coredump: turn core_state->nr_threads into atomic_t
[linux-2.6/mini2440.git] / kernel / exit.c
blob63d82957baae26886deaad373e6112bc6a255689
1 /*
2 * linux/kernel/exit.c
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
7 #include <linux/mm.h>
8 #include <linux/slab.h>
9 #include <linux/interrupt.h>
10 #include <linux/module.h>
11 #include <linux/capability.h>
12 #include <linux/completion.h>
13 #include <linux/personality.h>
14 #include <linux/tty.h>
15 #include <linux/mnt_namespace.h>
16 #include <linux/iocontext.h>
17 #include <linux/key.h>
18 #include <linux/security.h>
19 #include <linux/cpu.h>
20 #include <linux/acct.h>
21 #include <linux/tsacct_kern.h>
22 #include <linux/file.h>
23 #include <linux/fdtable.h>
24 #include <linux/binfmts.h>
25 #include <linux/nsproxy.h>
26 #include <linux/pid_namespace.h>
27 #include <linux/ptrace.h>
28 #include <linux/profile.h>
29 #include <linux/mount.h>
30 #include <linux/proc_fs.h>
31 #include <linux/kthread.h>
32 #include <linux/mempolicy.h>
33 #include <linux/taskstats_kern.h>
34 #include <linux/delayacct.h>
35 #include <linux/freezer.h>
36 #include <linux/cgroup.h>
37 #include <linux/syscalls.h>
38 #include <linux/signal.h>
39 #include <linux/posix-timers.h>
40 #include <linux/cn_proc.h>
41 #include <linux/mutex.h>
42 #include <linux/futex.h>
43 #include <linux/compat.h>
44 #include <linux/pipe_fs_i.h>
45 #include <linux/audit.h> /* for audit_free() */
46 #include <linux/resource.h>
47 #include <linux/blkdev.h>
48 #include <linux/task_io_accounting_ops.h>
50 #include <asm/uaccess.h>
51 #include <asm/unistd.h>
52 #include <asm/pgtable.h>
53 #include <asm/mmu_context.h>
55 static void exit_mm(struct task_struct * tsk);
57 static inline int task_detached(struct task_struct *p)
59 return p->exit_signal == -1;
62 static void __unhash_process(struct task_struct *p)
64 nr_threads--;
65 detach_pid(p, PIDTYPE_PID);
66 if (thread_group_leader(p)) {
67 detach_pid(p, PIDTYPE_PGID);
68 detach_pid(p, PIDTYPE_SID);
70 list_del_rcu(&p->tasks);
71 __get_cpu_var(process_counts)--;
73 list_del_rcu(&p->thread_group);
74 list_del_init(&p->sibling);
78 * This function expects the tasklist_lock write-locked.
80 static void __exit_signal(struct task_struct *tsk)
82 struct signal_struct *sig = tsk->signal;
83 struct sighand_struct *sighand;
85 BUG_ON(!sig);
86 BUG_ON(!atomic_read(&sig->count));
88 sighand = rcu_dereference(tsk->sighand);
89 spin_lock(&sighand->siglock);
91 posix_cpu_timers_exit(tsk);
92 if (atomic_dec_and_test(&sig->count))
93 posix_cpu_timers_exit_group(tsk);
94 else {
96 * If there is any task waiting for the group exit
97 * then notify it:
99 if (sig->group_exit_task && atomic_read(&sig->count) == sig->notify_count)
100 wake_up_process(sig->group_exit_task);
102 if (tsk == sig->curr_target)
103 sig->curr_target = next_thread(tsk);
105 * Accumulate here the counters for all threads but the
106 * group leader as they die, so they can be added into
107 * the process-wide totals when those are taken.
108 * The group leader stays around as a zombie as long
109 * as there are other threads. When it gets reaped,
110 * the exit.c code will add its counts into these totals.
111 * We won't ever get here for the group leader, since it
112 * will have been the last reference on the signal_struct.
114 sig->utime = cputime_add(sig->utime, tsk->utime);
115 sig->stime = cputime_add(sig->stime, tsk->stime);
116 sig->gtime = cputime_add(sig->gtime, tsk->gtime);
117 sig->min_flt += tsk->min_flt;
118 sig->maj_flt += tsk->maj_flt;
119 sig->nvcsw += tsk->nvcsw;
120 sig->nivcsw += tsk->nivcsw;
121 sig->inblock += task_io_get_inblock(tsk);
122 sig->oublock += task_io_get_oublock(tsk);
123 sig->sum_sched_runtime += tsk->se.sum_exec_runtime;
124 sig = NULL; /* Marker for below. */
127 __unhash_process(tsk);
130 * Do this under ->siglock, we can race with another thread
131 * doing sigqueue_free() if we have SIGQUEUE_PREALLOC signals.
133 flush_sigqueue(&tsk->pending);
135 tsk->signal = NULL;
136 tsk->sighand = NULL;
137 spin_unlock(&sighand->siglock);
139 __cleanup_sighand(sighand);
140 clear_tsk_thread_flag(tsk,TIF_SIGPENDING);
141 if (sig) {
142 flush_sigqueue(&sig->shared_pending);
143 taskstats_tgid_free(sig);
144 __cleanup_signal(sig);
148 static void delayed_put_task_struct(struct rcu_head *rhp)
150 put_task_struct(container_of(rhp, struct task_struct, rcu));
154 * Do final ptrace-related cleanup of a zombie being reaped.
156 * Called with write_lock(&tasklist_lock) held.
158 static void ptrace_release_task(struct task_struct *p)
160 BUG_ON(!list_empty(&p->ptraced));
161 ptrace_unlink(p);
162 BUG_ON(!list_empty(&p->ptrace_entry));
165 void release_task(struct task_struct * p)
167 struct task_struct *leader;
168 int zap_leader;
169 repeat:
170 atomic_dec(&p->user->processes);
171 proc_flush_task(p);
172 write_lock_irq(&tasklist_lock);
173 ptrace_release_task(p);
174 __exit_signal(p);
177 * If we are the last non-leader member of the thread
178 * group, and the leader is zombie, then notify the
179 * group leader's parent process. (if it wants notification.)
181 zap_leader = 0;
182 leader = p->group_leader;
183 if (leader != p && thread_group_empty(leader) && leader->exit_state == EXIT_ZOMBIE) {
184 BUG_ON(task_detached(leader));
185 do_notify_parent(leader, leader->exit_signal);
187 * If we were the last child thread and the leader has
188 * exited already, and the leader's parent ignores SIGCHLD,
189 * then we are the one who should release the leader.
191 * do_notify_parent() will have marked it self-reaping in
192 * that case.
194 zap_leader = task_detached(leader);
197 write_unlock_irq(&tasklist_lock);
198 release_thread(p);
199 call_rcu(&p->rcu, delayed_put_task_struct);
201 p = leader;
202 if (unlikely(zap_leader))
203 goto repeat;
207 * This checks not only the pgrp, but falls back on the pid if no
208 * satisfactory pgrp is found. I dunno - gdb doesn't work correctly
209 * without this...
211 * The caller must hold rcu lock or the tasklist lock.
