1 #include <linux/bitops.h>
2 #include <linux/slab.h>
6 #include <linux/pagemap.h>
7 #include <linux/page-flags.h>
8 #include <linux/module.h>
9 #include <linux/spinlock.h>
10 #include <linux/blkdev.h>
11 #include <linux/swap.h>
12 #include <linux/writeback.h>
13 #include <linux/pagevec.h>
14 #include "extent_io.h"
15 #include "extent_map.h"
18 #include "btrfs_inode.h"
20 /* temporary define until extent_map moves out of btrfs */
21 struct kmem_cache
*btrfs_cache_create(const char *name
, size_t size
,
22 unsigned long extra_flags
,
23 void (*ctor
)(void *, struct kmem_cache
*,
26 static struct kmem_cache
*extent_state_cache
;
27 static struct kmem_cache
*extent_buffer_cache
;
29 static LIST_HEAD(buffers
);
30 static LIST_HEAD(states
);
34 static DEFINE_SPINLOCK(leak_lock
);
37 #define BUFFER_LRU_MAX 64
42 struct rb_node rb_node
;
45 struct extent_page_data
{
47 struct extent_io_tree
*tree
;
48 get_extent_t
*get_extent
;
50 /* tells writepage not to lock the state bits for this range
51 * it still does the unlocking
56 int __init
extent_io_init(void)
58 extent_state_cache
= btrfs_cache_create("extent_state",
59 sizeof(struct extent_state
), 0,
61 if (!extent_state_cache
)
64 extent_buffer_cache
= btrfs_cache_create("extent_buffers",
65 sizeof(struct extent_buffer
), 0,
67 if (!extent_buffer_cache
)
68 goto free_state_cache
;
72 kmem_cache_destroy(extent_state_cache
);
76 void extent_io_exit(void)
78 struct extent_state
*state
;
79 struct extent_buffer
*eb
;
81 while (!list_empty(&states
)) {
82 state
= list_entry(states
.next
, struct extent_state
, leak_list
);
83 printk(KERN_ERR
"btrfs state leak: start %llu end %llu "
84 "state %lu in tree %p refs %d\n",
85 (unsigned long long)state
->start
,
86 (unsigned long long)state
->end
,
87 state
->state
, state
->tree
, atomic_read(&state
->refs
));
88 list_del(&state
->leak_list
);
89 kmem_cache_free(extent_state_cache
, state
);
93 while (!list_empty(&buffers
)) {
94 eb
= list_entry(buffers
.next
, struct extent_buffer
, leak_list
);
95 printk(KERN_ERR
"btrfs buffer leak start %llu len %lu "
96 "refs %d\n", (unsigned long long)eb
->start
,
97 eb
->len
, atomic_read(&eb
->refs
));
98 list_del(&eb
->leak_list
);
99 kmem_cache_free(extent_buffer_cache
, eb
);
101 if (extent_state_cache
)
102 kmem_cache_destroy(extent_state_cache
);
103 if (extent_buffer_cache
)
104 kmem_cache_destroy(extent_buffer_cache
);
107 void extent_io_tree_init(struct extent_io_tree
*tree
,
108 struct address_space
*mapping
, gfp_t mask
)
110 tree
->state
.rb_node
= NULL
;
111 tree
->buffer
.rb_node
= NULL
;
113 tree
->dirty_bytes
= 0;
114 spin_lock_init(&tree
->lock
);
115 spin_lock_init(&tree
->buffer_lock
);
116 tree
->mapping
= mapping
;
119 static struct extent_state
*alloc_extent_state(gfp_t mask
)
121 struct extent_state
*state
;
126 state
= kmem_cache_alloc(extent_state_cache
, mask
);
133 spin_lock_irqsave(&leak_lock
, flags
);
134 list_add(&state
->leak_list
, &states
);
135 spin_unlock_irqrestore(&leak_lock
, flags
);
137 atomic_set(&state
->refs
, 1);
138 init_waitqueue_head(&state
->wq
);
142 static void free_extent_state(struct extent_state
*state
)
146 if (atomic_dec_and_test(&state
->refs
)) {
150 WARN_ON(state
->tree
);
152 spin_lock_irqsave(&leak_lock
, flags
);
153 list_del(&state
->leak_list
);
154 spin_unlock_irqrestore(&leak_lock
, flags
);
156 kmem_cache_free(extent_state_cache
, state
);
160 static struct rb_node
*tree_insert(struct rb_root
*root
, u64 offset
,
161 struct rb_node
*node
)
163 struct rb_node
**p
= &root
->rb_node
;
164 struct rb_node
*parent
= NULL
;
165 struct tree_entry
*entry
;
169 entry
= rb_entry(parent
, struct tree_entry
, rb_node
);
171 if (offset
< entry
->start
)
173 else if (offset
> entry
->end
)
179 entry
= rb_entry(node
, struct tree_entry
, rb_node
);
180 rb_link_node(node
, parent
, p
);
181 rb_insert_color(node
, root
);
185 static struct rb_node
*__etree_search(struct extent_io_tree
*tree
, u64 offset
,
186 struct rb_node
**prev_ret
,
187 struct rb_node
**next_ret
)
189 struct rb_root
*root
= &tree
->state
;
190 struct rb_node
*n
= root
->rb_node
;
191 struct rb_node
*prev
= NULL
;
192 struct rb_node
*orig_prev
= NULL
;
193 struct tree_entry
*entry
;
194 struct tree_entry
*prev_entry
= NULL
;
197 entry
= rb_entry(n
, struct tree_entry
, rb_node
);
201 if (offset
< entry
->start
)
203 else if (offset
> entry
->end
)
211 while (prev
&& offset
> prev_entry
->end
) {
212 prev
= rb_next(prev
);
213 prev_entry
= rb_entry(prev
, struct tree_entry
, rb_node
);
220 prev_entry
= rb_entry(prev
, struct tree_entry
, rb_node
);
221 while (prev
&& offset
< prev_entry
->start
) {
222 prev
= rb_prev(prev
);
223 prev_entry
= rb_entry(prev
, struct tree_entry
, rb_node
);
230 static inline struct rb_node
*tree_search(struct extent_io_tree
*tree
,
233 struct rb_node
*prev
= NULL
;
236 ret
= __etree_search(tree
, offset
, &prev
, NULL
);
242 static struct extent_buffer
*buffer_tree_insert(struct extent_io_tree
*tree
,
243 u64 offset
, struct rb_node
*node
)
245 struct rb_root
*root
= &tree
->buffer
;
246 struct rb_node
**p
= &root
->rb_node
;
247 struct rb_node
*parent
= NULL
;
248 struct extent_buffer
*eb
;
252 eb
= rb_entry(parent
, struct extent_buffer
, rb_node
);
254 if (offset
< eb
->start
)
256 else if (offset
> eb
->start
)
262 rb_link_node(node
, parent
, p
);
263 rb_insert_color(node
, root
);
267 static struct extent_buffer
*buffer_search(struct extent_io_tree
*tree
,
270 struct rb_root
*root
= &tree
->buffer
;
271 struct rb_node
*n
= root
->rb_node
;
272 struct extent_buffer
*eb
;
275 eb
= rb_entry(n
, struct extent_buffer
, rb_node
);
276 if (offset
< eb
->start
)
278 else if (offset
> eb
->start
)
287 * utility function to look for merge candidates inside a given range.
288 * Any extents with matching state are merged together into a single
289 * extent in the tree. Extents with EXTENT_IO in their state field
290 * are not merged because the end_io handlers need to be able to do
291 * operations on them without sleeping (or doing allocations/splits).
293 * This should be called with the tree lock held.
295 static int merge_state(struct extent_io_tree
*tree
,
296 struct extent_state
*state
)
298 struct extent_state
*other
;
299 struct rb_node
*other_node
;
301 if (state
->state
& (EXTENT_IOBITS
| EXTENT_BOUNDARY
))
304 other_node
= rb_prev(&state
->rb_node
);
306 other
= rb_entry(other_node
, struct extent_state
, rb_node
);
307 if (other
->end
== state
->start
- 1 &&
308 other
->state
== state
->state
) {
309 state
->start
= other
->start
;
311 rb_erase(&other
->rb_node
, &tree
->state
);
312 free_extent_state(other
);
315 other_node
= rb_next(&state
->rb_node
);
317 other
= rb_entry(other_node
, struct extent_state
, rb_node
);
318 if (other
->start
== state
->end
+ 1 &&
319 other
->state
== state
->state
) {
320 other
->start
= state
->start
;
322 rb_erase(&state
->rb_node
, &tree
->state
);
323 free_extent_state(state
);
329 static void set_state_cb(struct extent_io_tree
*tree
,
330 struct extent_state
*state
,
333 if (tree
->ops
&& tree
->ops
->set_bit_hook
) {
334 tree
->ops
->set_bit_hook(tree
->mapping
->host
, state
->start
,
335 state
->end
, state
->state
, bits
);
339 static void clear_state_cb(struct extent_io_tree
*tree
,
340 struct extent_state
*state
,
343 if (tree
->ops
&& tree
->ops
->clear_bit_hook
) {
344 tree
->ops
->clear_bit_hook(tree
->mapping
->host
, state
->start
,
345 state
->end
, state
->state
, bits
);
350 * insert an extent_state struct into the tree. 'bits' are set on the
351 * struct before it is inserted.
353 * This may return -EEXIST if the extent is already there, in which case the
354 * state struct is freed.
356 * The tree lock is not taken internally. This is a utility function and
357 * probably isn't what you want to call (see set/clear_extent_bit).
359 static int insert_state(struct extent_io_tree
*tree
,
360 struct extent_state
*state
, u64 start
, u64 end
,
363 struct rb_node
*node
;
366 printk(KERN_ERR
"btrfs end < start %llu %llu\n",
367 (unsigned long long)end
,
368 (unsigned long long)start
);
371 if (bits
& EXTENT_DIRTY
)
372 tree
->dirty_bytes
+= end
- start
+ 1;
373 set_state_cb(tree
, state
, bits
);
374 state
->state
|= bits
;
375 state
->start
= start
;
377 node
= tree_insert(&tree
->state
, end
, &state
->rb_node
);
379 struct extent_state
*found
;
380 found
= rb_entry(node
, struct extent_state
, rb_node
);
381 printk(KERN_ERR
"btrfs found node %llu %llu on insert of "
382 "%llu %llu\n", (unsigned long long)found
->start
,
383 (unsigned long long)found
->end
,
384 (unsigned long long)start
, (unsigned long long)end
);
385 free_extent_state(state
);
389 merge_state(tree
, state
);
394 * split a given extent state struct in two, inserting the preallocated
395 * struct 'prealloc' as the newly created second half. 'split' indicates an
396 * offset inside 'orig' where it should be split.
399 * the tree has 'orig' at [orig->start, orig->end]. After calling, there
400 * are two extent state structs in the tree:
401 * prealloc: [orig->start, split - 1]
402 * orig: [ split, orig->end ]
404 * The tree locks are not taken by this function. They need to be held
407 static int split_state(struct extent_io_tree
*tree
, struct extent_state
*orig
,
408 struct extent_state
*prealloc
, u64 split
)
410 struct rb_node
*node
;
411 prealloc
->start
= orig
->start
;
412 prealloc
->end
= split
- 1;
413 prealloc
->state
= orig
->state
;
416 node
= tree_insert(&tree
->state
, prealloc
->end
, &prealloc
->rb_node
);
418 free_extent_state(prealloc
);
421 prealloc
->tree
= tree
;
426 * utility function to clear some bits in an extent state struct.
427 * it will optionally wake up any one waiting on this state (wake == 1), or
428 * forcibly remove the state from the tree (delete == 1).
430 * If no bits are set on the state struct after clearing things, the
431 * struct is freed and removed from the tree
433 static int clear_state_bit(struct extent_io_tree
*tree
,
434 struct extent_state
*state
, int bits
, int wake
,
437 int ret
= state
->state
& bits
;
439 if ((bits
& EXTENT_DIRTY
) && (state
->state
& EXTENT_DIRTY
)) {
440 u64 range
= state
->end
- state
->start
+ 1;
441 WARN_ON(range
> tree
->dirty_bytes
);
442 tree
->dirty_bytes
-= range
;
444 clear_state_cb(tree
, state
, bits
);
445 state
->state
&= ~bits
;
448 if (delete || state
->state
== 0) {
450 clear_state_cb(tree
, state
, state
->state
);
451 rb_erase(&state
->rb_node
, &tree
->state
);
453 free_extent_state(state
);
458 merge_state(tree
, state
);
464 * clear some bits on a range in the tree. This may require splitting
465 * or inserting elements in the tree, so the gfp mask is used to
466 * indicate which allocations or sleeping are allowed.
468 * pass 'wake' == 1 to kick any sleepers, and 'delete' == 1 to remove
469 * the given range from the tree regardless of state (ie for truncate).
471 * the range [start, end] is inclusive.
473 * This takes the tree lock, and returns < 0 on error, > 0 if any of the
474 * bits were already set, or zero if none of the bits were already set.
476 int clear_extent_bit(struct extent_io_tree
*tree
, u64 start
, u64 end
,
477 int bits
, int wake
, int delete, gfp_t mask
)
479 struct extent_state
*state
;
480 struct extent_state
*prealloc
= NULL
;
481 struct rb_node
*node
;
486 if (!prealloc
&& (mask
& __GFP_WAIT
)) {
487 prealloc
= alloc_extent_state(mask
);
492 spin_lock(&tree
->lock
);
494 * this search will find the extents that end after
497 node
= tree_search(tree
, start
);
500 state
= rb_entry(node
, struct extent_state
, rb_node
);
501 if (state
->start
> end
)
503 WARN_ON(state
->end
< start
);
506 * | ---- desired range ---- |
508 * | ------------- state -------------- |
510 * We need to split the extent we found, and may flip
511 * bits on second half.
