4 * Complete reimplementation
5 * (C) 1997 Thomas Schoebel-Theuer,
6 * with heavy changes by Linus Torvalds
10 * Notes on the allocation strategy:
12 * The dcache is a master of the icache - whenever a dcache entry
13 * exists, the inode will always exist. "iput()" is done either when
14 * the dcache entry is deleted or garbage collected.
17 #include <linux/syscalls.h>
18 #include <linux/string.h>
21 #include <linux/fsnotify.h>
22 #include <linux/slab.h>
23 #include <linux/init.h>
24 #include <linux/smp_lock.h>
25 #include <linux/hash.h>
26 #include <linux/cache.h>
27 #include <linux/module.h>
28 #include <linux/mount.h>
29 #include <linux/file.h>
30 #include <asm/uaccess.h>
31 #include <linux/security.h>
32 #include <linux/seqlock.h>
33 #include <linux/swap.h>
34 #include <linux/bootmem.h>
37 int sysctl_vfs_cache_pressure __read_mostly
= 100;
38 EXPORT_SYMBOL_GPL(sysctl_vfs_cache_pressure
);
40 __cacheline_aligned_in_smp
DEFINE_SPINLOCK(dcache_lock
);
41 static __cacheline_aligned_in_smp
DEFINE_SEQLOCK(rename_lock
);
43 EXPORT_SYMBOL(dcache_lock
);
45 static kmem_cache_t
*dentry_cache __read_mostly
;
47 #define DNAME_INLINE_LEN (sizeof(struct dentry)-offsetof(struct dentry,d_iname))
50 * This is the single most critical data structure when it comes
51 * to the dcache: the hashtable for lookups. Somebody should try
52 * to make this good - I've just made it work.
54 * This hash-function tries to avoid losing too many bits of hash
55 * information, yet avoid using a prime hash-size or similar.
57 #define D_HASHBITS d_hash_shift
58 #define D_HASHMASK d_hash_mask
60 static unsigned int d_hash_mask __read_mostly
;
61 static unsigned int d_hash_shift __read_mostly
;
62 static struct hlist_head
*dentry_hashtable __read_mostly
;
63 static LIST_HEAD(dentry_unused
);
65 /* Statistics gathering. */
66 struct dentry_stat_t dentry_stat
= {
70 static void d_callback(struct rcu_head
*head
)
72 struct dentry
* dentry
= container_of(head
, struct dentry
, d_u
.d_rcu
);
74 if (dname_external(dentry
))
75 kfree(dentry
->d_name
.name
);
76 kmem_cache_free(dentry_cache
, dentry
);
80 * no dcache_lock, please. The caller must decrement dentry_stat.nr_dentry
83 static void d_free(struct dentry
*dentry
)
85 if (dentry
->d_op
&& dentry
->d_op
->d_release
)
86 dentry
->d_op
->d_release(dentry
);
87 call_rcu(&dentry
->d_u
.d_rcu
, d_callback
);
91 * Release the dentry's inode, using the filesystem
92 * d_iput() operation if defined.
93 * Called with dcache_lock and per dentry lock held, drops both.
95 static void dentry_iput(struct dentry
* dentry
)
97 struct inode
*inode
= dentry
->d_inode
;
99 dentry
->d_inode
= NULL
;
100 list_del_init(&dentry
->d_alias
);
101 spin_unlock(&dentry
->d_lock
);
102 spin_unlock(&dcache_lock
);
104 fsnotify_inoderemove(inode
);
105 if (dentry
->d_op
&& dentry
->d_op
->d_iput
)
106 dentry
->d_op
->d_iput(dentry
, inode
);
110 spin_unlock(&dentry
->d_lock
);
111 spin_unlock(&dcache_lock
);
118 * This is complicated by the fact that we do not want to put
119 * dentries that are no longer on any hash chain on the unused
120 * list: we'd much rather just get rid of them immediately.
122 * However, that implies that we have to traverse the dentry
123 * tree upwards to the parents which might _also_ now be
124 * scheduled for deletion (it may have been only waiting for
125 * its last child to go away).
127 * This tail recursion is done by hand as we don't want to depend
128 * on the compiler to always get this right (gcc generally doesn't).
129 * Real recursion would eat up our stack space.
133 * dput - release a dentry
134 * @dentry: dentry to release
136 * Release a dentry. This will drop the usage count and if appropriate
137 * call the dentry unlink method as well as removing it from the queues and
138 * releasing its resources. If the parent dentries were scheduled for release
139 * they too may now get deleted.
141 * no dcache lock, please.
144 void dput(struct dentry
*dentry
)
150 if (atomic_read(&dentry
->d_count
) == 1)
152 if (!atomic_dec_and_lock(&dentry
->d_count
, &dcache_lock
))
155 spin_lock(&dentry
->d_lock
);
156 if (atomic_read(&dentry
->d_count
)) {
157 spin_unlock(&dentry
->d_lock
);
158 spin_unlock(&dcache_lock
);
163 * AV: ->d_delete() is _NOT_ allowed to block now.
165 if (dentry
->d_op
&& dentry
->d_op
->d_delete
) {
166 if (dentry
->d_op
->d_delete(dentry
))
169 /* Unreachable? Get rid of it */
170 if (d_unhashed(dentry
))
172 if (list_empty(&dentry
->d_lru
)) {
173 dentry
->d_flags
|= DCACHE_REFERENCED
;
174 list_add(&dentry
->d_lru
, &dentry_unused
);
175 dentry_stat
.nr_unused
++;
177 spin_unlock(&dentry
->d_lock
);
178 spin_unlock(&dcache_lock
);
185 struct dentry
*parent
;
187 /* If dentry was on d_lru list
188 * delete it from there
190 if (!list_empty(&dentry
->d_lru
)) {
191 list_del(&dentry
->d_lru
);
192 dentry_stat
.nr_unused
--;
194 list_del(&dentry
->d_u
.d_child
);
195 dentry_stat
.nr_dentry
--; /* For d_free, below */
196 /*drops the locks, at that point nobody can reach this dentry */
198 parent
= dentry
->d_parent
;
200 if (dentry
== parent
)
208 * d_invalidate - invalidate a dentry
209 * @dentry: dentry to invalidate
211 * Try to invalidate the dentry if it turns out to be
212 * possible. If there are other dentries that can be
213 * reached through this one we can't delete it and we
214 * return -EBUSY. On success we return 0.
219 int d_invalidate(struct dentry
* dentry
)
222 * If it's already been dropped, return OK.
224 spin_lock(&dcache_lock
);
225 if (d_unhashed(dentry
)) {
226 spin_unlock(&dcache_lock
);
230 * Check whether to do a partial shrink_dcache
231 * to get rid of unused child entries.