213 struct pid *session_of_pgrp(struct pid *pgrp)
215 struct task_struct *p;
216 struct pid *sid = NULL;
218 p = pid_task(pgrp, PIDTYPE_PGID);
219 if (p == NULL)
220 p = pid_task(pgrp, PIDTYPE_PID);
221 if (p != NULL)
222 sid = task_session(p);
224 return sid;
228 * Determine if a process group is "orphaned", according to the POSIX
229 * definition in 2.2.2.52. Orphaned process groups are not to be affected
230 * by terminal-generated stop signals. Newly orphaned process groups are
231 * to receive a SIGHUP and a SIGCONT.
233 * "I ask you, have you ever known what it is to be an orphan?"
235 static int will_become_orphaned_pgrp(struct pid *pgrp, struct task_struct *ignored_task)
237 struct task_struct *p;
239 do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
240 if ((p == ignored_task) ||
241 (p->exit_state && thread_group_empty(p)) ||
242 is_global_init(p->real_parent))
243 continue;
245 if (task_pgrp(p->real_parent) != pgrp &&
246 task_session(p->real_parent) == task_session(p))
247 return 0;
248 } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
250 return 1;
253 int is_current_pgrp_orphaned(void)
255 int retval;
257 read_lock(&tasklist_lock);
258 retval = will_become_orphaned_pgrp(task_pgrp(current), NULL);
259 read_unlock(&tasklist_lock);
261 return retval;
264 static int has_stopped_jobs(struct pid *pgrp)
266 int retval = 0;
267 struct task_struct *p;
269 do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
270 if (!task_is_stopped(p))
271 continue;
272 retval = 1;
273 break;
274 } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
275 return retval;
279 * Check to see if any process groups have become orphaned as
280 * a result of our exiting, and if they have any stopped jobs,
281 * send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
283 static void
284 kill_orphaned_pgrp(struct task_struct *tsk, struct task_struct *parent)
286 struct pid *pgrp = task_pgrp(tsk);
287 struct task_struct *ignored_task = tsk;
289 if (!parent)
290 /* exit: our father is in a different pgrp than
291 * we are and we were the only connection outside.
293 parent = tsk->real_parent;
294 else
295 /* reparent: our child is in a different pgrp than
296 * we are, and it was the only connection outside.
298 ignored_task = NULL;
300 if (task_pgrp(parent) != pgrp &&
301 task_session(parent) == task_session(tsk) &&
302 will_become_orphaned_pgrp(pgrp, ignored_task) &&
303 has_stopped_jobs(pgrp)) {
304 __kill_pgrp_info(SIGHUP, SEND_SIG_PRIV, pgrp);
305 __kill_pgrp_info(SIGCONT, SEND_SIG_PRIV, pgrp);
310 * reparent_to_kthreadd - Reparent the calling kernel thread to kthreadd
312 * If a kernel thread is launched as a result of a system call, or if
313 * it ever exits, it should generally reparent itself to kthreadd so it
314 * isn't in the way of other processes and is correctly cleaned up on exit.
316 * The various task state such as scheduling policy and priority may have
317 * been inherited from a user process, so we reset them to sane values here.
319 * NOTE that reparent_to_kthreadd() gives the caller full capabilities.
321 static void reparent_to_kthreadd(void)
323 write_lock_irq(&tasklist_lock);
325 ptrace_unlink(current);
326 /* Reparent to init */
327 current->real_parent = current->parent = kthreadd_task;
328 list_move_tail(&current->sibling, &current->real_parent->children);
330 /* Set the exit signal to SIGCHLD so we signal init on exit */
331 current->exit_signal = SIGCHLD;
333 if (task_nice(current) < 0)
334 set_user_nice(current, 0);
335 /* cpus_allowed? */
336 /* rt_priority? */
337 /* signals? */
338 security_task_reparent_to_init(current);
339 memcpy(current->signal->rlim, init_task.signal->rlim,
340 sizeof(current->signal->rlim));
341 atomic_inc(&(INIT_USER->__count));
342 write_unlock_irq(&tasklist_lock);
343 switch_uid(INIT_USER);
346 void __set_special_pids(struct pid *pid)
348 struct task_struct *curr = current->group_leader;
349 pid_t nr = pid_nr(pid);
351 if (task_session(curr) != pid) {
352 change_pid(curr, PIDTYPE_SID, pid);
353 set_task_session(curr, nr);
355 if (task_pgrp(curr) != pid) {
356 change_pid(curr, PIDTYPE_PGID, pid);
357 set_task_pgrp(curr, nr);
361 static void set_special_pids(struct pid *pid)
363 write_lock_irq(&tasklist_lock);
364 __set_special_pids(pid);
365 write_unlock_irq(&tasklist_lock);
369 * Let kernel threads use this to say that they
370 * allow a certain signal (since daemonize() will
371 * have disabled all of them by default).
373 int allow_signal(int sig)
375 if (!valid_signal(sig) || sig < 1)
376 return -EINVAL;
378 spin_lock_irq(&current->sighand->siglock);
379 sigdelset(&current->blocked, sig);
380 if (!current->mm) {
381 /* Kernel threads handle their own signals.
382 Let the signal code know it'll be handled, so
383 that they don't get converted to SIGKILL or
384 just silently dropped */
385 current->sighand->action[(sig)-1].sa.sa_handler = (void __user *)2;
387 recalc_sigpending();
388 spin_unlock_irq(&current->sighand->siglock);
389 return 0;
392 EXPORT_SYMBOL(allow_signal);
394 int disallow_signal(int sig)
396 if (!valid_signal(sig) || sig < 1)
397 return -EINVAL;
399 spin_lock_irq(&current->sighand->siglock);
400 current->sighand->action[(sig)-1].sa.sa_handler = SIG_IGN;
401 recalc_sigpending();
402 spin_unlock_irq(&current->sighand->siglock);
403 return 0;
406 EXPORT_SYMBOL(disallow_signal);
409 * Put all the gunge required to become a kernel thread without
410 * attached user resources in one place where it belongs.
413 void daemonize(const char *name, ...)
415 va_list args;
416 struct fs_struct *fs;
417 sigset_t blocked;
419 va_start(args, name);
420 vsnprintf(current->comm, sizeof(current->comm), name, args);
421 va_end(args);
424 * If we were started as result of loading a module, close all of the
425 * user space pages. We don't need them, and if we didn't close them
426 * they would be locked into memory.
428 exit_mm(current);
430 * We don't want to have TIF_FREEZE set if the system-wide hibernation
431 * or suspend transition begins right now.
433 current->flags |= (PF_NOFREEZE | PF_KTHREAD);
435 if (current->nsproxy != &init_nsproxy) {
436 get_nsproxy(&init_nsproxy);
437 switch_task_namespaces(current, &init_nsproxy);
439 set_special_pids(&init_struct_pid);
440 proc_clear_tty(current);
442 /* Block and flush all signals */
443 sigfillset(&blocked);
444 sigprocmask(SIG_BLOCK, &blocked, NULL);
445 flush_signals(current);
447 /* Become as one with the init task */
449 exit_fs(current); /* current->fs->count--; */
450 fs = init_task.fs;
451 current->fs = fs;
452 atomic_inc(&fs->count);
454 exit_files(current);
455 current->files = init_task.files;
456 atomic_inc(&current->files->count);
458 reparent_to_kthreadd();
461 EXPORT_SYMBOL(daemonize);
463 static void close_files(struct files_struct * files)
465 int i, j;
466 struct fdtable *fdt;
468 j = 0;
471 * It is safe to dereference the fd table without RCU or
472 * ->file_lock because this is the last reference to the
473 * files structure.
