KVM: Replace #GP injection by the generalized exception queue
[linux-2.6/mini2440.git] / drivers / kvm / vmx.c
blob3b3c5f7d2e7c6c75370272460bf694695d7d27db
1 /*
2 * Kernel-based Virtual Machine driver for Linux
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
7 * Copyright (C) 2006 Qumranet, Inc.
9 * Authors:
10 * Avi Kivity <avi@qumranet.com>
11 * Yaniv Kamay <yaniv@qumranet.com>
13 * This work is licensed under the terms of the GNU GPL, version 2. See
14 * the COPYING file in the top-level directory.
18 #include "kvm.h"
19 #include "x86.h"
20 #include "x86_emulate.h"
21 #include "irq.h"
22 #include "vmx.h"
23 #include "segment_descriptor.h"
25 #include <linux/module.h>
26 #include <linux/kernel.h>
27 #include <linux/mm.h>
28 #include <linux/highmem.h>
29 #include <linux/sched.h>
30 #include <linux/moduleparam.h>
32 #include <asm/io.h>
33 #include <asm/desc.h>
35 MODULE_AUTHOR("Qumranet");
36 MODULE_LICENSE("GPL");
38 static int bypass_guest_pf = 1;
39 module_param(bypass_guest_pf, bool, 0);
41 struct vmcs {
42 u32 revision_id;
43 u32 abort;
44 char data[0];
47 struct vcpu_vmx {
48 struct kvm_vcpu vcpu;
49 int launched;
50 u8 fail;
51 u32 idt_vectoring_info;
52 struct kvm_msr_entry *guest_msrs;
53 struct kvm_msr_entry *host_msrs;
54 int nmsrs;
55 int save_nmsrs;
56 int msr_offset_efer;
57 #ifdef CONFIG_X86_64
58 int msr_offset_kernel_gs_base;
59 #endif
60 struct vmcs *vmcs;
61 struct {
62 int loaded;
63 u16 fs_sel, gs_sel, ldt_sel;
64 int gs_ldt_reload_needed;
65 int fs_reload_needed;
66 int guest_efer_loaded;
67 } host_state;
68 struct {
69 struct {
70 bool pending;
71 u8 vector;
72 unsigned rip;
73 } irq;
74 } rmode;
77 static inline struct vcpu_vmx *to_vmx(struct kvm_vcpu *vcpu)
79 return container_of(vcpu, struct vcpu_vmx, vcpu);
82 static int init_rmode_tss(struct kvm *kvm);
84 static DEFINE_PER_CPU(struct vmcs *, vmxarea);
85 static DEFINE_PER_CPU(struct vmcs *, current_vmcs);
87 static struct page *vmx_io_bitmap_a;
88 static struct page *vmx_io_bitmap_b;
90 static struct vmcs_config {
91 int size;
92 int order;
93 u32 revision_id;
94 u32 pin_based_exec_ctrl;
95 u32 cpu_based_exec_ctrl;
96 u32 cpu_based_2nd_exec_ctrl;
97 u32 vmexit_ctrl;
98 u32 vmentry_ctrl;
99 } vmcs_config;
101 #define VMX_SEGMENT_FIELD(seg) \
102 [VCPU_SREG_##seg] = { \
103 .selector = GUEST_##seg##_SELECTOR, \
104 .base = GUEST_##seg##_BASE, \
105 .limit = GUEST_##seg##_LIMIT, \
106 .ar_bytes = GUEST_##seg##_AR_BYTES, \
109 static struct kvm_vmx_segment_field {
110 unsigned selector;
111 unsigned base;
112 unsigned limit;
113 unsigned ar_bytes;
114 } kvm_vmx_segment_fields[] = {
115 VMX_SEGMENT_FIELD(CS),
116 VMX_SEGMENT_FIELD(DS),
117 VMX_SEGMENT_FIELD(ES),
118 VMX_SEGMENT_FIELD(FS),
119 VMX_SEGMENT_FIELD(GS),
120 VMX_SEGMENT_FIELD(SS),
121 VMX_SEGMENT_FIELD(TR),
122 VMX_SEGMENT_FIELD(LDTR),
126 * Keep MSR_K6_STAR at the end, as setup_msrs() will try to optimize it
127 * away by decrementing the array size.
129 static const u32 vmx_msr_index[] = {
130 #ifdef CONFIG_X86_64
131 MSR_SYSCALL_MASK, MSR_LSTAR, MSR_CSTAR, MSR_KERNEL_GS_BASE,
132 #endif
133 MSR_EFER, MSR_K6_STAR,
135 #define NR_VMX_MSR ARRAY_SIZE(vmx_msr_index)
137 static void load_msrs(struct kvm_msr_entry *e, int n)
139 int i;
141 for (i = 0; i < n; ++i)
142 wrmsrl(e[i].index, e[i].data);
145 static void save_msrs(struct kvm_msr_entry *e, int n)
147 int i;
149 for (i = 0; i < n; ++i)
150 rdmsrl(e[i].index, e[i].data);
153 static inline int is_page_fault(u32 intr_info)
155 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
156 INTR_INFO_VALID_MASK)) ==
157 (INTR_TYPE_EXCEPTION | PF_VECTOR | INTR_INFO_VALID_MASK);
160 static inline int is_no_device(u32 intr_info)
162 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
163 INTR_INFO_VALID_MASK)) ==
164 (INTR_TYPE_EXCEPTION | NM_VECTOR | INTR_INFO_VALID_MASK);
167 static inline int is_invalid_opcode(u32 intr_info)
169 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
170 INTR_INFO_VALID_MASK)) ==
171 (INTR_TYPE_EXCEPTION | UD_VECTOR | INTR_INFO_VALID_MASK);
174 static inline int is_external_interrupt(u32 intr_info)
176 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK))
177 == (INTR_TYPE_EXT_INTR | INTR_INFO_VALID_MASK);
180 static inline int cpu_has_vmx_tpr_shadow(void)
182 return (vmcs_config.cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW);
185 static inline int vm_need_tpr_shadow(struct kvm *kvm)
187 return ((cpu_has_vmx_tpr_shadow()) && (irqchip_in_kernel(kvm)));
190 static inline int cpu_has_secondary_exec_ctrls(void)
192 return (vmcs_config.cpu_based_exec_ctrl &
193 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS);
196 static inline int cpu_has_vmx_virtualize_apic_accesses(void)
198 return (vmcs_config.cpu_based_2nd_exec_ctrl &
199 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES);
202 static inline int vm_need_virtualize_apic_accesses(struct kvm *kvm)
