4 * Processor and Memory placement constraints for sets of tasks.
6 * Copyright (C) 2003 BULL SA.
7 * Copyright (C) 2004-2007 Silicon Graphics, Inc.
8 * Copyright (C) 2006 Google, Inc
10 * Portions derived from Patrick Mochel's sysfs code.
11 * sysfs is Copyright (c) 2001-3 Patrick Mochel
13 * 2003-10-10 Written by Simon Derr.
14 * 2003-10-22 Updates by Stephen Hemminger.
15 * 2004 May-July Rework by Paul Jackson.
16 * 2006 Rework by Paul Menage to use generic cgroups
18 * This file is subject to the terms and conditions of the GNU General Public
19 * License. See the file COPYING in the main directory of the Linux
20 * distribution for more details.
23 #include <linux/cpu.h>
24 #include <linux/cpumask.h>
25 #include <linux/cpuset.h>
26 #include <linux/err.h>
27 #include <linux/errno.h>
28 #include <linux/file.h>
30 #include <linux/init.h>
31 #include <linux/interrupt.h>
32 #include <linux/kernel.h>
33 #include <linux/kmod.h>
34 #include <linux/list.h>
35 #include <linux/mempolicy.h>
37 #include <linux/module.h>
38 #include <linux/mount.h>
39 #include <linux/namei.h>
40 #include <linux/pagemap.h>
41 #include <linux/proc_fs.h>
42 #include <linux/rcupdate.h>
43 #include <linux/sched.h>
44 #include <linux/seq_file.h>
45 #include <linux/security.h>
46 #include <linux/slab.h>
47 #include <linux/spinlock.h>
48 #include <linux/stat.h>
49 #include <linux/string.h>
50 #include <linux/time.h>
51 #include <linux/backing-dev.h>
52 #include <linux/sort.h>
54 #include <asm/uaccess.h>
55 #include <asm/atomic.h>
56 #include <linux/mutex.h>
57 #include <linux/kfifo.h>
58 #include <linux/workqueue.h>
59 #include <linux/cgroup.h>
62 * Tracks how many cpusets are currently defined in system.
63 * When there is only one cpuset (the root cpuset) we can
64 * short circuit some hooks.
66 int number_of_cpusets __read_mostly
;
68 /* Forward declare cgroup structures */
69 struct cgroup_subsys cpuset_subsys
;
72 /* See "Frequency meter" comments, below. */
75 int cnt
; /* unprocessed events count */
76 int val
; /* most recent output value */
77 time_t time
; /* clock (secs) when val computed */
78 spinlock_t lock
; /* guards read or write of above */
82 struct cgroup_subsys_state css
;
84 unsigned long flags
; /* "unsigned long" so bitops work */
85 cpumask_t cpus_allowed
; /* CPUs allowed to tasks in cpuset */
86 nodemask_t mems_allowed
; /* Memory Nodes allowed to tasks */
88 struct cpuset
*parent
; /* my parent */
91 * Copy of global cpuset_mems_generation as of the most
92 * recent time this cpuset changed its mems_allowed.
96 struct fmeter fmeter
; /* memory_pressure filter */
98 /* partition number for rebuild_sched_domains() */
101 /* for custom sched domain */
102 int relax_domain_level
;
104 /* used for walking a cpuset heirarchy */
105 struct list_head stack_list
;
108 /* Retrieve the cpuset for a cgroup */
109 static inline struct cpuset
*cgroup_cs(struct cgroup
*cont
)
111 return container_of(cgroup_subsys_state(cont
, cpuset_subsys_id
),
115 /* Retrieve the cpuset for a task */
116 static inline struct cpuset
*task_cs(struct task_struct
*task
)
118 return container_of(task_subsys_state(task
, cpuset_subsys_id
),
121 struct cpuset_hotplug_scanner
{
122 struct cgroup_scanner scan
;
126 /* bits in struct cpuset flags field */
131 CS_SCHED_LOAD_BALANCE
,
136 /* convenient tests for these bits */
137 static inline int is_cpu_exclusive(const struct cpuset
*cs
)
139 return test_bit(CS_CPU_EXCLUSIVE
, &cs
->flags
);
142 static inline int is_mem_exclusive(const struct cpuset
*cs
)
144 return test_bit(CS_MEM_EXCLUSIVE
, &cs
->flags
);
147 static inline int is_sched_load_balance(const struct cpuset
*cs
)
149 return test_bit(CS_SCHED_LOAD_BALANCE
, &cs
->flags
);
152 static inline int is_memory_migrate(const struct cpuset
*cs
)
154 return test_bit(CS_MEMORY_MIGRATE
, &cs
->flags
);
157 static inline int is_spread_page(const struct cpuset
*cs
)
159 return test_bit(CS_SPREAD_PAGE
, &cs
->flags
);
162 static inline int is_spread_slab(const struct cpuset
*cs
)
164 return test_bit(CS_SPREAD_SLAB
, &cs
->flags
);
168 * Increment this integer everytime any cpuset changes its
169 * mems_allowed value. Users of cpusets can track this generation
170 * number, and avoid having to lock and reload mems_allowed unless
171 * the cpuset they're using changes generation.
173 * A single, global generation is needed because cpuset_attach_task() could
174 * reattach a task to a different cpuset, which must not have its
175 * generation numbers aliased with those of that tasks previous cpuset.
177 * Generations are needed for mems_allowed because one task cannot
178 * modify another's memory placement. So we must enable every task,
179 * on every visit to __alloc_pages(), to efficiently check whether
180 * its current->cpuset->mems_allowed has changed, requiring an update
181 * of its current->mems_allowed.
183 * Since writes to cpuset_mems_generation are guarded by the cgroup lock
184 * there is no need to mark it atomic.
186 static int cpuset_mems_generation
;
188 static struct cpuset top_cpuset
= {
189 .flags
= ((1 << CS_CPU_EXCLUSIVE
) | (1 << CS_MEM_EXCLUSIVE
)),
190 .cpus_allowed
= CPU_MASK_ALL
,
191 .mems_allowed
= NODE_MASK_ALL
,
195 * There are two global mutexes guarding cpuset structures. The first
196 * is the main control groups cgroup_mutex, accessed via
197 * cgroup_lock()/cgroup_unlock(). The second is the cpuset-specific
198 * callback_mutex, below. They can nest. It is ok to first take
199 * cgroup_mutex, then nest callback_mutex. We also require taking
200 * task_lock() when dereferencing a task's cpuset pointer. See "The
201 * task_lock() exception", at the end of this comment.
203 * A task must hold both mutexes to modify cpusets. If a task
204 * holds cgroup_mutex, then it blocks others wanting that mutex,
205 * ensuring that it is the only task able to also acquire callback_mutex
206 * and be able to modify cpusets. It can perform various checks on
207 * the cpuset structure first, knowing nothing will change. It can
208 * also allocate memory while just holding cgroup_mutex. While it is
209 * performing these checks, various callback routines can briefly
210 * acquire callback_mutex to query cpusets. Once it is ready to make
211 * the changes, it takes callback_mutex, blocking everyone else.
213 * Calls to the kernel memory allocator can not be made while holding
214 * callback_mutex, as that would risk double tripping on callback_mutex
215 * from one of the callbacks into the cpuset code from within
218 * If a task is only holding callback_mutex, then it has read-only
221 * The task_struct fields mems_allowed and mems_generation may only
222 * be accessed in the context of that task, so require no locks.
224 * The cpuset_common_file_write handler for operations that modify
225 * the cpuset hierarchy holds cgroup_mutex across the entire operation,
226 * single threading all such cpuset modifications across the system.
228 * The cpuset_common_file_read() handlers only hold callback_mutex across
229 * small pieces of code, such as when reading out possibly multi-word
230 * cpumasks and nodemasks.
232 * Accessing a task's cpuset should be done in accordance with the
233 * guidelines for accessing subsystem state in kernel/cgroup.c
236 static DEFINE_MUTEX(callback_mutex
);
238 /* This is ugly, but preserves the userspace API for existing cpuset
239 * users. If someone tries to mount the "cpuset" filesystem, we
240 * silently switch it to mount "cgroup" instead */
241 static int cpuset_get_sb(struct file_system_type
*fs_type
,
242 int flags
, const char *unused_dev_name
,
243 void *data
, struct vfsmount
*mnt
)
245 struct file_system_type
*cgroup_fs
= get_fs_type("cgroup");
250 "release_agent=/sbin/cpuset_release_agent";
251 ret
= cgroup_fs
->get_sb(cgroup_fs
, flags
,
252 unused_dev_name
, mountopts
, mnt
);
253 put_filesystem(cgroup_fs
);
258 static struct file_system_type cpuset_fs_type
= {
260 .get_sb
= cpuset_get_sb
,
264 * Return in *pmask the portion of a cpusets's cpus_allowed that
265 * are online. If none are online, walk up the cpuset hierarchy
266 * until we find one that does have some online cpus. If we get
267 * all the way to the top and still haven't found any online cpus,
268 * return cpu_online_map. Or if passed a NULL cs from an exit'ing
269 * task, return cpu_online_map.
271 * One way or another, we guarantee to return some non-empty subset
274 * Call with callback_mutex held.
277 static void guarantee_online_cpus(const struct cpuset
*cs
, cpumask_t
*pmask
)
279 while (cs
&& !cpus_intersects(cs
->cpus_allowed
, cpu_online_map
))
282 cpus_and(*pmask
, cs
->cpus_allowed
, cpu_online_map
);
284 *pmask
= cpu_online_map
;
285 BUG_ON(!cpus_intersects(*pmask
, cpu_online_map
));
289 * Return in *pmask the portion of a cpusets's mems_allowed that
290 * are online, with memory. If none are online with memory, walk
291 * up the cpuset hierarchy until we find one that does have some
292 * online mems. If we get all the way to the top and still haven't
293 * found any online mems, return node_states[N_HIGH_MEMORY].
295 * One way or another, we guarantee to return some non-empty subset
296 * of node_states[N_HIGH_MEMORY].
298 * Call with callback_mutex held.