475 fdt = files_fdtable(files);
476 for (;;) {
477 unsigned long set;
478 i = j * __NFDBITS;
479 if (i >= fdt->max_fds)
480 break;
481 set = fdt->open_fds->fds_bits[j++];
482 while (set) {
483 if (set & 1) {
484 struct file * file = xchg(&fdt->fd[i], NULL);
485 if (file) {
486 filp_close(file, files);
487 cond_resched();
490 i++;
491 set >>= 1;
496 struct files_struct *get_files_struct(struct task_struct *task)
498 struct files_struct *files;
500 task_lock(task);
501 files = task->files;
502 if (files)
503 atomic_inc(&files->count);
504 task_unlock(task);
506 return files;
509 void put_files_struct(struct files_struct *files)
511 struct fdtable *fdt;
513 if (atomic_dec_and_test(&files->count)) {
514 close_files(files);
516 * Free the fd and fdset arrays if we expanded them.
517 * If the fdtable was embedded, pass files for freeing
518 * at the end of the RCU grace period. Otherwise,
519 * you can free files immediately.
521 fdt = files_fdtable(files);
522 if (fdt != &files->fdtab)
523 kmem_cache_free(files_cachep, files);
524 free_fdtable(fdt);
528 void reset_files_struct(struct files_struct *files)
530 struct task_struct *tsk = current;
531 struct files_struct *old;
533 old = tsk->files;
534 task_lock(tsk);
535 tsk->files = files;
536 task_unlock(tsk);
537 put_files_struct(old);
540 void exit_files(struct task_struct *tsk)
542 struct files_struct * files = tsk->files;
544 if (files) {
545 task_lock(tsk);
546 tsk->files = NULL;
547 task_unlock(tsk);
548 put_files_struct(files);
552 void put_fs_struct(struct fs_struct *fs)
554 /* No need to hold fs->lock if we are killing it */
555 if (atomic_dec_and_test(&fs->count)) {
556 path_put(&fs->root);
557 path_put(&fs->pwd);
558 if (fs->altroot.dentry)
559 path_put(&fs->altroot);
560 kmem_cache_free(fs_cachep, fs);
564 void exit_fs(struct task_struct *tsk)
566 struct fs_struct * fs = tsk->fs;
568 if (fs) {
569 task_lock(tsk);
570 tsk->fs = NULL;
571 task_unlock(tsk);
572 put_fs_struct(fs);
576 EXPORT_SYMBOL_GPL(exit_fs);
578 #ifdef CONFIG_MM_OWNER
580 * Task p is exiting and it owned mm, lets find a new owner for it
582 static inline int
583 mm_need_new_owner(struct mm_struct *mm, struct task_struct *p)
586 * If there are other users of the mm and the owner (us) is exiting
587 * we need to find a new owner to take on the responsibility.
589 if (!mm)
590 return 0;
591 if (atomic_read(&mm->mm_users) <= 1)
592 return 0;
593 if (mm->owner != p)
594 return 0;
595 return 1;
598 void mm_update_next_owner(struct mm_struct *mm)
600 struct task_struct *c, *g, *p = current;
602 retry:
603 if (!mm_need_new_owner(mm, p))
604 return;
606 read_lock(&tasklist_lock);
608 * Search in the children
610 list_for_each_entry(c, &p->children, sibling) {
611 if (c->mm == mm)
612 goto assign_new_owner;
616 * Search in the siblings
618 list_for_each_entry(c, &p->parent->children, sibling) {
619 if (c->mm == mm)
620 goto assign_new_owner;
624 * Search through everything else. We should not get
625 * here often
627 do_each_thread(g, c) {
628 if (c->mm == mm)
629 goto assign_new_owner;
630 } while_each_thread(g, c);
632 read_unlock(&tasklist_lock);
633 return;
635 assign_new_owner:
636 BUG_ON(c == p);
637 get_task_struct(c);
639 * The task_lock protects c->mm from changing.
640 * We always want mm->owner->mm == mm
642 task_lock(c);
644 * Delay read_unlock() till we have the task_lock()
645 * to ensure that c does not slip away underneath us
647 read_unlock(&tasklist_lock);
648 if (c->mm != mm) {
649 task_unlock(c);
650 put_task_struct(c);
651 goto retry;
653 cgroup_mm_owner_callbacks(mm->owner, c);
654 mm->owner = c;
655 task_unlock(c);
656 put_task_struct(c);
658 #endif /* CONFIG_MM_OWNER */
661 * Turn us into a lazy TLB process if we
662 * aren't already..
664 static void exit_mm(struct task_struct * tsk)
666 struct mm_struct *mm = tsk->mm;
668 mm_release(tsk, mm);
669 if (!mm)
670 return;
672 * Serialize with any possible pending coredump.
673 * We must hold mmap_sem around checking core_state
674 * and clearing tsk->mm. The core-inducing thread
675 * will increment ->nr_threads for each thread in the
676 * group with ->mm != NULL.
678 down_read(&mm->mmap_sem);
679 if (mm->core_state) {
680 up_read(&mm->mmap_sem);
682 if (atomic_dec_and_test(&mm->core_state->nr_threads))
683 complete(&mm->core_state->startup);
685 wait_for_completion(&mm->core_done);
686 down_read(&mm->mmap_sem);
688 atomic_inc(&mm->mm_count);
689 BUG_ON(mm != tsk->active_mm);
690 /* more a memory barrier than a real lock */
691 task_lock(tsk);
692 tsk->mm = NULL;
693 up_read(&mm->mmap_sem);
694 enter_lazy_tlb(mm, current);
695 /* We don't want this task to be frozen prematurely */
696 clear_freeze_flag(tsk);
697 task_unlock(tsk);
698 mm_update_next_owner(mm);
699 mmput(mm);
703 * Return nonzero if @parent's children should reap themselves.
705 * Called with write_lock_irq(&tasklist_lock) held.
707 static int ignoring_children(struct task_struct *parent)
709 int ret;
710 struct sighand_struct *psig = parent->sighand;
711 unsigned long flags;
712 spin_lock_irqsave(&psig->siglock, flags);
713 ret = (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN ||
714 (psig->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDWAIT));
715 spin_unlock_irqrestore(&psig->siglock, flags);
716 return ret;
720 * Detach all tasks we were using ptrace on.
721 * Any that need to be release_task'd are put on the @dead list.
723 * Called with write_lock(&tasklist_lock) held.
725 static void ptrace_exit(struct task_struct *parent, struct list_head *dead)
727 struct task_struct *p, *n;
728 int ign = -1;
730 list_for_each_entry_safe(p, n, &parent->ptraced, ptrace_entry) {
731 __ptrace_unlink(p);
733 if (p->exit_state != EXIT_ZOMBIE)
734 continue;
737 * If it's a zombie, our attachedness prevented normal
738 * parent notification or self-reaping. Do notification
739 * now if it would have happened earlier. If it should
740 * reap itself, add it to the @dead list. We can't call
741 * release_task() here because we already hold tasklist_lock.
