2 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
4 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
6 * Interactivity improvements by Mike Galbraith
7 * (C) 2007 Mike Galbraith <efault@gmx.de>
9 * Various enhancements by Dmitry Adamushko.
10 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
12 * Group scheduling enhancements by Srivatsa Vaddagiri
13 * Copyright IBM Corporation, 2007
14 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
16 * Scaled math optimizations by Thomas Gleixner
17 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
19 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
20 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
23 #include <linux/latencytop.h>
26 * Targeted preemption latency for CPU-bound tasks:
27 * (default: 20ms * (1 + ilog(ncpus)), units: nanoseconds)
29 * NOTE: this latency value is not the same as the concept of
30 * 'timeslice length' - timeslices in CFS are of variable length
31 * and have no persistent notion like in traditional, time-slice
32 * based scheduling concepts.
34 * (to see the precise effective timeslice length of your workload,
35 * run vmstat and monitor the context-switches (cs) field)
37 unsigned int sysctl_sched_latency
= 20000000ULL;
40 * Minimal preemption granularity for CPU-bound tasks:
41 * (default: 4 msec * (1 + ilog(ncpus)), units: nanoseconds)
43 unsigned int sysctl_sched_min_granularity
= 4000000ULL;
46 * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
48 static unsigned int sched_nr_latency
= 5;
51 * After fork, child runs first. (default) If set to 0 then
52 * parent will (try to) run first.
54 const_debug
unsigned int sysctl_sched_child_runs_first
= 1;
57 * sys_sched_yield() compat mode
59 * This option switches the agressive yield implementation of the
60 * old scheduler back on.
62 unsigned int __read_mostly sysctl_sched_compat_yield
;
65 * SCHED_OTHER wake-up granularity.
66 * (default: 10 msec * (1 + ilog(ncpus)), units: nanoseconds)
68 * This option delays the preemption effects of decoupled workloads
69 * and reduces their over-scheduling. Synchronous workloads will still
70 * have immediate wakeup/sleep latencies.
72 unsigned int sysctl_sched_wakeup_granularity
= 10000000UL;
74 const_debug
unsigned int sysctl_sched_migration_cost
= 500000UL;
76 /**************************************************************
77 * CFS operations on generic schedulable entities:
80 static inline struct task_struct
*task_of(struct sched_entity
*se
)
82 return container_of(se
, struct task_struct
, se
);
85 #ifdef CONFIG_FAIR_GROUP_SCHED
87 /* cpu runqueue to which this cfs_rq is attached */
88 static inline struct rq
*rq_of(struct cfs_rq
*cfs_rq
)
93 /* An entity is a task if it doesn't "own" a runqueue */
94 #define entity_is_task(se) (!se->my_q)
96 /* Walk up scheduling entities hierarchy */
97 #define for_each_sched_entity(se) \
98 for (; se; se = se->parent)
100 static inline struct cfs_rq
*task_cfs_rq(struct task_struct
*p
)
105 /* runqueue on which this entity is (to be) queued */
106 static inline struct cfs_rq
*cfs_rq_of(struct sched_entity
*se
)
111 /* runqueue "owned" by this group */
112 static inline struct cfs_rq
*group_cfs_rq(struct sched_entity
*grp
)
117 /* Given a group's cfs_rq on one cpu, return its corresponding cfs_rq on
118 * another cpu ('this_cpu')
120 static inline struct cfs_rq
*cpu_cfs_rq(struct cfs_rq
*cfs_rq
, int this_cpu
)
122 return cfs_rq
->tg
->cfs_rq
[this_cpu
];
125 /* Iterate thr' all leaf cfs_rq's on a runqueue */
126 #define for_each_leaf_cfs_rq(rq, cfs_rq) \
127 list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
129 /* Do the two (enqueued) entities belong to the same group ? */
131 is_same_group(struct sched_entity
*se
, struct sched_entity
*pse
)
133 if (se
->cfs_rq
== pse
->cfs_rq
)
139 static inline struct sched_entity
*parent_entity(struct sched_entity
*se
)
144 #else /* CONFIG_FAIR_GROUP_SCHED */
146 static inline struct rq
*rq_of(struct cfs_rq
*cfs_rq
)
148 return container_of(cfs_rq
, struct rq
, cfs
);
151 #define entity_is_task(se) 1
153 #define for_each_sched_entity(se) \
154 for (; se; se = NULL)
156 static inline struct cfs_rq
*task_cfs_rq(struct task_struct
*p
)
158 return &task_rq(p
)->cfs
;
161 static inline struct cfs_rq
*cfs_rq_of(struct sched_entity
*se
)
163 struct task_struct
*p
= task_of(se
);
164 struct rq
*rq
= task_rq(p
);
169 /* runqueue "owned" by this group */
170 static inline struct cfs_rq
*group_cfs_rq(struct sched_entity
*grp
)
175 static inline struct cfs_rq
*cpu_cfs_rq(struct cfs_rq
*cfs_rq
, int this_cpu
)
177 return &cpu_rq(this_cpu
)->cfs
;
180 #define for_each_leaf_cfs_rq(rq, cfs_rq) \
181 for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
184 is_same_group(struct sched_entity
*se
, struct sched_entity
*pse
)
189 static inline struct sched_entity
*parent_entity(struct sched_entity
*se
)
194 #endif /* CONFIG_FAIR_GROUP_SCHED */
197 /**************************************************************
198 * Scheduling class tree data structure manipulation methods:
201 static inline u64
max_vruntime(u64 min_vruntime
, u64 vruntime
)
203 s64 delta
= (s64
)(vruntime
- min_vruntime
);
205 min_vruntime
= vruntime
;
210 static inline u64
min_vruntime(u64 min_vruntime
, u64 vruntime
)
212 s64 delta
= (s64
)(vruntime
- min_vruntime
);
214 min_vruntime
= vruntime
;
219 static inline s64
entity_key(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
221 return se
->vruntime
- cfs_rq
->min_vruntime
;
225 * Enqueue an entity into the rb-tree:
227 static void __enqueue_entity(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
229 struct rb_node
**link
= &cfs_rq
->tasks_timeline
.rb_node
;
230 struct rb_node
*parent
= NULL
;
231 struct sched_entity
*entry
;
232 s64 key
= entity_key(cfs_rq
, se
);
236 * Find the right place in the rbtree:
240 entry
= rb_entry(parent
, struct sched_entity
, run_node
);
242 * We dont care about collisions. Nodes with
243 * the same key stay together.