301 static void guarantee_online_mems(const struct cpuset
*cs
, nodemask_t
*pmask
)
303 while (cs
&& !nodes_intersects(cs
->mems_allowed
,
304 node_states
[N_HIGH_MEMORY
]))
307 nodes_and(*pmask
, cs
->mems_allowed
,
308 node_states
[N_HIGH_MEMORY
]);
310 *pmask
= node_states
[N_HIGH_MEMORY
];
311 BUG_ON(!nodes_intersects(*pmask
, node_states
[N_HIGH_MEMORY
]));
315 * cpuset_update_task_memory_state - update task memory placement
317 * If the current tasks cpusets mems_allowed changed behind our
318 * backs, update current->mems_allowed, mems_generation and task NUMA
319 * mempolicy to the new value.
321 * Task mempolicy is updated by rebinding it relative to the
322 * current->cpuset if a task has its memory placement changed.
323 * Do not call this routine if in_interrupt().
325 * Call without callback_mutex or task_lock() held. May be
326 * called with or without cgroup_mutex held. Thanks in part to
327 * 'the_top_cpuset_hack', the task's cpuset pointer will never
328 * be NULL. This routine also might acquire callback_mutex during
331 * Reading current->cpuset->mems_generation doesn't need task_lock
332 * to guard the current->cpuset derefence, because it is guarded
333 * from concurrent freeing of current->cpuset using RCU.
335 * The rcu_dereference() is technically probably not needed,
336 * as I don't actually mind if I see a new cpuset pointer but
337 * an old value of mems_generation. However this really only
338 * matters on alpha systems using cpusets heavily. If I dropped
339 * that rcu_dereference(), it would save them a memory barrier.
340 * For all other arch's, rcu_dereference is a no-op anyway, and for
341 * alpha systems not using cpusets, another planned optimization,
342 * avoiding the rcu critical section for tasks in the root cpuset
343 * which is statically allocated, so can't vanish, will make this
344 * irrelevant. Better to use RCU as intended, than to engage in
345 * some cute trick to save a memory barrier that is impossible to
346 * test, for alpha systems using cpusets heavily, which might not
349 * This routine is needed to update the per-task mems_allowed data,
350 * within the tasks context, when it is trying to allocate memory
351 * (in various mm/mempolicy.c routines) and notices that some other
352 * task has been modifying its cpuset.
355 void cpuset_update_task_memory_state(void)
357 int my_cpusets_mem_gen
;
358 struct task_struct
*tsk
= current
;
361 if (task_cs(tsk
) == &top_cpuset
) {
362 /* Don't need rcu for top_cpuset. It's never freed. */
363 my_cpusets_mem_gen
= top_cpuset
.mems_generation
;
366 my_cpusets_mem_gen
= task_cs(current
)->mems_generation
;
370 if (my_cpusets_mem_gen
!= tsk
->cpuset_mems_generation
) {
371 mutex_lock(&callback_mutex
);
373 cs
= task_cs(tsk
); /* Maybe changed when task not locked */
374 guarantee_online_mems(cs
, &tsk
->mems_allowed
);
375 tsk
->cpuset_mems_generation
= cs
->mems_generation
;
376 if (is_spread_page(cs
))
377 tsk
->flags
|= PF_SPREAD_PAGE
;
379 tsk
->flags
&= ~PF_SPREAD_PAGE
;
380 if (is_spread_slab(cs
))
381 tsk
->flags
|= PF_SPREAD_SLAB
;
383 tsk
->flags
&= ~PF_SPREAD_SLAB
;
385 mutex_unlock(&callback_mutex
);
386 mpol_rebind_task(tsk
, &tsk
->mems_allowed
);
391 * is_cpuset_subset(p, q) - Is cpuset p a subset of cpuset q?
393 * One cpuset is a subset of another if all its allowed CPUs and
394 * Memory Nodes are a subset of the other, and its exclusive flags
395 * are only set if the other's are set. Call holding cgroup_mutex.
398 static int is_cpuset_subset(const struct cpuset
*p
, const struct cpuset
*q
)
400 return cpus_subset(p
->cpus_allowed
, q
->cpus_allowed
) &&
401 nodes_subset(p
->mems_allowed
, q
->mems_allowed
) &&
402 is_cpu_exclusive(p
) <= is_cpu_exclusive(q
) &&
403 is_mem_exclusive(p
) <= is_mem_exclusive(q
);
407 * validate_change() - Used to validate that any proposed cpuset change
408 * follows the structural rules for cpusets.
410 * If we replaced the flag and mask values of the current cpuset
411 * (cur) with those values in the trial cpuset (trial), would
412 * our various subset and exclusive rules still be valid? Presumes
415 * 'cur' is the address of an actual, in-use cpuset. Operations
416 * such as list traversal that depend on the actual address of the
417 * cpuset in the list must use cur below, not trial.
419 * 'trial' is the address of bulk structure copy of cur, with
420 * perhaps one or more of the fields cpus_allowed, mems_allowed,
421 * or flags changed to new, trial values.
423 * Return 0 if valid, -errno if not.
426 static int validate_change(const struct cpuset
*cur
, const struct cpuset
*trial
)
429 struct cpuset
*c
, *par
;
431 /* Each of our child cpusets must be a subset of us */
432 list_for_each_entry(cont
, &cur
->css
.cgroup
->children
, sibling
) {
433 if (!is_cpuset_subset(cgroup_cs(cont
), trial
))
437 /* Remaining checks don't apply to root cpuset */
438 if (cur
== &top_cpuset
)
443 /* We must be a subset of our parent cpuset */
444 if (!is_cpuset_subset(trial
, par
))
448 * If either I or some sibling (!= me) is exclusive, we can't
451 list_for_each_entry(cont
, &par
->css
.cgroup
->children
, sibling
) {
453 if ((is_cpu_exclusive(trial
) || is_cpu_exclusive(c
)) &&
455 cpus_intersects(trial
->cpus_allowed
, c
->cpus_allowed
))
457 if ((is_mem_exclusive(trial
) || is_mem_exclusive(c
)) &&
459 nodes_intersects(trial
->mems_allowed
, c
->mems_allowed
))
463 /* Cpusets with tasks can't have empty cpus_allowed or mems_allowed */
464 if (cgroup_task_count(cur
->css
.cgroup
)) {
465 if (cpus_empty(trial
->cpus_allowed
) ||
466 nodes_empty(trial
->mems_allowed
)) {
475 * Helper routine for rebuild_sched_domains().
476 * Do cpusets a, b have overlapping cpus_allowed masks?
479 static int cpusets_overlap(struct cpuset
*a
, struct cpuset
*b
)
481 return cpus_intersects(a
->cpus_allowed
, b
->cpus_allowed
);
485 update_domain_attr(struct sched_domain_attr
*dattr
, struct cpuset
*c
)
489 if (dattr
->relax_domain_level
< c
->relax_domain_level
)
490 dattr
->relax_domain_level
= c
->relax_domain_level
;
495 * rebuild_sched_domains()
497 * If the flag 'sched_load_balance' of any cpuset with non-empty
498 * 'cpus' changes, or if the 'cpus' allowed changes in any cpuset
499 * which has that flag enabled, or if any cpuset with a non-empty
500 * 'cpus' is removed, then call this routine to rebuild the
501 * scheduler's dynamic sched domains.
503 * This routine builds a partial partition of the systems CPUs
504 * (the set of non-overlappping cpumask_t's in the array 'part'
505 * below), and passes that partial partition to the kernel/sched.c
506 * partition_sched_domains() routine, which will rebuild the
507 * schedulers load balancing domains (sched domains) as specified
508 * by that partial partition. A 'partial partition' is a set of
509 * non-overlapping subsets whose union is a subset of that set.
511 * See "What is sched_load_balance" in Documentation/cpusets.txt
512 * for a background explanation of this.
514 * Does not return errors, on the theory that the callers of this
515 * routine would rather not worry about failures to rebuild sched
516 * domains when operating in the severe memory shortage situations
517 * that could cause allocation failures below.
519 * Call with cgroup_mutex held. May take callback_mutex during
520 * call due to the kfifo_alloc() and kmalloc() calls. May nest
521 * a call to the get_online_cpus()/put_online_cpus() pair.
522 * Must not be called holding callback_mutex, because we must not
523 * call get_online_cpus() while holding callback_mutex. Elsewhere
524 * the kernel nests callback_mutex inside get_online_cpus() calls.
525 * So the reverse nesting would risk an ABBA deadlock.
527 * The three key local variables below are:
528 * q - a kfifo queue of cpuset pointers, used to implement a
529 * top-down scan of all cpusets. This scan loads a pointer
530 * to each cpuset marked is_sched_load_balance into the
531 * array 'csa'. For our purposes, rebuilding the schedulers
532 * sched domains, we can ignore !is_sched_load_balance cpusets.
533 * csa - (for CpuSet Array) Array of pointers to all the cpusets
534 * that need to be load balanced, for convenient iterative
535 * access by the subsequent code that finds the best partition,
536 * i.e the set of domains (subsets) of CPUs such that the
537 * cpus_allowed of every cpuset marked is_sched_load_balance
538 * is a subset of one of these domains, while there are as
539 * many such domains as possible, each as small as possible.
540 * doms - Conversion of 'csa' to an array of cpumasks, for passing to
541 * the kernel/sched.c routine partition_sched_domains() in a
542 * convenient format, that can be easily compared to the prior
543 * value to determine what partition elements (sched domains)
544 * were changed (added or removed.)
546 * Finding the best partition (set of domains):
547 * The triple nested loops below over i, j, k scan over the
548 * load balanced cpusets (using the array of cpuset pointers in
549 * csa[]) looking for pairs of cpusets that have overlapping
550 * cpus_allowed, but which don't have the same 'pn' partition
551 * number and gives them in the same partition number. It keeps
552 * looping on the 'restart' label until it can no longer find
555 * The union of the cpus_allowed masks from the set of
556 * all cpusets having the same 'pn' value then form the one
557 * element of the partition (one sched domain) to be passed to
558 * partition_sched_domains().
