ACPI: Create "idle=halt" bootparam
[linux-2.6/mini2440.git] / drivers / acpi / processor_idle.c
blobc75c7ace8c1322c767a71e6e096ae3e4302ac694
1 /*
2 * processor_idle - idle state submodule to the ACPI processor driver
4 * Copyright (C) 2001, 2002 Andy Grover <andrew.grover@intel.com>
5 * Copyright (C) 2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com>
6 * Copyright (C) 2004, 2005 Dominik Brodowski <linux@brodo.de>
7 * Copyright (C) 2004 Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>
8 * - Added processor hotplug support
9 * Copyright (C) 2005 Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>
10 * - Added support for C3 on SMP
12 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
14 * This program is free software; you can redistribute it and/or modify
15 * it under the terms of the GNU General Public License as published by
16 * the Free Software Foundation; either version 2 of the License, or (at
17 * your option) any later version.
19 * This program is distributed in the hope that it will be useful, but
20 * WITHOUT ANY WARRANTY; without even the implied warranty of
21 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
22 * General Public License for more details.
24 * You should have received a copy of the GNU General Public License along
25 * with this program; if not, write to the Free Software Foundation, Inc.,
26 * 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA.
28 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
31 #include <linux/kernel.h>
32 #include <linux/module.h>
33 #include <linux/init.h>
34 #include <linux/cpufreq.h>
35 #include <linux/proc_fs.h>
36 #include <linux/seq_file.h>
37 #include <linux/acpi.h>
38 #include <linux/dmi.h>
39 #include <linux/moduleparam.h>
40 #include <linux/sched.h> /* need_resched() */
41 #include <linux/pm_qos_params.h>
42 #include <linux/clockchips.h>
43 #include <linux/cpuidle.h>
44 #include <linux/cpuidle.h>
47 * Include the apic definitions for x86 to have the APIC timer related defines
48 * available also for UP (on SMP it gets magically included via linux/smp.h).
49 * asm/acpi.h is not an option, as it would require more include magic. Also
50 * creating an empty asm-ia64/apic.h would just trade pest vs. cholera.
52 #ifdef CONFIG_X86
53 #include <asm/apic.h>
54 #endif
56 #include <asm/io.h>
57 #include <asm/uaccess.h>
59 #include <acpi/acpi_bus.h>
60 #include <acpi/processor.h>
61 #include <asm/processor.h>
63 #define ACPI_PROCESSOR_COMPONENT 0x01000000
64 #define ACPI_PROCESSOR_CLASS "processor"
65 #define _COMPONENT ACPI_PROCESSOR_COMPONENT
66 ACPI_MODULE_NAME("processor_idle");
67 #define ACPI_PROCESSOR_FILE_POWER "power"
68 #define US_TO_PM_TIMER_TICKS(t) ((t * (PM_TIMER_FREQUENCY/1000)) / 1000)
69 #define PM_TIMER_TICK_NS (1000000000ULL/PM_TIMER_FREQUENCY)
70 #ifndef CONFIG_CPU_IDLE
71 #define C2_OVERHEAD 4 /* 1us (3.579 ticks per us) */
72 #define C3_OVERHEAD 4 /* 1us (3.579 ticks per us) */
73 static void (*pm_idle_save) (void) __read_mostly;
74 #else
75 #define C2_OVERHEAD 1 /* 1us */
76 #define C3_OVERHEAD 1 /* 1us */
77 #endif
78 #define PM_TIMER_TICKS_TO_US(p) (((p) * 1000)/(PM_TIMER_FREQUENCY/1000))
80 static unsigned int max_cstate __read_mostly = ACPI_PROCESSOR_MAX_POWER;
81 #ifdef CONFIG_CPU_IDLE
82 module_param(max_cstate, uint, 0000);
83 #else
84 module_param(max_cstate, uint, 0644);
85 #endif
86 static unsigned int nocst __read_mostly;
87 module_param(nocst, uint, 0000);
89 #ifndef CONFIG_CPU_IDLE
91 * bm_history -- bit-mask with a bit per jiffy of bus-master activity
92 * 1000 HZ: 0xFFFFFFFF: 32 jiffies = 32ms
93 * 800 HZ: 0xFFFFFFFF: 32 jiffies = 40ms
94 * 100 HZ: 0x0000000F: 4 jiffies = 40ms
95 * reduce history for more aggressive entry into C3
97 static unsigned int bm_history __read_mostly =
98 (HZ >= 800 ? 0xFFFFFFFF : ((1U << (HZ / 25)) - 1));
99 module_param(bm_history, uint, 0644);
101 static int acpi_processor_set_power_policy(struct acpi_processor *pr);
103 #else /* CONFIG_CPU_IDLE */
104 static unsigned int latency_factor __read_mostly = 2;
105 module_param(latency_factor, uint, 0644);
106 #endif
109 * IBM ThinkPad R40e crashes mysteriously when going into C2 or C3.
110 * For now disable this. Probably a bug somewhere else.
112 * To skip this limit, boot/load with a large max_cstate limit.
114 static int set_max_cstate(const struct dmi_system_id *id)
116 if (max_cstate > ACPI_PROCESSOR_MAX_POWER)
117 return 0;
119 printk(KERN_NOTICE PREFIX "%s detected - limiting to C%ld max_cstate."
120 " Override with \"processor.max_cstate=%d\"\n", id->ident,
121 (long)id->driver_data, ACPI_PROCESSOR_MAX_POWER + 1);
123 max_cstate = (long)id->driver_data;
125 return 0;
128 /* Actually this shouldn't be __cpuinitdata, would be better to fix the
129 callers to only run once -AK */
130 static struct dmi_system_id __cpuinitdata processor_power_dmi_table[] = {
131 { set_max_cstate, "IBM ThinkPad R40e", {
132 DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
133 DMI_MATCH(DMI_BIOS_VERSION,"1SET70WW")}, (void *)1},
134 { set_max_cstate, "IBM ThinkPad R40e", {
135 DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
136 DMI_MATCH(DMI_BIOS_VERSION,"1SET60WW")}, (void *)1},
137 { set_max_cstate, "IBM ThinkPad R40e", {
138 DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
139 DMI_MATCH(DMI_BIOS_VERSION,"1SET43WW") }, (void*)1},
140 { set_max_cstate, "IBM ThinkPad R40e", {
141 DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
142 DMI_MATCH(DMI_BIOS_VERSION,"1SET45WW") }, (void*)1},
143 { set_max_cstate, "IBM ThinkPad R40e", {
144 DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
145 DMI_MATCH(DMI_BIOS_VERSION,"1SET47WW") }, (void*)1},
146 { set_max_cstate, "IBM ThinkPad R40e", {
147 DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
148 DMI_MATCH(DMI_BIOS_VERSION,"1SET50WW") }, (void*)1},
149 { set_max_cstate, "IBM ThinkPad R40e", {
150 DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
151 DMI_MATCH(DMI_BIOS_VERSION,"1SET52WW") }, (void*)1},
152 { set_max_cstate, "IBM ThinkPad R40e", {
153 DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
154 DMI_MATCH(DMI_BIOS_VERSION,"1SET55WW") }, (void*)1},
155 { set_max_cstate, "IBM ThinkPad R40e", {
156 DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
157 DMI_MATCH(DMI_BIOS_VERSION,"1SET56WW") }, (void*)1},
158 { set_max_cstate, "IBM ThinkPad R40e", {
159 DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
160 DMI_MATCH(DMI_BIOS_VERSION,"1SET59WW") }, (void*)1},
161 { set_max_cstate, "IBM ThinkPad R40e", {
162 DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
163 DMI_MATCH(DMI_BIOS_VERSION,"1SET60WW") }, (void*)1},
164 { set_max_cstate, "IBM ThinkPad R40e", {
165 DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
166 DMI_MATCH(DMI_BIOS_VERSION,"1SET61WW") }, (void*)1},
167 { set_max_cstate, "IBM ThinkPad R40e", {
168 DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
169 DMI_MATCH(DMI_BIOS_VERSION,"1SET62WW") }, (void*)1},
170 { set_max_cstate, "IBM ThinkPad R40e", {
171 DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
172 DMI_MATCH(DMI_BIOS_VERSION,"1SET64WW") }, (void*)1},
173 { set_max_cstate, "IBM ThinkPad R40e", {
174 DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
175 DMI_MATCH(DMI_BIOS_VERSION,"1SET65WW") }, (void*)1},
176 { set_max_cstate, "IBM ThinkPad R40e", {
177 DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
178 DMI_MATCH(DMI_BIOS_VERSION,"1SET68WW") }, (void*)1},
179 { set_max_cstate, "Medion 41700", {
180 DMI_MATCH(DMI_BIOS_VENDOR,"Phoenix Technologies LTD"),
181 DMI_MATCH(DMI_BIOS_VERSION,"R01-A1J")}, (void *)1},
182 { set_max_cstate, "Clevo 5600D", {
183 DMI_MATCH(DMI_BIOS_VENDOR,"Phoenix Technologies LTD"),
184 DMI_MATCH(DMI_BIOS_VERSION,"SHE845M0.86C.0013.D.0302131307")},
185 (void *)2},
189 static inline u32 ticks_elapsed(u32 t1, u32 t2)
191 if (t2 >= t1)
192 return (t2 - t1);
193 else if (!(acpi_gbl_FADT.flags & ACPI_FADT_32BIT_TIMER))
194 return (((0x00FFFFFF - t1) + t2) & 0x00FFFFFF);
195 else
196 return ((0xFFFFFFFF - t1) + t2);
199 static inline u32 ticks_elapsed_in_us(u32 t1, u32 t2)
201 if (t2 >= t1)
202 return PM_TIMER_TICKS_TO_US(t2 - t1);
203 else if (!(acpi_gbl_FADT.flags & ACPI_FADT_32BIT_TIMER))
204 return PM_TIMER_TICKS_TO_US(((0x00FFFFFF - t1) + t2) & 0x00FFFFFF);
205 else
206 return PM_TIMER_TICKS_TO_US((0xFFFFFFFF - t1) + t2);
210 * Callers should disable interrupts before the call and enable
211 * interrupts after return.