204 return ((cpu_has_vmx_virtualize_apic_accesses()) &&
205 (irqchip_in_kernel(kvm)));
208 static int __find_msr_index(struct vcpu_vmx *vmx, u32 msr)
210 int i;
212 for (i = 0; i < vmx->nmsrs; ++i)
213 if (vmx->guest_msrs[i].index == msr)
214 return i;
215 return -1;
218 static struct kvm_msr_entry *find_msr_entry(struct vcpu_vmx *vmx, u32 msr)
220 int i;
222 i = __find_msr_index(vmx, msr);
223 if (i >= 0)
224 return &vmx->guest_msrs[i];
225 return NULL;
228 static void vmcs_clear(struct vmcs *vmcs)
230 u64 phys_addr = __pa(vmcs);
231 u8 error;
233 asm volatile (ASM_VMX_VMCLEAR_RAX "; setna %0"
234 : "=g"(error) : "a"(&phys_addr), "m"(phys_addr)
235 : "cc", "memory");
236 if (error)
237 printk(KERN_ERR "kvm: vmclear fail: %p/%llx\n",
238 vmcs, phys_addr);
241 static void __vcpu_clear(void *arg)
243 struct vcpu_vmx *vmx = arg;
244 int cpu = raw_smp_processor_id();
246 if (vmx->vcpu.cpu == cpu)
247 vmcs_clear(vmx->vmcs);
248 if (per_cpu(current_vmcs, cpu) == vmx->vmcs)
249 per_cpu(current_vmcs, cpu) = NULL;
250 rdtscll(vmx->vcpu.host_tsc);
253 static void vcpu_clear(struct vcpu_vmx *vmx)
255 if (vmx->vcpu.cpu == -1)
256 return;
257 smp_call_function_single(vmx->vcpu.cpu, __vcpu_clear, vmx, 0, 1);
258 vmx->launched = 0;
261 static unsigned long vmcs_readl(unsigned long field)
263 unsigned long value;
265 asm volatile (ASM_VMX_VMREAD_RDX_RAX
266 : "=a"(value) : "d"(field) : "cc");
267 return value;
270 static u16 vmcs_read16(unsigned long field)
272 return vmcs_readl(field);
275 static u32 vmcs_read32(unsigned long field)
277 return vmcs_readl(field);
280 static u64 vmcs_read64(unsigned long field)
282 #ifdef CONFIG_X86_64
283 return vmcs_readl(field);
284 #else
285 return vmcs_readl(field) | ((u64)vmcs_readl(field+1) << 32);
286 #endif
289 static noinline void vmwrite_error(unsigned long field, unsigned long value)
291 printk(KERN_ERR "vmwrite error: reg %lx value %lx (err %d)\n",
292 field, value, vmcs_read32(VM_INSTRUCTION_ERROR));
293 dump_stack();
296 static void vmcs_writel(unsigned long field, unsigned long value)
298 u8 error;
300 asm volatile (ASM_VMX_VMWRITE_RAX_RDX "; setna %0"
301 : "=q"(error) : "a"(value), "d"(field) : "cc");
302 if (unlikely(error))
303 vmwrite_error(field, value);
306 static void vmcs_write16(unsigned long field, u16 value)
308 vmcs_writel(field, value);
311 static void vmcs_write32(unsigned long field, u32 value)
313 vmcs_writel(field, value);
316 static void vmcs_write64(unsigned long field, u64 value)
318 #ifdef CONFIG_X86_64
319 vmcs_writel(field, value);
320 #else
321 vmcs_writel(field, value);
322 asm volatile ("");
323 vmcs_writel(field+1, value >> 32);
324 #endif
327 static void vmcs_clear_bits(unsigned long field, u32 mask)
329 vmcs_writel(field, vmcs_readl(field) & ~mask);
332 static void vmcs_set_bits(unsigned long field, u32 mask)
334 vmcs_writel(field, vmcs_readl(field) | mask);
337 static void update_exception_bitmap(struct kvm_vcpu *vcpu)
339 u32 eb;
341 eb = (1u << PF_VECTOR) | (1u << UD_VECTOR);
342 if (!vcpu->fpu_active)
343 eb |= 1u << NM_VECTOR;
344 if (vcpu->guest_debug.enabled)
345 eb |= 1u << 1;
346 if (vcpu->rmode.active)
347 eb = ~0;
348 vmcs_write32(EXCEPTION_BITMAP, eb);
351 static void reload_tss(void)
353 #ifndef CONFIG_X86_64
356 * VT restores TR but not its size. Useless.
358 struct descriptor_table gdt;
359 struct segment_descriptor *descs;
361 get_gdt(&gdt);
362 descs = (void *)gdt.base;
363 descs[GDT_ENTRY_TSS].type = 9; /* available TSS */
364 load_TR_desc();
365 #endif
368 static void load_transition_efer(struct vcpu_vmx *vmx)
370 int efer_offset = vmx->msr_offset_efer;
371 u64 host_efer = vmx->host_msrs[efer_offset].data;
372 u64 guest_efer = vmx->guest_msrs[efer_offset].data;
373 u64 ignore_bits;
375 if (efer_offset < 0)
376 return;
378 * NX is emulated; LMA and LME handled by hardware; SCE meaninless
379 * outside long mode
381 ignore_bits = EFER_NX | EFER_SCE;
382 #ifdef CONFIG_X86_64
383 ignore_bits |= EFER_LMA | EFER_LME;
384 /* SCE is meaningful only in long mode on Intel */
385 if (guest_efer & EFER_LMA)
386 ignore_bits &= ~(u64)EFER_SCE;
387 #endif
388 if ((guest_efer & ~ignore_bits) == (host_efer & ~ignore_bits))
389 return;
391 vmx->host_state.guest_efer_loaded = 1;
392 guest_efer &= ~ignore_bits;
393 guest_efer |= host_efer & ignore_bits;
394 wrmsrl(MSR_EFER, guest_efer);
395 vmx->vcpu.stat.efer_reload++;
398 static void reload_host_efer(struct vcpu_vmx *vmx)
400 if (vmx->host_state.guest_efer_loaded) {
401 vmx->host_state.guest_efer_loaded = 0;
402 load_msrs(vmx->host_msrs + vmx->msr_offset_efer, 1);
406 static void vmx_save_host_state(struct kvm_vcpu *vcpu)
408 struct vcpu_vmx *vmx = to_vmx(vcpu);
410 if (vmx->host_state.loaded)
411 return;
413 vmx->host_state.loaded = 1;
415 * Set host fs and gs selectors. Unfortunately, 22.2.3 does not
416 * allow segment selectors with cpl > 0 or ti == 1.