233 if (!list_empty(&dentry
->d_subdirs
)) {
234 spin_unlock(&dcache_lock
);
235 shrink_dcache_parent(dentry
);
236 spin_lock(&dcache_lock
);
240 * Somebody else still using it?
242 * If it's a directory, we can't drop it
243 * for fear of somebody re-populating it
244 * with children (even though dropping it
245 * would make it unreachable from the root,
246 * we might still populate it if it was a
247 * working directory or similar).
249 spin_lock(&dentry
->d_lock
);
250 if (atomic_read(&dentry
->d_count
) > 1) {
251 if (dentry
->d_inode
&& S_ISDIR(dentry
->d_inode
->i_mode
)) {
252 spin_unlock(&dentry
->d_lock
);
253 spin_unlock(&dcache_lock
);
259 spin_unlock(&dentry
->d_lock
);
260 spin_unlock(&dcache_lock
);
264 /* This should be called _only_ with dcache_lock held */
266 static inline struct dentry
* __dget_locked(struct dentry
*dentry
)
268 atomic_inc(&dentry
->d_count
);
269 if (!list_empty(&dentry
->d_lru
)) {
270 dentry_stat
.nr_unused
--;
271 list_del_init(&dentry
->d_lru
);
276 struct dentry
* dget_locked(struct dentry
*dentry
)
278 return __dget_locked(dentry
);
282 * d_find_alias - grab a hashed alias of inode
283 * @inode: inode in question
284 * @want_discon: flag, used by d_splice_alias, to request
285 * that only a DISCONNECTED alias be returned.
287 * If inode has a hashed alias, or is a directory and has any alias,
288 * acquire the reference to alias and return it. Otherwise return NULL.
289 * Notice that if inode is a directory there can be only one alias and
290 * it can be unhashed only if it has no children, or if it is the root
293 * If the inode has a DCACHE_DISCONNECTED alias, then prefer
294 * any other hashed alias over that one unless @want_discon is set,
295 * in which case only return a DCACHE_DISCONNECTED alias.
298 static struct dentry
* __d_find_alias(struct inode
*inode
, int want_discon
)
300 struct list_head
*head
, *next
, *tmp
;
301 struct dentry
*alias
, *discon_alias
=NULL
;
303 head
= &inode
->i_dentry
;
304 next
= inode
->i_dentry
.next
;
305 while (next
!= head
) {
309 alias
= list_entry(tmp
, struct dentry
, d_alias
);
310 if (S_ISDIR(inode
->i_mode
) || !d_unhashed(alias
)) {
311 if (alias
->d_flags
& DCACHE_DISCONNECTED
)
312 discon_alias
= alias
;
313 else if (!want_discon
) {
314 __dget_locked(alias
);
320 __dget_locked(discon_alias
);
324 struct dentry
* d_find_alias(struct inode
*inode
)
326 struct dentry
*de
= NULL
;
328 if (!list_empty(&inode
->i_dentry
)) {
329 spin_lock(&dcache_lock
);
330 de
= __d_find_alias(inode
, 0);
331 spin_unlock(&dcache_lock
);
337 * Try to kill dentries associated with this inode.
338 * WARNING: you must own a reference to inode.
340 void d_prune_aliases(struct inode
*inode
)
342 struct dentry
*dentry
;
344 spin_lock(&dcache_lock
);
345 list_for_each_entry(dentry
, &inode
->i_dentry
, d_alias
) {
346 spin_lock(&dentry
->d_lock
);
347 if (!atomic_read(&dentry
->d_count
)) {
348 __dget_locked(dentry
);
350 spin_unlock(&dentry
->d_lock
);
351 spin_unlock(&dcache_lock
);
355 spin_unlock(&dentry
->d_lock
);
357 spin_unlock(&dcache_lock
);
361 * Throw away a dentry - free the inode, dput the parent. This requires that
362 * the LRU list has already been removed.
364 * Called with dcache_lock, drops it and then regains.
365 * Called with dentry->d_lock held, drops it.
367 static void prune_one_dentry(struct dentry
* dentry
)
369 struct dentry
* parent
;
372 list_del(&dentry
->d_u
.d_child
);
373 dentry_stat
.nr_dentry
--; /* For d_free, below */
375 parent
= dentry
->d_parent
;
377 if (parent
!= dentry
)
379 spin_lock(&dcache_lock
);
383 * prune_dcache - shrink the dcache
384 * @count: number of entries to try and free
385 * @sb: if given, ignore dentries for other superblocks
386 * which are being unmounted.
388 * Shrink the dcache. This is done when we need
389 * more memory, or simply when we need to unmount
390 * something (at which point we need to unuse
393 * This function may fail to free any resources if
394 * all the dentries are in use.
397 static void prune_dcache(int count
, struct super_block
*sb
)
399 spin_lock(&dcache_lock
);
400 for (; count
; count
--) {
401 struct dentry
*dentry
;
402 struct list_head
*tmp
;
403 struct rw_semaphore
*s_umount
;
405 cond_resched_lock(&dcache_lock
);
407 tmp
= dentry_unused
.prev
;
409 /* Try to find a dentry for this sb, but don't try
410 * too hard, if they aren't near the tail they will
411 * be moved down again soon
414 while (skip
&& tmp
!= &dentry_unused
&&
415 list_entry(tmp
, struct dentry
, d_lru
)->d_sb
!= sb
) {
420 if (tmp
== &dentry_unused
)
423 prefetch(dentry_unused
.prev
);
424 dentry_stat
.nr_unused
--;
425 dentry
= list_entry(tmp
, struct dentry
, d_lru
);
427 spin_lock(&dentry
->d_lock
);
429 * We found an inuse dentry which was not removed from
430 * dentry_unused because of laziness during lookup. Do not free
431 * it - just keep it off the dentry_unused list.
433 if (atomic_read(&dentry
->d_count
)) {
434 spin_unlock(&dentry
->d_lock
);
437 /* If the dentry was recently referenced, don't free it. */
438 if (dentry
->d_flags
& DCACHE_REFERENCED
) {
439 dentry
->d_flags
&= ~DCACHE_REFERENCED
;
440 list_add(&dentry
->d_lru
, &dentry_unused
);
441 dentry_stat
.nr_unused
++;
442 spin_unlock(&dentry
->d_lock
);
446 * If the dentry is not DCACHED_REFERENCED, it is time
447 * to remove it from the dcache, provided the super block is
448 * NULL (which means we are trying to reclaim memory)
449 * or this dentry belongs to the same super block that
453 * If this dentry is for "my" filesystem, then I can prune it
454 * without taking the s_umount lock (I already hold it).
