define IDETAPE_CAPABILITIES_PAGE 0x2a
221 /* Tape flag bits values. */
223 IDETAPE_FLAG_IGNORE_DSC
= (1 << 0),
224 /* 0 When the tape position is unknown */
225 IDETAPE_FLAG_ADDRESS_VALID
= (1 << 1),
226 /* Device already opened */
227 IDETAPE_FLAG_BUSY
= (1 << 2),
228 /* Error detected in a pipeline stage */
229 IDETAPE_FLAG_PIPELINE_ERR
= (1 << 3),
230 /* Attempt to auto-detect the current user block size */
231 IDETAPE_FLAG_DETECT_BS
= (1 << 4),
232 /* Currently on a filemark */
233 IDETAPE_FLAG_FILEMARK
= (1 << 5),
234 /* DRQ interrupt device */
235 IDETAPE_FLAG_DRQ_INTERRUPT
= (1 << 6),
236 /* pipeline active */
237 IDETAPE_FLAG_PIPELINE_ACTIVE
= (1 << 7),
238 /* 0 = no tape is loaded, so we don't rewind after ejecting */
239 IDETAPE_FLAG_MEDIUM_PRESENT
= (1 << 8),
242 /* A pipeline stage. */
243 typedef struct idetape_stage_s
{
244 struct request rq
; /* The corresponding request */
245 struct idetape_bh
*bh
; /* The data buffers */
246 struct idetape_stage_s
*next
; /* Pointer to the next stage */
250 * Most of our global data which we need to save even as we leave the driver due
251 * to an interrupt or a timer event is stored in the struct defined below.
253 typedef struct ide_tape_obj
{
255 ide_driver_t
*driver
;
256 struct gendisk
*disk
;
260 * Since a typical character device operation requires more
261 * than one packet command, we provide here enough memory
262 * for the maximum of interconnected packet commands.
263 * The packet commands are stored in the circular array pc_stack.
264 * pc_stack_index points to the last used entry, and warps around
265 * to the start when we get to the last array entry.
267 * pc points to the current processed packet command.
269 * failed_pc points to the last failed packet command, or contains
270 * NULL if we do not need to retry any packet command. This is
271 * required since an additional packet command is needed before the
272 * retry, to get detailed information on what went wrong.
274 /* Current packet command */
275 struct ide_atapi_pc
*pc
;
276 /* Last failed packet command */
277 struct ide_atapi_pc
*failed_pc
;
278 /* Packet command stack */
279 struct ide_atapi_pc pc_stack
[IDETAPE_PC_STACK
];
280 /* Next free packet command storage space */
282 struct request rq_stack
[IDETAPE_PC_STACK
];
283 /* We implement a circular array */
287 * DSC polling variables.
289 * While polling for DSC we use postponed_rq to postpone the current
290 * request so that ide.c will be able to service pending requests on the
291 * other device. Note that at most we will have only one DSC (usually
292 * data transfer) request in the device request queue. Additional
293 * requests can be queued in our internal pipeline, but they will be
294 * visible to ide.c only one at a time.
296 struct request
*postponed_rq
;
297 /* The time in which we started polling for DSC */
298 unsigned long dsc_polling_start
;
299 /* Timer used to poll for dsc */
300 struct timer_list dsc_timer
;
301 /* Read/Write dsc polling frequency */
302 unsigned long best_dsc_rw_freq
;
303 unsigned long dsc_poll_freq
;
304 unsigned long dsc_timeout
;
306 /* Read position information */
309 unsigned int first_frame
;
311 /* Last error information */
312 u8 sense_key
, asc
, ascq
;
314 /* Character device operation */
318 /* Current character device data transfer direction */
321 /* tape block size, usually 512 or 1024 bytes */
322 unsigned short blk_size
;
325 /* Copy of the tape's Capabilities and Mechanical Page */
329 * Active data transfer request parameters.
331 * At most, there is only one ide-tape originated data transfer request
332 * in the device request queue. This allows ide.c to easily service
333 * requests from the other device when we postpone our active request.
334 * In the pipelined operation mode, we use our internal pipeline
335 * structure to hold more data requests. The data buffer size is chosen
336 * based on the tape's recommendation.
338 /* ptr to the request which is waiting in the device request queue */
339 struct request
*active_data_rq
;
340 /* Data buffer size chosen based on the tape's recommendation */
342 idetape_stage_t
*merge_stage
;
343 int merge_stage_size
;
344 struct idetape_bh
*bh
;
349 * Pipeline parameters.
351 * To accomplish non-pipelined mode, we simply set the following
352 * variables to zero (or NULL, where appropriate).
354 /* Number of currently used stages */
356 /* Number of pending stages */
357 int nr_pending_stages
;
358 /* We will not allocate more than this number of stages */
359 int max_stages
, min_pipeline
, max_pipeline
;
360 /* The first stage which will be removed from the pipeline */
361 idetape_stage_t
*first_stage
;
362 /* The currently active stage */
363 idetape_stage_t
*active_stage
;
364 /* Will be serviced after the currently active request */
365 idetape_stage_t
*next_stage
;
366 /* New requests will be added to the pipeline here */
367 idetape_stage_t
*last_stage
;
368 /* Optional free stage which we can use */
369 idetape_stage_t
*cache_stage
;
371 /* Wasted space in each stage */
374 /* Status/Action flags: long for set_bit */
376 /* protects the ide-tape queue */
379 /* Measures average tape speed */
380 unsigned long avg_time
;
384 /* the door is currently locked */
386 /* the tape hardware is write protected */
388 /* the tape is write protected (hardware or opened as read-only) */
392 * Limit the number of times a request can be postponed, to avoid an
393 * infinite postpone deadlock.
398 * Measures number of frames:
400 * 1. written/read to/from the driver pipeline (pipeline_head).
401 * 2. written/read to/from the tape buffers (idetape_bh).
402 * 3. written/read by the tape to/from the media (tape_head).
409 /* Speed control at the tape buffers input/output */
410 unsigned long insert_time
;
413 int max_insert_speed
;
414 int measure_insert_time
;
416 /* Speed regulation negative feedback loop */
418 int pipeline_head_speed
;
419 int controlled_pipeline_head_speed
;
420 int uncontrolled_pipeline_head_speed
;
421 int controlled_last_pipeline_head
;
422 unsigned long uncontrolled_pipeline_head_time
;
423 unsigned long controlled_pipeline_head_time
;
424 int controlled_previous_pipeline_head
;
425 int uncontrolled_previous_pipeline_head
;
426 unsigned long controlled_previous_head_time
;
427 unsigned long uncontrolled_previous_head_time
;
428 int restart_speed_control_req
;
433 static DEFINE_MUTEX(idetape_ref_mutex
);
435 static struct class *idetape_sysfs_class
;
437 #define to_ide_tape(obj) container_of(obj, struct ide_tape_obj, kref)
439 #define ide_tape_g(disk) \
440 container_of((disk)->private_data, struct ide_tape_obj, driver)
442 static struct ide_tape_obj
*ide_tape_get(struct gendisk
*disk
)
444 struct ide_tape_obj
*tape
= NULL
;
446 mutex_lock(&idetape_ref_mutex
);
447 tape
= ide_tape_g(disk
);
449 kref_get(&tape
->kref
);
450 mutex_unlock(&idetape_ref_mutex
);
454 static void ide_tape_release(struct kref
*);
456 static void ide_tape_put(struct ide_tape_obj
*tape
)
458 mutex_lock(&idetape_ref_mutex
);
459 kref_put(&tape
->kref
, ide_tape_release
);
460 mutex_unlock(&idetape_ref_mutex
);
464 * The variables below are used for the character device interface. Additional
465 * state variables are defined in our ide_drive_t structure.
467 static struct ide_tape_obj
*idetape_devs
[MAX_HWIFS
* MAX_DRIVES
];
469 #define ide_tape_f(file) ((file)->private_data)
471 static struct ide_tape_obj
*ide_tape_chrdev_get(unsigned int i
)
473 struct ide_tape_obj
*tape
= NULL
;
475 mutex_lock(&idetape_ref_mutex
);
476 tape
= idetape_devs
[i
];
478 kref_get(&tape
->kref
);
479 mutex_unlock(&idetape_ref_mutex
);
483 static void idetape_input_buffers(ide_drive_t
*drive
, struct ide_atapi_pc
*pc
,
486 struct idetape_bh
*bh
= pc
->bh
;
491 printk(KERN_ERR
"ide-tape: bh == NULL in "
492 "idetape_input_buffers\n");
493 ide_atapi_discard_data(drive
, bcount
);
497 (unsigned int)(bh
->b_size
- atomic_read(&bh
->b_count
)),
499 HWIF(drive
)->atapi_input_bytes(drive
, bh
->b_data
+
500 atomic_read(&bh
->b_count
), count
);
502 atomic_add(count
, &bh
->b_count
);
503 if (atomic_read(&bh
->b_count
) == bh
->b_size
) {
506 atomic_set(&bh
->b_count
, 0);
512 static void idetape_output_buffers(ide_drive_t
*drive
, struct ide_atapi_pc
*pc
,
515 struct idetape_bh
*bh
= pc
->bh
;
520 printk(KERN_ERR
"ide-tape: bh == NULL in %s\n",
524 count
= min((unsigned int)pc
->b_count
, (unsigned int)bcount
);
525 HWIF(drive
)->atapi_output_bytes(drive
, pc
->b_data
, count
);
528 pc
->b_count
-= count
;
533 pc
->b_data
= bh
->b_data
;
534 pc
->b_count
= atomic_read(&bh
->b_count
);
540 static void idetape_update_buffers(struct ide_atapi_pc
*pc
)
542 struct idetape_bh
*bh
= pc
->bh
;
544 unsigned int bcount
= pc
->xferred
;
546 if (pc
->flags
& PC_FLAG_WRITING
)
550 printk(KERN_ERR
"ide-tape: bh == NULL in %s\n",
554 count
= min((unsigned int)bh
->b_size
, (unsigned int)bcount
);
555 atomic_set(&bh
->b_count
, count
);
556 if (atomic_read(&bh
->b_count
) == bh
->b_size
)
564 * idetape_next_pc_storage returns a pointer to a place in which we can
565 * safely store a packet command, even though we intend to leave the
566 * driver. A storage space for a maximum of IDETAPE_PC_STACK packet
567 * commands is allocated at initialization time.
569 static struct ide_atapi_pc
*idetape_next_pc_storage(ide_drive_t
*drive
)
571 idetape_tape_t
*tape
= drive
->driver_data
;
573 debug_log(DBG_PCRQ_STACK
, "pc_stack_index=%d\n", tape
->pc_stack_index
);
575 if (tape
->pc_stack_index
== IDETAPE_PC_STACK
)
576 tape
->pc_stack_index
= 0;
577 return (&tape
->pc_stack
[tape
->pc_stack_index
++]);
581 * idetape_next_rq_storage is used along with idetape_next_pc_storage.
582 * Since we queue packet commands in the request queue, we need to
583 * allocate a request, along with the allocation of a packet command.
586 /**************************************************************
588 * This should get fixed to use kmalloc(.., GFP_ATOMIC) *
589 * followed later on by kfree(). -ml *
591 **************************************************************/
593 static struct request
*idetape_next_rq_storage(ide_drive_t
*drive
)
595 idetape_tape_t
*tape
= drive
->driver_data
;
597 debug_log(DBG_PCRQ_STACK
, "rq_stack_index=%d\n", tape
->rq_stack_index
);
599 if (tape
->rq_stack_index
== IDETAPE_PC_STACK
)
600 tape
->rq_stack_index
= 0;
601 return (&tape
->rq_stack
[tape
->rq_stack_index
++]);
604 static void idetape_init_pc(struct ide_atapi_pc
*pc
)
606 memset(pc
->c
, 0, 12);
610 pc
->buf
= pc
->pc_buf
;
611 pc
->buf_size
= IDETAPE_PC_BUFFER_SIZE
;
617 * called on each failed packet command retry to analyze the request sense. We
618 * currently do not utilize this information.
620 static void idetape_analyze_error(ide_drive_t
*drive
, u8
*sense
)
622 idetape_tape_t
*tape
= drive
->driver_data
;
623 struct ide_atapi_pc
*pc
= tape
->failed_pc
;
625 tape
->sense_key
= sense
[2] & 0xF;
626 tape
->asc
= sense
[12];
627 tape
->ascq
= sense
[13];
629 debug_log(DBG_ERR
, "pc = %x, sense key = %x, asc = %x, ascq = %x\n",
630 pc
->c
[0], tape
->sense_key
, tape
->asc
, tape
->ascq
);
632 /* Correct pc->xferred by asking the tape. */
633 if (pc
->flags
& PC_FLAG_DMA_ERROR
) {
634 pc
->xferred
= pc
->req_xfer
-
636 be32_to_cpu(get_unaligned((u32
*)&sense
[3]));
637 idetape_update_buffers(pc
);
641 * If error was the result of a zero-length read or write command,
642 * with sense key=5, asc=0x22, ascq=0, let it slide. Some drives
643 * (i.e. Seagate STT3401A Travan) don't support 0-length read/writes.
645 if ((pc
->c
[0] == READ_6
|| pc
->c
[0] == WRITE_6
)
647 && pc
->c
[4] == 0 && pc
->c
[3] == 0 && pc
->c
[2] == 0) {
648 if (tape
->sense_key
== 5) {
649 /* don't report an error, everything's ok */
651 /* don't retry read/write */
652 pc
->flags
|= PC_FLAG_ABORT
;
655 if (pc
->c
[0] == READ_6
&& (sense
[2] & 0x80)) {
656 pc
->error
= IDETAPE_ERROR_FILEMARK
;
657 pc
->flags
|= PC_FLAG_ABORT
;
659 if (pc
->c
[0] == WRITE_6
) {
660 if ((sense
[2] & 0x40) || (tape
->sense_key
== 0xd
661 && tape
->asc
== 0x0 && tape
->ascq
== 0x2)) {
662 pc
->error
= IDETAPE_ERROR_EOD
;
663 pc
->flags
|= PC_FLAG_ABORT
;
666 if (pc
->c
[0] == READ_6
|| pc
->c
[0] == WRITE_6
) {
667 if (tape
->sense_key
== 8) {
668 pc
->error
= IDETAPE_ERROR_EOD
;
669 pc
->flags
|= PC_FLAG_ABORT
;
671 if (!(pc
->flags
& PC_FLAG_ABORT
) &&
673 pc
->retries
= IDETAPE_MAX_PC_RETRIES
+ 1;
677 static void idetape_activate_next_stage(ide_drive_t
*drive
)
679 idetape_tape_t
*tape
= drive
->driver_data
;
680 idetape_stage_t
*stage
= tape
->next_stage
;
681 struct request
*rq
= &stage
->rq
;
683 debug_log(DBG_PROCS
, "Enter %s\n", __func__
);
686 printk(KERN_ERR
"ide-tape: bug: Trying to activate a non"
687 " existing stage\n");
691 rq
->rq_disk
= tape
->disk
;
693 rq
->special
= (void *)stage
->bh
;
694 tape
->active_data_rq
= rq
;
695 tape
->active_stage
= stage
;
696 tape
->next_stage
= stage
->next
;
699 /* Free a stage along with its related buffers completely. */
700 static void __idetape_kfree_stage(idetape_stage_t
*stage
)
702 struct idetape_bh
*prev_bh
, *bh
= stage
->bh
;
706 if (bh
->b_data
!= NULL
) {
707 size
= (int) bh
->b_size
;
709 free_page((unsigned long) bh
->b_data
);
711 bh
->b_data
+= PAGE_SIZE
;
721 static void idetape_kfree_stage(idetape_tape_t
*tape
, idetape_stage_t
*stage
)
723 __idetape_kfree_stage(stage
);
727 * Remove tape->first_stage from the pipeline. The caller should avoid race
730 static void idetape_remove_stage_head(ide_drive_t
*drive
)
732 idetape_tape_t
*tape
= drive
->driver_data
;
733 idetape_stage_t
*stage
;
735 debug_log(DBG_PROCS
, "Enter %s\n", __func__
);
737 if (tape
->first_stage
== NULL
) {
738 printk(KERN_ERR
"ide-tape: bug: tape->first_stage is NULL\n");
741 if (tape
->active_stage
== tape
->first_stage
) {
742 printk(KERN_ERR
"ide-tape: bug: Trying to free our active "
746 stage
= tape
->first_stage
;
747 tape
->first_stage
= stage
->next
;
748 idetape_kfree_stage(tape
, stage
);
750 if (tape
->first_stage
== NULL
) {
751 tape
->last_stage
= NULL
;
752 if (tape
->next_stage
!= NULL
)
753 printk(KERN_ERR
"ide-tape: bug: tape->next_stage !="
756 printk(KERN_ERR
"ide-tape: bug: nr_stages should be 0 "
762 * This will free all the pipeline stages starting from new_last_stage->next
763 * to the end of the list, and point tape->last_stage to new_last_stage.