418 vmx->host_state.ldt_sel = read_ldt();
419 vmx->host_state.gs_ldt_reload_needed = vmx->host_state.ldt_sel;
420 vmx->host_state.fs_sel = read_fs();
421 if (!(vmx->host_state.fs_sel & 7)) {
422 vmcs_write16(HOST_FS_SELECTOR, vmx->host_state.fs_sel);
423 vmx->host_state.fs_reload_needed = 0;
424 } else {
425 vmcs_write16(HOST_FS_SELECTOR, 0);
426 vmx->host_state.fs_reload_needed = 1;
428 vmx->host_state.gs_sel = read_gs();
429 if (!(vmx->host_state.gs_sel & 7))
430 vmcs_write16(HOST_GS_SELECTOR, vmx->host_state.gs_sel);
431 else {
432 vmcs_write16(HOST_GS_SELECTOR, 0);
433 vmx->host_state.gs_ldt_reload_needed = 1;
436 #ifdef CONFIG_X86_64
437 vmcs_writel(HOST_FS_BASE, read_msr(MSR_FS_BASE));
438 vmcs_writel(HOST_GS_BASE, read_msr(MSR_GS_BASE));
439 #else
440 vmcs_writel(HOST_FS_BASE, segment_base(vmx->host_state.fs_sel));
441 vmcs_writel(HOST_GS_BASE, segment_base(vmx->host_state.gs_sel));
442 #endif
444 #ifdef CONFIG_X86_64
445 if (is_long_mode(&vmx->vcpu))
446 save_msrs(vmx->host_msrs +
447 vmx->msr_offset_kernel_gs_base, 1);
449 #endif
450 load_msrs(vmx->guest_msrs, vmx->save_nmsrs);
451 load_transition_efer(vmx);
454 static void vmx_load_host_state(struct vcpu_vmx *vmx)
456 unsigned long flags;
458 if (!vmx->host_state.loaded)
459 return;
461 ++vmx->vcpu.stat.host_state_reload;
462 vmx->host_state.loaded = 0;
463 if (vmx->host_state.fs_reload_needed)
464 load_fs(vmx->host_state.fs_sel);
465 if (vmx->host_state.gs_ldt_reload_needed) {
466 load_ldt(vmx->host_state.ldt_sel);
468 * If we have to reload gs, we must take care to
469 * preserve our gs base.
471 local_irq_save(flags);
472 load_gs(vmx->host_state.gs_sel);
473 #ifdef CONFIG_X86_64
474 wrmsrl(MSR_GS_BASE, vmcs_readl(HOST_GS_BASE));
475 #endif
476 local_irq_restore(flags);
478 reload_tss();
479 save_msrs(vmx->guest_msrs, vmx->save_nmsrs);
480 load_msrs(vmx->host_msrs, vmx->save_nmsrs);
481 reload_host_efer(vmx);
485 * Switches to specified vcpu, until a matching vcpu_put(), but assumes
486 * vcpu mutex is already taken.
488 static void vmx_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
490 struct vcpu_vmx *vmx = to_vmx(vcpu);
491 u64 phys_addr = __pa(vmx->vmcs);
492 u64 tsc_this, delta;
494 if (vcpu->cpu != cpu) {
495 vcpu_clear(vmx);
496 kvm_migrate_apic_timer(vcpu);
499 if (per_cpu(current_vmcs, cpu) != vmx->vmcs) {
500 u8 error;
502 per_cpu(current_vmcs, cpu) = vmx->vmcs;
503 asm volatile (ASM_VMX_VMPTRLD_RAX "; setna %0"
504 : "=g"(error) : "a"(&phys_addr), "m"(phys_addr)
505 : "cc");
506 if (error)
507 printk(KERN_ERR "kvm: vmptrld %p/%llx fail\n",
508 vmx->vmcs, phys_addr);
511 if (vcpu->cpu != cpu) {
512 struct descriptor_table dt;
513 unsigned long sysenter_esp;
515 vcpu->cpu = cpu;
517 * Linux uses per-cpu TSS and GDT, so set these when switching
518 * processors.
520 vmcs_writel(HOST_TR_BASE, read_tr_base()); /* 22.2.4 */
521 get_gdt(&dt);
522 vmcs_writel(HOST_GDTR_BASE, dt.base); /* 22.2.4 */
524 rdmsrl(MSR_IA32_SYSENTER_ESP, sysenter_esp);
525 vmcs_writel(HOST_IA32_SYSENTER_ESP, sysenter_esp); /* 22.2.3 */
528 * Make sure the time stamp counter is monotonous.
530 rdtscll(tsc_this);
531 delta = vcpu->host_tsc - tsc_this;
532 vmcs_write64(TSC_OFFSET, vmcs_read64(TSC_OFFSET) + delta);
536 static void vmx_vcpu_put(struct kvm_vcpu *vcpu)
538 vmx_load_host_state(to_vmx(vcpu));
541 static void vmx_fpu_activate(struct kvm_vcpu *vcpu)
543 if (vcpu->fpu_active)
544 return;
545 vcpu->fpu_active = 1;
546 vmcs_clear_bits(GUEST_CR0, X86_CR0_TS);
547 if (vcpu->cr0 & X86_CR0_TS)
548 vmcs_set_bits(GUEST_CR0, X86_CR0_TS);
549 update_exception_bitmap(vcpu);
552 static void vmx_fpu_deactivate(struct kvm_vcpu *vcpu)
554 if (!vcpu->fpu_active)
555 return;
556 vcpu->fpu_active = 0;
557 vmcs_set_bits(GUEST_CR0, X86_CR0_TS);
558 update_exception_bitmap(vcpu);
561 static void vmx_vcpu_decache(struct kvm_vcpu *vcpu)
563 vcpu_clear(to_vmx(vcpu));
566 static unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu)
568 return vmcs_readl(GUEST_RFLAGS);
571 static void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
573 if (vcpu->rmode.active)
574 rflags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
575 vmcs_writel(GUEST_RFLAGS, rflags);
578 static void skip_emulated_instruction(struct kvm_vcpu *vcpu)
580 unsigned long rip;
581 u32 interruptibility;
583 rip = vmcs_readl(GUEST_RIP);
584 rip += vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
585 vmcs_writel(GUEST_RIP, rip);
588 * We emulated an instruction, so temporary interrupt blocking
589 * should be removed, if set.
591 interruptibility = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
592 if (interruptibility & 3)
593 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO,
594 interruptibility & ~3);
595 vcpu->interrupt_window_open = 1;
598 static void vmx_queue_exception(struct kvm_vcpu *vcpu, unsigned nr,
599 bool has_error_code, u32 error_code)
601 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
602 nr | INTR_TYPE_EXCEPTION
603 | (has_error_code ? INTR_INFO_DELIEVER_CODE_MASK : 0)
604 | INTR_INFO_VALID_MASK);
605 if (has_error_code)
606 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, error_code);
609 static bool vmx_exception_injected(struct kvm_vcpu *vcpu)
611 struct vcpu_vmx *vmx = to_vmx(vcpu);
613 return !(vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK);
616 static void vmx_inject_ud(struct kvm_vcpu *vcpu)
618 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
619 UD_VECTOR |
620 INTR_TYPE_EXCEPTION |
621 INTR_INFO_VALID_MASK);
625 * Swap MSR entry in host/guest MSR entry array.