213 static void acpi_safe_halt(void)
215 current_thread_info()->status &= ~TS_POLLING;
217 * TS_POLLING-cleared state must be visible before we
218 * test NEED_RESCHED:
220 smp_mb();
221 if (!need_resched()) {
222 safe_halt();
223 local_irq_disable();
225 current_thread_info()->status |= TS_POLLING;
228 #ifndef CONFIG_CPU_IDLE
230 static void
231 acpi_processor_power_activate(struct acpi_processor *pr,
232 struct acpi_processor_cx *new)
234 struct acpi_processor_cx *old;
236 if (!pr || !new)
237 return;
239 old = pr->power.state;
241 if (old)
242 old->promotion.count = 0;
243 new->demotion.count = 0;
245 /* Cleanup from old state. */
246 if (old) {
247 switch (old->type) {
248 case ACPI_STATE_C3:
249 /* Disable bus master reload */
250 if (new->type != ACPI_STATE_C3 && pr->flags.bm_check)
251 acpi_set_register(ACPI_BITREG_BUS_MASTER_RLD, 0);
252 break;
256 /* Prepare to use new state. */
257 switch (new->type) {
258 case ACPI_STATE_C3:
259 /* Enable bus master reload */
260 if (old->type != ACPI_STATE_C3 && pr->flags.bm_check)
261 acpi_set_register(ACPI_BITREG_BUS_MASTER_RLD, 1);
262 break;
265 pr->power.state = new;
267 return;
270 static atomic_t c3_cpu_count;
272 /* Common C-state entry for C2, C3, .. */
273 static void acpi_cstate_enter(struct acpi_processor_cx *cstate)
275 if (cstate->entry_method == ACPI_CSTATE_FFH) {
276 /* Call into architectural FFH based C-state */
277 acpi_processor_ffh_cstate_enter(cstate);
278 } else {
279 int unused;
280 /* IO port based C-state */
281 inb(cstate->address);
282 /* Dummy wait op - must do something useless after P_LVL2 read
283 because chipsets cannot guarantee that STPCLK# signal
284 gets asserted in time to freeze execution properly. */
285 unused = inl(acpi_gbl_FADT.xpm_timer_block.address);
288 #endif /* !CONFIG_CPU_IDLE */
290 #ifdef ARCH_APICTIMER_STOPS_ON_C3
293 * Some BIOS implementations switch to C3 in the published C2 state.
294 * This seems to be a common problem on AMD boxen, but other vendors
295 * are affected too. We pick the most conservative approach: we assume
296 * that the local APIC stops in both C2 and C3.
298 static void acpi_timer_check_state(int state, struct acpi_processor *pr,
299 struct acpi_processor_cx *cx)
301 struct acpi_processor_power *pwr = &pr->power;
302 u8 type = local_apic_timer_c2_ok ? ACPI_STATE_C3 : ACPI_STATE_C2;
305 * Check, if one of the previous states already marked the lapic
306 * unstable
308 if (pwr->timer_broadcast_on_state < state)
309 return;
311 if (cx->type >= type)
312 pr->power.timer_broadcast_on_state = state;
315 static void acpi_propagate_timer_broadcast(struct acpi_processor *pr)
317 unsigned long reason;
319 reason = pr->power.timer_broadcast_on_state < INT_MAX ?
320 CLOCK_EVT_NOTIFY_BROADCAST_ON : CLOCK_EVT_NOTIFY_BROADCAST_OFF;
322 clockevents_notify(reason, &pr->id);
325 /* Power(C) State timer broadcast control */
326 static void acpi_state_timer_broadcast(struct acpi_processor *pr,
327 struct acpi_processor_cx *cx,
328 int broadcast)
330 int state = cx - pr->power.states;
332 if (state >= pr->power.timer_broadcast_on_state) {
333 unsigned long reason;
335 reason = broadcast ? CLOCK_EVT_NOTIFY_BROADCAST_ENTER :
336 CLOCK_EVT_NOTIFY_BROADCAST_EXIT;
337 clockevents_notify(reason, &pr->id);
341 #else
343 static void acpi_timer_check_state(int state, struct acpi_processor *pr,
344 struct acpi_processor_cx *cstate) { }
345 static void acpi_propagate_timer_broadcast(struct acpi_processor *pr) { }
346 static void acpi_state_timer_broadcast(struct acpi_processor *pr,
347 struct acpi_processor_cx *cx,
348 int broadcast)
352 #endif
355 * Suspend / resume control
357 static int acpi_idle_suspend;
359 int acpi_processor_suspend(struct acpi_device * device, pm_message_t state)
361 acpi_idle_suspend = 1;
362 return 0;
365 int acpi_processor_resume(struct acpi_device * device)
367 acpi_idle_suspend = 0;
368 return 0;
371 #if defined (CONFIG_GENERIC_TIME) && defined (CONFIG_X86)
372 static int tsc_halts_in_c(int state)
374 switch (boot_cpu_data.x86_vendor) {
375 case X86_VENDOR_AMD:
377 * AMD Fam10h TSC will tick in all
378 * C/P/S0/S1 states when this bit is set.
380 if (boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
381 return 0;
382 /*FALL THROUGH*/
383 case X86_VENDOR_INTEL:
384 /* Several cases known where TSC halts in C2 too */
385 default:
386 return state > ACPI_STATE_C1;
389 #endif
391 #ifndef CONFIG_CPU_IDLE
392 static void acpi_processor_idle(void)
394 struct acpi_processor *pr = NULL;
395 struct acpi_processor_cx *cx = NULL;
396 struct acpi_processor_cx *next_state = NULL;
397 int sleep_ticks = 0;
398 u32 t1, t2 = 0;
401 * Interrupts must be disabled during bus mastering calculations and
402 * for C2/C3 transitions.
404 local_irq_disable();
406 pr = __get_cpu_var(processors);
407 if (!pr) {
408 local_irq_enable();
409 return;
413 * Check whether we truly need to go idle, or should
414 * reschedule:
416 if (unlikely(need_resched())) {
417 local_irq_enable();
418 return;
421 cx = pr->power.state;
422 if (!cx || acpi_idle_suspend) {
423 if (pm_idle_save) {
424 pm_idle_save(); /* enables IRQs */
425 } else {
426 acpi_safe_halt();
427 local_irq_enable();
430 return;
434 * Check BM Activity
435 * -----------------
436 * Check for bus mastering activity (if required), record, and check
437 * for demotion.