765 static void idetape_abort_pipeline(ide_drive_t
*drive
,
766 idetape_stage_t
*new_last_stage
)
768 idetape_tape_t
*tape
= drive
->driver_data
;
769 idetape_stage_t
*stage
= new_last_stage
->next
;
770 idetape_stage_t
*nstage
;
772 debug_log(DBG_PROCS
, "%s: Enter %s\n", tape
->name
, __func__
);
775 nstage
= stage
->next
;
776 idetape_kfree_stage(tape
, stage
);
778 --tape
->nr_pending_stages
;
782 new_last_stage
->next
= NULL
;
783 tape
->last_stage
= new_last_stage
;
784 tape
->next_stage
= NULL
;
788 * Finish servicing a request and insert a pending pipeline request into the
791 static int idetape_end_request(ide_drive_t
*drive
, int uptodate
, int nr_sects
)
793 struct request
*rq
= HWGROUP(drive
)->rq
;
794 idetape_tape_t
*tape
= drive
->driver_data
;
797 int remove_stage
= 0;
798 idetape_stage_t
*active_stage
;
800 debug_log(DBG_PROCS
, "Enter %s\n", __func__
);
803 case 0: error
= IDETAPE_ERROR_GENERAL
; break;
804 case 1: error
= 0; break;
805 default: error
= uptodate
;
809 tape
->failed_pc
= NULL
;
811 if (!blk_special_request(rq
)) {
812 ide_end_request(drive
, uptodate
, nr_sects
);
816 spin_lock_irqsave(&tape
->lock
, flags
);
818 /* The request was a pipelined data transfer request */
819 if (tape
->active_data_rq
== rq
) {
820 active_stage
= tape
->active_stage
;
821 tape
->active_stage
= NULL
;
822 tape
->active_data_rq
= NULL
;
823 tape
->nr_pending_stages
--;
824 if (rq
->cmd
[0] & REQ_IDETAPE_WRITE
) {
827 set_bit(IDETAPE_FLAG_PIPELINE_ERR
,
829 if (error
== IDETAPE_ERROR_EOD
)
830 idetape_abort_pipeline(drive
,
833 } else if (rq
->cmd
[0] & REQ_IDETAPE_READ
) {
834 if (error
== IDETAPE_ERROR_EOD
) {
835 set_bit(IDETAPE_FLAG_PIPELINE_ERR
,
837 idetape_abort_pipeline(drive
, active_stage
);
840 if (tape
->next_stage
!= NULL
) {
841 idetape_activate_next_stage(drive
);
843 /* Insert the next request into the request queue. */
844 (void)ide_do_drive_cmd(drive
, tape
->active_data_rq
,
848 * This is a part of the feedback loop which tries to
849 * find the optimum number of stages. We are starting
850 * from a minimum maximum number of stages, and if we
851 * sense that the pipeline is empty, we try to increase
852 * it, until we reach the user compile time memory
855 int i
= (tape
->max_pipeline
- tape
->min_pipeline
) / 10;
857 tape
->max_stages
+= max(i
, 1);
858 tape
->max_stages
= max(tape
->max_stages
,
860 tape
->max_stages
= min(tape
->max_stages
,
864 ide_end_drive_cmd(drive
, 0, 0);
867 idetape_remove_stage_head(drive
);
868 if (tape
->active_data_rq
== NULL
)
869 clear_bit(IDETAPE_FLAG_PIPELINE_ACTIVE
, &tape
->flags
);
870 spin_unlock_irqrestore(&tape
->lock
, flags
);
874 static ide_startstop_t
idetape_request_sense_callback(ide_drive_t
*drive
)
876 idetape_tape_t
*tape
= drive
->driver_data
;
878 debug_log(DBG_PROCS
, "Enter %s\n", __func__
);
880 if (!tape
->pc
->error
) {
881 idetape_analyze_error(drive
, tape
->pc
->buf
);
882 idetape_end_request(drive
, 1, 0);
884 printk(KERN_ERR
"ide-tape: Error in REQUEST SENSE itself - "
885 "Aborting request!\n");
886 idetape_end_request(drive
, 0, 0);
891 static void idetape_create_request_sense_cmd(struct ide_atapi_pc
*pc
)
894 pc
->c
[0] = REQUEST_SENSE
;
897 pc
->idetape_callback
= &idetape_request_sense_callback
;
900 static void idetape_init_rq(struct request
*rq
, u8 cmd
)
902 memset(rq
, 0, sizeof(*rq
));
903 rq
->cmd_type
= REQ_TYPE_SPECIAL
;
908 * Generate a new packet command request in front of the request queue, before
909 * the current request, so that it will be processed immediately, on the next
910 * pass through the driver. The function below is called from the request
911 * handling part of the driver (the "bottom" part). Safe storage for the request
912 * should be allocated with ide_tape_next_{pc,rq}_storage() prior to that.
914 * Memory for those requests is pre-allocated at initialization time, and is
915 * limited to IDETAPE_PC_STACK requests. We assume that we have enough space for
916 * the maximum possible number of inter-dependent packet commands.
918 * The higher level of the driver - The ioctl handler and the character device
919 * handling functions should queue request to the lower level part and wait for
920 * their completion using idetape_queue_pc_tail or idetape_queue_rw_tail.
922 static void idetape_queue_pc_head(ide_drive_t
*drive
, struct ide_atapi_pc
*pc
,
925 struct ide_tape_obj
*tape
= drive
->driver_data
;
927 idetape_init_rq(rq
, REQ_IDETAPE_PC1
);
928 rq
->buffer
= (char *) pc
;
929 rq
->rq_disk
= tape
->disk
;
930 (void) ide_do_drive_cmd(drive
, rq
, ide_preempt
);
934 * idetape_retry_pc is called when an error was detected during the
935 * last packet command. We queue a request sense packet command in
936 * the head of the request list.
938 static ide_startstop_t
idetape_retry_pc (ide_drive_t
*drive
)
940 idetape_tape_t
*tape
= drive
->driver_data
;
941 struct ide_atapi_pc
*pc
;
944 (void)ide_read_error(drive
);
945 pc
= idetape_next_pc_storage(drive
);
946 rq
= idetape_next_rq_storage(drive
);
947 idetape_create_request_sense_cmd(pc
);
948 set_bit(IDETAPE_FLAG_IGNORE_DSC
, &tape
->flags
);
949 idetape_queue_pc_head(drive
, pc
, rq
);
954 * Postpone the current request so that ide.c will be able to service requests
955 * from another device on the same hwgroup while we are polling for DSC.
957 static void idetape_postpone_request(ide_drive_t
*drive
)
959 idetape_tape_t
*tape
= drive
->driver_data
;
961 debug_log(DBG_PROCS
, "Enter %s\n", __func__
);
963 tape
->postponed_rq
= HWGROUP(drive
)->rq
;
964 ide_stall_queue(drive
, tape
->dsc_poll_freq
);
967 typedef void idetape_io_buf(ide_drive_t
*, struct ide_atapi_pc
*, unsigned int);
970 * This is the usual interrupt handler which will be called during a packet
971 * command. We will transfer some of the data (as requested by the drive) and
972 * will re-point interrupt handler to us. When data transfer is finished, we
973 * will act according to the algorithm described before
976 static ide_startstop_t
idetape_pc_intr(ide_drive_t
*drive
)
978 ide_hwif_t
*hwif
= drive
->hwif
;
979 idetape_tape_t
*tape
= drive
->driver_data
;
980 struct ide_atapi_pc
*pc
= tape
->pc
;
981 xfer_func_t
*xferfunc
;
982 idetape_io_buf
*iobuf
;
985 static int error_sim_count
;
990 debug_log(DBG_PROCS
, "Enter %s - interrupt handler\n", __func__
);
992 /* Clear the interrupt */
993 stat
= ide_read_status(drive
);
995 if (pc
->flags
& PC_FLAG_DMA_IN_PROGRESS
) {
996 if (hwif
->ide_dma_end(drive
) || (stat
& ERR_STAT
)) {
998 * A DMA error is sometimes expected. For example,
999 * if the tape is crossing a filemark during a
1000 * READ command, it will issue an irq and position
1001 * itself before the filemark, so that only a partial
1002 * data transfer will occur (which causes the DMA
1003 * error). In that case, we will later ask the tape
1004 * how much bytes of the original request were
1005 * actually transferred (we can't receive that
1006 * information from the DMA engine on most chipsets).
1010 * On the contrary, a DMA error is never expected;
1011 * it usually indicates a hardware error or abort.
1012 * If the tape crosses a filemark during a READ
1013 * command, it will issue an irq and position itself
1014 * after the filemark (not before). Only a partial
1015 * data transfer will occur, but no DMA error.
1018 pc
->flags
|= PC_FLAG_DMA_ERROR
;
1020 pc
->xferred
= pc
->req_xfer
;
1021 idetape_update_buffers(pc
);
1023 debug_log(DBG_PROCS
, "DMA finished\n");
1027 /* No more interrupts */
1028 if ((stat
& DRQ_STAT
) == 0) {
1029 debug_log(DBG_SENSE
, "Packet command completed, %d bytes"
1030 " transferred\n", pc
->xferred
);
1032 pc
->flags
&= ~PC_FLAG_DMA_IN_PROGRESS
;
1036 if ((pc
->c
[0] == WRITE_6
|| pc
->c
[0] == READ_6
) &&
1037 (++error_sim_count
% 100) == 0) {
1038 printk(KERN_INFO
"ide-tape: %s: simulating error\n",
1043 if ((stat
& ERR_STAT
) && pc
->c
[0] == REQUEST_SENSE
)
1045 if ((stat
& ERR_STAT
) || (pc
->flags
& PC_FLAG_DMA_ERROR
)) {
1046 /* Error detected */
1047 debug_log(DBG_ERR
, "%s: I/O error\n", tape
->name
);
1049 if (pc
->c
[0] == REQUEST_SENSE
) {
1050 printk(KERN_ERR
"ide-tape: I/O error in request"
1051 " sense command\n");
1052 return ide_do_reset(drive
);
1054 debug_log(DBG_ERR
, "[cmd %x]: check condition\n",
1057 /* Retry operation */
1058 return idetape_retry_pc(drive
);
1061 if ((pc
->flags
& PC_FLAG_WAIT_FOR_DSC
) &&
1062 (stat
& SEEK_STAT
) == 0) {
1063 /* Media access command */
1064 tape
->dsc_polling_start
= jiffies
;
1065 tape
->dsc_poll_freq
= IDETAPE_DSC_MA_FAST
;
1066 tape
->dsc_timeout
= jiffies
+ IDETAPE_DSC_MA_TIMEOUT
;
1067 /* Allow ide.c to handle other requests */
1068 idetape_postpone_request(drive
);
1071 if (tape
->failed_pc
== pc
)
1072 tape
->failed_pc
= NULL
;
1073 /* Command finished - Call the callback function */
1074 return pc
->idetape_callback(drive
);
1077 if (pc
->flags
& PC_FLAG_DMA_IN_PROGRESS
) {
1078 pc
->flags
&= ~PC_FLAG_DMA_IN_PROGRESS
;
1079 printk(KERN_ERR
"ide-tape: The tape wants to issue more "
1080 "interrupts in DMA mode\n");
1081 printk(KERN_ERR
"ide-tape: DMA disabled, reverting to PIO\n");
1083 return ide_do_reset(drive
);
1085 /* Get the number of bytes to transfer on this interrupt. */
1086 bcount
= (hwif
->INB(hwif
->io_ports
[IDE_BCOUNTH_OFFSET
]) << 8) |
1087 hwif
->INB(hwif
->io_ports
[IDE_BCOUNTL_OFFSET
]);
1089 ireason
= hwif
->INB(hwif
->io_ports
[IDE_IREASON_OFFSET
]);
1092 printk(KERN_ERR
"ide-tape: CoD != 0 in %s\n", __func__
);
1093 return ide_do_reset(drive
);
1095 if (((ireason
& IO
) == IO
) == !!(pc
->flags
& PC_FLAG_WRITING
)) {
1096 /* Hopefully, we will never get here */
1097 printk(KERN_ERR
"ide-tape: We wanted to %s, ",
1098 (ireason
& IO
) ? "Write" : "Read");
1099 printk(KERN_ERR
"ide-tape: but the tape wants us to %s !\n",
1100 (ireason
& IO
) ? "Read" : "Write");
1101 return ide_do_reset(drive
);
1103 if (!(pc
->flags
& PC_FLAG_WRITING
)) {
1104 /* Reading - Check that we have enough space */
1105 temp
= pc
->xferred
+ bcount
;
1106 if (temp
> pc
->req_xfer
) {
1107 if (temp
> pc
->buf_size
) {
1108 printk(KERN_ERR
"ide-tape: The tape wants to "
1109 "send us more data than expected "
1110 "- discarding data\n");
1111 ide_atapi_discard_data(drive
, bcount
);
1112 ide_set_handler(drive
, &idetape_pc_intr
,
1113 IDETAPE_WAIT_CMD
, NULL
);
1116 debug_log(DBG_SENSE
, "The tape wants to send us more "
1117 "data than expected - allowing transfer\n");
1119 iobuf
= &idetape_input_buffers
;
1120 xferfunc
= hwif
->atapi_input_bytes
;
1122 iobuf
= &idetape_output_buffers
;
1123 xferfunc
= hwif
->atapi_output_bytes
;
1127 iobuf(drive
, pc
, bcount
);
1129 xferfunc(drive
, pc
->cur_pos
, bcount
);
1131 /* Update the current position */
1132 pc
->xferred
+= bcount
;
1133 pc
->cur_pos
+= bcount
;
1135 debug_log(DBG_SENSE
, "[cmd %x] transferred %d bytes on that intr.\n",
1138 /* And set the interrupt handler again */
1139 ide_set_handler(drive
, &idetape_pc_intr
, IDETAPE_WAIT_CMD
, NULL
);
1144 * Packet Command Interface
1146 * The current Packet Command is available in tape->pc, and will not change
1147 * until we finish handling it. Each packet command is associated with a
1148 * callback function that will be called when the command is finished.
1150 * The handling will be done in three stages:
1152 * 1. idetape_issue_pc will send the packet command to the drive, and will set
1153 * the interrupt handler to idetape_pc_intr.
1155 * 2. On each interrupt, idetape_pc_intr will be called. This step will be
1156 * repeated until the device signals us that no more interrupts will be issued.
1158 * 3. ATAPI Tape media access commands have immediate status with a delayed
1159 * process. In case of a successful initiation of a media access packet command,
1160 * the DSC bit will be set when the actual execution of the command is finished.
1161 * Since the tape drive will not issue an interrupt, we have to poll for this
1162 * event. In this case, we define the request as "low priority request" by
1163 * setting rq_status to IDETAPE_RQ_POSTPONED, set a timer to poll for DSC and
1166 * ide.c will then give higher priority to requests which originate from the
1167 * other device, until will change rq_status to RQ_ACTIVE.
1169 * 4. When the packet command is finished, it will be checked for errors.
1171 * 5. In case an error was found, we queue a request sense packet command in
1172 * front of the request queue and retry the operation up to
1173 * IDETAPE_MAX_PC_RETRIES times.