627 #ifdef CONFIG_X86_64
628 static void move_msr_up(struct vcpu_vmx *vmx, int from, int to)
630 struct kvm_msr_entry tmp;
632 tmp = vmx->guest_msrs[to];
633 vmx->guest_msrs[to] = vmx->guest_msrs[from];
634 vmx->guest_msrs[from] = tmp;
635 tmp = vmx->host_msrs[to];
636 vmx->host_msrs[to] = vmx->host_msrs[from];
637 vmx->host_msrs[from] = tmp;
639 #endif
642 * Set up the vmcs to automatically save and restore system
643 * msrs. Don't touch the 64-bit msrs if the guest is in legacy
644 * mode, as fiddling with msrs is very expensive.
646 static void setup_msrs(struct vcpu_vmx *vmx)
648 int save_nmsrs;
650 save_nmsrs = 0;
651 #ifdef CONFIG_X86_64
652 if (is_long_mode(&vmx->vcpu)) {
653 int index;
655 index = __find_msr_index(vmx, MSR_SYSCALL_MASK);
656 if (index >= 0)
657 move_msr_up(vmx, index, save_nmsrs++);
658 index = __find_msr_index(vmx, MSR_LSTAR);
659 if (index >= 0)
660 move_msr_up(vmx, index, save_nmsrs++);
661 index = __find_msr_index(vmx, MSR_CSTAR);
662 if (index >= 0)
663 move_msr_up(vmx, index, save_nmsrs++);
664 index = __find_msr_index(vmx, MSR_KERNEL_GS_BASE);
665 if (index >= 0)
666 move_msr_up(vmx, index, save_nmsrs++);
668 * MSR_K6_STAR is only needed on long mode guests, and only
669 * if efer.sce is enabled.
671 index = __find_msr_index(vmx, MSR_K6_STAR);
672 if ((index >= 0) && (vmx->vcpu.shadow_efer & EFER_SCE))
673 move_msr_up(vmx, index, save_nmsrs++);
675 #endif
676 vmx->save_nmsrs = save_nmsrs;
678 #ifdef CONFIG_X86_64
679 vmx->msr_offset_kernel_gs_base =
680 __find_msr_index(vmx, MSR_KERNEL_GS_BASE);
681 #endif
682 vmx->msr_offset_efer = __find_msr_index(vmx, MSR_EFER);
686 * reads and returns guest's timestamp counter "register"
687 * guest_tsc = host_tsc + tsc_offset -- 21.3
689 static u64 guest_read_tsc(void)
691 u64 host_tsc, tsc_offset;
693 rdtscll(host_tsc);
694 tsc_offset = vmcs_read64(TSC_OFFSET);
695 return host_tsc + tsc_offset;
699 * writes 'guest_tsc' into guest's timestamp counter "register"
700 * guest_tsc = host_tsc + tsc_offset ==> tsc_offset = guest_tsc - host_tsc
702 static void guest_write_tsc(u64 guest_tsc)
704 u64 host_tsc;
706 rdtscll(host_tsc);
707 vmcs_write64(TSC_OFFSET, guest_tsc - host_tsc);
711 * Reads an msr value (of 'msr_index') into 'pdata'.
712 * Returns 0 on success, non-0 otherwise.
713 * Assumes vcpu_load() was already called.
715 static int vmx_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
717 u64 data;
718 struct kvm_msr_entry *msr;
720 if (!pdata) {
721 printk(KERN_ERR "BUG: get_msr called with NULL pdata\n");
722 return -EINVAL;
725 switch (msr_index) {
726 #ifdef CONFIG_X86_64
727 case MSR_FS_BASE:
728 data = vmcs_readl(GUEST_FS_BASE);
729 break;
730 case MSR_GS_BASE:
731 data = vmcs_readl(GUEST_GS_BASE);
732 break;
733 case MSR_EFER:
734 return kvm_get_msr_common(vcpu, msr_index, pdata);
735 #endif
736 case MSR_IA32_TIME_STAMP_COUNTER:
737 data = guest_read_tsc();
738 break;
739 case MSR_IA32_SYSENTER_CS:
740 data = vmcs_read32(GUEST_SYSENTER_CS);
741 break;
742 case MSR_IA32_SYSENTER_EIP:
743 data = vmcs_readl(GUEST_SYSENTER_EIP);
744 break;
745 case MSR_IA32_SYSENTER_ESP:
746 data = vmcs_readl(GUEST_SYSENTER_ESP);
747 break;
748 default:
749 msr = find_msr_entry(to_vmx(vcpu), msr_index);
750 if (msr) {
751 data = msr->data;
752 break;
754 return kvm_get_msr_common(vcpu, msr_index, pdata);
757 *pdata = data;
758 return 0;
762 * Writes msr value into into the appropriate "register".
763 * Returns 0 on success, non-0 otherwise.
764 * Assumes vcpu_load() was already called.
766 static int vmx_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
768 struct vcpu_vmx *vmx = to_vmx(vcpu);
769 struct kvm_msr_entry *msr;
770 int ret = 0;
772 switch (msr_index) {
773 #ifdef CONFIG_X86_64
774 case MSR_EFER:
775 ret = kvm_set_msr_common(vcpu, msr_index, data);
776 if (vmx->host_state.loaded) {
777 reload_host_efer(vmx);
778 load_transition_efer(vmx);
780 break;
781 case MSR_FS_BASE:
782 vmcs_writel(GUEST_FS_BASE, data);
783 break;
784 case MSR_GS_BASE:
785 vmcs_writel(GUEST_GS_BASE, data);
786 break;
787 #endif
788 case MSR_IA32_SYSENTER_CS:
789 vmcs_write32(GUEST_SYSENTER_CS, data);
790 break;
791 case MSR_IA32_SYSENTER_EIP:
792 vmcs_writel(GUEST_SYSENTER_EIP, data);
793 break;
794 case MSR_IA32_SYSENTER_ESP:
795 vmcs_writel(GUEST_SYSENTER_ESP, data);
796 break;
797 case MSR_IA32_TIME_STAMP_COUNTER:
798 guest_write_tsc(data);
799 break;
800 default:
801 msr = find_msr_entry(vmx, msr_index);
802 if (msr) {
803 msr->data = data;
804 if (vmx->host_state.loaded)
805 load_msrs(vmx->guest_msrs, vmx->save_nmsrs);
806 break;
808 ret = kvm_set_msr_common(vcpu, msr_index, data);
811 return ret;
815 * Sync the rsp and rip registers into the vcpu structure. This allows
816 * registers to be accessed by indexing vcpu->regs.
818 static void vcpu_load_rsp_rip(struct kvm_vcpu *vcpu)
820 vcpu->regs[VCPU_REGS_RSP] = vmcs_readl(GUEST_RSP);
821 vcpu->rip = vmcs_readl(GUEST_RIP);
825 * Syncs rsp and rip back into the vmcs. Should be called after possible
826 * modification.