439 if (pr->flags.bm_check) {
440 u32 bm_status = 0;
441 unsigned long diff = jiffies - pr->power.bm_check_timestamp;
443 if (diff > 31)
444 diff = 31;
446 pr->power.bm_activity <<= diff;
448 acpi_get_register(ACPI_BITREG_BUS_MASTER_STATUS, &bm_status);
449 if (bm_status) {
450 pr->power.bm_activity |= 0x1;
451 acpi_set_register(ACPI_BITREG_BUS_MASTER_STATUS, 1);
454 * PIIX4 Erratum #18: Note that BM_STS doesn't always reflect
455 * the true state of bus mastering activity; forcing us to
456 * manually check the BMIDEA bit of each IDE channel.
458 else if (errata.piix4.bmisx) {
459 if ((inb_p(errata.piix4.bmisx + 0x02) & 0x01)
460 || (inb_p(errata.piix4.bmisx + 0x0A) & 0x01))
461 pr->power.bm_activity |= 0x1;
464 pr->power.bm_check_timestamp = jiffies;
467 * If bus mastering is or was active this jiffy, demote
468 * to avoid a faulty transition. Note that the processor
469 * won't enter a low-power state during this call (to this
470 * function) but should upon the next.
472 * TBD: A better policy might be to fallback to the demotion
473 * state (use it for this quantum only) istead of
474 * demoting -- and rely on duration as our sole demotion
475 * qualification. This may, however, introduce DMA
476 * issues (e.g. floppy DMA transfer overrun/underrun).
478 if ((pr->power.bm_activity & 0x1) &&
479 cx->demotion.threshold.bm) {
480 local_irq_enable();
481 next_state = cx->demotion.state;
482 goto end;
486 #ifdef CONFIG_HOTPLUG_CPU
488 * Check for P_LVL2_UP flag before entering C2 and above on
489 * an SMP system. We do it here instead of doing it at _CST/P_LVL
490 * detection phase, to work cleanly with logical CPU hotplug.
492 if ((cx->type != ACPI_STATE_C1) && (num_online_cpus() > 1) &&
493 !pr->flags.has_cst && !(acpi_gbl_FADT.flags & ACPI_FADT_C2_MP_SUPPORTED))
494 cx = &pr->power.states[ACPI_STATE_C1];
495 #endif
498 * Sleep:
499 * ------
500 * Invoke the current Cx state to put the processor to sleep.
502 if (cx->type == ACPI_STATE_C2 || cx->type == ACPI_STATE_C3) {
503 current_thread_info()->status &= ~TS_POLLING;
505 * TS_POLLING-cleared state must be visible before we
506 * test NEED_RESCHED:
508 smp_mb();
509 if (need_resched()) {
510 current_thread_info()->status |= TS_POLLING;
511 local_irq_enable();
512 return;
516 switch (cx->type) {
518 case ACPI_STATE_C1:
520 * Invoke C1.
521 * Use the appropriate idle routine, the one that would
522 * be used without acpi C-states.
524 if (pm_idle_save) {
525 pm_idle_save(); /* enables IRQs */
526 } else {
527 acpi_safe_halt();
528 local_irq_enable();
532 * TBD: Can't get time duration while in C1, as resumes
533 * go to an ISR rather than here. Need to instrument
534 * base interrupt handler.
536 * Note: the TSC better not stop in C1, sched_clock() will
537 * skew otherwise.
539 sleep_ticks = 0xFFFFFFFF;
541 break;
543 case ACPI_STATE_C2:
544 /* Get start time (ticks) */
545 t1 = inl(acpi_gbl_FADT.xpm_timer_block.address);
546 /* Tell the scheduler that we are going deep-idle: */
547 sched_clock_idle_sleep_event();
548 /* Invoke C2 */
549 acpi_state_timer_broadcast(pr, cx, 1);
550 acpi_cstate_enter(cx);
551 /* Get end time (ticks) */
552 t2 = inl(acpi_gbl_FADT.xpm_timer_block.address);
554 #if defined (CONFIG_GENERIC_TIME) && defined (CONFIG_X86)
555 /* TSC halts in C2, so notify users */
556 if (tsc_halts_in_c(ACPI_STATE_C2))
557 mark_tsc_unstable("possible TSC halt in C2");
558 #endif
559 /* Compute time (ticks) that we were actually asleep */
560 sleep_ticks = ticks_elapsed(t1, t2);
562 /* Tell the scheduler how much we idled: */
563 sched_clock_idle_wakeup_event(sleep_ticks*PM_TIMER_TICK_NS);
565 /* Re-enable interrupts */
566 local_irq_enable();
567 /* Do not account our idle-switching overhead: */
568 sleep_ticks -= cx->latency_ticks + C2_OVERHEAD;
570 current_thread_info()->status |= TS_POLLING;
571 acpi_state_timer_broadcast(pr, cx, 0);
572 break;
574 case ACPI_STATE_C3:
575 acpi_unlazy_tlb(smp_processor_id());
577 * Must be done before busmaster disable as we might
578 * need to access HPET !
580 acpi_state_timer_broadcast(pr, cx, 1);
582 * disable bus master
583 * bm_check implies we need ARB_DIS
584 * !bm_check implies we need cache flush
585 * bm_control implies whether we can do ARB_DIS
587 * That leaves a case where bm_check is set and bm_control is
588 * not set. In that case we cannot do much, we enter C3
589 * without doing anything.
591 if (pr->flags.bm_check && pr->flags.bm_control) {
592 if (atomic_inc_return(&c3_cpu_count) ==
593 num_online_cpus()) {
595 * All CPUs are trying to go to C3
596 * Disable bus master arbitration
598 acpi_set_register(ACPI_BITREG_ARB_DISABLE, 1);
600 } else if (!pr->flags.bm_check) {
601 /* SMP with no shared cache... Invalidate cache */
602 ACPI_FLUSH_CPU_CACHE();
605 /* Get start time (ticks) */
606 t1 = inl(acpi_gbl_FADT.xpm_timer_block.address);
607 /* Invoke C3 */
608 /* Tell the scheduler that we are going deep-idle: */
609 sched_clock_idle_sleep_event();
610 acpi_cstate_enter(cx);
611 /* Get end time (ticks) */
612 t2 = inl(acpi_gbl_FADT.xpm_timer_block.address);
613 if (pr->flags.bm_check && pr->flags.bm_control) {
614 /* Enable bus master arbitration */
615 atomic_dec(&c3_cpu_count);
616 acpi_set_register(ACPI_BITREG_ARB_DISABLE, 0);
619 #if defined (CONFIG_GENERIC_TIME) && defined (CONFIG_X86)
620 /* TSC halts in C3, so notify users */
621 if (tsc_halts_in_c(ACPI_STATE_C3))
622 mark_tsc_unstable("TSC halts in C3");
623 #endif
624 /* Compute time (ticks) that we were actually asleep */
625 sleep_ticks = ticks_elapsed(t1, t2);
626 /* Tell the scheduler how much we idled: */
627 sched_clock_idle_wakeup_event(sleep_ticks*PM_TIMER_TICK_NS);
629 /* Re-enable interrupts */
630 local_irq_enable();
631 /* Do not account our idle-switching overhead: */
632 sleep_ticks -= cx->latency_ticks + C3_OVERHEAD;
634 current_thread_info()->status |= TS_POLLING;
635 acpi_state_timer_broadcast(pr, cx, 0);
636 break;
638 default:
639 local_irq_enable();
640 return;
642 cx->usage++;
643 if ((cx->type != ACPI_STATE_C1) && (sleep_ticks > 0))
644 cx->time += sleep_ticks;
646 next_state = pr->power.state;
648 #ifdef CONFIG_HOTPLUG_CPU
649 /* Don't do promotion/demotion */
650 if ((cx->type == ACPI_STATE_C1) && (num_online_cpus() > 1) &&
651 !pr->flags.has_cst && !(acpi_gbl_FADT.flags & ACPI_FADT_C2_MP_SUPPORTED)) {
652 next_state = cx;
653 goto end;
655 #endif
658 * Promotion?