1175 * 6. In case no error was found, or we decided to give up and not to retry
1176 * again, the callback function will be called and then we will handle the next
1179 static ide_startstop_t
idetape_transfer_pc(ide_drive_t
*drive
)
1181 ide_hwif_t
*hwif
= drive
->hwif
;
1182 idetape_tape_t
*tape
= drive
->driver_data
;
1183 struct ide_atapi_pc
*pc
= tape
->pc
;
1185 ide_startstop_t startstop
;
1188 if (ide_wait_stat(&startstop
, drive
, DRQ_STAT
, BUSY_STAT
, WAIT_READY
)) {
1189 printk(KERN_ERR
"ide-tape: Strange, packet command initiated "
1190 "yet DRQ isn't asserted\n");
1193 ireason
= hwif
->INB(hwif
->io_ports
[IDE_IREASON_OFFSET
]);
1194 while (retries
-- && ((ireason
& CD
) == 0 || (ireason
& IO
))) {
1195 printk(KERN_ERR
"ide-tape: (IO,CoD != (0,1) while issuing "
1196 "a packet command, retrying\n");
1198 ireason
= hwif
->INB(hwif
->io_ports
[IDE_IREASON_OFFSET
]);
1200 printk(KERN_ERR
"ide-tape: (IO,CoD != (0,1) while "
1201 "issuing a packet command, ignoring\n");
1206 if ((ireason
& CD
) == 0 || (ireason
& IO
)) {
1207 printk(KERN_ERR
"ide-tape: (IO,CoD) != (0,1) while issuing "
1208 "a packet command\n");
1209 return ide_do_reset(drive
);
1211 /* Set the interrupt routine */
1212 ide_set_handler(drive
, &idetape_pc_intr
, IDETAPE_WAIT_CMD
, NULL
);
1213 #ifdef CONFIG_BLK_DEV_IDEDMA
1214 /* Begin DMA, if necessary */
1215 if (pc
->flags
& PC_FLAG_DMA_IN_PROGRESS
)
1216 hwif
->dma_start(drive
);
1218 /* Send the actual packet */
1219 HWIF(drive
)->atapi_output_bytes(drive
, pc
->c
, 12);
1223 static ide_startstop_t
idetape_issue_pc(ide_drive_t
*drive
,
1224 struct ide_atapi_pc
*pc
)
1226 ide_hwif_t
*hwif
= drive
->hwif
;
1227 idetape_tape_t
*tape
= drive
->driver_data
;
1231 if (tape
->pc
->c
[0] == REQUEST_SENSE
&&
1232 pc
->c
[0] == REQUEST_SENSE
) {
1233 printk(KERN_ERR
"ide-tape: possible ide-tape.c bug - "
1234 "Two request sense in serial were issued\n");
1237 if (tape
->failed_pc
== NULL
&& pc
->c
[0] != REQUEST_SENSE
)
1238 tape
->failed_pc
= pc
;
1239 /* Set the current packet command */
1242 if (pc
->retries
> IDETAPE_MAX_PC_RETRIES
||
1243 (pc
->flags
& PC_FLAG_ABORT
)) {
1245 * We will "abort" retrying a packet command in case legitimate
1246 * error code was received (crossing a filemark, or end of the
1247 * media, for example).
1249 if (!(pc
->flags
& PC_FLAG_ABORT
)) {
1250 if (!(pc
->c
[0] == TEST_UNIT_READY
&&
1251 tape
->sense_key
== 2 && tape
->asc
== 4 &&
1252 (tape
->ascq
== 1 || tape
->ascq
== 8))) {
1253 printk(KERN_ERR
"ide-tape: %s: I/O error, "
1254 "pc = %2x, key = %2x, "
1255 "asc = %2x, ascq = %2x\n",
1256 tape
->name
, pc
->c
[0],
1257 tape
->sense_key
, tape
->asc
,
1261 pc
->error
= IDETAPE_ERROR_GENERAL
;
1263 tape
->failed_pc
= NULL
;
1264 return pc
->idetape_callback(drive
);
1266 debug_log(DBG_SENSE
, "Retry #%d, cmd = %02X\n", pc
->retries
, pc
->c
[0]);
1269 /* We haven't transferred any data yet */
1271 pc
->cur_pos
= pc
->buf
;
1272 /* Request to transfer the entire buffer at once */
1273 bcount
= pc
->req_xfer
;
1275 if (pc
->flags
& PC_FLAG_DMA_ERROR
) {
1276 pc
->flags
&= ~PC_FLAG_DMA_ERROR
;
1277 printk(KERN_WARNING
"ide-tape: DMA disabled, "
1278 "reverting to PIO\n");
1281 if ((pc
->flags
& PC_FLAG_DMA_RECOMMENDED
) && drive
->using_dma
)
1282 dma_ok
= !hwif
->dma_setup(drive
);
1284 ide_pktcmd_tf_load(drive
, IDE_TFLAG_NO_SELECT_MASK
|
1285 IDE_TFLAG_OUT_DEVICE
, bcount
, dma_ok
);
1288 /* Will begin DMA later */
1289 pc
->flags
|= PC_FLAG_DMA_IN_PROGRESS
;
1290 if (test_bit(IDETAPE_FLAG_DRQ_INTERRUPT
, &tape
->flags
)) {
1291 ide_execute_command(drive
, WIN_PACKETCMD
, &idetape_transfer_pc
,
1292 IDETAPE_WAIT_CMD
, NULL
);
1295 hwif
->OUTB(WIN_PACKETCMD
, hwif
->io_ports
[IDE_COMMAND_OFFSET
]);
1296 return idetape_transfer_pc(drive
);
1300 static ide_startstop_t
idetape_pc_callback(ide_drive_t
*drive
)
1302 idetape_tape_t
*tape
= drive
->driver_data
;
1304 debug_log(DBG_PROCS
, "Enter %s\n", __func__
);
1306 idetape_end_request(drive
, tape
->pc
->error
? 0 : 1, 0);
1310 /* A mode sense command is used to "sense" tape parameters. */
1311 static void idetape_create_mode_sense_cmd(struct ide_atapi_pc
*pc
, u8 page_code
)
1313 idetape_init_pc(pc
);
1314 pc
->c
[0] = MODE_SENSE
;
1315 if (page_code
!= IDETAPE_BLOCK_DESCRIPTOR
)
1316 /* DBD = 1 - Don't return block descriptors */
1318 pc
->c
[2] = page_code
;
1320 * Changed pc->c[3] to 0 (255 will at best return unused info).
1322 * For SCSI this byte is defined as subpage instead of high byte
1323 * of length and some IDE drives seem to interpret it this way
1324 * and return an error when 255 is used.
1327 /* We will just discard data in that case */
1329 if (page_code
== IDETAPE_BLOCK_DESCRIPTOR
)
1331 else if (page_code
== IDETAPE_CAPABILITIES_PAGE
)
1335 pc
->idetape_callback
= &idetape_pc_callback
;
1338 static void idetape_calculate_speeds(ide_drive_t
*drive
)
1340 idetape_tape_t
*tape
= drive
->driver_data
;
1342 if (time_after(jiffies
,
1343 tape
->controlled_pipeline_head_time
+ 120 * HZ
)) {
1344 tape
->controlled_previous_pipeline_head
=
1345 tape
->controlled_last_pipeline_head
;
1346 tape
->controlled_previous_head_time
=
1347 tape
->controlled_pipeline_head_time
;
1348 tape
->controlled_last_pipeline_head
= tape
->pipeline_head
;
1349 tape
->controlled_pipeline_head_time
= jiffies
;
1351 if (time_after(jiffies
, tape
->controlled_pipeline_head_time
+ 60 * HZ
))
1352 tape
->controlled_pipeline_head_speed
= (tape
->pipeline_head
-
1353 tape
->controlled_last_pipeline_head
) * 32 * HZ
/
1354 (jiffies
- tape
->controlled_pipeline_head_time
);
1355 else if (time_after(jiffies
, tape
->controlled_previous_head_time
))
1356 tape
->controlled_pipeline_head_speed
= (tape
->pipeline_head
-
1357 tape
->controlled_previous_pipeline_head
) * 32 *
1358 HZ
/ (jiffies
- tape
->controlled_previous_head_time
);
1360 if (tape
->nr_pending_stages
< tape
->max_stages
/*- 1 */) {
1361 /* -1 for read mode error recovery */
1362 if (time_after(jiffies
, tape
->uncontrolled_previous_head_time
+
1364 tape
->uncontrolled_pipeline_head_time
= jiffies
;
1365 tape
->uncontrolled_pipeline_head_speed
=
1366 (tape
->pipeline_head
-
1367 tape
->uncontrolled_previous_pipeline_head
) *
1368 32 * HZ
/ (jiffies
-
1369 tape
->uncontrolled_previous_head_time
);
1372 tape
->uncontrolled_previous_head_time
= jiffies
;
1373 tape
->uncontrolled_previous_pipeline_head
= tape
->pipeline_head
;
1374 if (time_after(jiffies
, tape
->uncontrolled_pipeline_head_time
+
1376 tape
->uncontrolled_pipeline_head_time
= jiffies
;
1379 tape
->pipeline_head_speed
= max(tape
->uncontrolled_pipeline_head_speed
,
1380 tape
->controlled_pipeline_head_speed
);
1382 if (tape
->speed_control
== 1) {
1383 if (tape
->nr_pending_stages
>= tape
->max_stages
/ 2)
1384 tape
->max_insert_speed
= tape
->pipeline_head_speed
+
1385 (1100 - tape
->pipeline_head_speed
) * 2 *
1386 (tape
->nr_pending_stages
- tape
->max_stages
/ 2)
1389 tape
->max_insert_speed
= 500 +
1390 (tape
->pipeline_head_speed
- 500) * 2 *
1391 tape
->nr_pending_stages
/ tape
->max_stages
;
1393 if (tape
->nr_pending_stages
>= tape
->max_stages
* 99 / 100)
1394 tape
->max_insert_speed
= 5000;
1396 tape
->max_insert_speed
= tape
->speed_control
;
1398 tape
->max_insert_speed
= max(tape
->max_insert_speed
, 500);
1401 static ide_startstop_t
idetape_media_access_finished(ide_drive_t
*drive
)
1403 idetape_tape_t
*tape
= drive
->driver_data
;
1404 struct ide_atapi_pc
*pc
= tape
->pc
;
1407 stat
= ide_read_status(drive
);
1409 if (stat
& SEEK_STAT
) {
1410 if (stat
& ERR_STAT
) {
1411 /* Error detected */
1412 if (pc
->c
[0] != TEST_UNIT_READY
)
1413 printk(KERN_ERR
"ide-tape: %s: I/O error, ",
1415 /* Retry operation */
1416 return idetape_retry_pc(drive
);
1419 if (tape
->failed_pc
== pc
)
1420 tape
->failed_pc
= NULL
;
1422 pc
->error
= IDETAPE_ERROR_GENERAL
;
1423 tape
->failed_pc
= NULL
;
1425 return pc
->idetape_callback(drive
);
1428 static ide_startstop_t
idetape_rw_callback(ide_drive_t
*drive
)
1430 idetape_tape_t
*tape
= drive
->driver_data
;
1431 struct request
*rq
= HWGROUP(drive
)->rq
;
1432 int blocks
= tape
->pc
->xferred
/ tape
->blk_size
;
1434 tape
->avg_size
+= blocks
* tape
->blk_size
;
1435 tape
->insert_size
+= blocks
* tape
->blk_size
;
1436 if (tape
->insert_size
> 1024 * 1024)
1437 tape
->measure_insert_time
= 1;
1438 if (tape
->measure_insert_time
) {
1439 tape
->measure_insert_time
= 0;
1440 tape
->insert_time
= jiffies
;
1441 tape
->insert_size
= 0;
1443 if (time_after(jiffies
, tape
->insert_time
))
1444 tape
->insert_speed
= tape
->insert_size
/ 1024 * HZ
/
1445 (jiffies
- tape
->insert_time
);
1446 if (time_after_eq(jiffies
, tape
->avg_time
+ HZ
)) {
1447 tape
->avg_speed
= tape
->avg_size
* HZ
/
1448 (jiffies
- tape
->avg_time
) / 1024;
1450 tape
->avg_time
= jiffies
;
1452 debug_log(DBG_PROCS
, "Enter %s\n", __func__
);
1454 tape
->first_frame
+= blocks
;
1455 rq
->current_nr_sectors
-= blocks
;
1457 if (!tape
->pc
->error
)
1458 idetape_end_request(drive
, 1, 0);
1460 idetape_end_request(drive
, tape
->pc
->error
, 0);
1464 static void idetape_create_read_cmd(idetape_tape_t
*tape
,
1465 struct ide_atapi_pc
*pc
,
1466 unsigned int length
, struct idetape_bh
*bh
)
1468 idetape_init_pc(pc
);
1470 put_unaligned(cpu_to_be32(length
), (unsigned int *) &pc
->c
[1]);
1472 pc
->idetape_callback
= &idetape_rw_callback
;
1474 atomic_set(&bh
->b_count
, 0);
1476 pc
->buf_size
= length
* tape
->blk_size
;
1477 pc
->req_xfer
= pc
->buf_size
;
1478 if (pc
->req_xfer
== tape
->stage_size
)
1479 pc
->flags
|= PC_FLAG_DMA_RECOMMENDED
;
1482 static void idetape_create_write_cmd(idetape_tape_t
*tape
,
1483 struct ide_atapi_pc
*pc
,
1484 unsigned int length
, struct idetape_bh
*bh
)
1486 idetape_init_pc(pc
);
1488 put_unaligned(cpu_to_be32(length
), (unsigned int *) &pc
->c
[1]);
1490 pc
->idetape_callback
= &idetape_rw_callback
;
1491 pc
->flags
|= PC_FLAG_WRITING
;
1493 pc
->b_data
= bh
->b_data
;
1494 pc
->b_count
= atomic_read(&bh
->b_count
);
1496 pc
->buf_size
= length
* tape
->blk_size
;
1497 pc
->req_xfer
= pc
->buf_size
;
1498 if (pc
->req_xfer
== tape
->stage_size
)
1499 pc
->flags
|= PC_FLAG_DMA_RECOMMENDED
;
1502 static ide_startstop_t
idetape_do_request(ide_drive_t
*drive
,
1503 struct request
*rq
, sector_t block
)
1505 idetape_tape_t
*tape
= drive
->driver_data
;
1506 struct ide_atapi_pc
*pc
= NULL
;
1507 struct request
*postponed_rq
= tape
->postponed_rq
;
1510 debug_log(DBG_SENSE
, "sector: %ld, nr_sectors: %ld,"
1511 " current_nr_sectors: %d\n",
1512 rq
->sector
, rq
->nr_sectors
, rq
->current_nr_sectors
);
1514 if (!blk_special_request(rq
)) {
1515 /* We do not support buffer cache originated requests. */
1516 printk(KERN_NOTICE
"ide-tape: %s: Unsupported request in "
1517 "request queue (%d)\n", drive
->name
, rq
->cmd_type
);
1518 ide_end_request(drive
, 0, 0);
1522 /* Retry a failed packet command */
1523 if (tape
->failed_pc
&& tape
->pc
->c
[0] == REQUEST_SENSE
)
1524 return idetape_issue_pc(drive
, tape
->failed_pc
);
1526 if (postponed_rq
!= NULL
)
1527 if (rq
!= postponed_rq
) {
1528 printk(KERN_ERR
"ide-tape: ide-tape.c bug - "
1529 "Two DSC requests were queued\n");
1530 idetape_end_request(drive
, 0, 0);
1534 tape
->postponed_rq
= NULL
;
1537 * If the tape is still busy, postpone our request and service
1538 * the other device meanwhile.
