USB: xhci: Don't wait for a disable slot cmd when HC dies.
[linux-2.6/mini2440.git] / fs / btrfs / inode.c
blob112e5aa85892c35dbaf921ba16bba119d4c2c49e
1 /*
2 * Copyright (C) 2007 Oracle. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
19 #include <linux/kernel.h>
20 #include <linux/bio.h>
21 #include <linux/buffer_head.h>
22 #include <linux/file.h>
23 #include <linux/fs.h>
24 #include <linux/pagemap.h>
25 #include <linux/highmem.h>
26 #include <linux/time.h>
27 #include <linux/init.h>
28 #include <linux/string.h>
29 #include <linux/backing-dev.h>
30 #include <linux/mpage.h>
31 #include <linux/swap.h>
32 #include <linux/writeback.h>
33 #include <linux/statfs.h>
34 #include <linux/compat.h>
35 #include <linux/bit_spinlock.h>
36 #include <linux/xattr.h>
37 #include <linux/posix_acl.h>
38 #include <linux/falloc.h>
39 #include "compat.h"
40 #include "ctree.h"
41 #include "disk-io.h"
42 #include "transaction.h"
43 #include "btrfs_inode.h"
44 #include "ioctl.h"
45 #include "print-tree.h"
46 #include "volumes.h"
47 #include "ordered-data.h"
48 #include "xattr.h"
49 #include "tree-log.h"
50 #include "compression.h"
51 #include "locking.h"
53 struct btrfs_iget_args {
54 u64 ino;
55 struct btrfs_root *root;
58 static const struct inode_operations btrfs_dir_inode_operations;
59 static const struct inode_operations btrfs_symlink_inode_operations;
60 static const struct inode_operations btrfs_dir_ro_inode_operations;
61 static const struct inode_operations btrfs_special_inode_operations;
62 static const struct inode_operations btrfs_file_inode_operations;
63 static const struct address_space_operations btrfs_aops;
64 static const struct address_space_operations btrfs_symlink_aops;
65 static const struct file_operations btrfs_dir_file_operations;
66 static struct extent_io_ops btrfs_extent_io_ops;
68 static struct kmem_cache *btrfs_inode_cachep;
69 struct kmem_cache *btrfs_trans_handle_cachep;
70 struct kmem_cache *btrfs_transaction_cachep;
71 struct kmem_cache *btrfs_path_cachep;
73 #define S_SHIFT 12
74 static unsigned char btrfs_type_by_mode[S_IFMT >> S_SHIFT] = {
75 [S_IFREG >> S_SHIFT] = BTRFS_FT_REG_FILE,
76 [S_IFDIR >> S_SHIFT] = BTRFS_FT_DIR,
77 [S_IFCHR >> S_SHIFT] = BTRFS_FT_CHRDEV,
78 [S_IFBLK >> S_SHIFT] = BTRFS_FT_BLKDEV,
79 [S_IFIFO >> S_SHIFT] = BTRFS_FT_FIFO,
80 [S_IFSOCK >> S_SHIFT] = BTRFS_FT_SOCK,
81 [S_IFLNK >> S_SHIFT] = BTRFS_FT_SYMLINK,
84 static void btrfs_truncate(struct inode *inode);
85 static int btrfs_finish_ordered_io(struct inode *inode, u64 start, u64 end);
86 static noinline int cow_file_range(struct inode *inode,
87 struct page *locked_page,
88 u64 start, u64 end, int *page_started,
89 unsigned long *nr_written, int unlock);
91 static int btrfs_init_inode_security(struct inode *inode, struct inode *dir)
93 int err;
95 err = btrfs_init_acl(inode, dir);
96 if (!err)
97 err = btrfs_xattr_security_init(inode, dir);
98 return err;
102 * this does all the hard work for inserting an inline extent into
103 * the btree. The caller should have done a btrfs_drop_extents so that
104 * no overlapping inline items exist in the btree
106 static noinline int insert_inline_extent(struct btrfs_trans_handle *trans,
107 struct btrfs_root *root, struct inode *inode,
108 u64 start, size_t size, size_t compressed_size,
109 struct page **compressed_pages)
111 struct btrfs_key key;
112 struct btrfs_path *path;
113 struct extent_buffer *leaf;
114 struct page *page = NULL;
115 char *kaddr;
116 unsigned long ptr;
117 struct btrfs_file_extent_item *ei;
118 int err = 0;
119 int ret;
120 size_t cur_size = size;
121 size_t datasize;
122 unsigned long offset;
123 int use_compress = 0;
125 if (compressed_size && compressed_pages) {
126 use_compress = 1;
127 cur_size = compressed_size;
130 path = btrfs_alloc_path();
131 if (!path)
132 return -ENOMEM;
134 path->leave_spinning = 1;
135 btrfs_set_trans_block_group(trans, inode);
137 key.objectid = inode->i_ino;
138 key.offset = start;
139 btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY);
140 datasize = btrfs_file_extent_calc_inline_size(cur_size);
142 inode_add_bytes(inode, size);
143 ret = btrfs_insert_empty_item(trans, root, path, &key,
144 datasize);
145 BUG_ON(ret);
146 if (ret) {
147 err = ret;
148 goto fail;
150 leaf = path->nodes[0];
151 ei = btrfs_item_ptr(leaf, path->slots[0],
152 struct btrfs_file_extent_item);
153 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
154 btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE);
155 btrfs_set_file_extent_encryption(leaf, ei, 0);
156 btrfs_set_file_extent_other_encoding(leaf, ei, 0);
157 btrfs_set_file_extent_ram_bytes(leaf, ei, size);
158 ptr = btrfs_file_extent_inline_start(ei);
160 if (use_compress) {
161 struct page *cpage;
162 int i = 0;
163 while (compressed_size > 0) {
164 cpage = compressed_pages[i];
165 cur_size = min_t(unsigned long, compressed_size,
166 PAGE_CACHE_SIZE);
168 kaddr = kmap_atomic(cpage, KM_USER0);
169 write_extent_buffer(leaf, kaddr, ptr, cur_size);
170 kunmap_atomic(kaddr, KM_USER0);
172 i++;
173 ptr += cur_size;
174 compressed_size -= cur_size;
176 btrfs_set_file_extent_compression(leaf, ei,
177 BTRFS_COMPRESS_ZLIB);
178 } else {
179 page = find_get_page(inode->i_mapping,
180 start >> PAGE_CACHE_SHIFT);
181 btrfs_set_file_extent_compression(leaf, ei, 0);
182 kaddr = kmap_atomic(page, KM_USER0);
183 offset = start & (PAGE_CACHE_SIZE - 1);
184 write_extent_buffer(leaf, kaddr + offset, ptr, size);
185 kunmap_atomic(kaddr, KM_USER0);
186 page_cache_release(page);
188 btrfs_mark_buffer_dirty(leaf);
189 btrfs_free_path(path);
191 BTRFS_I(inode)->disk_i_size = inode->i_size;
192 btrfs_update_inode(trans, root, inode);
193 return 0;
194 fail:
195 btrfs_free_path(path);
196 return err;
201 * conditionally insert an inline extent into the file. This
202 * does the checks required to make sure the data is small enough
203 * to fit as an inline extent.
205 static noinline int cow_file_range_inline(struct btrfs_trans_handle *trans,
206 struct btrfs_root *root,
207 struct inode *inode, u64 start, u64 end,
208 size_t compressed_size,
209 struct page **compressed_pages)
211 u64 isize = i_size_read(inode);
212 u64 actual_end = min(end + 1, isize);
213 u64 inline_len = actual_end - start;
214 u64 aligned_end = (end + root->sectorsize - 1) &
215 ~((u64)root->sectorsize - 1);
216 u64 hint_byte;
217 u64 data_len = inline_len;
218 int ret;
220 if (compressed_size)
221 data_len = compressed_size;
223 if (start > 0 ||
224 actual_end >= PAGE_CACHE_SIZE ||
225 data_len >= BTRFS_MAX_INLINE_DATA_SIZE(root) ||
226 (!compressed_size &&
227 (actual_end & (root->sectorsize - 1)) == 0) ||
228 end + 1 < isize ||
229 data_len > root->fs_info->max_inline) {
230 return 1;
233 ret = btrfs_drop_extents(trans, root, inode, start,
234 aligned_end, aligned_end, start,
235 &hint_byte, 1);
236 BUG_ON(ret);
238 if (isize > actual_end)
239 inline_len = min_t(u64, isize, actual_end);
240 ret = insert_inline_extent(trans, root, inode, start,
241 inline_len, compressed_size,
242 compressed_pages);
243 BUG_ON(ret);
244 btrfs_drop_extent_cache(inode, start, aligned_end - 1, 0);
245 return 0;
248 struct async_extent {
249 u64 start;
250 u64 ram_size;
251 u64 compressed_size;
252 struct page **pages;
253 unsigned long nr_pages;
254 struct list_head list;
257 struct async_cow {
258 struct inode *inode;
259 struct btrfs_root *root;
260 struct page *locked_page;
261 u64 start;
262 u64 end;
263 struct list_head extents;
264 struct btrfs_work work;
267 static noinline int add_async_extent(struct async_cow *cow,
268 u64 start, u64 ram_size,
269 u64 compressed_size,
270 struct page **pages,
271 unsigned long nr_pages)
273 struct async_extent *async_extent;
275 async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS);
276 async_extent->start = start;
277 async_extent->ram_size = ram_size;
278 async_extent->compressed_size = compressed_size;
279 async_extent->pages = pages;
280 async_extent->nr_pages = nr_pages;
281 list_add_tail(&async_extent->list, &cow->extents);
282 return 0;
286 * we create compressed extents in two phases. The first
287 * phase compresses a range of pages that have already been
288 * locked (both pages and state bits are locked).
290 * This is done inside an ordered work queue, and the compression
291 * is spread across many cpus. The actual IO submission is step
292 * two, and the ordered work queue takes care of making sure that
293 * happens in the same order things were put onto the queue by
294 * writepages and friends.
296 * If this code finds it can't get good compression, it puts an
297 * entry onto the work queue to write the uncompressed bytes. This
298 * makes sure that both compressed inodes and uncompressed inodes
299 * are written in the same order that pdflush sent them down.
301 static noinline int compress_file_range(struct inode *inode,
302 struct page *locked_page,
303 u64 start, u64 end,
304 struct async_cow *async_cow,
305 int *num_added)
307 struct btrfs_root *root = BTRFS_I(inode)->root;
308 struct btrfs_trans_handle *trans;
309 u64 num_bytes;
310 u64 orig_start;
311 u64 disk_num_bytes;
312 u64 blocksize = root->sectorsize;
313 u64 actual_end;
314 u64 isize = i_size_read(inode);
315 int ret = 0;
316 struct page **pages = NULL;
317 unsigned long nr_pages;
318 unsigned long nr_pages_ret = 0;
319 unsigned long total_compressed = 0;
320 unsigned long total_in = 0;
321 unsigned long max_compressed = 128 * 1024;
322 unsigned long max_uncompressed = 128 * 1024;
323 int i;
324 int will_compress;
326 orig_start = start;
328 actual_end = min_t(u64, isize, end + 1);
329 again:
330 will_compress = 0;
331 nr_pages = (end >> PAGE_CACHE_SHIFT) - (start >> PAGE_CACHE_SHIFT) + 1;
332 nr_pages = min(nr_pages, (128 * 1024UL) / PAGE_CACHE_SIZE);
335 * we don't want to send crud past the end of i_size through
336 * compression, that's just a waste of CPU time. So, if the
337 * end of the file is before the start of our current
338 * requested range of bytes, we bail out to the uncompressed
339 * cleanup code that can deal with all of this.
341 * It isn't really the fastest way to fix things, but this is a
342 * very uncommon corner.
344 if (actual_end <= start)
345 goto cleanup_and_bail_uncompressed;
347 total_compressed = actual_end - start;
349 /* we want to make sure that amount of ram required to uncompress
350 * an extent is reasonable, so we limit the total size in ram
351 * of a compressed extent to 128k. This is a crucial number
352 * because it also controls how easily we can spread reads across
353 * cpus for decompression.
355 * We also want to make sure the amount of IO required to do
356 * a random read is reasonably small, so we limit the size of
357 * a compressed extent to 128k.
359 total_compressed = min(total_compressed, max_uncompressed);
360 num_bytes = (end - start + blocksize) & ~(blocksize - 1);
361 num_bytes = max(blocksize, num_bytes);
362 disk_num_bytes = num_bytes;
363 total_in = 0;
364 ret = 0;
367 * we do compression for mount -o compress and when the
368 * inode has not been flagged as nocompress. This flag can
369 * change at any time if we discover bad compression ratios.
371 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS) &&
372 btrfs_test_opt(root, COMPRESS)) {
373 WARN_ON(pages);
374 pages = kzalloc(sizeof(struct page *) * nr_pages, GFP_NOFS);
376 ret = btrfs_zlib_compress_pages(inode->i_mapping, start,
377 total_compressed, pages,
378 nr_pages, &nr_pages_ret,
379 &total_in,
380 &total_compressed,
381 max_compressed);
383 if (!ret) {
384 unsigned long offset = total_compressed &
385 (PAGE_CACHE_SIZE - 1);
386 struct page *page = pages[nr_pages_ret - 1];
387 char *kaddr;
389 /* zero the tail end of the last page, we might be
390 * sending it down to disk
392 if (offset) {
393 kaddr = kmap_atomic(page, KM_USER0);
394 memset(kaddr + offset, 0,
395 PAGE_CACHE_SIZE - offset);
396 kunmap_atomic(kaddr, KM_USER0);
398 will_compress = 1;
401 if (start == 0) {
402 trans = btrfs_join_transaction(root, 1);
403 BUG_ON(!trans);
404 btrfs_set_trans_block_group(trans, inode);
406 /* lets try to make an inline extent */
407 if (ret || total_in < (actual_end - start)) {
408 /* we didn't compress the entire range, try
409 * to make an uncompressed inline extent.
411 ret = cow_file_range_inline(trans, root, inode,
412 start, end, 0, NULL);
413 } else {
414 /* try making a compressed inline extent */
415 ret = cow_file_range_inline(trans, root, inode,
416 start, end,
417 total_compressed, pages);
419 btrfs_end_transaction(trans, root);
420 if (ret == 0) {
422 * inline extent creation worked, we don't need
423 * to create any more async work items. Unlock
424 * and free up our temp pages.
426 extent_clear_unlock_delalloc(inode,
427 &BTRFS_I(inode)->io_tree,
428 start, end, NULL, 1, 0,
429 0, 1, 1, 1, 0);
430 ret = 0;
431 goto free_pages_out;
435 if (will_compress) {
437 * we aren't doing an inline extent round the compressed size
438 * up to a block size boundary so the allocator does sane
439 * things
441 total_compressed = (total_compressed + blocksize - 1) &
442 ~(blocksize - 1);
445 * one last check to make sure the compression is really a
446 * win, compare the page count read with the blocks on disk
448 total_in = (total_in + PAGE_CACHE_SIZE - 1) &
449 ~(PAGE_CACHE_SIZE - 1);
450 if (total_compressed >= total_in) {
451 will_compress = 0;
452 } else {
453 disk_num_bytes = total_compressed;
454 num_bytes = total_in;
457 if (!will_compress && pages) {
459 * the compression code ran but failed to make things smaller,
460 * free any pages it allocated and our page pointer array
462 for (i = 0; i < nr_pages_ret; i++) {
463 WARN_ON(pages[i]->mapping);
464 page_cache_release(pages[i]);
466 kfree(pages);
467 pages = NULL;
468 total_compressed = 0;
469 nr_pages_ret = 0;
471 /* flag the file so we don't compress in the future */
472 BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
474 if (will_compress) {
475 *num_added += 1;
477 /* the async work queues will take care of doing actual
478 * allocation on disk for these compressed pages,
479 * and will submit them to the elevator.
481 add_async_extent(async_cow, start, num_bytes,
482 total_compressed, pages, nr_pages_ret);
484 if (start + num_bytes < end && start + num_bytes < actual_end) {
485 start += num_bytes;
486 pages = NULL;
487 cond_resched();
488 goto again;
490 } else {
491 cleanup_and_bail_uncompressed:
493 * No compression, but we still need to write the pages in
494 * the file we've been given so far. redirty the locked
495 * page if it corresponds to our extent and set things up
496 * for the async work queue to run cow_file_range to do
497 * the normal delalloc dance
499 if (page_offset(locked_page) >= start &&
500 page_offset(locked_page) <= end) {
501 __set_page_dirty_nobuffers(locked_page);
502 /* unlocked later on in the async handlers */
504 add_async_extent(async_cow, start, end - start + 1, 0, NULL, 0);
505 *num_added += 1;
508 out:
509 return 0;
511 free_pages_out:
512 for (i = 0; i < nr_pages_ret; i++) {
513 WARN_ON(pages[i]->mapping);
514 page_cache_release(pages[i]);
516 kfree(pages);
518 goto out;
522 * phase two of compressed writeback. This is the ordered portion
523 * of the code, which only gets called in the order the work was
524 * queued. We walk all the async extents created by compress_file_range
525 * and send them down to the disk.
527 static noinline int submit_compressed_extents(struct inode *inode,
528 struct async_cow *async_cow)
530 struct async_extent *async_extent;
531 u64 alloc_hint = 0;
532 struct btrfs_trans_handle *trans;
533 struct btrfs_key ins;
534 struct extent_map *em;
535 struct btrfs_root *root = BTRFS_I(inode)->root;
536 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
537 struct extent_io_tree *io_tree;
538 int ret;
540 if (list_empty(&async_cow->extents))
541 return 0;
543 trans = btrfs_join_transaction(root, 1);
545 while (!list_empty(&async_cow->extents)) {
546 async_extent = list_entry(async_cow->extents.next,
547 struct async_extent, list);
548 list_del(&async_extent->list);
550 io_tree = &BTRFS_I(inode)->io_tree;
552 /* did the compression code fall back to uncompressed IO? */
553 if (!async_extent->pages) {
554 int page_started = 0;
555 unsigned long nr_written = 0;
557 lock_extent(io_tree, async_extent->start,
558 async_extent->start +
559 async_extent->ram_size - 1, GFP_NOFS);
561 /* allocate blocks */
562 cow_file_range(inode, async_cow->locked_page,
563 async_extent->start,
564 async_extent->start +
565 async_extent->ram_size - 1,
566 &page_started, &nr_written, 0);
569 * if page_started, cow_file_range inserted an
570 * inline extent and took care of all the unlocking
571 * and IO for us. Otherwise, we need to submit
572 * all those pages down to the drive.
574 if (!page_started)
575 extent_write_locked_range(io_tree,
576 inode, async_extent->start,
577 async_extent->start +
578 async_extent->ram_size - 1,
579 btrfs_get_extent,
580 WB_SYNC_ALL);
581 kfree(async_extent);
582 cond_resched();
583 continue;
586 lock_extent(io_tree, async_extent->start,
587 async_extent->start + async_extent->ram_size - 1,
588 GFP_NOFS);
590 * here we're doing allocation and writeback of the
591 * compressed pages
593 btrfs_drop_extent_cache(inode, async_extent->start,
594 async_extent->start +
595 async_extent->ram_size - 1, 0);
597 ret = btrfs_reserve_extent(trans, root,
598 async_extent->compressed_size,
599 async_extent->compressed_size,
600 0, alloc_hint,
601 (u64)-1, &ins, 1);
602 BUG_ON(ret);
603 em = alloc_extent_map(GFP_NOFS);
604 em->start = async_extent->start;
605 em->len = async_extent->ram_size;
606 em->orig_start = em->start;
608 em->block_start = ins.objectid;
609 em->block_len = ins.offset;
610 em->bdev = root->fs_info->fs_devices->latest_bdev;
611 set_bit(EXTENT_FLAG_PINNED, &em->flags);
612 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
614 while (1) {
615 write_lock(&em_tree->lock);
616 ret = add_extent_mapping(em_tree, em);
617 write_unlock(&em_tree->lock);
618 if (ret != -EEXIST) {
619 free_extent_map(em);
620 break;
622 btrfs_drop_extent_cache(inode, async_extent->start,
623 async_extent->start +
624 async_extent->ram_size - 1, 0);
627 ret = btrfs_add_ordered_extent(inode, async_extent->start,
628 ins.objectid,
629 async_extent->ram_size,
630 ins.offset,
631 BTRFS_ORDERED_COMPRESSED);
632 BUG_ON(ret);
634 btrfs_end_transaction(trans, root);
637 * clear dirty, set writeback and unlock the pages.
639 extent_clear_unlock_delalloc(inode,
640 &BTRFS_I(inode)->io_tree,
641 async_extent->start,
642 async_extent->start +
643 async_extent->ram_size - 1,
644 NULL, 1, 1, 0, 1, 1, 0, 0);
646 ret = btrfs_submit_compressed_write(inode,
647 async_extent->start,
648 async_extent->ram_size,
649 ins.objectid,
650 ins.offset, async_extent->pages,
651 async_extent->nr_pages);
653 BUG_ON(ret);
654 trans = btrfs_join_transaction(root, 1);
655 alloc_hint = ins.objectid + ins.offset;
656 kfree(async_extent);
657 cond_resched();
660 btrfs_end_transaction(trans, root);
661 return 0;
665 * when extent_io.c finds a delayed allocation range in the file,
666 * the call backs end up in this code. The basic idea is to
667 * allocate extents on disk for the range, and create ordered data structs
668 * in ram to track those extents.
670 * locked_page is the page that writepage had locked already. We use
671 * it to make sure we don't do extra locks or unlocks.
673 * *page_started is set to one if we unlock locked_page and do everything
674 * required to start IO on it. It may be clean and already done with
675 * IO when we return.