456 if (sb
&& dentry
->d_sb
== sb
) {
457 prune_one_dentry(dentry
);
461 * ...otherwise we need to be sure this filesystem isn't being
462 * unmounted, otherwise we could race with
463 * generic_shutdown_super(), and end up holding a reference to
464 * an inode while the filesystem is unmounted.
465 * So we try to get s_umount, and make sure s_root isn't NULL.
466 * (Take a local copy of s_umount to avoid a use-after-free of
469 s_umount
= &dentry
->d_sb
->s_umount
;
470 if (down_read_trylock(s_umount
)) {
471 if (dentry
->d_sb
->s_root
!= NULL
) {
472 prune_one_dentry(dentry
);
478 spin_unlock(&dentry
->d_lock
);
479 /* Cannot remove the first dentry, and it isn't appropriate
480 * to move it to the head of the list, so give up, and try
485 spin_unlock(&dcache_lock
);
489 * Shrink the dcache for the specified super block.
490 * This allows us to unmount a device without disturbing
491 * the dcache for the other devices.
493 * This implementation makes just two traversals of the
494 * unused list. On the first pass we move the selected
495 * dentries to the most recent end, and on the second
496 * pass we free them. The second pass must restart after
497 * each dput(), but since the target dentries are all at
498 * the end, it's really just a single traversal.
502 * shrink_dcache_sb - shrink dcache for a superblock
505 * Shrink the dcache for the specified super block. This
506 * is used to free the dcache before unmounting a file
510 void shrink_dcache_sb(struct super_block
* sb
)
512 struct list_head
*tmp
, *next
;
513 struct dentry
*dentry
;
516 * Pass one ... move the dentries for the specified
517 * superblock to the most recent end of the unused list.
519 spin_lock(&dcache_lock
);
520 list_for_each_safe(tmp
, next
, &dentry_unused
) {
521 dentry
= list_entry(tmp
, struct dentry
, d_lru
);
522 if (dentry
->d_sb
!= sb
)
524 list_move(tmp
, &dentry_unused
);
528 * Pass two ... free the dentries for this superblock.
531 list_for_each_safe(tmp
, next
, &dentry_unused
) {
532 dentry
= list_entry(tmp
, struct dentry
, d_lru
);
533 if (dentry
->d_sb
!= sb
)
535 dentry_stat
.nr_unused
--;
537 spin_lock(&dentry
->d_lock
);
538 if (atomic_read(&dentry
->d_count
)) {
539 spin_unlock(&dentry
->d_lock
);
542 prune_one_dentry(dentry
);
543 cond_resched_lock(&dcache_lock
);
546 spin_unlock(&dcache_lock
);
550 * Search for at least 1 mount point in the dentry's subdirs.
551 * We descend to the next level whenever the d_subdirs
552 * list is non-empty and continue searching.
556 * have_submounts - check for mounts over a dentry
557 * @parent: dentry to check.
559 * Return true if the parent or its subdirectories contain
563 int have_submounts(struct dentry
*parent
)
565 struct dentry
*this_parent
= parent
;
566 struct list_head
*next
;
568 spin_lock(&dcache_lock
);
569 if (d_mountpoint(parent
))
572 next
= this_parent
->d_subdirs
.next
;
574 while (next
!= &this_parent
->d_subdirs
) {
575 struct list_head
*tmp
= next
;
576 struct dentry
*dentry
= list_entry(tmp
, struct dentry
, d_u
.d_child
);
578 /* Have we found a mount point ? */
579 if (d_mountpoint(dentry
))
581 if (!list_empty(&dentry
->d_subdirs
)) {
582 this_parent
= dentry
;
587 * All done at this level ... ascend and resume the search.
589 if (this_parent
!= parent
) {
590 next
= this_parent
->d_u
.d_child
.next
;
591 this_parent
= this_parent
->d_parent
;
594 spin_unlock(&dcache_lock
);
595 return 0; /* No mount points found in tree */
597 spin_unlock(&dcache_lock
);
602 * Search the dentry child list for the specified parent,
603 * and move any unused dentries to the end of the unused
604 * list for prune_dcache(). We descend to the next level
605 * whenever the d_subdirs list is non-empty and continue
608 * It returns zero iff there are no unused children,
609 * otherwise it returns the number of children moved to
610 * the end of the unused list. This may not be the total
611 * number of unused children, because select_parent can
612 * drop the lock and return early due to latency
615 static int select_parent(struct dentry
* parent
)
617 struct dentry
*this_parent
= parent
;
618 struct list_head
*next
;
621 spin_lock(&dcache_lock
);
623 next
= this_parent
->d_subdirs
.next
;
625 while (next
!= &this_parent
->d_subdirs
) {
626 struct list_head
*tmp
= next
;
627 struct dentry
*dentry
= list_entry(tmp
, struct dentry
, d_u
.d_child
);
630 if (!list_empty(&dentry
->d_lru
)) {
631 dentry_stat
.nr_unused
--;
632 list_del_init(&dentry
->d_lru
);
635 * move only zero ref count dentries to the end
636 * of the unused list for prune_dcache
638 if (!atomic_read(&dentry
->d_count
)) {
639 list_add_tail(&dentry
->d_lru
, &dentry_unused
);
640 dentry_stat
.nr_unused
++;
645 * We can return to the caller if we have found some (this
646 * ensures forward progress). We'll be coming back to find
649 if (found
&& need_resched())
653 * Descend a level if the d_subdirs list is non-empty.
655 if (!list_empty(&dentry
->d_subdirs
)) {
656 this_parent
= dentry
;
661 * All done at this level ... ascend and resume the search.
663 if (this_parent
!= parent
) {
664 next
= this_parent
->d_u
.d_child
.next
;
665 this_parent
= this_parent
->d_parent
;
669 spin_unlock(&dcache_lock
);
674 * shrink_dcache_parent - prune dcache
675 * @parent: parent of entries to prune
677 * Prune the dcache to remove unused children of the parent dentry.
680 void shrink_dcache_parent(struct dentry
* parent
)
684 while ((found
= select_parent(parent
)) != 0)
685 prune_dcache(found
, parent
->d_sb
);
689 * Scan `nr' dentries and return the number which remain.
691 * We need to avoid reentering the filesystem if the caller is performing a
692 * GFP_NOFS allocation attempt. One example deadlock is:
694 * ext2_new_block->getblk->GFP->shrink_dcache_memory->prune_dcache->
695 * prune_one_dentry->dput->dentry_iput->iput->inode->i_sb->s_op->put_inode->
696 * ext2_discard_prealloc->ext2_free_blocks->lock_super->DEADLOCK.
698 * In this case we return -1 to tell the caller that we baled.