743 * If it's our own child, there is no notification to do.
744 * But if our normal children self-reap, then this child
745 * was prevented by ptrace and we must reap it now.
747 if (!task_detached(p) && thread_group_empty(p)) {
748 if (!same_thread_group(p->real_parent, parent))
749 do_notify_parent(p, p->exit_signal);
750 else {
751 if (ign < 0)
752 ign = ignoring_children(parent);
753 if (ign)
754 p->exit_signal = -1;
758 if (task_detached(p)) {
760 * Mark it as in the process of being reaped.
762 p->exit_state = EXIT_DEAD;
763 list_add(&p->ptrace_entry, dead);
769 * Finish up exit-time ptrace cleanup.
771 * Called without locks.
773 static void ptrace_exit_finish(struct task_struct *parent,
774 struct list_head *dead)
776 struct task_struct *p, *n;
778 BUG_ON(!list_empty(&parent->ptraced));
780 list_for_each_entry_safe(p, n, dead, ptrace_entry) {
781 list_del_init(&p->ptrace_entry);
782 release_task(p);
786 static void reparent_thread(struct task_struct *p, struct task_struct *father)
788 if (p->pdeath_signal)
789 /* We already hold the tasklist_lock here. */
790 group_send_sig_info(p->pdeath_signal, SEND_SIG_NOINFO, p);
792 list_move_tail(&p->sibling, &p->real_parent->children);
794 /* If this is a threaded reparent there is no need to
795 * notify anyone anything has happened.
797 if (same_thread_group(p->real_parent, father))
798 return;
800 /* We don't want people slaying init. */
801 if (!task_detached(p))
802 p->exit_signal = SIGCHLD;
804 /* If we'd notified the old parent about this child's death,
805 * also notify the new parent.
807 if (!ptrace_reparented(p) &&
808 p->exit_state == EXIT_ZOMBIE &&
809 !task_detached(p) && thread_group_empty(p))
810 do_notify_parent(p, p->exit_signal);
812 kill_orphaned_pgrp(p, father);
816 * When we die, we re-parent all our children.
817 * Try to give them to another thread in our thread
818 * group, and if no such member exists, give it to
819 * the child reaper process (ie "init") in our pid
820 * space.
822 static void forget_original_parent(struct task_struct *father)
824 struct task_struct *p, *n, *reaper = father;
825 LIST_HEAD(ptrace_dead);
827 write_lock_irq(&tasklist_lock);
830 * First clean up ptrace if we were using it.
832 ptrace_exit(father, &ptrace_dead);
834 do {
835 reaper = next_thread(reaper);
836 if (reaper == father) {
837 reaper = task_child_reaper(father);
838 break;
840 } while (reaper->flags & PF_EXITING);
842 list_for_each_entry_safe(p, n, &father->children, sibling) {
843 p->real_parent = reaper;
844 if (p->parent == father) {
845 BUG_ON(p->ptrace);
846 p->parent = p->real_parent;
848 reparent_thread(p, father);
851 write_unlock_irq(&tasklist_lock);
852 BUG_ON(!list_empty(&father->children));
854 ptrace_exit_finish(father, &ptrace_dead);
858 * Send signals to all our closest relatives so that they know
859 * to properly mourn us..
861 static void exit_notify(struct task_struct *tsk, int group_dead)
863 int state;
866 * This does two things:
868 * A. Make init inherit all the child processes
869 * B. Check to see if any process groups have become orphaned
870 * as a result of our exiting, and if they have any stopped
871 * jobs, send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
873 forget_original_parent(tsk);
874 exit_task_namespaces(tsk);
876 write_lock_irq(&tasklist_lock);
877 if (group_dead)
878 kill_orphaned_pgrp(tsk->group_leader, NULL);
880 /* Let father know we died
882 * Thread signals are configurable, but you aren't going to use
883 * that to send signals to arbitary processes.
884 * That stops right now.
886 * If the parent exec id doesn't match the exec id we saved
887 * when we started then we know the parent has changed security
888 * domain.
890 * If our self_exec id doesn't match our parent_exec_id then
891 * we have changed execution domain as these two values started
892 * the same after a fork.
894 if (tsk->exit_signal != SIGCHLD && !task_detached(tsk) &&
895 (tsk->parent_exec_id != tsk->real_parent->self_exec_id ||
896 tsk->self_exec_id != tsk->parent_exec_id) &&
897 !capable(CAP_KILL))
898 tsk->exit_signal = SIGCHLD;
900 /* If something other than our normal parent is ptracing us, then
901 * send it a SIGCHLD instead of honoring exit_signal. exit_signal
902 * only has special meaning to our real parent.
904 if (!task_detached(tsk) && thread_group_empty(tsk)) {
905 int signal = ptrace_reparented(tsk) ?
906 SIGCHLD : tsk->exit_signal;
907 do_notify_parent(tsk, signal);
908 } else if (tsk->ptrace) {
909 do_notify_parent(tsk, SIGCHLD);
912 state = EXIT_ZOMBIE;
913 if (task_detached(tsk) && likely(!tsk->ptrace))
914 state = EXIT_DEAD;
915 tsk->exit_state = state;
917 /* mt-exec, de_thread() is waiting for us */
918 if (thread_group_leader(tsk) &&
919 tsk->signal->notify_count < 0 &&
920 tsk->signal->group_exit_task)
921 wake_up_process(tsk->signal->group_exit_task);
923 write_unlock_irq(&tasklist_lock);
925 /* If the process is dead, release it - nobody will wait for it */
926 if (state == EXIT_DEAD)
927 release_task(tsk);
930 #ifdef CONFIG_DEBUG_STACK_USAGE
931 static void check_stack_usage(void)
933 static DEFINE_SPINLOCK(low_water_lock);
934 static int lowest_to_date = THREAD_SIZE;
935 unsigned long *n = end_of_stack(current);
936 unsigned long free;
938 while (*n == 0)
939 n++;
940 free = (unsigned long)n - (unsigned long)end_of_stack(current);
942 if (free >= lowest_to_date)
943 return;
945 spin_lock(&low_water_lock);
946 if (free < lowest_to_date) {
947 printk(KERN_WARNING "%s used greatest stack depth: %lu bytes "
948 "left\n",
949 current->comm, free);
950 lowest_to_date = free;
952 spin_unlock(&low_water_lock);
954 #else
955 static inline void check_stack_usage(void) {}
956 #endif
958 static inline void exit_child_reaper(struct task_struct *tsk)
960 if (likely(tsk->group_leader != task_child_reaper(tsk)))
961 return;
963 if (tsk->nsproxy->pid_ns == &init_pid_ns)
964 panic("Attempted to kill init!");
967 * @tsk is the last thread in the 'cgroup-init' and is exiting.
968 * Terminate all remaining processes in the namespace and reap them
969 * before exiting @tsk.
971 * Note that @tsk (last thread of cgroup-init) may not necessarily
972 * be the child-reaper (i.e main thread of cgroup-init) of the
973 * namespace i.e the child_reaper may have already exited.