677 static noinline int cow_file_range(struct inode *inode,
678 struct page *locked_page,
679 u64 start, u64 end, int *page_started,
680 unsigned long *nr_written,
681 int unlock)
683 struct btrfs_root *root = BTRFS_I(inode)->root;
684 struct btrfs_trans_handle *trans;
685 u64 alloc_hint = 0;
686 u64 num_bytes;
687 unsigned long ram_size;
688 u64 disk_num_bytes;
689 u64 cur_alloc_size;
690 u64 blocksize = root->sectorsize;
691 u64 actual_end;
692 u64 isize = i_size_read(inode);
693 struct btrfs_key ins;
694 struct extent_map *em;
695 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
696 int ret = 0;
698 trans = btrfs_join_transaction(root, 1);
699 BUG_ON(!trans);
700 btrfs_set_trans_block_group(trans, inode);
702 actual_end = min_t(u64, isize, end + 1);
704 num_bytes = (end - start + blocksize) & ~(blocksize - 1);
705 num_bytes = max(blocksize, num_bytes);
706 disk_num_bytes = num_bytes;
707 ret = 0;
709 if (start == 0) {
710 /* lets try to make an inline extent */
711 ret = cow_file_range_inline(trans, root, inode,
712 start, end, 0, NULL);
713 if (ret == 0) {
714 extent_clear_unlock_delalloc(inode,
715 &BTRFS_I(inode)->io_tree,
716 start, end, NULL, 1, 1,
717 1, 1, 1, 1, 0);
718 *nr_written = *nr_written +
719 (end - start + PAGE_CACHE_SIZE) / PAGE_CACHE_SIZE;
720 *page_started = 1;
721 ret = 0;
722 goto out;
726 BUG_ON(disk_num_bytes >
727 btrfs_super_total_bytes(&root->fs_info->super_copy));
730 read_lock(&BTRFS_I(inode)->extent_tree.lock);
731 em = search_extent_mapping(&BTRFS_I(inode)->extent_tree,
732 start, num_bytes);
733 if (em) {
734 alloc_hint = em->block_start;
735 free_extent_map(em);
737 read_unlock(&BTRFS_I(inode)->extent_tree.lock);
738 btrfs_drop_extent_cache(inode, start, start + num_bytes - 1, 0);
740 while (disk_num_bytes > 0) {
741 cur_alloc_size = min(disk_num_bytes, root->fs_info->max_extent);
742 ret = btrfs_reserve_extent(trans, root, cur_alloc_size,
743 root->sectorsize, 0, alloc_hint,
744 (u64)-1, &ins, 1);
745 BUG_ON(ret);
747 em = alloc_extent_map(GFP_NOFS);
748 em->start = start;
749 em->orig_start = em->start;
750 ram_size = ins.offset;
751 em->len = ins.offset;
753 em->block_start = ins.objectid;
754 em->block_len = ins.offset;
755 em->bdev = root->fs_info->fs_devices->latest_bdev;
756 set_bit(EXTENT_FLAG_PINNED, &em->flags);
758 while (1) {
759 write_lock(&em_tree->lock);
760 ret = add_extent_mapping(em_tree, em);
761 write_unlock(&em_tree->lock);
762 if (ret != -EEXIST) {
763 free_extent_map(em);
764 break;
766 btrfs_drop_extent_cache(inode, start,
767 start + ram_size - 1, 0);
770 cur_alloc_size = ins.offset;
771 ret = btrfs_add_ordered_extent(inode, start, ins.objectid,
772 ram_size, cur_alloc_size, 0);
773 BUG_ON(ret);
775 if (root->root_key.objectid ==
776 BTRFS_DATA_RELOC_TREE_OBJECTID) {
777 ret = btrfs_reloc_clone_csums(inode, start,
778 cur_alloc_size);
779 BUG_ON(ret);
782 if (disk_num_bytes < cur_alloc_size)
783 break;
785 /* we're not doing compressed IO, don't unlock the first
786 * page (which the caller expects to stay locked), don't
787 * clear any dirty bits and don't set any writeback bits
789 * Do set the Private2 bit so we know this page was properly
790 * setup for writepage
792 extent_clear_unlock_delalloc(inode, &BTRFS_I(inode)->io_tree,
793 start, start + ram_size - 1,
794 locked_page, unlock, 1,
795 1, 0, 0, 0, 1);
796 disk_num_bytes -= cur_alloc_size;
797 num_bytes -= cur_alloc_size;
798 alloc_hint = ins.objectid + ins.offset;
799 start += cur_alloc_size;
801 out:
802 ret = 0;
803 btrfs_end_transaction(trans, root);
805 return ret;
809 * work queue call back to started compression on a file and pages
811 static noinline void async_cow_start(struct btrfs_work *work)
813 struct async_cow *async_cow;
814 int num_added = 0;
815 async_cow = container_of(work, struct async_cow, work);
817 compress_file_range(async_cow->inode, async_cow->locked_page,
818 async_cow->start, async_cow->end, async_cow,
819 &num_added);
820 if (num_added == 0)
821 async_cow->inode = NULL;
825 * work queue call back to submit previously compressed pages
827 static noinline void async_cow_submit(struct btrfs_work *work)
829 struct async_cow *async_cow;
830 struct btrfs_root *root;
831 unsigned long nr_pages;
833 async_cow = container_of(work, struct async_cow, work);
835 root = async_cow->root;
836 nr_pages = (async_cow->end - async_cow->start + PAGE_CACHE_SIZE) >>
837 PAGE_CACHE_SHIFT;
839 atomic_sub(nr_pages, &root->fs_info->async_delalloc_pages);
841 if (atomic_read(&root->fs_info->async_delalloc_pages) <
842 5 * 1042 * 1024 &&
843 waitqueue_active(&root->fs_info->async_submit_wait))
844 wake_up(&root->fs_info->async_submit_wait);
846 if (async_cow->inode)
847 submit_compressed_extents(async_cow->inode, async_cow);
850 static noinline void async_cow_free(struct btrfs_work *work)
852 struct async_cow *async_cow;
853 async_cow = container_of(work, struct async_cow, work);
854 kfree(async_cow);
857 static int cow_file_range_async(struct inode *inode, struct page *locked_page,
858 u64 start, u64 end, int *page_started,
859 unsigned long *nr_written)
861 struct async_cow *async_cow;
862 struct btrfs_root *root = BTRFS_I(inode)->root;
863 unsigned long nr_pages;
864 u64 cur_end;
865 int limit = 10 * 1024 * 1042;
867 clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, EXTENT_LOCKED |
868 EXTENT_DELALLOC, 1, 0, NULL, GFP_NOFS);
869 while (start < end) {
870 async_cow = kmalloc(sizeof(*async_cow), GFP_NOFS);
871 async_cow->inode = inode;
872 async_cow->root = root;
873 async_cow->locked_page = locked_page;
874 async_cow->start = start;
876 if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS)
877 cur_end = end;
878 else
879 cur_end = min(end, start + 512 * 1024 - 1);
881 async_cow->end = cur_end;
882 INIT_LIST_HEAD(&async_cow->extents);
884 async_cow->work.func = async_cow_start;
885 async_cow->work.ordered_func = async_cow_submit;
886 async_cow->work.ordered_free = async_cow_free;
887 async_cow->work.flags = 0;
889 nr_pages = (cur_end - start + PAGE_CACHE_SIZE) >>
890 PAGE_CACHE_SHIFT;
891 atomic_add(nr_pages, &root->fs_info->async_delalloc_pages);
893 btrfs_queue_worker(&root->fs_info->delalloc_workers,
894 &async_cow->work);
896 if (atomic_read(&root->fs_info->async_delalloc_pages) > limit) {
897 wait_event(root->fs_info->async_submit_wait,
898 (atomic_read(&root->fs_info->async_delalloc_pages) <
899 limit));
902 while (atomic_read(&root->fs_info->async_submit_draining) &&
903 atomic_read(&root->fs_info->async_delalloc_pages)) {
904 wait_event(root->fs_info->async_submit_wait,
905 (atomic_read(&root->fs_info->async_delalloc_pages) ==
906 0));
909 *nr_written += nr_pages;
910 start = cur_end + 1;
912 *page_started = 1;
913 return 0;
916 static noinline int csum_exist_in_range(struct btrfs_root *root,
917 u64 bytenr, u64 num_bytes)
919 int ret;
920 struct btrfs_ordered_sum *sums;
921 LIST_HEAD(list);
923 ret = btrfs_lookup_csums_range(root->fs_info->csum_root, bytenr,
924 bytenr + num_bytes - 1, &list);
925 if (ret == 0 && list_empty(&list))
926 return 0;
928 while (!list_empty(&list)) {
929 sums = list_entry(list.next, struct btrfs_ordered_sum, list);
930 list_del(&sums->list);
931 kfree(sums);
933 return 1;
937 * when nowcow writeback call back. This checks for snapshots or COW copies
938 * of the extents that exist in the file, and COWs the file as required.
940 * If no cow copies or snapshots exist, we write directly to the existing
941 * blocks on disk
943 static noinline int run_delalloc_nocow(struct inode *inode,
944 struct page *locked_page,
945 u64 start, u64 end, int *page_started, int force,
946 unsigned long *nr_written)
948 struct btrfs_root *root = BTRFS_I(inode)->root;
949 struct btrfs_trans_handle *trans;
950 struct extent_buffer *leaf;
951 struct btrfs_path *path;
952 struct btrfs_file_extent_item *fi;
953 struct btrfs_key found_key;
954 u64 cow_start;
955 u64 cur_offset;
956 u64 extent_end;
957 u64 extent_offset;
958 u64 disk_bytenr;
959 u64 num_bytes;
960 int extent_type;
961 int ret;
962 int type;
963 int nocow;
964 int check_prev = 1;
966 path = btrfs_alloc_path();
967 BUG_ON(!path);
968 trans = btrfs_join_transaction(root, 1);
969 BUG_ON(!trans);
971 cow_start = (u64)-1;
972 cur_offset = start;
973 while (1) {
974 ret = btrfs_lookup_file_extent(trans, root, path, inode->i_ino,
975 cur_offset, 0);
976 BUG_ON(ret < 0);
977 if (ret > 0 && path->slots[0] > 0 && check_prev) {
978 leaf = path->nodes[0];
979 btrfs_item_key_to_cpu(leaf, &found_key,
980 path->slots[0] - 1);
981 if (found_key.objectid == inode->i_ino &&
982 found_key.type == BTRFS_EXTENT_DATA_KEY)
983 path->slots[0]--;
985 check_prev = 0;
986 next_slot:
987 leaf = path->nodes[0];
988 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
989 ret = btrfs_next_leaf(root, path);
990 if (ret < 0)
991 BUG_ON(1);
992 if (ret > 0)
993 break;
994 leaf = path->nodes[0];
997 nocow = 0;
998 disk_bytenr = 0;
999 num_bytes = 0;
1000 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1002 if (found_key.objectid > inode->i_ino ||
1003 found_key.type > BTRFS_EXTENT_DATA_KEY ||
1004 found_key.offset > end)
1005 break;
1007 if (found_key.offset > cur_offset) {
1008 extent_end = found_key.offset;
1009 goto out_check;
1012 fi = btrfs_item_ptr(leaf, path->slots[0],
1013 struct btrfs_file_extent_item);
1014 extent_type = btrfs_file_extent_type(leaf, fi);
1016 if (extent_type == BTRFS_FILE_EXTENT_REG ||
1017 extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1018 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1019 extent_offset = btrfs_file_extent_offset(leaf, fi);
1020 extent_end = found_key.offset +
1021 btrfs_file_extent_num_bytes(leaf, fi);
1022 if (extent_end <= start) {
1023 path->slots[0]++;
1024 goto next_slot;
1026 if (disk_bytenr == 0)
1027 goto out_check;
1028 if (btrfs_file_extent_compression(leaf, fi) ||
1029 btrfs_file_extent_encryption(leaf, fi) ||
1030 btrfs_file_extent_other_encoding(leaf, fi))
1031 goto out_check;
1032 if (extent_type == BTRFS_FILE_EXTENT_REG && !force)
1033 goto out_check;
1034 if (btrfs_extent_readonly(root, disk_bytenr))
1035 goto out_check;
1036 if (btrfs_cross_ref_exist(trans, root, inode->i_ino,
1037 found_key.offset -
1038 extent_offset, disk_bytenr))
1039 goto out_check;
1040 disk_bytenr += extent_offset;
1041 disk_bytenr += cur_offset - found_key.offset;
1042 num_bytes = min(end + 1, extent_end) - cur_offset;
1044 * force cow if csum exists in the range.
1045 * this ensure that csum for a given extent are
1046 * either valid or do not exist.
1048 if (csum_exist_in_range(root, disk_bytenr, num_bytes))
1049 goto out_check;
1050 nocow = 1;
1051 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
1052 extent_end = found_key.offset +
1053 btrfs_file_extent_inline_len(leaf, fi);
1054 extent_end = ALIGN(extent_end, root->sectorsize);
1055 } else {
1056 BUG_ON(1);
1058 out_check:
1059 if (extent_end <= start) {
1060 path->slots[0]++;
1061 goto next_slot;
1063 if (!nocow) {
1064 if (cow_start == (u64)-1)
1065 cow_start = cur_offset;
1066 cur_offset = extent_end;
1067 if (cur_offset > end)
1068 break;
1069 path->slots[0]++;
1070 goto next_slot;
1073 btrfs_release_path(root, path);
1074 if (cow_start != (u64)-1) {
1075 ret = cow_file_range(inode, locked_page, cow_start,
1076 found_key.offset - 1, page_started,
1077 nr_written, 1);
1078 BUG_ON(ret);
1079 cow_start = (u64)-1;
1082 if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1083 struct extent_map *em;
1084 struct extent_map_tree *em_tree;
1085 em_tree = &BTRFS_I(inode)->extent_tree;
1086 em = alloc_extent_map(GFP_NOFS);
1087 em->start = cur_offset;
1088 em->orig_start = em->start;
1089 em->len = num_bytes;
1090 em->block_len = num_bytes;
1091 em->block_start = disk_bytenr;
1092 em->bdev = root->fs_info->fs_devices->latest_bdev;
1093 set_bit(EXTENT_FLAG_PINNED, &em->flags);
1094 while (1) {
1095 write_lock(&em_tree->lock);
1096 ret = add_extent_mapping(em_tree, em);
1097 write_unlock(&em_tree->lock);
1098 if (ret != -EEXIST) {
1099 free_extent_map(em);
1100 break;
1102 btrfs_drop_extent_cache(inode, em->start,
1103 em->start + em->len - 1, 0);
1105 type = BTRFS_ORDERED_PREALLOC;
1106 } else {
1107 type = BTRFS_ORDERED_NOCOW;
1110 ret = btrfs_add_ordered_extent(inode, cur_offset, disk_bytenr,
1111 num_bytes, num_bytes, type);
1112 BUG_ON(ret);
1114 extent_clear_unlock_delalloc(inode, &BTRFS_I(inode)->io_tree,
1115 cur_offset, cur_offset + num_bytes - 1,
1116 locked_page, 1, 1, 1, 0, 0, 0, 1);
1117 cur_offset = extent_end;
1118 if (cur_offset > end)
1119 break;
1121 btrfs_release_path(root, path);
1123 if (cur_offset <= end && cow_start == (u64)-1)
1124 cow_start = cur_offset;
1125 if (cow_start != (u64)-1) {
1126 ret = cow_file_range(inode, locked_page, cow_start, end,
1127 page_started, nr_written, 1);
1128 BUG_ON(ret);
1131 ret = btrfs_end_transaction(trans, root);
1132 BUG_ON(ret);
1133 btrfs_free_path(path);
1134 return 0;
1138 * extent_io.c call back to do delayed allocation processing
1140 static int run_delalloc_range(struct inode *inode, struct page *locked_page,
1141 u64 start, u64 end, int *page_started,
1142 unsigned long *nr_written)
1144 int ret;
1145 struct btrfs_root *root = BTRFS_I(inode)->root;
1147 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW)
1148 ret = run_delalloc_nocow(inode, locked_page, start, end,
1149 page_started, 1, nr_written);
1150 else if (BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC)
1151 ret = run_delalloc_nocow(inode, locked_page, start, end,
1152 page_started, 0, nr_written);
1153 else if (!btrfs_test_opt(root, COMPRESS))
1154 ret = cow_file_range(inode, locked_page, start, end,
1155 page_started, nr_written, 1);
1156 else
1157 ret = cow_file_range_async(inode, locked_page, start, end,
1158 page_started, nr_written);
1159 return ret;
1162 static int btrfs_split_extent_hook(struct inode *inode,
1163 struct extent_state *orig, u64 split)
1165 struct btrfs_root *root = BTRFS_I(inode)->root;
1166 u64 size;
1168 if (!(orig->state & EXTENT_DELALLOC))
1169 return 0;
1171 size = orig->end - orig->start + 1;
1172 if (size > root->fs_info->max_extent) {
1173 u64 num_extents;
1174 u64 new_size;
1176 new_size = orig->end - split + 1;
1177 num_extents = div64_u64(size + root->fs_info->max_extent - 1,
1178 root->fs_info->max_extent);
1181 * if we break a large extent up then leave delalloc_extents be,
1182 * since we've already accounted for the large extent.
1184 if (div64_u64(new_size + root->fs_info->max_extent - 1,
1185 root->fs_info->max_extent) < num_extents)
1186 return 0;
1189 BTRFS_I(inode)->delalloc_extents++;
1191 return 0;
1195 * extent_io.c merge_extent_hook, used to track merged delayed allocation
1196 * extents so we can keep track of new extents that are just merged onto old
1197 * extents, such as when we are doing sequential writes, so we can properly
1198 * account for the metadata space we'll need.
1200 static int btrfs_merge_extent_hook(struct inode *inode,
1201 struct extent_state *new,
1202 struct extent_state *other)
1204 struct btrfs_root *root = BTRFS_I(inode)->root;
1205 u64 new_size, old_size;
1206 u64 num_extents;
1208 /* not delalloc, ignore it */
1209 if (!(other->state & EXTENT_DELALLOC))
1210 return 0;
1212 old_size = other->end - other->start + 1;
1213 if (new->start < other->start)
1214 new_size = other->end - new->start + 1;
1215 else
1216 new_size = new->end - other->start + 1;
1218 /* we're not bigger than the max, unreserve the space and go */
1219 if (new_size <= root->fs_info->max_extent) {
1220 BTRFS_I(inode)->delalloc_extents--;
1221 return 0;
1225 * If we grew by another max_extent, just return, we want to keep that
1226 * reserved amount.
1228 num_extents = div64_u64(old_size + root->fs_info->max_extent - 1,
1229 root->fs_info->max_extent);
1230 if (div64_u64(new_size + root->fs_info->max_extent - 1,
1231 root->fs_info->max_extent) > num_extents)
1232 return 0;
1234 BTRFS_I(inode)->delalloc_extents--;
1236 return 0;
1240 * extent_io.c set_bit_hook, used to track delayed allocation
1241 * bytes in this file, and to maintain the list of inodes that
1242 * have pending delalloc work to be done.
1244 static int btrfs_set_bit_hook(struct inode *inode, u64 start, u64 end,
1245 unsigned long old, unsigned long bits)
1249 * set_bit and clear bit hooks normally require _irqsave/restore
1250 * but in this case, we are only testeing for the DELALLOC
1251 * bit, which is only set or cleared with irqs on
1253 if (!(old & EXTENT_DELALLOC) && (bits & EXTENT_DELALLOC)) {
1254 struct btrfs_root *root = BTRFS_I(inode)->root;
1256 BTRFS_I(inode)->delalloc_extents++;
1257 btrfs_delalloc_reserve_space(root, inode, end - start + 1);
1258 spin_lock(&root->fs_info->delalloc_lock);
1259 BTRFS_I(inode)->delalloc_bytes += end - start + 1;
1260 root->fs_info->delalloc_bytes += end - start + 1;
1261 if (list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1262 list_add_tail(&BTRFS_I(inode)->delalloc_inodes,
1263 &root->fs_info->delalloc_inodes);
1265 spin_unlock(&root->fs_info->delalloc_lock);
1267 return 0;
1271 * extent_io.c clear_bit_hook, see set_bit_hook for why
1273 static int btrfs_clear_bit_hook(struct inode *inode,
1274 struct extent_state *state, unsigned long bits)
1277 * set_bit and clear bit hooks normally require _irqsave/restore
1278 * but in this case, we are only testeing for the DELALLOC
1279 * bit, which is only set or cleared with irqs on
1281 if ((state->state & EXTENT_DELALLOC) && (bits & EXTENT_DELALLOC)) {
1282 struct btrfs_root *root = BTRFS_I(inode)->root;
1284 BTRFS_I(inode)->delalloc_extents--;
1285 btrfs_unreserve_metadata_for_delalloc(root, inode, 1);
1287 spin_lock(&root->fs_info->delalloc_lock);
1288 if (state->end - state->start + 1 >
1289 root->fs_info->delalloc_bytes) {
1290 printk(KERN_INFO "btrfs warning: delalloc account "
1291 "%llu %llu\n",
1292 (unsigned long long)
1293 state->end - state->start + 1,
1294 (unsigned long long)
1295 root->fs_info->delalloc_bytes);
1296 btrfs_delalloc_free_space(root, inode, (u64)-1);
1297 root->fs_info->delalloc_bytes = 0;
1298 BTRFS_I(inode)->delalloc_bytes = 0;
1299 } else {
1300 btrfs_delalloc_free_space(root, inode,
1301 state->end -
1302 state->start + 1);
1303 root->fs_info->delalloc_bytes -= state->end -
1304 state->start + 1;
1305 BTRFS_I(inode)->delalloc_bytes -= state->end -
1306 state->start + 1;
1308 if (BTRFS_I(inode)->delalloc_bytes == 0 &&
1309 !list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1310 list_del_init(&BTRFS_I(inode)->delalloc_inodes);
1312 spin_unlock(&root->fs_info->delalloc_lock);
1314 return 0;
1318 * extent_io.c merge_bio_hook, this must check the chunk tree to make sure
1319 * we don't create bios that span stripes or chunks
1321 int btrfs_merge_bio_hook(struct page *page, unsigned long offset,
1322 size_t size, struct bio *bio,
1323 unsigned long bio_flags)
1325 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
1326 struct btrfs_mapping_tree *map_tree;
1327 u64 logical = (u64)bio->bi_sector << 9;
1328 u64 length = 0;
1329 u64 map_length;
1330 int ret;
1332 if (bio_flags & EXTENT_BIO_COMPRESSED)
1333 return 0;
1335 length = bio->bi_size;
1336 map_tree = &root->fs_info->mapping_tree;
1337 map_length = length;
1338 ret = btrfs_map_block(map_tree, READ, logical,
1339 &map_length, NULL, 0);
1341 if (map_length < length + size)
1342 return 1;
1343 return 0;
1347 * in order to insert checksums into the metadata in large chunks,
1348 * we wait until bio submission time. All the pages in the bio are
1349 * checksummed and sums are attached onto the ordered extent record.
1351 * At IO completion time the cums attached on the ordered extent record
1352 * are inserted into the btree
1354 static int __btrfs_submit_bio_start(struct inode *inode, int rw,
1355 struct bio *bio, int mirror_num,
1356 unsigned long bio_flags)
1358 struct btrfs_root *root = BTRFS_I(inode)->root;
1359 int ret = 0;
1361 ret = btrfs_csum_one_bio(root, inode, bio, 0, 0);
1362 BUG_ON(ret);
1363 return 0;
1367 * in order to insert checksums into the metadata in large chunks,
1368 * we wait until bio submission time. All the pages in the bio are
1369 * checksummed and sums are attached onto the ordered extent record.
1371 * At IO completion time the cums attached on the ordered extent record
1372 * are inserted into the btree
1374 static int __btrfs_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
1375 int mirror_num, unsigned long bio_flags)
1377 struct btrfs_root *root = BTRFS_I(inode)->root;
1378 return btrfs_map_bio(root, rw, bio, mirror_num, 1);
1382 * extent_io.c submission hook. This does the right thing for csum calculation
1383 * on write, or reading the csums from the tree before a read
1385 static int btrfs_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
1386 int mirror_num, unsigned long bio_flags)
1388 struct btrfs_root *root = BTRFS_I(inode)->root;
1389 int ret = 0;
1390 int skip_sum;
1392 skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
1394 ret = btrfs_bio_wq_end_io(root->fs_info, bio, 0);
1395 BUG_ON(ret);
1397 if (!(rw & (1 << BIO_RW))) {
1398 if (bio_flags & EXTENT_BIO_COMPRESSED) {
1399 return btrfs_submit_compressed_read(inode, bio,
1400 mirror_num, bio_flags);
1401 } else if (!skip_sum)
1402 btrfs_lookup_bio_sums(root, inode, bio, NULL);
1403 goto mapit;
1404 } else if (!skip_sum) {
1405 /* csum items have already been cloned */
1406 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
1407 goto mapit;
1408 /* we're doing a write, do the async checksumming */
1409 return btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
1410 inode, rw, bio, mirror_num,
1411 bio_flags, __btrfs_submit_bio_start,
1412 __btrfs_submit_bio_done);
1415 mapit:
1416 return btrfs_map_bio(root, rw, bio, mirror_num, 0);
1420 * given a list of ordered sums record them in the inode. This happens
1421 * at IO completion time based on sums calculated at bio submission time.
1423 static noinline int add_pending_csums(struct btrfs_trans_handle *trans,
1424 struct inode *inode, u64 file_offset,
1425 struct list_head *list)
1427 struct btrfs_ordered_sum *sum;
1429 btrfs_set_trans_block_group(trans, inode);
1431 list_for_each_entry(sum, list, list) {
1432 btrfs_csum_file_blocks(trans,
1433 BTRFS_I(inode)->root->fs_info->csum_root, sum);
1435 return 0;
1438 int btrfs_set_extent_delalloc(struct inode *inode, u64 start, u64 end)
1440 if ((end & (PAGE_CACHE_SIZE - 1)) == 0)
1441 WARN_ON(1);
1442 return set_extent_delalloc(&BTRFS_I(inode)->io_tree, start, end,
1443 GFP_NOFS);
1446 /* see btrfs_writepage_start_hook for details on why this is required */
1447 struct btrfs_writepage_fixup {
1448 struct page *page;
1449 struct btrfs_work work;
1452 static void btrfs_writepage_fixup_worker(struct btrfs_work *work)
1454 struct btrfs_writepage_fixup *fixup;
1455 struct btrfs_ordered_extent *ordered;
1456 struct page *page;
1457 struct inode *inode;
1458 u64 page_start;
1459 u64 page_end;
1461 fixup = container_of(work, struct btrfs_writepage_fixup, work);
1462 page = fixup->page;
1463 again:
1464 lock_page(page);
1465 if (!page->mapping || !PageDirty(page) || !PageChecked(page)) {
1466 ClearPageChecked(page);
1467 goto out_page;
1470 inode = page->mapping->host;
1471 page_start = page_offset(page);
1472 page_end = page_offset(page) + PAGE_CACHE_SIZE - 1;
1474 lock_extent(&BTRFS_I(inode)->io_tree, page_start, page_end, GFP_NOFS);
1476 /* already ordered? We're done */
1477 if (PagePrivate2(page))
1478 goto out;
1480 ordered = btrfs_lookup_ordered_extent(inode, page_start);
1481 if (ordered) {
1482 unlock_extent(&BTRFS_I(inode)->io_tree, page_start,
1483 page_end, GFP_NOFS);
1484 unlock_page(page);
1485 btrfs_start_ordered_extent(inode, ordered, 1);
1486 goto again;
1489 btrfs_set_extent_delalloc(inode, page_start, page_end);
1490 ClearPageChecked(page);
1491 out:
1492 unlock_extent(&BTRFS_I(inode)->io_tree, page_start, page_end, GFP_NOFS);
1493 out_page:
1494 unlock_page(page);
1495 page_cache_release(page);
1499 * There are a few paths in the higher layers of the kernel that directly
1500 * set the page dirty bit without asking the filesystem if it is a
1501 * good idea. This causes problems because we want to make sure COW
1502 * properly happens and the data=ordered rules are followed.