513 * If the extent we found extends past our range, we
514 * just split and search again. It'll get split again
515 * the next time though.
517 * If the extent we found is inside our range, we clear
518 * the desired bit on it.
521 if (state
->start
< start
) {
523 prealloc
= alloc_extent_state(GFP_ATOMIC
);
524 err
= split_state(tree
, state
, prealloc
, start
);
525 BUG_ON(err
== -EEXIST
);
529 if (state
->end
<= end
) {
530 start
= state
->end
+ 1;
531 set
|= clear_state_bit(tree
, state
, bits
,
534 start
= state
->start
;
539 * | ---- desired range ---- |
541 * We need to split the extent, and clear the bit
544 if (state
->start
<= end
&& state
->end
> end
) {
546 prealloc
= alloc_extent_state(GFP_ATOMIC
);
547 err
= split_state(tree
, state
, prealloc
, end
+ 1);
548 BUG_ON(err
== -EEXIST
);
552 set
|= clear_state_bit(tree
, prealloc
, bits
,
558 start
= state
->end
+ 1;
559 set
|= clear_state_bit(tree
, state
, bits
, wake
, delete);
563 spin_unlock(&tree
->lock
);
565 free_extent_state(prealloc
);
572 spin_unlock(&tree
->lock
);
573 if (mask
& __GFP_WAIT
)
578 static int wait_on_state(struct extent_io_tree
*tree
,
579 struct extent_state
*state
)
580 __releases(tree
->lock
)
581 __acquires(tree
->lock
)
584 prepare_to_wait(&state
->wq
, &wait
, TASK_UNINTERRUPTIBLE
);
585 spin_unlock(&tree
->lock
);
587 spin_lock(&tree
->lock
);
588 finish_wait(&state
->wq
, &wait
);
593 * waits for one or more bits to clear on a range in the state tree.
594 * The range [start, end] is inclusive.
595 * The tree lock is taken by this function
597 int wait_extent_bit(struct extent_io_tree
*tree
, u64 start
, u64 end
, int bits
)
599 struct extent_state
*state
;
600 struct rb_node
*node
;
602 spin_lock(&tree
->lock
);
606 * this search will find all the extents that end after
609 node
= tree_search(tree
, start
);
613 state
= rb_entry(node
, struct extent_state
, rb_node
);
615 if (state
->start
> end
)
618 if (state
->state
& bits
) {
619 start
= state
->start
;
620 atomic_inc(&state
->refs
);
621 wait_on_state(tree
, state
);
622 free_extent_state(state
);
625 start
= state
->end
+ 1;
630 if (need_resched()) {
631 spin_unlock(&tree
->lock
);
633 spin_lock(&tree
->lock
);
637 spin_unlock(&tree
->lock
);
641 static void set_state_bits(struct extent_io_tree
*tree
,
642 struct extent_state
*state
,
645 if ((bits
& EXTENT_DIRTY
) && !(state
->state
& EXTENT_DIRTY
)) {
646 u64 range
= state
->end
- state
->start
+ 1;
647 tree
->dirty_bytes
+= range
;
649 set_state_cb(tree
, state
, bits
);
650 state
->state
|= bits
;
654 * set some bits on a range in the tree. This may require allocations
655 * or sleeping, so the gfp mask is used to indicate what is allowed.
657 * If 'exclusive' == 1, this will fail with -EEXIST if some part of the
658 * range already has the desired bits set. The start of the existing
659 * range is returned in failed_start in this case.
661 * [start, end] is inclusive
662 * This takes the tree lock.
664 static int set_extent_bit(struct extent_io_tree
*tree
, u64 start
, u64 end
,
665 int bits
, int exclusive
, u64
*failed_start
,
668 struct extent_state
*state
;
669 struct extent_state
*prealloc
= NULL
;
670 struct rb_node
*node
;
676 if (!prealloc
&& (mask
& __GFP_WAIT
)) {
677 prealloc
= alloc_extent_state(mask
);
682 spin_lock(&tree
->lock
);
684 * this search will find all the extents that end after
687 node
= tree_search(tree
, start
);
689 err
= insert_state(tree
, prealloc
, start
, end
, bits
);
691 BUG_ON(err
== -EEXIST
);
695 state
= rb_entry(node
, struct extent_state
, rb_node
);
696 last_start
= state
->start
;
697 last_end
= state
->end
;
700 * | ---- desired range ---- |
703 * Just lock what we found and keep going
705 if (state
->start
== start
&& state
->end
<= end
) {
706 set
= state
->state
& bits
;
707 if (set
&& exclusive
) {
708 *failed_start
= state
->start
;
712 set_state_bits(tree
, state
, bits
);
713 start
= state
->end
+ 1;
714 merge_state(tree
, state
);
719 * | ---- desired range ---- |
722 * | ------------- state -------------- |
724 * We need to split the extent we found, and may flip bits on
727 * If the extent we found extends past our
728 * range, we just split and search again. It'll get split
729 * again the next time though.
731 * If the extent we found is inside our range, we set the
734 if (state
->start
< start
) {
735 set
= state
->state
& bits
;
736 if (exclusive
&& set
) {
737 *failed_start
= start
;
741 err
= split_state(tree
, state
, prealloc
, start
);
742 BUG_ON(err
== -EEXIST
);
746 if (state
->end
<= end
) {
747 set_state_bits(tree
, state
, bits
);
748 start
= state
->end
+ 1;
749 merge_state(tree
, state
);
751 start
= state
->start
;
756 * | ---- desired range ---- |
757 * | state | or | state |
759 * There's a hole, we need to insert something in it and
760 * ignore the extent we found.
762 if (state
->start
> start
) {
764 if (end
< last_start
)
767 this_end
= last_start
- 1;
768 err
= insert_state(tree
, prealloc
, start
, this_end
,
771 BUG_ON(err
== -EEXIST
);
774 start
= this_end
+ 1;
778 * | ---- desired range ---- |
780 * We need to split the extent, and set the bit
783 if (state
->start
<= end
&& state
->end
> end
) {
784 set
= state
->state
& bits
;
785 if (exclusive
&& set
) {
786 *failed_start
= start
;
790 err
= split_state(tree
, state
, prealloc
, end
+ 1);
791 BUG_ON(err
== -EEXIST
);
793 set_state_bits(tree
, prealloc
, bits
);
794 merge_state(tree
, prealloc
);
802 spin_unlock(&tree
->lock
);
804 free_extent_state(prealloc
);
811 spin_unlock(&tree
->lock
);
812 if (mask
& __GFP_WAIT
)
817 /* wrappers around set/clear extent bit */
818 int set_extent_dirty(struct extent_io_tree
*tree
, u64 start
, u64 end
,
821 return set_extent_bit(tree
, start
, end
, EXTENT_DIRTY
, 0, NULL
,
825 int set_extent_ordered(struct extent_io_tree
*tree
, u64 start
, u64 end
,
828 return set_extent_bit(tree
, start
, end
, EXTENT_ORDERED
, 0, NULL
, mask
);
831 int set_extent_bits(struct extent_io_tree
*tree
, u64 start
, u64 end
,
832 int bits
, gfp_t mask
)
834 return set_extent_bit(tree
, start
, end
, bits
, 0, NULL
,
838 int clear_extent_bits(struct extent_io_tree
*tree
, u64 start
, u64 end
,
839 int bits
, gfp_t mask
)
841 return clear_extent_bit(tree
, start
, end
, bits
, 0, 0, mask
);
844 int set_extent_delalloc(struct extent_io_tree
*tree
, u64 start
, u64 end
,
847 return set_extent_bit(tree
, start
, end
,
848 EXTENT_DELALLOC
| EXTENT_DIRTY
,
852 int clear_extent_dirty(struct extent_io_tree
*tree
, u64 start
, u64 end
,
855 return clear_extent_bit(tree
, start
, end
,
856 EXTENT_DIRTY
| EXTENT_DELALLOC
, 0, 0, mask
);
859 int clear_extent_ordered(struct extent_io_tree
*tree
, u64 start
, u64 end
,
862 return clear_extent_bit(tree
, start
, end
, EXTENT_ORDERED
, 1, 0, mask
);
865 int set_extent_new(struct extent_io_tree
*tree
, u64 start
, u64 end
,
868 return set_extent_bit(tree
, start
, end
, EXTENT_NEW
, 0, NULL
,
872 static int clear_extent_new(struct extent_io_tree
*tree
, u64 start
, u64 end
,
875 return clear_extent_bit(tree
, start
, end
, EXTENT_NEW
, 0, 0, mask
);
878 int set_extent_uptodate(struct extent_io_tree
*tree
, u64 start
, u64 end
,
881 return set_extent_bit(tree
, start
, end
, EXTENT_UPTODATE
, 0, NULL
,
885 static int clear_extent_uptodate(struct extent_io_tree
*tree
, u64 start
,
888 return clear_extent_bit(tree
, start
, end
, EXTENT_UPTODATE
, 0, 0, mask
);
891 static int set_extent_writeback(struct extent_io_tree
*tree
, u64 start
, u64 end
,
894 return set_extent_bit(tree
, start
, end
, EXTENT_WRITEBACK
,
898 static int clear_extent_writeback(struct extent_io_tree
*tree
, u64 start
,
901 return clear_extent_bit(tree
, start
, end
, EXTENT_WRITEBACK
, 1, 0, mask
);
904 int wait_on_extent_writeback(struct extent_io_tree
*tree
, u64 start
, u64 end
)
906 return wait_extent_bit(tree
, start
, end
, EXTENT_WRITEBACK
);
910 * either insert or lock state struct between start and end use mask to tell
911 * us if waiting is desired.
913 int lock_extent(struct extent_io_tree
*tree
, u64 start
, u64 end
, gfp_t mask
)
918 err
= set_extent_bit(tree
, start
, end
, EXTENT_LOCKED
, 1,
919 &failed_start
, mask
);
920 if (err
== -EEXIST
&& (mask
& __GFP_WAIT
)) {
921 wait_extent_bit(tree
, failed_start
, end
, EXTENT_LOCKED
);
922 start
= failed_start
;
926 WARN_ON(start
> end
);
931 int try_lock_extent(struct extent_io_tree
*tree
, u64 start
, u64 end
,
937 err
= set_extent_bit(tree
, start
, end
, EXTENT_LOCKED
, 1,
938 &failed_start
, mask
);
939 if (err
== -EEXIST
) {
940 if (failed_start
> start
)
941 clear_extent_bit(tree
, start
, failed_start
- 1,
942 EXTENT_LOCKED
, 1, 0, mask
);
948 int unlock_extent(struct extent_io_tree
*tree
, u64 start
, u64 end
,
951 return clear_extent_bit(tree
, start
, end
, EXTENT_LOCKED
, 1, 0, mask
);
955 * helper function to set pages and extents in the tree dirty
957 int set_range_dirty(struct extent_io_tree
*tree
, u64 start
, u64 end
)
959 unsigned long index
= start
>> PAGE_CACHE_SHIFT
;
960 unsigned long end_index
= end
>> PAGE_CACHE_SHIFT
;
963 while (index
<= end_index
) {
964 page
= find_get_page(tree
->mapping
, index
);
966 __set_page_dirty_nobuffers(page
);
967 page_cache_release(page
);
970 set_extent_dirty(tree
, start
, end
, GFP_NOFS
);
975 * helper function to set both pages and extents in the tree writeback
977 static int set_range_writeback(struct extent_io_tree
*tree
, u64 start
, u64 end
)
979 unsigned long index
= start
>> PAGE_CACHE_SHIFT
;
980 unsigned long end_index
= end
>> PAGE_CACHE_SHIFT
;
983 while (index
<= end_index
) {
984 page
= find_get_page(tree
->mapping
, index
);
986 set_page_writeback(page
);
987 page_cache_release(page
);
990 set_extent_writeback(tree
, start
, end
, GFP_NOFS
);
995 * find the first offset in the io tree with 'bits' set. zero is
996 * returned if we find something, and *start_ret and *end_ret are
997 * set to reflect the state struct that was found.