245 if (key
< entity_key(cfs_rq
, entry
)) {
246 link
= &parent
->rb_left
;
248 link
= &parent
->rb_right
;
254 * Maintain a cache of leftmost tree entries (it is frequently
258 cfs_rq
->rb_leftmost
= &se
->run_node
;
260 * maintain cfs_rq->min_vruntime to be a monotonic increasing
261 * value tracking the leftmost vruntime in the tree.
263 cfs_rq
->min_vruntime
=
264 max_vruntime(cfs_rq
->min_vruntime
, se
->vruntime
);
267 rb_link_node(&se
->run_node
, parent
, link
);
268 rb_insert_color(&se
->run_node
, &cfs_rq
->tasks_timeline
);
271 static void __dequeue_entity(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
273 if (cfs_rq
->rb_leftmost
== &se
->run_node
) {
274 struct rb_node
*next_node
;
275 struct sched_entity
*next
;
277 next_node
= rb_next(&se
->run_node
);
278 cfs_rq
->rb_leftmost
= next_node
;
281 next
= rb_entry(next_node
,
282 struct sched_entity
, run_node
);
283 cfs_rq
->min_vruntime
=
284 max_vruntime(cfs_rq
->min_vruntime
,
289 if (cfs_rq
->next
== se
)
292 rb_erase(&se
->run_node
, &cfs_rq
->tasks_timeline
);
295 static inline struct rb_node
*first_fair(struct cfs_rq
*cfs_rq
)
297 return cfs_rq
->rb_leftmost
;
300 static struct sched_entity
*__pick_next_entity(struct cfs_rq
*cfs_rq
)
302 return rb_entry(first_fair(cfs_rq
), struct sched_entity
, run_node
);
305 static inline struct sched_entity
*__pick_last_entity(struct cfs_rq
*cfs_rq
)
307 struct rb_node
*last
= rb_last(&cfs_rq
->tasks_timeline
);
312 return rb_entry(last
, struct sched_entity
, run_node
);
315 /**************************************************************
316 * Scheduling class statistics methods:
319 #ifdef CONFIG_SCHED_DEBUG
320 int sched_nr_latency_handler(struct ctl_table
*table
, int write
,
321 struct file
*filp
, void __user
*buffer
, size_t *lenp
,
324 int ret
= proc_dointvec_minmax(table
, write
, filp
, buffer
, lenp
, ppos
);
329 sched_nr_latency
= DIV_ROUND_UP(sysctl_sched_latency
,
330 sysctl_sched_min_granularity
);
339 static inline unsigned long
340 calc_delta_weight(unsigned long delta
, struct sched_entity
*se
)
342 for_each_sched_entity(se
) {
343 delta
= calc_delta_mine(delta
,
344 se
->load
.weight
, &cfs_rq_of(se
)->load
);
353 static inline unsigned long
354 calc_delta_fair(unsigned long delta
, struct sched_entity
*se
)
356 for_each_sched_entity(se
) {
357 delta
= calc_delta_mine(delta
,
358 cfs_rq_of(se
)->load
.weight
, &se
->load
);
365 * The idea is to set a period in which each task runs once.
367 * When there are too many tasks (sysctl_sched_nr_latency) we have to stretch
368 * this period because otherwise the slices get too small.
370 * p = (nr <= nl) ? l : l*nr/nl
372 static u64
__sched_period(unsigned long nr_running
)
374 u64 period
= sysctl_sched_latency
;
375 unsigned long nr_latency
= sched_nr_latency
;
377 if (unlikely(nr_running
> nr_latency
)) {
378 period
= sysctl_sched_min_granularity
;
379 period
*= nr_running
;
386 * We calculate the wall-time slice from the period by taking a part
387 * proportional to the weight.
391 static u64
sched_slice(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
393 return calc_delta_weight(__sched_period(cfs_rq
->nr_running
), se
);
397 * We calculate the vruntime slice of a to be inserted task
401 static u64
sched_vslice_add(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
403 unsigned long nr_running
= cfs_rq
->nr_running
;
408 return __sched_period(nr_running
);
412 * The goal of calc_delta_asym() is to be asymmetrically around NICE_0_LOAD, in
413 * that it favours >=0 over <0.
423 calc_delta_asym(unsigned long delta
, struct sched_entity
*se
)
425 struct load_weight lw
= {
426 .weight
= NICE_0_LOAD
,
427 .inv_weight
= 1UL << (WMULT_SHIFT
-NICE_0_SHIFT
)
430 for_each_sched_entity(se
) {
431 struct load_weight
*se_lw
= &se
->load
;
433 if (se
->load
.weight
< NICE_0_LOAD
)
436 delta
= calc_delta_mine(delta
,
437 cfs_rq_of(se
)->load
.weight
, se_lw
);
444 * Update the current task's runtime statistics. Skip current tasks that
445 * are not in our scheduling class.