828 static void vcpu_put_rsp_rip(struct kvm_vcpu *vcpu)
830 vmcs_writel(GUEST_RSP, vcpu->regs[VCPU_REGS_RSP]);
831 vmcs_writel(GUEST_RIP, vcpu->rip);
834 static int set_guest_debug(struct kvm_vcpu *vcpu, struct kvm_debug_guest *dbg)
836 unsigned long dr7 = 0x400;
837 int old_singlestep;
839 old_singlestep = vcpu->guest_debug.singlestep;
841 vcpu->guest_debug.enabled = dbg->enabled;
842 if (vcpu->guest_debug.enabled) {
843 int i;
845 dr7 |= 0x200; /* exact */
846 for (i = 0; i < 4; ++i) {
847 if (!dbg->breakpoints[i].enabled)
848 continue;
849 vcpu->guest_debug.bp[i] = dbg->breakpoints[i].address;
850 dr7 |= 2 << (i*2); /* global enable */
851 dr7 |= 0 << (i*4+16); /* execution breakpoint */
854 vcpu->guest_debug.singlestep = dbg->singlestep;
855 } else
856 vcpu->guest_debug.singlestep = 0;
858 if (old_singlestep && !vcpu->guest_debug.singlestep) {
859 unsigned long flags;
861 flags = vmcs_readl(GUEST_RFLAGS);
862 flags &= ~(X86_EFLAGS_TF | X86_EFLAGS_RF);
863 vmcs_writel(GUEST_RFLAGS, flags);
866 update_exception_bitmap(vcpu);
867 vmcs_writel(GUEST_DR7, dr7);
869 return 0;
872 static int vmx_get_irq(struct kvm_vcpu *vcpu)
874 struct vcpu_vmx *vmx = to_vmx(vcpu);
875 u32 idtv_info_field;
877 idtv_info_field = vmx->idt_vectoring_info;
878 if (idtv_info_field & INTR_INFO_VALID_MASK) {
879 if (is_external_interrupt(idtv_info_field))
880 return idtv_info_field & VECTORING_INFO_VECTOR_MASK;
881 else
882 printk(KERN_DEBUG "pending exception: not handled yet\n");
884 return -1;
887 static __init int cpu_has_kvm_support(void)
889 unsigned long ecx = cpuid_ecx(1);
890 return test_bit(5, &ecx); /* CPUID.1:ECX.VMX[bit 5] -> VT */
893 static __init int vmx_disabled_by_bios(void)
895 u64 msr;
897 rdmsrl(MSR_IA32_FEATURE_CONTROL, msr);
898 return (msr & (MSR_IA32_FEATURE_CONTROL_LOCKED |
899 MSR_IA32_FEATURE_CONTROL_VMXON_ENABLED))
900 == MSR_IA32_FEATURE_CONTROL_LOCKED;
901 /* locked but not enabled */
904 static void hardware_enable(void *garbage)
906 int cpu = raw_smp_processor_id();
907 u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
908 u64 old;
910 rdmsrl(MSR_IA32_FEATURE_CONTROL, old);
911 if ((old & (MSR_IA32_FEATURE_CONTROL_LOCKED |
912 MSR_IA32_FEATURE_CONTROL_VMXON_ENABLED))
913 != (MSR_IA32_FEATURE_CONTROL_LOCKED |
914 MSR_IA32_FEATURE_CONTROL_VMXON_ENABLED))
915 /* enable and lock */
916 wrmsrl(MSR_IA32_FEATURE_CONTROL, old |
917 MSR_IA32_FEATURE_CONTROL_LOCKED |
918 MSR_IA32_FEATURE_CONTROL_VMXON_ENABLED);
919 write_cr4(read_cr4() | X86_CR4_VMXE); /* FIXME: not cpu hotplug safe */
920 asm volatile (ASM_VMX_VMXON_RAX : : "a"(&phys_addr), "m"(phys_addr)
921 : "memory", "cc");
924 static void hardware_disable(void *garbage)
926 asm volatile (ASM_VMX_VMXOFF : : : "cc");
929 static __init int adjust_vmx_controls(u32 ctl_min, u32 ctl_opt,
930 u32 msr, u32 *result)
932 u32 vmx_msr_low, vmx_msr_high;
933 u32 ctl = ctl_min | ctl_opt;
935 rdmsr(msr, vmx_msr_low, vmx_msr_high);
937 ctl &= vmx_msr_high; /* bit == 0 in high word ==> must be zero */
938 ctl |= vmx_msr_low; /* bit == 1 in low word ==> must be one */
940 /* Ensure minimum (required) set of control bits are supported. */
941 if (ctl_min & ~ctl)
942 return -EIO;
944 *result = ctl;
945 return 0;
948 static __init int setup_vmcs_config(struct vmcs_config *vmcs_conf)
950 u32 vmx_msr_low, vmx_msr_high;
951 u32 min, opt;
952 u32 _pin_based_exec_control = 0;
953 u32 _cpu_based_exec_control = 0;
954 u32 _cpu_based_2nd_exec_control = 0;
955 u32 _vmexit_control = 0;
956 u32 _vmentry_control = 0;
958 min = PIN_BASED_EXT_INTR_MASK | PIN_BASED_NMI_EXITING;
959 opt = 0;
960 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PINBASED_CTLS,
961 &_pin_based_exec_control) < 0)
962 return -EIO;
964 min = CPU_BASED_HLT_EXITING |
965 #ifdef CONFIG_X86_64
966 CPU_BASED_CR8_LOAD_EXITING |
967 CPU_BASED_CR8_STORE_EXITING |
968 #endif
969 CPU_BASED_USE_IO_BITMAPS |
970 CPU_BASED_MOV_DR_EXITING |
971 CPU_BASED_USE_TSC_OFFSETING;
972 opt = CPU_BASED_TPR_SHADOW |
973 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
974 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PROCBASED_CTLS,
975 &_cpu_based_exec_control) < 0)
976 return -EIO;
977 #ifdef CONFIG_X86_64
978 if ((_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
979 _cpu_based_exec_control &= ~CPU_BASED_CR8_LOAD_EXITING &
980 ~CPU_BASED_CR8_STORE_EXITING;
981 #endif