999 * If nothing was found, 1 is returned, < 0 on error
1001 int find_first_extent_bit(struct extent_io_tree
*tree
, u64 start
,
1002 u64
*start_ret
, u64
*end_ret
, int bits
)
1004 struct rb_node
*node
;
1005 struct extent_state
*state
;
1008 spin_lock(&tree
->lock
);
1010 * this search will find all the extents that end after
1013 node
= tree_search(tree
, start
);
1018 state
= rb_entry(node
, struct extent_state
, rb_node
);
1019 if (state
->end
>= start
&& (state
->state
& bits
)) {
1020 *start_ret
= state
->start
;
1021 *end_ret
= state
->end
;
1025 node
= rb_next(node
);
1030 spin_unlock(&tree
->lock
);
1034 /* find the first state struct with 'bits' set after 'start', and
1035 * return it. tree->lock must be held. NULL will returned if
1036 * nothing was found after 'start'
1038 struct extent_state
*find_first_extent_bit_state(struct extent_io_tree
*tree
,
1039 u64 start
, int bits
)
1041 struct rb_node
*node
;
1042 struct extent_state
*state
;
1045 * this search will find all the extents that end after
1048 node
= tree_search(tree
, start
);
1053 state
= rb_entry(node
, struct extent_state
, rb_node
);
1054 if (state
->end
>= start
&& (state
->state
& bits
))
1057 node
= rb_next(node
);
1066 * find a contiguous range of bytes in the file marked as delalloc, not
1067 * more than 'max_bytes'. start and end are used to return the range,
1069 * 1 is returned if we find something, 0 if nothing was in the tree
1071 static noinline u64
find_delalloc_range(struct extent_io_tree
*tree
,
1072 u64
*start
, u64
*end
, u64 max_bytes
)
1074 struct rb_node
*node
;
1075 struct extent_state
*state
;
1076 u64 cur_start
= *start
;
1078 u64 total_bytes
= 0;
1080 spin_lock(&tree
->lock
);
1083 * this search will find all the extents that end after
1086 node
= tree_search(tree
, cur_start
);
1094 state
= rb_entry(node
, struct extent_state
, rb_node
);
1095 if (found
&& (state
->start
!= cur_start
||
1096 (state
->state
& EXTENT_BOUNDARY
))) {
1099 if (!(state
->state
& EXTENT_DELALLOC
)) {
1105 *start
= state
->start
;
1108 cur_start
= state
->end
+ 1;
1109 node
= rb_next(node
);
1112 total_bytes
+= state
->end
- state
->start
+ 1;
1113 if (total_bytes
>= max_bytes
)
1117 spin_unlock(&tree
->lock
);
1121 static noinline
int __unlock_for_delalloc(struct inode
*inode
,
1122 struct page
*locked_page
,
1126 struct page
*pages
[16];
1127 unsigned long index
= start
>> PAGE_CACHE_SHIFT
;
1128 unsigned long end_index
= end
>> PAGE_CACHE_SHIFT
;
1129 unsigned long nr_pages
= end_index
- index
+ 1;
1132 if (index
== locked_page
->index
&& end_index
== index
)
1135 while (nr_pages
> 0) {
1136 ret
= find_get_pages_contig(inode
->i_mapping
, index
,
1137 min_t(unsigned long, nr_pages
,
1138 ARRAY_SIZE(pages
)), pages
);
1139 for (i
= 0; i
< ret
; i
++) {
1140 if (pages
[i
] != locked_page
)
1141 unlock_page(pages
[i
]);
1142 page_cache_release(pages
[i
]);
1151 static noinline
int lock_delalloc_pages(struct inode
*inode
,
1152 struct page
*locked_page
,
1156 unsigned long index
= delalloc_start
>> PAGE_CACHE_SHIFT
;
1157 unsigned long start_index
= index
;
1158 unsigned long end_index
= delalloc_end
>> PAGE_CACHE_SHIFT
;
1159 unsigned long pages_locked
= 0;
1160 struct page
*pages
[16];
1161 unsigned long nrpages
;
1165 /* the caller is responsible for locking the start index */
1166 if (index
== locked_page
->index
&& index
== end_index
)
1169 /* skip the page at the start index */
1170 nrpages
= end_index
- index
+ 1;
1171 while (nrpages
> 0) {
1172 ret
= find_get_pages_contig(inode
->i_mapping
, index
,
1173 min_t(unsigned long,
1174 nrpages
, ARRAY_SIZE(pages
)), pages
);
1179 /* now we have an array of pages, lock them all */
1180 for (i
= 0; i
< ret
; i
++) {
1182 * the caller is taking responsibility for
1185 if (pages
[i
] != locked_page
) {
1186 lock_page(pages
[i
]);
1187 if (!PageDirty(pages
[i
]) ||
1188 pages
[i
]->mapping
!= inode
->i_mapping
) {
1190 unlock_page(pages
[i
]);
1191 page_cache_release(pages
[i
]);
1195 page_cache_release(pages
[i
]);
1204 if (ret
&& pages_locked
) {
1205 __unlock_for_delalloc(inode
, locked_page
,
1207 ((u64
)(start_index
+ pages_locked
- 1)) <<
1214 * find a contiguous range of bytes in the file marked as delalloc, not
1215 * more than 'max_bytes'. start and end are used to return the range,
1217 * 1 is returned if we find something, 0 if nothing was in the tree
1219 static noinline u64
find_lock_delalloc_range(struct inode
*inode
,
1220 struct extent_io_tree
*tree
,
1221 struct page
*locked_page
,
1222 u64
*start
, u64
*end
,
1232 /* step one, find a bunch of delalloc bytes starting at start */
1233 delalloc_start
= *start
;
1235 found
= find_delalloc_range(tree
, &delalloc_start
, &delalloc_end
,
1237 if (!found
|| delalloc_end
<= *start
) {
1238 *start
= delalloc_start
;
1239 *end
= delalloc_end
;
1244 * start comes from the offset of locked_page. We have to lock
1245 * pages in order, so we can't process delalloc bytes before
1248 if (delalloc_start
< *start
)
1249 delalloc_start
= *start
;
1252 * make sure to limit the number of pages we try to lock down
1255 if (delalloc_end
+ 1 - delalloc_start
> max_bytes
&& loops
)
1256 delalloc_end
= delalloc_start
+ PAGE_CACHE_SIZE
- 1;
1258 /* step two, lock all the pages after the page that has start */
1259 ret
= lock_delalloc_pages(inode
, locked_page
,
1260 delalloc_start
, delalloc_end
);
1261 if (ret
== -EAGAIN
) {
1262 /* some of the pages are gone, lets avoid looping by
1263 * shortening the size of the delalloc range we're searching
1266 unsigned long offset
= (*start
) & (PAGE_CACHE_SIZE
- 1);
1267 max_bytes
= PAGE_CACHE_SIZE
- offset
;
1277 /* step three, lock the state bits for the whole range */
1278 lock_extent(tree
, delalloc_start
, delalloc_end
, GFP_NOFS
);
1280 /* then test to make sure it is all still delalloc */
1281 ret
= test_range_bit(tree
, delalloc_start
, delalloc_end
,
1282 EXTENT_DELALLOC
, 1);
1284 unlock_extent(tree
, delalloc_start
, delalloc_end
, GFP_NOFS
);
1285 __unlock_for_delalloc(inode
, locked_page
,
1286 delalloc_start
, delalloc_end
);
1290 *start
= delalloc_start
;
1291 *end
= delalloc_end
;
1296 int extent_clear_unlock_delalloc(struct inode
*inode
,
1297 struct extent_io_tree
*tree
,
1298 u64 start
, u64 end
, struct page
*locked_page
,
1301 int clear_delalloc
, int clear_dirty
,
1306 struct page
*pages
[16];
1307 unsigned long index
= start
>> PAGE_CACHE_SHIFT
;
1308 unsigned long end_index
= end
>> PAGE_CACHE_SHIFT
;
1309 unsigned long nr_pages
= end_index
- index
+ 1;
1314 clear_bits
|= EXTENT_LOCKED
;
1316 clear_bits
|= EXTENT_DIRTY
;
1319 clear_bits
|= EXTENT_DELALLOC
;
1321 clear_extent_bit(tree
, start
, end
, clear_bits
, 1, 0, GFP_NOFS
);
1322 if (!(unlock_pages
|| clear_dirty
|| set_writeback
|| end_writeback
))
1325 while (nr_pages
> 0) {
1326 ret
= find_get_pages_contig(inode
->i_mapping
, index
,
1327 min_t(unsigned long,
1328 nr_pages
, ARRAY_SIZE(pages
)), pages
);
1329 for (i
= 0; i
< ret
; i
++) {
1330 if (pages
[i
] == locked_page
) {
1331 page_cache_release(pages
[i
]);
1335 clear_page_dirty_for_io(pages
[i
]);
1337 set_page_writeback(pages
[i
]);
1339 end_page_writeback(pages
[i
]);
1341 unlock_page(pages
[i
]);
1342 page_cache_release(pages
[i
]);
1352 * count the number of bytes in the tree that have a given bit(s)
1353 * set. This can be fairly slow, except for EXTENT_DIRTY which is
1354 * cached. The total number found is returned.
1356 u64
count_range_bits(struct extent_io_tree
*tree
,
1357 u64
*start
, u64 search_end
, u64 max_bytes
,
1360 struct rb_node
*node
;
1361 struct extent_state
*state
;
1362 u64 cur_start
= *start
;
1363 u64 total_bytes
= 0;
1366 if (search_end
<= cur_start
) {
1371 spin_lock(&tree
->lock
);
1372 if (cur_start
== 0 && bits
== EXTENT_DIRTY
) {
1373 total_bytes
= tree
->dirty_bytes
;
1377 * this search will find all the extents that end after
1380 node
= tree_search(tree
, cur_start
);
1385 state
= rb_entry(node
, struct extent_state
, rb_node
);
1386 if (state
->start
> search_end
)
1388 if (state
->end
>= cur_start
&& (state
->state
& bits
)) {
1389 total_bytes
+= min(search_end
, state
->end
) + 1 -
1390 max(cur_start
, state
->start
);
1391 if (total_bytes
>= max_bytes
)
1394 *start
= state
->start
;
1398 node
= rb_next(node
);
1403 spin_unlock(&tree
->lock
);
1409 * helper function to lock both pages and extents in the tree.
1410 * pages must be locked first.
1412 static int lock_range(struct extent_io_tree
*tree
, u64 start
, u64 end
)
1414 unsigned long index
= start
>> PAGE_CACHE_SHIFT
;
1415 unsigned long end_index
= end
>> PAGE_CACHE_SHIFT
;
1419 while (index
<= end_index
) {
1420 page
= grab_cache_page(tree
->mapping
, index
);
1426 err
= PTR_ERR(page
);
1431 lock_extent(tree
, start
, end
, GFP_NOFS
);
1436 * we failed above in getting the page at 'index', so we undo here
1437 * up to but not including the page at 'index'
1440 index
= start
>> PAGE_CACHE_SHIFT
;
1441 while (index
< end_index
) {
1442 page
= find_get_page(tree
->mapping
, index
);
1444 page_cache_release(page
);
1451 * helper function to unlock both pages and extents in the tree.
1453 static int unlock_range(struct extent_io_tree
*tree
, u64 start
, u64 end
)
1455 unsigned long index
= start
>> PAGE_CACHE_SHIFT
;
1456 unsigned long end_index
= end
>> PAGE_CACHE_SHIFT
;
1459 while (index
<= end_index
) {
1460 page
= find_get_page(tree
->mapping
, index
);
1462 page_cache_release(page
);
1465 unlock_extent(tree
, start
, end
, GFP_NOFS
);
1471 * set the private field for a given byte offset in the tree. If there isn't
1472 * an extent_state there already, this does nothing.
1474 int set_state_private(struct extent_io_tree
*tree
, u64 start
, u64
private)
1476 struct rb_node
*node
;
1477 struct extent_state
*state
;
1480 spin_lock(&tree
->lock
);
1482 * this search will find all the extents that end after
1485 node
= tree_search(tree
, start
);
1490 state
= rb_entry(node
, struct extent_state
, rb_node
);
1491 if (state
->start
!= start
) {
1495 state
->private = private;
1497 spin_unlock(&tree
->lock
);
1501 int get_state_private(struct extent_io_tree
*tree
, u64 start
, u64
*private)
1503 struct rb_node
*node
;
1504 struct extent_state
*state
;
1507 spin_lock(&tree
->lock
);
1509 * this search will find all the extents that end after
1512 node
= tree_search(tree
, start
);
1517 state
= rb_entry(node
, struct extent_state
, rb_node
);
1518 if (state
->start
!= start
) {
1522 *private = state
->private;
1524 spin_unlock(&tree
->lock
);
1529 * searches a range in the state tree for a given mask.
1530 * If 'filled' == 1, this returns 1 only if every extent in the tree
1531 * has the bits set. Otherwise, 1 is returned if any bit in the
1532 * range is found set.
1534 int test_range_bit(struct extent_io_tree
*tree
, u64 start
, u64 end
,
1535 int bits
, int filled
)
1537 struct extent_state
*state
= NULL
;
1538 struct rb_node
*node
;
1541 spin_lock(&tree
->lock
);
1542 node
= tree_search(tree
, start
);
1543 while (node
&& start
<= end
) {
1544 state
= rb_entry(node
, struct extent_state
, rb_node
);
1546 if (filled
&& state
->start
> start
) {
1551 if (state
->start
> end
)
1554 if (state
->state
& bits
) {
1558 } else if (filled
) {
1562 start
= state
->end
+ 1;
1565 node
= rb_next(node
);
1572 spin_unlock(&tree
->lock
);
1577 * helper function to set a given page up to date if all the
1578 * extents in the tree for that page are up to date
1580 static int check_page_uptodate(struct extent_io_tree
*tree
,
1583 u64 start
= (u64
)page
->index
<< PAGE_CACHE_SHIFT
;
1584 u64 end
= start
+ PAGE_CACHE_SIZE
- 1;
1585 if (test_range_bit(tree
, start
, end
, EXTENT_UPTODATE
, 1))
1586 SetPageUptodate(page
);
1591 * helper function to unlock a page if all the extents in the tree
1592 * for that page are unlocked
1594 static int check_page_locked(struct extent_io_tree
*tree
,
1597 u64 start
= (u64
)page
->index
<< PAGE_CACHE_SHIFT
;
1598 u64 end
= start
+ PAGE_CACHE_SIZE
- 1;
1599 if (!test_range_bit(tree
, start
, end
, EXTENT_LOCKED
, 0))
1605 * helper function to end page writeback if all the extents
1606 * in the tree for that page are done with writeback
1608 static int check_page_writeback(struct extent_io_tree
*tree
,
1611 u64 start
= (u64
)page
->index
<< PAGE_CACHE_SHIFT
;
1612 u64 end
= start
+ PAGE_CACHE_SIZE
- 1;
1613 if (!test_range_bit(tree
, start
, end
, EXTENT_WRITEBACK
, 0))
1614 end_page_writeback(page
);
1618 /* lots and lots of room for performance fixes in the end_bio funcs */
1621 * after a writepage IO is done, we need to:
1622 * clear the uptodate bits on error
1623 * clear the writeback bits in the extent tree for this IO
1624 * end_page_writeback if the page has no more pending IO
1626 * Scheduling is not allowed, so the extent state tree is expected
1627 * to have one and only one object corresponding to this IO.