1504 * In our case any range that doesn't have the ORDERED bit set
1505 * hasn't been properly setup for IO. We kick off an async process
1506 * to fix it up. The async helper will wait for ordered extents, set
1507 * the delalloc bit and make it safe to write the page.
1509 static int btrfs_writepage_start_hook(struct page *page, u64 start, u64 end)
1511 struct inode *inode = page->mapping->host;
1512 struct btrfs_writepage_fixup *fixup;
1513 struct btrfs_root *root = BTRFS_I(inode)->root;
1515 /* this page is properly in the ordered list */
1516 if (TestClearPagePrivate2(page))
1517 return 0;
1519 if (PageChecked(page))
1520 return -EAGAIN;
1522 fixup = kzalloc(sizeof(*fixup), GFP_NOFS);
1523 if (!fixup)
1524 return -EAGAIN;
1526 SetPageChecked(page);
1527 page_cache_get(page);
1528 fixup->work.func = btrfs_writepage_fixup_worker;
1529 fixup->page = page;
1530 btrfs_queue_worker(&root->fs_info->fixup_workers, &fixup->work);
1531 return -EAGAIN;
1534 static int insert_reserved_file_extent(struct btrfs_trans_handle *trans,
1535 struct inode *inode, u64 file_pos,
1536 u64 disk_bytenr, u64 disk_num_bytes,
1537 u64 num_bytes, u64 ram_bytes,
1538 u64 locked_end,
1539 u8 compression, u8 encryption,
1540 u16 other_encoding, int extent_type)
1542 struct btrfs_root *root = BTRFS_I(inode)->root;
1543 struct btrfs_file_extent_item *fi;
1544 struct btrfs_path *path;
1545 struct extent_buffer *leaf;
1546 struct btrfs_key ins;
1547 u64 hint;
1548 int ret;
1550 path = btrfs_alloc_path();
1551 BUG_ON(!path);
1553 path->leave_spinning = 1;
1556 * we may be replacing one extent in the tree with another.
1557 * The new extent is pinned in the extent map, and we don't want
1558 * to drop it from the cache until it is completely in the btree.
1560 * So, tell btrfs_drop_extents to leave this extent in the cache.
1561 * the caller is expected to unpin it and allow it to be merged
1562 * with the others.
1564 ret = btrfs_drop_extents(trans, root, inode, file_pos,
1565 file_pos + num_bytes, locked_end,
1566 file_pos, &hint, 0);
1567 BUG_ON(ret);
1569 ins.objectid = inode->i_ino;
1570 ins.offset = file_pos;
1571 ins.type = BTRFS_EXTENT_DATA_KEY;
1572 ret = btrfs_insert_empty_item(trans, root, path, &ins, sizeof(*fi));
1573 BUG_ON(ret);
1574 leaf = path->nodes[0];
1575 fi = btrfs_item_ptr(leaf, path->slots[0],
1576 struct btrfs_file_extent_item);
1577 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1578 btrfs_set_file_extent_type(leaf, fi, extent_type);
1579 btrfs_set_file_extent_disk_bytenr(leaf, fi, disk_bytenr);
1580 btrfs_set_file_extent_disk_num_bytes(leaf, fi, disk_num_bytes);
1581 btrfs_set_file_extent_offset(leaf, fi, 0);
1582 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
1583 btrfs_set_file_extent_ram_bytes(leaf, fi, ram_bytes);
1584 btrfs_set_file_extent_compression(leaf, fi, compression);
1585 btrfs_set_file_extent_encryption(leaf, fi, encryption);
1586 btrfs_set_file_extent_other_encoding(leaf, fi, other_encoding);
1588 btrfs_unlock_up_safe(path, 1);
1589 btrfs_set_lock_blocking(leaf);
1591 btrfs_mark_buffer_dirty(leaf);
1593 inode_add_bytes(inode, num_bytes);
1595 ins.objectid = disk_bytenr;
1596 ins.offset = disk_num_bytes;
1597 ins.type = BTRFS_EXTENT_ITEM_KEY;
1598 ret = btrfs_alloc_reserved_file_extent(trans, root,
1599 root->root_key.objectid,
1600 inode->i_ino, file_pos, &ins);
1601 BUG_ON(ret);
1602 btrfs_free_path(path);
1604 return 0;
1608 * helper function for btrfs_finish_ordered_io, this
1609 * just reads in some of the csum leaves to prime them into ram
1610 * before we start the transaction. It limits the amount of btree
1611 * reads required while inside the transaction.
1613 static noinline void reada_csum(struct btrfs_root *root,
1614 struct btrfs_path *path,
1615 struct btrfs_ordered_extent *ordered_extent)
1617 struct btrfs_ordered_sum *sum;
1618 u64 bytenr;
1620 sum = list_entry(ordered_extent->list.next, struct btrfs_ordered_sum,
1621 list);
1622 bytenr = sum->sums[0].bytenr;
1625 * we don't care about the results, the point of this search is
1626 * just to get the btree leaves into ram
1628 btrfs_lookup_csum(NULL, root->fs_info->csum_root, path, bytenr, 0);
1631 /* as ordered data IO finishes, this gets called so we can finish
1632 * an ordered extent if the range of bytes in the file it covers are
1633 * fully written.
1635 static int btrfs_finish_ordered_io(struct inode *inode, u64 start, u64 end)
1637 struct btrfs_root *root = BTRFS_I(inode)->root;
1638 struct btrfs_trans_handle *trans;
1639 struct btrfs_ordered_extent *ordered_extent = NULL;
1640 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
1641 struct btrfs_path *path;
1642 int compressed = 0;
1643 int ret;
1645 ret = btrfs_dec_test_ordered_pending(inode, start, end - start + 1);
1646 if (!ret)
1647 return 0;
1650 * before we join the transaction, try to do some of our IO.
1651 * This will limit the amount of IO that we have to do with
1652 * the transaction running. We're unlikely to need to do any
1653 * IO if the file extents are new, the disk_i_size checks
1654 * covers the most common case.
1656 if (start < BTRFS_I(inode)->disk_i_size) {
1657 path = btrfs_alloc_path();
1658 if (path) {
1659 ret = btrfs_lookup_file_extent(NULL, root, path,
1660 inode->i_ino,
1661 start, 0);
1662 ordered_extent = btrfs_lookup_ordered_extent(inode,
1663 start);
1664 if (!list_empty(&ordered_extent->list)) {
1665 btrfs_release_path(root, path);
1666 reada_csum(root, path, ordered_extent);
1668 btrfs_free_path(path);
1672 trans = btrfs_join_transaction(root, 1);
1674 if (!ordered_extent)
1675 ordered_extent = btrfs_lookup_ordered_extent(inode, start);
1676 BUG_ON(!ordered_extent);
1677 if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags))
1678 goto nocow;
1680 lock_extent(io_tree, ordered_extent->file_offset,
1681 ordered_extent->file_offset + ordered_extent->len - 1,
1682 GFP_NOFS);
1684 if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags))
1685 compressed = 1;
1686 if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
1687 BUG_ON(compressed);
1688 ret = btrfs_mark_extent_written(trans, root, inode,
1689 ordered_extent->file_offset,
1690 ordered_extent->file_offset +
1691 ordered_extent->len);
1692 BUG_ON(ret);
1693 } else {
1694 ret = insert_reserved_file_extent(trans, inode,
1695 ordered_extent->file_offset,
1696 ordered_extent->start,
1697 ordered_extent->disk_len,
1698 ordered_extent->len,
1699 ordered_extent->len,
1700 ordered_extent->file_offset +
1701 ordered_extent->len,
1702 compressed, 0, 0,
1703 BTRFS_FILE_EXTENT_REG);
1704 unpin_extent_cache(&BTRFS_I(inode)->extent_tree,
1705 ordered_extent->file_offset,
1706 ordered_extent->len);
1707 BUG_ON(ret);
1709 unlock_extent(io_tree, ordered_extent->file_offset,
1710 ordered_extent->file_offset + ordered_extent->len - 1,
1711 GFP_NOFS);
1712 nocow:
1713 add_pending_csums(trans, inode, ordered_extent->file_offset,
1714 &ordered_extent->list);
1716 mutex_lock(&BTRFS_I(inode)->extent_mutex);
1717 btrfs_ordered_update_i_size(inode, ordered_extent);
1718 btrfs_update_inode(trans, root, inode);
1719 btrfs_remove_ordered_extent(inode, ordered_extent);
1720 mutex_unlock(&BTRFS_I(inode)->extent_mutex);
1722 /* once for us */
1723 btrfs_put_ordered_extent(ordered_extent);
1724 /* once for the tree */
1725 btrfs_put_ordered_extent(ordered_extent);
1727 btrfs_end_transaction(trans, root);
1728 return 0;
1731 static int btrfs_writepage_end_io_hook(struct page *page, u64 start, u64 end,
1732 struct extent_state *state, int uptodate)
1734 ClearPagePrivate2(page);
1735 return btrfs_finish_ordered_io(page->mapping->host, start, end);
1739 * When IO fails, either with EIO or csum verification fails, we
1740 * try other mirrors that might have a good copy of the data. This
1741 * io_failure_record is used to record state as we go through all the
1742 * mirrors. If another mirror has good data, the page is set up to date
1743 * and things continue. If a good mirror can't be found, the original
1744 * bio end_io callback is called to indicate things have failed.
1746 struct io_failure_record {
1747 struct page *page;
1748 u64 start;
1749 u64 len;
1750 u64 logical;
1751 unsigned long bio_flags;
1752 int last_mirror;
1755 static int btrfs_io_failed_hook(struct bio *failed_bio,
1756 struct page *page, u64 start, u64 end,
1757 struct extent_state *state)
1759 struct io_failure_record *failrec = NULL;
1760 u64 private;
1761 struct extent_map *em;
1762 struct inode *inode = page->mapping->host;
1763 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
1764 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
1765 struct bio *bio;
1766 int num_copies;
1767 int ret;
1768 int rw;
1769 u64 logical;
1771 ret = get_state_private(failure_tree, start, &private);
1772 if (ret) {
1773 failrec = kmalloc(sizeof(*failrec), GFP_NOFS);
1774 if (!failrec)
1775 return -ENOMEM;
1776 failrec->start = start;
1777 failrec->len = end - start + 1;
1778 failrec->last_mirror = 0;
1779 failrec->bio_flags = 0;
1781 read_lock(&em_tree->lock);
1782 em = lookup_extent_mapping(em_tree, start, failrec->len);
1783 if (em->start > start || em->start + em->len < start) {
1784 free_extent_map(em);
1785 em = NULL;
1787 read_unlock(&em_tree->lock);
1789 if (!em || IS_ERR(em)) {
1790 kfree(failrec);
1791 return -EIO;
1793 logical = start - em->start;
1794 logical = em->block_start + logical;
1795 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
1796 logical = em->block_start;
1797 failrec->bio_flags = EXTENT_BIO_COMPRESSED;
1799 failrec->logical = logical;
1800 free_extent_map(em);
1801 set_extent_bits(failure_tree, start, end, EXTENT_LOCKED |
1802 EXTENT_DIRTY, GFP_NOFS);
1803 set_state_private(failure_tree, start,
1804 (u64)(unsigned long)failrec);
1805 } else {
1806 failrec = (struct io_failure_record *)(unsigned long)private;
1808 num_copies = btrfs_num_copies(
1809 &BTRFS_I(inode)->root->fs_info->mapping_tree,
1810 failrec->logical, failrec->len);
1811 failrec->last_mirror++;
1812 if (!state) {
1813 spin_lock(&BTRFS_I(inode)->io_tree.lock);
1814 state = find_first_extent_bit_state(&BTRFS_I(inode)->io_tree,
1815 failrec->start,
1816 EXTENT_LOCKED);
1817 if (state && state->start != failrec->start)
1818 state = NULL;
1819 spin_unlock(&BTRFS_I(inode)->io_tree.lock);
1821 if (!state || failrec->last_mirror > num_copies) {
1822 set_state_private(failure_tree, failrec->start, 0);
1823 clear_extent_bits(failure_tree, failrec->start,
1824 failrec->start + failrec->len - 1,
1825 EXTENT_LOCKED | EXTENT_DIRTY, GFP_NOFS);
1826 kfree(failrec);
1827 return -EIO;
1829 bio = bio_alloc(GFP_NOFS, 1);
1830 bio->bi_private = state;
1831 bio->bi_end_io = failed_bio->bi_end_io;
1832 bio->bi_sector = failrec->logical >> 9;
1833 bio->bi_bdev = failed_bio->bi_bdev;
1834 bio->bi_size = 0;
1836 bio_add_page(bio, page, failrec->len, start - page_offset(page));
1837 if (failed_bio->bi_rw & (1 << BIO_RW))
1838 rw = WRITE;
1839 else
1840 rw = READ;
1842 BTRFS_I(inode)->io_tree.ops->submit_bio_hook(inode, rw, bio,
1843 failrec->last_mirror,
1844 failrec->bio_flags);
1845 return 0;
1849 * each time an IO finishes, we do a fast check in the IO failure tree
1850 * to see if we need to process or clean up an io_failure_record
1852 static int btrfs_clean_io_failures(struct inode *inode, u64 start)
1854 u64 private;
1855 u64 private_failure;
1856 struct io_failure_record *failure;
1857 int ret;
1859 private = 0;
1860 if (count_range_bits(&BTRFS_I(inode)->io_failure_tree, &private,
1861 (u64)-1, 1, EXTENT_DIRTY)) {
1862 ret = get_state_private(&BTRFS_I(inode)->io_failure_tree,
1863 start, &private_failure);
1864 if (ret == 0) {
1865 failure = (struct io_failure_record *)(unsigned long)
1866 private_failure;
1867 set_state_private(&BTRFS_I(inode)->io_failure_tree,
1868 failure->start, 0);
1869 clear_extent_bits(&BTRFS_I(inode)->io_failure_tree,
1870 failure->start,
1871 failure->start + failure->len - 1,
1872 EXTENT_DIRTY | EXTENT_LOCKED,
1873 GFP_NOFS);
1874 kfree(failure);
1877 return 0;
1881 * when reads are done, we need to check csums to verify the data is correct
1882 * if there's a match, we allow the bio to finish. If not, we go through
1883 * the io_failure_record routines to find good copies
1885 static int btrfs_readpage_end_io_hook(struct page *page, u64 start, u64 end,
1886 struct extent_state *state)
1888 size_t offset = start - ((u64)page->index << PAGE_CACHE_SHIFT);
1889 struct inode *inode = page->mapping->host;
1890 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
1891 char *kaddr;
1892 u64 private = ~(u32)0;
1893 int ret;
1894 struct btrfs_root *root = BTRFS_I(inode)->root;
1895 u32 csum = ~(u32)0;
1897 if (PageChecked(page)) {
1898 ClearPageChecked(page);
1899 goto good;
1902 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
1903 return 0;
1905 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID &&
1906 test_range_bit(io_tree, start, end, EXTENT_NODATASUM, 1, NULL)) {
1907 clear_extent_bits(io_tree, start, end, EXTENT_NODATASUM,
1908 GFP_NOFS);
1909 return 0;
1912 if (state && state->start == start) {
1913 private = state->private;
1914 ret = 0;
1915 } else {
1916 ret = get_state_private(io_tree, start, &private);
1918 kaddr = kmap_atomic(page, KM_USER0);
1919 if (ret)
1920 goto zeroit;
1922 csum = btrfs_csum_data(root, kaddr + offset, csum, end - start + 1);
1923 btrfs_csum_final(csum, (char *)&csum);
1924 if (csum != private)
1925 goto zeroit;
1927 kunmap_atomic(kaddr, KM_USER0);
1928 good:
1929 /* if the io failure tree for this inode is non-empty,
1930 * check to see if we've recovered from a failed IO
1932 btrfs_clean_io_failures(inode, start);
1933 return 0;
1935 zeroit:
1936 if (printk_ratelimit()) {
1937 printk(KERN_INFO "btrfs csum failed ino %lu off %llu csum %u "
1938 "private %llu\n", page->mapping->host->i_ino,
1939 (unsigned long long)start, csum,
1940 (unsigned long long)private);
1942 memset(kaddr + offset, 1, end - start + 1);
1943 flush_dcache_page(page);
1944 kunmap_atomic(kaddr, KM_USER0);
1945 if (private == 0)
1946 return 0;
1947 return -EIO;
1951 * This creates an orphan entry for the given inode in case something goes
1952 * wrong in the middle of an unlink/truncate.
1954 int btrfs_orphan_add(struct btrfs_trans_handle *trans, struct inode *inode)
1956 struct btrfs_root *root = BTRFS_I(inode)->root;
1957 int ret = 0;
1959 spin_lock(&root->list_lock);
1961 /* already on the orphan list, we're good */
1962 if (!list_empty(&BTRFS_I(inode)->i_orphan)) {
1963 spin_unlock(&root->list_lock);
1964 return 0;
1967 list_add(&BTRFS_I(inode)->i_orphan, &root->orphan_list);
1969 spin_unlock(&root->list_lock);
1972 * insert an orphan item to track this unlinked/truncated file
1974 ret = btrfs_insert_orphan_item(trans, root, inode->i_ino);
1976 return ret;
1980 * We have done the truncate/delete so we can go ahead and remove the orphan
1981 * item for this particular inode.
1983 int btrfs_orphan_del(struct btrfs_trans_handle *trans, struct inode *inode)
1985 struct btrfs_root *root = BTRFS_I(inode)->root;
1986 int ret = 0;
1988 spin_lock(&root->list_lock);
1990 if (list_empty(&BTRFS_I(inode)->i_orphan)) {
1991 spin_unlock(&root->list_lock);
1992 return 0;
1995 list_del_init(&BTRFS_I(inode)->i_orphan);
1996 if (!trans) {
1997 spin_unlock(&root->list_lock);
1998 return 0;
2001 spin_unlock(&root->list_lock);
2003 ret = btrfs_del_orphan_item(trans, root, inode->i_ino);
2005 return ret;
2009 * this cleans up any orphans that may be left on the list from the last use
2010 * of this root.
2012 void btrfs_orphan_cleanup(struct btrfs_root *root)
2014 struct btrfs_path *path;
2015 struct extent_buffer *leaf;
2016 struct btrfs_item *item;
2017 struct btrfs_key key, found_key;
2018 struct btrfs_trans_handle *trans;
2019 struct inode *inode;
2020 int ret = 0, nr_unlink = 0, nr_truncate = 0;
2022 path = btrfs_alloc_path();
2023 if (!path)
2024 return;
2025 path->reada = -1;
2027 key.objectid = BTRFS_ORPHAN_OBJECTID;
2028 btrfs_set_key_type(&key, BTRFS_ORPHAN_ITEM_KEY);
2029 key.offset = (u64)-1;
2032 while (1) {
2033 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2034 if (ret < 0) {
2035 printk(KERN_ERR "Error searching slot for orphan: %d"
2036 "\n", ret);
2037 break;
2041 * if ret == 0 means we found what we were searching for, which
2042 * is weird, but possible, so only screw with path if we didnt
2043 * find the key and see if we have stuff that matches
2045 if (ret > 0) {
2046 if (path->slots[0] == 0)
2047 break;
2048 path->slots[0]--;
2051 /* pull out the item */
2052 leaf = path->nodes[0];
2053 item = btrfs_item_nr(leaf, path->slots[0]);
2054 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2056 /* make sure the item matches what we want */
2057 if (found_key.objectid != BTRFS_ORPHAN_OBJECTID)
2058 break;
2059 if (btrfs_key_type(&found_key) != BTRFS_ORPHAN_ITEM_KEY)
2060 break;
2062 /* release the path since we're done with it */
2063 btrfs_release_path(root, path);
2066 * this is where we are basically btrfs_lookup, without the
2067 * crossing root thing. we store the inode number in the
2068 * offset of the orphan item.
2070 found_key.objectid = found_key.offset;
2071 found_key.type = BTRFS_INODE_ITEM_KEY;
2072 found_key.offset = 0;
2073 inode = btrfs_iget(root->fs_info->sb, &found_key, root);
2074 if (IS_ERR(inode))
2075 break;
2078 * add this inode to the orphan list so btrfs_orphan_del does
2079 * the proper thing when we hit it
2081 spin_lock(&root->list_lock);
2082 list_add(&BTRFS_I(inode)->i_orphan, &root->orphan_list);
2083 spin_unlock(&root->list_lock);
2086 * if this is a bad inode, means we actually succeeded in
2087 * removing the inode, but not the orphan record, which means
2088 * we need to manually delete the orphan since iput will just
2089 * do a destroy_inode
2091 if (is_bad_inode(inode)) {
2092 trans = btrfs_start_transaction(root, 1);
2093 btrfs_orphan_del(trans, inode);
2094 btrfs_end_transaction(trans, root);
2095 iput(inode);
2096 continue;
2099 /* if we have links, this was a truncate, lets do that */
2100 if (inode->i_nlink) {
2101 nr_truncate++;
2102 btrfs_truncate(inode);
2103 } else {
2104 nr_unlink++;
2107 /* this will do delete_inode and everything for us */
2108 iput(inode);
2111 if (nr_unlink)
2112 printk(KERN_INFO "btrfs: unlinked %d orphans\n", nr_unlink);
2113 if (nr_truncate)
2114 printk(KERN_INFO "btrfs: truncated %d orphans\n", nr_truncate);
2116 btrfs_free_path(path);
2120 * very simple check to peek ahead in the leaf looking for xattrs. If we
2121 * don't find any xattrs, we know there can't be any acls.