700 static int shrink_dcache_memory(int nr
, gfp_t gfp_mask
)
703 if (!(gfp_mask
& __GFP_FS
))
705 prune_dcache(nr
, NULL
);
707 return (dentry_stat
.nr_unused
/ 100) * sysctl_vfs_cache_pressure
;
711 * d_alloc - allocate a dcache entry
712 * @parent: parent of entry to allocate
713 * @name: qstr of the name
715 * Allocates a dentry. It returns %NULL if there is insufficient memory
716 * available. On a success the dentry is returned. The name passed in is
717 * copied and the copy passed in may be reused after this call.
720 struct dentry
*d_alloc(struct dentry
* parent
, const struct qstr
*name
)
722 struct dentry
*dentry
;
725 dentry
= kmem_cache_alloc(dentry_cache
, GFP_KERNEL
);
729 if (name
->len
> DNAME_INLINE_LEN
-1) {
730 dname
= kmalloc(name
->len
+ 1, GFP_KERNEL
);
732 kmem_cache_free(dentry_cache
, dentry
);
736 dname
= dentry
->d_iname
;
738 dentry
->d_name
.name
= dname
;
740 dentry
->d_name
.len
= name
->len
;
741 dentry
->d_name
.hash
= name
->hash
;
742 memcpy(dname
, name
->name
, name
->len
);
743 dname
[name
->len
] = 0;
745 atomic_set(&dentry
->d_count
, 1);
746 dentry
->d_flags
= DCACHE_UNHASHED
;
747 spin_lock_init(&dentry
->d_lock
);
748 dentry
->d_inode
= NULL
;
749 dentry
->d_parent
= NULL
;
752 dentry
->d_fsdata
= NULL
;
753 dentry
->d_mounted
= 0;
754 #ifdef CONFIG_PROFILING
755 dentry
->d_cookie
= NULL
;
757 INIT_HLIST_NODE(&dentry
->d_hash
);
758 INIT_LIST_HEAD(&dentry
->d_lru
);
759 INIT_LIST_HEAD(&dentry
->d_subdirs
);
760 INIT_LIST_HEAD(&dentry
->d_alias
);
763 dentry
->d_parent
= dget(parent
);
764 dentry
->d_sb
= parent
->d_sb
;
766 INIT_LIST_HEAD(&dentry
->d_u
.d_child
);
769 spin_lock(&dcache_lock
);
771 list_add(&dentry
->d_u
.d_child
, &parent
->d_subdirs
);
772 dentry_stat
.nr_dentry
++;
773 spin_unlock(&dcache_lock
);
778 struct dentry
*d_alloc_name(struct dentry
*parent
, const char *name
)
783 q
.len
= strlen(name
);
784 q
.hash
= full_name_hash(q
.name
, q
.len
);
785 return d_alloc(parent
, &q
);
789 * d_instantiate - fill in inode information for a dentry
790 * @entry: dentry to complete
791 * @inode: inode to attach to this dentry
793 * Fill in inode information in the entry.
795 * This turns negative dentries into productive full members
798 * NOTE! This assumes that the inode count has been incremented
799 * (or otherwise set) by the caller to indicate that it is now
800 * in use by the dcache.
803 void d_instantiate(struct dentry
*entry
, struct inode
* inode
)
805 BUG_ON(!list_empty(&entry
->d_alias
));
806 spin_lock(&dcache_lock
);
808 list_add(&entry
->d_alias
, &inode
->i_dentry
);
809 entry
->d_inode
= inode
;
810 fsnotify_d_instantiate(entry
, inode
);
811 spin_unlock(&dcache_lock
);
812 security_d_instantiate(entry
, inode
);
816 * d_instantiate_unique - instantiate a non-aliased dentry
817 * @entry: dentry to instantiate
818 * @inode: inode to attach to this dentry
820 * Fill in inode information in the entry. On success, it returns NULL.
821 * If an unhashed alias of "entry" already exists, then we return the
822 * aliased dentry instead and drop one reference to inode.
824 * Note that in order to avoid conflicts with rename() etc, the caller
825 * had better be holding the parent directory semaphore.
827 * This also assumes that the inode count has been incremented
828 * (or otherwise set) by the caller to indicate that it is now
829 * in use by the dcache.
831 struct dentry
*d_instantiate_unique(struct dentry
*entry
, struct inode
*inode
)
833 struct dentry
*alias
;
834 int len
= entry
->d_name
.len
;
835 const char *name
= entry
->d_name
.name
;
836 unsigned int hash
= entry
->d_name
.hash
;
838 BUG_ON(!list_empty(&entry
->d_alias
));
839 spin_lock(&dcache_lock
);
842 list_for_each_entry(alias
, &inode
->i_dentry
, d_alias
) {
843 struct qstr
*qstr
= &alias
->d_name
;
845 if (qstr
->hash
!= hash
)
847 if (alias
->d_parent
!= entry
->d_parent
)
849 if (qstr
->len
!= len
)
851 if (memcmp(qstr
->name
, name
, len
))
854 spin_unlock(&dcache_lock
);
855 BUG_ON(!d_unhashed(alias
));
859 list_add(&entry
->d_alias
, &inode
->i_dentry
);
861 entry
->d_inode
= inode
;
862 fsnotify_d_instantiate(entry
, inode
);
863 spin_unlock(&dcache_lock
);
864 security_d_instantiate(entry
, inode
);
867 EXPORT_SYMBOL(d_instantiate_unique
);
870 * d_alloc_root - allocate root dentry
871 * @root_inode: inode to allocate the root for
873 * Allocate a root ("/") dentry for the inode given. The inode is
874 * instantiated and returned. %NULL is returned if there is insufficient
875 * memory or the inode passed is %NULL.
878 struct dentry
* d_alloc_root(struct inode
* root_inode
)
880 struct dentry
*res
= NULL
;
883 static const struct qstr name
= { .name
= "/", .len
= 1 };
885 res
= d_alloc(NULL
, &name
);
887 res
->d_sb
= root_inode
->i_sb
;
889 d_instantiate(res
, root_inode
);
895 static inline struct hlist_head
*d_hash(struct dentry
*parent
,
898 hash
+= ((unsigned long) parent
^ GOLDEN_RATIO_PRIME
) / L1_CACHE_BYTES
;
899 hash
= hash
^ ((hash
^ GOLDEN_RATIO_PRIME
) >> D_HASHBITS
);
900 return dentry_hashtable
+ (hash
& D_HASHMASK
);
904 * d_alloc_anon - allocate an anonymous dentry
905 * @inode: inode to allocate the dentry for
907 * This is similar to d_alloc_root. It is used by filesystems when
908 * creating a dentry for a given inode, often in the process of
909 * mapping a filehandle to a dentry. The returned dentry may be
910 * anonymous, or may have a full name (if the inode was already
911 * in the cache). The file system may need to make further
912 * efforts to connect this dentry into the dcache properly.