561 static void rebuild_sched_domains(void)
563 struct kfifo
*q
; /* queue of cpusets to be scanned */
564 struct cpuset
*cp
; /* scans q */
565 struct cpuset
**csa
; /* array of all cpuset ptrs */
566 int csn
; /* how many cpuset ptrs in csa so far */
567 int i
, j
, k
; /* indices for partition finding loops */
568 cpumask_t
*doms
; /* resulting partition; i.e. sched domains */
569 struct sched_domain_attr
*dattr
; /* attributes for custom domains */
570 int ndoms
; /* number of sched domains in result */
571 int nslot
; /* next empty doms[] cpumask_t slot */
578 /* Special case for the 99% of systems with one, full, sched domain */
579 if (is_sched_load_balance(&top_cpuset
)) {
581 doms
= kmalloc(sizeof(cpumask_t
), GFP_KERNEL
);
584 dattr
= kmalloc(sizeof(struct sched_domain_attr
), GFP_KERNEL
);
586 *dattr
= SD_ATTR_INIT
;
587 update_domain_attr(dattr
, &top_cpuset
);
589 *doms
= top_cpuset
.cpus_allowed
;
593 q
= kfifo_alloc(number_of_cpusets
* sizeof(cp
), GFP_KERNEL
, NULL
);
596 csa
= kmalloc(number_of_cpusets
* sizeof(cp
), GFP_KERNEL
);
602 __kfifo_put(q
, (void *)&cp
, sizeof(cp
));
603 while (__kfifo_get(q
, (void *)&cp
, sizeof(cp
))) {
605 struct cpuset
*child
; /* scans child cpusets of cp */
606 if (is_sched_load_balance(cp
))
608 list_for_each_entry(cont
, &cp
->css
.cgroup
->children
, sibling
) {
609 child
= cgroup_cs(cont
);
610 __kfifo_put(q
, (void *)&child
, sizeof(cp
));
614 for (i
= 0; i
< csn
; i
++)
619 /* Find the best partition (set of sched domains) */
620 for (i
= 0; i
< csn
; i
++) {
621 struct cpuset
*a
= csa
[i
];
624 for (j
= 0; j
< csn
; j
++) {
625 struct cpuset
*b
= csa
[j
];
628 if (apn
!= bpn
&& cpusets_overlap(a
, b
)) {
629 for (k
= 0; k
< csn
; k
++) {
630 struct cpuset
*c
= csa
[k
];
635 ndoms
--; /* one less element */
641 /* Convert <csn, csa> to <ndoms, doms> */
642 doms
= kmalloc(ndoms
* sizeof(cpumask_t
), GFP_KERNEL
);
645 dattr
= kmalloc(ndoms
* sizeof(struct sched_domain_attr
), GFP_KERNEL
);
647 for (nslot
= 0, i
= 0; i
< csn
; i
++) {
648 struct cpuset
*a
= csa
[i
];
652 cpumask_t
*dp
= doms
+ nslot
;
654 if (nslot
== ndoms
) {
655 static int warnings
= 10;
658 "rebuild_sched_domains confused:"
659 " nslot %d, ndoms %d, csn %d, i %d,"
661 nslot
, ndoms
, csn
, i
, apn
);
669 *(dattr
+ nslot
) = SD_ATTR_INIT
;
670 for (j
= i
; j
< csn
; j
++) {
671 struct cpuset
*b
= csa
[j
];
674 cpus_or(*dp
, *dp
, b
->cpus_allowed
);
676 update_domain_attr(dattr
, b
);
682 BUG_ON(nslot
!= ndoms
);
685 /* Have scheduler rebuild sched domains */
687 partition_sched_domains(ndoms
, doms
, dattr
);
694 /* Don't kfree(doms) -- partition_sched_domains() does that. */
695 /* Don't kfree(dattr) -- partition_sched_domains() does that. */
698 static inline int started_after_time(struct task_struct
*t1
,
699 struct timespec
*time
,
700 struct task_struct
*t2
)
702 int start_diff
= timespec_compare(&t1
->start_time
, time
);
703 if (start_diff
> 0) {
705 } else if (start_diff
< 0) {
709 * Arbitrarily, if two processes started at the same
710 * time, we'll say that the lower pointer value
711 * started first. Note that t2 may have exited by now
712 * so this may not be a valid pointer any longer, but
713 * that's fine - it still serves to distinguish
714 * between two tasks started (effectively)
721 static inline int started_after(void *p1
, void *p2
)
723 struct task_struct
*t1
= p1
;
724 struct task_struct
*t2
= p2
;
725 return started_after_time(t1
, &t2
->start_time
, t2
);
729 * cpuset_test_cpumask - test a task's cpus_allowed versus its cpuset's
731 * @scan: struct cgroup_scanner contained in its struct cpuset_hotplug_scanner
733 * Call with cgroup_mutex held. May take callback_mutex during call.
734 * Called for each task in a cgroup by cgroup_scan_tasks().
735 * Return nonzero if this tasks's cpus_allowed mask should be changed (in other
736 * words, if its mask is not equal to its cpuset's mask).
738 int cpuset_test_cpumask(struct task_struct
*tsk
, struct cgroup_scanner
*scan
)
740 return !cpus_equal(tsk
->cpus_allowed
,
741 (cgroup_cs(scan
->cg
))->cpus_allowed
);
745 * cpuset_change_cpumask - make a task's cpus_allowed the same as its cpuset's
747 * @scan: struct cgroup_scanner containing the cgroup of the task
749 * Called by cgroup_scan_tasks() for each task in a cgroup whose
750 * cpus_allowed mask needs to be changed.
752 * We don't need to re-check for the cgroup/cpuset membership, since we're
753 * holding cgroup_lock() at this point.
755 void cpuset_change_cpumask(struct task_struct
*tsk
, struct cgroup_scanner
*scan
)
757 set_cpus_allowed_ptr(tsk
, &((cgroup_cs(scan
->cg
))->cpus_allowed
));
761 * update_cpumask - update the cpus_allowed mask of a cpuset and all tasks in it
762 * @cs: the cpuset to consider
763 * @buf: buffer of cpu numbers written to this cpuset
765 static int update_cpumask(struct cpuset
*cs
, char *buf
)
767 struct cpuset trialcs
;
768 struct cgroup_scanner scan
;
769 struct ptr_heap heap
;
771 int is_load_balanced
;
773 /* top_cpuset.cpus_allowed tracks cpu_online_map; it's read-only */
774 if (cs
== &top_cpuset
)
780 * An empty cpus_allowed is ok only if the cpuset has no tasks.
781 * Since cpulist_parse() fails on an empty mask, we special case
782 * that parsing. The validate_change() call ensures that cpusets
783 * with tasks have cpus.
787 cpus_clear(trialcs
.cpus_allowed
);
789 retval
= cpulist_parse(buf
, trialcs
.cpus_allowed
);
793 cpus_and(trialcs
.cpus_allowed
, trialcs
.cpus_allowed
, cpu_online_map
);
794 retval
= validate_change(cs
, &trialcs
);
798 /* Nothing to do if the cpus didn't change */
799 if (cpus_equal(cs
->cpus_allowed
, trialcs
.cpus_allowed
))
802 retval
= heap_init(&heap
, PAGE_SIZE
, GFP_KERNEL
, &started_after
);
806 is_load_balanced
= is_sched_load_balance(&trialcs
);
808 mutex_lock(&callback_mutex
);
809 cs
->cpus_allowed
= trialcs
.cpus_allowed
;
810 mutex_unlock(&callback_mutex
);
813 * Scan tasks in the cpuset, and update the cpumasks of any
814 * that need an update.
816 scan
.cg
= cs
->css
.cgroup
;
817 scan
.test_task
= cpuset_test_cpumask
;
818 scan
.process_task
= cpuset_change_cpumask
;
820 cgroup_scan_tasks(&scan
);
823 if (is_load_balanced
)
824 rebuild_sched_domains();
831 * Migrate memory region from one set of nodes to another.
833 * Temporarilly set tasks mems_allowed to target nodes of migration,
834 * so that the migration code can allocate pages on these nodes.
836 * Call holding cgroup_mutex, so current's cpuset won't change
837 * during this call, as manage_mutex holds off any cpuset_attach()
838 * calls. Therefore we don't need to take task_lock around the
839 * call to guarantee_online_mems(), as we know no one is changing
842 * Hold callback_mutex around the two modifications of our tasks
843 * mems_allowed to synchronize with cpuset_mems_allowed().
845 * While the mm_struct we are migrating is typically from some
846 * other task, the task_struct mems_allowed that we are hacking
847 * is for our current task, which must allocate new pages for that
848 * migrating memory region.
850 * We call cpuset_update_task_memory_state() before hacking
851 * our tasks mems_allowed, so that we are assured of being in
852 * sync with our tasks cpuset, and in particular, callbacks to
853 * cpuset_update_task_memory_state() from nested page allocations
854 * won't see any mismatch of our cpuset and task mems_generation
855 * values, so won't overwrite our hacked tasks mems_allowed
859 static void cpuset_migrate_mm(struct mm_struct
*mm
, const nodemask_t
*from
,
860 const nodemask_t
*to
)
862 struct task_struct
*tsk
= current
;
864 cpuset_update_task_memory_state();
866 mutex_lock(&callback_mutex
);
867 tsk
->mems_allowed
= *to
;
868 mutex_unlock(&callback_mutex
);
870 do_migrate_pages(mm
, from
, to
, MPOL_MF_MOVE_ALL
);
872 mutex_lock(&callback_mutex
);
873 guarantee_online_mems(task_cs(tsk
),&tsk
->mems_allowed
);
874 mutex_unlock(&callback_mutex
);
878 * Handle user request to change the 'mems' memory placement
879 * of a cpuset. Needs to validate the request, update the
880 * cpusets mems_allowed and mems_generation, and for each
881 * task in the cpuset, rebind any vma mempolicies and if
882 * the cpuset is marked 'memory_migrate', migrate the tasks
883 * pages to the new memory.
885 * Call with cgroup_mutex held. May take callback_mutex during call.
886 * Will take tasklist_lock, scan tasklist for tasks in cpuset cs,
887 * lock each such tasks mm->mmap_sem, scan its vma's and rebind
888 * their mempolicies to the cpusets new mems_allowed.