2123 * slot is the slot the inode is in, objectid is the objectid of the inode
2125 static noinline int acls_after_inode_item(struct extent_buffer *leaf,
2126 int slot, u64 objectid)
2128 u32 nritems = btrfs_header_nritems(leaf);
2129 struct btrfs_key found_key;
2130 int scanned = 0;
2132 slot++;
2133 while (slot < nritems) {
2134 btrfs_item_key_to_cpu(leaf, &found_key, slot);
2136 /* we found a different objectid, there must not be acls */
2137 if (found_key.objectid != objectid)
2138 return 0;
2140 /* we found an xattr, assume we've got an acl */
2141 if (found_key.type == BTRFS_XATTR_ITEM_KEY)
2142 return 1;
2145 * we found a key greater than an xattr key, there can't
2146 * be any acls later on
2148 if (found_key.type > BTRFS_XATTR_ITEM_KEY)
2149 return 0;
2151 slot++;
2152 scanned++;
2155 * it goes inode, inode backrefs, xattrs, extents,
2156 * so if there are a ton of hard links to an inode there can
2157 * be a lot of backrefs. Don't waste time searching too hard,
2158 * this is just an optimization
2160 if (scanned >= 8)
2161 break;
2163 /* we hit the end of the leaf before we found an xattr or
2164 * something larger than an xattr. We have to assume the inode
2165 * has acls
2167 return 1;
2171 * read an inode from the btree into the in-memory inode
2173 static void btrfs_read_locked_inode(struct inode *inode)
2175 struct btrfs_path *path;
2176 struct extent_buffer *leaf;
2177 struct btrfs_inode_item *inode_item;
2178 struct btrfs_timespec *tspec;
2179 struct btrfs_root *root = BTRFS_I(inode)->root;
2180 struct btrfs_key location;
2181 int maybe_acls;
2182 u64 alloc_group_block;
2183 u32 rdev;
2184 int ret;
2186 path = btrfs_alloc_path();
2187 BUG_ON(!path);
2188 memcpy(&location, &BTRFS_I(inode)->location, sizeof(location));
2190 ret = btrfs_lookup_inode(NULL, root, path, &location, 0);
2191 if (ret)
2192 goto make_bad;
2194 leaf = path->nodes[0];
2195 inode_item = btrfs_item_ptr(leaf, path->slots[0],
2196 struct btrfs_inode_item);
2198 inode->i_mode = btrfs_inode_mode(leaf, inode_item);
2199 inode->i_nlink = btrfs_inode_nlink(leaf, inode_item);
2200 inode->i_uid = btrfs_inode_uid(leaf, inode_item);
2201 inode->i_gid = btrfs_inode_gid(leaf, inode_item);
2202 btrfs_i_size_write(inode, btrfs_inode_size(leaf, inode_item));
2204 tspec = btrfs_inode_atime(inode_item);
2205 inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, tspec);
2206 inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
2208 tspec = btrfs_inode_mtime(inode_item);
2209 inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, tspec);
2210 inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
2212 tspec = btrfs_inode_ctime(inode_item);
2213 inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, tspec);
2214 inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
2216 inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item));
2217 BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item);
2218 BTRFS_I(inode)->sequence = btrfs_inode_sequence(leaf, inode_item);
2219 inode->i_generation = BTRFS_I(inode)->generation;
2220 inode->i_rdev = 0;
2221 rdev = btrfs_inode_rdev(leaf, inode_item);
2223 BTRFS_I(inode)->index_cnt = (u64)-1;
2224 BTRFS_I(inode)->flags = btrfs_inode_flags(leaf, inode_item);
2226 alloc_group_block = btrfs_inode_block_group(leaf, inode_item);
2229 * try to precache a NULL acl entry for files that don't have
2230 * any xattrs or acls
2232 maybe_acls = acls_after_inode_item(leaf, path->slots[0], inode->i_ino);
2233 if (!maybe_acls)
2234 cache_no_acl(inode);
2236 BTRFS_I(inode)->block_group = btrfs_find_block_group(root, 0,
2237 alloc_group_block, 0);
2238 btrfs_free_path(path);
2239 inode_item = NULL;
2241 switch (inode->i_mode & S_IFMT) {
2242 case S_IFREG:
2243 inode->i_mapping->a_ops = &btrfs_aops;
2244 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
2245 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
2246 inode->i_fop = &btrfs_file_operations;
2247 inode->i_op = &btrfs_file_inode_operations;
2248 break;
2249 case S_IFDIR:
2250 inode->i_fop = &btrfs_dir_file_operations;
2251 if (root == root->fs_info->tree_root)
2252 inode->i_op = &btrfs_dir_ro_inode_operations;
2253 else
2254 inode->i_op = &btrfs_dir_inode_operations;
2255 break;
2256 case S_IFLNK:
2257 inode->i_op = &btrfs_symlink_inode_operations;
2258 inode->i_mapping->a_ops = &btrfs_symlink_aops;
2259 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
2260 break;
2261 default:
2262 inode->i_op = &btrfs_special_inode_operations;
2263 init_special_inode(inode, inode->i_mode, rdev);
2264 break;
2267 btrfs_update_iflags(inode);
2268 return;
2270 make_bad:
2271 btrfs_free_path(path);
2272 make_bad_inode(inode);
2276 * given a leaf and an inode, copy the inode fields into the leaf
2278 static void fill_inode_item(struct btrfs_trans_handle *trans,
2279 struct extent_buffer *leaf,
2280 struct btrfs_inode_item *item,
2281 struct inode *inode)
2283 btrfs_set_inode_uid(leaf, item, inode->i_uid);
2284 btrfs_set_inode_gid(leaf, item, inode->i_gid);
2285 btrfs_set_inode_size(leaf, item, BTRFS_I(inode)->disk_i_size);
2286 btrfs_set_inode_mode(leaf, item, inode->i_mode);
2287 btrfs_set_inode_nlink(leaf, item, inode->i_nlink);
2289 btrfs_set_timespec_sec(leaf, btrfs_inode_atime(item),
2290 inode->i_atime.tv_sec);
2291 btrfs_set_timespec_nsec(leaf, btrfs_inode_atime(item),
2292 inode->i_atime.tv_nsec);
2294 btrfs_set_timespec_sec(leaf, btrfs_inode_mtime(item),
2295 inode->i_mtime.tv_sec);
2296 btrfs_set_timespec_nsec(leaf, btrfs_inode_mtime(item),
2297 inode->i_mtime.tv_nsec);
2299 btrfs_set_timespec_sec(leaf, btrfs_inode_ctime(item),
2300 inode->i_ctime.tv_sec);
2301 btrfs_set_timespec_nsec(leaf, btrfs_inode_ctime(item),
2302 inode->i_ctime.tv_nsec);
2304 btrfs_set_inode_nbytes(leaf, item, inode_get_bytes(inode));
2305 btrfs_set_inode_generation(leaf, item, BTRFS_I(inode)->generation);
2306 btrfs_set_inode_sequence(leaf, item, BTRFS_I(inode)->sequence);
2307 btrfs_set_inode_transid(leaf, item, trans->transid);
2308 btrfs_set_inode_rdev(leaf, item, inode->i_rdev);
2309 btrfs_set_inode_flags(leaf, item, BTRFS_I(inode)->flags);
2310 btrfs_set_inode_block_group(leaf, item, BTRFS_I(inode)->block_group);
2314 * copy everything in the in-memory inode into the btree.
2316 noinline int btrfs_update_inode(struct btrfs_trans_handle *trans,
2317 struct btrfs_root *root, struct inode *inode)
2319 struct btrfs_inode_item *inode_item;
2320 struct btrfs_path *path;
2321 struct extent_buffer *leaf;
2322 int ret;
2324 path = btrfs_alloc_path();
2325 BUG_ON(!path);
2326 path->leave_spinning = 1;
2327 ret = btrfs_lookup_inode(trans, root, path,
2328 &BTRFS_I(inode)->location, 1);
2329 if (ret) {
2330 if (ret > 0)
2331 ret = -ENOENT;
2332 goto failed;
2335 btrfs_unlock_up_safe(path, 1);
2336 leaf = path->nodes[0];
2337 inode_item = btrfs_item_ptr(leaf, path->slots[0],
2338 struct btrfs_inode_item);
2340 fill_inode_item(trans, leaf, inode_item, inode);
2341 btrfs_mark_buffer_dirty(leaf);
2342 btrfs_set_inode_last_trans(trans, inode);
2343 ret = 0;
2344 failed:
2345 btrfs_free_path(path);
2346 return ret;
2351 * unlink helper that gets used here in inode.c and in the tree logging
2352 * recovery code. It remove a link in a directory with a given name, and
2353 * also drops the back refs in the inode to the directory
2355 int btrfs_unlink_inode(struct btrfs_trans_handle *trans,
2356 struct btrfs_root *root,
2357 struct inode *dir, struct inode *inode,
2358 const char *name, int name_len)
2360 struct btrfs_path *path;
2361 int ret = 0;
2362 struct extent_buffer *leaf;
2363 struct btrfs_dir_item *di;
2364 struct btrfs_key key;
2365 u64 index;
2367 path = btrfs_alloc_path();
2368 if (!path) {
2369 ret = -ENOMEM;
2370 goto err;
2373 path->leave_spinning = 1;
2374 di = btrfs_lookup_dir_item(trans, root, path, dir->i_ino,
2375 name, name_len, -1);
2376 if (IS_ERR(di)) {
2377 ret = PTR_ERR(di);
2378 goto err;
2380 if (!di) {
2381 ret = -ENOENT;
2382 goto err;
2384 leaf = path->nodes[0];
2385 btrfs_dir_item_key_to_cpu(leaf, di, &key);
2386 ret = btrfs_delete_one_dir_name(trans, root, path, di);
2387 if (ret)
2388 goto err;
2389 btrfs_release_path(root, path);
2391 ret = btrfs_del_inode_ref(trans, root, name, name_len,
2392 inode->i_ino,
2393 dir->i_ino, &index);
2394 if (ret) {
2395 printk(KERN_INFO "btrfs failed to delete reference to %.*s, "
2396 "inode %lu parent %lu\n", name_len, name,
2397 inode->i_ino, dir->i_ino);
2398 goto err;
2401 di = btrfs_lookup_dir_index_item(trans, root, path, dir->i_ino,
2402 index, name, name_len, -1);
2403 if (IS_ERR(di)) {
2404 ret = PTR_ERR(di);
2405 goto err;
2407 if (!di) {
2408 ret = -ENOENT;
2409 goto err;
2411 ret = btrfs_delete_one_dir_name(trans, root, path, di);
2412 btrfs_release_path(root, path);
2414 ret = btrfs_del_inode_ref_in_log(trans, root, name, name_len,
2415 inode, dir->i_ino);
2416 BUG_ON(ret != 0 && ret != -ENOENT);
2418 ret = btrfs_del_dir_entries_in_log(trans, root, name, name_len,
2419 dir, index);
2420 BUG_ON(ret);
2421 err:
2422 btrfs_free_path(path);
2423 if (ret)
2424 goto out;
2426 btrfs_i_size_write(dir, dir->i_size - name_len * 2);
2427 inode->i_ctime = dir->i_mtime = dir->i_ctime = CURRENT_TIME;
2428 btrfs_update_inode(trans, root, dir);
2429 btrfs_drop_nlink(inode);
2430 ret = btrfs_update_inode(trans, root, inode);
2431 out:
2432 return ret;
2435 static int btrfs_unlink(struct inode *dir, struct dentry *dentry)
2437 struct btrfs_root *root;
2438 struct btrfs_trans_handle *trans;
2439 struct inode *inode = dentry->d_inode;
2440 int ret;
2441 unsigned long nr = 0;
2443 root = BTRFS_I(dir)->root;
2445 trans = btrfs_start_transaction(root, 1);
2447 btrfs_set_trans_block_group(trans, dir);
2449 btrfs_record_unlink_dir(trans, dir, dentry->d_inode, 0);
2451 ret = btrfs_unlink_inode(trans, root, dir, dentry->d_inode,
2452 dentry->d_name.name, dentry->d_name.len);
2454 if (inode->i_nlink == 0)
2455 ret = btrfs_orphan_add(trans, inode);
2457 nr = trans->blocks_used;
2459 btrfs_end_transaction_throttle(trans, root);
2460 btrfs_btree_balance_dirty(root, nr);
2461 return ret;
2464 int btrfs_unlink_subvol(struct btrfs_trans_handle *trans,
2465 struct btrfs_root *root,
2466 struct inode *dir, u64 objectid,
2467 const char *name, int name_len)
2469 struct btrfs_path *path;
2470 struct extent_buffer *leaf;
2471 struct btrfs_dir_item *di;
2472 struct btrfs_key key;
2473 u64 index;
2474 int ret;
2476 path = btrfs_alloc_path();
2477 if (!path)
2478 return -ENOMEM;
2480 di = btrfs_lookup_dir_item(trans, root, path, dir->i_ino,
2481 name, name_len, -1);
2482 BUG_ON(!di || IS_ERR(di));
2484 leaf = path->nodes[0];
2485 btrfs_dir_item_key_to_cpu(leaf, di, &key);
2486 WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid);
2487 ret = btrfs_delete_one_dir_name(trans, root, path, di);
2488 BUG_ON(ret);
2489 btrfs_release_path(root, path);
2491 ret = btrfs_del_root_ref(trans, root->fs_info->tree_root,
2492 objectid, root->root_key.objectid,
2493 dir->i_ino, &index, name, name_len);
2494 if (ret < 0) {
2495 BUG_ON(ret != -ENOENT);
2496 di = btrfs_search_dir_index_item(root, path, dir->i_ino,
2497 name, name_len);
2498 BUG_ON(!di || IS_ERR(di));
2500 leaf = path->nodes[0];
2501 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2502 btrfs_release_path(root, path);
2503 index = key.offset;
2506 di = btrfs_lookup_dir_index_item(trans, root, path, dir->i_ino,
2507 index, name, name_len, -1);
2508 BUG_ON(!di || IS_ERR(di));
2510 leaf = path->nodes[0];
2511 btrfs_dir_item_key_to_cpu(leaf, di, &key);
2512 WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid);
2513 ret = btrfs_delete_one_dir_name(trans, root, path, di);
2514 BUG_ON(ret);
2515 btrfs_release_path(root, path);
2517 btrfs_i_size_write(dir, dir->i_size - name_len * 2);
2518 dir->i_mtime = dir->i_ctime = CURRENT_TIME;
2519 ret = btrfs_update_inode(trans, root, dir);
2520 BUG_ON(ret);
2521 dir->i_sb->s_dirt = 1;
2523 btrfs_free_path(path);
2524 return 0;
2527 static int btrfs_rmdir(struct inode *dir, struct dentry *dentry)
2529 struct inode *inode = dentry->d_inode;
2530 int err = 0;
2531 int ret;
2532 struct btrfs_root *root = BTRFS_I(dir)->root;
2533 struct btrfs_trans_handle *trans;
2534 unsigned long nr = 0;
2536 if (inode->i_size > BTRFS_EMPTY_DIR_SIZE ||
2537 inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)
2538 return -ENOTEMPTY;
2540 trans = btrfs_start_transaction(root, 1);
2541 btrfs_set_trans_block_group(trans, dir);
2543 if (unlikely(inode->i_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
2544 err = btrfs_unlink_subvol(trans, root, dir,
2545 BTRFS_I(inode)->location.objectid,
2546 dentry->d_name.name,
2547 dentry->d_name.len);
2548 goto out;
2551 err = btrfs_orphan_add(trans, inode);
2552 if (err)
2553 goto out;
2555 /* now the directory is empty */
2556 err = btrfs_unlink_inode(trans, root, dir, dentry->d_inode,
2557 dentry->d_name.name, dentry->d_name.len);
2558 if (!err)
2559 btrfs_i_size_write(inode, 0);
2560 out:
2561 nr = trans->blocks_used;
2562 ret = btrfs_end_transaction_throttle(trans, root);
2563 btrfs_btree_balance_dirty(root, nr);
2565 if (ret && !err)
2566 err = ret;
2567 return err;
2570 #if 0
2572 * when truncating bytes in a file, it is possible to avoid reading
2573 * the leaves that contain only checksum items. This can be the
2574 * majority of the IO required to delete a large file, but it must
2575 * be done carefully.
2577 * The keys in the level just above the leaves are checked to make sure
2578 * the lowest key in a given leaf is a csum key, and starts at an offset
2579 * after the new size.
2581 * Then the key for the next leaf is checked to make sure it also has
2582 * a checksum item for the same file. If it does, we know our target leaf
2583 * contains only checksum items, and it can be safely freed without reading
2584 * it.
2586 * This is just an optimization targeted at large files. It may do
2587 * nothing. It will return 0 unless things went badly.
2589 static noinline int drop_csum_leaves(struct btrfs_trans_handle *trans,
2590 struct btrfs_root *root,
2591 struct btrfs_path *path,
2592 struct inode *inode, u64 new_size)
2594 struct btrfs_key key;
2595 int ret;
2596 int nritems;
2597 struct btrfs_key found_key;
2598 struct btrfs_key other_key;
2599 struct btrfs_leaf_ref *ref;
2600 u64 leaf_gen;
2601 u64 leaf_start;
2603 path->lowest_level = 1;
2604 key.objectid = inode->i_ino;
2605 key.type = BTRFS_CSUM_ITEM_KEY;
2606 key.offset = new_size;
2607 again:
2608 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
2609 if (ret < 0)
2610 goto out;
2612 if (path->nodes[1] == NULL) {
2613 ret = 0;
2614 goto out;
2616 ret = 0;
2617 btrfs_node_key_to_cpu(path->nodes[1], &found_key, path->slots[1]);
2618 nritems = btrfs_header_nritems(path->nodes[1]);
2620 if (!nritems)
2621 goto out;
2623 if (path->slots[1] >= nritems)
2624 goto next_node;
2626 /* did we find a key greater than anything we want to delete? */
2627 if (found_key.objectid > inode->i_ino ||
2628 (found_key.objectid == inode->i_ino && found_key.type > key.type))
2629 goto out;
2631 /* we check the next key in the node to make sure the leave contains
2632 * only checksum items. This comparison doesn't work if our
2633 * leaf is the last one in the node
2635 if (path->slots[1] + 1 >= nritems) {
2636 next_node:
2637 /* search forward from the last key in the node, this
2638 * will bring us into the next node in the tree
2640 btrfs_node_key_to_cpu(path->nodes[1], &found_key, nritems - 1);
2642 /* unlikely, but we inc below, so check to be safe */
2643 if (found_key.offset == (u64)-1)
2644 goto out;
2646 /* search_forward needs a path with locks held, do the
2647 * search again for the original key. It is possible
2648 * this will race with a balance and return a path that
2649 * we could modify, but this drop is just an optimization
2650 * and is allowed to miss some leaves.
2652 btrfs_release_path(root, path);
2653 found_key.offset++;
2655 /* setup a max key for search_forward */
2656 other_key.offset = (u64)-1;
2657 other_key.type = key.type;
2658 other_key.objectid = key.objectid;
2660 path->keep_locks = 1;
2661 ret = btrfs_search_forward(root, &found_key, &other_key,
2662 path, 0, 0);
2663 path->keep_locks = 0;
2664 if (ret || found_key.objectid != key.objectid ||
2665 found_key.type != key.type) {
2666 ret = 0;
2667 goto out;
2670 key.offset = found_key.offset;
2671 btrfs_release_path(root, path);
2672 cond_resched();
2673 goto again;
2676 /* we know there's one more slot after us in the tree,
2677 * read that key so we can verify it is also a checksum item
2679 btrfs_node_key_to_cpu(path->nodes[1], &other_key, path->slots[1] + 1);
2681 if (found_key.objectid < inode->i_ino)
2682 goto next_key;
2684 if (found_key.type != key.type || found_key.offset < new_size)
2685 goto next_key;
2688 * if the key for the next leaf isn't a csum key from this objectid,
2689 * we can't be sure there aren't good items inside this leaf.
2690 * Bail out
2692 if (other_key.objectid != inode->i_ino || other_key.type != key.type)
2693 goto out;
2695 leaf_start = btrfs_node_blockptr(path->nodes[1], path->slots[1]);
2696 leaf_gen = btrfs_node_ptr_generation(path->nodes[1], path->slots[1]);
2698 * it is safe to delete this leaf, it contains only
2699 * csum items from this inode at an offset >= new_size
2701 ret = btrfs_del_leaf(trans, root, path, leaf_start);
2702 BUG_ON(ret);
2704 if (root->ref_cows && leaf_gen < trans->transid) {
2705 ref = btrfs_alloc_leaf_ref(root, 0);
2706 if (ref) {
2707 ref->root_gen = root->root_key.offset;
2708 ref->bytenr = leaf_start;
2709 ref->owner = 0;
2710 ref->generation = leaf_gen;
2711 ref->nritems = 0;
2713 btrfs_sort_leaf_ref(ref);
2715 ret = btrfs_add_leaf_ref(root, ref, 0);
2716 WARN_ON(ret);
2717 btrfs_free_leaf_ref(root, ref);
2718 } else {
2719 WARN_ON(1);
2722 next_key:
2723 btrfs_release_path(root, path);
2725 if (other_key.objectid == inode->i_ino &&
2726 other_key.type == key.type && other_key.offset > key.offset) {
2727 key.offset = other_key.offset;
2728 cond_resched();
2729 goto again;
2731 ret = 0;
2732 out:
2733 /* fixup any changes we've made to the path */
2734 path->lowest_level = 0;
2735 path->keep_locks = 0;
2736 btrfs_release_path(root, path);
2737 return ret;
2740 #endif
2743 * this can truncate away extent items, csum items and directory items.
2744 * It starts at a high offset and removes keys until it can't find
2745 * any higher than new_size
2747 * csum items that cross the new i_size are truncated to the new size
2748 * as well.
2750 * min_type is the minimum key type to truncate down to. If set to 0, this
2751 * will kill all the items on this inode, including the INODE_ITEM_KEY.
2753 noinline int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans,
2754 struct btrfs_root *root,
2755 struct inode *inode,
2756 u64 new_size, u32 min_type)
2758 int ret;
2759 struct btrfs_path *path;
2760 struct btrfs_key key;
2761 struct btrfs_key found_key;
2762 u32 found_type = (u8)-1;
2763 struct extent_buffer *leaf;
2764 struct btrfs_file_extent_item *fi;
2765 u64 extent_start = 0;
2766 u64 extent_num_bytes = 0;
2767 u64 extent_offset = 0;
2768 u64 item_end = 0;
2769 int found_extent;
2770 int del_item;
2771 int pending_del_nr = 0;
2772 int pending_del_slot = 0;
2773 int extent_type = -1;
2774 int encoding;
2775 u64 mask = root->sectorsize - 1;
2777 if (root->ref_cows)
2778 btrfs_drop_extent_cache(inode, new_size & (~mask), (u64)-1, 0);
2779 path = btrfs_alloc_path();
2780 BUG_ON(!path);
2781 path->reada = -1;
2783 /* FIXME, add redo link to tree so we don't leak on crash */
2784 key.objectid = inode->i_ino;
2785 key.offset = (u64)-1;
2786 key.type = (u8)-1;
2788 search_again:
2789 path->leave_spinning = 1;
2790 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
2791 if (ret < 0)
2792 goto error;
2794 if (ret > 0) {
2795 /* there are no items in the tree for us to truncate, we're
2796 * done
2798 if (path->slots[0] == 0) {
2799 ret = 0;
2800 goto error;
2802 path->slots[0]--;
2805 while (1) {
2806 fi = NULL;
2807 leaf = path->nodes[0];
2808 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2809 found_type = btrfs_key_type(&found_key);
2810 encoding = 0;
2812 if (found_key.objectid != inode->i_ino)
2813 break;
2815 if (found_type < min_type)
2816 break;
2818 item_end = found_key.offset;
2819 if (found_type == BTRFS_EXTENT_DATA_KEY) {
2820 fi = btrfs_item_ptr(leaf, path->slots[0],
2821 struct btrfs_file_extent_item);
2822 extent_type = btrfs_file_extent_type(leaf, fi);
2823 encoding = btrfs_file_extent_compression(leaf, fi);
2824 encoding |= btrfs_file_extent_encryption(leaf, fi);
2825 encoding |= btrfs_file_extent_other_encoding(leaf, fi);
2827 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
2828 item_end +=
2829 btrfs_file_extent_num_bytes(leaf, fi);
2830 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
2831 item_end += btrfs_file_extent_inline_len(leaf,
2832 fi);
2834 item_end--;
2836 if (item_end < new_size) {
2837 if (found_type == BTRFS_DIR_ITEM_KEY)
2838 found_type = BTRFS_INODE_ITEM_KEY;
2839 else if (found_type == BTRFS_EXTENT_ITEM_KEY)
2840 found_type = BTRFS_EXTENT_DATA_KEY;
2841 else if (found_type == BTRFS_EXTENT_DATA_KEY)
2842 found_type = BTRFS_XATTR_ITEM_KEY;
2843 else if (found_type == BTRFS_XATTR_ITEM_KEY)
2844 found_type = BTRFS_INODE_REF_KEY;
2845 else if (found_type)
2846 found_type--;
2847 else
2848 break;
2849 btrfs_set_key_type(&key, found_type);
2850 goto next;
2852 if (found_key.offset >= new_size)
2853 del_item = 1;
2854 else
2855 del_item = 0;
2856 found_extent = 0;
2858 /* FIXME, shrink the extent if the ref count is only 1 */
2859 if (found_type != BTRFS_EXTENT_DATA_KEY)
2860 goto delete;
2862 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
2863 u64 num_dec;
2864 extent_start = btrfs_file_extent_disk_bytenr(leaf, fi);
2865 if (!del_item && !encoding) {
2866 u64 orig_num_bytes =
2867 btrfs_file_extent_num_bytes(leaf, fi);
2868 extent_num_bytes = new_size -
2869 found_key.offset + root->sectorsize - 1;
2870 extent_num_bytes = extent_num_bytes &
2871 ~((u64)root->sectorsize - 1);
2872 btrfs_set_file_extent_num_bytes(leaf, fi,
2873 extent_num_bytes);
2874 num_dec = (orig_num_bytes -
2875 extent_num_bytes);
2876 if (root->ref_cows && extent_start != 0)
2877 inode_sub_bytes(inode, num_dec);
2878 btrfs_mark_buffer_dirty(leaf);
2879 } else {
2880 extent_num_bytes =
2881 btrfs_file_extent_disk_num_bytes(leaf,
2882 fi);
2883 extent_offset = found_key.offset -
2884 btrfs_file_extent_offset(leaf, fi);
2886 /* FIXME blocksize != 4096 */
2887 num_dec = btrfs_file_extent_num_bytes(leaf, fi);
2888 if (extent_start != 0) {
2889 found_extent = 1;
2890 if (root->ref_cows)
2891 inode_sub_bytes(inode, num_dec);
2894 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
2896 * we can't truncate inline items that have had
2897 * special encodings
2899 if (!del_item &&
2900 btrfs_file_extent_compression(leaf, fi) == 0 &&
2901 btrfs_file_extent_encryption(leaf, fi) == 0 &&
2902 btrfs_file_extent_other_encoding(leaf, fi) == 0) {
2903 u32 size = new_size - found_key.offset;
2905 if (root->ref_cows) {
2906 inode_sub_bytes(inode, item_end + 1 -
2907 new_size);
2909 size =
2910 btrfs_file_extent_calc_inline_size(size);
2911 ret = btrfs_truncate_item(trans, root, path,
2912 size, 1);
2913 BUG_ON(ret);
2914 } else if (root->ref_cows) {
2915 inode_sub_bytes(inode, item_end + 1 -
2916 found_key.offset);
2919 delete:
2920 if (del_item) {
2921 if (!pending_del_nr) {
2922 /* no pending yet, add ourselves */
2923 pending_del_slot = path->slots[0];
2924 pending_del_nr = 1;
2925 } else if (pending_del_nr &&
2926 path->slots[0] + 1 == pending_del_slot) {
2927 /* hop on the pending chunk */
2928 pending_del_nr++;
2929 pending_del_slot = path->slots[0];
2930 } else {
2931 BUG();
2933 } else {
2934 break;
2936 if (found_extent && root->ref_cows) {
2937 btrfs_set_path_blocking(path);
2938 ret = btrfs_free_extent(trans, root, extent_start,
2939 extent_num_bytes, 0,
2940 btrfs_header_owner(leaf),
2941 inode->i_ino, extent_offset);
2942 BUG_ON(ret);
2944 next:
2945 if (path->slots[0] == 0) {
2946 if (pending_del_nr)
2947 goto del_pending;
2948 btrfs_release_path(root, path);
2949 if (found_type == BTRFS_INODE_ITEM_KEY)
2950 break;
2951 goto search_again;
2954 path->slots[0]--;
2955 if (pending_del_nr &&
2956 path->slots[0] + 1 != pending_del_slot) {
2957 struct btrfs_key debug;
2958 del_pending:
2959 btrfs_item_key_to_cpu(path->nodes[0], &debug,
2960 pending_del_slot);
2961 ret = btrfs_del_items(trans, root, path,
2962 pending_del_slot,
2963 pending_del_nr);
2964 BUG_ON(ret);
2965 pending_del_nr = 0;
2966 btrfs_release_path(root, path);
2967 if (found_type == BTRFS_INODE_ITEM_KEY)
2968 break;
2969 goto search_again;
2972 ret = 0;
2973 error:
2974 if (pending_del_nr) {
2975 ret = btrfs_del_items(trans, root, path, pending_del_slot,
2976 pending_del_nr);
2978 btrfs_free_path(path);
2979 return ret;
2983 * taken from block_truncate_page, but does cow as it zeros out
2984 * any bytes left in the last page in the file.