914 * When called on a directory inode, we must ensure that
915 * the inode only ever has one dentry. If a dentry is
916 * found, that is returned instead of allocating a new one.
918 * On successful return, the reference to the inode has been transferred
919 * to the dentry. If %NULL is returned (indicating kmalloc failure),
920 * the reference on the inode has not been released.
923 struct dentry
* d_alloc_anon(struct inode
*inode
)
925 static const struct qstr anonstring
= { .name
= "" };
929 if ((res
= d_find_alias(inode
))) {
934 tmp
= d_alloc(NULL
, &anonstring
);
938 tmp
->d_parent
= tmp
; /* make sure dput doesn't croak */
940 spin_lock(&dcache_lock
);
941 res
= __d_find_alias(inode
, 0);
943 /* attach a disconnected dentry */
946 spin_lock(&res
->d_lock
);
947 res
->d_sb
= inode
->i_sb
;
949 res
->d_inode
= inode
;
950 res
->d_flags
|= DCACHE_DISCONNECTED
;
951 res
->d_flags
&= ~DCACHE_UNHASHED
;
952 list_add(&res
->d_alias
, &inode
->i_dentry
);
953 hlist_add_head(&res
->d_hash
, &inode
->i_sb
->s_anon
);
954 spin_unlock(&res
->d_lock
);
956 inode
= NULL
; /* don't drop reference */
958 spin_unlock(&dcache_lock
);
969 * d_splice_alias - splice a disconnected dentry into the tree if one exists
970 * @inode: the inode which may have a disconnected dentry
971 * @dentry: a negative dentry which we want to point to the inode.
973 * If inode is a directory and has a 'disconnected' dentry (i.e. IS_ROOT and
974 * DCACHE_DISCONNECTED), then d_move that in place of the given dentry
975 * and return it, else simply d_add the inode to the dentry and return NULL.
977 * This is needed in the lookup routine of any filesystem that is exportable
978 * (via knfsd) so that we can build dcache paths to directories effectively.
980 * If a dentry was found and moved, then it is returned. Otherwise NULL
981 * is returned. This matches the expected return value of ->lookup.
984 struct dentry
*d_splice_alias(struct inode
*inode
, struct dentry
*dentry
)
986 struct dentry
*new = NULL
;
989 spin_lock(&dcache_lock
);
990 new = __d_find_alias(inode
, 1);
992 BUG_ON(!(new->d_flags
& DCACHE_DISCONNECTED
));
993 fsnotify_d_instantiate(new, inode
);
994 spin_unlock(&dcache_lock
);
995 security_d_instantiate(new, inode
);
1000 /* d_instantiate takes dcache_lock, so we do it by hand */
1001 list_add(&dentry
->d_alias
, &inode
->i_dentry
);
1002 dentry
->d_inode
= inode
;
1003 fsnotify_d_instantiate(dentry
, inode
);
1004 spin_unlock(&dcache_lock
);
1005 security_d_instantiate(dentry
, inode
);
1009 d_add(dentry
, inode
);
1015 * d_lookup - search for a dentry
1016 * @parent: parent dentry
1017 * @name: qstr of name we wish to find
1019 * Searches the children of the parent dentry for the name in question. If
1020 * the dentry is found its reference count is incremented and the dentry
1021 * is returned. The caller must use d_put to free the entry when it has
1022 * finished using it. %NULL is returned on failure.
1024 * __d_lookup is dcache_lock free. The hash list is protected using RCU.
1025 * Memory barriers are used while updating and doing lockless traversal.
1026 * To avoid races with d_move while rename is happening, d_lock is used.
1028 * Overflows in memcmp(), while d_move, are avoided by keeping the length
1029 * and name pointer in one structure pointed by d_qstr.
1031 * rcu_read_lock() and rcu_read_unlock() are used to disable preemption while
1032 * lookup is going on.
1034 * dentry_unused list is not updated even if lookup finds the required dentry
1035 * in there. It is updated in places such as prune_dcache, shrink_dcache_sb,
1036 * select_parent and __dget_locked. This laziness saves lookup from dcache_lock
1039 * d_lookup() is protected against the concurrent renames in some unrelated
1040 * directory using the seqlockt_t rename_lock.
1043 struct dentry
* d_lookup(struct dentry
* parent
, struct qstr
* name
)
1045 struct dentry
* dentry
= NULL
;
1049 seq
= read_seqbegin(&rename_lock
);
1050 dentry
= __d_lookup(parent
, name
);
1053 } while (read_seqretry(&rename_lock
, seq
));
1057 struct dentry
* __d_lookup(struct dentry
* parent
, struct qstr
* name
)
1059 unsigned int len
= name
->len
;
1060 unsigned int hash
= name
->hash
;
1061 const unsigned char *str
= name
->name
;
1062 struct hlist_head
*head
= d_hash(parent
,hash
);
1063 struct dentry
*found
= NULL
;
1064 struct hlist_node
*node
;
1065 struct dentry
*dentry
;
1069 hlist_for_each_entry_rcu(dentry
, node
, head
, d_hash
) {
1072 if (dentry
->d_name
.hash
!= hash
)
1074 if (dentry
->d_parent
!= parent
)
1077 spin_lock(&dentry
->d_lock
);
1080 * Recheck the dentry after taking the lock - d_move may have
1081 * changed things. Don't bother checking the hash because we're
1082 * about to compare the whole name anyway.
1084 if (dentry
->d_parent
!= parent
)
1088 * It is safe to compare names since d_move() cannot
1089 * change the qstr (protected by d_lock).
1091 qstr
= &dentry
->d_name
;
1092 if (parent
->d_op
&& parent
->d_op
->d_compare
) {
1093 if (parent
->d_op
->d_compare(parent
, qstr
, name
))
1096 if (qstr
->len
!= len
)
1098 if (memcmp(qstr
->name
, str
, len
))
1102 if (!d_unhashed(dentry
)) {
1103 atomic_inc(&dentry
->d_count
);
1106 spin_unlock(&dentry
->d_lock
);
1109 spin_unlock(&dentry
->d_lock
);
1117 * d_hash_and_lookup - hash the qstr then search for a dentry
1118 * @dir: Directory to search in
1119 * @name: qstr of name we wish to find
1121 * On hash failure or on lookup failure NULL is returned.