891 static void *cpuset_being_rebound
;
893 static int update_nodemask(struct cpuset
*cs
, char *buf
)
895 struct cpuset trialcs
;
897 struct task_struct
*p
;
898 struct mm_struct
**mmarray
;
903 struct cgroup_iter it
;
906 * top_cpuset.mems_allowed tracks node_stats[N_HIGH_MEMORY];
909 if (cs
== &top_cpuset
)
915 * An empty mems_allowed is ok iff there are no tasks in the cpuset.
916 * Since nodelist_parse() fails on an empty mask, we special case
917 * that parsing. The validate_change() call ensures that cpusets
918 * with tasks have memory.
922 nodes_clear(trialcs
.mems_allowed
);
924 retval
= nodelist_parse(buf
, trialcs
.mems_allowed
);
928 nodes_and(trialcs
.mems_allowed
, trialcs
.mems_allowed
,
929 node_states
[N_HIGH_MEMORY
]);
930 oldmem
= cs
->mems_allowed
;
931 if (nodes_equal(oldmem
, trialcs
.mems_allowed
)) {
932 retval
= 0; /* Too easy - nothing to do */
935 retval
= validate_change(cs
, &trialcs
);
939 mutex_lock(&callback_mutex
);
940 cs
->mems_allowed
= trialcs
.mems_allowed
;
941 cs
->mems_generation
= cpuset_mems_generation
++;
942 mutex_unlock(&callback_mutex
);
944 cpuset_being_rebound
= cs
; /* causes mpol_copy() rebind */
946 fudge
= 10; /* spare mmarray[] slots */
947 fudge
+= cpus_weight(cs
->cpus_allowed
); /* imagine one fork-bomb/cpu */
951 * Allocate mmarray[] to hold mm reference for each task
952 * in cpuset cs. Can't kmalloc GFP_KERNEL while holding
953 * tasklist_lock. We could use GFP_ATOMIC, but with a
954 * few more lines of code, we can retry until we get a big
955 * enough mmarray[] w/o using GFP_ATOMIC.
958 ntasks
= cgroup_task_count(cs
->css
.cgroup
); /* guess */
960 mmarray
= kmalloc(ntasks
* sizeof(*mmarray
), GFP_KERNEL
);
963 read_lock(&tasklist_lock
); /* block fork */
964 if (cgroup_task_count(cs
->css
.cgroup
) <= ntasks
)
965 break; /* got enough */
966 read_unlock(&tasklist_lock
); /* try again */
972 /* Load up mmarray[] with mm reference for each task in cpuset. */
973 cgroup_iter_start(cs
->css
.cgroup
, &it
);
974 while ((p
= cgroup_iter_next(cs
->css
.cgroup
, &it
))) {
975 struct mm_struct
*mm
;
979 "Cpuset mempolicy rebind incomplete.\n");
987 cgroup_iter_end(cs
->css
.cgroup
, &it
);
988 read_unlock(&tasklist_lock
);
991 * Now that we've dropped the tasklist spinlock, we can
992 * rebind the vma mempolicies of each mm in mmarray[] to their
993 * new cpuset, and release that mm. The mpol_rebind_mm()
994 * call takes mmap_sem, which we couldn't take while holding
995 * tasklist_lock. Forks can happen again now - the mpol_copy()
996 * cpuset_being_rebound check will catch such forks, and rebind
997 * their vma mempolicies too. Because we still hold the global
998 * cgroup_mutex, we know that no other rebind effort will
999 * be contending for the global variable cpuset_being_rebound.
1000 * It's ok if we rebind the same mm twice; mpol_rebind_mm()
1001 * is idempotent. Also migrate pages in each mm to new nodes.
1003 migrate
= is_memory_migrate(cs
);
1004 for (i
= 0; i
< n
; i
++) {
1005 struct mm_struct
*mm
= mmarray
[i
];
1007 mpol_rebind_mm(mm
, &cs
->mems_allowed
);
1009 cpuset_migrate_mm(mm
, &oldmem
, &cs
->mems_allowed
);
1013 /* We're done rebinding vmas to this cpuset's new mems_allowed. */
1015 cpuset_being_rebound
= NULL
;
1021 int current_cpuset_is_being_rebound(void)
1023 return task_cs(current
) == cpuset_being_rebound
;
1027 * Call with cgroup_mutex held.
1030 static int update_memory_pressure_enabled(struct cpuset
*cs
, char *buf
)
1032 if (simple_strtoul(buf
, NULL
, 10) != 0)
1033 cpuset_memory_pressure_enabled
= 1;
1035 cpuset_memory_pressure_enabled
= 0;
1039 static int update_relax_domain_level(struct cpuset
*cs
, char *buf
)
1041 int val
= simple_strtol(buf
, NULL
, 10);
1046 if (val
!= cs
->relax_domain_level
) {
1047 cs
->relax_domain_level
= val
;
1048 rebuild_sched_domains();
1055 * update_flag - read a 0 or a 1 in a file and update associated flag
1056 * bit: the bit to update (CS_CPU_EXCLUSIVE, CS_MEM_EXCLUSIVE,
1057 * CS_SCHED_LOAD_BALANCE,
1058 * CS_NOTIFY_ON_RELEASE, CS_MEMORY_MIGRATE,
1059 * CS_SPREAD_PAGE, CS_SPREAD_SLAB)
1060 * cs: the cpuset to update
1061 * buf: the buffer where we read the 0 or 1
1063 * Call with cgroup_mutex held.
1066 static int update_flag(cpuset_flagbits_t bit
, struct cpuset
*cs
, char *buf
)
1069 struct cpuset trialcs
;
1071 int cpus_nonempty
, balance_flag_changed
;
1073 turning_on
= (simple_strtoul(buf
, NULL
, 10) != 0);
1077 set_bit(bit
, &trialcs
.flags
);
1079 clear_bit(bit
, &trialcs
.flags
);
1081 err
= validate_change(cs
, &trialcs
);
1085 cpus_nonempty
= !cpus_empty(trialcs
.cpus_allowed
);
1086 balance_flag_changed
= (is_sched_load_balance(cs
) !=
1087 is_sched_load_balance(&trialcs
));
1089 mutex_lock(&callback_mutex
);
1090 cs
->flags
= trialcs
.flags
;
1091 mutex_unlock(&callback_mutex
);
1093 if (cpus_nonempty
&& balance_flag_changed
)
1094 rebuild_sched_domains();
1100 * Frequency meter - How fast is some event occurring?
1102 * These routines manage a digitally filtered, constant time based,
1103 * event frequency meter. There are four routines:
1104 * fmeter_init() - initialize a frequency meter.
1105 * fmeter_markevent() - called each time the event happens.
1106 * fmeter_getrate() - returns the recent rate of such events.
1107 * fmeter_update() - internal routine used to update fmeter.
1109 * A common data structure is passed to each of these routines,
1110 * which is used to keep track of the state required to manage the
1111 * frequency meter and its digital filter.
1113 * The filter works on the number of events marked per unit time.
1114 * The filter is single-pole low-pass recursive (IIR). The time unit
1115 * is 1 second. Arithmetic is done using 32-bit integers scaled to
1116 * simulate 3 decimal digits of precision (multiplied by 1000).
1118 * With an FM_COEF of 933, and a time base of 1 second, the filter
1119 * has a half-life of 10 seconds, meaning that if the events quit
1120 * happening, then the rate returned from the fmeter_getrate()
1121 * will be cut in half each 10 seconds, until it converges to zero.
1123 * It is not worth doing a real infinitely recursive filter. If more
1124 * than FM_MAXTICKS ticks have elapsed since the last filter event,
1125 * just compute FM_MAXTICKS ticks worth, by which point the level
1128 * Limit the count of unprocessed events to FM_MAXCNT, so as to avoid
1129 * arithmetic overflow in the fmeter_update() routine.
1131 * Given the simple 32 bit integer arithmetic used, this meter works
1132 * best for reporting rates between one per millisecond (msec) and
1133 * one per 32 (approx) seconds. At constant rates faster than one
1134 * per msec it maxes out at values just under 1,000,000. At constant
1135 * rates between one per msec, and one per second it will stabilize
1136 * to a value N*1000, where N is the rate of events per second.