448 __update_curr(struct cfs_rq
*cfs_rq
, struct sched_entity
*curr
,
449 unsigned long delta_exec
)
451 unsigned long delta_exec_weighted
;
453 schedstat_set(curr
->exec_max
, max((u64
)delta_exec
, curr
->exec_max
));
455 curr
->sum_exec_runtime
+= delta_exec
;
456 schedstat_add(cfs_rq
, exec_clock
, delta_exec
);
457 delta_exec_weighted
= calc_delta_fair(delta_exec
, curr
);
458 curr
->vruntime
+= delta_exec_weighted
;
461 static void update_curr(struct cfs_rq
*cfs_rq
)
463 struct sched_entity
*curr
= cfs_rq
->curr
;
464 u64 now
= rq_of(cfs_rq
)->clock
;
465 unsigned long delta_exec
;
471 * Get the amount of time the current task was running
472 * since the last time we changed load (this cannot
473 * overflow on 32 bits):
475 delta_exec
= (unsigned long)(now
- curr
->exec_start
);
477 __update_curr(cfs_rq
, curr
, delta_exec
);
478 curr
->exec_start
= now
;
480 if (entity_is_task(curr
)) {
481 struct task_struct
*curtask
= task_of(curr
);
483 cpuacct_charge(curtask
, delta_exec
);
488 update_stats_wait_start(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
490 schedstat_set(se
->wait_start
, rq_of(cfs_rq
)->clock
);
494 * Task is being enqueued - update stats:
496 static void update_stats_enqueue(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
499 * Are we enqueueing a waiting task? (for current tasks
500 * a dequeue/enqueue event is a NOP)
502 if (se
!= cfs_rq
->curr
)
503 update_stats_wait_start(cfs_rq
, se
);
507 update_stats_wait_end(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
509 schedstat_set(se
->wait_max
, max(se
->wait_max
,
510 rq_of(cfs_rq
)->clock
- se
->wait_start
));
511 schedstat_set(se
->wait_count
, se
->wait_count
+ 1);
512 schedstat_set(se
->wait_sum
, se
->wait_sum
+
513 rq_of(cfs_rq
)->clock
- se
->wait_start
);
514 schedstat_set(se
->wait_start
, 0);
518 update_stats_dequeue(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
521 * Mark the end of the wait period if dequeueing a
524 if (se
!= cfs_rq
->curr
)
525 update_stats_wait_end(cfs_rq
, se
);
529 * We are picking a new current task - update its stats:
532 update_stats_curr_start(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
535 * We are starting a new run period:
537 se
->exec_start
= rq_of(cfs_rq
)->clock
;
540 /**************************************************
541 * Scheduling class queueing methods:
544 #if defined CONFIG_SMP && defined CONFIG_FAIR_GROUP_SCHED
546 add_cfs_task_weight(struct cfs_rq
*cfs_rq
, unsigned long weight
)
548 cfs_rq
->task_weight
+= weight
;
552 add_cfs_task_weight(struct cfs_rq
*cfs_rq
, unsigned long weight
)
558 account_entity_enqueue(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
560 update_load_add(&cfs_rq
->load
, se
->load
.weight
);
561 if (!parent_entity(se
))
562 inc_cpu_load(rq_of(cfs_rq
), se
->load
.weight
);
563 if (entity_is_task(se
))
564 add_cfs_task_weight(cfs_rq
, se
->load
.weight
);
565 cfs_rq
->nr_running
++;
567 list_add(&se
->group_node
, &cfs_rq
->tasks
);
571 account_entity_dequeue(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
573 update_load_sub(&cfs_rq
->load
, se
->load
.weight
);
574 if (!parent_entity(se
))
575 dec_cpu_load(rq_of(cfs_rq
), se
->load
.weight
);
576 if (entity_is_task(se
))
577 add_cfs_task_weight(cfs_rq
, -se
->load
.weight
);
578 cfs_rq
->nr_running
--;
580 list_del_init(&se
->group_node
);
583 static void enqueue_sleeper(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
585 #ifdef CONFIG_SCHEDSTATS
586 if (se
->sleep_start
) {
587 u64 delta
= rq_of(cfs_rq
)->clock
- se
->sleep_start
;
588 struct task_struct
*tsk
= task_of(se
);
593 if (unlikely(delta
> se
->sleep_max
))
594 se
->sleep_max
= delta
;
597 se
->sum_sleep_runtime
+= delta
;
599 account_scheduler_latency(tsk
, delta
>> 10, 1);
601 if (se
->block_start
) {
602 u64 delta
= rq_of(cfs_rq
)->clock
- se
->block_start
;
603 struct task_struct
*tsk
= task_of(se
);
608 if (unlikely(delta
> se
->block_max
))
609 se
->block_max
= delta
;
612 se
->sum_sleep_runtime
+= delta
;
615 * Blocking time is in units of nanosecs, so shift by 20 to
616 * get a milliseconds-range estimation of the amount of
617 * time that the task spent sleeping:
619 if (unlikely(prof_on
== SLEEP_PROFILING
)) {
621 profile_hits(SLEEP_PROFILING
, (void *)get_wchan(tsk
),
624 account_scheduler_latency(tsk
, delta
>> 10, 0);
629 static void check_spread(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
631 #ifdef CONFIG_SCHED_DEBUG
632 s64 d
= se
->vruntime
- cfs_rq
->min_vruntime
;
637 if (d
> 3*sysctl_sched_latency
)
638 schedstat_inc(cfs_rq
, nr_spread_over
);
643 place_entity(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
, int initial
)
647 if (first_fair(cfs_rq
)) {
648 vruntime
= min_vruntime(cfs_rq
->min_vruntime
,
649 __pick_next_entity(cfs_rq
)->vruntime
);
651 vruntime
= cfs_rq
->min_vruntime
;
654 * The 'current' period is already promised to the current tasks,
655 * however the extra weight of the new task will slow them down a
656 * little, place the new task so that it fits in the slot that
657 * stays open at the end.