1123 struct dentry
*d_hash_and_lookup(struct dentry
*dir
, struct qstr
*name
)
1125 struct dentry
*dentry
= NULL
;
1128 * Check for a fs-specific hash function. Note that we must
1129 * calculate the standard hash first, as the d_op->d_hash()
1130 * routine may choose to leave the hash value unchanged.
1132 name
->hash
= full_name_hash(name
->name
, name
->len
);
1133 if (dir
->d_op
&& dir
->d_op
->d_hash
) {
1134 if (dir
->d_op
->d_hash(dir
, name
) < 0)
1137 dentry
= d_lookup(dir
, name
);
1143 * d_validate - verify dentry provided from insecure source
1144 * @dentry: The dentry alleged to be valid child of @dparent
1145 * @dparent: The parent dentry (known to be valid)
1146 * @hash: Hash of the dentry
1147 * @len: Length of the name
1149 * An insecure source has sent us a dentry, here we verify it and dget() it.
1150 * This is used by ncpfs in its readdir implementation.
1151 * Zero is returned in the dentry is invalid.
1154 int d_validate(struct dentry
*dentry
, struct dentry
*dparent
)
1156 struct hlist_head
*base
;
1157 struct hlist_node
*lhp
;
1159 /* Check whether the ptr might be valid at all.. */
1160 if (!kmem_ptr_validate(dentry_cache
, dentry
))
1163 if (dentry
->d_parent
!= dparent
)
1166 spin_lock(&dcache_lock
);
1167 base
= d_hash(dparent
, dentry
->d_name
.hash
);
1168 hlist_for_each(lhp
,base
) {
1169 /* hlist_for_each_entry_rcu() not required for d_hash list
1170 * as it is parsed under dcache_lock
1172 if (dentry
== hlist_entry(lhp
, struct dentry
, d_hash
)) {
1173 __dget_locked(dentry
);
1174 spin_unlock(&dcache_lock
);
1178 spin_unlock(&dcache_lock
);
1184 * When a file is deleted, we have two options:
1185 * - turn this dentry into a negative dentry
1186 * - unhash this dentry and free it.
1188 * Usually, we want to just turn this into
1189 * a negative dentry, but if anybody else is
1190 * currently using the dentry or the inode
1191 * we can't do that and we fall back on removing
1192 * it from the hash queues and waiting for
1193 * it to be deleted later when it has no users
1197 * d_delete - delete a dentry
1198 * @dentry: The dentry to delete
1200 * Turn the dentry into a negative dentry if possible, otherwise
1201 * remove it from the hash queues so it can be deleted later
1204 void d_delete(struct dentry
* dentry
)
1208 * Are we the only user?
1210 spin_lock(&dcache_lock
);
1211 spin_lock(&dentry
->d_lock
);
1212 isdir
= S_ISDIR(dentry
->d_inode
->i_mode
);
1213 if (atomic_read(&dentry
->d_count
) == 1) {
1214 dentry_iput(dentry
);
1215 fsnotify_nameremove(dentry
, isdir
);
1217 /* remove this and other inotify debug checks after 2.6.18 */
1218 dentry
->d_flags
&= ~DCACHE_INOTIFY_PARENT_WATCHED
;
1222 if (!d_unhashed(dentry
))
1225 spin_unlock(&dentry
->d_lock
);
1226 spin_unlock(&dcache_lock
);
1228 fsnotify_nameremove(dentry
, isdir
);
1231 static void __d_rehash(struct dentry
* entry
, struct hlist_head
*list
)
1234 entry
->d_flags
&= ~DCACHE_UNHASHED
;
1235 hlist_add_head_rcu(&entry
->d_hash
, list
);
1239 * d_rehash - add an entry back to the hash
1240 * @entry: dentry to add to the hash
1242 * Adds a dentry to the hash according to its name.
1245 void d_rehash(struct dentry
* entry
)
1247 struct hlist_head
*list
= d_hash(entry
->d_parent
, entry
->d_name
.hash
);
1249 spin_lock(&dcache_lock
);
1250 spin_lock(&entry
->d_lock
);
1251 __d_rehash(entry
, list
);
1252 spin_unlock(&entry
->d_lock
);
1253 spin_unlock(&dcache_lock
);
1256 #define do_switch(x,y) do { \
1257 __typeof__ (x) __tmp = x; \
1258 x = y; y = __tmp; } while (0)
1261 * When switching names, the actual string doesn't strictly have to
1262 * be preserved in the target - because we're dropping the target
1263 * anyway. As such, we can just do a simple memcpy() to copy over
1264 * the new name before we switch.
1266 * Note that we have to be a lot more careful about getting the hash
1267 * switched - we have to switch the hash value properly even if it
1268 * then no longer matches the actual (corrupted) string of the target.
1269 * The hash value has to match the hash queue that the dentry is on..
1271 static void switch_names(struct dentry
*dentry
, struct dentry
*target
)
1273 if (dname_external(target
)) {
1274 if (dname_external(dentry
)) {
1276 * Both external: swap the pointers
1278 do_switch(target
->d_name
.name
, dentry
->d_name
.name
);
1281 * dentry:internal, target:external. Steal target's
1282 * storage and make target internal.
1284 dentry
->d_name
.name
= target
->d_name
.name
;
1285 target
->d_name
.name
= target
->d_iname
;
1288 if (dname_external(dentry
)) {
1290 * dentry:external, target:internal. Give dentry's
1291 * storage to target and make dentry internal
1293 memcpy(dentry
->d_iname
, target
->d_name
.name
,
1294 target
->d_name
.len
+ 1);
1295 target
->d_name
.name
= dentry
->d_name
.name
;
1296 dentry
->d_name
.name
= dentry
->d_iname
;
1299 * Both are internal. Just copy target to dentry
1301 memcpy(dentry
->d_iname
, target
->d_name
.name
,
1302 target
->d_name
.len
+ 1);
1308 * We cannibalize "target" when moving dentry on top of it,
1309 * because it's going to be thrown away anyway. We could be more
1310 * polite about it, though.
1312 * This forceful removal will result in ugly /proc output if
1313 * somebody holds a file open that got deleted due to a rename.
1314 * We could be nicer about the deleted file, and let it show
1315 * up under the name it got deleted rather than the name that
1320 * d_move - move a dentry
1321 * @dentry: entry to move
1322 * @target: new dentry
1324 * Update the dcache to reflect the move of a file name. Negative
1325 * dcache entries should not be moved in this way.
1328 void d_move(struct dentry
* dentry
, struct dentry
* target
)
1330 struct hlist_head
*list
;
1332 if (!dentry
->d_inode
)
1333 printk(KERN_WARNING
"VFS: moving negative dcache entry\n");
1335 spin_lock(&dcache_lock
);
1336 write_seqlock(&rename_lock
);
1338 * XXXX: do we really need to take target->d_lock?