1629 static void end_bio_extent_writepage(struct bio
*bio
, int err
)
1631 int uptodate
= err
== 0;
1632 struct bio_vec
*bvec
= bio
->bi_io_vec
+ bio
->bi_vcnt
- 1;
1633 struct extent_io_tree
*tree
;
1640 struct page
*page
= bvec
->bv_page
;
1641 tree
= &BTRFS_I(page
->mapping
->host
)->io_tree
;
1643 start
= ((u64
)page
->index
<< PAGE_CACHE_SHIFT
) +
1645 end
= start
+ bvec
->bv_len
- 1;
1647 if (bvec
->bv_offset
== 0 && bvec
->bv_len
== PAGE_CACHE_SIZE
)
1652 if (--bvec
>= bio
->bi_io_vec
)
1653 prefetchw(&bvec
->bv_page
->flags
);
1654 if (tree
->ops
&& tree
->ops
->writepage_end_io_hook
) {
1655 ret
= tree
->ops
->writepage_end_io_hook(page
, start
,
1656 end
, NULL
, uptodate
);
1661 if (!uptodate
&& tree
->ops
&&
1662 tree
->ops
->writepage_io_failed_hook
) {
1663 ret
= tree
->ops
->writepage_io_failed_hook(bio
, page
,
1666 uptodate
= (err
== 0);
1672 clear_extent_uptodate(tree
, start
, end
, GFP_ATOMIC
);
1673 ClearPageUptodate(page
);
1677 clear_extent_writeback(tree
, start
, end
, GFP_ATOMIC
);
1680 end_page_writeback(page
);
1682 check_page_writeback(tree
, page
);
1683 } while (bvec
>= bio
->bi_io_vec
);
1689 * after a readpage IO is done, we need to:
1690 * clear the uptodate bits on error
1691 * set the uptodate bits if things worked
1692 * set the page up to date if all extents in the tree are uptodate
1693 * clear the lock bit in the extent tree
1694 * unlock the page if there are no other extents locked for it
1696 * Scheduling is not allowed, so the extent state tree is expected
1697 * to have one and only one object corresponding to this IO.
1699 static void end_bio_extent_readpage(struct bio
*bio
, int err
)
1701 int uptodate
= test_bit(BIO_UPTODATE
, &bio
->bi_flags
);
1702 struct bio_vec
*bvec
= bio
->bi_io_vec
+ bio
->bi_vcnt
- 1;
1703 struct extent_io_tree
*tree
;
1713 struct page
*page
= bvec
->bv_page
;
1714 tree
= &BTRFS_I(page
->mapping
->host
)->io_tree
;
1716 start
= ((u64
)page
->index
<< PAGE_CACHE_SHIFT
) +
1718 end
= start
+ bvec
->bv_len
- 1;
1720 if (bvec
->bv_offset
== 0 && bvec
->bv_len
== PAGE_CACHE_SIZE
)
1725 if (--bvec
>= bio
->bi_io_vec
)
1726 prefetchw(&bvec
->bv_page
->flags
);
1728 if (uptodate
&& tree
->ops
&& tree
->ops
->readpage_end_io_hook
) {
1729 ret
= tree
->ops
->readpage_end_io_hook(page
, start
, end
,
1734 if (!uptodate
&& tree
->ops
&&
1735 tree
->ops
->readpage_io_failed_hook
) {
1736 ret
= tree
->ops
->readpage_io_failed_hook(bio
, page
,
1740 test_bit(BIO_UPTODATE
, &bio
->bi_flags
);
1748 set_extent_uptodate(tree
, start
, end
,
1751 unlock_extent(tree
, start
, end
, GFP_ATOMIC
);
1755 SetPageUptodate(page
);
1757 ClearPageUptodate(page
);
1763 check_page_uptodate(tree
, page
);
1765 ClearPageUptodate(page
);
1768 check_page_locked(tree
, page
);
1770 } while (bvec
>= bio
->bi_io_vec
);
1776 * IO done from prepare_write is pretty simple, we just unlock
1777 * the structs in the extent tree when done, and set the uptodate bits
1780 static void end_bio_extent_preparewrite(struct bio
*bio
, int err
)
1782 const int uptodate
= test_bit(BIO_UPTODATE
, &bio
->bi_flags
);
1783 struct bio_vec
*bvec
= bio
->bi_io_vec
+ bio
->bi_vcnt
- 1;
1784 struct extent_io_tree
*tree
;
1789 struct page
*page
= bvec
->bv_page
;
1790 tree
= &BTRFS_I(page
->mapping
->host
)->io_tree
;
1792 start
= ((u64
)page
->index
<< PAGE_CACHE_SHIFT
) +
1794 end
= start
+ bvec
->bv_len
- 1;
1796 if (--bvec
>= bio
->bi_io_vec
)
1797 prefetchw(&bvec
->bv_page
->flags
);
1800 set_extent_uptodate(tree
, start
, end
, GFP_ATOMIC
);
1802 ClearPageUptodate(page
);
1806 unlock_extent(tree
, start
, end
, GFP_ATOMIC
);
1808 } while (bvec
>= bio
->bi_io_vec
);
1814 extent_bio_alloc(struct block_device
*bdev
, u64 first_sector
, int nr_vecs
,
1819 bio
= bio_alloc(gfp_flags
, nr_vecs
);
1821 if (bio
== NULL
&& (current
->flags
& PF_MEMALLOC
)) {
1822 while (!bio
&& (nr_vecs
/= 2))
1823 bio
= bio_alloc(gfp_flags
, nr_vecs
);
1828 bio
->bi_bdev
= bdev
;
1829 bio
->bi_sector
= first_sector
;
1834 static int submit_one_bio(int rw
, struct bio
*bio
, int mirror_num
,
1835 unsigned long bio_flags
)
1838 struct bio_vec
*bvec
= bio
->bi_io_vec
+ bio
->bi_vcnt
- 1;
1839 struct page
*page
= bvec
->bv_page
;
1840 struct extent_io_tree
*tree
= bio
->bi_private
;
1844 start
= ((u64
)page
->index
<< PAGE_CACHE_SHIFT
) + bvec
->bv_offset
;
1845 end
= start
+ bvec
->bv_len
- 1;
1847 bio
->bi_private
= NULL
;
1851 if (tree
->ops
&& tree
->ops
->submit_bio_hook
)
1852 tree
->ops
->submit_bio_hook(page
->mapping
->host
, rw
, bio
,
1853 mirror_num
, bio_flags
);
1855 submit_bio(rw
, bio
);
1856 if (bio_flagged(bio
, BIO_EOPNOTSUPP
))
1862 static int submit_extent_page(int rw
, struct extent_io_tree
*tree
,
1863 struct page
*page
, sector_t sector
,
1864 size_t size
, unsigned long offset
,
1865 struct block_device
*bdev
,
1866 struct bio
**bio_ret
,
1867 unsigned long max_pages
,
1868 bio_end_io_t end_io_func
,
1870 unsigned long prev_bio_flags
,
1871 unsigned long bio_flags
)
1877 int this_compressed
= bio_flags
& EXTENT_BIO_COMPRESSED
;
1878 int old_compressed
= prev_bio_flags
& EXTENT_BIO_COMPRESSED
;
1879 size_t page_size
= min_t(size_t, size
, PAGE_CACHE_SIZE
);
1881 if (bio_ret
&& *bio_ret
) {
1884 contig
= bio
->bi_sector
== sector
;
1886 contig
= bio
->bi_sector
+ (bio
->bi_size
>> 9) ==
1889 if (prev_bio_flags
!= bio_flags
|| !contig
||
1890 (tree
->ops
&& tree
->ops
->merge_bio_hook
&&
1891 tree
->ops
->merge_bio_hook(page
, offset
, page_size
, bio
,
1893 bio_add_page(bio
, page
, page_size
, offset
) < page_size
) {
1894 ret
= submit_one_bio(rw
, bio
, mirror_num
,
1901 if (this_compressed
)
1904 nr
= bio_get_nr_vecs(bdev
);
1906 bio
= extent_bio_alloc(bdev
, sector
, nr
, GFP_NOFS
| __GFP_HIGH
);
1908 bio_add_page(bio
, page
, page_size
, offset
);
1909 bio
->bi_end_io
= end_io_func
;
1910 bio
->bi_private
= tree
;
1915 ret
= submit_one_bio(rw
, bio
, mirror_num
, bio_flags
);
1920 void set_page_extent_mapped(struct page
*page
)
1922 if (!PagePrivate(page
)) {
1923 SetPagePrivate(page
);
1924 page_cache_get(page
);
1925 set_page_private(page
, EXTENT_PAGE_PRIVATE
);
1929 static void set_page_extent_head(struct page
*page
, unsigned long len
)
1931 set_page_private(page
, EXTENT_PAGE_PRIVATE_FIRST_PAGE
| len
<< 2);
1935 * basic readpage implementation. Locked extent state structs are inserted
1936 * into the tree that are removed when the IO is done (by the end_io
1939 static int __extent_read_full_page(struct extent_io_tree
*tree
,
1941 get_extent_t
*get_extent
,
1942 struct bio
**bio
, int mirror_num
,
1943 unsigned long *bio_flags
)
1945 struct inode
*inode
= page
->mapping
->host
;
1946 u64 start
= (u64
)page
->index
<< PAGE_CACHE_SHIFT
;
1947 u64 page_end
= start
+ PAGE_CACHE_SIZE
- 1;
1951 u64 last_byte
= i_size_read(inode
);
1955 struct extent_map
*em
;
1956 struct block_device
*bdev
;
1959 size_t page_offset
= 0;
1961 size_t disk_io_size
;
1962 size_t blocksize
= inode
->i_sb
->s_blocksize
;
1963 unsigned long this_bio_flag
= 0;
1965 set_page_extent_mapped(page
);
1968 lock_extent(tree
, start
, end
, GFP_NOFS
);
1970 if (page
->index
== last_byte
>> PAGE_CACHE_SHIFT
) {
1972 size_t zero_offset
= last_byte
& (PAGE_CACHE_SIZE
- 1);
1975 iosize
= PAGE_CACHE_SIZE
- zero_offset
;
1976 userpage
= kmap_atomic(page
, KM_USER0
);
1977 memset(userpage
+ zero_offset
, 0, iosize
);
1978 flush_dcache_page(page
);
1979 kunmap_atomic(userpage
, KM_USER0
);
1982 while (cur
<= end
) {
1983 if (cur
>= last_byte
) {
1985 iosize
= PAGE_CACHE_SIZE
- page_offset
;
1986 userpage
= kmap_atomic(page
, KM_USER0
);
1987 memset(userpage
+ page_offset
, 0, iosize
);
1988 flush_dcache_page(page
);
1989 kunmap_atomic(userpage
, KM_USER0
);
1990 set_extent_uptodate(tree
, cur
, cur
+ iosize
- 1,
1992 unlock_extent(tree
, cur
, cur
+ iosize
- 1, GFP_NOFS
);
1995 em
= get_extent(inode
, page
, page_offset
, cur
,
1997 if (IS_ERR(em
) || !em
) {
1999 unlock_extent(tree
, cur
, end
, GFP_NOFS
);
2002 extent_offset
= cur
- em
->start
;
2003 BUG_ON(extent_map_end(em
) <= cur
);
2006 if (test_bit(EXTENT_FLAG_COMPRESSED
, &em
->flags
))
2007 this_bio_flag
= EXTENT_BIO_COMPRESSED
;
2009 iosize
= min(extent_map_end(em
) - cur
, end
- cur
+ 1);
2010 cur_end
= min(extent_map_end(em
) - 1, end
);
2011 iosize
= (iosize
+ blocksize