1540 stat
= ide_read_status(drive
);
1542 if (!drive
->dsc_overlap
&& !(rq
->cmd
[0] & REQ_IDETAPE_PC2
))
1543 set_bit(IDETAPE_FLAG_IGNORE_DSC
, &tape
->flags
);
1545 if (drive
->post_reset
== 1) {
1546 set_bit(IDETAPE_FLAG_IGNORE_DSC
, &tape
->flags
);
1547 drive
->post_reset
= 0;
1550 if (time_after(jiffies
, tape
->insert_time
))
1551 tape
->insert_speed
= tape
->insert_size
/ 1024 * HZ
/
1552 (jiffies
- tape
->insert_time
);
1553 idetape_calculate_speeds(drive
);
1554 if (!test_and_clear_bit(IDETAPE_FLAG_IGNORE_DSC
, &tape
->flags
) &&
1555 (stat
& SEEK_STAT
) == 0) {
1556 if (postponed_rq
== NULL
) {
1557 tape
->dsc_polling_start
= jiffies
;
1558 tape
->dsc_poll_freq
= tape
->best_dsc_rw_freq
;
1559 tape
->dsc_timeout
= jiffies
+ IDETAPE_DSC_RW_TIMEOUT
;
1560 } else if (time_after(jiffies
, tape
->dsc_timeout
)) {
1561 printk(KERN_ERR
"ide-tape: %s: DSC timeout\n",
1563 if (rq
->cmd
[0] & REQ_IDETAPE_PC2
) {
1564 idetape_media_access_finished(drive
);
1567 return ide_do_reset(drive
);
1569 } else if (time_after(jiffies
,
1570 tape
->dsc_polling_start
+
1571 IDETAPE_DSC_MA_THRESHOLD
))
1572 tape
->dsc_poll_freq
= IDETAPE_DSC_MA_SLOW
;
1573 idetape_postpone_request(drive
);
1576 if (rq
->cmd
[0] & REQ_IDETAPE_READ
) {
1577 tape
->buffer_head
++;
1578 tape
->postpone_cnt
= 0;
1579 pc
= idetape_next_pc_storage(drive
);
1580 idetape_create_read_cmd(tape
, pc
, rq
->current_nr_sectors
,
1581 (struct idetape_bh
*)rq
->special
);
1584 if (rq
->cmd
[0] & REQ_IDETAPE_WRITE
) {
1585 tape
->buffer_head
++;
1586 tape
->postpone_cnt
= 0;
1587 pc
= idetape_next_pc_storage(drive
);
1588 idetape_create_write_cmd(tape
, pc
, rq
->current_nr_sectors
,
1589 (struct idetape_bh
*)rq
->special
);
1592 if (rq
->cmd
[0] & REQ_IDETAPE_PC1
) {
1593 pc
= (struct ide_atapi_pc
*) rq
->buffer
;
1594 rq
->cmd
[0] &= ~(REQ_IDETAPE_PC1
);
1595 rq
->cmd
[0] |= REQ_IDETAPE_PC2
;
1598 if (rq
->cmd
[0] & REQ_IDETAPE_PC2
) {
1599 idetape_media_access_finished(drive
);
1604 return idetape_issue_pc(drive
, pc
);
1607 /* Pipeline related functions */
1608 static inline int idetape_pipeline_active(idetape_tape_t
*tape
)
1612 rc1
= test_bit(IDETAPE_FLAG_PIPELINE_ACTIVE
, &tape
->flags
);
1613 rc2
= (tape
->active_data_rq
!= NULL
);
1618 * The function below uses __get_free_page to allocate a pipeline stage, along
1619 * with all the necessary small buffers which together make a buffer of size
1620 * tape->stage_size (or a bit more). We attempt to combine sequential pages as
1623 * It returns a pointer to the new allocated stage, or NULL if we can't (or
1624 * don't want to) allocate a stage.
1626 * Pipeline stages are optional and are used to increase performance. If we
1627 * can't allocate them, we'll manage without them.
1629 static idetape_stage_t
*__idetape_kmalloc_stage(idetape_tape_t
*tape
, int full
,
1632 idetape_stage_t
*stage
;
1633 struct idetape_bh
*prev_bh
, *bh
;
1634 int pages
= tape
->pages_per_stage
;
1635 char *b_data
= NULL
;
1637 stage
= kmalloc(sizeof(idetape_stage_t
), GFP_KERNEL
);
1642 stage
->bh
= kmalloc(sizeof(struct idetape_bh
), GFP_KERNEL
);
1646 bh
->b_reqnext
= NULL
;
1647 bh
->b_data
= (char *) __get_free_page(GFP_KERNEL
);
1651 memset(bh
->b_data
, 0, PAGE_SIZE
);
1652 bh
->b_size
= PAGE_SIZE
;
1653 atomic_set(&bh
->b_count
, full
? bh
->b_size
: 0);
1656 b_data
= (char *) __get_free_page(GFP_KERNEL
);
1660 memset(b_data
, 0, PAGE_SIZE
);
1661 if (bh
->b_data
== b_data
+ PAGE_SIZE
) {
1662 bh
->b_size
+= PAGE_SIZE
;
1663 bh
->b_data
-= PAGE_SIZE
;
1665 atomic_add(PAGE_SIZE
, &bh
->b_count
);
1668 if (b_data
== bh
->b_data
+ bh
->b_size
) {
1669 bh
->b_size
+= PAGE_SIZE
;
1671 atomic_add(PAGE_SIZE
, &bh
->b_count
);
1675 bh
= kmalloc(sizeof(struct idetape_bh
), GFP_KERNEL
);
1677 free_page((unsigned long) b_data
);
1680 bh
->b_reqnext
= NULL
;
1681 bh
->b_data
= b_data
;
1682 bh
->b_size
= PAGE_SIZE
;
1683 atomic_set(&bh
->b_count
, full
? bh
->b_size
: 0);
1684 prev_bh
->b_reqnext
= bh
;
1686 bh
->b_size
-= tape
->excess_bh_size
;
1688 atomic_sub(tape
->excess_bh_size
, &bh
->b_count
);
1691 __idetape_kfree_stage(stage
);
1695 static idetape_stage_t
*idetape_kmalloc_stage(idetape_tape_t
*tape
)
1697 idetape_stage_t
*cache_stage
= tape
->cache_stage
;
1699 debug_log(DBG_PROCS
, "Enter %s\n", __func__
);
1701 if (tape
->nr_stages
>= tape
->max_stages
)
1703 if (cache_stage
!= NULL
) {
1704 tape
->cache_stage
= NULL
;
1707 return __idetape_kmalloc_stage(tape
, 0, 0);
1710 static int idetape_copy_stage_from_user(idetape_tape_t
*tape
,
1711 idetape_stage_t
*stage
, const char __user
*buf
, int n
)
1713 struct idetape_bh
*bh
= tape
->bh
;
1719 printk(KERN_ERR
"ide-tape: bh == NULL in %s\n",
1723 count
= min((unsigned int)
1724 (bh
->b_size
- atomic_read(&bh
->b_count
)),
1726 if (copy_from_user(bh
->b_data
+ atomic_read(&bh
->b_count
), buf
,
1730 atomic_add(count
, &bh
->b_count
);
1732 if (atomic_read(&bh
->b_count
) == bh
->b_size
) {
1735 atomic_set(&bh
->b_count
, 0);
1742 static int idetape_copy_stage_to_user(idetape_tape_t
*tape
, char __user
*buf
,
1743 idetape_stage_t
*stage
, int n
)
1745 struct idetape_bh
*bh
= tape
->bh
;
1751 printk(KERN_ERR
"ide-tape: bh == NULL in %s\n",
1755 count
= min(tape
->b_count
, n
);
1756 if (copy_to_user(buf
, tape
->b_data
, count
))
1759 tape
->b_data
+= count
;
1760 tape
->b_count
-= count
;
1762 if (!tape
->b_count
) {
1766 tape
->b_data
= bh
->b_data
;
1767 tape
->b_count
= atomic_read(&bh
->b_count
);
1774 static void idetape_init_merge_stage(idetape_tape_t
*tape
)
1776 struct idetape_bh
*bh
= tape
->merge_stage
->bh
;
1779 if (tape
->chrdev_dir
== IDETAPE_DIR_WRITE
)
1780 atomic_set(&bh
->b_count
, 0);
1782 tape
->b_data
= bh
->b_data
;
1783 tape
->b_count
= atomic_read(&bh
->b_count
);
1787 static void idetape_switch_buffers(idetape_tape_t
*tape
, idetape_stage_t
*stage
)
1789 struct idetape_bh
*tmp
;
1792 stage
->bh
= tape
->merge_stage
->bh
;
1793 tape
->merge_stage
->bh
= tmp
;
1794 idetape_init_merge_stage(tape
);
1797 /* Add a new stage at the end of the pipeline. */
1798 static void idetape_add_stage_tail(ide_drive_t
*drive
, idetape_stage_t
*stage
)
1800 idetape_tape_t
*tape
= drive
->driver_data
;
1801 unsigned long flags
;
1803 debug_log(DBG_PROCS
, "Enter %s\n", __func__
);
1805 spin_lock_irqsave(&tape
->lock
, flags
);
1807 if (tape
->last_stage
!= NULL
)
1808 tape
->last_stage
->next
= stage
;
1810 tape
->first_stage
= stage
;
1811 tape
->next_stage
= stage
;
1812 tape
->last_stage
= stage
;
1813 if (tape
->next_stage
== NULL
)
1814 tape
->next_stage
= tape
->last_stage
;
1816 tape
->nr_pending_stages
++;
1817 spin_unlock_irqrestore(&tape
->lock
, flags
);
1820 /* Install a completion in a pending request and sleep until it is serviced. The
1821 * caller should ensure that the request will not be serviced before we install
1822 * the completion (usually by disabling interrupts).
1824 static void idetape_wait_for_request(ide_drive_t
*drive
, struct request
*rq
)
1826 DECLARE_COMPLETION_ONSTACK(wait
);
1827 idetape_tape_t
*tape
= drive
->driver_data
;
1829 if (rq
== NULL
|| !blk_special_request(rq
)) {
1830 printk(KERN_ERR
"ide-tape: bug: Trying to sleep on non-valid"
1834 rq
->end_io_data
= &wait
;
1835 rq
->end_io
= blk_end_sync_rq
;
1836 spin_unlock_irq(&tape
->lock
);
1837 wait_for_completion(&wait
);
1838 /* The stage and its struct request have been deallocated */
1839 spin_lock_irq(&tape
->lock
);
1842 static ide_startstop_t
idetape_read_position_callback(ide_drive_t
*drive
)
1844 idetape_tape_t
*tape
= drive
->driver_data
;
1845 u8
*readpos
= tape
->pc
->buf
;
1847 debug_log(DBG_PROCS
, "Enter %s\n", __func__
);
1849 if (!tape
->pc
->error
) {
1850 debug_log(DBG_SENSE
, "BOP - %s\n",
1851 (readpos
[0] & 0x80) ? "Yes" : "No");
1852 debug_log(DBG_SENSE
, "EOP - %s\n",
1853 (readpos
[0] & 0x40) ? "Yes" : "No");
1855 if (readpos
[0] & 0x4) {
1856 printk(KERN_INFO
"ide-tape: Block location is unknown"
1858 clear_bit(IDETAPE_FLAG_ADDRESS_VALID
, &tape
->flags
);
1859 idetape_end_request(drive
, 0, 0);
1861 debug_log(DBG_SENSE
, "Block Location - %u\n",
1862 be32_to_cpu(*(u32
*)&readpos
[4]));
1864 tape
->partition
= readpos
[1];
1866 be32_to_cpu(*(u32
*)&readpos
[4]);
1867 set_bit(IDETAPE_FLAG_ADDRESS_VALID
, &tape
->flags
);
1868 idetape_end_request(drive
, 1, 0);
1871 idetape_end_request(drive
, 0, 0);
1877 * Write a filemark if write_filemark=1. Flush the device buffers without
1878 * writing a filemark otherwise.
1880 static void idetape_create_write_filemark_cmd(ide_drive_t
*drive
,
1881 struct ide_atapi_pc
*pc
, int write_filemark
)
1883 idetape_init_pc(pc
);
1884 pc
->c
[0] = WRITE_FILEMARKS
;
1885 pc
->c
[4] = write_filemark
;
1886 pc
->flags
|= PC_FLAG_WAIT_FOR_DSC
;
1887 pc
->idetape_callback
= &idetape_pc_callback
;
1890 static void idetape_create_test_unit_ready_cmd(struct ide_atapi_pc
*pc
)
1892 idetape_init_pc(pc
);
1893 pc
->c
[0] = TEST_UNIT_READY
;
1894 pc
->idetape_callback
= &idetape_pc_callback
;
1898 * We add a special packet command request to the tail of the request queue, and
1899 * wait for it to be serviced. This is not to be called from within the request
1900 * handling part of the driver! We allocate here data on the stack and it is
1901 * valid until the request is finished. This is not the case for the bottom part
1902 * of the driver, where we are always leaving the functions to wait for an
1903 * interrupt or a timer event.
1905 * From the bottom part of the driver, we should allocate safe memory using
1906 * idetape_next_pc_storage() and ide_tape_next_rq_storage(), and add the request
1907 * to the request list without waiting for it to be serviced! In that case, we
1908 * usually use idetape_queue_pc_head().
1910 static int __idetape_queue_pc_tail(ide_drive_t
*drive
, struct ide_atapi_pc
*pc
)
1912 struct ide_tape_obj
*tape
= drive
->driver_data
;
1915 idetape_init_rq(&rq
, REQ_IDETAPE_PC1
);
1916 rq
.buffer
= (char *) pc
;
1917 rq
.rq_disk
= tape
->disk
;
1918 return ide_do_drive_cmd(drive
, &rq
, ide_wait
);
1921 static void idetape_create_load_unload_cmd(ide_drive_t
*drive
,
1922 struct ide_atapi_pc
*pc
, int cmd
)
1924 idetape_init_pc(pc
);
1925 pc
->c
[0] = START_STOP
;
1927 pc
->flags
|= PC_FLAG_WAIT_FOR_DSC
;
1928 pc
->idetape_callback
= &idetape_pc_callback
;
1931 static int idetape_wait_ready(ide_drive_t
*drive
, unsigned long timeout
)
1933 idetape_tape_t
*tape
= drive
->driver_data
;
1934 struct ide_atapi_pc pc
;
1935 int load_attempted
= 0;
1937 /* Wait for the tape to become ready */
1938 set_bit(IDETAPE_FLAG_MEDIUM_PRESENT
, &tape
->flags
);
1940 while (time_before(jiffies
, timeout
)) {
1941 idetape_create_test_unit_ready_cmd(&pc
);
1942 if (!__idetape_queue_pc_tail(drive
, &pc
))
1944 if ((tape
->sense_key
== 2 && tape
->asc
== 4 && tape
->ascq
== 2)
1945 || (tape
->asc
== 0x3A)) {
1949 idetape_create_load_unload_cmd(drive
, &pc
,
1950 IDETAPE_LU_LOAD_MASK
);
1951 __idetape_queue_pc_tail(drive
, &pc
);
1953 /* not about to be ready */
1954 } else if (!(tape
->sense_key
== 2 && tape
->asc
== 4 &&
1955 (tape
->ascq
== 1 || tape
->ascq
== 8)))
1962 static int idetape_queue_pc_tail(ide_drive_t
*drive
, struct ide_atapi_pc
*pc
)
1964 return __idetape_queue_pc_tail(drive
, pc
);
1967 static int idetape_flush_tape_buffers(ide_drive_t
*drive
)
1969 struct ide_atapi_pc pc
;
1972 idetape_create_write_filemark_cmd(drive
, &pc
, 0);
1973 rc
= idetape_queue_pc_tail(drive
, &pc
);
1976 idetape_wait_ready(drive
, 60 * 5 * HZ
);
1980 static void idetape_create_read_position_cmd(struct ide_atapi_pc
*pc
)
1982 idetape_init_pc(pc
);
1983 pc
->c
[0] = READ_POSITION
;
1985 pc
->idetape_callback
= &idetape_read_position_callback
;
1988 static int idetape_read_position(ide_drive_t
*drive
)
1990 idetape_tape_t
*tape
= drive
->driver_data
;
1991 struct ide_atapi_pc pc
;
1994 debug_log(DBG_PROCS
, "Enter %s\n", __func__
);
1996 idetape_create_read_position_cmd(&pc
);
1997 if (idetape_queue_pc_tail(drive
, &pc
))
1999 position
= tape
->first_frame
;
2003 static void idetape_create_locate_cmd(ide_drive_t
*drive
,
2004 struct ide_atapi_pc
*pc
,
2005 unsigned int block
, u8 partition
, int skip
)
2007 idetape_init_pc(pc
);
2008 pc
->c
[0] = POSITION_TO_ELEMENT
;
2010 put_unaligned(cpu_to_be32(block
), (unsigned int *) &pc
->c
[3]);
2011 pc
->c
[8] = partition
;
2012 pc
->flags
|= PC_FLAG_WAIT_FOR_DSC
;
2013 pc
->idetape_callback
= &idetape_pc_callback
;
2016 static int idetape_create_prevent_cmd(ide_drive_t
*drive
,
2017 struct ide_atapi_pc
*pc
, int prevent
)
2019 idetape_tape_t
*tape
= drive
->driver_data
;
2021 /* device supports locking according to capabilities page */
2022 if (!(tape
->caps
[6] & 0x01))
2025 idetape_init_pc(pc
);
2026 pc
->c
[0] = ALLOW_MEDIUM_REMOVAL
;
2028 pc
->idetape_callback
= &idetape_pc_callback
;
2032 static int __idetape_discard_read_pipeline(ide_drive_t
*drive
)
2034 idetape_tape_t
*tape
= drive
->driver_data
;
2035 unsigned long flags
;
2038 if (tape
->chrdev_dir
!= IDETAPE_DIR_READ
)
2041 /* Remove merge stage. */
2042 cnt
= tape
->merge_stage_size
/ tape
->blk_size
;
2043 if (test_and_clear_bit(IDETAPE_FLAG_FILEMARK
, &tape
->flags
))
2044 ++cnt
; /* Filemarks count as 1 sector */
2045 tape
->merge_stage_size
= 0;
2046 if (tape
->merge_stage
!= NULL
) {
2047 __idetape_kfree_stage(tape
->merge_stage
);
2048 tape
->merge_stage
= NULL
;
2051 /* Clear pipeline flags. */
2052 clear_bit(IDETAPE_FLAG_PIPELINE_ERR
, &tape
->flags
);
2053 tape
->chrdev_dir
= IDETAPE_DIR_NONE
;
2055 /* Remove pipeline stages. */
2056 if (tape
->first_stage
== NULL
)
2059 spin_lock_irqsave(&tape
->lock
, flags
);
2060 tape
->next_stage
= NULL
;
2061 if (idetape_pipeline_active(tape
))
2062 idetape_wait_for_request(drive
, tape
->active_data_rq
);
2063 spin_unlock_irqrestore(&tape
->lock
, flags
);
2065 while (tape
->first_stage
!= NULL
) {
2066 struct request
*rq_ptr
= &tape
->first_stage
->rq
;
2068 cnt
+= rq_ptr
->nr_sectors
- rq_ptr
->current_nr_sectors
;
2069 if (rq_ptr
->errors
== IDETAPE_ERROR_FILEMARK
)
2071 idetape_remove_stage_head(drive
);
2073 tape
->nr_pending_stages
= 0;
2074 tape
->max_stages
= tape
->min_pipeline
;
2079 * Position the tape to the requested block using the LOCATE packet command.