2986 static int btrfs_truncate_page(struct address_space *mapping, loff_t from)
2988 struct inode *inode = mapping->host;
2989 struct btrfs_root *root = BTRFS_I(inode)->root;
2990 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
2991 struct btrfs_ordered_extent *ordered;
2992 char *kaddr;
2993 u32 blocksize = root->sectorsize;
2994 pgoff_t index = from >> PAGE_CACHE_SHIFT;
2995 unsigned offset = from & (PAGE_CACHE_SIZE-1);
2996 struct page *page;
2997 int ret = 0;
2998 u64 page_start;
2999 u64 page_end;
3001 if ((offset & (blocksize - 1)) == 0)
3002 goto out;
3004 ret = -ENOMEM;
3005 again:
3006 page = grab_cache_page(mapping, index);
3007 if (!page)
3008 goto out;
3010 page_start = page_offset(page);
3011 page_end = page_start + PAGE_CACHE_SIZE - 1;
3013 if (!PageUptodate(page)) {
3014 ret = btrfs_readpage(NULL, page);
3015 lock_page(page);
3016 if (page->mapping != mapping) {
3017 unlock_page(page);
3018 page_cache_release(page);
3019 goto again;
3021 if (!PageUptodate(page)) {
3022 ret = -EIO;
3023 goto out_unlock;
3026 wait_on_page_writeback(page);
3028 lock_extent(io_tree, page_start, page_end, GFP_NOFS);
3029 set_page_extent_mapped(page);
3031 ordered = btrfs_lookup_ordered_extent(inode, page_start);
3032 if (ordered) {
3033 unlock_extent(io_tree, page_start, page_end, GFP_NOFS);
3034 unlock_page(page);
3035 page_cache_release(page);
3036 btrfs_start_ordered_extent(inode, ordered, 1);
3037 btrfs_put_ordered_extent(ordered);
3038 goto again;
3041 ret = btrfs_set_extent_delalloc(inode, page_start, page_end);
3042 if (ret) {
3043 unlock_extent(io_tree, page_start, page_end, GFP_NOFS);
3044 goto out_unlock;
3047 ret = 0;
3048 if (offset != PAGE_CACHE_SIZE) {
3049 kaddr = kmap(page);
3050 memset(kaddr + offset, 0, PAGE_CACHE_SIZE - offset);
3051 flush_dcache_page(page);
3052 kunmap(page);
3054 ClearPageChecked(page);
3055 set_page_dirty(page);
3056 unlock_extent(io_tree, page_start, page_end, GFP_NOFS);
3058 out_unlock:
3059 unlock_page(page);
3060 page_cache_release(page);
3061 out:
3062 return ret;
3065 int btrfs_cont_expand(struct inode *inode, loff_t size)
3067 struct btrfs_trans_handle *trans;
3068 struct btrfs_root *root = BTRFS_I(inode)->root;
3069 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
3070 struct extent_map *em;
3071 u64 mask = root->sectorsize - 1;
3072 u64 hole_start = (inode->i_size + mask) & ~mask;
3073 u64 block_end = (size + mask) & ~mask;
3074 u64 last_byte;
3075 u64 cur_offset;
3076 u64 hole_size;
3077 int err = 0;
3079 if (size <= hole_start)
3080 return 0;
3082 btrfs_truncate_page(inode->i_mapping, inode->i_size);
3084 while (1) {
3085 struct btrfs_ordered_extent *ordered;
3086 btrfs_wait_ordered_range(inode, hole_start,
3087 block_end - hole_start);
3088 lock_extent(io_tree, hole_start, block_end - 1, GFP_NOFS);
3089 ordered = btrfs_lookup_ordered_extent(inode, hole_start);
3090 if (!ordered)
3091 break;
3092 unlock_extent(io_tree, hole_start, block_end - 1, GFP_NOFS);
3093 btrfs_put_ordered_extent(ordered);
3096 trans = btrfs_start_transaction(root, 1);
3097 btrfs_set_trans_block_group(trans, inode);
3099 cur_offset = hole_start;
3100 while (1) {
3101 em = btrfs_get_extent(inode, NULL, 0, cur_offset,
3102 block_end - cur_offset, 0);
3103 BUG_ON(IS_ERR(em) || !em);
3104 last_byte = min(extent_map_end(em), block_end);
3105 last_byte = (last_byte + mask) & ~mask;
3106 if (test_bit(EXTENT_FLAG_VACANCY, &em->flags)) {
3107 u64 hint_byte = 0;
3108 hole_size = last_byte - cur_offset;
3109 err = btrfs_drop_extents(trans, root, inode,
3110 cur_offset,
3111 cur_offset + hole_size,
3112 block_end,
3113 cur_offset, &hint_byte, 1);
3114 if (err)
3115 break;
3117 err = btrfs_reserve_metadata_space(root, 1);
3118 if (err)
3119 break;
3121 err = btrfs_insert_file_extent(trans, root,
3122 inode->i_ino, cur_offset, 0,
3123 0, hole_size, 0, hole_size,
3124 0, 0, 0);
3125 btrfs_drop_extent_cache(inode, hole_start,
3126 last_byte - 1, 0);
3127 btrfs_unreserve_metadata_space(root, 1);
3129 free_extent_map(em);
3130 cur_offset = last_byte;
3131 if (err || cur_offset >= block_end)
3132 break;
3135 btrfs_end_transaction(trans, root);
3136 unlock_extent(io_tree, hole_start, block_end - 1, GFP_NOFS);
3137 return err;
3140 static int btrfs_setattr(struct dentry *dentry, struct iattr *attr)
3142 struct inode *inode = dentry->d_inode;
3143 int err;
3145 err = inode_change_ok(inode, attr);
3146 if (err)
3147 return err;
3149 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
3150 if (attr->ia_size > inode->i_size) {
3151 err = btrfs_cont_expand(inode, attr->ia_size);
3152 if (err)
3153 return err;
3154 } else if (inode->i_size > 0 &&
3155 attr->ia_size == 0) {
3157 /* we're truncating a file that used to have good
3158 * data down to zero. Make sure it gets into
3159 * the ordered flush list so that any new writes
3160 * get down to disk quickly.
3162 BTRFS_I(inode)->ordered_data_close = 1;
3166 err = inode_setattr(inode, attr);
3168 if (!err && ((attr->ia_valid & ATTR_MODE)))
3169 err = btrfs_acl_chmod(inode);
3170 return err;
3173 void btrfs_delete_inode(struct inode *inode)
3175 struct btrfs_trans_handle *trans;
3176 struct btrfs_root *root = BTRFS_I(inode)->root;
3177 unsigned long nr;
3178 int ret;
3180 truncate_inode_pages(&inode->i_data, 0);
3181 if (is_bad_inode(inode)) {
3182 btrfs_orphan_del(NULL, inode);
3183 goto no_delete;
3185 btrfs_wait_ordered_range(inode, 0, (u64)-1);
3187 if (inode->i_nlink > 0) {
3188 BUG_ON(btrfs_root_refs(&root->root_item) != 0);
3189 goto no_delete;
3192 btrfs_i_size_write(inode, 0);
3193 trans = btrfs_join_transaction(root, 1);
3195 btrfs_set_trans_block_group(trans, inode);
3196 ret = btrfs_truncate_inode_items(trans, root, inode, inode->i_size, 0);
3197 if (ret) {
3198 btrfs_orphan_del(NULL, inode);
3199 goto no_delete_lock;
3202 btrfs_orphan_del(trans, inode);
3204 nr = trans->blocks_used;
3205 clear_inode(inode);
3207 btrfs_end_transaction(trans, root);
3208 btrfs_btree_balance_dirty(root, nr);
3209 return;
3211 no_delete_lock:
3212 nr = trans->blocks_used;
3213 btrfs_end_transaction(trans, root);
3214 btrfs_btree_balance_dirty(root, nr);
3215 no_delete:
3216 clear_inode(inode);
3220 * this returns the key found in the dir entry in the location pointer.
3221 * If no dir entries were found, location->objectid is 0.
3223 static int btrfs_inode_by_name(struct inode *dir, struct dentry *dentry,
3224 struct btrfs_key *location)
3226 const char *name = dentry->d_name.name;
3227 int namelen = dentry->d_name.len;
3228 struct btrfs_dir_item *di;
3229 struct btrfs_path *path;
3230 struct btrfs_root *root = BTRFS_I(dir)->root;
3231 int ret = 0;
3233 path = btrfs_alloc_path();
3234 BUG_ON(!path);
3236 di = btrfs_lookup_dir_item(NULL, root, path, dir->i_ino, name,
3237 namelen, 0);
3238 if (IS_ERR(di))
3239 ret = PTR_ERR(di);
3241 if (!di || IS_ERR(di))
3242 goto out_err;
3244 btrfs_dir_item_key_to_cpu(path->nodes[0], di, location);
3245 out:
3246 btrfs_free_path(path);
3247 return ret;
3248 out_err:
3249 location->objectid = 0;
3250 goto out;
3254 * when we hit a tree root in a directory, the btrfs part of the inode
3255 * needs to be changed to reflect the root directory of the tree root. This
3256 * is kind of like crossing a mount point.
3258 static int fixup_tree_root_location(struct btrfs_root *root,
3259 struct inode *dir,
3260 struct dentry *dentry,
3261 struct btrfs_key *location,
3262 struct btrfs_root **sub_root)
3264 struct btrfs_path *path;
3265 struct btrfs_root *new_root;
3266 struct btrfs_root_ref *ref;
3267 struct extent_buffer *leaf;
3268 int ret;
3269 int err = 0;
3271 path = btrfs_alloc_path();
3272 if (!path) {
3273 err = -ENOMEM;
3274 goto out;
3277 err = -ENOENT;
3278 ret = btrfs_find_root_ref(root->fs_info->tree_root, path,
3279 BTRFS_I(dir)->root->root_key.objectid,
3280 location->objectid);
3281 if (ret) {
3282 if (ret < 0)
3283 err = ret;
3284 goto out;
3287 leaf = path->nodes[0];
3288 ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
3289 if (btrfs_root_ref_dirid(leaf, ref) != dir->i_ino ||
3290 btrfs_root_ref_name_len(leaf, ref) != dentry->d_name.len)
3291 goto out;
3293 ret = memcmp_extent_buffer(leaf, dentry->d_name.name,
3294 (unsigned long)(ref + 1),
3295 dentry->d_name.len);
3296 if (ret)
3297 goto out;
3299 btrfs_release_path(root->fs_info->tree_root, path);
3301 new_root = btrfs_read_fs_root_no_name(root->fs_info, location);
3302 if (IS_ERR(new_root)) {
3303 err = PTR_ERR(new_root);
3304 goto out;
3307 if (btrfs_root_refs(&new_root->root_item) == 0) {
3308 err = -ENOENT;
3309 goto out;
3312 *sub_root = new_root;
3313 location->objectid = btrfs_root_dirid(&new_root->root_item);
3314 location->type = BTRFS_INODE_ITEM_KEY;
3315 location->offset = 0;
3316 err = 0;
3317 out:
3318 btrfs_free_path(path);
3319 return err;
3322 static void inode_tree_add(struct inode *inode)
3324 struct btrfs_root *root = BTRFS_I(inode)->root;
3325 struct btrfs_inode *entry;
3326 struct rb_node **p;
3327 struct rb_node *parent;
3328 again:
3329 p = &root->inode_tree.rb_node;
3330 parent = NULL;
3332 if (hlist_unhashed(&inode->i_hash))
3333 return;
3335 spin_lock(&root->inode_lock);
3336 while (*p) {
3337 parent = *p;
3338 entry = rb_entry(parent, struct btrfs_inode, rb_node);
3340 if (inode->i_ino < entry->vfs_inode.i_ino)
3341 p = &parent->rb_left;
3342 else if (inode->i_ino > entry->vfs_inode.i_ino)
3343 p = &parent->rb_right;
3344 else {
3345 WARN_ON(!(entry->vfs_inode.i_state &
3346 (I_WILL_FREE | I_FREEING | I_CLEAR)));
3347 rb_erase(parent, &root->inode_tree);
3348 RB_CLEAR_NODE(parent);
3349 spin_unlock(&root->inode_lock);
3350 goto again;
3353 rb_link_node(&BTRFS_I(inode)->rb_node, parent, p);
3354 rb_insert_color(&BTRFS_I(inode)->rb_node, &root->inode_tree);
3355 spin_unlock(&root->inode_lock);
3358 static void inode_tree_del(struct inode *inode)
3360 struct btrfs_root *root = BTRFS_I(inode)->root;
3361 int empty = 0;
3363 spin_lock(&root->inode_lock);
3364 if (!RB_EMPTY_NODE(&BTRFS_I(inode)->rb_node)) {
3365 rb_erase(&BTRFS_I(inode)->rb_node, &root->inode_tree);
3366 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
3367 empty = RB_EMPTY_ROOT(&root->inode_tree);
3369 spin_unlock(&root->inode_lock);
3371 if (empty && btrfs_root_refs(&root->root_item) == 0) {
3372 synchronize_srcu(&root->fs_info->subvol_srcu);
3373 spin_lock(&root->inode_lock);
3374 empty = RB_EMPTY_ROOT(&root->inode_tree);
3375 spin_unlock(&root->inode_lock);
3376 if (empty)
3377 btrfs_add_dead_root(root);
3381 int btrfs_invalidate_inodes(struct btrfs_root *root)
3383 struct rb_node *node;
3384 struct rb_node *prev;
3385 struct btrfs_inode *entry;
3386 struct inode *inode;
3387 u64 objectid = 0;
3389 WARN_ON(btrfs_root_refs(&root->root_item) != 0);
3391 spin_lock(&root->inode_lock);
3392 again:
3393 node = root->inode_tree.rb_node;
3394 prev = NULL;
3395 while (node) {
3396 prev = node;
3397 entry = rb_entry(node, struct btrfs_inode, rb_node);
3399 if (objectid < entry->vfs_inode.i_ino)
3400 node = node->rb_left;
3401 else if (objectid > entry->vfs_inode.i_ino)
3402 node = node->rb_right;
3403 else
3404 break;
3406 if (!node) {
3407 while (prev) {
3408 entry = rb_entry(prev, struct btrfs_inode, rb_node);
3409 if (objectid <= entry->vfs_inode.i_ino) {
3410 node = prev;
3411 break;
3413 prev = rb_next(prev);
3416 while (node) {
3417 entry = rb_entry(node, struct btrfs_inode, rb_node);
3418 objectid = entry->vfs_inode.i_ino + 1;
3419 inode = igrab(&entry->vfs_inode);
3420 if (inode) {
3421 spin_unlock(&root->inode_lock);
3422 if (atomic_read(&inode->i_count) > 1)
3423 d_prune_aliases(inode);
3425 * btrfs_drop_inode will remove it from
3426 * the inode cache when its usage count
3427 * hits zero.
3429 iput(inode);
3430 cond_resched();
3431 spin_lock(&root->inode_lock);
3432 goto again;
3435 if (cond_resched_lock(&root->inode_lock))
3436 goto again;
3438 node = rb_next(node);
3440 spin_unlock(&root->inode_lock);
3441 return 0;
3444 static noinline void init_btrfs_i(struct inode *inode)
3446 struct btrfs_inode *bi = BTRFS_I(inode);
3448 bi->generation = 0;
3449 bi->sequence = 0;
3450 bi->last_trans = 0;
3451 bi->logged_trans = 0;
3452 bi->delalloc_bytes = 0;
3453 bi->reserved_bytes = 0;
3454 bi->disk_i_size = 0;
3455 bi->flags = 0;
3456 bi->index_cnt = (u64)-1;
3457 bi->last_unlink_trans = 0;
3458 bi->ordered_data_close = 0;
3459 extent_map_tree_init(&BTRFS_I(inode)->extent_tree, GFP_NOFS);
3460 extent_io_tree_init(&BTRFS_I(inode)->io_tree,
3461 inode->i_mapping, GFP_NOFS);
3462 extent_io_tree_init(&BTRFS_I(inode)->io_failure_tree,
3463 inode->i_mapping, GFP_NOFS);
3464 INIT_LIST_HEAD(&BTRFS_I(inode)->delalloc_inodes);
3465 INIT_LIST_HEAD(&BTRFS_I(inode)->ordered_operations);
3466 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
3467 btrfs_ordered_inode_tree_init(&BTRFS_I(inode)->ordered_tree);
3468 mutex_init(&BTRFS_I(inode)->extent_mutex);
3469 mutex_init(&BTRFS_I(inode)->log_mutex);
3472 static int btrfs_init_locked_inode(struct inode *inode, void *p)
3474 struct btrfs_iget_args *args = p;
3475 inode->i_ino = args->ino;
3476 init_btrfs_i(inode);
3477 BTRFS_I(inode)->root = args->root;
3478 btrfs_set_inode_space_info(args->root, inode);
3479 return 0;
3482 static int btrfs_find_actor(struct inode *inode, void *opaque)
3484 struct btrfs_iget_args *args = opaque;
3485 return args->ino == inode->i_ino &&
3486 args->root == BTRFS_I(inode)->root;
3489 static struct inode *btrfs_iget_locked(struct super_block *s,
3490 u64 objectid,
3491 struct btrfs_root *root)
3493 struct inode *inode;
3494 struct btrfs_iget_args args;
3495 args.ino = objectid;
3496 args.root = root;
3498 inode = iget5_locked(s, objectid, btrfs_find_actor,
3499 btrfs_init_locked_inode,
3500 (void *)&args);
3501 return inode;
3504 /* Get an inode object given its location and corresponding root.
3505 * Returns in *is_new if the inode was read from disk
3507 struct inode *btrfs_iget(struct super_block *s, struct btrfs_key *location,
3508 struct btrfs_root *root)
3510 struct inode *inode;
3512 inode = btrfs_iget_locked(s, location->objectid, root);
3513 if (!inode)
3514 return ERR_PTR(-ENOMEM);
3516 if (inode->i_state & I_NEW) {
3517 BTRFS_I(inode)->root = root;
3518 memcpy(&BTRFS_I(inode)->location, location, sizeof(*location));
3519 btrfs_read_locked_inode(inode);
3521 inode_tree_add(inode);
3522 unlock_new_inode(inode);
3525 return inode;
3528 static struct inode *new_simple_dir(struct super_block *s,
3529 struct btrfs_key *key,
3530 struct btrfs_root *root)
3532 struct inode *inode = new_inode(s);
3534 if (!inode)
3535 return ERR_PTR(-ENOMEM);
3537 init_btrfs_i(inode);
3539 BTRFS_I(inode)->root = root;
3540 memcpy(&BTRFS_I(inode)->location, key, sizeof(*key));
3541 BTRFS_I(inode)->dummy_inode = 1;
3543 inode->i_ino = BTRFS_EMPTY_SUBVOL_DIR_OBJECTID;
3544 inode->i_op = &simple_dir_inode_operations;
3545 inode->i_fop = &simple_dir_operations;
3546 inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO;
3547 inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
3549 return inode;
3552 struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry)
3554 struct inode *inode;
3555 struct btrfs_root *root = BTRFS_I(dir)->root;
3556 struct btrfs_root *sub_root = root;
3557 struct btrfs_key location;
3558 int index;
3559 int ret;
3561 dentry->d_op = &btrfs_dentry_operations;
3563 if (dentry->d_name.len > BTRFS_NAME_LEN)
3564 return ERR_PTR(-ENAMETOOLONG);
3566 ret = btrfs_inode_by_name(dir, dentry, &location);
3568 if (ret < 0)
3569 return ERR_PTR(ret);
3571 if (location.objectid == 0)
3572 return NULL;
3574 if (location.type == BTRFS_INODE_ITEM_KEY) {
3575 inode = btrfs_iget(dir->i_sb, &location, root);
3576 return inode;
3579 BUG_ON(location.type != BTRFS_ROOT_ITEM_KEY);
3581 index = srcu_read_lock(&root->fs_info->subvol_srcu);
3582 ret = fixup_tree_root_location(root, dir, dentry,
3583 &location, &sub_root);
3584 if (ret < 0) {
3585 if (ret != -ENOENT)
3586 inode = ERR_PTR(ret);
3587 else
3588 inode = new_simple_dir(dir->i_sb, &location, sub_root);
3589 } else {
3590 inode = btrfs_iget(dir->i_sb, &location, sub_root);
3592 srcu_read_unlock(&root->fs_info->subvol_srcu, index);
3594 return inode;
3597 static int btrfs_dentry_delete(struct dentry *dentry)
3599 struct btrfs_root *root;
3601 if (!dentry->d_inode)
3602 return 0;
3604 root = BTRFS_I(dentry->d_inode)->root;
3605 if (btrfs_root_refs(&root->root_item) == 0)
3606 return 1;
3607 return 0;
3610 static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry,
3611 struct nameidata *nd)
3613 struct inode *inode;
3615 inode = btrfs_lookup_dentry(dir, dentry);
3616 if (IS_ERR(inode))
3617 return ERR_CAST(inode);
3619 return d_splice_alias(inode, dentry);
3622 static unsigned char btrfs_filetype_table[] = {
3623 DT_UNKNOWN, DT_REG, DT_DIR, DT_CHR, DT_BLK, DT_FIFO, DT_SOCK, DT_LNK
3626 static int btrfs_real_readdir(struct file *filp, void *dirent,
3627 filldir_t filldir)
3629 struct inode *inode = filp->f_dentry->d_inode;
3630 struct btrfs_root *root = BTRFS_I(inode)->root;
3631 struct btrfs_item *item;
3632 struct btrfs_dir_item *di;
3633 struct btrfs_key key;
3634 struct btrfs_key found_key;
3635 struct btrfs_path *path;
3636 int ret;
3637 u32 nritems;
3638 struct extent_buffer *leaf;
3639 int slot;
3640 int advance;
3641 unsigned char d_type;
3642 int over = 0;
3643 u32 di_cur;
3644 u32 di_total;
3645 u32 di_len;
3646 int key_type = BTRFS_DIR_INDEX_KEY;
3647 char tmp_name[32];
3648 char *name_ptr;
3649 int name_len;
3651 /* FIXME, use a real flag for deciding about the key type */
3652 if (root->fs_info->tree_root == root)
3653 key_type = BTRFS_DIR_ITEM_KEY;
3655 /* special case for "." */
3656 if (filp->f_pos == 0) {
3657 over = filldir(dirent, ".", 1,
3658 1, inode->i_ino,
3659 DT_DIR);
3660 if (over)
3661 return 0;
3662 filp->f_pos = 1;
3664 /* special case for .., just use the back ref */
3665 if (filp->f_pos == 1) {
3666 u64 pino = parent_ino(filp->f_path.dentry);
3667 over = filldir(dirent, "..", 2,
3668 2, pino, DT_DIR);
3669 if (over)
3670 return 0;
3671 filp->f_pos = 2;
3673 path = btrfs_alloc_path();
3674 path->reada = 2;
3676 btrfs_set_key_type(&key, key_type);
3677 key.offset = filp->f_pos;
3678 key.objectid = inode->i_ino;
3680 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3681 if (ret < 0)
3682 goto err;
3683 advance = 0;
3685 while (1) {
3686 leaf = path->nodes[0];
3687 nritems = btrfs_header_nritems(leaf);
3688 slot = path->slots[0];
3689 if (advance || slot >= nritems) {
3690 if (slot >= nritems - 1) {
3691 ret = btrfs_next_leaf(root, path);
3692 if (ret)
3693 break;
3694 leaf = path->nodes[0];
3695 nritems = btrfs_header_nritems(leaf);
3696 slot = path->slots[0];
3697 } else {
3698 slot++;
3699 path->slots[0]++;
3703 advance = 1;
3704 item = btrfs_item_nr(leaf, slot);
3705 btrfs_item_key_to_cpu(leaf, &found_key, slot);
3707 if (found_key.objectid != key.objectid)
3708 break;
3709 if (btrfs_key_type(&found_key) != key_type)
3710 break;
3711 if (found_key.offset < filp->f_pos)
3712 continue;
3714 filp->f_pos = found_key.offset;
3716 di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item);
3717 di_cur = 0;
3718 di_total = btrfs_item_size(leaf, item);
3720 while (di_cur < di_total) {
3721 struct btrfs_key location;
3723 name_len = btrfs_dir_name_len(leaf, di);
3724 if (name_len <= sizeof(tmp_name)) {
3725 name_ptr = tmp_name;
3726 } else {
3727 name_ptr = kmalloc(name_len, GFP_NOFS);
3728 if (!name_ptr) {
3729 ret = -ENOMEM;
3730 goto err;
3733 read_extent_buffer(leaf, name_ptr,
3734 (unsigned long)(di + 1), name_len);
3736 d_type = btrfs_filetype_table[btrfs_dir_type(leaf, di)];
3737 btrfs_dir_item_key_to_cpu(leaf, di, &location);
3739 /* is this a reference to our own snapshot? If so
3740 * skip it
3742 if (location.type == BTRFS_ROOT_ITEM_KEY &&
3743 location.objectid == root->root_key.objectid) {
3744 over = 0;
3745 goto skip;
3747 over = filldir(dirent, name_ptr, name_len,
3748 found_key.offset, location.objectid,
3749 d_type);
3751 skip:
3752 if (name_ptr != tmp_name)
3753 kfree(name_ptr);
3755 if (over)
3756 goto nopos;
3757 di_len = btrfs_dir_name_len(leaf, di) +
3758 btrfs_dir_data_len(leaf, di) + sizeof(*di);
3759 di_cur += di_len;
3760 di = (struct btrfs_dir_item *)((char *)di + di_len);
3764 /* Reached end of directory/root. Bump pos past the last item. */
3765 if (key_type == BTRFS_DIR_INDEX_KEY)
3766 filp->f_pos = INT_LIMIT(off_t);
3767 else
3768 filp->f_pos++;
3769 nopos:
3770 ret = 0;
3771 err:
3772 btrfs_free_path(path);
3773 return ret;
3776 int btrfs_write_inode(struct inode *inode, int wait)
3778 struct btrfs_root *root = BTRFS_I(inode)->root;
3779 struct btrfs_trans_handle *trans;
3780 int ret = 0;
3782 if (root->fs_info->btree_inode == inode)
3783 return 0;
3785 if (wait) {
3786 trans = btrfs_join_transaction(root, 1);
3787 btrfs_set_trans_block_group(trans, inode);
3788 ret = btrfs_commit_transaction(trans, root);
3790 return ret;
3794 * This is somewhat expensive, updating the tree every time the
3795 * inode changes. But, it is most likely to find the inode in cache.