659 * ----------
660 * Track the number of longs (time asleep is greater than threshold)
661 * and promote when the count threshold is reached. Note that bus
662 * mastering activity may prevent promotions.
663 * Do not promote above max_cstate.
665 if (cx->promotion.state &&
666 ((cx->promotion.state - pr->power.states) <= max_cstate)) {
667 if (sleep_ticks > cx->promotion.threshold.ticks &&
668 cx->promotion.state->latency <=
669 pm_qos_requirement(PM_QOS_CPU_DMA_LATENCY)) {
670 cx->promotion.count++;
671 cx->demotion.count = 0;
672 if (cx->promotion.count >=
673 cx->promotion.threshold.count) {
674 if (pr->flags.bm_check) {
675 if (!
676 (pr->power.bm_activity & cx->
677 promotion.threshold.bm)) {
678 next_state =
679 cx->promotion.state;
680 goto end;
682 } else {
683 next_state = cx->promotion.state;
684 goto end;
691 * Demotion?
692 * ---------
693 * Track the number of shorts (time asleep is less than time threshold)
694 * and demote when the usage threshold is reached.
696 if (cx->demotion.state) {
697 if (sleep_ticks < cx->demotion.threshold.ticks) {
698 cx->demotion.count++;
699 cx->promotion.count = 0;
700 if (cx->demotion.count >= cx->demotion.threshold.count) {
701 next_state = cx->demotion.state;
702 goto end;
707 end:
709 * Demote if current state exceeds max_cstate
710 * or if the latency of the current state is unacceptable
712 if ((pr->power.state - pr->power.states) > max_cstate ||
713 pr->power.state->latency >
714 pm_qos_requirement(PM_QOS_CPU_DMA_LATENCY)) {
715 if (cx->demotion.state)
716 next_state = cx->demotion.state;
720 * New Cx State?
721 * -------------
722 * If we're going to start using a new Cx state we must clean up
723 * from the previous and prepare to use the new.
725 if (next_state != pr->power.state)
726 acpi_processor_power_activate(pr, next_state);
729 static int acpi_processor_set_power_policy(struct acpi_processor *pr)
731 unsigned int i;
732 unsigned int state_is_set = 0;
733 struct acpi_processor_cx *lower = NULL;
734 struct acpi_processor_cx *higher = NULL;
735 struct acpi_processor_cx *cx;
738 if (!pr)
739 return -EINVAL;
742 * This function sets the default Cx state policy (OS idle handler).
743 * Our scheme is to promote quickly to C2 but more conservatively
744 * to C3. We're favoring C2 for its characteristics of low latency
745 * (quick response), good power savings, and ability to allow bus
746 * mastering activity. Note that the Cx state policy is completely
747 * customizable and can be altered dynamically.
750 /* startup state */
751 for (i = 1; i < ACPI_PROCESSOR_MAX_POWER; i++) {
752 cx = &pr->power.states[i];
753 if (!cx->valid)
754 continue;
756 if (!state_is_set)
757 pr->power.state = cx;
758 state_is_set++;
759 break;
762 if (!state_is_set)
763 return -ENODEV;
765 /* demotion */
766 for (i = 1; i < ACPI_PROCESSOR_MAX_POWER; i++) {
767 cx = &pr->power.states[i];
768 if (!cx->valid)
769 continue;
771 if (lower) {
772 cx->demotion.state = lower;
773 cx->demotion.threshold.ticks = cx->latency_ticks;
774 cx->demotion.threshold.count = 1;
775 if (cx->type == ACPI_STATE_C3)
776 cx->demotion.threshold.bm = bm_history;
779 lower = cx;
782 /* promotion */
783 for (i = (ACPI_PROCESSOR_MAX_POWER - 1); i > 0; i--) {
784 cx = &pr->power.states[i];
785 if (!cx->valid)
786 continue;
788 if (higher) {
789 cx->promotion.state = higher;
790 cx->promotion.threshold.ticks = cx->latency_ticks;
791 if (cx->type >= ACPI_STATE_C2)
792 cx->promotion.threshold.count = 4;
793 else
794 cx->promotion.threshold.count = 10;
795 if (higher->type == ACPI_STATE_C3)
796 cx->promotion.threshold.bm = bm_history;
799 higher = cx;
802 return 0;
804 #endif /* !CONFIG_CPU_IDLE */
806 static int acpi_processor_get_power_info_fadt(struct acpi_processor *pr)
809 if (!pr)
810 return -EINVAL;
812 if (!pr->pblk)
813 return -ENODEV;
815 /* if info is obtained from pblk/fadt, type equals state */
816 pr->power.states[ACPI_STATE_C2].type = ACPI_STATE_C2;
817 pr->power.states[ACPI_STATE_C3].type = ACPI_STATE_C3;
819 #ifndef CONFIG_HOTPLUG_CPU
821 * Check for P_LVL2_UP flag before entering C2 and above on
822 * an SMP system.
824 if ((num_online_cpus() > 1) &&
825 !(acpi_gbl_FADT.flags & ACPI_FADT_C2_MP_SUPPORTED))
826 return -ENODEV;
827 #endif
829 /* determine C2 and C3 address from pblk */
830 pr->power.states[ACPI_STATE_C2].address = pr->pblk + 4;
831 pr->power.states[ACPI_STATE_C3].address = pr->pblk + 5;
833 /* determine latencies from FADT */
834 pr->power.states[ACPI_STATE_C2].latency = acpi_gbl_FADT.C2latency;
835 pr->power.states[ACPI_STATE_C3].latency = acpi_gbl_FADT.C3latency;
837 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
838 "lvl2[0x%08x] lvl3[0x%08x]\n",
839 pr->power.states[ACPI_STATE_C2].address,
840 pr->power.states[ACPI_STATE_C3].address));
842 return 0;
845 static int acpi_processor_get_power_info_default(struct acpi_processor *pr)
847 if (!pr->power.states[ACPI_STATE_C1].valid) {
848 /* set the first C-State to C1 */
849 /* all processors need to support C1 */
850 pr->power.states[ACPI_STATE_C1].type = ACPI_STATE_C1;
851 pr->power.states[ACPI_STATE_C1].valid = 1;
852 pr->power.states[ACPI_STATE_C1].entry_method = ACPI_CSTATE_HALT;
854 /* the C0 state only exists as a filler in our array */
855 pr->power.states[ACPI_STATE_C0].valid = 1;
856 return 0;
859 static int acpi_processor_get_power_info_cst(struct acpi_processor *pr)
861 acpi_status status = 0;
862 acpi_integer count;
863 int current_count;
864 int i;
865 struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
866 union acpi_object *cst;
869 if (nocst)
870 return -ENODEV;
872 current_count = 0;
874 status = acpi_evaluate_object(pr->handle, "_CST", NULL, &buffer);
875 if (ACPI_FAILURE(status)) {
876 ACPI_DEBUG_PRINT((ACPI_DB_INFO, "No _CST, giving up\n"));
877 return -ENODEV;
880 cst = buffer.pointer;
882 /* There must be at least 2 elements */
883 if (!cst || (cst->type != ACPI_TYPE_PACKAGE) || cst->package.count < 2) {
884 printk(KERN_ERR PREFIX "not enough elements in _CST\n");
885 status = -EFAULT;
886 goto end;
889 count = cst->package.elements[0].integer.value;
891 /* Validate number of power states. */
892 if (count < 1 || count != cst->package.count - 1) {
893 printk(KERN_ERR PREFIX "count given by _CST is not valid\n");
894 status = -EFAULT;
895 goto end;
898 /* Tell driver that at least _CST is supported. */
899 pr->flags.has_cst = 1;
901 for (i = 1; i <= count; i++) {
902 union acpi_object *element;
903 union acpi_object *obj;
904 struct acpi_power_register *reg;
905 struct acpi_processor_cx cx;
907 memset(&cx, 0, sizeof(cx));
909 element = &(cst->package.elements[i]);
910 if (element->type != ACPI_TYPE_PACKAGE)
911 continue;
913 if (element->package.count != 4)
914 continue;
916 obj = &(element->package.elements[0]);
918 if (obj->type != ACPI_TYPE_BUFFER)
919 continue;
921 reg = (struct acpi_power_register *)obj->buffer.pointer;
923 if (reg->space_id != ACPI_ADR_SPACE_SYSTEM_IO &&
924 (reg->space_id != ACPI_ADR_SPACE_FIXED_HARDWARE))
925 continue;
927 /* There should be an easy way to extract an integer... */
928 obj = &(element->package.elements[1]);
929 if (obj->type != ACPI_TYPE_INTEGER)
930 continue;
932 cx.type = obj->integer.value;
934 * Some buggy BIOSes won't list C1 in _CST -
935 * Let acpi_processor_get_power_info_default() handle them later
937 if (i == 1 && cx.type != ACPI_STATE_C1)
938 current_count++;
940 cx.address = reg->address;
941 cx.index = current_count + 1;
943 cx.entry_method = ACPI_CSTATE_SYSTEMIO;
944 if (reg->space_id == ACPI_ADR_SPACE_FIXED_HARDWARE) {
945 if (acpi_processor_ffh_cstate_probe
946 (pr->id, &cx, reg) == 0) {
947 cx.entry_method = ACPI_CSTATE_FFH;
948 } else if (cx.type == ACPI_STATE_C1) {
950 * C1 is a special case where FIXED_HARDWARE
951 * can be handled in non-MWAIT way as well.