975 * Even after a child_reaper exits, we let it inherit orphaned children,
976 * because, pid_ns->child_reaper remains valid as long as there is
977 * at least one living sub-thread in the cgroup init.
979 * This living sub-thread of the cgroup-init will be notified when
980 * a child inherited by the 'child-reaper' exits (do_notify_parent()
981 * uses __group_send_sig_info()). Further, when reaping child processes,
982 * do_wait() iterates over children of all living sub threads.
984 * i.e even though 'child_reaper' thread is listed as the parent of the
985 * orphaned children, any living sub-thread in the cgroup-init can
986 * perform the role of the child_reaper.
988 zap_pid_ns_processes(tsk->nsproxy->pid_ns);
991 NORET_TYPE void do_exit(long code)
993 struct task_struct *tsk = current;
994 int group_dead;
996 profile_task_exit(tsk);
998 WARN_ON(atomic_read(&tsk->fs_excl));
1000 if (unlikely(in_interrupt()))
1001 panic("Aiee, killing interrupt handler!");
1002 if (unlikely(!tsk->pid))
1003 panic("Attempted to kill the idle task!");
1005 if (unlikely(current->ptrace & PT_TRACE_EXIT)) {
1006 current->ptrace_message = code;
1007 ptrace_notify((PTRACE_EVENT_EXIT << 8) | SIGTRAP);
1011 * We're taking recursive faults here in do_exit. Safest is to just
1012 * leave this task alone and wait for reboot.
1014 if (unlikely(tsk->flags & PF_EXITING)) {
1015 printk(KERN_ALERT
1016 "Fixing recursive fault but reboot is needed!\n");
1018 * We can do this unlocked here. The futex code uses
1019 * this flag just to verify whether the pi state
1020 * cleanup has been done or not. In the worst case it
1021 * loops once more. We pretend that the cleanup was
1022 * done as there is no way to return. Either the
1023 * OWNER_DIED bit is set by now or we push the blocked
1024 * task into the wait for ever nirwana as well.
1026 tsk->flags |= PF_EXITPIDONE;
1027 if (tsk->io_context)
1028 exit_io_context();
1029 set_current_state(TASK_UNINTERRUPTIBLE);
1030 schedule();
1033 exit_signals(tsk); /* sets PF_EXITING */
1035 * tsk->flags are checked in the futex code to protect against
1036 * an exiting task cleaning up the robust pi futexes.
1038 smp_mb();
1039 spin_unlock_wait(&tsk->pi_lock);
1041 if (unlikely(in_atomic()))
1042 printk(KERN_INFO "note: %s[%d] exited with preempt_count %d\n",
1043 current->comm, task_pid_nr(current),
1044 preempt_count());
1046 acct_update_integrals(tsk);
1047 if (tsk->mm) {
1048 update_hiwater_rss(tsk->mm);
1049 update_hiwater_vm(tsk->mm);
1051 group_dead = atomic_dec_and_test(&tsk->signal->live);
1052 if (group_dead) {
1053 exit_child_reaper(tsk);
1054 hrtimer_cancel(&tsk->signal->real_timer);
1055 exit_itimers(tsk->signal);
1057 acct_collect(code, group_dead);
1058 #ifdef CONFIG_FUTEX
1059 if (unlikely(tsk->robust_list))
1060 exit_robust_list(tsk);
1061 #ifdef CONFIG_COMPAT
1062 if (unlikely(tsk->compat_robust_list))
1063 compat_exit_robust_list(tsk);
1064 #endif
1065 #endif
1066 if (group_dead)
1067 tty_audit_exit();
1068 if (unlikely(tsk->audit_context))
1069 audit_free(tsk);
1071 tsk->exit_code = code;
1072 taskstats_exit(tsk, group_dead);
1074 exit_mm(tsk);
1076 if (group_dead)
1077 acct_process();
1078 exit_sem(tsk);
1079 exit_files(tsk);
1080 exit_fs(tsk);
1081 check_stack_usage();
1082 exit_thread();
1083 cgroup_exit(tsk, 1);
1084 exit_keys(tsk);
1086 if (group_dead && tsk->signal->leader)
1087 disassociate_ctty(1);
1089 module_put(task_thread_info(tsk)->exec_domain->module);
1090 if (tsk->binfmt)
1091 module_put(tsk->binfmt->module);
1093 proc_exit_connector(tsk);
1094 exit_notify(tsk, group_dead);
1095 #ifdef CONFIG_NUMA
1096 mpol_put(tsk->mempolicy);
1097 tsk->mempolicy = NULL;
1098 #endif
1099 #ifdef CONFIG_FUTEX
1101 * This must happen late, after the PID is not
1102 * hashed anymore:
1104 if (unlikely(!list_empty(&tsk->pi_state_list)))
1105 exit_pi_state_list(tsk);
1106 if (unlikely(current->pi_state_cache))
1107 kfree(current->pi_state_cache);
1108 #endif
1110 * Make sure we are holding no locks:
1112 debug_check_no_locks_held(tsk);
1114 * We can do this unlocked here. The futex code uses this flag
1115 * just to verify whether the pi state cleanup has been done
1116 * or not. In the worst case it loops once more.
1118 tsk->flags |= PF_EXITPIDONE;
1120 if (tsk->io_context)
1121 exit_io_context();
1123 if (tsk->splice_pipe)
1124 __free_pipe_info(tsk->splice_pipe);
1126 preempt_disable();
1127 /* causes final put_task_struct in finish_task_switch(). */
1128 tsk->state = TASK_DEAD;
1130 schedule();
1131 BUG();
1132 /* Avoid "noreturn function does return". */
1133 for (;;)
1134 cpu_relax(); /* For when BUG is null */
1137 EXPORT_SYMBOL_GPL(do_exit);
1139 NORET_TYPE void complete_and_exit(struct completion *comp, long code)
1141 if (comp)
1142 complete(comp);
1144 do_exit(code);
1147 EXPORT_SYMBOL(complete_and_exit);
1149 asmlinkage long sys_exit(int error_code)
1151 do_exit((error_code&0xff)<<8);
1155 * Take down every thread in the group. This is called by fatal signals
1156 * as well as by sys_exit_group (below).
1158 NORET_TYPE void
1159 do_group_exit(int exit_code)
1161 struct signal_struct *sig = current->signal;
1163 BUG_ON(exit_code & 0x80); /* core dumps don't get here */
1165 if (signal_group_exit(sig))
1166 exit_code = sig->group_exit_code;
1167 else if (!thread_group_empty(current)) {
1168 struct sighand_struct *const sighand = current->sighand;
1169 spin_lock_irq(&sighand->siglock);
1170 if (signal_group_exit(sig))
1171 /* Another thread got here before we took the lock. */
1172 exit_code = sig->group_exit_code;
1173 else {
1174 sig->group_exit_code = exit_code;
1175 sig->flags = SIGNAL_GROUP_EXIT;
1176 zap_other_threads(current);
1178 spin_unlock_irq(&sighand->siglock);
1181 do_exit(exit_code);
1182 /* NOTREACHED */
1186 * this kills every thread in the thread group. Note that any externally
1187 * wait4()-ing process will get the correct exit code - even if this
1188 * thread is not the thread group leader.