2080 * A READ POSITION command is then issued to check where we are positioned. Like
2081 * all higher level operations, we queue the commands at the tail of the request
2082 * queue and wait for their completion.
2084 static int idetape_position_tape(ide_drive_t
*drive
, unsigned int block
,
2085 u8 partition
, int skip
)
2087 idetape_tape_t
*tape
= drive
->driver_data
;
2089 struct ide_atapi_pc pc
;
2091 if (tape
->chrdev_dir
== IDETAPE_DIR_READ
)
2092 __idetape_discard_read_pipeline(drive
);
2093 idetape_wait_ready(drive
, 60 * 5 * HZ
);
2094 idetape_create_locate_cmd(drive
, &pc
, block
, partition
, skip
);
2095 retval
= idetape_queue_pc_tail(drive
, &pc
);
2099 idetape_create_read_position_cmd(&pc
);
2100 return (idetape_queue_pc_tail(drive
, &pc
));
2103 static void idetape_discard_read_pipeline(ide_drive_t
*drive
,
2104 int restore_position
)
2106 idetape_tape_t
*tape
= drive
->driver_data
;
2110 cnt
= __idetape_discard_read_pipeline(drive
);
2111 if (restore_position
) {
2112 position
= idetape_read_position(drive
);
2113 seek
= position
> cnt
? position
- cnt
: 0;
2114 if (idetape_position_tape(drive
, seek
, 0, 0)) {
2115 printk(KERN_INFO
"ide-tape: %s: position_tape failed in"
2116 " discard_pipeline()\n", tape
->name
);
2123 * Generate a read/write request for the block device interface and wait for it
2126 static int idetape_queue_rw_tail(ide_drive_t
*drive
, int cmd
, int blocks
,
2127 struct idetape_bh
*bh
)
2129 idetape_tape_t
*tape
= drive
->driver_data
;
2132 debug_log(DBG_SENSE
, "%s: cmd=%d\n", __func__
, cmd
);
2134 if (idetape_pipeline_active(tape
)) {
2135 printk(KERN_ERR
"ide-tape: bug: the pipeline is active in %s\n",
2140 idetape_init_rq(&rq
, cmd
);
2141 rq
.rq_disk
= tape
->disk
;
2142 rq
.special
= (void *)bh
;
2143 rq
.sector
= tape
->first_frame
;
2144 rq
.nr_sectors
= blocks
;
2145 rq
.current_nr_sectors
= blocks
;
2146 (void) ide_do_drive_cmd(drive
, &rq
, ide_wait
);
2148 if ((cmd
& (REQ_IDETAPE_READ
| REQ_IDETAPE_WRITE
)) == 0)
2151 if (tape
->merge_stage
)
2152 idetape_init_merge_stage(tape
);
2153 if (rq
.errors
== IDETAPE_ERROR_GENERAL
)
2155 return (tape
->blk_size
* (blocks
-rq
.current_nr_sectors
));
2158 /* start servicing the pipeline stages, starting from tape->next_stage. */
2159 static void idetape_plug_pipeline(ide_drive_t
*drive
)
2161 idetape_tape_t
*tape
= drive
->driver_data
;
2163 if (tape
->next_stage
== NULL
)
2165 if (!idetape_pipeline_active(tape
)) {
2166 set_bit(IDETAPE_FLAG_PIPELINE_ACTIVE
, &tape
->flags
);
2167 idetape_activate_next_stage(drive
);
2168 (void) ide_do_drive_cmd(drive
, tape
->active_data_rq
, ide_end
);
2172 static void idetape_create_inquiry_cmd(struct ide_atapi_pc
*pc
)
2174 idetape_init_pc(pc
);
2178 pc
->idetape_callback
= &idetape_pc_callback
;
2181 static void idetape_create_rewind_cmd(ide_drive_t
*drive
,
2182 struct ide_atapi_pc
*pc
)
2184 idetape_init_pc(pc
);
2185 pc
->c
[0] = REZERO_UNIT
;
2186 pc
->flags
|= PC_FLAG_WAIT_FOR_DSC
;
2187 pc
->idetape_callback
= &idetape_pc_callback
;
2190 static void idetape_create_erase_cmd(struct ide_atapi_pc
*pc
)
2192 idetape_init_pc(pc
);
2195 pc
->flags
|= PC_FLAG_WAIT_FOR_DSC
;
2196 pc
->idetape_callback
= &idetape_pc_callback
;
2199 static void idetape_create_space_cmd(struct ide_atapi_pc
*pc
, int count
, u8 cmd
)
2201 idetape_init_pc(pc
);
2203 put_unaligned(cpu_to_be32(count
), (unsigned int *) &pc
->c
[1]);
2205 pc
->flags
|= PC_FLAG_WAIT_FOR_DSC
;
2206 pc
->idetape_callback
= &idetape_pc_callback
;
2209 static void idetape_wait_first_stage(ide_drive_t
*drive
)
2211 idetape_tape_t
*tape
= drive
->driver_data
;
2212 unsigned long flags
;
2214 if (tape
->first_stage
== NULL
)
2216 spin_lock_irqsave(&tape
->lock
, flags
);
2217 if (tape
->active_stage
== tape
->first_stage
)
2218 idetape_wait_for_request(drive
, tape
->active_data_rq
);
2219 spin_unlock_irqrestore(&tape
->lock
, flags
);
2223 * Try to add a character device originated write request to our pipeline. In
2224 * case we don't succeed, we revert to non-pipelined operation mode for this
2225 * request. In order to accomplish that, we
2227 * 1. Try to allocate a new pipeline stage.
2228 * 2. If we can't, wait for more and more requests to be serviced and try again
2230 * 3. If we still can't allocate a stage, fallback to non-pipelined operation
2231 * mode for this request.
2233 static int idetape_add_chrdev_write_request(ide_drive_t
*drive
, int blocks
)
2235 idetape_tape_t
*tape
= drive
->driver_data
;
2236 idetape_stage_t
*new_stage
;
2237 unsigned long flags
;
2240 debug_log(DBG_CHRDEV
, "Enter %s\n", __func__
);
2242 /* Attempt to allocate a new stage. Beware possible race conditions. */
2243 while ((new_stage
= idetape_kmalloc_stage(tape
)) == NULL
) {
2244 spin_lock_irqsave(&tape
->lock
, flags
);
2245 if (idetape_pipeline_active(tape
)) {
2246 idetape_wait_for_request(drive
, tape
->active_data_rq
);
2247 spin_unlock_irqrestore(&tape
->lock
, flags
);
2249 spin_unlock_irqrestore(&tape
->lock
, flags
);
2250 idetape_plug_pipeline(drive
);
2251 if (idetape_pipeline_active(tape
))
2254 * The machine is short on memory. Fallback to non-
2255 * pipelined operation mode for this request.
2257 return idetape_queue_rw_tail(drive
, REQ_IDETAPE_WRITE
,
2258 blocks
, tape
->merge_stage
->bh
);
2261 rq
= &new_stage
->rq
;
2262 idetape_init_rq(rq
, REQ_IDETAPE_WRITE
);
2263 /* Doesn't actually matter - We always assume sequential access */
2264 rq
->sector
= tape
->first_frame
;
2265 rq
->current_nr_sectors
= blocks
;
2266 rq
->nr_sectors
= blocks
;
2268 idetape_switch_buffers(tape
, new_stage
);
2269 idetape_add_stage_tail(drive
, new_stage
);
2270 tape
->pipeline_head
++;
2271 idetape_calculate_speeds(drive
);
2274 * Estimate whether the tape has stopped writing by checking if our
2275 * write pipeline is currently empty. If we are not writing anymore,
2276 * wait for the pipeline to be almost completely full (90%) before
2277 * starting to service requests, so that we will be able to keep up with
2278 * the higher speeds of the tape.
2280 if (!idetape_pipeline_active(tape
)) {
2281 if (tape
->nr_stages
>= tape
->max_stages
* 9 / 10 ||
2282 tape
->nr_stages
>= tape
->max_stages
-
2283 tape
->uncontrolled_pipeline_head_speed
* 3 * 1024 /
2285 tape
->measure_insert_time
= 1;
2286 tape
->insert_time
= jiffies
;
2287 tape
->insert_size
= 0;
2288 tape
->insert_speed
= 0;
2289 idetape_plug_pipeline(drive
);
2292 if (test_and_clear_bit(IDETAPE_FLAG_PIPELINE_ERR
, &tape
->flags
))
2293 /* Return a deferred error */
2299 * Wait until all pending pipeline requests are serviced. Typically called on
2302 static void idetape_wait_for_pipeline(ide_drive_t
*drive
)
2304 idetape_tape_t
*tape
= drive
->driver_data
;
2305 unsigned long flags
;
2307 while (tape
->next_stage
|| idetape_pipeline_active(tape
)) {
2308 idetape_plug_pipeline(drive
);
2309 spin_lock_irqsave(&tape
->lock
, flags
);
2310 if (idetape_pipeline_active(tape
))
2311 idetape_wait_for_request(drive
, tape
->active_data_rq
);
2312 spin_unlock_irqrestore(&tape
->lock
, flags
);
2316 static void idetape_empty_write_pipeline(ide_drive_t
*drive
)
2318 idetape_tape_t
*tape
= drive
->driver_data
;
2320 struct idetape_bh
*bh
;
2322 if (tape
->chrdev_dir
!= IDETAPE_DIR_WRITE
) {
2323 printk(KERN_ERR
"ide-tape: bug: Trying to empty write pipeline,"
2324 " but we are not writing.\n");
2327 if (tape
->merge_stage_size
> tape
->stage_size
) {
2328 printk(KERN_ERR
"ide-tape: bug: merge_buffer too big\n");
2329 tape
->merge_stage_size
= tape
->stage_size
;
2331 if (tape
->merge_stage_size
) {
2332 blocks
= tape
->merge_stage_size
/ tape
->blk_size
;
2333 if (tape
->merge_stage_size
% tape
->blk_size
) {
2337 i
= tape
->blk_size
- tape
->merge_stage_size
%
2339 bh
= tape
->bh
->b_reqnext
;
2341 atomic_set(&bh
->b_count
, 0);
2347 printk(KERN_INFO
"ide-tape: bug,"
2351 min
= min(i
, (unsigned int)(bh
->b_size
-
2352 atomic_read(&bh
->b_count
)));
2353 memset(bh
->b_data
+ atomic_read(&bh
->b_count
),
2355 atomic_add(min
, &bh
->b_count
);
2360 (void) idetape_add_chrdev_write_request(drive
, blocks
);
2361 tape
->merge_stage_size
= 0;
2363 idetape_wait_for_pipeline(drive
);
2364 if (tape
->merge_stage
!= NULL
) {
2365 __idetape_kfree_stage(tape
->merge_stage
);
2366 tape
->merge_stage
= NULL
;
2368 clear_bit(IDETAPE_FLAG_PIPELINE_ERR
, &tape
->flags
);
2369 tape
->chrdev_dir
= IDETAPE_DIR_NONE
;
2372 * On the next backup, perform the feedback loop again. (I don't want to
2373 * keep sense information between backups, as some systems are
2374 * constantly on, and the system load can be totally different on the
2377 tape
->max_stages
= tape
->min_pipeline
;
2378 if (tape
->first_stage
!= NULL
||
2379 tape
->next_stage
!= NULL
||
2380 tape
->last_stage
!= NULL
||
2381 tape
->nr_stages
!= 0) {
2382 printk(KERN_ERR
"ide-tape: ide-tape pipeline bug, "
2383 "first_stage %p, next_stage %p, "
2384 "last_stage %p, nr_stages %d\n",
2385 tape
->first_stage
, tape
->next_stage
,
2386 tape
->last_stage
, tape
->nr_stages
);
2390 static void idetape_restart_speed_control(ide_drive_t
*drive
)
2392 idetape_tape_t
*tape
= drive
->driver_data
;
2394 tape
->restart_speed_control_req
= 0;
2395 tape
->pipeline_head
= 0;
2396 tape
->controlled_last_pipeline_head
= 0;
2397 tape
->controlled_previous_pipeline_head
= 0;
2398 tape
->uncontrolled_previous_pipeline_head
= 0;
2399 tape
->controlled_pipeline_head_speed
= 5000;
2400 tape
->pipeline_head_speed
= 5000;
2401 tape
->uncontrolled_pipeline_head_speed
= 0;
2402 tape
->controlled_pipeline_head_time
=
2403 tape
->uncontrolled_pipeline_head_time
= jiffies
;
2404 tape
->controlled_previous_head_time
=
2405 tape
->uncontrolled_previous_head_time
= jiffies
;
2408 static int idetape_init_read(ide_drive_t
*drive
, int max_stages
)
2410 idetape_tape_t
*tape
= drive
->driver_data
;
2411 idetape_stage_t
*new_stage
;
2414 u16 blocks
= *(u16
*)&tape
->caps
[12];
2416 /* Initialize read operation */
2417 if (tape
->chrdev_dir
!= IDETAPE_DIR_READ
) {
2418 if (tape
->chrdev_dir
== IDETAPE_DIR_WRITE
) {
2419 idetape_empty_write_pipeline(drive
);
2420 idetape_flush_tape_buffers(drive
);
2422 if (tape
->merge_stage
|| tape
->merge_stage_size
) {
2423 printk(KERN_ERR
"ide-tape: merge_stage_size should be"
2425 tape
->merge_stage_size
= 0;
2427 tape
->merge_stage
= __idetape_kmalloc_stage(tape
, 0, 0);
2428 if (!tape
->merge_stage
)
2430 tape
->chrdev_dir
= IDETAPE_DIR_READ
;
2433 * Issue a read 0 command to ensure that DSC handshake is
2434 * switched from completion mode to buffer available mode.
2435 * No point in issuing this if DSC overlap isn't supported, some
2436 * drives (Seagate STT3401A) will return an error.
2438 if (drive
->dsc_overlap
) {
2439 bytes_read
= idetape_queue_rw_tail(drive
,
2440 REQ_IDETAPE_READ
, 0,
2441 tape
->merge_stage
->bh
);
2442 if (bytes_read
< 0) {
2443 __idetape_kfree_stage(tape
->merge_stage
);
2444 tape
->merge_stage
= NULL
;
2445 tape
->chrdev_dir
= IDETAPE_DIR_NONE
;
2450 if (tape
->restart_speed_control_req
)
2451 idetape_restart_speed_control(drive
);
2452 idetape_init_rq(&rq
, REQ_IDETAPE_READ
);
2453 rq
.sector
= tape
->first_frame
;
2454 rq
.nr_sectors
= blocks
;
2455 rq
.current_nr_sectors
= blocks
;
2456 if (!test_bit(IDETAPE_FLAG_PIPELINE_ERR
, &tape
->flags
) &&
2457 tape
->nr_stages
< max_stages
) {
2458 new_stage
= idetape_kmalloc_stage(tape
);
2459 while (new_stage
!= NULL
) {
2461 idetape_add_stage_tail(drive
, new_stage
);
2462 if (tape
->nr_stages
>= max_stages
)
2464 new_stage
= idetape_kmalloc_stage(tape
);
2467 if (!idetape_pipeline_active(tape
)) {
2468 if (tape
->nr_pending_stages
>= 3 * max_stages
/ 4) {
2469 tape
->measure_insert_time
= 1;
2470 tape
->insert_time
= jiffies
;
2471 tape
->insert_size
= 0;
2472 tape
->insert_speed
= 0;
2473 idetape_plug_pipeline(drive
);
2480 * Called from idetape_chrdev_read() to service a character device read request
2481 * and add read-ahead requests to our pipeline.