659 if (initial
&& sched_feat(START_DEBIT
))
660 vruntime
+= sched_vslice_add(cfs_rq
, se
);
663 /* sleeps upto a single latency don't count. */
664 if (sched_feat(NEW_FAIR_SLEEPERS
)) {
665 if (sched_feat(NORMALIZED_SLEEPER
))
666 vruntime
-= calc_delta_weight(sysctl_sched_latency
, se
);
668 vruntime
-= sysctl_sched_latency
;
671 /* ensure we never gain time by being placed backwards. */
672 vruntime
= max_vruntime(se
->vruntime
, vruntime
);
675 se
->vruntime
= vruntime
;
679 enqueue_entity(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
, int wakeup
)
682 * Update run-time statistics of the 'current'.
687 place_entity(cfs_rq
, se
, 0);
688 enqueue_sleeper(cfs_rq
, se
);
691 update_stats_enqueue(cfs_rq
, se
);
692 check_spread(cfs_rq
, se
);
693 if (se
!= cfs_rq
->curr
)
694 __enqueue_entity(cfs_rq
, se
);
695 account_entity_enqueue(cfs_rq
, se
);
698 static void update_avg(u64
*avg
, u64 sample
)
700 s64 diff
= sample
- *avg
;
704 static void update_avg_stats(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
706 if (!se
->last_wakeup
)
709 update_avg(&se
->avg_overlap
, se
->sum_exec_runtime
- se
->last_wakeup
);
714 dequeue_entity(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
, int sleep
)
717 * Update run-time statistics of the 'current'.
721 update_stats_dequeue(cfs_rq
, se
);
723 update_avg_stats(cfs_rq
, se
);
724 #ifdef CONFIG_SCHEDSTATS
725 if (entity_is_task(se
)) {
726 struct task_struct
*tsk
= task_of(se
);
728 if (tsk
->state
& TASK_INTERRUPTIBLE
)
729 se
->sleep_start
= rq_of(cfs_rq
)->clock
;
730 if (tsk
->state
& TASK_UNINTERRUPTIBLE
)
731 se
->block_start
= rq_of(cfs_rq
)->clock
;
736 if (se
!= cfs_rq
->curr
)
737 __dequeue_entity(cfs_rq
, se
);
738 account_entity_dequeue(cfs_rq
, se
);
742 * Preempt the current task with a newly woken task if needed:
745 check_preempt_tick(struct cfs_rq
*cfs_rq
, struct sched_entity
*curr
)
747 unsigned long ideal_runtime
, delta_exec
;
749 ideal_runtime
= sched_slice(cfs_rq
, curr
);
750 delta_exec
= curr
->sum_exec_runtime
- curr
->prev_sum_exec_runtime
;
751 if (delta_exec
> ideal_runtime
)
752 resched_task(rq_of(cfs_rq
)->curr
);
756 set_next_entity(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
758 /* 'current' is not kept within the tree. */
761 * Any task has to be enqueued before it get to execute on
762 * a CPU. So account for the time it spent waiting on the
765 update_stats_wait_end(cfs_rq
, se
);
766 __dequeue_entity(cfs_rq
, se
);
769 update_stats_curr_start(cfs_rq
, se
);
771 #ifdef CONFIG_SCHEDSTATS
773 * Track our maximum slice length, if the CPU's load is at
774 * least twice that of our own weight (i.e. dont track it
775 * when there are only lesser-weight tasks around):
777 if (rq_of(cfs_rq
)->load
.weight
>= 2*se
->load
.weight
) {
778 se
->slice_max
= max(se
->slice_max
,
779 se
->sum_exec_runtime
- se
->prev_sum_exec_runtime
);
782 se
->prev_sum_exec_runtime
= se
->sum_exec_runtime
;
786 wakeup_preempt_entity(struct sched_entity
*curr
, struct sched_entity
*se
);
788 static struct sched_entity
*
789 pick_next(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
794 if (wakeup_preempt_entity(cfs_rq
->next
, se
) != 0)
800 static struct sched_entity
*pick_next_entity(struct cfs_rq
*cfs_rq
)
802 struct sched_entity
*se
= NULL
;
804 if (first_fair(cfs_rq
)) {
805 se
= __pick_next_entity(cfs_rq
);
806 se
= pick_next(cfs_rq
, se
);
807 set_next_entity(cfs_rq
, se
);
813 static void put_prev_entity(struct cfs_rq
*cfs_rq
, struct sched_entity
*prev
)
816 * If still on the runqueue then deactivate_task()
817 * was not called and update_curr() has to be done:
822 check_spread(cfs_rq
, prev
);
824 update_stats_wait_start(cfs_rq
, prev
);
825 /* Put 'current' back into the tree. */
826 __enqueue_entity(cfs_rq
, prev
);
832 entity_tick(struct cfs_rq
*cfs_rq
, struct sched_entity
*curr
, int queued
)
835 * Update run-time statistics of the 'current'.
839 #ifdef CONFIG_SCHED_HRTICK
841 * queued ticks are scheduled to match the slice, so don't bother
842 * validating it and just reschedule.
845 return resched_task(rq_of(cfs_rq
)->curr
);
847 * don't let the period tick interfere with the hrtick preemption
849 if (!sched_feat(DOUBLE_TICK
) &&
850 hrtimer_active(&rq_of(cfs_rq
)->hrtick_timer
))
854 if (cfs_rq
->nr_running
> 1 || !sched_feat(WAKEUP_PREEMPT
))
855 check_preempt_tick(cfs_rq
, curr
);
858 /**************************************************
859 * CFS operations on tasks:
862 #ifdef CONFIG_SCHED_HRTICK
863 static void hrtick_start_fair(struct rq
*rq
, struct task_struct
*p
)
865 int requeue
= rq
->curr
== p
;
866 struct sched_entity
*se
= &p
->se
;
867 struct cfs_rq
*cfs_rq
= cfs_rq_of(se
);
869 WARN_ON(task_rq(p
) != rq
);
871 if (hrtick_enabled(rq
) && cfs_rq
->nr_running
> 1) {
872 u64 slice
= sched_slice(cfs_rq
, se
);
873 u64 ran
= se
->sum_exec_runtime
- se
->prev_sum_exec_runtime
;
874 s64 delta
= slice
- ran
;
883 * Don't schedule slices shorter than 10000ns, that just
884 * doesn't make sense. Rely on vruntime for fairness.