1190 asmlinkage void sys_exit_group(int error_code)
1192 do_group_exit((error_code & 0xff) << 8);
1195 static struct pid *task_pid_type(struct task_struct *task, enum pid_type type)
1197 struct pid *pid = NULL;
1198 if (type == PIDTYPE_PID)
1199 pid = task->pids[type].pid;
1200 else if (type < PIDTYPE_MAX)
1201 pid = task->group_leader->pids[type].pid;
1202 return pid;
1205 static int eligible_child(enum pid_type type, struct pid *pid, int options,
1206 struct task_struct *p)
1208 int err;
1210 if (type < PIDTYPE_MAX) {
1211 if (task_pid_type(p, type) != pid)
1212 return 0;
1215 /* Wait for all children (clone and not) if __WALL is set;
1216 * otherwise, wait for clone children *only* if __WCLONE is
1217 * set; otherwise, wait for non-clone children *only*. (Note:
1218 * A "clone" child here is one that reports to its parent
1219 * using a signal other than SIGCHLD.) */
1220 if (((p->exit_signal != SIGCHLD) ^ ((options & __WCLONE) != 0))
1221 && !(options & __WALL))
1222 return 0;
1224 err = security_task_wait(p);
1225 if (err)
1226 return err;
1228 return 1;
1231 static int wait_noreap_copyout(struct task_struct *p, pid_t pid, uid_t uid,
1232 int why, int status,
1233 struct siginfo __user *infop,
1234 struct rusage __user *rusagep)
1236 int retval = rusagep ? getrusage(p, RUSAGE_BOTH, rusagep) : 0;
1238 put_task_struct(p);
1239 if (!retval)
1240 retval = put_user(SIGCHLD, &infop->si_signo);
1241 if (!retval)
1242 retval = put_user(0, &infop->si_errno);
1243 if (!retval)
1244 retval = put_user((short)why, &infop->si_code);
1245 if (!retval)
1246 retval = put_user(pid, &infop->si_pid);
1247 if (!retval)
1248 retval = put_user(uid, &infop->si_uid);
1249 if (!retval)
1250 retval = put_user(status, &infop->si_status);
1251 if (!retval)
1252 retval = pid;
1253 return retval;
1257 * Handle sys_wait4 work for one task in state EXIT_ZOMBIE. We hold
1258 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold
1259 * the lock and this task is uninteresting. If we return nonzero, we have
1260 * released the lock and the system call should return.
1262 static int wait_task_zombie(struct task_struct *p, int options,
1263 struct siginfo __user *infop,
1264 int __user *stat_addr, struct rusage __user *ru)
1266 unsigned long state;
1267 int retval, status, traced;
1268 pid_t pid = task_pid_vnr(p);
1270 if (!likely(options & WEXITED))
1271 return 0;
1273 if (unlikely(options & WNOWAIT)) {
1274 uid_t uid = p->uid;
1275 int exit_code = p->exit_code;
1276 int why, status;
1278 get_task_struct(p);
1279 read_unlock(&tasklist_lock);
1280 if ((exit_code & 0x7f) == 0) {
1281 why = CLD_EXITED;
1282 status = exit_code >> 8;
1283 } else {
1284 why = (exit_code & 0x80) ? CLD_DUMPED : CLD_KILLED;
1285 status = exit_code & 0x7f;
1287 return wait_noreap_copyout(p, pid, uid, why,
1288 status, infop, ru);
1292 * Try to move the task's state to DEAD
1293 * only one thread is allowed to do this:
1295 state = xchg(&p->exit_state, EXIT_DEAD);
1296 if (state != EXIT_ZOMBIE) {
1297 BUG_ON(state != EXIT_DEAD);
1298 return 0;
1301 traced = ptrace_reparented(p);
1303 if (likely(!traced)) {
1304 struct signal_struct *psig;
1305 struct signal_struct *sig;
1308 * The resource counters for the group leader are in its
1309 * own task_struct. Those for dead threads in the group
1310 * are in its signal_struct, as are those for the child
1311 * processes it has previously reaped. All these
1312 * accumulate in the parent's signal_struct c* fields.
1314 * We don't bother to take a lock here to protect these
1315 * p->signal fields, because they are only touched by
1316 * __exit_signal, which runs with tasklist_lock
1317 * write-locked anyway, and so is excluded here. We do
1318 * need to protect the access to p->parent->signal fields,
1319 * as other threads in the parent group can be right
1320 * here reaping other children at the same time.
1322 spin_lock_irq(&p->parent->sighand->siglock);
1323 psig = p->parent->signal;
1324 sig = p->signal;
1325 psig->cutime =
1326 cputime_add(psig->cutime,
1327 cputime_add(p->utime,
1328 cputime_add(sig->utime,
1329 sig->cutime)));
1330 psig->cstime =
1331 cputime_add(psig->cstime,
1332 cputime_add(p->stime,
1333 cputime_add(sig->stime,
1334 sig->cstime)));
1335 psig->cgtime =
1336 cputime_add(psig->cgtime,
1337 cputime_add(p->gtime,
1338 cputime_add(sig->gtime,
1339 sig->cgtime)));
1340 psig->cmin_flt +=
1341 p->min_flt + sig->min_flt + sig->cmin_flt;
1342 psig->cmaj_flt +=
1343 p->maj_flt + sig->maj_flt + sig->cmaj_flt;
1344 psig->cnvcsw +=
1345 p->nvcsw + sig->nvcsw + sig->cnvcsw;
1346 psig->cnivcsw +=
1347 p->nivcsw + sig->nivcsw + sig->cnivcsw;
1348 psig->cinblock +=
1349 task_io_get_inblock(p) +
1350 sig->inblock + sig->cinblock;
1351 psig->coublock +=
1352 task_io_get_oublock(p) +
1353 sig->oublock + sig->coublock;
1354 spin_unlock_irq(&p->parent->sighand->siglock);
1358 * Now we are sure this task is interesting, and no other
1359 * thread can reap it because we set its state to EXIT_DEAD.
1361 read_unlock(&tasklist_lock);
1363 retval = ru ? getrusage(p, RUSAGE_BOTH, ru) : 0;
1364 status = (p->signal->flags & SIGNAL_GROUP_EXIT)
1365 ? p->signal->group_exit_code : p->exit_code;
1366 if (!retval && stat_addr)
1367 retval = put_user(status, stat_addr);
1368 if (!retval && infop)
1369 retval = put_user(SIGCHLD, &infop->si_signo);
1370 if (!retval && infop)
1371 retval = put_user(0, &infop->si_errno);
1372 if (!retval && infop) {
1373 int why;
1375 if ((status & 0x7f) == 0) {
1376 why = CLD_EXITED;
1377 status >>= 8;
1378 } else {
1379 why = (status & 0x80) ? CLD_DUMPED : CLD_KILLED;
1380 status &= 0x7f;
1382 retval = put_user((short)why, &infop->si_code);
1383 if (!retval)
1384 retval = put_user(status, &infop->si_status);
1386 if (!retval && infop)
1387 retval = put_user(pid, &infop->si_pid);
1388 if (!retval && infop)
1389 retval = put_user(p->uid, &infop->si_uid);
1390 if (!retval)
1391 retval = pid;
1393 if (traced) {
1394 write_lock_irq(&tasklist_lock);
1395 /* We dropped tasklist, ptracer could die and untrace */
1396 ptrace_unlink(p);
1398 * If this is not a detached task, notify the parent.