2483 static int idetape_add_chrdev_read_request(ide_drive_t
*drive
, int blocks
)
2485 idetape_tape_t
*tape
= drive
->driver_data
;
2486 unsigned long flags
;
2487 struct request
*rq_ptr
;
2490 debug_log(DBG_PROCS
, "Enter %s, %d blocks\n", __func__
, blocks
);
2492 /* If we are at a filemark, return a read length of 0 */
2493 if (test_bit(IDETAPE_FLAG_FILEMARK
, &tape
->flags
))
2496 /* Wait for the next block to reach the head of the pipeline. */
2497 idetape_init_read(drive
, tape
->max_stages
);
2498 if (tape
->first_stage
== NULL
) {
2499 if (test_bit(IDETAPE_FLAG_PIPELINE_ERR
, &tape
->flags
))
2501 return idetape_queue_rw_tail(drive
, REQ_IDETAPE_READ
, blocks
,
2502 tape
->merge_stage
->bh
);
2504 idetape_wait_first_stage(drive
);
2505 rq_ptr
= &tape
->first_stage
->rq
;
2506 bytes_read
= tape
->blk_size
* (rq_ptr
->nr_sectors
-
2507 rq_ptr
->current_nr_sectors
);
2508 rq_ptr
->nr_sectors
= 0;
2509 rq_ptr
->current_nr_sectors
= 0;
2511 if (rq_ptr
->errors
== IDETAPE_ERROR_EOD
)
2514 idetape_switch_buffers(tape
, tape
->first_stage
);
2515 if (rq_ptr
->errors
== IDETAPE_ERROR_FILEMARK
)
2516 set_bit(IDETAPE_FLAG_FILEMARK
, &tape
->flags
);
2517 spin_lock_irqsave(&tape
->lock
, flags
);
2518 idetape_remove_stage_head(drive
);
2519 spin_unlock_irqrestore(&tape
->lock
, flags
);
2520 tape
->pipeline_head
++;
2521 idetape_calculate_speeds(drive
);
2523 if (bytes_read
> blocks
* tape
->blk_size
) {
2524 printk(KERN_ERR
"ide-tape: bug: trying to return more bytes"
2525 " than requested\n");
2526 bytes_read
= blocks
* tape
->blk_size
;
2528 return (bytes_read
);
2531 static void idetape_pad_zeros(ide_drive_t
*drive
, int bcount
)
2533 idetape_tape_t
*tape
= drive
->driver_data
;
2534 struct idetape_bh
*bh
;
2540 bh
= tape
->merge_stage
->bh
;
2541 count
= min(tape
->stage_size
, bcount
);
2543 blocks
= count
/ tape
->blk_size
;
2545 atomic_set(&bh
->b_count
,
2546 min(count
, (unsigned int)bh
->b_size
));
2547 memset(bh
->b_data
, 0, atomic_read(&bh
->b_count
));
2548 count
-= atomic_read(&bh
->b_count
);
2551 idetape_queue_rw_tail(drive
, REQ_IDETAPE_WRITE
, blocks
,
2552 tape
->merge_stage
->bh
);
2556 static int idetape_pipeline_size(ide_drive_t
*drive
)
2558 idetape_tape_t
*tape
= drive
->driver_data
;
2559 idetape_stage_t
*stage
;
2563 idetape_wait_for_pipeline(drive
);
2564 stage
= tape
->first_stage
;
2565 while (stage
!= NULL
) {
2567 size
+= tape
->blk_size
* (rq
->nr_sectors
-
2568 rq
->current_nr_sectors
);
2569 if (rq
->errors
== IDETAPE_ERROR_FILEMARK
)
2570 size
+= tape
->blk_size
;
2571 stage
= stage
->next
;
2573 size
+= tape
->merge_stage_size
;
2578 * Rewinds the tape to the Beginning Of the current Partition (BOP). We
2579 * currently support only one partition.
2581 static int idetape_rewind_tape(ide_drive_t
*drive
)
2584 struct ide_atapi_pc pc
;
2585 idetape_tape_t
*tape
;
2586 tape
= drive
->driver_data
;
2588 debug_log(DBG_SENSE
, "Enter %s\n", __func__
);
2590 idetape_create_rewind_cmd(drive
, &pc
);
2591 retval
= idetape_queue_pc_tail(drive
, &pc
);
2595 idetape_create_read_position_cmd(&pc
);
2596 retval
= idetape_queue_pc_tail(drive
, &pc
);
2602 /* mtio.h compatible commands should be issued to the chrdev interface. */
2603 static int idetape_blkdev_ioctl(ide_drive_t
*drive
, unsigned int cmd
,
2606 idetape_tape_t
*tape
= drive
->driver_data
;
2607 void __user
*argp
= (void __user
*)arg
;
2609 struct idetape_config
{
2610 int dsc_rw_frequency
;
2611 int dsc_media_access_frequency
;
2615 debug_log(DBG_PROCS
, "Enter %s\n", __func__
);
2619 if (copy_from_user(&config
, argp
, sizeof(config
)))
2621 tape
->best_dsc_rw_freq
= config
.dsc_rw_frequency
;
2622 tape
->max_stages
= config
.nr_stages
;
2625 config
.dsc_rw_frequency
= (int) tape
->best_dsc_rw_freq
;
2626 config
.nr_stages
= tape
->max_stages
;
2627 if (copy_to_user(argp
, &config
, sizeof(config
)))
2637 * The function below is now a bit more complicated than just passing the
2638 * command to the tape since we may have crossed some filemarks during our
2639 * pipelined read-ahead mode. As a minor side effect, the pipeline enables us to
2640 * support MTFSFM when the filemark is in our internal pipeline even if the tape
2641 * doesn't support spacing over filemarks in the reverse direction.
2643 static int idetape_space_over_filemarks(ide_drive_t
*drive
, short mt_op
,
2646 idetape_tape_t
*tape
= drive
->driver_data
;
2647 struct ide_atapi_pc pc
;
2648 unsigned long flags
;
2649 int retval
, count
= 0;
2650 int sprev
= !!(tape
->caps
[4] & 0x20);
2654 if (MTBSF
== mt_op
|| MTBSFM
== mt_op
) {
2657 mt_count
= -mt_count
;
2660 if (tape
->chrdev_dir
== IDETAPE_DIR_READ
) {
2661 /* its a read-ahead buffer, scan it for crossed filemarks. */
2662 tape
->merge_stage_size
= 0;
2663 if (test_and_clear_bit(IDETAPE_FLAG_FILEMARK
, &tape
->flags
))
2665 while (tape
->first_stage
!= NULL
) {
2666 if (count
== mt_count
) {
2667 if (mt_op
== MTFSFM
)
2668 set_bit(IDETAPE_FLAG_FILEMARK
,
2672 spin_lock_irqsave(&tape
->lock
, flags
);
2673 if (tape
->first_stage
== tape
->active_stage
) {
2675 * We have reached the active stage in the read
2676 * pipeline. There is no point in allowing the
2677 * drive to continue reading any farther, so we
2678 * stop the pipeline.
2680 * This section should be moved to a separate
2681 * subroutine because similar operations are
2682 * done in __idetape_discard_read_pipeline(),
2685 tape
->next_stage
= NULL
;
2686 spin_unlock_irqrestore(&tape
->lock
, flags
);
2687 idetape_wait_first_stage(drive
);
2688 tape
->next_stage
= tape
->first_stage
->next
;
2690 spin_unlock_irqrestore(&tape
->lock
, flags
);
2691 if (tape
->first_stage
->rq
.errors
==
2692 IDETAPE_ERROR_FILEMARK
)
2694 idetape_remove_stage_head(drive
);
2696 idetape_discard_read_pipeline(drive
, 0);
2700 * The filemark was not found in our internal pipeline; now we can issue
2701 * the space command.
2706 idetape_create_space_cmd(&pc
, mt_count
- count
,
2707 IDETAPE_SPACE_OVER_FILEMARK
);
2708 return idetape_queue_pc_tail(drive
, &pc
);
2713 retval
= idetape_space_over_filemarks(drive
, MTFSF
,
2717 count
= (MTBSFM
== mt_op
? 1 : -1);
2718 return idetape_space_over_filemarks(drive
, MTFSF
, count
);
2720 printk(KERN_ERR
"ide-tape: MTIO operation %d not supported\n",
2727 * Our character device read / write functions.
2729 * The tape is optimized to maximize throughput when it is transferring an
2730 * integral number of the "continuous transfer limit", which is a parameter of
2731 * the specific tape (26kB on my particular tape, 32kB for Onstream).
2733 * As of version 1.3 of the driver, the character device provides an abstract
2734 * continuous view of the media - any mix of block sizes (even 1 byte) on the
2735 * same backup/restore procedure is supported. The driver will internally
2736 * convert the requests to the recommended transfer unit, so that an unmatch
2737 * between the user's block size to the recommended size will only result in a
2738 * (slightly) increased driver overhead, but will no longer hit performance.
2739 * This is not applicable to Onstream.
2741 static ssize_t
idetape_chrdev_read(struct file
*file
, char __user
*buf
,
2742 size_t count
, loff_t
*ppos
)
2744 struct ide_tape_obj
*tape
= ide_tape_f(file
);
2745 ide_drive_t
*drive
= tape
->drive
;
2746 ssize_t bytes_read
, temp
, actually_read
= 0, rc
;
2748 u16 ctl
= *(u16
*)&tape
->caps
[12];
2750 debug_log(DBG_CHRDEV
, "Enter %s, count %Zd\n", __func__
, count
);
2752 if (tape
->chrdev_dir
!= IDETAPE_DIR_READ
) {
2753 if (test_bit(IDETAPE_FLAG_DETECT_BS
, &tape
->flags
))
2754 if (count
> tape
->blk_size
&&
2755 (count
% tape
->blk_size
) == 0)
2756 tape
->user_bs_factor
= count
/ tape
->blk_size
;
2758 rc
= idetape_init_read(drive
, tape
->max_stages
);
2763 if (tape
->merge_stage_size
) {
2764 actually_read
= min((unsigned int)(tape
->merge_stage_size
),
2765 (unsigned int)count
);
2766 if (idetape_copy_stage_to_user(tape
, buf
, tape
->merge_stage
,
2769 buf
+= actually_read
;
2770 tape
->merge_stage_size
-= actually_read
;
2771 count
-= actually_read
;
2773 while (count
>= tape
->stage_size
) {
2774 bytes_read
= idetape_add_chrdev_read_request(drive
, ctl
);
2775 if (bytes_read
<= 0)
2777 if (idetape_copy_stage_to_user(tape
, buf
, tape
->merge_stage
,
2781 count
-= bytes_read
;
2782 actually_read
+= bytes_read
;
2785 bytes_read
= idetape_add_chrdev_read_request(drive
, ctl
);
2786 if (bytes_read
<= 0)
2788 temp
= min((unsigned long)count
, (unsigned long)bytes_read
);
2789 if (idetape_copy_stage_to_user(tape
, buf
, tape
->merge_stage
,
2792 actually_read
+= temp
;
2793 tape
->merge_stage_size
= bytes_read
-temp
;
2796 if (!actually_read
&& test_bit(IDETAPE_FLAG_FILEMARK
, &tape
->flags
)) {
2797 debug_log(DBG_SENSE
, "%s: spacing over filemark\n", tape
->name
);
2799 idetape_space_over_filemarks(drive
, MTFSF
, 1);
2803 return ret
? ret
: actually_read
;
2806 static ssize_t
idetape_chrdev_write(struct file
*file
, const char __user
*buf
,
2807 size_t count
, loff_t
*ppos
)
2809 struct ide_tape_obj
*tape
= ide_tape_f(file
);
2810 ide_drive_t
*drive
= tape
->drive
;
2811 ssize_t actually_written
= 0;
2813 u16 ctl
= *(u16
*)&tape
->caps
[12];
2815 /* The drive is write protected. */
2816 if (tape
->write_prot
)
2819 debug_log(DBG_CHRDEV
, "Enter %s, count %Zd\n", __func__
, count
);
2821 /* Initialize write operation */
2822 if (tape
->chrdev_dir
!= IDETAPE_DIR_WRITE
) {
2823 if (tape
->chrdev_dir
== IDETAPE_DIR_READ
)
2824 idetape_discard_read_pipeline(drive
, 1);
2825 if (tape
->merge_stage
|| tape
->merge_stage_size
) {
2826 printk(KERN_ERR
"ide-tape: merge_stage_size "
2827 "should be 0 now\n");
2828 tape
->merge_stage_size
= 0;
2830 tape
->merge_stage
= __idetape_kmalloc_stage(tape
, 0, 0);
2831 if (!tape
->merge_stage
)
2833 tape
->chrdev_dir
= IDETAPE_DIR_WRITE
;
2834 idetape_init_merge_stage(tape
);
2837 * Issue a write 0 command to ensure that DSC handshake is
2838 * switched from completion mode to buffer available mode. No
2839 * point in issuing this if DSC overlap isn't supported, some
2840 * drives (Seagate STT3401A) will return an error.
2842 if (drive
->dsc_overlap
) {
2843 ssize_t retval
= idetape_queue_rw_tail(drive
,
2844 REQ_IDETAPE_WRITE
, 0,
2845 tape
->merge_stage
->bh
);
2847 __idetape_kfree_stage(tape
->merge_stage
);
2848 tape
->merge_stage
= NULL
;
2849 tape
->chrdev_dir
= IDETAPE_DIR_NONE
;
2856 if (tape
->restart_speed_control_req
)
2857 idetape_restart_speed_control(drive
);
2858 if (tape
->merge_stage_size
) {
2859 if (tape
->merge_stage_size
>= tape
->stage_size
) {
2860 printk(KERN_ERR
"ide-tape: bug: merge buf too big\n");
2861 tape
->merge_stage_size
= 0;
2863 actually_written
= min((unsigned int)
2864 (tape
->stage_size
- tape
->merge_stage_size
),
2865 (unsigned int)count
);
2866 if (idetape_copy_stage_from_user(tape
, tape
->merge_stage
, buf
,
2869 buf
+= actually_written
;
2870 tape
->merge_stage_size
+= actually_written
;
2871 count
-= actually_written
;
2873 if (tape
->merge_stage_size
== tape
->stage_size
) {
2875 tape
->merge_stage_size
= 0;
2876 retval
= idetape_add_chrdev_write_request(drive
, ctl
);
2881 while (count
>= tape
->stage_size
) {
2883 if (idetape_copy_stage_from_user(tape
, tape
->merge_stage
, buf
,
2886 buf
+= tape
->stage_size
;
2887 count
-= tape
->stage_size
;
2888 retval
= idetape_add_chrdev_write_request(drive
, ctl
);
2889 actually_written
+= tape
->stage_size
;
2894 actually_written
+= count
;
2895 if (idetape_copy_stage_from_user(tape
, tape
->merge_stage
, buf
,
2898 tape
->merge_stage_size
+= count
;
2900 return ret
? ret
: actually_written
;
2903 static int idetape_write_filemark(ide_drive_t
*drive
)
2905 struct ide_atapi_pc pc
;
2907 /* Write a filemark */
2908 idetape_create_write_filemark_cmd(drive
, &pc
, 1);
2909 if (idetape_queue_pc_tail(drive
, &pc
)) {
2910 printk(KERN_ERR
"ide-tape: Couldn't write a filemark\n");
2917 * Called from idetape_chrdev_ioctl when the general mtio MTIOCTOP ioctl is
2920 * Note: MTBSF and MTBSFM are not supported when the tape doesn't support
2921 * spacing over filemarks in the reverse direction. In this case, MTFSFM is also
2922 * usually not supported (it is supported in the rare case in which we crossed
2923 * the filemark during our read-ahead pipelined operation mode).
2925 * The following commands are currently not supported:
2927 * MTFSS, MTBSS, MTWSM, MTSETDENSITY, MTSETDRVBUFFER, MT_ST_BOOLEANS,
2928 * MT_ST_WRITE_THRESHOLD.