- 1) & ~((u64
)blocksize
- 1);
2012 if (this_bio_flag
& EXTENT_BIO_COMPRESSED
) {
2013 disk_io_size
= em
->block_len
;
2014 sector
= em
->block_start
>> 9;
2016 sector
= (em
->block_start
+ extent_offset
) >> 9;
2017 disk_io_size
= iosize
;
2020 block_start
= em
->block_start
;
2021 if (test_bit(EXTENT_FLAG_PREALLOC
, &em
->flags
))
2022 block_start
= EXTENT_MAP_HOLE
;
2023 free_extent_map(em
);
2026 /* we've found a hole, just zero and go on */
2027 if (block_start
== EXTENT_MAP_HOLE
) {
2029 userpage
= kmap_atomic(page
, KM_USER0
);
2030 memset(userpage
+ page_offset
, 0, iosize
);
2031 flush_dcache_page(page
);
2032 kunmap_atomic(userpage
, KM_USER0
);
2034 set_extent_uptodate(tree
, cur
, cur
+ iosize
- 1,
2036 unlock_extent(tree
, cur
, cur
+ iosize
- 1, GFP_NOFS
);
2038 page_offset
+= iosize
;
2041 /* the get_extent function already copied into the page */
2042 if (test_range_bit(tree
, cur
, cur_end
, EXTENT_UPTODATE
, 1)) {
2043 check_page_uptodate(tree
, page
);
2044 unlock_extent(tree
, cur
, cur
+ iosize
- 1, GFP_NOFS
);
2046 page_offset
+= iosize
;
2049 /* we have an inline extent but it didn't get marked up
2050 * to date. Error out
2052 if (block_start
== EXTENT_MAP_INLINE
) {
2054 unlock_extent(tree
, cur
, cur
+ iosize
- 1, GFP_NOFS
);
2056 page_offset
+= iosize
;
2061 if (tree
->ops
&& tree
->ops
->readpage_io_hook
) {
2062 ret
= tree
->ops
->readpage_io_hook(page
, cur
,
2066 unsigned long pnr
= (last_byte
>> PAGE_CACHE_SHIFT
) + 1;
2068 ret
= submit_extent_page(READ
, tree
, page
,
2069 sector
, disk_io_size
, page_offset
,
2071 end_bio_extent_readpage
, mirror_num
,
2075 *bio_flags
= this_bio_flag
;
2080 page_offset
+= iosize
;
2083 if (!PageError(page
))
2084 SetPageUptodate(page
);
2090 int extent_read_full_page(struct extent_io_tree
*tree
, struct page
*page
,
2091 get_extent_t
*get_extent
)
2093 struct bio
*bio
= NULL
;
2094 unsigned long bio_flags
= 0;
2097 ret
= __extent_read_full_page(tree
, page
, get_extent
, &bio
, 0,
2100 submit_one_bio(READ
, bio
, 0, bio_flags
);
2105 * the writepage semantics are similar to regular writepage. extent
2106 * records are inserted to lock ranges in the tree, and as dirty areas
2107 * are found, they are marked writeback. Then the lock bits are removed
2108 * and the end_io handler clears the writeback ranges
2110 static int __extent_writepage(struct page
*page
, struct writeback_control
*wbc
,
2113 struct inode
*inode
= page
->mapping
->host
;
2114 struct extent_page_data
*epd
= data
;
2115 struct extent_io_tree
*tree
= epd
->tree
;
2116 u64 start
= (u64
)page
->index
<< PAGE_CACHE_SHIFT
;
2118 u64 page_end
= start
+ PAGE_CACHE_SIZE
- 1;
2122 u64 last_byte
= i_size_read(inode
);
2127 struct extent_map
*em
;
2128 struct block_device
*bdev
;
2131 size_t pg_offset
= 0;
2133 loff_t i_size
= i_size_read(inode
);
2134 unsigned long end_index
= i_size
>> PAGE_CACHE_SHIFT
;
2139 unsigned long nr_written
= 0;
2141 WARN_ON(!PageLocked(page
));
2142 pg_offset
= i_size
& (PAGE_CACHE_SIZE
- 1);
2143 if (page
->index
> end_index
||
2144 (page
->index
== end_index
&& !pg_offset
)) {
2145 page
->mapping
->a_ops
->invalidatepage(page
, 0);
2150 if (page
->index
== end_index
) {
2153 userpage
= kmap_atomic(page
, KM_USER0
);
2154 memset(userpage
+ pg_offset
, 0,
2155 PAGE_CACHE_SIZE
- pg_offset
);
2156 kunmap_atomic(userpage
, KM_USER0
);
2157 flush_dcache_page(page
);
2161 set_page_extent_mapped(page
);
2163 delalloc_start
= start
;
2166 if (!epd
->extent_locked
) {
2167 while (delalloc_end
< page_end
) {
2168 nr_delalloc
= find_lock_delalloc_range(inode
, tree
,
2173 if (nr_delalloc
== 0) {
2174 delalloc_start
= delalloc_end
+ 1;
2177 tree
->ops
->fill_delalloc(inode
, page
, delalloc_start
,
2178 delalloc_end
, &page_started
,
2180 delalloc_start
= delalloc_end
+ 1;
2183 /* did the fill delalloc function already unlock and start
2188 goto update_nr_written
;
2191 lock_extent(tree
, start
, page_end
, GFP_NOFS
);
2193 unlock_start
= start
;
2195 if (tree
->ops
&& tree
->ops
->writepage_start_hook
) {
2196 ret
= tree
->ops
->writepage_start_hook(page
, start
,
2198 if (ret
== -EAGAIN
) {
2199 unlock_extent(tree
, start
, page_end
, GFP_NOFS
);
2200 redirty_page_for_writepage(wbc
, page
);
2203 goto update_nr_written
;
2210 if (test_range_bit(tree
, start
, page_end
, EXTENT_DELALLOC
, 0))
2211 printk(KERN_ERR
"btrfs delalloc bits after lock_extent\n");
2213 if (last_byte
<= start
) {
2214 clear_extent_dirty(tree
, start
, page_end
, GFP_NOFS
);
2215 unlock_extent(tree
, start
, page_end
, GFP_NOFS
);
2216 if (tree
->ops
&& tree
->ops
->writepage_end_io_hook
)
2217 tree
->ops
->writepage_end_io_hook(page
, start
,
2219 unlock_start
= page_end
+ 1;
2223 set_extent_uptodate(tree
, start
, page_end
, GFP_NOFS
);
2224 blocksize
= inode
->i_sb
->s_blocksize
;
2226 while (cur
<= end
) {
2227 if (cur
>= last_byte
) {
2228 clear_extent_dirty(tree
, cur
, page_end
, GFP_NOFS
);
2229 unlock_extent(tree
, unlock_start
, page_end
, GFP_NOFS
);
2230 if (tree
->ops
&& tree
->ops
->writepage_end_io_hook
)
2231 tree
->ops
->writepage_end_io_hook(page
, cur
,
2233 unlock_start
= page_end
+ 1;
2236 em
= epd
->get_extent(inode
, page
, pg_offset
, cur
,
2238 if (IS_ERR(em
) || !em
) {
2243 extent_offset
= cur
- em
->start
;
2244 BUG_ON(extent_map_end(em
) <= cur
);
2246 iosize
= min(extent_map_end(em
) - cur
, end
- cur
+ 1);
2247 iosize
= (iosize
+ blocksize
- 1) & ~((u64
)blocksize
- 1);
2248 sector
= (em
->block_start
+ extent_offset
) >> 9;
2250 block_start
= em
->block_start
;
2251 compressed
= test_bit(EXTENT_FLAG_COMPRESSED
, &em
->flags
);
2252 free_extent_map(em
);
2256 * compressed and inline extents are written through other
2259 if (compressed
|| block_start
== EXTENT_MAP_HOLE
||
2260 block_start
== EXTENT_MAP_INLINE
) {
2261 clear_extent_dirty(tree
, cur
,
2262 cur
+ iosize
- 1, GFP_NOFS
);
2264 unlock_extent(tree
, unlock_start
, cur
+ iosize
- 1,
2268 * end_io notification does not happen here for
2269 * compressed extents
2271 if (!compressed
&& tree
->ops
&&
2272 tree
->ops
->writepage_end_io_hook
)
2273 tree
->ops
->writepage_end_io_hook(page
, cur
,
2276 else if (compressed
) {
2277 /* we don't want to end_page_writeback on
2278 * a compressed extent. this happens
2285 pg_offset
+= iosize
;
2289 /* leave this out until we have a page_mkwrite call */
2290 if (0 && !test_range_bit(tree
, cur
, cur
+ iosize
- 1,
2293 pg_offset
+= iosize
;
2297 clear_extent_dirty(tree
, cur
, cur
+ iosize
- 1, GFP_NOFS
);
2298 if (tree
->ops
&& tree
->ops
->writepage_io_hook
) {
2299 ret
= tree
->ops
->writepage_io_hook(page
, cur
,
2307 unsigned long max_nr
= end_index
+ 1;
2309 set_range_writeback(tree
, cur
, cur
+ iosize
- 1);
2310 if (!PageWriteback(page
)) {
2311 printk(KERN_ERR
"btrfs warning page %lu not "
2312 "writeback, cur %llu end %llu\n",
2313 page
->index
, (unsigned long long)cur
,
2314 (unsigned long long)end
);
2317 ret
= submit_extent_page(WRITE
, tree
, page
, sector
,
2318 iosize
, pg_offset
, bdev
,
2320 end_bio_extent_writepage
,
2326 pg_offset
+= iosize
;
2331 /* make sure the mapping tag for page dirty gets cleared */
2332 set_page_writeback(page
);
2333 end_page_writeback(page
);
2335 if (unlock_start
<= page_end
)
2336 unlock_extent(tree
, unlock_start
, page_end
, GFP_NOFS
);
2340 wbc
->nr_to_write
-= nr_written
;
2341 if (wbc
->range_cyclic
|| (wbc
->nr_to_write
> 0 &&
2342 wbc
->range_start
== 0 && wbc
->range_end
== LLONG_MAX
))
2343 page
->mapping
->writeback_index
= page
->index
+ nr_written
;
2348 * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
2349 * @mapping: address space structure to write
2350 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
2351 * @writepage: function called for each page
2352 * @data: data passed to writepage function
2354 * If a page is already under I/O, write_cache_pages() skips it, even
2355 * if it's dirty. This is desirable behaviour for memory-cleaning writeback,
2356 * but it is INCORRECT for data-integrity system calls such as fsync(). fsync()
2357 * and msync() need to guarantee that all the data which was dirty at the time
2358 * the call was made get new I/O started against them. If wbc->sync_mode is
2359 * WB_SYNC_ALL then we were called for data integrity and we must wait for
2360 * existing IO to complete.