952 * In that case, save this _CST entry info.
953 * Otherwise, ignore this info and continue.
955 cx.entry_method = ACPI_CSTATE_HALT;
956 snprintf(cx.desc, ACPI_CX_DESC_LEN, "ACPI HLT");
957 } else {
958 continue;
960 if (cx.type == ACPI_STATE_C1 && idle_halt) {
962 * In most cases the C1 space_id obtained from
963 * _CST object is FIXED_HARDWARE access mode.
964 * But when the option of idle=halt is added,
965 * the entry_method type should be changed from
966 * CSTATE_FFH to CSTATE_HALT.
968 cx.entry_method = ACPI_CSTATE_HALT;
969 snprintf(cx.desc, ACPI_CX_DESC_LEN, "ACPI HLT");
971 } else {
972 snprintf(cx.desc, ACPI_CX_DESC_LEN, "ACPI IOPORT 0x%x",
973 cx.address);
976 if (cx.type == ACPI_STATE_C1) {
977 cx.valid = 1;
980 obj = &(element->package.elements[2]);
981 if (obj->type != ACPI_TYPE_INTEGER)
982 continue;
984 cx.latency = obj->integer.value;
986 obj = &(element->package.elements[3]);
987 if (obj->type != ACPI_TYPE_INTEGER)
988 continue;
990 cx.power = obj->integer.value;
992 current_count++;
993 memcpy(&(pr->power.states[current_count]), &cx, sizeof(cx));
996 * We support total ACPI_PROCESSOR_MAX_POWER - 1
997 * (From 1 through ACPI_PROCESSOR_MAX_POWER - 1)
999 if (current_count >= (ACPI_PROCESSOR_MAX_POWER - 1)) {
1000 printk(KERN_WARNING
1001 "Limiting number of power states to max (%d)\n",
1002 ACPI_PROCESSOR_MAX_POWER);
1003 printk(KERN_WARNING
1004 "Please increase ACPI_PROCESSOR_MAX_POWER if needed.\n");
1005 break;
1009 ACPI_DEBUG_PRINT((ACPI_DB_INFO, "Found %d power states\n",
1010 current_count));
1012 /* Validate number of power states discovered */
1013 if (current_count < 2)
1014 status = -EFAULT;
1016 end:
1017 kfree(buffer.pointer);
1019 return status;
1022 static void acpi_processor_power_verify_c2(struct acpi_processor_cx *cx)
1025 if (!cx->address)
1026 return;
1029 * C2 latency must be less than or equal to 100
1030 * microseconds.
1032 else if (cx->latency > ACPI_PROCESSOR_MAX_C2_LATENCY) {
1033 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
1034 "latency too large [%d]\n", cx->latency));
1035 return;
1039 * Otherwise we've met all of our C2 requirements.
1040 * Normalize the C2 latency to expidite policy
1042 cx->valid = 1;
1044 #ifndef CONFIG_CPU_IDLE
1045 cx->latency_ticks = US_TO_PM_TIMER_TICKS(cx->latency);
1046 #else
1047 cx->latency_ticks = cx->latency;
1048 #endif
1050 return;
1053 static void acpi_processor_power_verify_c3(struct acpi_processor *pr,
1054 struct acpi_processor_cx *cx)
1056 static int bm_check_flag;
1059 if (!cx->address)
1060 return;
1063 * C3 latency must be less than or equal to 1000
1064 * microseconds.
1066 else if (cx->latency > ACPI_PROCESSOR_MAX_C3_LATENCY) {
1067 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
1068 "latency too large [%d]\n", cx->latency));
1069 return;
1073 * PIIX4 Erratum #18: We don't support C3 when Type-F (fast)
1074 * DMA transfers are used by any ISA device to avoid livelock.
1075 * Note that we could disable Type-F DMA (as recommended by
1076 * the erratum), but this is known to disrupt certain ISA
1077 * devices thus we take the conservative approach.
1079 else if (errata.piix4.fdma) {
1080 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
1081 "C3 not supported on PIIX4 with Type-F DMA\n"));
1082 return;
1085 /* All the logic here assumes flags.bm_check is same across all CPUs */
1086 if (!bm_check_flag) {
1087 /* Determine whether bm_check is needed based on CPU */
1088 acpi_processor_power_init_bm_check(&(pr->flags), pr->id);
1089 bm_check_flag = pr->flags.bm_check;
1090 } else {
1091 pr->flags.bm_check = bm_check_flag;
1094 if (pr->flags.bm_check) {
1095 if (!pr->flags.bm_control) {
1096 if (pr->flags.has_cst != 1) {
1097 /* bus mastering control is necessary */
1098 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
1099 "C3 support requires BM control\n"));
1100 return;
1101 } else {
1102 /* Here we enter C3 without bus mastering */
1103 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
1104 "C3 support without BM control\n"));
1107 } else {
1109 * WBINVD should be set in fadt, for C3 state to be
1110 * supported on when bm_check is not required.
1112 if (!(acpi_gbl_FADT.flags & ACPI_FADT_WBINVD)) {
1113 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
1114 "Cache invalidation should work properly"
1115 " for C3 to be enabled on SMP systems\n"));
1116 return;
1118 acpi_set_register(ACPI_BITREG_BUS_MASTER_RLD, 0);
1122 * Otherwise we've met all of our C3 requirements.
1123 * Normalize the C3 latency to expidite policy. Enable
1124 * checking of bus mastering status (bm_check) so we can
1125 * use this in our C3 policy
1127 cx->valid = 1;
1129 #ifndef CONFIG_CPU_IDLE
1130 cx->latency_ticks = US_TO_PM_TIMER_TICKS(cx->latency);
1131 #else
1132 cx->latency_ticks = cx->latency;
1133 #endif
1135 return;
1138 static int acpi_processor_power_verify(struct acpi_processor *pr)
1140 unsigned int i;
1141 unsigned int working = 0;
1143 pr->power.timer_broadcast_on_state = INT_MAX;
1145 for (i = 1; i < ACPI_PROCESSOR_MAX_POWER; i++) {
1146 struct acpi_processor_cx *cx = &pr->power.states[i];
1148 switch (cx->type) {
1149 case ACPI_STATE_C1:
1150 cx->valid = 1;
1151 break;
1153 case ACPI_STATE_C2:
1154 acpi_processor_power_verify_c2(cx);
1155 if (cx->valid)
1156 acpi_timer_check_state(i, pr, cx);
1157 break;
1159 case ACPI_STATE_C3:
1160 acpi_processor_power_verify_c3(pr, cx);
1161 if (cx->valid)
1162 acpi_timer_check_state(i, pr, cx);
1163 break;
1166 if (cx->valid)
1167 working++;
1170 acpi_propagate_timer_broadcast(pr);
1172 return (working);
1175 static int acpi_processor_get_power_info(struct acpi_processor *pr)
1177 unsigned int i;
1178 int result;
1181 /* NOTE: the idle thread may not be running while calling
1182 * this function */
1184 /* Zero initialize all the C-states info. */
1185 memset(pr->power.states, 0, sizeof(pr->power.states));
1187 result = acpi_processor_get_power_info_cst(pr);
1188 if (result == -ENODEV)
1189 result = acpi_processor_get_power_info_fadt(pr);
1191 if (result)
1192 return result;
1194 acpi_processor_get_power_info_default(pr);
1196 pr->power.count = acpi_processor_power_verify(pr);
1198 #ifndef CONFIG_CPU_IDLE
1200 * Set Default Policy
1201 * ------------------
1202 * Now that we know which states are supported, set the default
1203 * policy. Note that this policy can be changed dynamically
1204 * (e.g. encourage deeper sleeps to conserve battery life when
1205 * not on AC).