3796 * FIXME, needs more benchmarking...there are no reasons other than performance
3797 * to keep or drop this code.
3799 void btrfs_dirty_inode(struct inode *inode)
3801 struct btrfs_root *root = BTRFS_I(inode)->root;
3802 struct btrfs_trans_handle *trans;
3804 trans = btrfs_join_transaction(root, 1);
3805 btrfs_set_trans_block_group(trans, inode);
3806 btrfs_update_inode(trans, root, inode);
3807 btrfs_end_transaction(trans, root);
3811 * find the highest existing sequence number in a directory
3812 * and then set the in-memory index_cnt variable to reflect
3813 * free sequence numbers
3815 static int btrfs_set_inode_index_count(struct inode *inode)
3817 struct btrfs_root *root = BTRFS_I(inode)->root;
3818 struct btrfs_key key, found_key;
3819 struct btrfs_path *path;
3820 struct extent_buffer *leaf;
3821 int ret;
3823 key.objectid = inode->i_ino;
3824 btrfs_set_key_type(&key, BTRFS_DIR_INDEX_KEY);
3825 key.offset = (u64)-1;
3827 path = btrfs_alloc_path();
3828 if (!path)
3829 return -ENOMEM;
3831 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3832 if (ret < 0)
3833 goto out;
3834 /* FIXME: we should be able to handle this */
3835 if (ret == 0)
3836 goto out;
3837 ret = 0;
3840 * MAGIC NUMBER EXPLANATION:
3841 * since we search a directory based on f_pos we have to start at 2
3842 * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody
3843 * else has to start at 2
3845 if (path->slots[0] == 0) {
3846 BTRFS_I(inode)->index_cnt = 2;
3847 goto out;
3850 path->slots[0]--;
3852 leaf = path->nodes[0];
3853 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3855 if (found_key.objectid != inode->i_ino ||
3856 btrfs_key_type(&found_key) != BTRFS_DIR_INDEX_KEY) {
3857 BTRFS_I(inode)->index_cnt = 2;
3858 goto out;
3861 BTRFS_I(inode)->index_cnt = found_key.offset + 1;
3862 out:
3863 btrfs_free_path(path);
3864 return ret;
3868 * helper to find a free sequence number in a given directory. This current
3869 * code is very simple, later versions will do smarter things in the btree
3871 int btrfs_set_inode_index(struct inode *dir, u64 *index)
3873 int ret = 0;
3875 if (BTRFS_I(dir)->index_cnt == (u64)-1) {
3876 ret = btrfs_set_inode_index_count(dir);
3877 if (ret)
3878 return ret;
3881 *index = BTRFS_I(dir)->index_cnt;
3882 BTRFS_I(dir)->index_cnt++;
3884 return ret;
3887 static struct inode *btrfs_new_inode(struct btrfs_trans_handle *trans,
3888 struct btrfs_root *root,
3889 struct inode *dir,
3890 const char *name, int name_len,
3891 u64 ref_objectid, u64 objectid,
3892 u64 alloc_hint, int mode, u64 *index)
3894 struct inode *inode;
3895 struct btrfs_inode_item *inode_item;
3896 struct btrfs_key *location;
3897 struct btrfs_path *path;
3898 struct btrfs_inode_ref *ref;
3899 struct btrfs_key key[2];
3900 u32 sizes[2];
3901 unsigned long ptr;
3902 int ret;
3903 int owner;
3905 path = btrfs_alloc_path();
3906 BUG_ON(!path);
3908 inode = new_inode(root->fs_info->sb);
3909 if (!inode)
3910 return ERR_PTR(-ENOMEM);
3912 if (dir) {
3913 ret = btrfs_set_inode_index(dir, index);
3914 if (ret) {
3915 iput(inode);
3916 return ERR_PTR(ret);
3920 * index_cnt is ignored for everything but a dir,
3921 * btrfs_get_inode_index_count has an explanation for the magic
3922 * number
3924 init_btrfs_i(inode);
3925 BTRFS_I(inode)->index_cnt = 2;
3926 BTRFS_I(inode)->root = root;
3927 BTRFS_I(inode)->generation = trans->transid;
3928 btrfs_set_inode_space_info(root, inode);
3930 if (mode & S_IFDIR)
3931 owner = 0;
3932 else
3933 owner = 1;
3934 BTRFS_I(inode)->block_group =
3935 btrfs_find_block_group(root, 0, alloc_hint, owner);
3937 key[0].objectid = objectid;
3938 btrfs_set_key_type(&key[0], BTRFS_INODE_ITEM_KEY);
3939 key[0].offset = 0;
3941 key[1].objectid = objectid;
3942 btrfs_set_key_type(&key[1], BTRFS_INODE_REF_KEY);
3943 key[1].offset = ref_objectid;
3945 sizes[0] = sizeof(struct btrfs_inode_item);
3946 sizes[1] = name_len + sizeof(*ref);
3948 path->leave_spinning = 1;
3949 ret = btrfs_insert_empty_items(trans, root, path, key, sizes, 2);
3950 if (ret != 0)
3951 goto fail;
3953 inode->i_uid = current_fsuid();
3955 if (dir && (dir->i_mode & S_ISGID)) {
3956 inode->i_gid = dir->i_gid;
3957 if (S_ISDIR(mode))
3958 mode |= S_ISGID;
3959 } else
3960 inode->i_gid = current_fsgid();
3962 inode->i_mode = mode;
3963 inode->i_ino = objectid;
3964 inode_set_bytes(inode, 0);
3965 inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
3966 inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
3967 struct btrfs_inode_item);
3968 fill_inode_item(trans, path->nodes[0], inode_item, inode);
3970 ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1,
3971 struct btrfs_inode_ref);
3972 btrfs_set_inode_ref_name_len(path->nodes[0], ref, name_len);
3973 btrfs_set_inode_ref_index(path->nodes[0], ref, *index);
3974 ptr = (unsigned long)(ref + 1);
3975 write_extent_buffer(path->nodes[0], name, ptr, name_len);
3977 btrfs_mark_buffer_dirty(path->nodes[0]);
3978 btrfs_free_path(path);
3980 location = &BTRFS_I(inode)->location;
3981 location->objectid = objectid;
3982 location->offset = 0;
3983 btrfs_set_key_type(location, BTRFS_INODE_ITEM_KEY);
3985 btrfs_inherit_iflags(inode, dir);
3987 if ((mode & S_IFREG)) {
3988 if (btrfs_test_opt(root, NODATASUM))
3989 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
3990 if (btrfs_test_opt(root, NODATACOW))
3991 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW;
3994 insert_inode_hash(inode);
3995 inode_tree_add(inode);
3996 return inode;
3997 fail:
3998 if (dir)
3999 BTRFS_I(dir)->index_cnt--;
4000 btrfs_free_path(path);
4001 iput(inode);
4002 return ERR_PTR(ret);
4005 static inline u8 btrfs_inode_type(struct inode *inode)
4007 return btrfs_type_by_mode[(inode->i_mode & S_IFMT) >> S_SHIFT];
4011 * utility function to add 'inode' into 'parent_inode' with
4012 * a give name and a given sequence number.
4013 * if 'add_backref' is true, also insert a backref from the
4014 * inode to the parent directory.
4016 int btrfs_add_link(struct btrfs_trans_handle *trans,
4017 struct inode *parent_inode, struct inode *inode,
4018 const char *name, int name_len, int add_backref, u64 index)
4020 int ret = 0;
4021 struct btrfs_key key;
4022 struct btrfs_root *root = BTRFS_I(parent_inode)->root;
4024 if (unlikely(inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)) {
4025 memcpy(&key, &BTRFS_I(inode)->root->root_key, sizeof(key));
4026 } else {
4027 key.objectid = inode->i_ino;
4028 btrfs_set_key_type(&key, BTRFS_INODE_ITEM_KEY);
4029 key.offset = 0;
4032 if (unlikely(inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)) {
4033 ret = btrfs_add_root_ref(trans, root->fs_info->tree_root,
4034 key.objectid, root->root_key.objectid,
4035 parent_inode->i_ino,
4036 index, name, name_len);
4037 } else if (add_backref) {
4038 ret = btrfs_insert_inode_ref(trans, root,
4039 name, name_len, inode->i_ino,
4040 parent_inode->i_ino, index);
4043 if (ret == 0) {
4044 ret = btrfs_insert_dir_item(trans, root, name, name_len,
4045 parent_inode->i_ino, &key,
4046 btrfs_inode_type(inode), index);
4047 BUG_ON(ret);
4049 btrfs_i_size_write(parent_inode, parent_inode->i_size +
4050 name_len * 2);
4051 parent_inode->i_mtime = parent_inode->i_ctime = CURRENT_TIME;
4052 ret = btrfs_update_inode(trans, root, parent_inode);
4054 return ret;
4057 static int btrfs_add_nondir(struct btrfs_trans_handle *trans,
4058 struct dentry *dentry, struct inode *inode,
4059 int backref, u64 index)
4061 int err = btrfs_add_link(trans, dentry->d_parent->d_inode,
4062 inode, dentry->d_name.name,
4063 dentry->d_name.len, backref, index);
4064 if (!err) {
4065 d_instantiate(dentry, inode);
4066 return 0;
4068 if (err > 0)
4069 err = -EEXIST;
4070 return err;
4073 static int btrfs_mknod(struct inode *dir, struct dentry *dentry,
4074 int mode, dev_t rdev)
4076 struct btrfs_trans_handle *trans;
4077 struct btrfs_root *root = BTRFS_I(dir)->root;
4078 struct inode *inode = NULL;
4079 int err;
4080 int drop_inode = 0;
4081 u64 objectid;
4082 unsigned long nr = 0;
4083 u64 index = 0;
4085 if (!new_valid_dev(rdev))
4086 return -EINVAL;
4089 * 2 for inode item and ref
4090 * 2 for dir items
4091 * 1 for xattr if selinux is on
4093 err = btrfs_reserve_metadata_space(root, 5);
4094 if (err)
4095 return err;
4097 trans = btrfs_start_transaction(root, 1);
4098 if (!trans)
4099 goto fail;
4100 btrfs_set_trans_block_group(trans, dir);
4102 err = btrfs_find_free_objectid(trans, root, dir->i_ino, &objectid);
4103 if (err) {
4104 err = -ENOSPC;
4105 goto out_unlock;
4108 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
4109 dentry->d_name.len,
4110 dentry->d_parent->d_inode->i_ino, objectid,
4111 BTRFS_I(dir)->block_group, mode, &index);
4112 err = PTR_ERR(inode);
4113 if (IS_ERR(inode))
4114 goto out_unlock;
4116 err = btrfs_init_inode_security(inode, dir);
4117 if (err) {
4118 drop_inode = 1;
4119 goto out_unlock;
4122 btrfs_set_trans_block_group(trans, inode);
4123 err = btrfs_add_nondir(trans, dentry, inode, 0, index);
4124 if (err)
4125 drop_inode = 1;
4126 else {
4127 inode->i_op = &btrfs_special_inode_operations;
4128 init_special_inode(inode, inode->i_mode, rdev);
4129 btrfs_update_inode(trans, root, inode);
4131 btrfs_update_inode_block_group(trans, inode);
4132 btrfs_update_inode_block_group(trans, dir);
4133 out_unlock:
4134 nr = trans->blocks_used;
4135 btrfs_end_transaction_throttle(trans, root);
4136 fail:
4137 btrfs_unreserve_metadata_space(root, 5);
4138 if (drop_inode) {
4139 inode_dec_link_count(inode);
4140 iput(inode);
4142 btrfs_btree_balance_dirty(root, nr);
4143 return err;
4146 static int btrfs_create(struct inode *dir, struct dentry *dentry,
4147 int mode, struct nameidata *nd)
4149 struct btrfs_trans_handle *trans;
4150 struct btrfs_root *root = BTRFS_I(dir)->root;
4151 struct inode *inode = NULL;
4152 int err;
4153 int drop_inode = 0;
4154 unsigned long nr = 0;
4155 u64 objectid;
4156 u64 index = 0;
4159 * 2 for inode item and ref
4160 * 2 for dir items
4161 * 1 for xattr if selinux is on
4163 err = btrfs_reserve_metadata_space(root, 5);
4164 if (err)
4165 return err;
4167 trans = btrfs_start_transaction(root, 1);
4168 if (!trans)
4169 goto fail;
4170 btrfs_set_trans_block_group(trans, dir);
4172 err = btrfs_find_free_objectid(trans, root, dir->i_ino, &objectid);
4173 if (err) {
4174 err = -ENOSPC;
4175 goto out_unlock;
4178 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
4179 dentry->d_name.len,
4180 dentry->d_parent->d_inode->i_ino,
4181 objectid, BTRFS_I(dir)->block_group, mode,
4182 &index);
4183 err = PTR_ERR(inode);
4184 if (IS_ERR(inode))
4185 goto out_unlock;
4187 err = btrfs_init_inode_security(inode, dir);
4188 if (err) {
4189 drop_inode = 1;
4190 goto out_unlock;
4193 btrfs_set_trans_block_group(trans, inode);
4194 err = btrfs_add_nondir(trans, dentry, inode, 0, index);
4195 if (err)
4196 drop_inode = 1;
4197 else {
4198 inode->i_mapping->a_ops = &btrfs_aops;
4199 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
4200 inode->i_fop = &btrfs_file_operations;
4201 inode->i_op = &btrfs_file_inode_operations;
4202 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
4204 btrfs_update_inode_block_group(trans, inode);
4205 btrfs_update_inode_block_group(trans, dir);
4206 out_unlock:
4207 nr = trans->blocks_used;
4208 btrfs_end_transaction_throttle(trans, root);
4209 fail:
4210 btrfs_unreserve_metadata_space(root, 5);
4211 if (drop_inode) {
4212 inode_dec_link_count(inode);
4213 iput(inode);
4215 btrfs_btree_balance_dirty(root, nr);
4216 return err;
4219 static int btrfs_link(struct dentry *old_dentry, struct inode *dir,
4220 struct dentry *dentry)
4222 struct btrfs_trans_handle *trans;
4223 struct btrfs_root *root = BTRFS_I(dir)->root;
4224 struct inode *inode = old_dentry->d_inode;
4225 u64 index;
4226 unsigned long nr = 0;
4227 int err;
4228 int drop_inode = 0;
4230 if (inode->i_nlink == 0)
4231 return -ENOENT;
4234 * 1 item for inode ref
4235 * 2 items for dir items
4237 err = btrfs_reserve_metadata_space(root, 3);
4238 if (err)
4239 return err;
4241 btrfs_inc_nlink(inode);
4243 err = btrfs_set_inode_index(dir, &index);
4244 if (err)
4245 goto fail;
4247 trans = btrfs_start_transaction(root, 1);
4249 btrfs_set_trans_block_group(trans, dir);
4250 atomic_inc(&inode->i_count);
4252 err = btrfs_add_nondir(trans, dentry, inode, 1, index);
4254 if (err) {
4255 drop_inode = 1;
4256 } else {
4257 btrfs_update_inode_block_group(trans, dir);
4258 err = btrfs_update_inode(trans, root, inode);
4259 BUG_ON(err);
4260 btrfs_log_new_name(trans, inode, NULL, dentry->d_parent);
4263 nr = trans->blocks_used;
4264 btrfs_end_transaction_throttle(trans, root);
4265 fail:
4266 btrfs_unreserve_metadata_space(root, 3);
4267 if (drop_inode) {
4268 inode_dec_link_count(inode);
4269 iput(inode);
4271 btrfs_btree_balance_dirty(root, nr);
4272 return err;
4275 static int btrfs_mkdir(struct inode *dir, struct dentry *dentry, int mode)
4277 struct inode *inode = NULL;
4278 struct btrfs_trans_handle *trans;
4279 struct btrfs_root *root = BTRFS_I(dir)->root;
4280 int err = 0;
4281 int drop_on_err = 0;
4282 u64 objectid = 0;
4283 u64 index = 0;
4284 unsigned long nr = 1;
4287 * 2 items for inode and ref
4288 * 2 items for dir items
4289 * 1 for xattr if selinux is on
4291 err = btrfs_reserve_metadata_space(root, 5);
4292 if (err)
4293 return err;
4295 trans = btrfs_start_transaction(root, 1);
4296 if (!trans) {
4297 err = -ENOMEM;
4298 goto out_unlock;
4300 btrfs_set_trans_block_group(trans, dir);
4302 err = btrfs_find_free_objectid(trans, root, dir->i_ino, &objectid);
4303 if (err) {
4304 err = -ENOSPC;
4305 goto out_unlock;
4308 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
4309 dentry->d_name.len,
4310 dentry->d_parent->d_inode->i_ino, objectid,
4311 BTRFS_I(dir)->block_group, S_IFDIR | mode,
4312 &index);
4313 if (IS_ERR(inode)) {
4314 err = PTR_ERR(inode);
4315 goto out_fail;
4318 drop_on_err = 1;
4320 err = btrfs_init_inode_security(inode, dir);
4321 if (err)
4322 goto out_fail;
4324 inode->i_op = &btrfs_dir_inode_operations;
4325 inode->i_fop = &btrfs_dir_file_operations;
4326 btrfs_set_trans_block_group(trans, inode);
4328 btrfs_i_size_write(inode, 0);
4329 err = btrfs_update_inode(trans, root, inode);
4330 if (err)
4331 goto out_fail;
4333 err = btrfs_add_link(trans, dentry->d_parent->d_inode,
4334 inode, dentry->d_name.name,
4335 dentry->d_name.len, 0, index);
4336 if (err)
4337 goto out_fail;
4339 d_instantiate(dentry, inode);
4340 drop_on_err = 0;
4341 btrfs_update_inode_block_group(trans, inode);
4342 btrfs_update_inode_block_group(trans, dir);
4344 out_fail:
4345 nr = trans->blocks_used;
4346 btrfs_end_transaction_throttle(trans, root);
4348 out_unlock:
4349 btrfs_unreserve_metadata_space(root, 5);
4350 if (drop_on_err)
4351 iput(inode);
4352 btrfs_btree_balance_dirty(root, nr);
4353 return err;
4356 /* helper for btfs_get_extent. Given an existing extent in the tree,
4357 * and an extent that you want to insert, deal with overlap and insert
4358 * the new extent into the tree.
4360 static int merge_extent_mapping(struct extent_map_tree *em_tree,
4361 struct extent_map *existing,
4362 struct extent_map *em,
4363 u64 map_start, u64 map_len)
4365 u64 start_diff;
4367 BUG_ON(map_start < em->start || map_start >= extent_map_end(em));
4368 start_diff = map_start - em->start;
4369 em->start = map_start;
4370 em->len = map_len;
4371 if (em->block_start < EXTENT_MAP_LAST_BYTE &&
4372 !test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
4373 em->block_start += start_diff;
4374 em->block_len -= start_diff;
4376 return add_extent_mapping(em_tree, em);
4379 static noinline int uncompress_inline(struct btrfs_path *path,
4380 struct inode *inode, struct page *page,
4381 size_t pg_offset, u64 extent_offset,
4382 struct btrfs_file_extent_item *item)
4384 int ret;
4385 struct extent_buffer *leaf = path->nodes[0];
4386 char *tmp;
4387 size_t max_size;
4388 unsigned long inline_size;
4389 unsigned long ptr;
4391 WARN_ON(pg_offset != 0);
4392 max_size = btrfs_file_extent_ram_bytes(leaf, item);
4393 inline_size = btrfs_file_extent_inline_item_len(leaf,
4394 btrfs_item_nr(leaf, path->slots[0]));
4395 tmp = kmalloc(inline_size, GFP_NOFS);
4396 ptr = btrfs_file_extent_inline_start(item);
4398 read_extent_buffer(leaf, tmp, ptr, inline_size);
4400 max_size = min_t(unsigned long, PAGE_CACHE_SIZE, max_size);
4401 ret = btrfs_zlib_decompress(tmp, page, extent_offset,
4402 inline_size, max_size);
4403 if (ret) {
4404 char *kaddr = kmap_atomic(page, KM_USER0);
4405 unsigned long copy_size = min_t(u64,
4406 PAGE_CACHE_SIZE - pg_offset,
4407 max_size - extent_offset);
4408 memset(kaddr + pg_offset, 0, copy_size);
4409 kunmap_atomic(kaddr, KM_USER0);
4411 kfree(tmp);
4412 return 0;
4416 * a bit scary, this does extent mapping from logical file offset to the disk.
4417 * the ugly parts come from merging extents from the disk with the in-ram
4418 * representation. This gets more complex because of the data=ordered code,
4419 * where the in-ram extents might be locked pending data=ordered completion.
4421 * This also copies inline extents directly into the page.