2362 static int extent_write_cache_pages(struct extent_io_tree
*tree
,
2363 struct address_space
*mapping
,
2364 struct writeback_control
*wbc
,
2365 writepage_t writepage
, void *data
,
2366 void (*flush_fn
)(void *))
2368 struct backing_dev_info
*bdi
= mapping
->backing_dev_info
;
2371 struct pagevec pvec
;
2374 pgoff_t end
; /* Inclusive */
2376 int range_whole
= 0;
2378 pagevec_init(&pvec
, 0);
2379 if (wbc
->range_cyclic
) {
2380 index
= mapping
->writeback_index
; /* Start from prev offset */
2383 index
= wbc
->range_start
>> PAGE_CACHE_SHIFT
;
2384 end
= wbc
->range_end
>> PAGE_CACHE_SHIFT
;
2385 if (wbc
->range_start
== 0 && wbc
->range_end
== LLONG_MAX
)
2390 while (!done
&& (index
<= end
) &&
2391 (nr_pages
= pagevec_lookup_tag(&pvec
, mapping
, &index
,
2392 PAGECACHE_TAG_DIRTY
, min(end
- index
,
2393 (pgoff_t
)PAGEVEC_SIZE
-1) + 1))) {
2397 for (i
= 0; i
< nr_pages
; i
++) {
2398 struct page
*page
= pvec
.pages
[i
];
2401 * At this point we hold neither mapping->tree_lock nor
2402 * lock on the page itself: the page may be truncated or
2403 * invalidated (changing page->mapping to NULL), or even
2404 * swizzled back from swapper_space to tmpfs file
2407 if (tree
->ops
&& tree
->ops
->write_cache_pages_lock_hook
)
2408 tree
->ops
->write_cache_pages_lock_hook(page
);
2412 if (unlikely(page
->mapping
!= mapping
)) {
2417 if (!wbc
->range_cyclic
&& page
->index
> end
) {
2423 if (wbc
->sync_mode
!= WB_SYNC_NONE
) {
2424 if (PageWriteback(page
))
2426 wait_on_page_writeback(page
);
2429 if (PageWriteback(page
) ||
2430 !clear_page_dirty_for_io(page
)) {
2435 ret
= (*writepage
)(page
, wbc
, data
);
2437 if (unlikely(ret
== AOP_WRITEPAGE_ACTIVATE
)) {
2441 if (ret
|| wbc
->nr_to_write
<= 0)
2443 if (wbc
->nonblocking
&& bdi_write_congested(bdi
)) {
2444 wbc
->encountered_congestion
= 1;
2448 pagevec_release(&pvec
);
2451 if (!scanned
&& !done
) {
2453 * We hit the last page and there is more work to be done: wrap
2454 * back to the start of the file
2463 static noinline
void flush_write_bio(void *data
)
2465 struct extent_page_data
*epd
= data
;
2467 submit_one_bio(WRITE
, epd
->bio
, 0, 0);
2472 int extent_write_full_page(struct extent_io_tree
*tree
, struct page
*page
,
2473 get_extent_t
*get_extent
,
2474 struct writeback_control
*wbc
)
2477 struct address_space
*mapping
= page
->mapping
;
2478 struct extent_page_data epd
= {
2481 .get_extent
= get_extent
,
2484 struct writeback_control wbc_writepages
= {
2486 .sync_mode
= WB_SYNC_NONE
,
2487 .older_than_this
= NULL
,
2489 .range_start
= page_offset(page
) + PAGE_CACHE_SIZE
,
2490 .range_end
= (loff_t
)-1,
2494 ret
= __extent_writepage(page
, wbc
, &epd
);
2496 extent_write_cache_pages(tree
, mapping
, &wbc_writepages
,
2497 __extent_writepage
, &epd
, flush_write_bio
);
2499 submit_one_bio(WRITE
, epd
.bio
, 0, 0);
2503 int extent_write_locked_range(struct extent_io_tree
*tree
, struct inode
*inode
,
2504 u64 start
, u64 end
, get_extent_t
*get_extent
,
2508 struct address_space
*mapping
= inode
->i_mapping
;
2510 unsigned long nr_pages
= (end
- start
+ PAGE_CACHE_SIZE
) >>
2513 struct extent_page_data epd
= {
2516 .get_extent
= get_extent
,
2519 struct writeback_control wbc_writepages
= {
2520 .bdi
= inode
->i_mapping
->backing_dev_info
,
2522 .older_than_this
= NULL
,
2523 .nr_to_write
= nr_pages
* 2,
2524 .range_start
= start
,
2525 .range_end
= end
+ 1,
2528 while (start
<= end
) {
2529 page
= find_get_page(mapping
, start
>> PAGE_CACHE_SHIFT
);
2530 if (clear_page_dirty_for_io(page
))
2531 ret
= __extent_writepage(page
, &wbc_writepages
, &epd
);
2533 if (tree
->ops
&& tree
->ops
->writepage_end_io_hook
)
2534 tree
->ops
->writepage_end_io_hook(page
, start
,
2535 start
+ PAGE_CACHE_SIZE
- 1,
2539 page_cache_release(page
);
2540 start
+= PAGE_CACHE_SIZE
;
2544 submit_one_bio(WRITE
, epd
.bio
, 0, 0);
2548 int extent_writepages(struct extent_io_tree
*tree
,
2549 struct address_space
*mapping
,
2550 get_extent_t
*get_extent
,
2551 struct writeback_control
*wbc
)
2554 struct extent_page_data epd
= {
2557 .get_extent
= get_extent
,
2561 ret
= extent_write_cache_pages(tree
, mapping
, wbc
,
2562 __extent_writepage
, &epd
,
2565 submit_one_bio(WRITE
, epd
.bio
, 0, 0);
2569 int extent_readpages(struct extent_io_tree
*tree
,
2570 struct address_space
*mapping
,
2571 struct list_head
*pages
, unsigned nr_pages
,
2572 get_extent_t get_extent
)
2574 struct bio
*bio
= NULL
;
2576 struct pagevec pvec
;
2577 unsigned long bio_flags
= 0;
2579 pagevec_init(&pvec
, 0);
2580 for (page_idx
= 0; page_idx
< nr_pages
; page_idx
++) {
2581 struct page
*page
= list_entry(pages
->prev
, struct page
, lru
);
2583 prefetchw(&page
->flags
);
2584 list_del(&page
->lru
);
2586 * what we want to do here is call add_to_page_cache_lru,
2587 * but that isn't exported, so we reproduce it here
2589 if (!add_to_page_cache(page
, mapping
,
2590 page
->index
, GFP_KERNEL
)) {
2592 /* open coding of lru_cache_add, also not exported */
2593 page_cache_get(page
);
2594 if (!pagevec_add(&pvec
, page
))
2595 __pagevec_lru_add_file(&pvec
);
2596 __extent_read_full_page(tree
, page
, get_extent
,
2597 &bio
, 0, &bio_flags
);
2599 page_cache_release(page
);
2601 if (pagevec_count(&pvec
))
2602 __pagevec_lru_add_file(&pvec
);
2603 BUG_ON(!list_empty(pages
));
2605 submit_one_bio(READ
, bio
, 0, bio_flags
);
2610 * basic invalidatepage code, this waits on any locked or writeback
2611 * ranges corresponding to the page, and then deletes any extent state
2612 * records from the tree
2614 int extent_invalidatepage(struct extent_io_tree
*tree
,
2615 struct page
*page
, unsigned long offset
)
2617 u64 start
= ((u64
)page
->index
<< PAGE_CACHE_SHIFT
);
2618 u64 end
= start
+ PAGE_CACHE_SIZE
- 1;
2619 size_t blocksize
= page
->mapping
->host
->i_sb
->s_blocksize
;
2621 start
+= (offset
+ blocksize
- 1) & ~(blocksize
- 1);
2625 lock_extent(tree
, start
, end
, GFP_NOFS
);
2626 wait_on_extent_writeback(tree
, start
, end
);
2627 clear_extent_bit(tree
, start
, end
,
2628 EXTENT_LOCKED
| EXTENT_DIRTY
| EXTENT_DELALLOC
,
2634 * simple commit_write call, set_range_dirty is used to mark both
2635 * the pages and the extent records as dirty
2637 int extent_commit_write(struct extent_io_tree
*tree
,
2638 struct inode
*inode
, struct page
*page
,
2639 unsigned from
, unsigned to
)
2641 loff_t pos
= ((loff_t
)page
->index
<< PAGE_CACHE_SHIFT
) + to
;
2643 set_page_extent_mapped(page
);
2644 set_page_dirty(page
);
2646 if (pos
> inode
->i_size
) {
2647 i_size_write(inode
, pos
);
2648 mark_inode_dirty(inode
);
2653 int extent_prepare_write(struct extent_io_tree
*tree
,
2654 struct inode
*inode
, struct page
*page
,
2655 unsigned from
, unsigned to
, get_extent_t
*get_extent
)
2657 u64 page_start
= (u64
)page
->index
<< PAGE_CACHE_SHIFT
;
2658 u64 page_end
= page_start
+ PAGE_CACHE_SIZE
- 1;
2660 u64 orig_block_start
;
2663 struct extent_map
*em
;
2664 unsigned blocksize
= 1 << inode
->i_blkbits
;
2665 size_t page_offset
= 0;
2666 size_t block_off_start
;
2667 size_t block_off_end
;
2673 set_page_extent_mapped(page
);
2675 block_start
= (page_start
+ from
) & ~((u64
)blocksize
- 1);
2676 block_end
= (page_start
+ to
- 1) | (blocksize
- 1);
2677 orig_block_start
= block_start
;
2679 lock_extent(tree
, page_start
, page_end
, GFP_NOFS
);
2680 while (block_start
<= block_end
) {
2681 em
= get_extent(inode
, page
, page_offset
, block_start
,
2682 block_end
- block_start
+ 1, 1);
2683 if (IS_ERR(em
) || !em
)
2686 cur_end
= min(block_end
, extent_map_end(em
) - 1);
2687 block_off_start
= block_start
& (PAGE_CACHE_SIZE
- 1);
2688 block_off_end
= block_off_start
+ blocksize
;
2689 isnew
= clear_extent_new(tree
, block_start
, cur_end
, GFP_NOFS
);
2691 if (!PageUptodate(page
) && isnew
&&
2692 (block_off_end
> to
|| block_off_start
< from
)) {
2695 kaddr
= kmap_atomic(page
, KM_USER0
);
2696 if (block_off_end
> to
)
2697 memset(kaddr
+ to
, 0, block_off_end
- to
);
2698 if (block_off_start
< from
)
2699 memset(kaddr
+ block_off_start
, 0,
2700 from
- block_off_start
);
2701 flush_dcache_page(page
);
2702 kunmap_atomic(kaddr
, KM_USER0
);
2704 if ((em
->block_start
!= EXTENT_MAP_HOLE
&&
2705 em
->block_start
!= EXTENT_MAP_INLINE
) &&
2706 !isnew
&& !PageUptodate(page
) &&
2707 (block_off_end
> to
|| block_off_start
< from
) &&
2708 !test_range_bit(tree
, block_start
, cur_end
,
2709 EXTENT_UPTODATE
, 1)) {
2711 u64 extent_offset
= block_start
- em
->start
;
2713 sector
= (em
->block_start
+ extent_offset
) >> 9;
2714 iosize
= (cur_end
- block_start
+ blocksize
) &
2715 ~((u64
)blocksize
- 1);
2717 * we've already got the extent locked, but we
2718 * need to split the state such that our end_bio
2719 * handler can clear the lock.
2721 set_extent_bit(tree
, block_start
,
2722 block_start
+ iosize
- 1,
2723 EXTENT_LOCKED
, 0, NULL
, GFP_NOFS
);
2724 ret
= submit_extent_page(READ
, tree
, page
,
2725 sector
, iosize
, page_offset
, em
->bdev
,
2727 end_bio_extent_preparewrite
, 0,
2730 block_start
= block_start
+ iosize
;
2732 set_extent_uptodate(tree
, block_start
, cur_end
,
2734 unlock_extent(tree
, block_start
, cur_end
, GFP_NOFS
);
2735 block_start
= cur_end
+ 1;
2737 page_offset
= block_start
& (PAGE_CACHE_SIZE
- 1);
2738 free_extent_map(em
);
2741 wait_extent_bit(tree
, orig_block_start
,
2742 block_end
, EXTENT_LOCKED
);
2744 check_page_uptodate(tree
, page
);
2746 /* FIXME, zero out newly allocated blocks on error */
2751 * a helper for releasepage, this tests for areas of the page that
2752 * are locked or under IO and drops the related state bits if it is safe
2755 int try_release_extent_state(struct extent_map_tree
*map
,
2756 struct extent_io_tree
*tree
, struct page
*page
,
2759 u64 start
= (u64
)page
->index
<< PAGE_CACHE_SHIFT
;
2760 u64 end
= start
+ PAGE_CACHE_SIZE
- 1;
2763 if (test_range_bit(tree
, start
, end
,
2764 EXTENT_IOBITS
| EXTENT_ORDERED
, 0))
2767 if ((mask
& GFP_NOFS
) == GFP_NOFS
)
2769 clear_extent_bit(tree
, start
, end
, EXTENT_UPTODATE
,
2776 * a helper for releasepage. As long as there are no locked extents
2777 * in the range corresponding to the page, both state records and extent
2778 * map records are removed
2780 int try_release_extent_mapping(struct extent_map_tree
*map
,
2781 struct extent_io_tree
*tree
, struct page
*page
,
2784 struct extent_map
*em
;
2785 u64 start
= (u64
)page
->index
<< PAGE_CACHE_SHIFT
;
2786 u64 end
= start
+ PAGE_CACHE_SIZE
- 1;
2788 if ((mask
& __GFP_WAIT
) &&
2789 page
->mapping
->host
->i_size
> 16 * 1024 * 1024) {
2791 while (start
<= end
) {
2792 len
= end
- start
+ 1;
2793 spin_lock(&map
->lock
);
2794 em
= lookup_extent_mapping(map
, start
, len
);
2795 if (!em
|| IS_ERR(em
)) {
2796 spin_unlock(&map
->lock
);
2799 if (test_bit(EXTENT_FLAG_PINNED
, &em
->flags
) ||
2800 em
->start
!= start
) {
2801 spin_unlock(&map
->lock
);
2802 free_extent_map(em
);
2805 if (!test_range_bit(tree
, em
->start
,
2806 extent_map_end(em
) - 1,
2807 EXTENT_LOCKED
| EXTENT_WRITEBACK
|
2810 remove_extent_mapping(map
, em
);
2811 /* once for the rb tree */
2812 free_extent_map(em
);
2814 start
= extent_map_end(em
);
2815 spin_unlock(&map
->lock
);
2818 free_extent_map(em
);
2821 return try_release_extent_state(map
, tree
, page
, mask
);
2824 sector_t
extent_bmap(struct address_space
*mapping
, sector_t iblock
,
2825 get_extent_t
*get_extent
)
2827 struct inode
*inode
= mapping
->host
;
2828 u64 start
= iblock
<< inode
->i_blkbits
;
2829 sector_t sector
= 0;
2830 size_t blksize
= (1 << inode
->i_blkbits
);
2831 struct extent_map
*em
;
2833 lock_extent(&BTRFS_I(inode
)->io_tree
, start
, start
+ blksize
- 1,
2835 em
= get_extent(inode
, NULL
, 0, start
, blksize
, 0);
2836 unlock_extent(&BTRFS_I(inode
)->io_tree
, start
, start
+ blksize
- 1,
2838 if (!em
|| IS_ERR(em
))
2841 if (em
->block_start
> EXTENT_MAP_LAST_BYTE
)
2844 sector
= (em
->block_start
+ start
- em
->start
) >> inode
->i_blkbits
;
2846 free_extent_map(em
);
2850 int extent_fiemap(struct inode
*inode
, struct fiemap_extent_info
*fieinfo
,
2851 __u64 start
, __u64 len
, get_extent_t
*get_extent
)
2855 u64 max
= start
+ len
;
2858 struct extent_map
*em
= NULL
;
2860 u64 em_start
= 0, em_len
= 0;
2861 unsigned long emflags
;
2867 lock_extent(&BTRFS_I(inode
)->io_tree
, start
, start
+ len
,
2869 em
= get_extent(inode
, NULL
, 0, off
, max
- off
, 0);
2877 off
= em
->start
+ em
->len
;
2881 em_start
= em
->start
;
2887 switch (em
->block_start
) {
2888 case EXTENT_MAP_LAST_BYTE
:
2890 flags
|= FIEMAP_EXTENT_LAST
;
2892 case EXTENT_MAP_HOLE
:
2893 flags
|= FIEMAP_EXTENT_UNWRITTEN
;
2895 case EXTENT_MAP_INLINE
:
2896 flags
|= (FIEMAP_EXTENT_DATA_INLINE
|
2897 FIEMAP_EXTENT_NOT_ALIGNED
);
2899 case EXTENT_MAP_DELALLOC
:
2900 flags
|= (FIEMAP_EXTENT_DELALLOC
|
2901 FIEMAP_EXTENT_UNKNOWN
);
2904 disko
= em
->block_start
;
2907 if (test_bit(EXTENT_FLAG_COMPRESSED
, &em
->flags
))
2908 flags
|= FIEMAP_EXTENT_ENCODED
;
2910 emflags
= em
->flags
;
2911 free_extent_map(em
);
2915 em
= get_extent(inode
, NULL
, 0, off
, max
- off
, 0);
2922 emflags
= em
->flags
;
2924 if (test_bit(EXTENT_FLAG_VACANCY
, &emflags
)) {
2925 flags
|= FIEMAP_EXTENT_LAST
;
2929 ret
= fiemap_fill_next_extent(fieinfo
, em_start
, disko
,
2935 free_extent_map(em
);
2937 unlock_extent(&BTRFS_I(inode
)->io_tree
, start
, start
+ len
,
2942 static inline struct page
*extent_buffer_page(struct extent_buffer
*eb
,
2946 struct address_space
*mapping
;
2949 return eb
->first_page
;
2950 i
+= eb
->start
>> PAGE_CACHE_SHIFT
;
2951 mapping
= eb
->first_page
->mapping
;
2956 * extent_buffer_page is only called after pinning the page
2957 * by increasing the reference count. So we know the page must
2958 * be in the radix tree.