982 if (_cpu_based_exec_control & CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) {
983 min = 0;
984 opt = SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
985 SECONDARY_EXEC_WBINVD_EXITING;
986 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PROCBASED_CTLS2,
987 &_cpu_based_2nd_exec_control) < 0)
988 return -EIO;
990 #ifndef CONFIG_X86_64
991 if (!(_cpu_based_2nd_exec_control &
992 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
993 _cpu_based_exec_control &= ~CPU_BASED_TPR_SHADOW;
994 #endif
996 min = 0;
997 #ifdef CONFIG_X86_64
998 min |= VM_EXIT_HOST_ADDR_SPACE_SIZE;
999 #endif
1000 opt = 0;
1001 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_EXIT_CTLS,
1002 &_vmexit_control) < 0)
1003 return -EIO;
1005 min = opt = 0;
1006 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_ENTRY_CTLS,
1007 &_vmentry_control) < 0)
1008 return -EIO;
1010 rdmsr(MSR_IA32_VMX_BASIC, vmx_msr_low, vmx_msr_high);
1012 /* IA-32 SDM Vol 3B: VMCS size is never greater than 4kB. */
1013 if ((vmx_msr_high & 0x1fff) > PAGE_SIZE)
1014 return -EIO;
1016 #ifdef CONFIG_X86_64
1017 /* IA-32 SDM Vol 3B: 64-bit CPUs always have VMX_BASIC_MSR[48]==0. */
1018 if (vmx_msr_high & (1u<<16))
1019 return -EIO;
1020 #endif
1022 /* Require Write-Back (WB) memory type for VMCS accesses. */
1023 if (((vmx_msr_high >> 18) & 15) != 6)
1024 return -EIO;
1026 vmcs_conf->size = vmx_msr_high & 0x1fff;
1027 vmcs_conf->order = get_order(vmcs_config.size);
1028 vmcs_conf->revision_id = vmx_msr_low;
1030 vmcs_conf->pin_based_exec_ctrl = _pin_based_exec_control;
1031 vmcs_conf->cpu_based_exec_ctrl = _cpu_based_exec_control;
1032 vmcs_conf->cpu_based_2nd_exec_ctrl = _cpu_based_2nd_exec_control;
1033 vmcs_conf->vmexit_ctrl = _vmexit_control;
1034 vmcs_conf->vmentry_ctrl = _vmentry_control;
1036 return 0;
1039 static struct vmcs *alloc_vmcs_cpu(int cpu)
1041 int node = cpu_to_node(cpu);
1042 struct page *pages;
1043 struct vmcs *vmcs;
1045 pages = alloc_pages_node(node, GFP_KERNEL, vmcs_config.order);
1046 if (!pages)
1047 return NULL;
1048 vmcs = page_address(pages);
1049 memset(vmcs, 0, vmcs_config.size);
1050 vmcs->revision_id = vmcs_config.revision_id; /* vmcs revision id */
1051 return vmcs;
1054 static struct vmcs *alloc_vmcs(void)
1056 return alloc_vmcs_cpu(raw_smp_processor_id());
1059 static void free_vmcs(struct vmcs *vmcs)
1061 free_pages((unsigned long)vmcs, vmcs_config.order);
1064 static void free_kvm_area(void)
1066 int cpu;
1068 for_each_online_cpu(cpu)
1069 free_vmcs(per_cpu(vmxarea, cpu));
1072 static __init int alloc_kvm_area(void)
1074 int cpu;
1076 for_each_online_cpu(cpu) {
1077 struct vmcs *vmcs;
1079 vmcs = alloc_vmcs_cpu(cpu);
1080 if (!vmcs) {
1081 free_kvm_area();
1082 return -ENOMEM;
1085 per_cpu(vmxarea, cpu) = vmcs;
1087 return 0;
1090 static __init int hardware_setup(void)
1092 if (setup_vmcs_config(&vmcs_config) < 0)
1093 return -EIO;
1094 return alloc_kvm_area();
1097 static __exit void hardware_unsetup(void)
1099 free_kvm_area();
1102 static void fix_pmode_dataseg(int seg, struct kvm_save_segment *save)
1104 struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
1106 if (vmcs_readl(sf->base) == save->base && (save->base & AR_S_MASK)) {
1107 vmcs_write16(sf->selector, save->selector);
1108 vmcs_writel(sf->base, save->base);
1109 vmcs_write32(sf->limit, save->limit);
1110 vmcs_write32(sf->ar_bytes, save->ar);
1111 } else {
1112 u32 dpl = (vmcs_read16(sf->selector) & SELECTOR_RPL_MASK)
1113 << AR_DPL_SHIFT;
1114 vmcs_write32(sf->ar_bytes, 0x93 | dpl);
1118 static void enter_pmode(struct kvm_vcpu *vcpu)
1120 unsigned long flags;
1122 vcpu->rmode.active = 0;
1124 vmcs_writel(GUEST_TR_BASE, vcpu->rmode.tr.base);
1125 vmcs_write32(GUEST_TR_LIMIT, vcpu->rmode.tr.limit);
1126 vmcs_write32(GUEST_TR_AR_BYTES, vcpu->rmode.tr.ar);
1128 flags = vmcs_readl(GUEST_RFLAGS);
1129 flags &= ~(X86_EFLAGS_IOPL | X86_EFLAGS_VM);
1130 flags |= (vcpu->rmode.save_iopl << IOPL_SHIFT);
1131 vmcs_writel(GUEST_RFLAGS, flags);
1133 vmcs_writel(GUEST_CR4, (vmcs_readl(GUEST_CR4) & ~X86_CR4_VME) |
1134 (vmcs_readl(CR4_READ_SHADOW) & X86_CR4_VME));
1136 update_exception_bitmap(vcpu);
1138 fix_pmode_dataseg(VCPU_SREG_ES, &vcpu->rmode.es);
1139 fix_pmode_dataseg(VCPU_SREG_DS, &vcpu->rmode.ds);
1140 fix_pmode_dataseg(VCPU_SREG_GS, &vcpu->rmode.gs);
1141 fix_pmode_dataseg(VCPU_SREG_FS, &vcpu->rmode.fs);
1143 vmcs_write16(GUEST_SS_SELECTOR, 0);