4424 struct extent_map *btrfs_get_extent(struct inode *inode, struct page *page,
4425 size_t pg_offset, u64 start, u64 len,
4426 int create)
4428 int ret;
4429 int err = 0;
4430 u64 bytenr;
4431 u64 extent_start = 0;
4432 u64 extent_end = 0;
4433 u64 objectid = inode->i_ino;
4434 u32 found_type;
4435 struct btrfs_path *path = NULL;
4436 struct btrfs_root *root = BTRFS_I(inode)->root;
4437 struct btrfs_file_extent_item *item;
4438 struct extent_buffer *leaf;
4439 struct btrfs_key found_key;
4440 struct extent_map *em = NULL;
4441 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
4442 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
4443 struct btrfs_trans_handle *trans = NULL;
4444 int compressed;
4446 again:
4447 read_lock(&em_tree->lock);
4448 em = lookup_extent_mapping(em_tree, start, len);
4449 if (em)
4450 em->bdev = root->fs_info->fs_devices->latest_bdev;
4451 read_unlock(&em_tree->lock);
4453 if (em) {
4454 if (em->start > start || em->start + em->len <= start)
4455 free_extent_map(em);
4456 else if (em->block_start == EXTENT_MAP_INLINE && page)
4457 free_extent_map(em);
4458 else
4459 goto out;
4461 em = alloc_extent_map(GFP_NOFS);
4462 if (!em) {
4463 err = -ENOMEM;
4464 goto out;
4466 em->bdev = root->fs_info->fs_devices->latest_bdev;
4467 em->start = EXTENT_MAP_HOLE;
4468 em->orig_start = EXTENT_MAP_HOLE;
4469 em->len = (u64)-1;
4470 em->block_len = (u64)-1;
4472 if (!path) {
4473 path = btrfs_alloc_path();
4474 BUG_ON(!path);
4477 ret = btrfs_lookup_file_extent(trans, root, path,
4478 objectid, start, trans != NULL);
4479 if (ret < 0) {
4480 err = ret;
4481 goto out;
4484 if (ret != 0) {
4485 if (path->slots[0] == 0)
4486 goto not_found;
4487 path->slots[0]--;
4490 leaf = path->nodes[0];
4491 item = btrfs_item_ptr(leaf, path->slots[0],
4492 struct btrfs_file_extent_item);
4493 /* are we inside the extent that was found? */
4494 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
4495 found_type = btrfs_key_type(&found_key);
4496 if (found_key.objectid != objectid ||
4497 found_type != BTRFS_EXTENT_DATA_KEY) {
4498 goto not_found;
4501 found_type = btrfs_file_extent_type(leaf, item);
4502 extent_start = found_key.offset;
4503 compressed = btrfs_file_extent_compression(leaf, item);
4504 if (found_type == BTRFS_FILE_EXTENT_REG ||
4505 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
4506 extent_end = extent_start +
4507 btrfs_file_extent_num_bytes(leaf, item);
4508 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
4509 size_t size;
4510 size = btrfs_file_extent_inline_len(leaf, item);
4511 extent_end = (extent_start + size + root->sectorsize - 1) &
4512 ~((u64)root->sectorsize - 1);
4515 if (start >= extent_end) {
4516 path->slots[0]++;
4517 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
4518 ret = btrfs_next_leaf(root, path);
4519 if (ret < 0) {
4520 err = ret;
4521 goto out;
4523 if (ret > 0)
4524 goto not_found;
4525 leaf = path->nodes[0];
4527 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
4528 if (found_key.objectid != objectid ||
4529 found_key.type != BTRFS_EXTENT_DATA_KEY)
4530 goto not_found;
4531 if (start + len <= found_key.offset)
4532 goto not_found;
4533 em->start = start;
4534 em->len = found_key.offset - start;
4535 goto not_found_em;
4538 if (found_type == BTRFS_FILE_EXTENT_REG ||
4539 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
4540 em->start = extent_start;
4541 em->len = extent_end - extent_start;
4542 em->orig_start = extent_start -
4543 btrfs_file_extent_offset(leaf, item);
4544 bytenr = btrfs_file_extent_disk_bytenr(leaf, item);
4545 if (bytenr == 0) {
4546 em->block_start = EXTENT_MAP_HOLE;
4547 goto insert;
4549 if (compressed) {
4550 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
4551 em->block_start = bytenr;
4552 em->block_len = btrfs_file_extent_disk_num_bytes(leaf,
4553 item);
4554 } else {
4555 bytenr += btrfs_file_extent_offset(leaf, item);
4556 em->block_start = bytenr;
4557 em->block_len = em->len;
4558 if (found_type == BTRFS_FILE_EXTENT_PREALLOC)
4559 set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
4561 goto insert;
4562 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
4563 unsigned long ptr;
4564 char *map;
4565 size_t size;
4566 size_t extent_offset;
4567 size_t copy_size;
4569 em->block_start = EXTENT_MAP_INLINE;
4570 if (!page || create) {
4571 em->start = extent_start;
4572 em->len = extent_end - extent_start;
4573 goto out;
4576 size = btrfs_file_extent_inline_len(leaf, item);
4577 extent_offset = page_offset(page) + pg_offset - extent_start;
4578 copy_size = min_t(u64, PAGE_CACHE_SIZE - pg_offset,
4579 size - extent_offset);
4580 em->start = extent_start + extent_offset;
4581 em->len = (copy_size + root->sectorsize - 1) &
4582 ~((u64)root->sectorsize - 1);
4583 em->orig_start = EXTENT_MAP_INLINE;
4584 if (compressed)
4585 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
4586 ptr = btrfs_file_extent_inline_start(item) + extent_offset;
4587 if (create == 0 && !PageUptodate(page)) {
4588 if (btrfs_file_extent_compression(leaf, item) ==
4589 BTRFS_COMPRESS_ZLIB) {
4590 ret = uncompress_inline(path, inode, page,
4591 pg_offset,
4592 extent_offset, item);
4593 BUG_ON(ret);
4594 } else {
4595 map = kmap(page);
4596 read_extent_buffer(leaf, map + pg_offset, ptr,
4597 copy_size);
4598 if (pg_offset + copy_size < PAGE_CACHE_SIZE) {
4599 memset(map + pg_offset + copy_size, 0,
4600 PAGE_CACHE_SIZE - pg_offset -
4601 copy_size);
4603 kunmap(page);
4605 flush_dcache_page(page);
4606 } else if (create && PageUptodate(page)) {
4607 if (!trans) {
4608 kunmap(page);
4609 free_extent_map(em);
4610 em = NULL;
4611 btrfs_release_path(root, path);
4612 trans = btrfs_join_transaction(root, 1);
4613 goto again;
4615 map = kmap(page);
4616 write_extent_buffer(leaf, map + pg_offset, ptr,
4617 copy_size);
4618 kunmap(page);
4619 btrfs_mark_buffer_dirty(leaf);
4621 set_extent_uptodate(io_tree, em->start,
4622 extent_map_end(em) - 1, GFP_NOFS);
4623 goto insert;
4624 } else {
4625 printk(KERN_ERR "btrfs unknown found_type %d\n", found_type);
4626 WARN_ON(1);
4628 not_found:
4629 em->start = start;
4630 em->len = len;
4631 not_found_em:
4632 em->block_start = EXTENT_MAP_HOLE;
4633 set_bit(EXTENT_FLAG_VACANCY, &em->flags);
4634 insert:
4635 btrfs_release_path(root, path);
4636 if (em->start > start || extent_map_end(em) <= start) {
4637 printk(KERN_ERR "Btrfs: bad extent! em: [%llu %llu] passed "
4638 "[%llu %llu]\n", (unsigned long long)em->start,
4639 (unsigned long long)em->len,
4640 (unsigned long long)start,
4641 (unsigned long long)len);
4642 err = -EIO;
4643 goto out;
4646 err = 0;
4647 write_lock(&em_tree->lock);
4648 ret = add_extent_mapping(em_tree, em);
4649 /* it is possible that someone inserted the extent into the tree
4650 * while we had the lock dropped. It is also possible that
4651 * an overlapping map exists in the tree
4653 if (ret == -EEXIST) {
4654 struct extent_map *existing;
4656 ret = 0;
4658 existing = lookup_extent_mapping(em_tree, start, len);
4659 if (existing && (existing->start > start ||
4660 existing->start + existing->len <= start)) {
4661 free_extent_map(existing);
4662 existing = NULL;
4664 if (!existing) {
4665 existing = lookup_extent_mapping(em_tree, em->start,
4666 em->len);
4667 if (existing) {
4668 err = merge_extent_mapping(em_tree, existing,
4669 em, start,
4670 root->sectorsize);
4671 free_extent_map(existing);
4672 if (err) {
4673 free_extent_map(em);
4674 em = NULL;
4676 } else {
4677 err = -EIO;
4678 free_extent_map(em);
4679 em = NULL;
4681 } else {
4682 free_extent_map(em);
4683 em = existing;
4684 err = 0;
4687 write_unlock(&em_tree->lock);
4688 out:
4689 if (path)
4690 btrfs_free_path(path);
4691 if (trans) {
4692 ret = btrfs_end_transaction(trans, root);
4693 if (!err)
4694 err = ret;
4696 if (err) {
4697 free_extent_map(em);
4698 return ERR_PTR(err);
4700 return em;
4703 static ssize_t btrfs_direct_IO(int rw, struct kiocb *iocb,
4704 const struct iovec *iov, loff_t offset,
4705 unsigned long nr_segs)
4707 return -EINVAL;
4710 static int btrfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
4711 __u64 start, __u64 len)
4713 return extent_fiemap(inode, fieinfo, start, len, btrfs_get_extent);
4716 int btrfs_readpage(struct file *file, struct page *page)
4718 struct extent_io_tree *tree;
4719 tree = &BTRFS_I(page->mapping->host)->io_tree;
4720 return extent_read_full_page(tree, page, btrfs_get_extent);
4723 static int btrfs_writepage(struct page *page, struct writeback_control *wbc)
4725 struct extent_io_tree *tree;
4728 if (current->flags & PF_MEMALLOC) {
4729 redirty_page_for_writepage(wbc, page);
4730 unlock_page(page);
4731 return 0;
4733 tree = &BTRFS_I(page->mapping->host)->io_tree;
4734 return extent_write_full_page(tree, page, btrfs_get_extent, wbc);
4737 int btrfs_writepages(struct address_space *mapping,
4738 struct writeback_control *wbc)
4740 struct extent_io_tree *tree;
4742 tree = &BTRFS_I(mapping->host)->io_tree;
4743 return extent_writepages(tree, mapping, btrfs_get_extent, wbc);
4746 static int
4747 btrfs_readpages(struct file *file, struct address_space *mapping,
4748 struct list_head *pages, unsigned nr_pages)
4750 struct extent_io_tree *tree;
4751 tree = &BTRFS_I(mapping->host)->io_tree;
4752 return extent_readpages(tree, mapping, pages, nr_pages,
4753 btrfs_get_extent);
4755 static int __btrfs_releasepage(struct page *page, gfp_t gfp_flags)
4757 struct extent_io_tree *tree;
4758 struct extent_map_tree *map;
4759 int ret;
4761 tree = &BTRFS_I(page->mapping->host)->io_tree;
4762 map = &BTRFS_I(page->mapping->host)->extent_tree;
4763 ret = try_release_extent_mapping(map, tree, page, gfp_flags);
4764 if (ret == 1) {
4765 ClearPagePrivate(page);
4766 set_page_private(page, 0);
4767 page_cache_release(page);
4769 return ret;
4772 static int btrfs_releasepage(struct page *page, gfp_t gfp_flags)
4774 if (PageWriteback(page) || PageDirty(page))
4775 return 0;
4776 return __btrfs_releasepage(page, gfp_flags & GFP_NOFS);
4779 static void btrfs_invalidatepage(struct page *page, unsigned long offset)
4781 struct extent_io_tree *tree;
4782 struct btrfs_ordered_extent *ordered;
4783 u64 page_start = page_offset(page);
4784 u64 page_end = page_start + PAGE_CACHE_SIZE - 1;
4788 * we have the page locked, so new writeback can't start,
4789 * and the dirty bit won't be cleared while we are here.
4791 * Wait for IO on this page so that we can safely clear
4792 * the PagePrivate2 bit and do ordered accounting
4794 wait_on_page_writeback(page);
4796 tree = &BTRFS_I(page->mapping->host)->io_tree;
4797 if (offset) {
4798 btrfs_releasepage(page, GFP_NOFS);
4799 return;
4801 lock_extent(tree, page_start, page_end, GFP_NOFS);
4802 ordered = btrfs_lookup_ordered_extent(page->mapping->host,
4803 page_offset(page));
4804 if (ordered) {
4806 * IO on this page will never be started, so we need
4807 * to account for any ordered extents now
4809 clear_extent_bit(tree, page_start, page_end,
4810 EXTENT_DIRTY | EXTENT_DELALLOC |
4811 EXTENT_LOCKED, 1, 0, NULL, GFP_NOFS);
4813 * whoever cleared the private bit is responsible
4814 * for the finish_ordered_io
4816 if (TestClearPagePrivate2(page)) {
4817 btrfs_finish_ordered_io(page->mapping->host,
4818 page_start, page_end);
4820 btrfs_put_ordered_extent(ordered);
4821 lock_extent(tree, page_start, page_end, GFP_NOFS);
4823 clear_extent_bit(tree, page_start, page_end,
4824 EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC,
4825 1, 1, NULL, GFP_NOFS);
4826 __btrfs_releasepage(page, GFP_NOFS);
4828 ClearPageChecked(page);
4829 if (PagePrivate(page)) {
4830 ClearPagePrivate(page);
4831 set_page_private(page, 0);
4832 page_cache_release(page);
4837 * btrfs_page_mkwrite() is not allowed to change the file size as it gets
4838 * called from a page fault handler when a page is first dirtied. Hence we must
4839 * be careful to check for EOF conditions here. We set the page up correctly
4840 * for a written page which means we get ENOSPC checking when writing into
4841 * holes and correct delalloc and unwritten extent mapping on filesystems that
4842 * support these features.
4844 * We are not allowed to take the i_mutex here so we have to play games to
4845 * protect against truncate races as the page could now be beyond EOF. Because
4846 * vmtruncate() writes the inode size before removing pages, once we have the
4847 * page lock we can determine safely if the page is beyond EOF. If it is not
4848 * beyond EOF, then the page is guaranteed safe against truncation until we
4849 * unlock the page.
4851 int btrfs_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
4853 struct page *page = vmf->page;
4854 struct inode *inode = fdentry(vma->vm_file)->d_inode;
4855 struct btrfs_root *root = BTRFS_I(inode)->root;
4856 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
4857 struct btrfs_ordered_extent *ordered;
4858 char *kaddr;
4859 unsigned long zero_start;
4860 loff_t size;
4861 int ret;
4862 u64 page_start;
4863 u64 page_end;
4865 ret = btrfs_check_data_free_space(root, inode, PAGE_CACHE_SIZE);
4866 if (ret) {
4867 if (ret == -ENOMEM)
4868 ret = VM_FAULT_OOM;
4869 else /* -ENOSPC, -EIO, etc */
4870 ret = VM_FAULT_SIGBUS;
4871 goto out;
4874 ret = btrfs_reserve_metadata_for_delalloc(root, inode, 1);
4875 if (ret) {
4876 btrfs_free_reserved_data_space(root, inode, PAGE_CACHE_SIZE);
4877 ret = VM_FAULT_SIGBUS;
4878 goto out;
4881 ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */
4882 again:
4883 lock_page(page);
4884 size = i_size_read(inode);
4885 page_start = page_offset(page);
4886 page_end = page_start + PAGE_CACHE_SIZE - 1;
4888 if ((page->mapping != inode->i_mapping) ||
4889 (page_start >= size)) {
4890 btrfs_free_reserved_data_space(root, inode, PAGE_CACHE_SIZE);
4891 /* page got truncated out from underneath us */
4892 goto out_unlock;
4894 wait_on_page_writeback(page);
4896 lock_extent(io_tree, page_start, page_end, GFP_NOFS);
4897 set_page_extent_mapped(page);
4900 * we can't set the delalloc bits if there are pending ordered
4901 * extents. Drop our locks and wait for them to finish
4903 ordered = btrfs_lookup_ordered_extent(inode, page_start);
4904 if (ordered) {
4905 unlock_extent(io_tree, page_start, page_end, GFP_NOFS);
4906 unlock_page(page);
4907 btrfs_start_ordered_extent(inode, ordered, 1);
4908 btrfs_put_ordered_extent(ordered);
4909 goto again;
4913 * XXX - page_mkwrite gets called every time the page is dirtied, even
4914 * if it was already dirty, so for space accounting reasons we need to
4915 * clear any delalloc bits for the range we are fixing to save. There
4916 * is probably a better way to do this, but for now keep consistent with
4917 * prepare_pages in the normal write path.
4919 clear_extent_bits(&BTRFS_I(inode)->io_tree, page_start, page_end,
4920 EXTENT_DIRTY | EXTENT_DELALLOC, GFP_NOFS);
4922 ret = btrfs_set_extent_delalloc(inode, page_start, page_end);
4923 if (ret) {
4924 unlock_extent(io_tree, page_start, page_end, GFP_NOFS);
4925 ret = VM_FAULT_SIGBUS;
4926 btrfs_free_reserved_data_space(root, inode, PAGE_CACHE_SIZE);
4927 goto out_unlock;
4929 ret = 0;
4931 /* page is wholly or partially inside EOF */
4932 if (page_start + PAGE_CACHE_SIZE > size)
4933 zero_start = size & ~PAGE_CACHE_MASK;
4934 else
4935 zero_start = PAGE_CACHE_SIZE;
4937 if (zero_start != PAGE_CACHE_SIZE) {
4938 kaddr = kmap(page);
4939 memset(kaddr + zero_start, 0, PAGE_CACHE_SIZE - zero_start);
4940 flush_dcache_page(page);
4941 kunmap(page);
4943 ClearPageChecked(page);
4944 set_page_dirty(page);
4945 SetPageUptodate(page);
4947 BTRFS_I(inode)->last_trans = root->fs_info->generation + 1;
4948 unlock_extent(io_tree, page_start, page_end, GFP_NOFS);
4950 out_unlock:
4951 btrfs_unreserve_metadata_for_delalloc(root, inode, 1);
4952 if (!ret)
4953 return VM_FAULT_LOCKED;
4954 unlock_page(page);
4955 out:
4956 return ret;
4959 static void btrfs_truncate(struct inode *inode)
4961 struct btrfs_root *root = BTRFS_I(inode)->root;
4962 int ret;
4963 struct btrfs_trans_handle *trans;
4964 unsigned long nr;
4965 u64 mask = root->sectorsize - 1;
4967 if (!S_ISREG(inode->i_mode))
4968 return;
4969 if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
4970 return;
4972 btrfs_truncate_page(inode->i_mapping, inode->i_size);
4973 btrfs_wait_ordered_range(inode, inode->i_size & (~mask), (u64)-1);
4975 trans = btrfs_start_transaction(root, 1);
4978 * setattr is responsible for setting the ordered_data_close flag,
4979 * but that is only tested during the last file release. That
4980 * could happen well after the next commit, leaving a great big
4981 * window where new writes may get lost if someone chooses to write
4982 * to this file after truncating to zero
4984 * The inode doesn't have any dirty data here, and so if we commit
4985 * this is a noop. If someone immediately starts writing to the inode
4986 * it is very likely we'll catch some of their writes in this
4987 * transaction, and the commit will find this file on the ordered
4988 * data list with good things to send down.
4990 * This is a best effort solution, there is still a window where
4991 * using truncate to replace the contents of the file will
4992 * end up with a zero length file after a crash.
4994 if (inode->i_size == 0 && BTRFS_I(inode)->ordered_data_close)
4995 btrfs_add_ordered_operation(trans, root, inode);
4997 btrfs_set_trans_block_group(trans, inode);
4998 btrfs_i_size_write(inode, inode->i_size);
5000 ret = btrfs_orphan_add(trans, inode);
5001 if (ret)
5002 goto out;
5003 /* FIXME, add redo link to tree so we don't leak on crash */
5004 ret = btrfs_truncate_inode_items(trans, root, inode, inode->i_size,
5005 BTRFS_EXTENT_DATA_KEY);
5006 btrfs_update_inode(trans, root, inode);
5008 ret = btrfs_orphan_del(trans, inode);
5009 BUG_ON(ret);
5011 out:
5012 nr = trans->blocks_used;
5013 ret = btrfs_end_transaction_throttle(trans, root);
5014 BUG_ON(ret);
5015 btrfs_btree_balance_dirty(root, nr);
5019 * create a new subvolume directory/inode (helper for the ioctl).
5021 int btrfs_create_subvol_root(struct btrfs_trans_handle *trans,
5022 struct btrfs_root *new_root,
5023 u64 new_dirid, u64 alloc_hint)
5025 struct inode *inode;
5026 int err;
5027 u64 index = 0;
5029 inode = btrfs_new_inode(trans, new_root, NULL, "..", 2, new_dirid,
5030 new_dirid, alloc_hint, S_IFDIR | 0700, &index);
5031 if (IS_ERR(inode))
5032 return PTR_ERR(inode);
5033 inode->i_op = &btrfs_dir_inode_operations;
5034 inode->i_fop = &btrfs_dir_file_operations;
5036 inode->i_nlink = 1;
5037 btrfs_i_size_write(inode, 0);
5039 err = btrfs_update_inode(trans, new_root, inode);
5040 BUG_ON(err);
5042 iput(inode);
5043 return 0;
5046 /* helper function for file defrag and space balancing. This
5047 * forces readahead on a given range of bytes in an inode
5049 unsigned long btrfs_force_ra(struct address_space *mapping,
5050 struct file_ra_state *ra, struct file *file,
5051 pgoff_t offset, pgoff_t last_index)
5053 pgoff_t req_size = last_index - offset + 1;
5055 page_cache_sync_readahead(mapping, ra, file, offset, req_size);
5056 return offset + req_size;
5059 struct inode *btrfs_alloc_inode(struct super_block *sb)
5061 struct btrfs_inode *ei;
5063 ei = kmem_cache_alloc(btrfs_inode_cachep, GFP_NOFS);
5064 if (!ei)
5065 return NULL;
5066 ei->last_trans = 0;
5067 ei->logged_trans = 0;
5068 ei->delalloc_extents = 0;
5069 ei->delalloc_reserved_extents = 0;
5070 btrfs_ordered_inode_tree_init(&ei->ordered_tree);
5071 INIT_LIST_HEAD(&ei->i_orphan);
5072 INIT_LIST_HEAD(&ei->ordered_operations);
5073 return &ei->vfs_inode;
5076 void btrfs_destroy_inode(struct inode *inode)
5078 struct btrfs_ordered_extent *ordered;
5079 struct btrfs_root *root = BTRFS_I(inode)->root;
5081 WARN_ON(!list_empty(&inode->i_dentry));
5082 WARN_ON(inode->i_data.nrpages);
5085 * Make sure we're properly removed from the ordered operation
5086 * lists.