1340 if (target
< dentry
) {
1341 spin_lock(&target
->d_lock
);
1342 spin_lock_nested(&dentry
->d_lock
, DENTRY_D_LOCK_NESTED
);
1344 spin_lock(&dentry
->d_lock
);
1345 spin_lock_nested(&target
->d_lock
, DENTRY_D_LOCK_NESTED
);
1348 /* Move the dentry to the target hash queue, if on different bucket */
1349 if (dentry
->d_flags
& DCACHE_UNHASHED
)
1350 goto already_unhashed
;
1352 hlist_del_rcu(&dentry
->d_hash
);
1355 list
= d_hash(target
->d_parent
, target
->d_name
.hash
);
1356 __d_rehash(dentry
, list
);
1358 /* Unhash the target: dput() will then get rid of it */
1361 list_del(&dentry
->d_u
.d_child
);
1362 list_del(&target
->d_u
.d_child
);
1364 /* Switch the names.. */
1365 switch_names(dentry
, target
);
1366 do_switch(dentry
->d_name
.len
, target
->d_name
.len
);
1367 do_switch(dentry
->d_name
.hash
, target
->d_name
.hash
);
1369 /* ... and switch the parents */
1370 if (IS_ROOT(dentry
)) {
1371 dentry
->d_parent
= target
->d_parent
;
1372 target
->d_parent
= target
;
1373 INIT_LIST_HEAD(&target
->d_u
.d_child
);
1375 do_switch(dentry
->d_parent
, target
->d_parent
);
1377 /* And add them back to the (new) parent lists */
1378 list_add(&target
->d_u
.d_child
, &target
->d_parent
->d_subdirs
);
1381 list_add(&dentry
->d_u
.d_child
, &dentry
->d_parent
->d_subdirs
);
1382 spin_unlock(&target
->d_lock
);
1383 fsnotify_d_move(dentry
);
1384 spin_unlock(&dentry
->d_lock
);
1385 write_sequnlock(&rename_lock
);
1386 spin_unlock(&dcache_lock
);
1390 * d_path - return the path of a dentry
1391 * @dentry: dentry to report
1392 * @vfsmnt: vfsmnt to which the dentry belongs
1393 * @root: root dentry
1394 * @rootmnt: vfsmnt to which the root dentry belongs
1395 * @buffer: buffer to return value in
1396 * @buflen: buffer length
1398 * Convert a dentry into an ASCII path name. If the entry has been deleted
1399 * the string " (deleted)" is appended. Note that this is ambiguous.
1401 * Returns the buffer or an error code if the path was too long.
1403 * "buflen" should be positive. Caller holds the dcache_lock.
1405 static char * __d_path( struct dentry
*dentry
, struct vfsmount
*vfsmnt
,
1406 struct dentry
*root
, struct vfsmount
*rootmnt
,
1407 char *buffer
, int buflen
)
1409 char * end
= buffer
+buflen
;
1415 if (!IS_ROOT(dentry
) && d_unhashed(dentry
)) {
1420 memcpy(end
, " (deleted)", 10);
1430 struct dentry
* parent
;
1432 if (dentry
== root
&& vfsmnt
== rootmnt
)
1434 if (dentry
== vfsmnt
->mnt_root
|| IS_ROOT(dentry
)) {
1436 spin_lock(&vfsmount_lock
);
1437 if (vfsmnt
->mnt_parent
== vfsmnt
) {
1438 spin_unlock(&vfsmount_lock
);
1441 dentry
= vfsmnt
->mnt_mountpoint
;
1442 vfsmnt
= vfsmnt
->mnt_parent
;
1443 spin_unlock(&vfsmount_lock
);
1446 parent
= dentry
->d_parent
;
1448 namelen
= dentry
->d_name
.len
;
1449 buflen
-= namelen
+ 1;
1453 memcpy(end
, dentry
->d_name
.name
, namelen
);
1462 namelen
= dentry
->d_name
.len
;
1466 retval
-= namelen
-1; /* hit the slash */
1467 memcpy(retval
, dentry
->d_name
.name
, namelen
);
1470 return ERR_PTR(-ENAMETOOLONG
);
1473 /* write full pathname into buffer and return start of pathname */
1474 char * d_path(struct dentry
*dentry
, struct vfsmount
*vfsmnt
,
1475 char *buf
, int buflen
)
1478 struct vfsmount
*rootmnt
;
1479 struct dentry
*root
;
1481 read_lock(¤t
->fs
->lock
);
1482 rootmnt
= mntget(current
->fs
->rootmnt
);
1483 root
= dget(current
->fs
->root
);
1484 read_unlock(¤t
->fs
->lock
);
1485 spin_lock(&dcache_lock
);
1486 res
= __d_path(dentry
, vfsmnt
, root
, rootmnt
, buf
, buflen
);
1487 spin_unlock(&dcache_lock
);
1494 * NOTE! The user-level library version returns a
1495 * character pointer. The kernel system call just
1496 * returns the length of the buffer filled (which
1497 * includes the ending '\0' character), or a negative
1498 * error value. So libc would do something like
1500 * char *getcwd(char * buf, size_t size)
1504 * retval = sys_getcwd(buf, size);
1511 asmlinkage
long sys_getcwd(char __user
*buf
, unsigned long size
)
1514 struct vfsmount
*pwdmnt
, *rootmnt
;
1515 struct dentry
*pwd
, *root
;
1516 char *page
= (char *) __get_free_page(GFP_USER
);
1521 read_lock(¤t
->fs
->lock
);
1522 pwdmnt
= mntget(current
->fs
->pwdmnt
);
1523 pwd
= dget(current
->fs
->pwd
);
1524 rootmnt
= mntget(current
->fs
->rootmnt
);
1525 root
= dget(current
->fs
->root
);
1526 read_unlock(¤t
->fs
->lock
);
1529 /* Has the current directory has been unlinked? */
1530 spin_lock(&dcache_lock
);
1531 if (pwd
->d_parent
== pwd
|| !d_unhashed(pwd
)) {
1535 cwd
= __d_path(pwd
, pwdmnt
, root
, rootmnt
, page
, PAGE_SIZE
);
1536 spin_unlock(&dcache_lock
);
1538 error
= PTR_ERR(cwd
);
1543 len
= PAGE_SIZE
+ page
- cwd
;
1546 if (copy_to_user(buf
, cwd
, len
))
1550 spin_unlock(&dcache_lock
);
1557 free_page((unsigned long) page
);
1562 * Test whether new_dentry is a subdirectory of old_dentry.