887 delta
= max(10000LL, delta
);
889 hrtick_start(rq
, delta
, requeue
);
894 hrtick_start_fair(struct rq
*rq
, struct task_struct
*p
)
900 * The enqueue_task method is called before nr_running is
901 * increased. Here we update the fair scheduling stats and
902 * then put the task into the rbtree:
904 static void enqueue_task_fair(struct rq
*rq
, struct task_struct
*p
, int wakeup
)
906 struct cfs_rq
*cfs_rq
;
907 struct sched_entity
*se
= &p
->se
;
909 for_each_sched_entity(se
) {
912 cfs_rq
= cfs_rq_of(se
);
913 enqueue_entity(cfs_rq
, se
, wakeup
);
917 hrtick_start_fair(rq
, rq
->curr
);
921 * The dequeue_task method is called before nr_running is
922 * decreased. We remove the task from the rbtree and
923 * update the fair scheduling stats:
925 static void dequeue_task_fair(struct rq
*rq
, struct task_struct
*p
, int sleep
)
927 struct cfs_rq
*cfs_rq
;
928 struct sched_entity
*se
= &p
->se
;
930 for_each_sched_entity(se
) {
931 cfs_rq
= cfs_rq_of(se
);
932 dequeue_entity(cfs_rq
, se
, sleep
);
933 /* Don't dequeue parent if it has other entities besides us */
934 if (cfs_rq
->load
.weight
)
939 hrtick_start_fair(rq
, rq
->curr
);
943 * sched_yield() support is very simple - we dequeue and enqueue.
945 * If compat_yield is turned on then we requeue to the end of the tree.
947 static void yield_task_fair(struct rq
*rq
)
949 struct task_struct
*curr
= rq
->curr
;
950 struct cfs_rq
*cfs_rq
= task_cfs_rq(curr
);
951 struct sched_entity
*rightmost
, *se
= &curr
->se
;
954 * Are we the only task in the tree?
956 if (unlikely(cfs_rq
->nr_running
== 1))
959 if (likely(!sysctl_sched_compat_yield
) && curr
->policy
!= SCHED_BATCH
) {
960 __update_rq_clock(rq
);
962 * Update run-time statistics of the 'current'.
969 * Find the rightmost entry in the rbtree:
971 rightmost
= __pick_last_entity(cfs_rq
);
973 * Already in the rightmost position?
975 if (unlikely(!rightmost
|| rightmost
->vruntime
< se
->vruntime
))
979 * Minimally necessary key value to be last in the tree:
980 * Upon rescheduling, sched_class::put_prev_task() will place
981 * 'current' within the tree based on its new key value.
983 se
->vruntime
= rightmost
->vruntime
+ 1;
987 * wake_idle() will wake a task on an idle cpu if task->cpu is
988 * not idle and an idle cpu is available. The span of cpus to
989 * search starts with cpus closest then further out as needed,
990 * so we always favor a closer, idle cpu.
992 * Returns the CPU we should wake onto.
994 #if defined(ARCH_HAS_SCHED_WAKE_IDLE)
995 static int wake_idle(int cpu
, struct task_struct
*p
)
998 struct sched_domain
*sd
;
1002 * If it is idle, then it is the best cpu to run this task.
1004 * This cpu is also the best, if it has more than one task already.
1005 * Siblings must be also busy(in most cases) as they didn't already
1006 * pickup the extra load from this cpu and hence we need not check
1007 * sibling runqueue info. This will avoid the checks and cache miss
1008 * penalities associated with that.
1010 if (idle_cpu(cpu
) || cpu_rq(cpu
)->nr_running
> 1)
1013 for_each_domain(cpu
, sd
) {
1014 if ((sd
->flags
& SD_WAKE_IDLE
)
1015 || ((sd
->flags
& SD_WAKE_IDLE_FAR
)
1016 && !task_hot(p
, task_rq(p
)->clock
, sd
))) {
1017 cpus_and(tmp
, sd
->span
, p
->cpus_allowed
);
1018 for_each_cpu_mask(i
, tmp
) {
1020 if (i
!= task_cpu(p
)) {
1022 se
.nr_wakeups_idle
);
1034 static inline int wake_idle(int cpu
, struct task_struct
*p
)
1042 static const struct sched_class fair_sched_class
;
1045 wake_affine(struct rq
*rq
, struct sched_domain
*this_sd
, struct rq
*this_rq
,
1046 struct task_struct
*p
, int prev_cpu
, int this_cpu
, int sync
,
1047 int idx
, unsigned long load
, unsigned long this_load
,
1048 unsigned int imbalance
)
1050 struct task_struct
*curr
= this_rq
->curr
;
1051 unsigned long tl
= this_load
;
1052 unsigned long tl_per_task
;
1054 if (!(this_sd
->flags
& SD_WAKE_AFFINE
))
1058 * If the currently running task will sleep within
1059 * a reasonable amount of time then attract this newly
1062 if (sync
&& curr
->sched_class
== &fair_sched_class
) {
1063 if (curr
->se
.avg_overlap
< sysctl_sched_migration_cost
&&
1064 p
->se
.avg_overlap
< sysctl_sched_migration_cost
)
1068 schedstat_inc(p
, se
.nr_wakeups_affine_attempts
);
1069 tl_per_task
= cpu_avg_load_per_task(this_cpu
);
1072 * If sync wakeup then subtract the (maximum possible)
1073 * effect of the currently running task from the load
1074 * of the current CPU:
1077 tl
-= current
->se
.load
.weight
;
1079 if ((tl
<= load
&& tl
+ target_load(prev_cpu
, idx
) <= tl_per_task
) ||
1080 100*(tl
+ p
->se
.load
.weight
) <= imbalance
*load
) {
1082 * This domain has SD_WAKE_AFFINE and
1083 * p is cache cold in this domain, and
1084 * there is no bad imbalance.