1144 vmcs_write32(GUEST_SS_AR_BYTES, 0x93);
1146 vmcs_write16(GUEST_CS_SELECTOR,
1147 vmcs_read16(GUEST_CS_SELECTOR) & ~SELECTOR_RPL_MASK);
1148 vmcs_write32(GUEST_CS_AR_BYTES, 0x9b);
1151 static gva_t rmode_tss_base(struct kvm *kvm)
1153 if (!kvm->tss_addr) {
1154 gfn_t base_gfn = kvm->memslots[0].base_gfn +
1155 kvm->memslots[0].npages - 3;
1156 return base_gfn << PAGE_SHIFT;
1158 return kvm->tss_addr;
1161 static void fix_rmode_seg(int seg, struct kvm_save_segment *save)
1163 struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
1165 save->selector = vmcs_read16(sf->selector);
1166 save->base = vmcs_readl(sf->base);
1167 save->limit = vmcs_read32(sf->limit);
1168 save->ar = vmcs_read32(sf->ar_bytes);
1169 vmcs_write16(sf->selector, save->base >> 4);
1170 vmcs_write32(sf->base, save->base & 0xfffff);
1171 vmcs_write32(sf->limit, 0xffff);
1172 vmcs_write32(sf->ar_bytes, 0xf3);
1175 static void enter_rmode(struct kvm_vcpu *vcpu)
1177 unsigned long flags;
1179 vcpu->rmode.active = 1;
1181 vcpu->rmode.tr.base = vmcs_readl(GUEST_TR_BASE);
1182 vmcs_writel(GUEST_TR_BASE, rmode_tss_base(vcpu->kvm));
1184 vcpu->rmode.tr.limit = vmcs_read32(GUEST_TR_LIMIT);
1185 vmcs_write32(GUEST_TR_LIMIT, RMODE_TSS_SIZE - 1);
1187 vcpu->rmode.tr.ar = vmcs_read32(GUEST_TR_AR_BYTES);
1188 vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
1190 flags = vmcs_readl(GUEST_RFLAGS);
1191 vcpu->rmode.save_iopl = (flags & X86_EFLAGS_IOPL) >> IOPL_SHIFT;
1193 flags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
1195 vmcs_writel(GUEST_RFLAGS, flags);
1196 vmcs_writel(GUEST_CR4, vmcs_readl(GUEST_CR4) | X86_CR4_VME);
1197 update_exception_bitmap(vcpu);
1199 vmcs_write16(GUEST_SS_SELECTOR, vmcs_readl(GUEST_SS_BASE) >> 4);
1200 vmcs_write32(GUEST_SS_LIMIT, 0xffff);
1201 vmcs_write32(GUEST_SS_AR_BYTES, 0xf3);
1203 vmcs_write32(GUEST_CS_AR_BYTES, 0xf3);
1204 vmcs_write32(GUEST_CS_LIMIT, 0xffff);
1205 if (vmcs_readl(GUEST_CS_BASE) == 0xffff0000)
1206 vmcs_writel(GUEST_CS_BASE, 0xf0000);
1207 vmcs_write16(GUEST_CS_SELECTOR, vmcs_readl(GUEST_CS_BASE) >> 4);
1209 fix_rmode_seg(VCPU_SREG_ES, &vcpu->rmode.es);
1210 fix_rmode_seg(VCPU_SREG_DS, &vcpu->rmode.ds);
1211 fix_rmode_seg(VCPU_SREG_GS, &vcpu->rmode.gs);
1212 fix_rmode_seg(VCPU_SREG_FS, &vcpu->rmode.fs);
1214 kvm_mmu_reset_context(vcpu);
1215 init_rmode_tss(vcpu->kvm);
1218 #ifdef CONFIG_X86_64
1220 static void enter_lmode(struct kvm_vcpu *vcpu)
1222 u32 guest_tr_ar;
1224 guest_tr_ar = vmcs_read32(GUEST_TR_AR_BYTES);
1225 if ((guest_tr_ar & AR_TYPE_MASK) != AR_TYPE_BUSY_64_TSS) {
1226 printk(KERN_DEBUG "%s: tss fixup for long mode. \n",
1227 __FUNCTION__);
1228 vmcs_write32(GUEST_TR_AR_BYTES,
1229 (guest_tr_ar & ~AR_TYPE_MASK)
1230 | AR_TYPE_BUSY_64_TSS);
1233 vcpu->shadow_efer |= EFER_LMA;
1235 find_msr_entry(to_vmx(vcpu), MSR_EFER)->data |= EFER_LMA | EFER_LME;
1236 vmcs_write32(VM_ENTRY_CONTROLS,
1237 vmcs_read32(VM_ENTRY_CONTROLS)
1238 | VM_ENTRY_IA32E_MODE);
1241 static void exit_lmode(struct kvm_vcpu *vcpu)
1243 vcpu->shadow_efer &= ~EFER_LMA;
1245 vmcs_write32(VM_ENTRY_CONTROLS,
1246 vmcs_read32(VM_ENTRY_CONTROLS)
1247 & ~VM_ENTRY_IA32E_MODE);
1250 #endif
1252 static void vmx_decache_cr4_guest_bits(struct kvm_vcpu *vcpu)
1254 vcpu->cr4 &= KVM_GUEST_CR4_MASK;
1255 vcpu->cr4 |= vmcs_readl(GUEST_CR4) & ~KVM_GUEST_CR4_MASK;
1258 static void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
1260 vmx_fpu_deactivate(vcpu);
1262 if (vcpu->rmode.active && (cr0 & X86_CR0_PE))
1263 enter_pmode(vcpu);
1265 if (!vcpu->rmode.active && !(cr0 & X86_CR0_PE))
1266 enter_rmode(vcpu);
1268 #ifdef CONFIG_X86_64
1269 if (vcpu->shadow_efer & EFER_LME) {
1270 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG))
1271 enter_lmode(vcpu);
1272 if (is_paging(vcpu) && !(cr0 & X86_CR0_PG))
1273 exit_lmode(vcpu);
1275 #endif
1277 vmcs_writel(CR0_READ_SHADOW, cr0);
1278 vmcs_writel(GUEST_CR0,
1279 (cr0 & ~KVM_GUEST_CR0_MASK) | KVM_VM_CR0_ALWAYS_ON);
1280 vcpu->cr0 = cr0;
1282 if (!(cr0 & X86_CR0_TS) || !(cr0 & X86_CR0_PE))
1283 vmx_fpu_activate(vcpu);
1286 static void vmx_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
1288 vmcs_writel(GUEST_CR3, cr3);
1289 if (vcpu->cr0 & X86_CR0_PE)
1290 vmx_fpu_deactivate(vcpu);
1293 static void vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1295 vmcs_writel(CR4_READ_SHADOW, cr4);
1296 vmcs_writel(GUEST_CR4, cr4 | (vcpu->rmode.active ?