5088 smp_mb();
5089 if (!list_empty(&BTRFS_I(inode)->ordered_operations)) {
5090 spin_lock(&root->fs_info->ordered_extent_lock);
5091 list_del_init(&BTRFS_I(inode)->ordered_operations);
5092 spin_unlock(&root->fs_info->ordered_extent_lock);
5095 spin_lock(&root->list_lock);
5096 if (!list_empty(&BTRFS_I(inode)->i_orphan)) {
5097 printk(KERN_ERR "BTRFS: inode %lu: inode still on the orphan"
5098 " list\n", inode->i_ino);
5099 dump_stack();
5101 spin_unlock(&root->list_lock);
5103 while (1) {
5104 ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1);
5105 if (!ordered)
5106 break;
5107 else {
5108 printk(KERN_ERR "btrfs found ordered "
5109 "extent %llu %llu on inode cleanup\n",
5110 (unsigned long long)ordered->file_offset,
5111 (unsigned long long)ordered->len);
5112 btrfs_remove_ordered_extent(inode, ordered);
5113 btrfs_put_ordered_extent(ordered);
5114 btrfs_put_ordered_extent(ordered);
5117 inode_tree_del(inode);
5118 btrfs_drop_extent_cache(inode, 0, (u64)-1, 0);
5119 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
5122 void btrfs_drop_inode(struct inode *inode)
5124 struct btrfs_root *root = BTRFS_I(inode)->root;
5126 if (inode->i_nlink > 0 && btrfs_root_refs(&root->root_item) == 0)
5127 generic_delete_inode(inode);
5128 else
5129 generic_drop_inode(inode);
5132 static void init_once(void *foo)
5134 struct btrfs_inode *ei = (struct btrfs_inode *) foo;
5136 inode_init_once(&ei->vfs_inode);
5139 void btrfs_destroy_cachep(void)
5141 if (btrfs_inode_cachep)
5142 kmem_cache_destroy(btrfs_inode_cachep);
5143 if (btrfs_trans_handle_cachep)
5144 kmem_cache_destroy(btrfs_trans_handle_cachep);
5145 if (btrfs_transaction_cachep)
5146 kmem_cache_destroy(btrfs_transaction_cachep);
5147 if (btrfs_path_cachep)
5148 kmem_cache_destroy(btrfs_path_cachep);
5151 int btrfs_init_cachep(void)
5153 btrfs_inode_cachep = kmem_cache_create("btrfs_inode_cache",
5154 sizeof(struct btrfs_inode), 0,
5155 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, init_once);
5156 if (!btrfs_inode_cachep)
5157 goto fail;
5159 btrfs_trans_handle_cachep = kmem_cache_create("btrfs_trans_handle_cache",
5160 sizeof(struct btrfs_trans_handle), 0,
5161 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
5162 if (!btrfs_trans_handle_cachep)
5163 goto fail;
5165 btrfs_transaction_cachep = kmem_cache_create("btrfs_transaction_cache",
5166 sizeof(struct btrfs_transaction), 0,
5167 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
5168 if (!btrfs_transaction_cachep)
5169 goto fail;
5171 btrfs_path_cachep = kmem_cache_create("btrfs_path_cache",
5172 sizeof(struct btrfs_path), 0,
5173 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
5174 if (!btrfs_path_cachep)
5175 goto fail;
5177 return 0;
5178 fail:
5179 btrfs_destroy_cachep();
5180 return -ENOMEM;
5183 static int btrfs_getattr(struct vfsmount *mnt,
5184 struct dentry *dentry, struct kstat *stat)
5186 struct inode *inode = dentry->d_inode;
5187 generic_fillattr(inode, stat);
5188 stat->dev = BTRFS_I(inode)->root->anon_super.s_dev;
5189 stat->blksize = PAGE_CACHE_SIZE;
5190 stat->blocks = (inode_get_bytes(inode) +
5191 BTRFS_I(inode)->delalloc_bytes) >> 9;
5192 return 0;
5195 static int btrfs_rename(struct inode *old_dir, struct dentry *old_dentry,
5196 struct inode *new_dir, struct dentry *new_dentry)
5198 struct btrfs_trans_handle *trans;
5199 struct btrfs_root *root = BTRFS_I(old_dir)->root;
5200 struct btrfs_root *dest = BTRFS_I(new_dir)->root;
5201 struct inode *new_inode = new_dentry->d_inode;
5202 struct inode *old_inode = old_dentry->d_inode;
5203 struct timespec ctime = CURRENT_TIME;
5204 u64 index = 0;
5205 u64 root_objectid;
5206 int ret;
5208 if (new_dir->i_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
5209 return -EPERM;
5211 /* we only allow rename subvolume link between subvolumes */
5212 if (old_inode->i_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest)
5213 return -EXDEV;
5215 if (old_inode->i_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID ||
5216 (new_inode && new_inode->i_ino == BTRFS_FIRST_FREE_OBJECTID))
5217 return -ENOTEMPTY;
5219 if (S_ISDIR(old_inode->i_mode) && new_inode &&
5220 new_inode->i_size > BTRFS_EMPTY_DIR_SIZE)
5221 return -ENOTEMPTY;
5224 * 2 items for dir items
5225 * 1 item for orphan entry
5226 * 1 item for ref
5228 ret = btrfs_reserve_metadata_space(root, 4);
5229 if (ret)
5230 return ret;
5233 * we're using rename to replace one file with another.
5234 * and the replacement file is large. Start IO on it now so
5235 * we don't add too much work to the end of the transaction
5237 if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size &&
5238 old_inode->i_size > BTRFS_ORDERED_OPERATIONS_FLUSH_LIMIT)
5239 filemap_flush(old_inode->i_mapping);
5241 /* close the racy window with snapshot create/destroy ioctl */
5242 if (old_inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)
5243 down_read(&root->fs_info->subvol_sem);
5245 trans = btrfs_start_transaction(root, 1);
5246 btrfs_set_trans_block_group(trans, new_dir);
5248 if (dest != root)
5249 btrfs_record_root_in_trans(trans, dest);
5251 ret = btrfs_set_inode_index(new_dir, &index);
5252 if (ret)
5253 goto out_fail;
5255 if (unlikely(old_inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)) {
5256 /* force full log commit if subvolume involved. */
5257 root->fs_info->last_trans_log_full_commit = trans->transid;
5258 } else {
5259 ret = btrfs_insert_inode_ref(trans, dest,
5260 new_dentry->d_name.name,
5261 new_dentry->d_name.len,
5262 old_inode->i_ino,
5263 new_dir->i_ino, index);
5264 if (ret)
5265 goto out_fail;
5267 * this is an ugly little race, but the rename is required
5268 * to make sure that if we crash, the inode is either at the
5269 * old name or the new one. pinning the log transaction lets
5270 * us make sure we don't allow a log commit to come in after
5271 * we unlink the name but before we add the new name back in.
5273 btrfs_pin_log_trans(root);
5276 * make sure the inode gets flushed if it is replacing
5277 * something.
5279 if (new_inode && new_inode->i_size &&
5280 old_inode && S_ISREG(old_inode->i_mode)) {
5281 btrfs_add_ordered_operation(trans, root, old_inode);
5284 old_dir->i_ctime = old_dir->i_mtime = ctime;
5285 new_dir->i_ctime = new_dir->i_mtime = ctime;
5286 old_inode->i_ctime = ctime;
5288 if (old_dentry->d_parent != new_dentry->d_parent)
5289 btrfs_record_unlink_dir(trans, old_dir, old_inode, 1);
5291 if (unlikely(old_inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)) {
5292 root_objectid = BTRFS_I(old_inode)->root->root_key.objectid;
5293 ret = btrfs_unlink_subvol(trans, root, old_dir, root_objectid,
5294 old_dentry->d_name.name,
5295 old_dentry->d_name.len);
5296 } else {
5297 btrfs_inc_nlink(old_dentry->d_inode);
5298 ret = btrfs_unlink_inode(trans, root, old_dir,
5299 old_dentry->d_inode,
5300 old_dentry->d_name.name,
5301 old_dentry->d_name.len);
5303 BUG_ON(ret);
5305 if (new_inode) {
5306 new_inode->i_ctime = CURRENT_TIME;
5307 if (unlikely(new_inode->i_ino ==
5308 BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
5309 root_objectid = BTRFS_I(new_inode)->location.objectid;
5310 ret = btrfs_unlink_subvol(trans, dest, new_dir,
5311 root_objectid,
5312 new_dentry->d_name.name,
5313 new_dentry->d_name.len);
5314 BUG_ON(new_inode->i_nlink == 0);
5315 } else {
5316 ret = btrfs_unlink_inode(trans, dest, new_dir,
5317 new_dentry->d_inode,
5318 new_dentry->d_name.name,
5319 new_dentry->d_name.len);
5321 BUG_ON(ret);
5322 if (new_inode->i_nlink == 0) {
5323 ret = btrfs_orphan_add(trans, new_dentry->d_inode);
5324 BUG_ON(ret);
5328 ret = btrfs_add_link(trans, new_dir, old_inode,
5329 new_dentry->d_name.name,
5330 new_dentry->d_name.len, 0, index);
5331 BUG_ON(ret);
5333 if (old_inode->i_ino != BTRFS_FIRST_FREE_OBJECTID) {
5334 btrfs_log_new_name(trans, old_inode, old_dir,
5335 new_dentry->d_parent);
5336 btrfs_end_log_trans(root);
5338 out_fail:
5339 btrfs_end_transaction_throttle(trans, root);
5341 if (old_inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)
5342 up_read(&root->fs_info->subvol_sem);
5344 btrfs_unreserve_metadata_space(root, 4);
5345 return ret;
5349 * some fairly slow code that needs optimization. This walks the list
5350 * of all the inodes with pending delalloc and forces them to disk.
5352 int btrfs_start_delalloc_inodes(struct btrfs_root *root)
5354 struct list_head *head = &root->fs_info->delalloc_inodes;
5355 struct btrfs_inode *binode;
5356 struct inode *inode;
5358 if (root->fs_info->sb->s_flags & MS_RDONLY)
5359 return -EROFS;
5361 spin_lock(&root->fs_info->delalloc_lock);
5362 while (!list_empty(head)) {
5363 binode = list_entry(head->next, struct btrfs_inode,
5364 delalloc_inodes);
5365 inode = igrab(&binode->vfs_inode);
5366 if (!inode)
5367 list_del_init(&binode->delalloc_inodes);
5368 spin_unlock(&root->fs_info->delalloc_lock);
5369 if (inode) {
5370 filemap_flush(inode->i_mapping);
5371 iput(inode);
5373 cond_resched();
5374 spin_lock(&root->fs_info->delalloc_lock);
5376 spin_unlock(&root->fs_info->delalloc_lock);
5378 /* the filemap_flush will queue IO into the worker threads, but
5379 * we have to make sure the IO is actually started and that
5380 * ordered extents get created before we return
5382 atomic_inc(&root->fs_info->async_submit_draining);
5383 while (atomic_read(&root->fs_info->nr_async_submits) ||
5384 atomic_read(&root->fs_info->async_delalloc_pages)) {
5385 wait_event(root->fs_info->async_submit_wait,
5386 (atomic_read(&root->fs_info->nr_async_submits) == 0 &&
5387 atomic_read(&root->fs_info->async_delalloc_pages) == 0));
5389 atomic_dec(&root->fs_info->async_submit_draining);
5390 return 0;
5393 static int btrfs_symlink(struct inode *dir, struct dentry *dentry,
5394 const char *symname)
5396 struct btrfs_trans_handle *trans;
5397 struct btrfs_root *root = BTRFS_I(dir)->root;
5398 struct btrfs_path *path;
5399 struct btrfs_key key;
5400 struct inode *inode = NULL;
5401 int err;
5402 int drop_inode = 0;
5403 u64 objectid;
5404 u64 index = 0 ;
5405 int name_len;
5406 int datasize;
5407 unsigned long ptr;
5408 struct btrfs_file_extent_item *ei;
5409 struct extent_buffer *leaf;
5410 unsigned long nr = 0;
5412 name_len = strlen(symname) + 1;
5413 if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(root))
5414 return -ENAMETOOLONG;
5417 * 2 items for inode item and ref
5418 * 2 items for dir items
5419 * 1 item for xattr if selinux is on
5421 err = btrfs_reserve_metadata_space(root, 5);
5422 if (err)
5423 return err;
5425 trans = btrfs_start_transaction(root, 1);
5426 if (!trans)
5427 goto out_fail;
5428 btrfs_set_trans_block_group(trans, dir);
5430 err = btrfs_find_free_objectid(trans, root, dir->i_ino, &objectid);
5431 if (err) {
5432 err = -ENOSPC;
5433 goto out_unlock;
5436 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
5437 dentry->d_name.len,
5438 dentry->d_parent->d_inode->i_ino, objectid,
5439 BTRFS_I(dir)->block_group, S_IFLNK|S_IRWXUGO,
5440 &index);
5441 err = PTR_ERR(inode);
5442 if (IS_ERR(inode))
5443 goto out_unlock;
5445 err = btrfs_init_inode_security(inode, dir);
5446 if (err) {
5447 drop_inode = 1;
5448 goto out_unlock;
5451 btrfs_set_trans_block_group(trans, inode);
5452 err = btrfs_add_nondir(trans, dentry, inode, 0, index);
5453 if (err)
5454 drop_inode = 1;
5455 else {
5456 inode->i_mapping->a_ops = &btrfs_aops;
5457 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
5458 inode->i_fop = &btrfs_file_operations;
5459 inode->i_op = &btrfs_file_inode_operations;
5460 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
5462 btrfs_update_inode_block_group(trans, inode);
5463 btrfs_update_inode_block_group(trans, dir);
5464 if (drop_inode)
5465 goto out_unlock;
5467 path = btrfs_alloc_path();
5468 BUG_ON(!path);
5469 key.objectid = inode->i_ino;
5470 key.offset = 0;
5471 btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY);
5472 datasize = btrfs_file_extent_calc_inline_size(name_len);
5473 err = btrfs_insert_empty_item(trans, root, path, &key,
5474 datasize);
5475 if (err) {
5476 drop_inode = 1;
5477 goto out_unlock;
5479 leaf = path->nodes[0];
5480 ei = btrfs_item_ptr(leaf, path->slots[0],
5481 struct btrfs_file_extent_item);
5482 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
5483 btrfs_set_file_extent_type(leaf, ei,
5484 BTRFS_FILE_EXTENT_INLINE);
5485 btrfs_set_file_extent_encryption(leaf, ei, 0);
5486 btrfs_set_file_extent_compression(leaf, ei, 0);
5487 btrfs_set_file_extent_other_encoding(leaf, ei, 0);
5488 btrfs_set_file_extent_ram_bytes(leaf, ei, name_len);
5490 ptr = btrfs_file_extent_inline_start(ei);
5491 write_extent_buffer(leaf, symname, ptr, name_len);
5492 btrfs_mark_buffer_dirty(leaf);
5493 btrfs_free_path(path);
5495 inode->i_op = &btrfs_symlink_inode_operations;
5496 inode->i_mapping->a_ops = &btrfs_symlink_aops;
5497 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
5498 inode_set_bytes(inode, name_len);
5499 btrfs_i_size_write(inode, name_len - 1);
5500 err = btrfs_update_inode(trans, root, inode);
5501 if (err)
5502 drop_inode = 1;
5504 out_unlock:
5505 nr = trans->blocks_used;
5506 btrfs_end_transaction_throttle(trans, root);
5507 out_fail:
5508 btrfs_unreserve_metadata_space(root, 5);
5509 if (drop_inode) {
5510 inode_dec_link_count(inode);
5511 iput(inode);
5513 btrfs_btree_balance_dirty(root, nr);
5514 return err;
5517 static int prealloc_file_range(struct btrfs_trans_handle *trans,
5518 struct inode *inode, u64 start, u64 end,
5519 u64 locked_end, u64 alloc_hint, int mode)
5521 struct btrfs_root *root = BTRFS_I(inode)->root;
5522 struct btrfs_key ins;
5523 u64 alloc_size;
5524 u64 cur_offset = start;
5525 u64 num_bytes = end - start;
5526 int ret = 0;
5528 while (num_bytes > 0) {
5529 alloc_size = min(num_bytes, root->fs_info->max_extent);
5531 ret = btrfs_reserve_metadata_space(root, 1);
5532 if (ret)
5533 goto out;
5535 ret = btrfs_reserve_extent(trans, root, alloc_size,
5536 root->sectorsize, 0, alloc_hint,
5537 (u64)-1, &ins, 1);
5538 if (ret) {
5539 WARN_ON(1);
5540 goto out;
5542 ret = insert_reserved_file_extent(trans, inode,
5543 cur_offset, ins.objectid,
5544 ins.offset, ins.offset,
5545 ins.offset, locked_end,
5546 0, 0, 0,
5547 BTRFS_FILE_EXTENT_PREALLOC);
5548 BUG_ON(ret);
5549 btrfs_drop_extent_cache(inode, cur_offset,
5550 cur_offset + ins.offset -1, 0);
5551 num_bytes -= ins.offset;
5552 cur_offset += ins.offset;
5553 alloc_hint = ins.objectid + ins.offset;
5554 btrfs_unreserve_metadata_space(root, 1);
5556 out:
5557 if (cur_offset > start) {
5558 inode->i_ctime = CURRENT_TIME;
5559 BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC;
5560 if (!(mode & FALLOC_FL_KEEP_SIZE) &&
5561 cur_offset > i_size_read(inode))
5562 btrfs_i_size_write(inode, cur_offset);
5563 ret = btrfs_update_inode(trans, root, inode);
5564 BUG_ON(ret);
5567 return ret;
5570 static long btrfs_fallocate(struct inode *inode, int mode,
5571 loff_t offset, loff_t len)
5573 u64 cur_offset;
5574 u64 last_byte;
5575 u64 alloc_start;
5576 u64 alloc_end;
5577 u64 alloc_hint = 0;
5578 u64 locked_end;
5579 u64 mask = BTRFS_I(inode)->root->sectorsize - 1;
5580 struct extent_map *em;
5581 struct btrfs_trans_handle *trans;
5582 struct btrfs_root *root;
5583 int ret;
5585 alloc_start = offset & ~mask;
5586 alloc_end = (offset + len + mask) & ~mask;
5589 * wait for ordered IO before we have any locks. We'll loop again
5590 * below with the locks held.
5592 btrfs_wait_ordered_range(inode, alloc_start, alloc_end - alloc_start);
5594 mutex_lock(&inode->i_mutex);
5595 if (alloc_start > inode->i_size) {
5596 ret = btrfs_cont_expand(inode, alloc_start);
5597 if (ret)
5598 goto out;
5601 root = BTRFS_I(inode)->root;
5603 ret = btrfs_check_data_free_space(root, inode,
5604 alloc_end - alloc_start);
5605 if (ret)
5606 goto out;
5608 locked_end = alloc_end - 1;
5609 while (1) {
5610 struct btrfs_ordered_extent *ordered;
5612 trans = btrfs_start_transaction(BTRFS_I(inode)->root, 1);
5613 if (!trans) {
5614 ret = -EIO;
5615 goto out_free;
5618 /* the extent lock is ordered inside the running
5619 * transaction
5621 lock_extent(&BTRFS_I(inode)->io_tree, alloc_start, locked_end,
5622 GFP_NOFS);
5623 ordered = btrfs_lookup_first_ordered_extent(inode,
5624 alloc_end - 1);
5625 if (ordered &&
5626 ordered->file_offset + ordered->len > alloc_start &&
5627 ordered->file_offset < alloc_end) {
5628 btrfs_put_ordered_extent(ordered);
5629 unlock_extent(&BTRFS_I(inode)->io_tree,
5630 alloc_start, locked_end, GFP_NOFS);
5631 btrfs_end_transaction(trans, BTRFS_I(inode)->root);
5634 * we can't wait on the range with the transaction
5635 * running or with the extent lock held
5637 btrfs_wait_ordered_range(inode, alloc_start,
5638 alloc_end - alloc_start);
5639 } else {
5640 if (ordered)
5641 btrfs_put_ordered_extent(ordered);
5642 break;
5646 cur_offset = alloc_start;
5647 while (1) {
5648 em = btrfs_get_extent(inode, NULL, 0, cur_offset,
5649 alloc_end - cur_offset, 0);
5650 BUG_ON(IS_ERR(em) || !em);
5651 last_byte = min(extent_map_end(em), alloc_end);
5652 last_byte = (last_byte + mask) & ~mask;
5653 if (em->block_start == EXTENT_MAP_HOLE) {
5654 ret = prealloc_file_range(trans, inode, cur_offset,
5655 last_byte, locked_end + 1,
5656 alloc_hint, mode);
5657 if (ret < 0) {
5658 free_extent_map(em);
5659 break;
5662 if (em->block_start <= EXTENT_MAP_LAST_BYTE)
5663 alloc_hint = em->block_start;
5664 free_extent_map(em);
5666 cur_offset = last_byte;
5667 if (cur_offset >= alloc_end) {
5668 ret = 0;
5669 break;
5672 unlock_extent(&BTRFS_I(inode)->io_tree, alloc_start, locked_end,
5673 GFP_NOFS);
5675 btrfs_end_transaction(trans, BTRFS_I(inode)->root);
5676 out_free:
5677 btrfs_free_reserved_data_space(root, inode, alloc_end - alloc_start);
5678 out:
5679 mutex_unlock(&inode->i_mutex);
5680 return ret;
5683 static int btrfs_set_page_dirty(struct page *page)
5685 return __set_page_dirty_nobuffers(page);
5688 static int btrfs_permission(struct inode *inode, int mask)
5690 if ((BTRFS_I(inode)->flags & BTRFS_INODE_READONLY) && (mask & MAY_WRITE))
5691 return -EACCES;
5692 return generic_permission(inode, mask, btrfs_check_acl);
5695 static const struct inode_operations btrfs_dir_inode_operations = {
5696 .getattr = btrfs_getattr,
5697 .lookup = btrfs_lookup,
5698 .create = btrfs_create,
5699 .unlink = btrfs_unlink,
5700 .link = btrfs_link,
5701 .mkdir = btrfs_mkdir,
5702 .rmdir = btrfs_rmdir,
5703 .rename = btrfs_rename,
5704 .symlink = btrfs_symlink,
5705 .setattr = btrfs_setattr,
5706 .mknod = btrfs_mknod,
5707 .setxattr = btrfs_setxattr,
5708 .getxattr = btrfs_getxattr,
5709 .listxattr = btrfs_listxattr,
5710 .removexattr = btrfs_removexattr,
5711 .permission = btrfs_permission,
5713 static const struct inode_operations btrfs_dir_ro_inode_operations = {
5714 .lookup = btrfs_lookup,
5715 .permission = btrfs_permission,
5718 static const struct file_operations btrfs_dir_file_operations = {
5719 .llseek = generic_file_llseek,
5720 .read = generic_read_dir,
5721 .readdir = btrfs_real_readdir,
5722 .unlocked_ioctl = btrfs_ioctl,
5723 #ifdef CONFIG_COMPAT
5724 .compat_ioctl = btrfs_ioctl,
5725 #endif
5726 .release = btrfs_release_file,
5727 .fsync = btrfs_sync_file,
5730 static struct extent_io_ops btrfs_extent_io_ops = {
5731 .fill_delalloc = run_delalloc_range,
5732 .submit_bio_hook = btrfs_submit_bio_hook,
5733 .merge_bio_hook = btrfs_merge_bio_hook,
5734 .readpage_end_io_hook = btrfs_readpage_end_io_hook,
5735 .writepage_end_io_hook = btrfs_writepage_end_io_hook,
5736 .writepage_start_hook = btrfs_writepage_start_hook,
5737 .readpage_io_failed_hook = btrfs_io_failed_hook,
5738 .set_bit_hook = btrfs_set_bit_hook,
5739 .clear_bit_hook = btrfs_clear_bit_hook,
5740 .merge_extent_hook = btrfs_merge_extent_hook,
5741 .split_extent_hook = btrfs_split_extent_hook,
5745 * btrfs doesn't support the bmap operation because swapfiles
5746 * use bmap to make a mapping of extents in the file. They assume
5747 * these extents won't change over the life of the file and they
5748 * use the bmap result to do IO directly to the drive.
5750 * the btrfs bmap call would return logical addresses that aren't
5751 * suitable for IO and they also will change frequently as COW
5752 * operations happen. So, swapfile + btrfs == corruption.
5754 * For now we're avoiding this by dropping bmap.
5756 static const struct address_space_operations btrfs_aops = {
5757 .readpage = btrfs_readpage,
5758 .writepage = btrfs_writepage,
5759 .writepages = btrfs_writepages,
5760 .readpages = btrfs_readpages,
5761 .sync_page = block_sync_page,
5762 .direct_IO = btrfs_direct_IO,
5763 .invalidatepage = btrfs_invalidatepage,
5764 .releasepage = btrfs_releasepage,
5765 .set_page_dirty = btrfs_set_page_dirty,
5766 .error_remove_page = generic_error_remove_page,
5769 static const struct address_space_operations btrfs_symlink_aops = {
5770 .readpage = btrfs_readpage,
5771 .writepage = btrfs_writepage,
5772 .invalidatepage = btrfs_invalidatepage,
5773 .releasepage = btrfs_releasepage,
5776 static const struct inode_operations btrfs_file_inode_operations = {
5777 .truncate = btrfs_truncate,
5778 .getattr = btrfs_getattr,
5779 .setattr = btrfs_setattr,
5780 .setxattr = btrfs_setxattr,
5781 .getxattr = btrfs_getxattr,
5782 .listxattr = btrfs_listxattr,
5783 .removexattr = btrfs_removexattr,
5784 .permission = btrfs_permission,
5785 .fallocate = btrfs_fallocate,
5786 .fiemap = btrfs_fiemap,
5788 static const struct inode_operations btrfs_special_inode_operations = {
5789 .getattr = btrfs_getattr,
5790 .setattr = btrfs_setattr,
5791 .permission = btrfs_permission,
5792 .setxattr = btrfs_setxattr,
5793 .getxattr = btrfs_getxattr,
5794 .listxattr = btrfs_listxattr,
5795 .removexattr = btrfs_removexattr,
5797 static const struct inode_operations btrfs_symlink_inode_operations = {
5798 .readlink = generic_readlink,
5799 .follow_link = page_follow_link_light,
5800 .put_link = page_put_link,
5801 .permission = btrfs_permission,
5802 .setxattr = btrfs_setxattr,
5803 .getxattr = btrfs_getxattr,
5804 .listxattr = btrfs_listxattr,
5805 .removexattr = btrfs_removexattr,
5808 struct dentry_operations btrfs_dentry_operations = {
5809 .d_delete = btrfs_dentry_delete,