1137 * At constant rates between one per second and one per 32 seconds,
1138 * it will be choppy, moving up on the seconds that have an event,
1139 * and then decaying until the next event. At rates slower than
1140 * about one in 32 seconds, it decays all the way back to zero between
1144 #define FM_COEF 933 /* coefficient for half-life of 10 secs */
1145 #define FM_MAXTICKS ((time_t)99) /* useless computing more ticks than this */
1146 #define FM_MAXCNT 1000000 /* limit cnt to avoid overflow */
1147 #define FM_SCALE 1000 /* faux fixed point scale */
1149 /* Initialize a frequency meter */
1150 static void fmeter_init(struct fmeter
*fmp
)
1155 spin_lock_init(&fmp
->lock
);
1158 /* Internal meter update - process cnt events and update value */
1159 static void fmeter_update(struct fmeter
*fmp
)
1161 time_t now
= get_seconds();
1162 time_t ticks
= now
- fmp
->time
;
1167 ticks
= min(FM_MAXTICKS
, ticks
);
1169 fmp
->val
= (FM_COEF
* fmp
->val
) / FM_SCALE
;
1172 fmp
->val
+= ((FM_SCALE
- FM_COEF
) * fmp
->cnt
) / FM_SCALE
;
1176 /* Process any previous ticks, then bump cnt by one (times scale). */
1177 static void fmeter_markevent(struct fmeter
*fmp
)
1179 spin_lock(&fmp
->lock
);
1181 fmp
->cnt
= min(FM_MAXCNT
, fmp
->cnt
+ FM_SCALE
);
1182 spin_unlock(&fmp
->lock
);
1185 /* Process any previous ticks, then return current value. */
1186 static int fmeter_getrate(struct fmeter
*fmp
)
1190 spin_lock(&fmp
->lock
);
1193 spin_unlock(&fmp
->lock
);
1197 /* Called by cgroups to determine if a cpuset is usable; cgroup_mutex held */
1198 static int cpuset_can_attach(struct cgroup_subsys
*ss
,
1199 struct cgroup
*cont
, struct task_struct
*tsk
)
1201 struct cpuset
*cs
= cgroup_cs(cont
);
1203 if (cpus_empty(cs
->cpus_allowed
) || nodes_empty(cs
->mems_allowed
))
1206 return security_task_setscheduler(tsk
, 0, NULL
);
1209 static void cpuset_attach(struct cgroup_subsys
*ss
,
1210 struct cgroup
*cont
, struct cgroup
*oldcont
,
1211 struct task_struct
*tsk
)
1214 nodemask_t from
, to
;
1215 struct mm_struct
*mm
;
1216 struct cpuset
*cs
= cgroup_cs(cont
);
1217 struct cpuset
*oldcs
= cgroup_cs(oldcont
);
1219 mutex_lock(&callback_mutex
);
1220 guarantee_online_cpus(cs
, &cpus
);
1221 set_cpus_allowed_ptr(tsk
, &cpus
);
1222 mutex_unlock(&callback_mutex
);
1224 from
= oldcs
->mems_allowed
;
1225 to
= cs
->mems_allowed
;
1226 mm
= get_task_mm(tsk
);
1228 mpol_rebind_mm(mm
, &to
);
1229 if (is_memory_migrate(cs
))
1230 cpuset_migrate_mm(mm
, &from
, &to
);
1236 /* The various types of files and directories in a cpuset file system */
1239 FILE_MEMORY_MIGRATE
,
1244 FILE_SCHED_LOAD_BALANCE
,
1245 FILE_SCHED_RELAX_DOMAIN_LEVEL
,
1246 FILE_MEMORY_PRESSURE_ENABLED
,
1247 FILE_MEMORY_PRESSURE
,
1250 } cpuset_filetype_t
;
1252 static ssize_t
cpuset_common_file_write(struct cgroup
*cont
,
1255 const char __user
*userbuf
,
1256 size_t nbytes
, loff_t
*unused_ppos
)
1258 struct cpuset
*cs
= cgroup_cs(cont
);
1259 cpuset_filetype_t type
= cft
->private;
1263 /* Crude upper limit on largest legitimate cpulist user might write. */
1264 if (nbytes
> 100U + 6 * max(NR_CPUS
, MAX_NUMNODES
))
1267 /* +1 for nul-terminator */
1268 if ((buffer
= kmalloc(nbytes
+ 1, GFP_KERNEL
)) == 0)
1271 if (copy_from_user(buffer
, userbuf
, nbytes
)) {
1275 buffer
[nbytes
] = 0; /* nul-terminate */
1279 if (cgroup_is_removed(cont
)) {
1286 retval
= update_cpumask(cs
, buffer
);
1289 retval
= update_nodemask(cs
, buffer
);
1291 case FILE_CPU_EXCLUSIVE
:
1292 retval
= update_flag(CS_CPU_EXCLUSIVE
, cs
, buffer
);
1294 case FILE_MEM_EXCLUSIVE
:
1295 retval
= update_flag(CS_MEM_EXCLUSIVE
, cs
, buffer
);
1297 case FILE_SCHED_LOAD_BALANCE
:
1298 retval
= update_flag(CS_SCHED_LOAD_BALANCE
, cs
, buffer
);
1300 case FILE_SCHED_RELAX_DOMAIN_LEVEL
:
1301 retval
= update_relax_domain_level(cs
, buffer
);
1303 case FILE_MEMORY_MIGRATE
:
1304 retval
= update_flag(CS_MEMORY_MIGRATE
, cs
, buffer
);
1306 case FILE_MEMORY_PRESSURE_ENABLED
:
1307 retval
= update_memory_pressure_enabled(cs
, buffer
);
1309 case FILE_MEMORY_PRESSURE
:
1312 case FILE_SPREAD_PAGE
:
1313 retval
= update_flag(CS_SPREAD_PAGE
, cs
, buffer
);
1314 cs
->mems_generation
= cpuset_mems_generation
++;
1316 case FILE_SPREAD_SLAB
:
1317 retval
= update_flag(CS_SPREAD_SLAB
, cs
, buffer
);
1318 cs
->mems_generation
= cpuset_mems_generation
++;
1335 * These ascii lists should be read in a single call, by using a user
1336 * buffer large enough to hold the entire map. If read in smaller
1337 * chunks, there is no guarantee of atomicity. Since the display format
1338 * used, list of ranges of sequential numbers, is variable length,
1339 * and since these maps can change value dynamically, one could read
1340 * gibberish by doing partial reads while a list was changing.
1341 * A single large read to a buffer that crosses a page boundary is
1342 * ok, because the result being copied to user land is not recomputed
1343 * across a page fault.
1346 static int cpuset_sprintf_cpulist(char *page
, struct cpuset
*cs
)
1350 mutex_lock(&callback_mutex
);
1351 mask
= cs
->cpus_allowed
;
1352 mutex_unlock(&callback_mutex
);
1354 return cpulist_scnprintf(page
, PAGE_SIZE
, mask
);
1357 static int cpuset_sprintf_memlist(char *page
, struct cpuset
*cs
)
1361 mutex_lock(&callback_mutex
);
1362 mask
= cs
->mems_allowed
;
1363 mutex_unlock(&callback_mutex
);
1365 return nodelist_scnprintf(page
, PAGE_SIZE
, mask
);
1368 static ssize_t
cpuset_common_file_read(struct cgroup
*cont
,
1372 size_t nbytes
, loff_t
*ppos
)
1374 struct cpuset
*cs
= cgroup_cs(cont
);
1375 cpuset_filetype_t type
= cft
->private;
1380 if (!(page
= (char *)__get_free_page(GFP_TEMPORARY
)))
1387 s
+= cpuset_sprintf_cpulist(s
, cs
);
1390 s
+= cpuset_sprintf_memlist(s
, cs
);
1392 case FILE_CPU_EXCLUSIVE
:
1393 *s
++ = is_cpu_exclusive(cs
) ? '1' : '0';
1395 case FILE_MEM_EXCLUSIVE
:
1396 *s
++ = is_mem_exclusive(cs
) ? '1' : '0';
1398 case FILE_SCHED_LOAD_BALANCE
:
1399 *s
++ = is_sched_load_balance(cs
) ? '1' : '0';
1401 case FILE_SCHED_RELAX_DOMAIN_LEVEL
:
1402 s
+= sprintf(s
, "%d", cs
->relax_domain_level
);
1404 case FILE_MEMORY_MIGRATE
:
1405 *s
++ = is_memory_migrate(cs
) ? '1' : '0';
1407 case FILE_MEMORY_PRESSURE_ENABLED
:
1408 *s
++ = cpuset_memory_pressure_enabled
? '1' : '0';
1410 case FILE_MEMORY_PRESSURE
:
1411 s
+= sprintf(s
, "%d", fmeter_getrate(&cs
->fmeter
));
1413 case FILE_SPREAD_PAGE
:
1414 *s
++ = is_spread_page(cs
) ? '1' : '0';
1416 case FILE_SPREAD_SLAB
:
1417 *s
++ = is_spread_slab(cs
) ? '1' : '0';
1425 retval
= simple_read_from_buffer(buf
, nbytes
, ppos
, page
, s
- page
);
1427 free_page((unsigned long)page
);
1436 * for the common functions, 'private' gives the type of file
1439 static struct cftype cft_cpus
= {
1441 .read
= cpuset_common_file_read
,
1442 .write
= cpuset_common_file_write
,
1443 .private = FILE_CPULIST
,
1446 static struct cftype cft_mems
= {
1448 .read
= cpuset_common_file_read
,
1449 .write
= cpuset_common_file_write
,
1450 .private = FILE_MEMLIST
,
1453 static struct cftype cft_cpu_exclusive
= {
1454 .name
= "cpu_exclusive",
1455 .read
= cpuset_common_file_read
,
1456 .write
= cpuset_common_file_write
,
1457 .private = FILE_CPU_EXCLUSIVE
,
1460 static struct cftype cft_mem_exclusive
= {
1461 .name
= "mem_exclusive",
1462 .read
= cpuset_common_file_read
,
1463 .write
= cpuset_common_file_write
,
1464 .private = FILE_MEM_EXCLUSIVE
,
1467 static struct cftype cft_sched_load_balance
= {
1468 .name
= "sched_load_balance",
1469 .read
= cpuset_common_file_read
,
1470 .write
= cpuset_common_file_write
,
1471 .private = FILE_SCHED_LOAD_BALANCE
,
1474 static struct cftype cft_sched_relax_domain_level
= {
1475 .name
= "sched_relax_domain_level",
1476 .read
= cpuset_common_file_read
,
1477 .write
= cpuset_common_file_write
,
1478 .private = FILE_SCHED_RELAX_DOMAIN_LEVEL
,
1481 static struct cftype cft_memory_migrate
= {
1482 .name
= "memory_migrate",
1483 .read
= cpuset_common_file_read
,
1484 .write
= cpuset_common_file_write
,
1485 .private = FILE_MEMORY_MIGRATE
,
1488 static struct cftype cft_memory_pressure_enabled
= {
1489 .name
= "memory_pressure_enabled",
1490 .read
= cpuset_common_file_read
,
1491 .write
= cpuset_common_file_write
,
1492 .private = FILE_MEMORY_PRESSURE_ENABLED
,
1495 static struct cftype cft_memory_pressure
= {
1496 .name
= "memory_pressure",
1497 .read
= cpuset_common_file_read
,
1498 .write
= cpuset_common_file_write
,
1499 .private = FILE_MEMORY_PRESSURE
,
1502 static struct cftype cft_spread_page
= {
1503 .name
= "memory_spread_page",
1504 .read
= cpuset_common_file_read
,
1505 .write
= cpuset_common_file_write
,
1506 .private = FILE_SPREAD_PAGE
,
1509 static struct cftype cft_spread_slab
= {
1510 .name
= "memory_spread_slab",
1511 .read
= cpuset_common_file_read
,
1512 .write
= cpuset_common_file_write
,
1513 .private = FILE_SPREAD_SLAB
,
1516 static int cpuset_populate(struct cgroup_subsys
*ss
, struct cgroup
*cont
)
1520 if ((err
= cgroup_add_file(cont
, ss
, &cft_cpus
)) < 0)
1522 if ((err
= cgroup_add_file(cont
, ss
, &cft_mems
)) < 0)
1524 if ((err
= cgroup_add_file(cont
, ss
, &cft_cpu_exclusive
)) < 0)
1526 if ((err
= cgroup_add_file(cont
, ss
, &cft_mem_exclusive
)) < 0)
1528 if ((err
= cgroup_add_file(cont
, ss
, &cft_memory_migrate
)) < 0)
1530 if ((err
= cgroup_add_file(cont
, ss
, &cft_sched_load_balance
)) < 0)
1532 if ((err
= cgroup_add_file(cont
, ss
,
1533 &cft_sched_relax_domain_level
)) < 0)
1535 if ((err
= cgroup_add_file(cont
, ss
, &cft_memory_pressure
)) < 0)
1537 if ((err
= cgroup_add_file(cont
, ss
, &cft_spread_page
)) < 0)
1539 if ((err
= cgroup_add_file(cont
, ss
, &cft_spread_slab
)) < 0)
1541 /* memory_pressure_enabled is in root cpuset only */
1542 if (err
== 0 && !cont
->parent
)
1543 err
= cgroup_add_file(cont
, ss
,
1544 &cft_memory_pressure_enabled
);
1549 * post_clone() is called at the end of cgroup_clone().