1564 * Trivially implemented using the dcache structure
1568 * is_subdir - is new dentry a subdirectory of old_dentry
1569 * @new_dentry: new dentry
1570 * @old_dentry: old dentry
1572 * Returns 1 if new_dentry is a subdirectory of the parent (at any depth).
1573 * Returns 0 otherwise.
1574 * Caller must ensure that "new_dentry" is pinned before calling is_subdir()
1577 int is_subdir(struct dentry
* new_dentry
, struct dentry
* old_dentry
)
1580 struct dentry
* saved
= new_dentry
;
1583 /* need rcu_readlock to protect against the d_parent trashing due to
1588 /* for restarting inner loop in case of seq retry */
1591 seq
= read_seqbegin(&rename_lock
);
1593 if (new_dentry
!= old_dentry
) {
1594 struct dentry
* parent
= new_dentry
->d_parent
;
1595 if (parent
== new_dentry
)
1597 new_dentry
= parent
;
1603 } while (read_seqretry(&rename_lock
, seq
));
1609 void d_genocide(struct dentry
*root
)
1611 struct dentry
*this_parent
= root
;
1612 struct list_head
*next
;
1614 spin_lock(&dcache_lock
);
1616 next
= this_parent
->d_subdirs
.next
;
1618 while (next
!= &this_parent
->d_subdirs
) {
1619 struct list_head
*tmp
= next
;
1620 struct dentry
*dentry
= list_entry(tmp
, struct dentry
, d_u
.d_child
);
1622 if (d_unhashed(dentry
)||!dentry
->d_inode
)
1624 if (!list_empty(&dentry
->d_subdirs
)) {
1625 this_parent
= dentry
;
1628 atomic_dec(&dentry
->d_count
);
1630 if (this_parent
!= root
) {
1631 next
= this_parent
->d_u
.d_child
.next
;
1632 atomic_dec(&this_parent
->d_count
);
1633 this_parent
= this_parent
->d_parent
;
1636 spin_unlock(&dcache_lock
);
1640 * find_inode_number - check for dentry with name
1641 * @dir: directory to check
1642 * @name: Name to find.
1644 * Check whether a dentry already exists for the given name,
1645 * and return the inode number if it has an inode. Otherwise
1648 * This routine is used to post-process directory listings for
1649 * filesystems using synthetic inode numbers, and is necessary
1650 * to keep getcwd() working.
1653 ino_t
find_inode_number(struct dentry
*dir
, struct qstr
*name
)
1655 struct dentry
* dentry
;
1658 dentry
= d_hash_and_lookup(dir
, name
);
1660 if (dentry
->d_inode
)
1661 ino
= dentry
->d_inode
->i_ino
;
1667 static __initdata
unsigned long dhash_entries
;
1668 static int __init
set_dhash_entries(char *str
)
1672 dhash_entries
= simple_strtoul(str
, &str
, 0);
1675 __setup("dhash_entries=", set_dhash_entries
);
1677 static void __init
dcache_init_early(void)
1681 /* If hashes are distributed across NUMA nodes, defer
1682 * hash allocation until vmalloc space is available.
1688 alloc_large_system_hash("Dentry cache",
1689 sizeof(struct hlist_head
),
1697 for (loop
= 0; loop
< (1 << d_hash_shift
); loop
++)
1698 INIT_HLIST_HEAD(&dentry_hashtable
[loop
]);
1701 static void __init
dcache_init(unsigned long mempages
)
1706 * A constructor could be added for stable state like the lists,
1707 * but it is probably not worth it because of the cache nature
1710 dentry_cache
= kmem_cache_create("dentry_cache",
1711 sizeof(struct dentry
),
1713 (SLAB_RECLAIM_ACCOUNT
|SLAB_PANIC
|
1717 set_shrinker(DEFAULT_SEEKS
, shrink_dcache_memory
);
1719 /* Hash may have been set up in dcache_init_early */
1724 alloc_large_system_hash("Dentry cache",
1725 sizeof(struct hlist_head
),
1733 for (loop
= 0; loop
< (1 << d_hash_shift
); loop
++)
1734 INIT_HLIST_HEAD(&dentry_hashtable
[loop
]);
1737 /* SLAB cache for __getname() consumers */
1738 kmem_cache_t
*names_cachep __read_mostly
;
1740 /* SLAB cache for file structures */
1741 kmem_cache_t
*filp_cachep __read_mostly
;
1743 EXPORT_SYMBOL(d_genocide
);
1745 extern void bdev_cache_init(void);
1746 extern void chrdev_init(void);
1748 void __init
vfs_caches_init_early(void)
1750 dcache_init_early();
1754 void __init
vfs_caches_init(unsigned long mempages
)
1756 unsigned long reserve
;
1758 /* Base hash sizes on available memory, with a reserve equal to
1759 150% of current kernel size */
1761 reserve
= min((mempages
- nr_free_pages()) * 3/2, mempages
- 1);
1762 mempages
-= reserve
;
1764 names_cachep
= kmem_cache_create("names_cache", PATH_MAX
, 0,
1765 SLAB_HWCACHE_ALIGN
|SLAB_PANIC
, NULL
, NULL
);
1767 filp_cachep
= kmem_cache_create("filp", sizeof(struct file
), 0,
1768 SLAB_HWCACHE_ALIGN
|SLAB_PANIC
, NULL
, NULL
);
1770 dcache_init(mempages
);
1771 inode_init(mempages
);
1772 files_init(mempages
);
1778 EXPORT_SYMBOL(d_alloc
);
1779 EXPORT_SYMBOL(d_alloc_anon
);
1780 EXPORT_SYMBOL(d_alloc_root
);
1781 EXPORT_SYMBOL(d_delete
);
1782 EXPORT_SYMBOL(d_find_alias
);
1783 EXPORT_SYMBOL(d_instantiate
);
1784 EXPORT_SYMBOL(d_invalidate
);
1785 EXPORT_SYMBOL(d_lookup
);
1786 EXPORT_SYMBOL(d_move
);
1787 EXPORT_SYMBOL(d_path
);
1788 EXPORT_SYMBOL(d_prune_aliases
);
1789 EXPORT_SYMBOL(d_rehash
);
1790 EXPORT_SYMBOL(d_splice_alias
);
1791 EXPORT_SYMBOL(d_validate
);
1792 EXPORT_SYMBOL(dget_locked
);
1793 EXPORT_SYMBOL(dput
);
1794 EXPORT_SYMBOL(find_inode_number
);
1795 EXPORT_SYMBOL(have_submounts
);
1796 EXPORT_SYMBOL(names_cachep
);
1797 EXPORT_SYMBOL(shrink_dcache_parent
);
1798 EXPORT_SYMBOL(shrink_dcache_sb
);