2961 p
= radix_tree_lookup(&mapping
->page_tree
, i
);
2967 static inline unsigned long num_extent_pages(u64 start
, u64 len
)
2969 return ((start
+ len
+ PAGE_CACHE_SIZE
- 1) >> PAGE_CACHE_SHIFT
) -
2970 (start
>> PAGE_CACHE_SHIFT
);
2973 static struct extent_buffer
*__alloc_extent_buffer(struct extent_io_tree
*tree
,
2978 struct extent_buffer
*eb
= NULL
;
2980 unsigned long flags
;
2983 eb
= kmem_cache_zalloc(extent_buffer_cache
, mask
);
2986 spin_lock_init(&eb
->lock
);
2987 init_waitqueue_head(&eb
->lock_wq
);
2990 spin_lock_irqsave(&leak_lock
, flags
);
2991 list_add(&eb
->leak_list
, &buffers
);
2992 spin_unlock_irqrestore(&leak_lock
, flags
);
2994 atomic_set(&eb
->refs
, 1);
2999 static void __free_extent_buffer(struct extent_buffer
*eb
)
3002 unsigned long flags
;
3003 spin_lock_irqsave(&leak_lock
, flags
);
3004 list_del(&eb
->leak_list
);
3005 spin_unlock_irqrestore(&leak_lock
, flags
);
3007 kmem_cache_free(extent_buffer_cache
, eb
);
3010 struct extent_buffer
*alloc_extent_buffer(struct extent_io_tree
*tree
,
3011 u64 start
, unsigned long len
,
3015 unsigned long num_pages
= num_extent_pages(start
, len
);
3017 unsigned long index
= start
>> PAGE_CACHE_SHIFT
;
3018 struct extent_buffer
*eb
;
3019 struct extent_buffer
*exists
= NULL
;
3021 struct address_space
*mapping
= tree
->mapping
;
3024 spin_lock(&tree
->buffer_lock
);
3025 eb
= buffer_search(tree
, start
);
3027 atomic_inc(&eb
->refs
);
3028 spin_unlock(&tree
->buffer_lock
);
3029 mark_page_accessed(eb
->first_page
);
3032 spin_unlock(&tree
->buffer_lock
);
3034 eb
= __alloc_extent_buffer(tree
, start
, len
, mask
);
3039 eb
->first_page
= page0
;
3042 page_cache_get(page0
);
3043 mark_page_accessed(page0
);
3044 set_page_extent_mapped(page0
);
3045 set_page_extent_head(page0
, len
);
3046 uptodate
= PageUptodate(page0
);
3050 for (; i
< num_pages
; i
++, index
++) {
3051 p
= find_or_create_page(mapping
, index
, mask
| __GFP_HIGHMEM
);
3056 set_page_extent_mapped(p
);
3057 mark_page_accessed(p
);
3060 set_page_extent_head(p
, len
);
3062 set_page_private(p
, EXTENT_PAGE_PRIVATE
);
3064 if (!PageUptodate(p
))
3069 set_bit(EXTENT_BUFFER_UPTODATE
, &eb
->bflags
);
3071 spin_lock(&tree
->buffer_lock
);
3072 exists
= buffer_tree_insert(tree
, start
, &eb
->rb_node
);
3074 /* add one reference for the caller */
3075 atomic_inc(&exists
->refs
);
3076 spin_unlock(&tree
->buffer_lock
);
3079 spin_unlock(&tree
->buffer_lock
);
3081 /* add one reference for the tree */
3082 atomic_inc(&eb
->refs
);
3086 if (!atomic_dec_and_test(&eb
->refs
))
3088 for (index
= 1; index
< i
; index
++)
3089 page_cache_release(extent_buffer_page(eb
, index
));
3090 page_cache_release(extent_buffer_page(eb
, 0));
3091 __free_extent_buffer(eb
);
3095 struct extent_buffer
*find_extent_buffer(struct extent_io_tree
*tree
,
3096 u64 start
, unsigned long len
,
3099 struct extent_buffer
*eb
;
3101 spin_lock(&tree
->buffer_lock
);
3102 eb
= buffer_search(tree
, start
);
3104 atomic_inc(&eb
->refs
);
3105 spin_unlock(&tree
->buffer_lock
);
3108 mark_page_accessed(eb
->first_page
);
3113 void free_extent_buffer(struct extent_buffer
*eb
)
3118 if (!atomic_dec_and_test(&eb
->refs
))
3124 int clear_extent_buffer_dirty(struct extent_io_tree
*tree
,
3125 struct extent_buffer
*eb
)
3129 unsigned long num_pages
;
3132 u64 start
= eb
->start
;
3133 u64 end
= start
+ eb
->len
- 1;
3135 set
= clear_extent_dirty(tree
, start
, end
, GFP_NOFS
);
3136 num_pages
= num_extent_pages(eb
->start
, eb
->len
);
3138 for (i
= 0; i
< num_pages
; i
++) {
3139 page
= extent_buffer_page(eb
, i
);
3140 if (!set
&& !PageDirty(page
))
3145 set_page_extent_head(page
, eb
->len
);
3147 set_page_private(page
, EXTENT_PAGE_PRIVATE
);
3150 * if we're on the last page or the first page and the
3151 * block isn't aligned on a page boundary, do extra checks
3152 * to make sure we don't clean page that is partially dirty
3154 if ((i
== 0 && (eb
->start
& (PAGE_CACHE_SIZE
- 1))) ||
3155 ((i
== num_pages
- 1) &&
3156 ((eb
->start
+ eb
->len
) & (PAGE_CACHE_SIZE
- 1)))) {
3157 start
= (u64
)page
->index
<< PAGE_CACHE_SHIFT
;
3158 end
= start
+ PAGE_CACHE_SIZE
- 1;
3159 if (test_range_bit(tree
, start
, end
,
3165 clear_page_dirty_for_io(page
);
3166 spin_lock_irq(&page
->mapping
->tree_lock
);
3167 if (!PageDirty(page
)) {
3168 radix_tree_tag_clear(&page
->mapping
->page_tree
,
3170 PAGECACHE_TAG_DIRTY
);
3172 spin_unlock_irq(&page
->mapping
->tree_lock
);
3178 int wait_on_extent_buffer_writeback(struct extent_io_tree
*tree
,
3179 struct extent_buffer
*eb
)
3181 return wait_on_extent_writeback(tree
, eb
->start
,
3182 eb
->start
+ eb
->len
- 1);
3185 int set_extent_buffer_dirty(struct extent_io_tree
*tree
,
3186 struct extent_buffer
*eb
)
3189 unsigned long num_pages
;
3191 num_pages
= num_extent_pages(eb
->start
, eb
->len
);
3192 for (i
= 0; i
< num_pages
; i
++) {
3193 struct page
*page
= extent_buffer_page(eb
, i
);
3194 /* writepage may need to do something special for the
3195 * first page, we have to make sure page->private is
3196 * properly set. releasepage may drop page->private
3197 * on us if the page isn't already dirty.
3201 set_page_extent_head(page
, eb
->len
);
3202 } else if (PagePrivate(page
) &&
3203 page
->private != EXTENT_PAGE_PRIVATE
) {
3204 set_page_extent_mapped(page
);
3206 __set_page_dirty_nobuffers(extent_buffer_page(eb
, i
));
3207 set_extent_dirty(tree
, page_offset(page
),
3208 page_offset(page
) + PAGE_CACHE_SIZE
- 1,
3215 int clear_extent_buffer_uptodate(struct extent_io_tree
*tree
,
3216 struct extent_buffer
*eb
)
3220 unsigned long num_pages
;
3222 num_pages
= num_extent_pages(eb
->start
, eb
->len
);
3223 clear_bit(EXTENT_BUFFER_UPTODATE
, &eb
->bflags
);
3225 clear_extent_uptodate(tree
, eb
->start
, eb
->start
+ eb
->len
- 1,
3227 for (i
= 0; i
< num_pages
; i
++) {
3228 page
= extent_buffer_page(eb
, i
);
3230 ClearPageUptodate(page
);
3235 int set_extent_buffer_uptodate(struct extent_io_tree
*tree
,
3236 struct extent_buffer
*eb
)
3240 unsigned long num_pages
;
3242 num_pages
= num_extent_pages(eb
->start
, eb
->len
);
3244 set_extent_uptodate(tree
, eb
->start
, eb
->start
+ eb
->len
- 1,
3246 for (i
= 0; i
< num_pages
; i
++) {
3247 page
= extent_buffer_page(eb
, i
);
3248 if ((i
== 0 && (eb
->start
& (PAGE_CACHE_SIZE
- 1))) ||
3249 ((i
== num_pages
- 1) &&
3250 ((eb
->start
+ eb
->len
) & (PAGE_CACHE_SIZE
- 1)))) {
3251 check_page_uptodate(tree
, page
);
3254 SetPageUptodate(page
);
3259 int extent_range_uptodate(struct extent_io_tree
*tree
,
3264 int pg_uptodate
= 1;
3266 unsigned long index
;
3268 ret
= test_range_bit(tree
, start
, end
, EXTENT_UPTODATE
, 1);
3271 while (start
<= end
) {
3272 index
= start
>> PAGE_CACHE_SHIFT
;
3273 page
= find_get_page(tree
->mapping
, index
);
3274 uptodate
= PageUptodate(page
);
3275 page_cache_release(page
);
3280 start
+= PAGE_CACHE_SIZE
;
3285 int extent_buffer_uptodate(struct extent_io_tree
*tree
,
3286 struct extent_buffer
*eb
)
3289 unsigned long num_pages
;
3292 int pg_uptodate
= 1;
3294 if (test_bit(EXTENT_BUFFER_UPTODATE
, &eb
->bflags
))
3297 ret
= test_range_bit(tree
, eb
->start
, eb
->start
+ eb
->len
- 1,
3298 EXTENT_UPTODATE
, 1);
3302 num_pages
= num_extent_pages(eb
->start
, eb
->len
);
3303 for (i
= 0; i
< num_pages
; i
++) {
3304 page
= extent_buffer_page(eb
, i
);
3305 if (!PageUptodate(page
)) {
3313 int read_extent_buffer_pages(struct extent_io_tree
*tree
,
3314 struct extent_buffer
*eb
,
3315 u64 start
, int wait
,
3316 get_extent_t
*get_extent
, int mirror_num
)
3319 unsigned long start_i
;
3323 int locked_pages
= 0;
3324 int all_uptodate
= 1;
3325 int inc_all_pages
= 0;
3326 unsigned long num_pages
;
3327 struct bio
*bio
= NULL
;
3328 unsigned long bio_flags
= 0;
3330 if (test_bit(EXTENT_BUFFER_UPTODATE
, &eb
->bflags
))
3333 if (test_range_bit(tree
, eb
->start
, eb
->start
+ eb
->len
- 1,
3334 EXTENT_UPTODATE
, 1)) {
3339 WARN_ON(start
< eb
->start
);
3340 start_i
= (start
>> PAGE_CACHE_SHIFT
) -
3341 (eb
->start
>> PAGE_CACHE_SHIFT
);
3346 num_pages
= num_extent_pages(eb
->start
, eb
->len
);
3347 for (i
= start_i
; i
< num_pages
; i
++) {
3348 page
= extent_buffer_page(eb
, i
);
3350 if (!trylock_page(page
))
3356 if (!PageUptodate(page
))
3361 set_bit(EXTENT_BUFFER_UPTODATE
, &eb
->bflags
);
3365 for (i
= start_i
; i
< num_pages
; i
++) {
3366 page
= extent_buffer_page(eb
, i
);
3368 page_cache_get(page
);
3369 if (!PageUptodate(page
)) {
3372 ClearPageError(page
);
3373 err
= __extent_read_full_page(tree
, page
,
3375 mirror_num
, &bio_flags
);
3384 submit_one_bio(READ
, bio
, mirror_num
, bio_flags
);
3389 for (i
= start_i
; i
< num_pages
; i
++) {
3390 page
= extent_buffer_page(eb
, i
);
3391 wait_on_page_locked(page
);
3392 if (!PageUptodate(page
))
3397 set_bit(EXTENT_BUFFER_UPTODATE
, &eb
->bflags
);
3402 while (locked_pages
> 0) {
3403 page
= extent_buffer_page(eb
, i
);
3411 void read_extent_buffer(struct extent_buffer
*eb
, void *dstv
,
3412 unsigned long start
,
3419 char *dst
= (char *)dstv
;
3420 size_t start_offset
= eb
->start
& ((u64
)PAGE_CACHE_SIZE
- 1);
3421 unsigned long i