1550 * 'cgroup' was just created automatically as a result of
1551 * a cgroup_clone(), and the current task is about to
1552 * be moved into 'cgroup'.
1554 * Currently we refuse to set up the cgroup - thereby
1555 * refusing the task to be entered, and as a result refusing
1556 * the sys_unshare() or clone() which initiated it - if any
1557 * sibling cpusets have exclusive cpus or mem.
1559 * If this becomes a problem for some users who wish to
1560 * allow that scenario, then cpuset_post_clone() could be
1561 * changed to grant parent->cpus_allowed-sibling_cpus_exclusive
1562 * (and likewise for mems) to the new cgroup. Called with cgroup_mutex
1565 static void cpuset_post_clone(struct cgroup_subsys
*ss
,
1566 struct cgroup
*cgroup
)
1568 struct cgroup
*parent
, *child
;
1569 struct cpuset
*cs
, *parent_cs
;
1571 parent
= cgroup
->parent
;
1572 list_for_each_entry(child
, &parent
->children
, sibling
) {
1573 cs
= cgroup_cs(child
);
1574 if (is_mem_exclusive(cs
) || is_cpu_exclusive(cs
))
1577 cs
= cgroup_cs(cgroup
);
1578 parent_cs
= cgroup_cs(parent
);
1580 cs
->mems_allowed
= parent_cs
->mems_allowed
;
1581 cs
->cpus_allowed
= parent_cs
->cpus_allowed
;
1586 * cpuset_create - create a cpuset
1587 * ss: cpuset cgroup subsystem
1588 * cont: control group that the new cpuset will be part of
1591 static struct cgroup_subsys_state
*cpuset_create(
1592 struct cgroup_subsys
*ss
,
1593 struct cgroup
*cont
)
1596 struct cpuset
*parent
;
1598 if (!cont
->parent
) {
1599 /* This is early initialization for the top cgroup */
1600 top_cpuset
.mems_generation
= cpuset_mems_generation
++;
1601 return &top_cpuset
.css
;
1603 parent
= cgroup_cs(cont
->parent
);
1604 cs
= kmalloc(sizeof(*cs
), GFP_KERNEL
);
1606 return ERR_PTR(-ENOMEM
);
1608 cpuset_update_task_memory_state();
1610 if (is_spread_page(parent
))
1611 set_bit(CS_SPREAD_PAGE
, &cs
->flags
);
1612 if (is_spread_slab(parent
))
1613 set_bit(CS_SPREAD_SLAB
, &cs
->flags
);
1614 set_bit(CS_SCHED_LOAD_BALANCE
, &cs
->flags
);
1615 cpus_clear(cs
->cpus_allowed
);
1616 nodes_clear(cs
->mems_allowed
);
1617 cs
->mems_generation
= cpuset_mems_generation
++;
1618 fmeter_init(&cs
->fmeter
);
1619 cs
->relax_domain_level
= -1;
1621 cs
->parent
= parent
;
1622 number_of_cpusets
++;
1627 * Locking note on the strange update_flag() call below:
1629 * If the cpuset being removed has its flag 'sched_load_balance'
1630 * enabled, then simulate turning sched_load_balance off, which
1631 * will call rebuild_sched_domains(). The get_online_cpus()
1632 * call in rebuild_sched_domains() must not be made while holding
1633 * callback_mutex. Elsewhere the kernel nests callback_mutex inside
1634 * get_online_cpus() calls. So the reverse nesting would risk an
1638 static void cpuset_destroy(struct cgroup_subsys
*ss
, struct cgroup
*cont
)
1640 struct cpuset
*cs
= cgroup_cs(cont
);
1642 cpuset_update_task_memory_state();
1644 if (is_sched_load_balance(cs
))
1645 update_flag(CS_SCHED_LOAD_BALANCE
, cs
, "0");
1647 number_of_cpusets
--;
1651 struct cgroup_subsys cpuset_subsys
= {
1653 .create
= cpuset_create
,
1654 .destroy
= cpuset_destroy
,
1655 .can_attach
= cpuset_can_attach
,
1656 .attach
= cpuset_attach
,
1657 .populate
= cpuset_populate
,
1658 .post_clone
= cpuset_post_clone
,
1659 .subsys_id
= cpuset_subsys_id
,
1664 * cpuset_init_early - just enough so that the calls to
1665 * cpuset_update_task_memory_state() in early init code
1669 int __init
cpuset_init_early(void)
1671 top_cpuset
.mems_generation
= cpuset_mems_generation
++;
1677 * cpuset_init - initialize cpusets at system boot
1679 * Description: Initialize top_cpuset and the cpuset internal file system,
1682 int __init
cpuset_init(void)
1686 cpus_setall(top_cpuset
.cpus_allowed
);
1687 nodes_setall(top_cpuset
.mems_allowed
);
1689 fmeter_init(&top_cpuset
.fmeter
);
1690 top_cpuset
.mems_generation
= cpuset_mems_generation
++;
1691 set_bit(CS_SCHED_LOAD_BALANCE
, &top_cpuset
.flags
);
1692 top_cpuset
.relax_domain_level
= -1;
1694 err
= register_filesystem(&cpuset_fs_type
);
1698 number_of_cpusets
= 1;
1703 * cpuset_do_move_task - move a given task to another cpuset
1704 * @tsk: pointer to task_struct the task to move
1705 * @scan: struct cgroup_scanner contained in its struct cpuset_hotplug_scanner
1707 * Called by cgroup_scan_tasks() for each task in a cgroup.
1708 * Return nonzero to stop the walk through the tasks.
1710 void cpuset_do_move_task(struct task_struct
*tsk
, struct cgroup_scanner
*scan
)
1712 struct cpuset_hotplug_scanner
*chsp
;
1714 chsp
= container_of(scan
, struct cpuset_hotplug_scanner
, scan
);
1715 cgroup_attach_task(chsp
->to
, tsk
);
1719 * move_member_tasks_to_cpuset - move tasks from one cpuset to another
1720 * @from: cpuset in which the tasks currently reside
1721 * @to: cpuset to which the tasks will be moved
1723 * Called with cgroup_mutex held
1724 * callback_mutex must not be held, as cpuset_attach() will take it.
1726 * The cgroup_scan_tasks() function will scan all the tasks in a cgroup,
1727 * calling callback functions for each.
1729 static void move_member_tasks_to_cpuset(struct cpuset
*from
, struct cpuset
*to
)
1731 struct cpuset_hotplug_scanner scan
;
1733 scan
.scan
.cg
= from
->css
.cgroup
;
1734 scan
.scan
.test_task
= NULL
; /* select all tasks in cgroup */
1735 scan
.scan
.process_task
= cpuset_do_move_task
;
1736 scan
.scan
.heap
= NULL
;
1737 scan
.to
= to
->css
.cgroup
;
1739 if (cgroup_scan_tasks((struct cgroup_scanner
*)&scan
))
1740 printk(KERN_ERR
"move_member_tasks_to_cpuset: "
1741 "cgroup_scan_tasks failed\n");
1745 * If common_cpu_mem_hotplug_unplug(), below, unplugs any CPUs
1746 * or memory nodes, we need to walk over the cpuset hierarchy,
1747 * removing that CPU or node from all cpusets. If this removes the
1748 * last CPU or node from a cpuset, then move the tasks in the empty
1749 * cpuset to its next-highest non-empty parent.
1751 * Called with cgroup_mutex held
1752 * callback_mutex must not be held, as cpuset_attach() will take it.
1754 static void remove_tasks_in_empty_cpuset(struct cpuset
*cs
)
1756 struct cpuset
*parent
;
1759 * The cgroup's css_sets list is in use if there are tasks
1760 * in the cpuset; the list is empty if there are none;
1761 * the cs->css.refcnt seems always 0.
1763 if (list_empty(&cs
->css
.cgroup
->css_sets
))
1767 * Find its next-highest non-empty parent, (top cpuset
1768 * has online cpus, so can't be empty).
1770 parent
= cs
->parent
;
1771 while (cpus_empty(parent
->cpus_allowed
) ||
1772 nodes_empty(parent
->mems_allowed
))
1773 parent
= parent
->parent
;
1775 move_member_tasks_to_cpuset(cs
, parent
);
1779 * Walk the specified cpuset subtree and look for empty cpusets.
1780 * The tasks of such cpuset must be moved to a parent cpuset.
1782 * Called with cgroup_mutex held. We take callback_mutex to modify
1783 * cpus_allowed and mems_allowed.
1785 * This walk processes the tree from top to bottom, completing one layer
1786 * before dropping down to the next. It always processes a node before
1787 * any of its children.