1086 schedstat_inc(this_sd
, ttwu_move_affine
);
1087 schedstat_inc(p
, se
.nr_wakeups_affine
);
1094 static int select_task_rq_fair(struct task_struct
*p
, int sync
)
1096 struct sched_domain
*sd
, *this_sd
= NULL
;
1097 int prev_cpu
, this_cpu
, new_cpu
;
1098 unsigned long load
, this_load
;
1099 struct rq
*rq
, *this_rq
;
1100 unsigned int imbalance
;
1103 prev_cpu
= task_cpu(p
);
1105 this_cpu
= smp_processor_id();
1106 this_rq
= cpu_rq(this_cpu
);
1110 * 'this_sd' is the first domain that both
1111 * this_cpu and prev_cpu are present in:
1113 for_each_domain(this_cpu
, sd
) {
1114 if (cpu_isset(prev_cpu
, sd
->span
)) {
1120 if (unlikely(!cpu_isset(this_cpu
, p
->cpus_allowed
)))
1124 * Check for affine wakeup and passive balancing possibilities.
1129 idx
= this_sd
->wake_idx
;
1131 imbalance
= 100 + (this_sd
->imbalance_pct
- 100) / 2;
1133 load
= source_load(prev_cpu
, idx
);
1134 this_load
= target_load(this_cpu
, idx
);
1136 if (wake_affine(rq
, this_sd
, this_rq
, p
, prev_cpu
, this_cpu
, sync
, idx
,
1137 load
, this_load
, imbalance
))
1140 if (prev_cpu
== this_cpu
)
1144 * Start passive balancing when half the imbalance_pct
1147 if (this_sd
->flags
& SD_WAKE_BALANCE
) {
1148 if (imbalance
*this_load
<= 100*load
) {
1149 schedstat_inc(this_sd
, ttwu_move_balance
);
1150 schedstat_inc(p
, se
.nr_wakeups_passive
);
1156 return wake_idle(new_cpu
, p
);
1158 #endif /* CONFIG_SMP */
1160 static unsigned long wakeup_gran(struct sched_entity
*se
)
1162 unsigned long gran
= sysctl_sched_wakeup_granularity
;
1165 * More easily preempt - nice tasks, while not making it harder for
1168 gran
= calc_delta_asym(sysctl_sched_wakeup_granularity
, se
);
1174 * Should 'se' preempt 'curr'.
1188 wakeup_preempt_entity(struct sched_entity
*curr
, struct sched_entity
*se
)
1190 s64 gran
, vdiff
= curr
->vruntime
- se
->vruntime
;
1195 gran
= wakeup_gran(curr
);
1202 /* return depth at which a sched entity is present in the hierarchy */
1203 static inline int depth_se(struct sched_entity
*se
)
1207 for_each_sched_entity(se
)
1214 * Preempt the current task with a newly woken task if needed:
1216 static void check_preempt_wakeup(struct rq
*rq
, struct task_struct
*p
)
1218 struct task_struct
*curr
= rq
->curr
;
1219 struct cfs_rq
*cfs_rq
= task_cfs_rq(curr
);
1220 struct sched_entity
*se
= &curr
->se
, *pse
= &p
->se
;
1221 int se_depth
, pse_depth
;
1223 if (unlikely(rt_prio(p
->prio
))) {
1224 update_rq_clock(rq
);
1225 update_curr(cfs_rq
);
1230 se
->last_wakeup
= se
->sum_exec_runtime
;
1231 if (unlikely(se
== pse
))
1234 cfs_rq_of(pse
)->next
= pse
;
1237 * Batch tasks do not preempt (their preemption is driven by
1240 if (unlikely(p
->policy
== SCHED_BATCH
))
1243 if (!sched_feat(WAKEUP_PREEMPT
))
1247 * preemption test can be made between sibling entities who are in the
1248 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
1249 * both tasks until we find their ancestors who are siblings of common
1253 /* First walk up until both entities are at same depth */
1254 se_depth
= depth_se(se
);
1255 pse_depth
= depth_se(pse
);
1257 while (se_depth
> pse_depth
) {
1259 se
= parent_entity(se
);
1262 while (pse_depth
> se_depth
) {
1264 pse
= parent_entity(pse
);
1267 while (!is_same_group(se
, pse
)) {
1268 se
= parent_entity(se
);
1269 pse
= parent_entity(pse
);
1272 if (wakeup_preempt_entity(se
, pse
) == 1)
1276 static struct task_struct
*pick_next_task_fair(struct rq
*rq
)
1278 struct task_struct
*p
;
1279 struct cfs_rq
*cfs_rq
= &rq
->cfs
;
1280 struct sched_entity
*se
;
1282 if (unlikely(!cfs_rq
->nr_running
))
1286 se
= pick_next_entity(cfs_rq
);
1287 cfs_rq
= group_cfs_rq(se
);
1291 hrtick_start_fair(rq
, p
);
1297 * Account for a descheduled task:
1299 static void put_prev_task_fair(struct rq
*rq
, struct task_struct
*prev
)
1301 struct sched_entity
*se
= &prev
->se
;
1302 struct cfs_rq
*cfs_rq
;
1304 for_each_sched_entity(se
) {
1305 cfs_rq
= cfs_rq_of(se
);
1306 put_prev_entity(cfs_rq
, se
);
1311 /**************************************************
1312 * Fair scheduling class load-balancing methods:
1316 * Load-balancing iterator. Note: while the runqueue stays locked
1317 * during the whole iteration, the current task might be
1318 * dequeued so the iterator has to be dequeue-safe. Here we
1319 * achieve that by always pre-iterating before returning
1322 static struct task_struct
*
1323 __load_balance_iterator(struct cfs_rq
*cfs_rq