2930 static int idetape_mtioctop(ide_drive_t
*drive
, short mt_op
, int mt_count
)
2932 idetape_tape_t
*tape
= drive
->driver_data
;
2933 struct ide_atapi_pc pc
;
2936 debug_log(DBG_ERR
, "Handling MTIOCTOP ioctl: mt_op=%d, mt_count=%d\n",
2939 /* Commands which need our pipelined read-ahead stages. */
2947 return idetape_space_over_filemarks(drive
, mt_op
, mt_count
);
2954 if (tape
->write_prot
)
2956 idetape_discard_read_pipeline(drive
, 1);
2957 for (i
= 0; i
< mt_count
; i
++) {
2958 retval
= idetape_write_filemark(drive
);
2964 idetape_discard_read_pipeline(drive
, 0);
2965 if (idetape_rewind_tape(drive
))
2969 idetape_discard_read_pipeline(drive
, 0);
2970 idetape_create_load_unload_cmd(drive
, &pc
,
2971 IDETAPE_LU_LOAD_MASK
);
2972 return idetape_queue_pc_tail(drive
, &pc
);
2976 * If door is locked, attempt to unlock before
2977 * attempting to eject.
2979 if (tape
->door_locked
) {
2980 if (idetape_create_prevent_cmd(drive
, &pc
, 0))
2981 if (!idetape_queue_pc_tail(drive
, &pc
))
2982 tape
->door_locked
= DOOR_UNLOCKED
;
2984 idetape_discard_read_pipeline(drive
, 0);
2985 idetape_create_load_unload_cmd(drive
, &pc
,
2986 !IDETAPE_LU_LOAD_MASK
);
2987 retval
= idetape_queue_pc_tail(drive
, &pc
);
2989 clear_bit(IDETAPE_FLAG_MEDIUM_PRESENT
, &tape
->flags
);
2992 idetape_discard_read_pipeline(drive
, 0);
2993 return idetape_flush_tape_buffers(drive
);
2995 idetape_discard_read_pipeline(drive
, 0);
2996 idetape_create_load_unload_cmd(drive
, &pc
,
2997 IDETAPE_LU_RETENSION_MASK
| IDETAPE_LU_LOAD_MASK
);
2998 return idetape_queue_pc_tail(drive
, &pc
);
3000 idetape_create_space_cmd(&pc
, 0, IDETAPE_SPACE_TO_EOD
);
3001 return idetape_queue_pc_tail(drive
, &pc
);
3003 (void)idetape_rewind_tape(drive
);
3004 idetape_create_erase_cmd(&pc
);
3005 return idetape_queue_pc_tail(drive
, &pc
);
3008 if (mt_count
< tape
->blk_size
||
3009 mt_count
% tape
->blk_size
)
3011 tape
->user_bs_factor
= mt_count
/ tape
->blk_size
;
3012 clear_bit(IDETAPE_FLAG_DETECT_BS
, &tape
->flags
);
3014 set_bit(IDETAPE_FLAG_DETECT_BS
, &tape
->flags
);
3017 idetape_discard_read_pipeline(drive
, 0);
3018 return idetape_position_tape(drive
,
3019 mt_count
* tape
->user_bs_factor
, tape
->partition
, 0);
3021 idetape_discard_read_pipeline(drive
, 0);
3022 return idetape_position_tape(drive
, 0, mt_count
, 0);
3026 if (!idetape_create_prevent_cmd(drive
, &pc
, 1))
3028 retval
= idetape_queue_pc_tail(drive
, &pc
);
3031 tape
->door_locked
= DOOR_EXPLICITLY_LOCKED
;
3034 if (!idetape_create_prevent_cmd(drive
, &pc
, 0))
3036 retval
= idetape_queue_pc_tail(drive
, &pc
);
3039 tape
->door_locked
= DOOR_UNLOCKED
;
3042 printk(KERN_ERR
"ide-tape: MTIO operation %d not supported\n",
3049 * Our character device ioctls. General mtio.h magnetic io commands are
3050 * supported here, and not in the corresponding block interface. Our own
3051 * ide-tape ioctls are supported on both interfaces.
3053 static int idetape_chrdev_ioctl(struct inode
*inode
, struct file
*file
,
3054 unsigned int cmd
, unsigned long arg
)
3056 struct ide_tape_obj
*tape
= ide_tape_f(file
);
3057 ide_drive_t
*drive
= tape
->drive
;
3061 int block_offset
= 0, position
= tape
->first_frame
;
3062 void __user
*argp
= (void __user
*)arg
;
3064 debug_log(DBG_CHRDEV
, "Enter %s, cmd=%u\n", __func__
, cmd
);
3066 tape
->restart_speed_control_req
= 1;
3067 if (tape
->chrdev_dir
== IDETAPE_DIR_WRITE
) {
3068 idetape_empty_write_pipeline(drive
);
3069 idetape_flush_tape_buffers(drive
);
3071 if (cmd
== MTIOCGET
|| cmd
== MTIOCPOS
) {
3072 block_offset
= idetape_pipeline_size(drive
) /
3073 (tape
->blk_size
* tape
->user_bs_factor
);
3074 position
= idetape_read_position(drive
);
3080 if (copy_from_user(&mtop
, argp
, sizeof(struct mtop
)))
3082 return idetape_mtioctop(drive
, mtop
.mt_op
, mtop
.mt_count
);
3084 memset(&mtget
, 0, sizeof(struct mtget
));
3085 mtget
.mt_type
= MT_ISSCSI2
;
3086 mtget
.mt_blkno
= position
/ tape
->user_bs_factor
- block_offset
;
3088 ((tape
->blk_size
* tape
->user_bs_factor
)
3089 << MT_ST_BLKSIZE_SHIFT
) & MT_ST_BLKSIZE_MASK
;
3091 if (tape
->drv_write_prot
)
3092 mtget
.mt_gstat
|= GMT_WR_PROT(0xffffffff);
3094 if (copy_to_user(argp
, &mtget
, sizeof(struct mtget
)))
3098 mtpos
.mt_blkno
= position
/ tape
->user_bs_factor
- block_offset
;
3099 if (copy_to_user(argp
, &mtpos
, sizeof(struct mtpos
)))
3103 if (tape
->chrdev_dir
== IDETAPE_DIR_READ
)
3104 idetape_discard_read_pipeline(drive
, 1);
3105 return idetape_blkdev_ioctl(drive
, cmd
, arg
);
3110 * Do a mode sense page 0 with block descriptor and if it succeeds set the tape
3111 * block size with the reported value.
3113 static void ide_tape_get_bsize_from_bdesc(ide_drive_t
*drive
)
3115 idetape_tape_t
*tape
= drive
->driver_data
;
3116 struct ide_atapi_pc pc
;
3118 idetape_create_mode_sense_cmd(&pc
, IDETAPE_BLOCK_DESCRIPTOR
);
3119 if (idetape_queue_pc_tail(drive
, &pc
)) {
3120 printk(KERN_ERR
"ide-tape: Can't get block descriptor\n");
3121 if (tape
->blk_size
== 0) {
3122 printk(KERN_WARNING
"ide-tape: Cannot deal with zero "
3123 "block size, assuming 32k\n");
3124 tape
->blk_size
= 32768;
3128 tape
->blk_size
= (pc
.buf
[4 + 5] << 16) +
3129 (pc
.buf
[4 + 6] << 8) +
3131 tape
->drv_write_prot
= (pc
.buf
[2] & 0x80) >> 7;
3134 static int idetape_chrdev_open(struct inode
*inode
, struct file
*filp
)
3136 unsigned int minor
= iminor(inode
), i
= minor
& ~0xc0;
3138 idetape_tape_t
*tape
;
3139 struct ide_atapi_pc pc
;
3142 if (i
>= MAX_HWIFS
* MAX_DRIVES
)
3145 tape
= ide_tape_chrdev_get(i
);
3149 debug_log(DBG_CHRDEV
, "Enter %s\n", __func__
);
3152 * We really want to do nonseekable_open(inode, filp); here, but some
3153 * versions of tar incorrectly call lseek on tapes and bail out if that
3154 * fails. So we disallow pread() and pwrite(), but permit lseeks.
3156 filp
->f_mode
&= ~(FMODE_PREAD
| FMODE_PWRITE
);
3158 drive
= tape
->drive
;
3160 filp
->private_data
= tape
;
3162 if (test_and_set_bit(IDETAPE_FLAG_BUSY
, &tape
->flags
)) {
3167 retval
= idetape_wait_ready(drive
, 60 * HZ
);
3169 clear_bit(IDETAPE_FLAG_BUSY
, &tape
->flags
);
3170 printk(KERN_ERR
"ide-tape: %s: drive not ready\n", tape
->name
);
3174 idetape_read_position(drive
);
3175 if (!test_bit(IDETAPE_FLAG_ADDRESS_VALID
, &tape
->flags
))
3176 (void)idetape_rewind_tape(drive
);
3178 if (tape
->chrdev_dir
!= IDETAPE_DIR_READ
)
3179 clear_bit(IDETAPE_FLAG_PIPELINE_ERR
, &tape
->flags
);
3181 /* Read block size and write protect status from drive. */
3182 ide_tape_get_bsize_from_bdesc(drive
);
3184 /* Set write protect flag if device is opened as read-only. */
3185 if ((filp
->f_flags
& O_ACCMODE
) == O_RDONLY
)
3186 tape
->write_prot
= 1;
3188 tape
->write_prot
= tape
->drv_write_prot
;
3190 /* Make sure drive isn't write protected if user wants to write. */
3191 if (tape
->write_prot
) {
3192 if ((filp
->f_flags
& O_ACCMODE
) == O_WRONLY
||
3193 (filp
->f_flags
& O_ACCMODE
) == O_RDWR
) {
3194 clear_bit(IDETAPE_FLAG_BUSY
, &tape
->flags
);
3200 /* Lock the tape drive door so user can't eject. */
3201 if (tape
->chrdev_dir
== IDETAPE_DIR_NONE
) {
3202 if (idetape_create_prevent_cmd(drive
, &pc
, 1)) {
3203 if (!idetape_queue_pc_tail(drive
, &pc
)) {
3204 if (tape
->door_locked
!= DOOR_EXPLICITLY_LOCKED
)
3205 tape
->door_locked
= DOOR_LOCKED
;
3209 idetape_restart_speed_control(drive
);
3210 tape
->restart_speed_control_req
= 0;
3218 static void idetape_write_release(ide_drive_t
*drive
, unsigned int minor
)
3220 idetape_tape_t
*tape
= drive
->driver_data
;
3222 idetape_empty_write_pipeline(drive
);
3223 tape
->merge_stage
= __idetape_kmalloc_stage(tape
, 1, 0);
3224 if (tape
->merge_stage
!= NULL
) {
3225 idetape_pad_zeros(drive
, tape
->blk_size
*
3226 (tape
->user_bs_factor
- 1));
3227 __idetape_kfree_stage(tape
->merge_stage
);
3228 tape
->merge_stage
= NULL
;
3230 idetape_write_filemark(drive
);
3231 idetape_flush_tape_buffers(drive
);
3232 idetape_flush_tape_buffers(drive
);
3235 static int idetape_chrdev_release(struct inode
*inode
, struct file
*filp
)
3237 struct ide_tape_obj
*tape
= ide_tape_f(filp
);
3238 ide_drive_t
*drive
= tape
->drive
;
3239 struct ide_atapi_pc pc
;
3240 unsigned int minor
= iminor(inode
);
3243 tape
= drive
->driver_data
;
3245 debug_log(DBG_CHRDEV
, "Enter %s\n", __func__
);
3247 if (tape
->chrdev_dir
== IDETAPE_DIR_WRITE
)
3248 idetape_write_release(drive
, minor
);
3249 if (tape
->chrdev_dir
== IDETAPE_DIR_READ
) {
3251 idetape_discard_read_pipeline(drive
, 1);
3253 idetape_wait_for_pipeline(drive
);
3255 if (tape
->cache_stage
!= NULL
) {
3256 __idetape_kfree_stage(tape
->cache_stage
);
3257 tape
->cache_stage
= NULL
;
3259 if (minor
< 128 && test_bit(IDETAPE_FLAG_MEDIUM_PRESENT
, &tape
->flags
))
3260 (void) idetape_rewind_tape(drive
);
3261 if (tape
->chrdev_dir
== IDETAPE_DIR_NONE
) {
3262 if (tape
->door_locked
== DOOR_LOCKED
) {
3263 if (idetape_create_prevent_cmd(drive
, &pc
, 0)) {
3264 if (!idetape_queue_pc_tail(drive
, &pc
))
3265 tape
->door_locked
= DOOR_UNLOCKED
;
3269 clear_bit(IDETAPE_FLAG_BUSY
, &tape
->flags
);
3276 * check the contents of the ATAPI IDENTIFY command results. We return:
3278 * 1 - If the tape can be supported by us, based on the information we have so
3281 * 0 - If this tape driver is not currently supported by us.
3283 static int idetape_identify_device(ide_drive_t
*drive
)
3285 u8 gcw
[2], protocol
, device_type
, removable
, packet_size
;
3287 if (drive
->id_read
== 0)
3290 *((unsigned short *) &gcw
) = drive
->id
->config
;
3292 protocol
= (gcw
[1] & 0xC0) >> 6;
3293 device_type
= gcw
[1] & 0x1F;
3294 removable
= !!(gcw
[0] & 0x80);
3295 packet_size
= gcw
[0] & 0x3;
3297 /* Check that we can support this device */
3299 printk(KERN_ERR
"ide-tape: Protocol (0x%02x) is not ATAPI\n",
3301 else if (device_type
!= 1)
3302 printk(KERN_ERR
"ide-tape: Device type (0x%02x) is not set "
3303 "to tape\n", device_type
);
3304 else if (!removable
)
3305 printk(KERN_ERR
"ide-tape: The removable flag is not set\n");
3306 else if (packet_size
!= 0) {
3307 printk(KERN_ERR
"ide-tape: Packet size (0x%02x) is not 12"
3308 " bytes\n", packet_size
);
3314 static void idetape_get_inquiry_results(ide_drive_t
*drive
)
3316 idetape_tape_t
*tape
= drive
->driver_data
;
3317 struct ide_atapi_pc pc
;
3318 char fw_rev
[6], vendor_id
[10], product_id
[18];
3320 idetape_create_inquiry_cmd(&pc
);
3321 if (idetape_queue_pc_tail(drive
, &pc
)) {
3322 printk(KERN_ERR
"ide-tape: %s: can't get INQUIRY results\n",
3326 memcpy(vendor_id
, &pc
.buf
[8], 8);
3327 memcpy(product_id
, &pc
.buf
[16], 16);
3328 memcpy(fw_rev
, &pc
.buf
[32], 4);
3330 ide_fixstring(vendor_id
, 10, 0);
3331 ide_fixstring(product_id
, 18, 0);
3332 ide_fixstring(fw_rev
, 6, 0);
3334 printk(KERN_INFO
"ide-tape: %s <-> %s: %s %s rev %s\n",
3335 drive
->name
, tape
->name
, vendor_id
, product_id
, fw_rev
);
3339 * Ask the tape about its various parameters. In particular, we will adjust our
3340 * data transfer buffer size to the recommended value as returned by the tape.