1789 * For now, since we lack memory hot unplug, we'll never see a cpuset
1790 * that has tasks along with an empty 'mems'. But if we did see such
1791 * a cpuset, we'd handle it just like we do if its 'cpus' was empty.
1793 static void scan_for_empty_cpusets(const struct cpuset
*root
)
1795 struct cpuset
*cp
; /* scans cpusets being updated */
1796 struct cpuset
*child
; /* scans child cpusets of cp */
1797 struct list_head queue
;
1798 struct cgroup
*cont
;
1800 INIT_LIST_HEAD(&queue
);
1802 list_add_tail((struct list_head
*)&root
->stack_list
, &queue
);
1804 while (!list_empty(&queue
)) {
1805 cp
= container_of(queue
.next
, struct cpuset
, stack_list
);
1806 list_del(queue
.next
);
1807 list_for_each_entry(cont
, &cp
->css
.cgroup
->children
, sibling
) {
1808 child
= cgroup_cs(cont
);
1809 list_add_tail(&child
->stack_list
, &queue
);
1811 cont
= cp
->css
.cgroup
;
1813 /* Continue past cpusets with all cpus, mems online */
1814 if (cpus_subset(cp
->cpus_allowed
, cpu_online_map
) &&
1815 nodes_subset(cp
->mems_allowed
, node_states
[N_HIGH_MEMORY
]))
1818 /* Remove offline cpus and mems from this cpuset. */
1819 mutex_lock(&callback_mutex
);
1820 cpus_and(cp
->cpus_allowed
, cp
->cpus_allowed
, cpu_online_map
);
1821 nodes_and(cp
->mems_allowed
, cp
->mems_allowed
,
1822 node_states
[N_HIGH_MEMORY
]);
1823 mutex_unlock(&callback_mutex
);
1825 /* Move tasks from the empty cpuset to a parent */
1826 if (cpus_empty(cp
->cpus_allowed
) ||
1827 nodes_empty(cp
->mems_allowed
))
1828 remove_tasks_in_empty_cpuset(cp
);
1833 * The cpus_allowed and mems_allowed nodemasks in the top_cpuset track
1834 * cpu_online_map and node_states[N_HIGH_MEMORY]. Force the top cpuset to
1835 * track what's online after any CPU or memory node hotplug or unplug event.
1837 * Since there are two callers of this routine, one for CPU hotplug
1838 * events and one for memory node hotplug events, we could have coded
1839 * two separate routines here. We code it as a single common routine
1840 * in order to minimize text size.
1843 static void common_cpu_mem_hotplug_unplug(void)
1847 top_cpuset
.cpus_allowed
= cpu_online_map
;
1848 top_cpuset
.mems_allowed
= node_states
[N_HIGH_MEMORY
];
1849 scan_for_empty_cpusets(&top_cpuset
);
1855 * The top_cpuset tracks what CPUs and Memory Nodes are online,
1856 * period. This is necessary in order to make cpusets transparent
1857 * (of no affect) on systems that are actively using CPU hotplug
1858 * but making no active use of cpusets.
1860 * This routine ensures that top_cpuset.cpus_allowed tracks
1861 * cpu_online_map on each CPU hotplug (cpuhp) event.
1864 static int cpuset_handle_cpuhp(struct notifier_block
*unused_nb
,
1865 unsigned long phase
, void *unused_cpu
)
1867 if (phase
== CPU_DYING
|| phase
== CPU_DYING_FROZEN
)
1870 common_cpu_mem_hotplug_unplug();
1874 #ifdef CONFIG_MEMORY_HOTPLUG
1876 * Keep top_cpuset.mems_allowed tracking node_states[N_HIGH_MEMORY].
1877 * Call this routine anytime after you change
1878 * node_states[N_HIGH_MEMORY].
1879 * See also the previous routine cpuset_handle_cpuhp().
1882 void cpuset_track_online_nodes(void)
1884 common_cpu_mem_hotplug_unplug();
1889 * cpuset_init_smp - initialize cpus_allowed
1891 * Description: Finish top cpuset after cpu, node maps are initialized
1894 void __init
cpuset_init_smp(void)
1896 top_cpuset
.cpus_allowed
= cpu_online_map
;
1897 top_cpuset
.mems_allowed
= node_states
[N_HIGH_MEMORY
];
1899 hotcpu_notifier(cpuset_handle_cpuhp
, 0);
1904 * cpuset_cpus_allowed - return cpus_allowed mask from a tasks cpuset.
1905 * @tsk: pointer to task_struct from which to obtain cpuset->cpus_allowed.
1906 * @pmask: pointer to cpumask_t variable to receive cpus_allowed set.
1908 * Description: Returns the cpumask_t cpus_allowed of the cpuset
1909 * attached to the specified @tsk. Guaranteed to return some non-empty
1910 * subset of cpu_online_map, even if this means going outside the
1914 void cpuset_cpus_allowed(struct task_struct
*tsk
, cpumask_t
*pmask
)
1916 mutex_lock(&callback_mutex
);
1917 cpuset_cpus_allowed_locked(tsk
, pmask
);
1918 mutex_unlock(&callback_mutex
);
1922 * cpuset_cpus_allowed_locked - return cpus_allowed mask from a tasks cpuset.
1923 * Must be called with callback_mutex held.
1925 void cpuset_cpus_allowed_locked(struct task_struct
*tsk
, cpumask_t
*pmask
)
1928 guarantee_online_cpus(task_cs(tsk
), pmask
);
1932 void cpuset_init_current_mems_allowed(void)
1934 nodes_setall(current
->mems_allowed
);
1938 * cpuset_mems_allowed - return mems_allowed mask from a tasks cpuset.
1939 * @tsk: pointer to task_struct from which to obtain cpuset->mems_allowed.
1941 * Description: Returns the nodemask_t mems_allowed of the cpuset
1942 * attached to the specified @tsk. Guaranteed to return some non-empty
1943 * subset of node_states[N_HIGH_MEMORY], even if this means going outside the
1947 nodemask_t
cpuset_mems_allowed(struct task_struct
*tsk
)
1951 mutex_lock(&callback_mutex
);
1953 guarantee_online_mems(task_cs(tsk
), &mask
);
1955 mutex_unlock(&callback_mutex
);
1961 * cpuset_zonelist_valid_mems_allowed - check zonelist vs. curremt mems_allowed
1962 * @zl: the zonelist to be checked
1964 * Are any of the nodes on zonelist zl allowed in current->mems_allowed?
1966 int cpuset_zonelist_valid_mems_allowed(struct zonelist
*zl
)
1970 for (i
= 0; zl
->zones
[i
]; i
++) {
1971 int nid
= zone_to_nid(zl
->zones
[i
]);
1973 if (node_isset(nid
, current
->mems_allowed
))
1980 * nearest_exclusive_ancestor() - Returns the nearest mem_exclusive
1981 * ancestor to the specified cpuset. Call holding callback_mutex.
1982 * If no ancestor is mem_exclusive (an unusual configuration), then
1983 * returns the root cpuset.
1985 static const struct cpuset
*nearest_exclusive_ancestor(const struct cpuset
*cs
)
1987 while (!is_mem_exclusive(cs
) && cs
->parent
)
1993 * cpuset_zone_allowed_softwall - Can we allocate on zone z's memory node?
1994 * @z: is this zone on an allowed node?
1995 * @gfp_mask: memory allocation flags
1997 * If we're in interrupt, yes, we can always allocate. If
1998 * __GFP_THISNODE is set, yes, we can always allocate. If zone
1999 * z's node is in our tasks mems_allowed, yes. If it's not a
2000 * __GFP_HARDWALL request and this zone's nodes is in the nearest
2001 * mem_exclusive cpuset ancestor to this tasks cpuset, yes.
2002 * If the task has been OOM killed and has access to memory reserves
2003 * as specified by the TIF_MEMDIE flag, yes.
2006 * If __GFP_HARDWALL is set, cpuset_zone_allowed_softwall()
2007 * reduces to cpuset_zone_allowed_hardwall(). Otherwise,
2008 * cpuset_zone_allowed_softwall() might sleep, and might allow a zone
2009 * from an enclosing cpuset.
2011 * cpuset_zone_allowed_hardwall() only handles the simpler case of
2012 * hardwall cpusets, and never sleeps.
2014 * The __GFP_THISNODE placement logic is really handled elsewhere,
2015 * by forcibly using a zonelist starting at a specified node, and by
2016 * (in get_page_from_freelist()) refusing to consider the zones for
2017 * any node on the zonelist except the first. By the time any such
2018 * calls get to this routine, we should just shut up and say 'yes'.
2020 * GFP_USER allocations are marked with the __GFP_HARDWALL bit,
2021 * and do not allow allocations outside the current tasks cpuset
2022 * unless the task has been OOM killed as is marked TIF_MEMDIE.
2023 * GFP_KERNEL allocations are not so marked, so can escape to the
2024 * nearest enclosing mem_exclusive ancestor cpuset.
2026 * Scanning up parent cpusets requires callback_mutex. The
2027 * __alloc_pages() routine only calls here with __GFP_HARDWALL bit
2028 * _not_ set if it's a GFP_KERNEL allocation, and all nodes in the
2029 * current tasks mems_allowed came up empty on the first pass over
2030 * the zonelist. So only GFP_KERNEL allocations, if all nodes in the
2031 * cpuset are short of memory, might require taking the callback_mutex
2034 * The first call here from mm/page_alloc:get_page_from_freelist()
2035 * has __GFP_HARDWALL set in gfp_mask, enforcing hardwall cpusets,
2036 * so no allocation on a node outside the cpuset is allowed (unless
2037 * in interrupt, of course).
2039 * The second pass through get_page_from_freelist() doesn't even call
2040 * here for GFP_ATOMIC calls. For those calls, the __alloc_pages()
2041 * variable 'wait' is not set, and the bit ALLOC_CPUSET is not set
2042 * in alloc_flags. That logic and the checks below have the combined
2044 * in_interrupt - any node ok (current task context irrelevant)
2045 * GFP_ATOMIC - any node ok
2046 * TIF_MEMDIE - any node ok
2047 * GFP_KERNEL - any node in enclosing mem_exclusive cpuset ok
2048 * GFP_USER - only nodes in current tasks mems allowed ok.