1399 * If it's still not detached after that, don't release
1400 * it now.
1402 if (!task_detached(p)) {
1403 do_notify_parent(p, p->exit_signal);
1404 if (!task_detached(p)) {
1405 p->exit_state = EXIT_ZOMBIE;
1406 p = NULL;
1409 write_unlock_irq(&tasklist_lock);
1411 if (p != NULL)
1412 release_task(p);
1414 return retval;
1418 * Handle sys_wait4 work for one task in state TASK_STOPPED. We hold
1419 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold
1420 * the lock and this task is uninteresting. If we return nonzero, we have
1421 * released the lock and the system call should return.
1423 static int wait_task_stopped(int ptrace, struct task_struct *p,
1424 int options, struct siginfo __user *infop,
1425 int __user *stat_addr, struct rusage __user *ru)
1427 int retval, exit_code, why;
1428 uid_t uid = 0; /* unneeded, required by compiler */
1429 pid_t pid;
1431 if (!(options & WUNTRACED))
1432 return 0;
1434 exit_code = 0;
1435 spin_lock_irq(&p->sighand->siglock);
1437 if (unlikely(!task_is_stopped_or_traced(p)))
1438 goto unlock_sig;
1440 if (!ptrace && p->signal->group_stop_count > 0)
1442 * A group stop is in progress and this is the group leader.
1443 * We won't report until all threads have stopped.
1445 goto unlock_sig;
1447 exit_code = p->exit_code;
1448 if (!exit_code)
1449 goto unlock_sig;
1451 if (!unlikely(options & WNOWAIT))
1452 p->exit_code = 0;
1454 uid = p->uid;
1455 unlock_sig:
1456 spin_unlock_irq(&p->sighand->siglock);
1457 if (!exit_code)
1458 return 0;
1461 * Now we are pretty sure this task is interesting.
1462 * Make sure it doesn't get reaped out from under us while we
1463 * give up the lock and then examine it below. We don't want to
1464 * keep holding onto the tasklist_lock while we call getrusage and
1465 * possibly take page faults for user memory.
1467 get_task_struct(p);
1468 pid = task_pid_vnr(p);
1469 why = ptrace ? CLD_TRAPPED : CLD_STOPPED;
1470 read_unlock(&tasklist_lock);
1472 if (unlikely(options & WNOWAIT))
1473 return wait_noreap_copyout(p, pid, uid,
1474 why, exit_code,
1475 infop, ru);
1477 retval = ru ? getrusage(p, RUSAGE_BOTH, ru) : 0;
1478 if (!retval && stat_addr)
1479 retval = put_user((exit_code << 8) | 0x7f, stat_addr);
1480 if (!retval && infop)
1481 retval = put_user(SIGCHLD, &infop->si_signo);
1482 if (!retval && infop)
1483 retval = put_user(0, &infop->si_errno);
1484 if (!retval && infop)
1485 retval = put_user((short)why, &infop->si_code);
1486 if (!retval && infop)
1487 retval = put_user(exit_code, &infop->si_status);
1488 if (!retval && infop)
1489 retval = put_user(pid, &infop->si_pid);
1490 if (!retval && infop)
1491 retval = put_user(uid, &infop->si_uid);
1492 if (!retval)
1493 retval = pid;
1494 put_task_struct(p);
1496 BUG_ON(!retval);
1497 return retval;
1501 * Handle do_wait work for one task in a live, non-stopped state.
1502 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold
1503 * the lock and this task is uninteresting. If we return nonzero, we have
1504 * released the lock and the system call should return.
1506 static int wait_task_continued(struct task_struct *p, int options,
1507 struct siginfo __user *infop,
1508 int __user *stat_addr, struct rusage __user *ru)
1510 int retval;
1511 pid_t pid;
1512 uid_t uid;
1514 if (!unlikely(options & WCONTINUED))
1515 return 0;
1517 if (!(p->signal->flags & SIGNAL_STOP_CONTINUED))
1518 return 0;
1520 spin_lock_irq(&p->sighand->siglock);
1521 /* Re-check with the lock held. */
1522 if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) {
1523 spin_unlock_irq(&p->sighand->siglock);
1524 return 0;
1526 if (!unlikely(options & WNOWAIT))
1527 p->signal->flags &= ~SIGNAL_STOP_CONTINUED;
1528 spin_unlock_irq(&p->sighand->siglock);
1530 pid = task_pid_vnr(p);
1531 uid = p->uid;
1532 get_task_struct(p);
1533 read_unlock(&tasklist_lock);
1535 if (!infop) {
1536 retval = ru ? getrusage(p, RUSAGE_BOTH, ru) : 0;
1537 put_task_struct(p);
1538 if (!retval && stat_addr)
1539 retval = put_user(0xffff, stat_addr);
1540 if (!retval)
1541 retval = pid;
1542 } else {
1543 retval = wait_noreap_copyout(p, pid, uid,
1544 CLD_CONTINUED, SIGCONT,
1545 infop, ru);
1546 BUG_ON(retval == 0);
1549 return retval;
1553 * Consider @p for a wait by @parent.
1555 * -ECHILD should be in *@notask_error before the first call.
1556 * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1557 * Returns zero if the search for a child should continue;
1558 * then *@notask_error is 0 if @p is an eligible child,
1559 * or another error from security_task_wait(), or still -ECHILD.
1561 static int wait_consider_task(struct task_struct *parent, int ptrace,
1562 struct task_struct *p, int *notask_error,
1563 enum pid_type type, struct pid *pid, int options,
1564 struct siginfo __user *infop,
1565 int __user *stat_addr, struct rusage __user *ru)
1567 int ret = eligible_child(type, pid, options, p);
1568 if (!ret)
1569 return ret;
1571 if (unlikely(ret < 0)) {
1573 * If we have not yet seen any eligible child,
1574 * then let this error code replace -ECHILD.
1575 * A permission error will give the user a clue
1576 * to look for security policy problems, rather
1577 * than for mysterious wait bugs.
1579 if (*notask_error)
1580 *notask_error = ret;
1583 if (likely(!ptrace) && unlikely(p->ptrace)) {
1585 * This child is hidden by ptrace.
1586 * We aren't allowed to see it now, but eventually we will.
1588 *notask_error = 0;
1589 return 0;
1592 if (p->exit_state == EXIT_DEAD)
1593 return 0;
1596 * We don't reap group leaders with subthreads.
1598 if (p->exit_state == EXIT_ZOMBIE && !delay_group_leader(p))
1599 return wait_task_zombie(p, options, infop, stat_addr, ru);
1602 * It's stopped or running now, so it might
1603 * later continue, exit, or stop again.