1207 result = acpi_processor_set_power_policy(pr);
1208 if (result)
1209 return result;
1210 #endif
1213 * if one state of type C2 or C3 is available, mark this
1214 * CPU as being "idle manageable"
1216 for (i = 1; i < ACPI_PROCESSOR_MAX_POWER; i++) {
1217 if (pr->power.states[i].valid) {
1218 pr->power.count = i;
1219 if (pr->power.states[i].type >= ACPI_STATE_C2)
1220 pr->flags.power = 1;
1224 return 0;
1227 static int acpi_processor_power_seq_show(struct seq_file *seq, void *offset)
1229 struct acpi_processor *pr = seq->private;
1230 unsigned int i;
1233 if (!pr)
1234 goto end;
1236 seq_printf(seq, "active state: C%zd\n"
1237 "max_cstate: C%d\n"
1238 "bus master activity: %08x\n"
1239 "maximum allowed latency: %d usec\n",
1240 pr->power.state ? pr->power.state - pr->power.states : 0,
1241 max_cstate, (unsigned)pr->power.bm_activity,
1242 pm_qos_requirement(PM_QOS_CPU_DMA_LATENCY));
1244 seq_puts(seq, "states:\n");
1246 for (i = 1; i <= pr->power.count; i++) {
1247 seq_printf(seq, " %cC%d: ",
1248 (&pr->power.states[i] ==
1249 pr->power.state ? '*' : ' '), i);
1251 if (!pr->power.states[i].valid) {
1252 seq_puts(seq, "<not supported>\n");
1253 continue;
1256 switch (pr->power.states[i].type) {
1257 case ACPI_STATE_C1:
1258 seq_printf(seq, "type[C1] ");
1259 break;
1260 case ACPI_STATE_C2:
1261 seq_printf(seq, "type[C2] ");
1262 break;
1263 case ACPI_STATE_C3:
1264 seq_printf(seq, "type[C3] ");
1265 break;
1266 default:
1267 seq_printf(seq, "type[--] ");
1268 break;
1271 if (pr->power.states[i].promotion.state)
1272 seq_printf(seq, "promotion[C%zd] ",
1273 (pr->power.states[i].promotion.state -
1274 pr->power.states));
1275 else
1276 seq_puts(seq, "promotion[--] ");
1278 if (pr->power.states[i].demotion.state)
1279 seq_printf(seq, "demotion[C%zd] ",
1280 (pr->power.states[i].demotion.state -
1281 pr->power.states));
1282 else
1283 seq_puts(seq, "demotion[--] ");
1285 seq_printf(seq, "latency[%03d] usage[%08d] duration[%020llu]\n",
1286 pr->power.states[i].latency,
1287 pr->power.states[i].usage,
1288 (unsigned long long)pr->power.states[i].time);
1291 end:
1292 return 0;
1295 static int acpi_processor_power_open_fs(struct inode *inode, struct file *file)
1297 return single_open(file, acpi_processor_power_seq_show,
1298 PDE(inode)->data);
1301 static const struct file_operations acpi_processor_power_fops = {
1302 .owner = THIS_MODULE,
1303 .open = acpi_processor_power_open_fs,
1304 .read = seq_read,
1305 .llseek = seq_lseek,
1306 .release = single_release,
1309 #ifndef CONFIG_CPU_IDLE
1311 int acpi_processor_cst_has_changed(struct acpi_processor *pr)
1313 int result = 0;
1315 if (boot_option_idle_override)
1316 return 0;
1318 if (!pr)
1319 return -EINVAL;
1321 if (nocst) {
1322 return -ENODEV;
1325 if (!pr->flags.power_setup_done)
1326 return -ENODEV;
1328 /* Fall back to the default idle loop */
1329 pm_idle = pm_idle_save;
1330 synchronize_sched(); /* Relies on interrupts forcing exit from idle. */
1332 pr->flags.power = 0;
1333 result = acpi_processor_get_power_info(pr);
1334 if ((pr->flags.power == 1) && (pr->flags.power_setup_done))
1335 pm_idle = acpi_processor_idle;
1337 return result;
1340 #ifdef CONFIG_SMP
1341 static void smp_callback(void *v)
1343 /* we already woke the CPU up, nothing more to do */
1347 * This function gets called when a part of the kernel has a new latency
1348 * requirement. This means we need to get all processors out of their C-state,
1349 * and then recalculate a new suitable C-state. Just do a cross-cpu IPI; that
1350 * wakes them all right up.
1352 static int acpi_processor_latency_notify(struct notifier_block *b,
1353 unsigned long l, void *v)
1355 smp_call_function(smp_callback, NULL, 1);
1356 return NOTIFY_OK;
1359 static struct notifier_block acpi_processor_latency_notifier = {
1360 .notifier_call = acpi_processor_latency_notify,
1363 #endif
1365 #else /* CONFIG_CPU_IDLE */
1368 * acpi_idle_bm_check - checks if bus master activity was detected
1370 static int acpi_idle_bm_check(void)
1372 u32 bm_status = 0;
1374 acpi_get_register(ACPI_BITREG_BUS_MASTER_STATUS, &bm_status);
1375 if (bm_status)
1376 acpi_set_register(ACPI_BITREG_BUS_MASTER_STATUS, 1);
1378 * PIIX4 Erratum #18: Note that BM_STS doesn't always reflect
1379 * the true state of bus mastering activity; forcing us to
1380 * manually check the BMIDEA bit of each IDE channel.
1382 else if (errata.piix4.bmisx) {
1383 if ((inb_p(errata.piix4.bmisx + 0x02) & 0x01)
1384 || (inb_p(errata.piix4.bmisx + 0x0A) & 0x01))
1385 bm_status = 1;
1387 return bm_status;
1391 * acpi_idle_update_bm_rld - updates the BM_RLD bit depending on target state
1392 * @pr: the processor
1393 * @target: the new target state
1395 static inline void acpi_idle_update_bm_rld(struct acpi_processor *pr,
1396 struct acpi_processor_cx *target)
1398 if (pr->flags.bm_rld_set && target->type != ACPI_STATE_C3) {
1399 acpi_set_register(ACPI_BITREG_BUS_MASTER_RLD, 0);
1400 pr->flags.bm_rld_set = 0;
1403 if (!pr->flags.bm_rld_set && target->type == ACPI_STATE_C3) {
1404 acpi_set_register(ACPI_BITREG_BUS_MASTER_RLD, 1);
1405 pr->flags.bm_rld_set = 1;
1410 * acpi_idle_do_entry - a helper function that does C2 and C3 type entry
1411 * @cx: cstate data
1413 * Caller disables interrupt before call and enables interrupt after return.