, struct list_head
*next
)
1325 struct task_struct
*p
= NULL
;
1326 struct sched_entity
*se
;
1328 if (next
== &cfs_rq
->tasks
)
1331 /* Skip over entities that are not tasks */
1333 se
= list_entry(next
, struct sched_entity
, group_node
);
1335 } while (next
!= &cfs_rq
->tasks
&& !entity_is_task(se
));
1337 if (next
== &cfs_rq
->tasks
)
1340 cfs_rq
->balance_iterator
= next
;
1342 if (entity_is_task(se
))
1348 static struct task_struct
*load_balance_start_fair(void *arg
)
1350 struct cfs_rq
*cfs_rq
= arg
;
1352 return __load_balance_iterator(cfs_rq
, cfs_rq
->tasks
.next
);
1355 static struct task_struct
*load_balance_next_fair(void *arg
)
1357 struct cfs_rq
*cfs_rq
= arg
;
1359 return __load_balance_iterator(cfs_rq
, cfs_rq
->balance_iterator
);
1362 static unsigned long
1363 __load_balance_fair(struct rq
*this_rq
, int this_cpu
, struct rq
*busiest
,
1364 unsigned long max_load_move
, struct sched_domain
*sd
,
1365 enum cpu_idle_type idle
, int *all_pinned
, int *this_best_prio
,
1366 struct cfs_rq
*cfs_rq
)
1368 struct rq_iterator cfs_rq_iterator
;
1370 cfs_rq_iterator
.start
= load_balance_start_fair
;
1371 cfs_rq_iterator
.next
= load_balance_next_fair
;
1372 cfs_rq_iterator
.arg
= cfs_rq
;
1374 return balance_tasks(this_rq
, this_cpu
, busiest
,
1375 max_load_move
, sd
, idle
, all_pinned
,
1376 this_best_prio
, &cfs_rq_iterator
);
1379 #ifdef CONFIG_FAIR_GROUP_SCHED
1380 static unsigned long
1381 load_balance_fair(struct rq
*this_rq
, int this_cpu
, struct rq
*busiest
,
1382 unsigned long max_load_move
,
1383 struct sched_domain
*sd
, enum cpu_idle_type idle
,
1384 int *all_pinned
, int *this_best_prio
)
1386 long rem_load_move
= max_load_move
;
1387 int busiest_cpu
= cpu_of(busiest
);
1388 struct task_group
*tg
;
1391 list_for_each_entry(tg
, &task_groups
, list
) {
1393 unsigned long this_weight
, busiest_weight
;
1394 long rem_load
, max_load
, moved_load
;
1399 if (!aggregate(tg
, sd
)->task_weight
)
1402 rem_load
= rem_load_move
* aggregate(tg
, sd
)->rq_weight
;
1403 rem_load
/= aggregate(tg
, sd
)->load
+ 1;
1405 this_weight
= tg
->cfs_rq
[this_cpu
]->task_weight
;
1406 busiest_weight
= tg
->cfs_rq
[busiest_cpu
]->task_weight
;
1408 imbalance
= (busiest_weight
- this_weight
) / 2;
1411 imbalance
= busiest_weight
;
1413 max_load
= max(rem_load
, imbalance
);
1414 moved_load
= __load_balance_fair(this_rq
, this_cpu
, busiest
,
1415 max_load
, sd
, idle
, all_pinned
, this_best_prio
,
1416 tg
->cfs_rq
[busiest_cpu
]);
1421 move_group_shares(tg
, sd
, busiest_cpu
, this_cpu
);
1423 moved_load
*= aggregate(tg
, sd
)->load
;
1424 moved_load
/= aggregate(tg
, sd
)->rq_weight
+ 1;
1426 rem_load_move
-= moved_load
;
1427 if (rem_load_move
< 0)
1432 return max_load_move
- rem_load_move
;
1435 static unsigned long
1436 load_balance_fair(struct rq
*this_rq
, int this_cpu
, struct rq
*busiest
,
1437 unsigned long max_load_move
,
1438 struct sched_domain
*sd
, enum cpu_idle_type idle
,
1439 int *all_pinned
, int *this_best_prio
)
1441 return __load_balance_fair(this_rq
, this_cpu
, busiest
,
1442 max_load_move
, sd
, idle
, all_pinned
,
1443 this_best_prio
, &busiest
->cfs
);
1448 move_one_task_fair(struct rq
*this_rq
, int this_cpu
, struct rq
*busiest
,
1449 struct sched_domain
*sd
, enum cpu_idle_type idle
)
1451 struct cfs_rq
*busy_cfs_rq
;
1452 struct rq_iterator cfs_rq_iterator
;
1454 cfs_rq_iterator
.start
= load_balance_start_fair
;
1455 cfs_rq_iterator
.next
= load_balance_next_fair
;
1457 for_each_leaf_cfs_rq(busiest
, busy_cfs_rq
) {
1459 * pass busy_cfs_rq argument into
1460 * load_balance_[start|next]_fair iterators
1462 cfs_rq_iterator
.arg
= busy_cfs_rq
;
1463 if (iter_move_one_task(this_rq
, this_cpu
, busiest
, sd
, idle
,
1473 * scheduler tick hitting a task of our scheduling class:
1475 static void task_tick_fair(struct rq
*rq
, struct task_struct
*curr
, int queued
)
1477 struct cfs_rq
*cfs_rq
;
1478 struct sched_entity
*se
= &curr
->se
;
1480 for_each_sched_entity(se
) {
1481 cfs_rq
= cfs_rq_of(se
);
1482 entity_tick(cfs_rq
, se
, queued
);
1486 #define swap(a, b) do { typeof(a) tmp = (a); (a) = (b); (b) = tmp; } while (0)
1489 * Share the fairness runtime between parent and child, thus the
1490 * total amount of pressure for CPU stays equal - new tasks
1491 * get a chance to run but frequent forkers are not allowed to
1492 * monopolize the CPU. Note: the parent runqueue is locked,
1493 * the child is not running yet.