1605 *notask_error = 0;
1607 if (task_is_stopped_or_traced(p))
1608 return wait_task_stopped(ptrace, p, options,
1609 infop, stat_addr, ru);
1611 return wait_task_continued(p, options, infop, stat_addr, ru);
1615 * Do the work of do_wait() for one thread in the group, @tsk.
1617 * -ECHILD should be in *@notask_error before the first call.
1618 * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1619 * Returns zero if the search for a child should continue; then
1620 * *@notask_error is 0 if there were any eligible children,
1621 * or another error from security_task_wait(), or still -ECHILD.
1623 static int do_wait_thread(struct task_struct *tsk, int *notask_error,
1624 enum pid_type type, struct pid *pid, int options,
1625 struct siginfo __user *infop, int __user *stat_addr,
1626 struct rusage __user *ru)
1628 struct task_struct *p;
1630 list_for_each_entry(p, &tsk->children, sibling) {
1632 * Do not consider detached threads.
1634 if (!task_detached(p)) {
1635 int ret = wait_consider_task(tsk, 0, p, notask_error,
1636 type, pid, options,
1637 infop, stat_addr, ru);
1638 if (ret)
1639 return ret;
1643 return 0;
1646 static int ptrace_do_wait(struct task_struct *tsk, int *notask_error,
1647 enum pid_type type, struct pid *pid, int options,
1648 struct siginfo __user *infop, int __user *stat_addr,
1649 struct rusage __user *ru)
1651 struct task_struct *p;
1654 * Traditionally we see ptrace'd stopped tasks regardless of options.
1656 options |= WUNTRACED;
1658 list_for_each_entry(p, &tsk->ptraced, ptrace_entry) {
1659 int ret = wait_consider_task(tsk, 1, p, notask_error,
1660 type, pid, options,
1661 infop, stat_addr, ru);
1662 if (ret)
1663 return ret;
1666 return 0;
1669 static long do_wait(enum pid_type type, struct pid *pid, int options,
1670 struct siginfo __user *infop, int __user *stat_addr,
1671 struct rusage __user *ru)
1673 DECLARE_WAITQUEUE(wait, current);
1674 struct task_struct *tsk;
1675 int retval;
1677 add_wait_queue(&current->signal->wait_chldexit,&wait);
1678 repeat:
1680 * If there is nothing that can match our critiera just get out.
1681 * We will clear @retval to zero if we see any child that might later
1682 * match our criteria, even if we are not able to reap it yet.
1684 retval = -ECHILD;
1685 if ((type < PIDTYPE_MAX) && (!pid || hlist_empty(&pid->tasks[type])))
1686 goto end;
1688 current->state = TASK_INTERRUPTIBLE;
1689 read_lock(&tasklist_lock);
1690 tsk = current;
1691 do {
1692 int tsk_result = do_wait_thread(tsk, &retval,
1693 type, pid, options,
1694 infop, stat_addr, ru);
1695 if (!tsk_result)
1696 tsk_result = ptrace_do_wait(tsk, &retval,
1697 type, pid, options,
1698 infop, stat_addr, ru);
1699 if (tsk_result) {
1701 * tasklist_lock is unlocked and we have a final result.
1703 retval = tsk_result;
1704 goto end;
1707 if (options & __WNOTHREAD)
1708 break;
1709 tsk = next_thread(tsk);
1710 BUG_ON(tsk->signal != current->signal);
1711 } while (tsk != current);
1712 read_unlock(&tasklist_lock);
1714 if (!retval && !(options & WNOHANG)) {
1715 retval = -ERESTARTSYS;
1716 if (!signal_pending(current)) {
1717 schedule();
1718 goto repeat;
1722 end:
1723 current->state = TASK_RUNNING;
1724 remove_wait_queue(&current->signal->wait_chldexit,&wait);
1725 if (infop) {
1726 if (retval > 0)
1727 retval = 0;
1728 else {
1730 * For a WNOHANG return, clear out all the fields
1731 * we would set so the user can easily tell the
1732 * difference.
1734 if (!retval)
1735 retval = put_user(0, &infop->si_signo);
1736 if (!retval)
1737 retval = put_user(0, &infop->si_errno);
1738 if (!retval)
1739 retval = put_user(0, &infop->si_code);
1740 if (!retval)
1741 retval = put_user(0, &infop->si_pid);
1742 if (!retval)
1743 retval = put_user(0, &infop->si_uid);
1744 if (!retval)
1745 retval = put_user(0, &infop->si_status);
1748 return retval;
1751 asmlinkage long sys_waitid(int which, pid_t upid,
1752 struct siginfo __user *infop, int options,
1753 struct rusage __user *ru)
1755 struct pid *pid = NULL;
1756 enum pid_type type;
1757 long ret;
1759 if (options & ~(WNOHANG|WNOWAIT|WEXITED|WSTOPPED|WCONTINUED))
1760 return -EINVAL;
1761 if (!(options & (WEXITED|WSTOPPED|WCONTINUED)))
1762 return -EINVAL;
1764 switch (which) {
1765 case P_ALL:
1766 type = PIDTYPE_MAX;
1767 break;
1768 case P_PID:
1769 type = PIDTYPE_PID;
1770 if (upid <= 0)
1771 return -EINVAL;
1772 break;
1773 case P_PGID:
1774 type = PIDTYPE_PGID;
1775 if (upid <= 0)
1776 return -EINVAL;
1777 break;
1778 default:
1779 return -EINVAL;
1782 if (type < PIDTYPE_MAX)
1783 pid = find_get_pid(upid);
1784 ret = do_wait(type, pid, options, infop, NULL, ru);
1785 put_pid(pid);
1787 /* avoid REGPARM breakage on x86: */
1788 asmlinkage_protect(5, ret, which, upid, infop, options, ru);
1789 return ret;
1792 asmlinkage long sys_wait4(pid_t upid, int __user *stat_addr,
1793 int options, struct rusage __user *ru)
1795 struct pid *pid = NULL;
1796 enum pid_type type;
1797 long ret;
1799 if (options & ~(WNOHANG|WUNTRACED|WCONTINUED|
1800 __WNOTHREAD|__WCLONE|__WALL))
1801 return -EINVAL;
1803 if (upid == -1)
1804 type = PIDTYPE_MAX;
1805 else if (upid < 0) {
1806 type = PIDTYPE_PGID;
1807 pid = find_get_pid(-upid);
1808 } else if (upid == 0) {
1809 type = PIDTYPE_PGID;
1810 pid = get_pid(task_pgrp(current));
1811 } else /* upid > 0 */ {
1812 type = PIDTYPE_PID;
1813 pid = find_get_pid(upid);
1816 ret = do_wait(type, pid, options | WEXITED, NULL, stat_addr, ru);
1817 put_pid(pid);
1819 /* avoid REGPARM breakage on x86: */
1820 asmlinkage_protect(4, ret, upid, stat_addr, options, ru);
1821 return ret;
1824 #ifdef __ARCH_WANT_SYS_WAITPID
1827 * sys_waitpid() remains for compatibility. waitpid() should be
1828 * implemented by calling sys_wait4() from libc.a.
1830 asmlinkage long sys_waitpid(pid_t pid, int __user *stat_addr, int options)
1832 return sys_wait4(pid, stat_addr, options, NULL);
1835 #endif