= (start_offset
+ start
) >> PAGE_CACHE_SHIFT
;
3423 WARN_ON(start
> eb
->len
);
3424 WARN_ON(start
+ len
> eb
->start
+ eb
->len
);
3426 offset
= (start_offset
+ start
) & ((unsigned long)PAGE_CACHE_SIZE
- 1);
3429 page
= extent_buffer_page(eb
, i
);
3431 cur
= min(len
, (PAGE_CACHE_SIZE
- offset
));
3432 kaddr
= kmap_atomic(page
, KM_USER1
);
3433 memcpy(dst
, kaddr
+ offset
, cur
);
3434 kunmap_atomic(kaddr
, KM_USER1
);
3443 int map_private_extent_buffer(struct extent_buffer
*eb
, unsigned long start
,
3444 unsigned long min_len
, char **token
, char **map
,
3445 unsigned long *map_start
,
3446 unsigned long *map_len
, int km
)
3448 size_t offset
= start
& (PAGE_CACHE_SIZE
- 1);
3451 size_t start_offset
= eb
->start
& ((u64
)PAGE_CACHE_SIZE
- 1);
3452 unsigned long i
= (start_offset
+ start
) >> PAGE_CACHE_SHIFT
;
3453 unsigned long end_i
= (start_offset
+ start
+ min_len
- 1) >>
3460 offset
= start_offset
;
3464 *map_start
= ((u64
)i
<< PAGE_CACHE_SHIFT
) - start_offset
;
3467 if (start
+ min_len
> eb
->len
) {
3468 printk(KERN_ERR
"btrfs bad mapping eb start %llu len %lu, "
3469 "wanted %lu %lu\n", (unsigned long long)eb
->start
,
3470 eb
->len
, start
, min_len
);
3474 p
= extent_buffer_page(eb
, i
);
3475 kaddr
= kmap_atomic(p
, km
);
3477 *map
= kaddr
+ offset
;
3478 *map_len
= PAGE_CACHE_SIZE
- offset
;
3482 int map_extent_buffer(struct extent_buffer
*eb
, unsigned long start
,
3483 unsigned long min_len
,
3484 char **token
, char **map
,
3485 unsigned long *map_start
,
3486 unsigned long *map_len
, int km
)
3490 if (eb
->map_token
) {
3491 unmap_extent_buffer(eb
, eb
->map_token
, km
);
3492 eb
->map_token
= NULL
;
3495 err
= map_private_extent_buffer(eb
, start
, min_len
, token
, map
,
3496 map_start
, map_len
, km
);
3498 eb
->map_token
= *token
;
3500 eb
->map_start
= *map_start
;
3501 eb
->map_len
= *map_len
;
3506 void unmap_extent_buffer(struct extent_buffer
*eb
, char *token
, int km
)
3508 kunmap_atomic(token
, km
);
3511 int memcmp_extent_buffer(struct extent_buffer
*eb
, const void *ptrv
,
3512 unsigned long start
,
3519 char *ptr
= (char *)ptrv
;
3520 size_t start_offset
= eb
->start
& ((u64
)PAGE_CACHE_SIZE
- 1);
3521 unsigned long i
= (start_offset
+ start
) >> PAGE_CACHE_SHIFT
;
3524 WARN_ON(start
> eb
->len
);
3525 WARN_ON(start
+ len
> eb
->start
+ eb
->len
);
3527 offset
= (start_offset
+ start
) & ((unsigned long)PAGE_CACHE_SIZE
- 1);
3530 page
= extent_buffer_page(eb
, i
);
3532 cur
= min(len
, (PAGE_CACHE_SIZE
- offset
));
3534 kaddr
= kmap_atomic(page
, KM_USER0
);
3535 ret
= memcmp(ptr
, kaddr
+ offset
, cur
);
3536 kunmap_atomic(kaddr
, KM_USER0
);
3548 void write_extent_buffer(struct extent_buffer
*eb
, const void *srcv
,
3549 unsigned long start
, unsigned long len
)
3555 char *src
= (char *)srcv
;
3556 size_t start_offset
= eb
->start
& ((u64
)PAGE_CACHE_SIZE
- 1);
3557 unsigned long i
= (start_offset
+ start
) >> PAGE_CACHE_SHIFT
;
3559 WARN_ON(start
> eb
->len
);
3560 WARN_ON(start
+ len
> eb
->start
+ eb
->len
);
3562 offset
= (start_offset
+ start
) & ((unsigned long)PAGE_CACHE_SIZE
- 1);
3565 page
= extent_buffer_page(eb
, i
);
3566 WARN_ON(!PageUptodate(page
));
3568 cur
= min(len
, PAGE_CACHE_SIZE
- offset
);
3569 kaddr
= kmap_atomic(page
, KM_USER1
);
3570 memcpy(kaddr
+ offset
, src
, cur
);
3571 kunmap_atomic(kaddr
, KM_USER1
);
3580 void memset_extent_buffer(struct extent_buffer
*eb
, char c
,
3581 unsigned long start
, unsigned long len
)
3587 size_t start_offset
= eb
->start
& ((u64
)PAGE_CACHE_SIZE
- 1);
3588 unsigned long i
= (start_offset
+ start
) >> PAGE_CACHE_SHIFT
;
3590 WARN_ON(start
> eb
->len
);
3591 WARN_ON(start
+ len
> eb
->start
+ eb
->len
);
3593 offset
= (start_offset
+ start
) & ((unsigned long)PAGE_CACHE_SIZE
- 1);
3596 page
= extent_buffer_page(eb
, i
);
3597 WARN_ON(!PageUptodate(page
));
3599 cur
= min(len
, PAGE_CACHE_SIZE
- offset
);
3600 kaddr
= kmap_atomic(page
, KM_USER0
);
3601 memset(kaddr
+ offset
, c
, cur
);
3602 kunmap_atomic(kaddr
, KM_USER0
);
3610 void copy_extent_buffer(struct extent_buffer
*dst
, struct extent_buffer
*src
,
3611 unsigned long dst_offset
, unsigned long src_offset
,
3614 u64 dst_len
= dst
->len
;
3619 size_t start_offset
= dst
->start
& ((u64
)PAGE_CACHE_SIZE
- 1);
3620 unsigned long i
= (start_offset
+ dst_offset
) >> PAGE_CACHE_SHIFT
;
3622 WARN_ON(src
->len
!= dst_len
);
3624 offset
= (start_offset
+ dst_offset
) &
3625 ((unsigned long)PAGE_CACHE_SIZE
- 1);
3628 page
= extent_buffer_page(dst
, i
);
3629 WARN_ON(!PageUptodate(page
));
3631 cur
= min(len
, (unsigned long)(PAGE_CACHE_SIZE
- offset
));
3633 kaddr
= kmap_atomic(page
, KM_USER0
);
3634 read_extent_buffer(src
, kaddr
+ offset
, src_offset
, cur
);
3635 kunmap_atomic(kaddr
, KM_USER0
);
3644 static void move_pages(struct page
*dst_page
, struct page
*src_page
,
3645 unsigned long dst_off
, unsigned long src_off
,
3648 char *dst_kaddr
= kmap_atomic(dst_page
, KM_USER0
);
3649 if (dst_page
== src_page
) {
3650 memmove(dst_kaddr
+ dst_off
, dst_kaddr
+ src_off
, len
);
3652 char *src_kaddr
= kmap_atomic(src_page
, KM_USER1
);
3653 char *p
= dst_kaddr
+ dst_off
+ len
;
3654 char *s
= src_kaddr
+ src_off
+ len
;
3659 kunmap_atomic(src_kaddr
, KM_USER1
);
3661 kunmap_atomic(dst_kaddr
, KM_USER0
);
3664 static void copy_pages(struct page
*dst_page
, struct page
*src_page
,
3665 unsigned long dst_off
, unsigned long src_off
,
3668 char *dst_kaddr
= kmap_atomic(dst_page
, KM_USER0
);
3671 if (dst_page
!= src_page
)
3672 src_kaddr
= kmap_atomic(src_page
, KM_USER1
);
3674 src_kaddr
= dst_kaddr
;
3676 memcpy(dst_kaddr
+ dst_off
, src_kaddr
+ src_off
, len
);
3677 kunmap_atomic(dst_kaddr
, KM_USER0
);
3678 if (dst_page
!= src_page
)
3679 kunmap_atomic(src_kaddr
, KM_USER1
);
3682 void memcpy_extent_buffer(struct extent_buffer
*dst
, unsigned long dst_offset
,
3683 unsigned long src_offset
, unsigned long len
)
3686 size_t dst_off_in_page
;
3687 size_t src_off_in_page
;
3688 size_t start_offset
= dst
->start
& ((u64
)PAGE_CACHE_SIZE
- 1);
3689 unsigned long dst_i
;
3690 unsigned long src_i
;
3692 if (src_offset
+ len
> dst
->len
) {
3693 printk(KERN_ERR
"btrfs memmove bogus src_offset %lu move "
3694 "len %lu dst len %lu\n", src_offset
, len
, dst
->len
);
3697 if (dst_offset
+ len
> dst
->len
) {
3698 printk(KERN_ERR
"btrfs memmove bogus dst_offset %lu move "
3699 "len %lu dst len %lu\n", dst_offset
, len
, dst
->len
);
3704 dst_off_in_page
= (start_offset
+ dst_offset
) &
3705 ((unsigned long)PAGE_CACHE_SIZE
- 1);
3706 src_off_in_page
= (start_offset
+ src_offset
) &
3707 ((unsigned long)PAGE_CACHE_SIZE
- 1);
3709 dst_i
= (start_offset
+ dst_offset
) >> PAGE_CACHE_SHIFT
;
3710 src_i
= (start_offset
+ src_offset
) >> PAGE_CACHE_SHIFT
;
3712 cur
= min(len
, (unsigned long)(PAGE_CACHE_SIZE
-
3714 cur
= min_t(unsigned long, cur
,
3715 (unsigned long)(PAGE_CACHE_SIZE
- dst_off_in_page
));
3717 copy_pages(extent_buffer_page(dst
, dst_i
),
3718 extent_buffer_page(dst
, src_i
),
3719 dst_off_in_page
, src_off_in_page
, cur
);
3727 void memmove_extent_buffer(struct extent_buffer
*dst
, unsigned long dst_offset
,
3728 unsigned long src_offset
, unsigned long len
)
3731 size_t dst_off_in_page
;
3732 size_t src_off_in_page
;
3733 unsigned long dst_end
= dst_offset
+ len
- 1;
3734 unsigned long src_end
= src_offset
+ len
- 1;
3735 size_t start_offset
= dst
->start
& ((u64
)PAGE_CACHE_SIZE
- 1);
3736 unsigned long dst_i
;
3737 unsigned long src_i
;
3739 if (src_offset
+ len
> dst
->len
) {
3740 printk(KERN_ERR
"btrfs memmove bogus src_offset %lu move "
3741 "len %lu len %lu\n", src_offset
, len
, dst
->len
);
3744 if (dst_offset
+ len
> dst
->len
) {
3745 printk(KERN_ERR
"btrfs memmove bogus dst_offset %lu move "
3746 "len %lu len %lu\n", dst_offset
, len
, dst
->len
);
3749 if (dst_offset
< src_offset
) {
3750 memcpy_extent_buffer(dst
, dst_offset
, src_offset
, len
);
3754 dst_i
= (start_offset
+ dst_end
) >> PAGE_CACHE_SHIFT
;
3755 src_i
= (start_offset
+ src_end
) >> PAGE_CACHE_SHIFT
;
3757 dst_off_in_page
= (start_offset
+ dst_end
) &
3758 ((unsigned long)PAGE_CACHE_SIZE
- 1);
3759 src_off_in_page
= (start_offset
+ src_end
) &
3760 ((unsigned long)PAGE_CACHE_SIZE
- 1);
3762 cur
= min_t(unsigned long, len
, src_off_in_page
+ 1);
3763 cur
= min(cur
, dst_off_in_page
+ 1);
3764 move_pages(extent_buffer_page(dst
, dst_i
),
3765 extent_buffer_page(dst
, src_i
),
3766 dst_off_in_page
- cur
+ 1,
3767 src_off_in_page
- cur
+ 1, cur
);
3775 int try_release_extent_buffer(struct extent_io_tree
*tree
, struct page
*page
)
3777 u64 start
= page_offset(page
);
3778 struct extent_buffer
*eb
;
3781 unsigned long num_pages
;
3783 spin_lock(&tree
->buffer_lock
);
3784 eb
= buffer_search(tree
, start
);
3788 if (atomic_read(&eb
->refs
) > 1) {
3792 /* at this point we can safely release the extent buffer */
3793 num_pages
= num_extent_pages(eb
->start
, eb
->len
);
3794 for (i
= 0; i
< num_pages
; i
++)
3795 page_cache_release(extent_buffer_page(eb
, i
));
3796 rb_erase(&eb
->rb_node
, &tree
->buffer
);
3797 __free_extent_buffer(eb
);
3799 spin_unlock(&tree
->buffer_lock
);