3342 static void idetape_get_mode_sense_results(ide_drive_t
*drive
)
3344 idetape_tape_t
*tape
= drive
->driver_data
;
3345 struct ide_atapi_pc pc
;
3347 u8 speed
, max_speed
;
3349 idetape_create_mode_sense_cmd(&pc
, IDETAPE_CAPABILITIES_PAGE
);
3350 if (idetape_queue_pc_tail(drive
, &pc
)) {
3351 printk(KERN_ERR
"ide-tape: Can't get tape parameters - assuming"
3352 " some default values\n");
3353 tape
->blk_size
= 512;
3354 put_unaligned(52, (u16
*)&tape
->caps
[12]);
3355 put_unaligned(540, (u16
*)&tape
->caps
[14]);
3356 put_unaligned(6*52, (u16
*)&tape
->caps
[16]);
3359 caps
= pc
.buf
+ 4 + pc
.buf
[3];
3361 /* convert to host order and save for later use */
3362 speed
= be16_to_cpu(*(u16
*)&caps
[14]);
3363 max_speed
= be16_to_cpu(*(u16
*)&caps
[8]);
3365 put_unaligned(max_speed
, (u16
*)&caps
[8]);
3366 put_unaligned(be16_to_cpu(*(u16
*)&caps
[12]), (u16
*)&caps
[12]);
3367 put_unaligned(speed
, (u16
*)&caps
[14]);
3368 put_unaligned(be16_to_cpu(*(u16
*)&caps
[16]), (u16
*)&caps
[16]);
3371 printk(KERN_INFO
"ide-tape: %s: invalid tape speed "
3372 "(assuming 650KB/sec)\n", drive
->name
);
3373 put_unaligned(650, (u16
*)&caps
[14]);
3376 printk(KERN_INFO
"ide-tape: %s: invalid max_speed "
3377 "(assuming 650KB/sec)\n", drive
->name
);
3378 put_unaligned(650, (u16
*)&caps
[8]);
3381 memcpy(&tape
->caps
, caps
, 20);
3383 tape
->blk_size
= 512;
3384 else if (caps
[7] & 0x04)
3385 tape
->blk_size
= 1024;
3388 #ifdef CONFIG_IDE_PROC_FS
3389 static void idetape_add_settings(ide_drive_t
*drive
)
3391 idetape_tape_t
*tape
= drive
->driver_data
;
3393 ide_add_setting(drive
, "buffer", SETTING_READ
, TYPE_SHORT
, 0, 0xffff,
3394 1, 2, (u16
*)&tape
->caps
[16], NULL
);
3395 ide_add_setting(drive
, "pipeline_min", SETTING_RW
, TYPE_INT
, 1, 0xffff,
3396 tape
->stage_size
/ 1024, 1, &tape
->min_pipeline
, NULL
);
3397 ide_add_setting(drive
, "pipeline", SETTING_RW
, TYPE_INT
, 1, 0xffff,
3398 tape
->stage_size
/ 1024, 1, &tape
->max_stages
, NULL
);
3399 ide_add_setting(drive
, "pipeline_max", SETTING_RW
, TYPE_INT
, 1, 0xffff,
3400 tape
->stage_size
/ 1024, 1, &tape
->max_pipeline
, NULL
);
3401 ide_add_setting(drive
, "pipeline_used", SETTING_READ
, TYPE_INT
, 0,
3402 0xffff, tape
->stage_size
/ 1024, 1, &tape
->nr_stages
,
3404 ide_add_setting(drive
, "pipeline_pending", SETTING_READ
, TYPE_INT
, 0,
3405 0xffff, tape
->stage_size
/ 1024, 1,
3406 &tape
->nr_pending_stages
, NULL
);
3407 ide_add_setting(drive
, "speed", SETTING_READ
, TYPE_SHORT
, 0, 0xffff,
3408 1, 1, (u16
*)&tape
->caps
[14], NULL
);
3409 ide_add_setting(drive
, "stage", SETTING_READ
, TYPE_INT
, 0, 0xffff, 1,
3410 1024, &tape
->stage_size
, NULL
);
3411 ide_add_setting(drive
, "tdsc", SETTING_RW
, TYPE_INT
, IDETAPE_DSC_RW_MIN
,
3412 IDETAPE_DSC_RW_MAX
, 1000, HZ
, &tape
->best_dsc_rw_freq
,
3414 ide_add_setting(drive
, "dsc_overlap", SETTING_RW
, TYPE_BYTE
, 0, 1, 1,
3415 1, &drive
->dsc_overlap
, NULL
);
3416 ide_add_setting(drive
, "pipeline_head_speed_c", SETTING_READ
, TYPE_INT
,
3417 0, 0xffff, 1, 1, &tape
->controlled_pipeline_head_speed
,
3419 ide_add_setting(drive
, "pipeline_head_speed_u", SETTING_READ
, TYPE_INT
,
3421 &tape
->uncontrolled_pipeline_head_speed
, NULL
);
3422 ide_add_setting(drive
, "avg_speed", SETTING_READ
, TYPE_INT
, 0, 0xffff,
3423 1, 1, &tape
->avg_speed
, NULL
);
3424 ide_add_setting(drive
, "debug_mask", SETTING_RW
, TYPE_INT
, 0, 0xffff, 1,
3425 1, &tape
->debug_mask
, NULL
);
3428 static inline void idetape_add_settings(ide_drive_t
*drive
) { ; }
3432 * The function below is called to:
3434 * 1. Initialize our various state variables.
3435 * 2. Ask the tape for its capabilities.
3436 * 3. Allocate a buffer which will be used for data transfer. The buffer size
3437 * is chosen based on the recommendation which we received in step 2.
3439 * Note that at this point ide.c already assigned us an irq, so that we can
3440 * queue requests here and wait for their completion.
3442 static void idetape_setup(ide_drive_t
*drive
, idetape_tape_t
*tape
, int minor
)
3444 unsigned long t1
, tmid
, tn
, t
;
3449 u16
*ctl
= (u16
*)&tape
->caps
[12];
3451 spin_lock_init(&tape
->lock
);
3452 drive
->dsc_overlap
= 1;
3453 if (drive
->hwif
->host_flags
& IDE_HFLAG_NO_DSC
) {
3454 printk(KERN_INFO
"ide-tape: %s: disabling DSC overlap\n",
3456 drive
->dsc_overlap
= 0;
3458 /* Seagate Travan drives do not support DSC overlap. */
3459 if (strstr(drive
->id
->model
, "Seagate STT3401"))
3460 drive
->dsc_overlap
= 0;
3461 tape
->minor
= minor
;
3462 tape
->name
[0] = 'h';
3463 tape
->name
[1] = 't';
3464 tape
->name
[2] = '0' + minor
;
3465 tape
->chrdev_dir
= IDETAPE_DIR_NONE
;
3466 tape
->pc
= tape
->pc_stack
;
3467 tape
->max_insert_speed
= 10000;
3468 tape
->speed_control
= 1;
3469 *((unsigned short *) &gcw
) = drive
->id
->config
;
3471 /* Command packet DRQ type */
3472 if (((gcw
[0] & 0x60) >> 5) == 1)
3473 set_bit(IDETAPE_FLAG_DRQ_INTERRUPT
, &tape
->flags
);
3475 tape
->min_pipeline
= 10;
3476 tape
->max_pipeline
= 10;
3477 tape
->max_stages
= 10;
3479 idetape_get_inquiry_results(drive
);
3480 idetape_get_mode_sense_results(drive
);
3481 ide_tape_get_bsize_from_bdesc(drive
);
3482 tape
->user_bs_factor
= 1;
3483 tape
->stage_size
= *ctl
* tape
->blk_size
;
3484 while (tape
->stage_size
> 0xffff) {
3485 printk(KERN_NOTICE
"ide-tape: decreasing stage size\n");
3487 tape
->stage_size
= *ctl
* tape
->blk_size
;
3489 stage_size
= tape
->stage_size
;
3490 tape
->pages_per_stage
= stage_size
/ PAGE_SIZE
;
3491 if (stage_size
% PAGE_SIZE
) {
3492 tape
->pages_per_stage
++;
3493 tape
->excess_bh_size
= PAGE_SIZE
- stage_size
% PAGE_SIZE
;
3496 /* Select the "best" DSC read/write polling freq and pipeline size. */
3497 speed
= max(*(u16
*)&tape
->caps
[14], *(u16
*)&tape
->caps
[8]);
3499 tape
->max_stages
= speed
* 1000 * 10 / tape
->stage_size
;
3501 /* Limit memory use for pipeline to 10% of physical memory */
3503 if (tape
->max_stages
* tape
->stage_size
>
3504 si
.totalram
* si
.mem_unit
/ 10)
3506 si
.totalram
* si
.mem_unit
/ (10 * tape
->stage_size
);
3508 tape
->max_stages
= min(tape
->max_stages
, IDETAPE_MAX_PIPELINE_STAGES
);
3509 tape
->min_pipeline
= min(tape
->max_stages
, IDETAPE_MIN_PIPELINE_STAGES
);
3510 tape
->max_pipeline
=
3511 min(tape
->max_stages
* 2, IDETAPE_MAX_PIPELINE_STAGES
);
3512 if (tape
->max_stages
== 0) {
3513 tape
->max_stages
= 1;
3514 tape
->min_pipeline
= 1;
3515 tape
->max_pipeline
= 1;
3518 t1
= (tape
->stage_size
* HZ
) / (speed
* 1000);
3519 tmid
= (*(u16
*)&tape
->caps
[16] * 32 * HZ
) / (speed
* 125);
3520 tn
= (IDETAPE_FIFO_THRESHOLD
* tape
->stage_size
* HZ
) / (speed
* 1000);
3522 if (tape
->max_stages
)
3528 * Ensure that the number we got makes sense; limit it within
3529 * IDETAPE_DSC_RW_MIN and IDETAPE_DSC_RW_MAX.
3531 tape
->best_dsc_rw_freq
= max_t(unsigned long,
3532 min_t(unsigned long, t
, IDETAPE_DSC_RW_MAX
),
3533 IDETAPE_DSC_RW_MIN
);
3534 printk(KERN_INFO
"ide-tape: %s <-> %s: %dKBps, %d*%dkB buffer, "
3535 "%dkB pipeline, %lums tDSC%s\n",
3536 drive
->name
, tape
->name
, *(u16
*)&tape
->caps
[14],
3537 (*(u16
*)&tape
->caps
[16] * 512) / tape
->stage_size
,
3538 tape
->stage_size
/ 1024,
3539 tape
->max_stages
* tape
->stage_size
/ 1024,
3540 tape
->best_dsc_rw_freq
* 1000 / HZ
,
3541 drive
->using_dma
? ", DMA":"");
3543 idetape_add_settings(drive
);
3546 static void ide_tape_remove(ide_drive_t
*drive
)
3548 idetape_tape_t
*tape
= drive
->driver_data
;
3550 ide_proc_unregister_driver(drive
, tape
->driver
);
3552 ide_unregister_region(tape
->disk
);
3557 static void ide_tape_release(struct kref
*kref
)
3559 struct ide_tape_obj
*tape
= to_ide_tape(kref
);
3560 ide_drive_t
*drive
= tape
->drive
;
3561 struct gendisk
*g
= tape
->disk
;
3563 BUG_ON(tape
->first_stage
!= NULL
|| tape
->merge_stage_size
);
3565 drive
->dsc_overlap
= 0;
3566 drive
->driver_data
= NULL
;
3567 device_destroy(idetape_sysfs_class
, MKDEV(IDETAPE_MAJOR
, tape
->minor
));
3568 device_destroy(idetape_sysfs_class
,
3569 MKDEV(IDETAPE_MAJOR
, tape
->minor
+ 128));
3570 idetape_devs
[tape
->minor
] = NULL
;
3571 g
->private_data
= NULL
;
3576 #ifdef CONFIG_IDE_PROC_FS
3577 static int proc_idetape_read_name
3578 (char *page
, char **start
, off_t off
, int count
, int *eof
, void *data
)
3580 ide_drive_t
*drive
= (ide_drive_t
*) data
;
3581 idetape_tape_t
*tape
= drive
->driver_data
;
3585 len
= sprintf(out
, "%s\n", tape
->name
);
3586 PROC_IDE_READ_RETURN(page
, start
, off
, count
, eof
, len
);
3589 static ide_proc_entry_t idetape_proc
[] = {
3590 { "capacity", S_IFREG
|S_IRUGO
, proc_ide_read_capacity
, NULL
},
3591 { "name", S_IFREG
|S_IRUGO
, proc_idetape_read_name
, NULL
},
3592 { NULL
, 0, NULL
, NULL
}
3596 static int ide_tape_probe(ide_drive_t
*);
3598 static ide_driver_t idetape_driver
= {
3600 .owner
= THIS_MODULE
,
3602 .bus
= &ide_bus_type
,
3604 .probe
= ide_tape_probe
,
3605 .remove
= ide_tape_remove
,
3606 .version
= IDETAPE_VERSION
,
3608 .supports_dsc_overlap
= 1,
3609 .do_request
= idetape_do_request
,
3610 .end_request
= idetape_end_request
,
3611 .error
= __ide_error
,
3612 .abort
= __ide_abort
,
3613 #ifdef CONFIG_IDE_PROC_FS
3614 .proc
= idetape_proc
,
3618 /* Our character device supporting functions, passed to register_chrdev. */
3619 static const struct file_operations idetape_fops
= {
3620 .owner
= THIS_MODULE
,
3621 .read
= idetape_chrdev_read
,
3622 .write
= idetape_chrdev_write
,
3623 .ioctl
= idetape_chrdev_ioctl
,
3624 .open
= idetape_chrdev_open
,
3625 .release
= idetape_chrdev_release
,
3628 static int idetape_open(struct inode
*inode
, struct file
*filp
)
3630 struct gendisk
*disk
= inode
->i_bdev
->bd_disk
;
3631 struct ide_tape_obj
*tape
;
3633 tape
= ide_tape_get(disk
);
3640 static int idetape_release(struct inode
*inode
, struct file
*filp
)
3642 struct gendisk
*disk
= inode
->i_bdev
->bd_disk
;
3643 struct ide_tape_obj
*tape
= ide_tape_g(disk
);
3650 static int idetape_ioctl(struct inode
*inode
, struct file
*file
,
3651 unsigned int cmd
, unsigned long arg
)
3653 struct block_device
*bdev
= inode
->i_bdev
;
3654 struct ide_tape_obj
*tape
= ide_tape_g(bdev
->bd_disk
);
3655 ide_drive_t
*drive
= tape
->drive
;
3656 int err
= generic_ide_ioctl(drive
, file
, bdev
, cmd
, arg
);
3658 err
= idetape_blkdev_ioctl(drive
, cmd
, arg
);
3662 static struct block_device_operations idetape_block_ops
= {
3663 .owner
= THIS_MODULE
,
3664 .open
= idetape_open
,
3665 .release
= idetape_release
,
3666 .ioctl
= idetape_ioctl
,
3669 static int ide_tape_probe(ide_drive_t
*drive
)
3671 idetape_tape_t
*tape
;
3675 if (!strstr("ide-tape", drive
->driver_req
))
3677 if (!drive
->present
)
3679 if (drive
->media
!= ide_tape
)
3681 if (!idetape_identify_device(drive
)) {
3682 printk(KERN_ERR
"ide-tape: %s: not supported by this version of"
3683 " the driver\n", drive
->name
);
3687 printk(KERN_INFO
"ide-tape: passing drive %s to ide-scsi"
3688 " emulation.\n", drive
->name
);
3691 tape
= kzalloc(sizeof(idetape_tape_t
), GFP_KERNEL
);
3693 printk(KERN_ERR
"ide-tape: %s: Can't allocate a tape struct\n",
3698 g
= alloc_disk(1 << PARTN_BITS
);
3702 ide_init_disk(g
, drive
);
3704 ide_proc_register_driver(drive
, &idetape_driver
);
3706 kref_init(&tape
->kref
);
3708 tape
->drive
= drive
;
3709 tape
->driver
= &idetape_driver
;
3712 g
->private_data
= &tape
->driver
;
3714 drive
->driver_data
= tape
;
3716 mutex_lock(&idetape_ref_mutex
);
3717 for (minor
= 0; idetape_devs
[minor
]; minor
++)
3719 idetape_devs
[minor
] = tape
;
3720 mutex_unlock(&idetape_ref_mutex
);
3722 idetape_setup(drive
, tape
, minor
);
3724 device_create(idetape_sysfs_class
, &drive
->gendev
,
3725 MKDEV(IDETAPE_MAJOR
, minor
), "%s", tape
->name
);
3726 device_create(idetape_sysfs_class
, &drive
->gendev
,
3727 MKDEV(IDETAPE_MAJOR
, minor
+ 128), "n%s", tape
->name
);
3729 g
->fops
= &idetape_block_ops
;
3730 ide_register_region(g
);
3740 static void __exit
idetape_exit(void)
3742 driver_unregister(&idetape_driver
.gen_driver
);
3743 class_destroy(idetape_sysfs_class
);
3744 unregister_chrdev(IDETAPE_MAJOR
, "ht");
3747 static int __init
idetape_init(void)
3750 idetape_sysfs_class
= class_create(THIS_MODULE
, "ide_tape");
3751 if (IS_ERR(idetape_sysfs_class
)) {
3752 idetape_sysfs_class
= NULL
;
3753 printk(KERN_ERR
"Unable to create sysfs class for ide tapes\n");
3758 if (register_chrdev(IDETAPE_MAJOR
, "ht", &idetape_fops
)) {
3759 printk(KERN_ERR
"ide-tape: Failed to register chrdev"
3762 goto out_free_class
;
3765 error
= driver_register(&idetape_driver
.gen_driver
);
3767 goto out_free_driver
;
3772 driver_unregister(&idetape_driver
.gen_driver
);
3774 class_destroy(idetape_sysfs_class
);
3779 MODULE_ALIAS("ide:*m-tape*");
3780 module_init(idetape_init
);
3781 module_exit(idetape_exit
);
3782 MODULE_ALIAS_CHARDEV_MAJOR(IDETAPE_MAJOR
);
3783 MODULE_DESCRIPTION("ATAPI Streaming TAPE Driver");
3784 MODULE_LICENSE("GPL");