1415 static inline void acpi_idle_do_entry(struct acpi_processor_cx *cx)
1417 if (cx->entry_method == ACPI_CSTATE_FFH) {
1418 /* Call into architectural FFH based C-state */
1419 acpi_processor_ffh_cstate_enter(cx);
1420 } else if (cx->entry_method == ACPI_CSTATE_HALT) {
1421 acpi_safe_halt();
1422 } else {
1423 int unused;
1424 /* IO port based C-state */
1425 inb(cx->address);
1426 /* Dummy wait op - must do something useless after P_LVL2 read
1427 because chipsets cannot guarantee that STPCLK# signal
1428 gets asserted in time to freeze execution properly. */
1429 unused = inl(acpi_gbl_FADT.xpm_timer_block.address);
1434 * acpi_idle_enter_c1 - enters an ACPI C1 state-type
1435 * @dev: the target CPU
1436 * @state: the state data
1438 * This is equivalent to the HALT instruction.
1440 static int acpi_idle_enter_c1(struct cpuidle_device *dev,
1441 struct cpuidle_state *state)
1443 u32 t1, t2;
1444 struct acpi_processor *pr;
1445 struct acpi_processor_cx *cx = cpuidle_get_statedata(state);
1447 pr = __get_cpu_var(processors);
1449 if (unlikely(!pr))
1450 return 0;
1452 local_irq_disable();
1454 /* Do not access any ACPI IO ports in suspend path */
1455 if (acpi_idle_suspend) {
1456 acpi_safe_halt();
1457 local_irq_enable();
1458 return 0;
1461 if (pr->flags.bm_check)
1462 acpi_idle_update_bm_rld(pr, cx);
1464 t1 = inl(acpi_gbl_FADT.xpm_timer_block.address);
1465 acpi_idle_do_entry(cx);
1466 t2 = inl(acpi_gbl_FADT.xpm_timer_block.address);
1468 local_irq_enable();
1469 cx->usage++;
1471 return ticks_elapsed_in_us(t1, t2);
1475 * acpi_idle_enter_simple - enters an ACPI state without BM handling
1476 * @dev: the target CPU
1477 * @state: the state data
1479 static int acpi_idle_enter_simple(struct cpuidle_device *dev,
1480 struct cpuidle_state *state)
1482 struct acpi_processor *pr;
1483 struct acpi_processor_cx *cx = cpuidle_get_statedata(state);
1484 u32 t1, t2;
1485 int sleep_ticks = 0;
1487 pr = __get_cpu_var(processors);
1489 if (unlikely(!pr))
1490 return 0;
1492 if (acpi_idle_suspend)
1493 return(acpi_idle_enter_c1(dev, state));
1495 local_irq_disable();
1496 current_thread_info()->status &= ~TS_POLLING;
1498 * TS_POLLING-cleared state must be visible before we test
1499 * NEED_RESCHED:
1501 smp_mb();
1503 if (unlikely(need_resched())) {
1504 current_thread_info()->status |= TS_POLLING;
1505 local_irq_enable();
1506 return 0;
1510 * Must be done before busmaster disable as we might need to
1511 * access HPET !
1513 acpi_state_timer_broadcast(pr, cx, 1);
1515 if (pr->flags.bm_check)
1516 acpi_idle_update_bm_rld(pr, cx);
1518 if (cx->type == ACPI_STATE_C3)
1519 ACPI_FLUSH_CPU_CACHE();
1521 t1 = inl(acpi_gbl_FADT.xpm_timer_block.address);
1522 /* Tell the scheduler that we are going deep-idle: */
1523 sched_clock_idle_sleep_event();
1524 acpi_idle_do_entry(cx);
1525 t2 = inl(acpi_gbl_FADT.xpm_timer_block.address);
1527 #if defined (CONFIG_GENERIC_TIME) && defined (CONFIG_X86)
1528 /* TSC could halt in idle, so notify users */
1529 if (tsc_halts_in_c(cx->type))
1530 mark_tsc_unstable("TSC halts in idle");;
1531 #endif
1532 sleep_ticks = ticks_elapsed(t1, t2);
1534 /* Tell the scheduler how much we idled: */
1535 sched_clock_idle_wakeup_event(sleep_ticks*PM_TIMER_TICK_NS);
1537 local_irq_enable();
1538 current_thread_info()->status |= TS_POLLING;
1540 cx->usage++;
1542 acpi_state_timer_broadcast(pr, cx, 0);
1543 cx->time += sleep_ticks;
1544 return ticks_elapsed_in_us(t1, t2);
1547 static int c3_cpu_count;
1548 static DEFINE_SPINLOCK(c3_lock);
1551 * acpi_idle_enter_bm - enters C3 with proper BM handling
1552 * @dev: the target CPU
1553 * @state: the state data
1555 * If BM is detected, the deepest non-C3 idle state is entered instead.
1557 static int acpi_idle_enter_bm(struct cpuidle_device *dev,
1558 struct cpuidle_state *state)
1560 struct acpi_processor *pr;
1561 struct acpi_processor_cx *cx = cpuidle_get_statedata(state);
1562 u32 t1, t2;
1563 int sleep_ticks = 0;
1565 pr = __get_cpu_var(processors);
1567 if (unlikely(!pr))
1568 return 0;
1570 if (acpi_idle_suspend)
1571 return(acpi_idle_enter_c1(dev, state));
1573 if (acpi_idle_bm_check()) {
1574 if (dev->safe_state) {
1575 return dev->safe_state->enter(dev, dev->safe_state);
1576 } else {
1577 local_irq_disable();
1578 acpi_safe_halt();
1579 local_irq_enable();
1580 return 0;
1584 local_irq_disable();
1585 current_thread_info()->status &= ~TS_POLLING;
1587 * TS_POLLING-cleared state must be visible before we test
1588 * NEED_RESCHED:
1590 smp_mb();
1592 if (unlikely(need_resched())) {
1593 current_thread_info()->status |= TS_POLLING;
1594 local_irq_enable();
1595 return 0;
1598 acpi_unlazy_tlb(smp_processor_id());
1600 /* Tell the scheduler that we are going deep-idle: */
1601 sched_clock_idle_sleep_event();
1603 * Must be done before busmaster disable as we might need to
1604 * access HPET !
1606 acpi_state_timer_broadcast(pr, cx, 1);
1608 acpi_idle_update_bm_rld(pr, cx);
1611 * disable bus master
1612 * bm_check implies we need ARB_DIS
1613 * !bm_check implies we need cache flush
1614 * bm_control implies whether we can do ARB_DIS
1616 * That leaves a case where bm_check is set and bm_control is
1617 * not set. In that case we cannot do much, we enter C3
1618 * without doing anything.