2051 * Don't call cpuset_zone_allowed_softwall if you can't sleep, unless you
2052 * pass in the __GFP_HARDWALL flag set in gfp_flag, which disables
2053 * the code that might scan up ancestor cpusets and sleep.
2056 int __cpuset_zone_allowed_softwall(struct zone
*z
, gfp_t gfp_mask
)
2058 int node
; /* node that zone z is on */
2059 const struct cpuset
*cs
; /* current cpuset ancestors */
2060 int allowed
; /* is allocation in zone z allowed? */
2062 if (in_interrupt() || (gfp_mask
& __GFP_THISNODE
))
2064 node
= zone_to_nid(z
);
2065 might_sleep_if(!(gfp_mask
& __GFP_HARDWALL
));
2066 if (node_isset(node
, current
->mems_allowed
))
2069 * Allow tasks that have access to memory reserves because they have
2070 * been OOM killed to get memory anywhere.
2072 if (unlikely(test_thread_flag(TIF_MEMDIE
)))
2074 if (gfp_mask
& __GFP_HARDWALL
) /* If hardwall request, stop here */
2077 if (current
->flags
& PF_EXITING
) /* Let dying task have memory */
2080 /* Not hardwall and node outside mems_allowed: scan up cpusets */
2081 mutex_lock(&callback_mutex
);
2084 cs
= nearest_exclusive_ancestor(task_cs(current
));
2085 task_unlock(current
);
2087 allowed
= node_isset(node
, cs
->mems_allowed
);
2088 mutex_unlock(&callback_mutex
);
2093 * cpuset_zone_allowed_hardwall - Can we allocate on zone z's memory node?
2094 * @z: is this zone on an allowed node?
2095 * @gfp_mask: memory allocation flags
2097 * If we're in interrupt, yes, we can always allocate.
2098 * If __GFP_THISNODE is set, yes, we can always allocate. If zone
2099 * z's node is in our tasks mems_allowed, yes. If the task has been
2100 * OOM killed and has access to memory reserves as specified by the
2101 * TIF_MEMDIE flag, yes. Otherwise, no.
2103 * The __GFP_THISNODE placement logic is really handled elsewhere,
2104 * by forcibly using a zonelist starting at a specified node, and by
2105 * (in get_page_from_freelist()) refusing to consider the zones for
2106 * any node on the zonelist except the first. By the time any such
2107 * calls get to this routine, we should just shut up and say 'yes'.
2109 * Unlike the cpuset_zone_allowed_softwall() variant, above,
2110 * this variant requires that the zone be in the current tasks
2111 * mems_allowed or that we're in interrupt. It does not scan up the
2112 * cpuset hierarchy for the nearest enclosing mem_exclusive cpuset.
2116 int __cpuset_zone_allowed_hardwall(struct zone
*z
, gfp_t gfp_mask
)
2118 int node
; /* node that zone z is on */
2120 if (in_interrupt() || (gfp_mask
& __GFP_THISNODE
))
2122 node
= zone_to_nid(z
);
2123 if (node_isset(node
, current
->mems_allowed
))
2126 * Allow tasks that have access to memory reserves because they have
2127 * been OOM killed to get memory anywhere.
2129 if (unlikely(test_thread_flag(TIF_MEMDIE
)))
2135 * cpuset_lock - lock out any changes to cpuset structures
2137 * The out of memory (oom) code needs to mutex_lock cpusets
2138 * from being changed while it scans the tasklist looking for a
2139 * task in an overlapping cpuset. Expose callback_mutex via this
2140 * cpuset_lock() routine, so the oom code can lock it, before
2141 * locking the task list. The tasklist_lock is a spinlock, so
2142 * must be taken inside callback_mutex.
2145 void cpuset_lock(void)
2147 mutex_lock(&callback_mutex
);
2151 * cpuset_unlock - release lock on cpuset changes
2153 * Undo the lock taken in a previous cpuset_lock() call.
2156 void cpuset_unlock(void)
2158 mutex_unlock(&callback_mutex
);
2162 * cpuset_mem_spread_node() - On which node to begin search for a page
2164 * If a task is marked PF_SPREAD_PAGE or PF_SPREAD_SLAB (as for
2165 * tasks in a cpuset with is_spread_page or is_spread_slab set),
2166 * and if the memory allocation used cpuset_mem_spread_node()
2167 * to determine on which node to start looking, as it will for
2168 * certain page cache or slab cache pages such as used for file
2169 * system buffers and inode caches, then instead of starting on the
2170 * local node to look for a free page, rather spread the starting
2171 * node around the tasks mems_allowed nodes.
2173 * We don't have to worry about the returned node being offline
2174 * because "it can't happen", and even if it did, it would be ok.
2176 * The routines calling guarantee_online_mems() are careful to
2177 * only set nodes in task->mems_allowed that are online. So it
2178 * should not be possible for the following code to return an
2179 * offline node. But if it did, that would be ok, as this routine
2180 * is not returning the node where the allocation must be, only
2181 * the node where the search should start. The zonelist passed to
2182 * __alloc_pages() will include all nodes. If the slab allocator
2183 * is passed an offline node, it will fall back to the local node.
2184 * See kmem_cache_alloc_node().
2187 int cpuset_mem_spread_node(void)
2191 node
= next_node(current
->cpuset_mem_spread_rotor
, current
->mems_allowed
);
2192 if (node
== MAX_NUMNODES
)
2193 node
= first_node(current
->mems_allowed
);
2194 current
->cpuset_mem_spread_rotor
= node
;
2197 EXPORT_SYMBOL_GPL(cpuset_mem_spread_node
);
2200 * cpuset_mems_allowed_intersects - Does @tsk1's mems_allowed intersect @tsk2's?
2201 * @tsk1: pointer to task_struct of some task.
2202 * @tsk2: pointer to task_struct of some other task.
2204 * Description: Return true if @tsk1's mems_allowed intersects the
2205 * mems_allowed of @tsk2. Used by the OOM killer to determine if
2206 * one of the task's memory usage might impact the memory available
2210 int cpuset_mems_allowed_intersects(const struct task_struct
*tsk1
,
2211 const struct task_struct
*tsk2
)
2213 return nodes_intersects(tsk1
->mems_allowed
, tsk2
->mems_allowed
);
2217 * Collection of memory_pressure is suppressed unless
2218 * this flag is enabled by writing "1" to the special
2219 * cpuset file 'memory_pressure_enabled' in the root cpuset.
2222 int cpuset_memory_pressure_enabled __read_mostly
;
2225 * cpuset_memory_pressure_bump - keep stats of per-cpuset reclaims.
2227 * Keep a running average of the rate of synchronous (direct)
2228 * page reclaim efforts initiated by tasks in each cpuset.
2230 * This represents the rate at which some task in the cpuset
2231 * ran low on memory on all nodes it was allowed to use, and
2232 * had to enter the kernels page reclaim code in an effort to
2233 * create more free memory by tossing clean pages or swapping
2234 * or writing dirty pages.
2236 * Display to user space in the per-cpuset read-only file
2237 * "memory_pressure". Value displayed is an integer
2238 * representing the recent rate of entry into the synchronous
2239 * (direct) page reclaim by any task attached to the cpuset.
2242 void __cpuset_memory_pressure_bump(void)
2245 fmeter_markevent(&task_cs(current
)->fmeter
);
2246 task_unlock(current
);
2249 #ifdef CONFIG_PROC_PID_CPUSET
2251 * proc_cpuset_show()
2252 * - Print tasks cpuset path into seq_file.
2253 * - Used for /proc/<pid>/cpuset.
2254 * - No need to task_lock(tsk) on this tsk->cpuset reference, as it
2255 * doesn't really matter if tsk->cpuset changes after we read it,
2256 * and we take cgroup_mutex, keeping cpuset_attach() from changing it
2259 static int proc_cpuset_show(struct seq_file
*m
, void *unused_v
)
2262 struct task_struct
*tsk
;
2264 struct cgroup_subsys_state
*css
;
2268 buf
= kmalloc(PAGE_SIZE
, GFP_KERNEL
);
2274 tsk
= get_pid_task(pid
, PIDTYPE_PID
);
2280 css
= task_subsys_state(tsk
, cpuset_subsys_id
);
2281 retval
= cgroup_path(css
->cgroup
, buf
, PAGE_SIZE
);
2288 put_task_struct(tsk
);
2295 static int cpuset_open(struct inode
*inode
, struct file
*file
)
2297 struct pid
*pid
= PROC_I(inode
)->pid
;
2298 return single_open(file
, proc_cpuset_show
, pid
);
2301 const struct file_operations proc_cpuset_operations
= {
2302 .open
= cpuset_open
,
2304 .llseek
= seq_lseek
,
2305 .release
= single_release
,
2307 #endif /* CONFIG_PROC_PID_CPUSET */
2309 /* Display task cpus_allowed, mems_allowed in /proc/<pid>/status file. */
2310 void cpuset_task_status_allowed(struct seq_file
*m
, struct task_struct
*task
)
2312 seq_printf(m
, "Cpus_allowed:\t");
2313 m
->count
+= cpumask_scnprintf(m
->buf
+ m
->count
, m
->size
- m
->count
,
2314 task
->cpus_allowed
);
2315 seq_printf(m
, "\n");
2316 seq_printf(m
, "Cpus_allowed_list:\t");
2317 m
->count
+= cpulist_scnprintf(m
->buf
+ m
->count
, m
->size
- m
->count
,
2318 task
->cpus_allowed
);
2319 seq_printf(m
, "\n");
2320 seq_printf(m
, "Mems_allowed:\t");
2321 m
->count
+= nodemask_scnprintf(m
->buf
+ m
->count
, m
->size
- m
->count
,
2322 task
->mems_allowed
);
2323 seq_printf(m
, "\n");
2324 seq_printf(m
, "Mems_allowed_list:\t");
2325 m
->count
+= nodelist_scnprintf(m
->buf
+ m
->count
, m
->size
- m
->count
,
2326 task
->mems_allowed
);
2327 seq_printf(m
, "\n");