1495 static void task_new_fair(struct rq
*rq
, struct task_struct
*p
)
1497 struct cfs_rq
*cfs_rq
= task_cfs_rq(p
);
1498 struct sched_entity
*se
= &p
->se
, *curr
= cfs_rq
->curr
;
1499 int this_cpu
= smp_processor_id();
1501 sched_info_queued(p
);
1503 update_curr(cfs_rq
);
1504 place_entity(cfs_rq
, se
, 1);
1506 /* 'curr' will be NULL if the child belongs to a different group */
1507 if (sysctl_sched_child_runs_first
&& this_cpu
== task_cpu(p
) &&
1508 curr
&& curr
->vruntime
< se
->vruntime
) {
1510 * Upon rescheduling, sched_class::put_prev_task() will place
1511 * 'current' within the tree based on its new key value.
1513 swap(curr
->vruntime
, se
->vruntime
);
1516 enqueue_task_fair(rq
, p
, 0);
1517 resched_task(rq
->curr
);
1521 * Priority of the task has changed. Check to see if we preempt
1524 static void prio_changed_fair(struct rq
*rq
, struct task_struct
*p
,
1525 int oldprio
, int running
)
1528 * Reschedule if we are currently running on this runqueue and
1529 * our priority decreased, or if we are not currently running on
1530 * this runqueue and our priority is higher than the current's
1533 if (p
->prio
> oldprio
)
1534 resched_task(rq
->curr
);
1536 check_preempt_curr(rq
, p
);
1540 * We switched to the sched_fair class.
1542 static void switched_to_fair(struct rq
*rq
, struct task_struct
*p
,
1546 * We were most likely switched from sched_rt, so
1547 * kick off the schedule if running, otherwise just see
1548 * if we can still preempt the current task.
1551 resched_task(rq
->curr
);
1553 check_preempt_curr(rq
, p
);
1556 /* Account for a task changing its policy or group.
1558 * This routine is mostly called to set cfs_rq->curr field when a task
1559 * migrates between groups/classes.
1561 static void set_curr_task_fair(struct rq
*rq
)
1563 struct sched_entity
*se
= &rq
->curr
->se
;
1565 for_each_sched_entity(se
)
1566 set_next_entity(cfs_rq_of(se
), se
);
1569 #ifdef CONFIG_FAIR_GROUP_SCHED
1570 static void moved_group_fair(struct task_struct
*p
)
1572 struct cfs_rq
*cfs_rq
= task_cfs_rq(p
);
1574 update_curr(cfs_rq
);
1575 place_entity(cfs_rq
, &p
->se
, 1);
1580 * All the scheduling class methods:
1582 static const struct sched_class fair_sched_class
= {
1583 .next
= &idle_sched_class
,
1584 .enqueue_task
= enqueue_task_fair
,
1585 .dequeue_task
= dequeue_task_fair
,
1586 .yield_task
= yield_task_fair
,
1588 .select_task_rq
= select_task_rq_fair
,
1589 #endif /* CONFIG_SMP */
1591 .check_preempt_curr
= check_preempt_wakeup
,
1593 .pick_next_task
= pick_next_task_fair
,
1594 .put_prev_task
= put_prev_task_fair
,
1597 .load_balance
= load_balance_fair
,
1598 .move_one_task
= move_one_task_fair
,
1601 .set_curr_task
= set_curr_task_fair
,
1602 .task_tick
= task_tick_fair
,
1603 .task_new
= task_new_fair
,
1605 .prio_changed
= prio_changed_fair
,
1606 .switched_to
= switched_to_fair
,
1608 #ifdef CONFIG_FAIR_GROUP_SCHED
1609 .moved_group
= moved_group_fair
,
1613 #ifdef CONFIG_SCHED_DEBUG
1615 print_cfs_rq_tasks(struct seq_file
*m
, struct cfs_rq
*cfs_rq
, int depth
)
1617 struct sched_entity
*se
;
1622 list_for_each_entry_rcu(se
, &cfs_rq
->tasks
, group_node
) {
1625 for (i
= depth
; i
; i
--)
1628 seq_printf(m
, "%lu %s %lu\n",
1630 entity_is_task(se
) ? "T" : "G",
1631 calc_delta_weight(SCHED_LOAD_SCALE
, se
)
1633 if (!entity_is_task(se
))
1634 print_cfs_rq_tasks(m
, group_cfs_rq(se
), depth
+ 1);
1638 static void print_cfs_stats(struct seq_file
*m
, int cpu
)
1640 struct cfs_rq
*cfs_rq
;
1643 for_each_leaf_cfs_rq(cpu_rq(cpu
), cfs_rq
)
1644 print_cfs_rq(m
, cpu
, cfs_rq
);
1646 seq_printf(m
, "\nWeight tree:\n");
1647 print_cfs_rq_tasks(m
, &cpu_rq(cpu
)->cfs
, 1);