1620 if (pr->flags.bm_check && pr->flags.bm_control) {
1621 spin_lock(&c3_lock);
1622 c3_cpu_count++;
1623 /* Disable bus master arbitration when all CPUs are in C3 */
1624 if (c3_cpu_count == num_online_cpus())
1625 acpi_set_register(ACPI_BITREG_ARB_DISABLE, 1);
1626 spin_unlock(&c3_lock);
1627 } else if (!pr->flags.bm_check) {
1628 ACPI_FLUSH_CPU_CACHE();
1631 t1 = inl(acpi_gbl_FADT.xpm_timer_block.address);
1632 acpi_idle_do_entry(cx);
1633 t2 = inl(acpi_gbl_FADT.xpm_timer_block.address);
1635 /* Re-enable bus master arbitration */
1636 if (pr->flags.bm_check && pr->flags.bm_control) {
1637 spin_lock(&c3_lock);
1638 acpi_set_register(ACPI_BITREG_ARB_DISABLE, 0);
1639 c3_cpu_count--;
1640 spin_unlock(&c3_lock);
1643 #if defined (CONFIG_GENERIC_TIME) && defined (CONFIG_X86)
1644 /* TSC could halt in idle, so notify users */
1645 if (tsc_halts_in_c(ACPI_STATE_C3))
1646 mark_tsc_unstable("TSC halts in idle");
1647 #endif
1648 sleep_ticks = ticks_elapsed(t1, t2);
1649 /* Tell the scheduler how much we idled: */
1650 sched_clock_idle_wakeup_event(sleep_ticks*PM_TIMER_TICK_NS);
1652 local_irq_enable();
1653 current_thread_info()->status |= TS_POLLING;
1655 cx->usage++;
1657 acpi_state_timer_broadcast(pr, cx, 0);
1658 cx->time += sleep_ticks;
1659 return ticks_elapsed_in_us(t1, t2);
1662 struct cpuidle_driver acpi_idle_driver = {
1663 .name = "acpi_idle",
1664 .owner = THIS_MODULE,
1668 * acpi_processor_setup_cpuidle - prepares and configures CPUIDLE
1669 * @pr: the ACPI processor
1671 static int acpi_processor_setup_cpuidle(struct acpi_processor *pr)
1673 int i, count = CPUIDLE_DRIVER_STATE_START;
1674 struct acpi_processor_cx *cx;
1675 struct cpuidle_state *state;
1676 struct cpuidle_device *dev = &pr->power.dev;
1678 if (!pr->flags.power_setup_done)
1679 return -EINVAL;
1681 if (pr->flags.power == 0) {
1682 return -EINVAL;
1685 dev->cpu = pr->id;
1686 for (i = 0; i < CPUIDLE_STATE_MAX; i++) {
1687 dev->states[i].name[0] = '\0';
1688 dev->states[i].desc[0] = '\0';
1691 for (i = 1; i < ACPI_PROCESSOR_MAX_POWER && i <= max_cstate; i++) {
1692 cx = &pr->power.states[i];
1693 state = &dev->states[count];
1695 if (!cx->valid)
1696 continue;
1698 #ifdef CONFIG_HOTPLUG_CPU
1699 if ((cx->type != ACPI_STATE_C1) && (num_online_cpus() > 1) &&
1700 !pr->flags.has_cst &&
1701 !(acpi_gbl_FADT.flags & ACPI_FADT_C2_MP_SUPPORTED))
1702 continue;
1703 #endif
1704 cpuidle_set_statedata(state, cx);
1706 snprintf(state->name, CPUIDLE_NAME_LEN, "C%d", i);
1707 strncpy(state->desc, cx->desc, CPUIDLE_DESC_LEN);
1708 state->exit_latency = cx->latency;
1709 state->target_residency = cx->latency * latency_factor;
1710 state->power_usage = cx->power;
1712 state->flags = 0;
1713 switch (cx->type) {
1714 case ACPI_STATE_C1:
1715 state->flags |= CPUIDLE_FLAG_SHALLOW;
1716 if (cx->entry_method == ACPI_CSTATE_FFH)
1717 state->flags |= CPUIDLE_FLAG_TIME_VALID;
1719 state->enter = acpi_idle_enter_c1;
1720 dev->safe_state = state;
1721 break;
1723 case ACPI_STATE_C2:
1724 state->flags |= CPUIDLE_FLAG_BALANCED;
1725 state->flags |= CPUIDLE_FLAG_TIME_VALID;
1726 state->enter = acpi_idle_enter_simple;
1727 dev->safe_state = state;
1728 break;
1730 case ACPI_STATE_C3:
1731 state->flags |= CPUIDLE_FLAG_DEEP;
1732 state->flags |= CPUIDLE_FLAG_TIME_VALID;
1733 state->flags |= CPUIDLE_FLAG_CHECK_BM;
1734 state->enter = pr->flags.bm_check ?
1735 acpi_idle_enter_bm :
1736 acpi_idle_enter_simple;
1737 break;
1740 count++;
1741 if (count == CPUIDLE_STATE_MAX)
1742 break;
1745 dev->state_count = count;
1747 if (!count)
1748 return -EINVAL;
1750 return 0;
1753 int acpi_processor_cst_has_changed(struct acpi_processor *pr)
1755 int ret = 0;
1757 if (boot_option_idle_override)
1758 return 0;
1760 if (!pr)
1761 return -EINVAL;
1763 if (nocst) {
1764 return -ENODEV;
1767 if (!pr->flags.power_setup_done)
1768 return -ENODEV;
1770 cpuidle_pause_and_lock();
1771 cpuidle_disable_device(&pr->power.dev);
1772 acpi_processor_get_power_info(pr);
1773 if (pr->flags.power) {
1774 acpi_processor_setup_cpuidle(pr);
1775 ret = cpuidle_enable_device(&pr->power.dev);
1777 cpuidle_resume_and_unlock();
1779 return ret;
1782 #endif /* CONFIG_CPU_IDLE */
1784 int __cpuinit acpi_processor_power_init(struct acpi_processor *pr,
1785 struct acpi_device *device)
1787 acpi_status status = 0;
1788 static int first_run;
1789 struct proc_dir_entry *entry = NULL;
1790 unsigned int i;
1792 if (boot_option_idle_override)
1793 return 0;
1795 if (!first_run) {
1796 if (idle_halt) {
1798 * When the boot option of "idle=halt" is added, halt
1799 * is used for CPU IDLE.
1800 * In such case C2/C3 is meaningless. So the max_cstate
1801 * is set to one.
1803 max_cstate = 1;
1805 dmi_check_system(processor_power_dmi_table);
1806 max_cstate = acpi_processor_cstate_check(max_cstate);
1807 if (max_cstate < ACPI_C_STATES_MAX)
1808 printk(KERN_NOTICE
1809 "ACPI: processor limited to max C-state %d\n",
1810 max_cstate);
1811 first_run++;
1812 #if !defined(CONFIG_CPU_IDLE) && defined(CONFIG_SMP)
1813 pm_qos_add_notifier(PM_QOS_CPU_DMA_LATENCY,
1814 &acpi_processor_latency_notifier);
1815 #endif
1818 if (!pr)
1819 return -EINVAL;
1821 if (acpi_gbl_FADT.cst_control && !nocst) {
1822 status =
1823 acpi_os_write_port(acpi_gbl_FADT.smi_command, acpi_gbl_FADT.cst_control, 8);
1824 if (ACPI_FAILURE(status)) {
1825 ACPI_EXCEPTION((AE_INFO, status,
1826 "Notifying BIOS of _CST ability failed"));
1830 acpi_processor_get_power_info(pr);
1831 pr->flags.power_setup_done = 1;
1834 * Install the idle handler if processor power management is supported.
1835 * Note that we use previously set idle handler will be used on
1836 * platforms that only support C1.
1838 if (pr->flags.power) {
1839 #ifdef CONFIG_CPU_IDLE
1840 acpi_processor_setup_cpuidle(pr);
1841 if (cpuidle_register_device(&pr->power.dev))
1842 return -EIO;
1843 #endif
1845 printk(KERN_INFO PREFIX "CPU%d (power states:", pr->id);
1846 for (i = 1; i <= pr->power.count; i++)
1847 if (pr->power.states[i].valid)
1848 printk(" C%d[C%d]", i,
1849 pr->power.states[i].type);
1850 printk(")\n");
1852 #ifndef CONFIG_CPU_IDLE
1853 if (pr->id == 0) {
1854 pm_idle_save = pm_idle;
1855 pm_idle = acpi_processor_idle;
1857 #endif
1860 /* 'power' [R] */
1861 entry = proc_create_data(ACPI_PROCESSOR_FILE_POWER,
1862 S_IRUGO, acpi_device_dir(device),
1863 &acpi_processor_power_fops,
1864 acpi_driver_data(device));
1865 if (!entry)
1866 return -EIO;
1867 return 0;
1870 int acpi_processor_power_exit(struct acpi_processor *pr,
1871 struct acpi_device *device)
1873 if (boot_option_idle_override)
1874 return 0;
1876 #ifdef CONFIG_CPU_IDLE
1877 cpuidle_unregister_device(&pr->power.dev);
1878 #endif
1879 pr->flags.power_setup_done = 0;
1881 if (acpi_device_dir(device))
1882 remove_proc_entry(ACPI_PROCESSOR_FILE_POWER,
1883 acpi_device_dir(device));
1885 #ifndef CONFIG_CPU_IDLE
1887 /* Unregister the idle handler when processor #0 is removed. */
1888 if (pr->id == 0) {
1889 pm_idle = pm_idle_save;
1892 * We are about to unload the current idle thread pm callback
1893 * (pm_idle), Wait for all processors to update cached/local
1894 * copies of pm_idle before proceeding.
1896 cpu_idle_wait();
1897 #ifdef CONFIG_SMP
1898 pm_qos_remove_notifier(PM_QOS_CPU_DMA_LATENCY,
1899 &acpi_processor_latency_notifier);
1900 #endif
1902 #endif
1904 return 0;