1297 KVM_RMODE_VM_CR4_ALWAYS_ON : KVM_PMODE_VM_CR4_ALWAYS_ON));
1298 vcpu->cr4 = cr4;
1301 #ifdef CONFIG_X86_64
1303 static void vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer)
1305 struct vcpu_vmx *vmx = to_vmx(vcpu);
1306 struct kvm_msr_entry *msr = find_msr_entry(vmx, MSR_EFER);
1308 vcpu->shadow_efer = efer;
1309 if (efer & EFER_LMA) {
1310 vmcs_write32(VM_ENTRY_CONTROLS,
1311 vmcs_read32(VM_ENTRY_CONTROLS) |
1312 VM_ENTRY_IA32E_MODE);
1313 msr->data = efer;
1315 } else {
1316 vmcs_write32(VM_ENTRY_CONTROLS,
1317 vmcs_read32(VM_ENTRY_CONTROLS) &
1318 ~VM_ENTRY_IA32E_MODE);
1320 msr->data = efer & ~EFER_LME;
1322 setup_msrs(vmx);
1325 #endif
1327 static u64 vmx_get_segment_base(struct kvm_vcpu *vcpu, int seg)
1329 struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
1331 return vmcs_readl(sf->base);
1334 static void vmx_get_segment(struct kvm_vcpu *vcpu,
1335 struct kvm_segment *var, int seg)
1337 struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
1338 u32 ar;
1340 var->base = vmcs_readl(sf->base);
1341 var->limit = vmcs_read32(sf->limit);
1342 var->selector = vmcs_read16(sf->selector);
1343 ar = vmcs_read32(sf->ar_bytes);
1344 if (ar & AR_UNUSABLE_MASK)
1345 ar = 0;
1346 var->type = ar & 15;
1347 var->s = (ar >> 4) & 1;
1348 var->dpl = (ar >> 5) & 3;
1349 var->present = (ar >> 7) & 1;
1350 var->avl = (ar >> 12) & 1;
1351 var->l = (ar >> 13) & 1;
1352 var->db = (ar >> 14) & 1;
1353 var->g = (ar >> 15) & 1;
1354 var->unusable = (ar >> 16) & 1;
1357 static u32 vmx_segment_access_rights(struct kvm_segment *var)
1359 u32 ar;
1361 if (var->unusable)
1362 ar = 1 << 16;
1363 else {
1364 ar = var->type & 15;
1365 ar |= (var->s & 1) << 4;
1366 ar |= (var->dpl & 3) << 5;
1367 ar |= (var->present & 1) << 7;
1368 ar |= (var->avl & 1) << 12;
1369 ar |= (var->l & 1) << 13;
1370 ar |= (var->db & 1) << 14;
1371 ar |= (var->g & 1) << 15;
1373 if (ar == 0) /* a 0 value means unusable */
1374 ar = AR_UNUSABLE_MASK;
1376 return ar;
1379 static void vmx_set_segment(struct kvm_vcpu *vcpu,
1380 struct kvm_segment *var, int seg)
1382 struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
1383 u32 ar;
1385 if (vcpu->rmode.active && seg == VCPU_SREG_TR) {
1386 vcpu->rmode.tr.selector = var->selector;
1387 vcpu->rmode.tr.base = var->base;
1388 vcpu->rmode.tr.limit = var->limit;
1389 vcpu->rmode.tr.ar = vmx_segment_access_rights(var);
1390 return;
1392 vmcs_writel(sf->base, var->base);
1393 vmcs_write32(sf->limit, var->limit);
1394 vmcs_write16(sf->selector, var->selector);
1395 if (vcpu->rmode.active && var->s) {
1397 * Hack real-mode segments into vm86 compatibility.
1399 if (var->base == 0xffff0000 && var->selector == 0xf000)
1400 vmcs_writel(sf->base, 0xf0000);
1401 ar = 0xf3;
1402 } else
1403 ar = vmx_segment_access_rights(var);
1404 vmcs_write32(sf->ar_bytes, ar);
1407 static void vmx_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
1409 u32 ar = vmcs_read32(GUEST_CS_AR_BYTES);
1411 *db = (ar >> 14) & 1;
1412 *l = (ar >> 13) & 1;
1415 static void vmx_get_idt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
1417 dt->limit = vmcs_read32(GUEST_IDTR_LIMIT);
1418 dt->base = vmcs_readl(GUEST_IDTR_BASE);
1421 static void vmx_set_idt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
1423 vmcs_write32(GUEST_IDTR_LIMIT, dt->limit);
1424 vmcs_writel(GUEST_IDTR_BASE, dt->base);
1427 static void vmx_get_gdt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
1429 dt->limit = vmcs_read32(GUEST_GDTR_LIMIT);
1430 dt->base = vmcs_readl(GUEST_GDTR_BASE);
1433 static void vmx_set_gdt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
1435 vmcs_write32(GUEST_GDTR_LIMIT, dt->limit);
1436 vmcs_writel(GUEST_GDTR_BASE, dt->base);
1439 static int init_rmode_tss(struct kvm *kvm)
1441 gfn_t fn = rmode_tss_base(kvm) >> PAGE_SHIFT;
1442 u16 data = 0;
1443 int r;
1445 r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
1446 if (r < 0)
1447 return 0;
1448 data = TSS_BASE_SIZE + TSS_REDIRECTION_SIZE;
1449 r = kvm_write_guest_page(kvm, fn++, &data, 0x66, sizeof(u16));
1450 if (r < 0)
1451 return 0;
1452 r = kvm_clear_guest_page(kvm, fn++, 0, PAGE_SIZE);
1453 if (r < 0)
1454 return 0;
1455 r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
1456 if (r < 0)
1457 return 0;
1458 data = ~0;
1459 r = kvm_write_guest_page(kvm, fn, &data, RMODE_TSS_SIZE - 2 * PAGE_SIZE - 1,
1460 sizeof(u8));
1461 if (r < 0)
1462 return 0;
1463 return 1;
1466 static void seg_setup(int seg)
1468 struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
1470 vmcs_write16(sf->selector, 0);
1471 vmcs_writel(sf->base, 0);
1472 vmcs_write32(sf->limit, 0xffff);
1473 vmcs_write32(sf->ar_bytes, 0x93);
1476 static int alloc_apic_access_page(struct kvm *kvm)
1478 struct kvm_userspace_memory_region kvm_userspace_mem;
1479 int r = 0;
1481 mutex_lock(&kvm->lock);
1482 if (kvm->apic_access_page)
1483 goto out;
1484 kvm_userspace_mem.slot = APIC_ACCESS_PAGE_PRIVATE_MEMSLOT;
1485 kvm_userspace_mem.flags = 0;
1486 kvm_userspace_mem.guest_phys_addr = 0xfee00000ULL;
1487 kvm_userspace_mem.memory_size = PAGE_SIZE;
1488 r = __kvm_set_memory_region(kvm, &kvm_userspace_mem, 0);
1489 if (r)
1490 goto out;
1491 kvm->apic_access_page = gfn_to_page(kvm, 0xfee00);
1492 out:
1493 mutex_unlock(&kvm->lock);
1494 return r;
1498 * Sets up the vmcs for emulated real mode.
1500 static int vmx_vcpu_setup(struct vcpu_vmx *vmx)
1502 u32 host_sysenter_cs;
1503 u32 junk;
1504 unsigned long a;
1505 struct descriptor_table dt;
1506 int i;
1507 unsigned long kvm_vmx_return;
1508 u32 exec_control;
1510 /* I/O */
1511 vmcs_write64(IO_BITMAP_A, page_to_phys(vmx_io_bitmap_a));
1512 vmcs_write64(IO_BITMAP_B, page_to_phys(vmx_io_bitmap_b));
1514 vmcs_write64(VMCS_LINK_POINTER, -1ull); /* 22.3.1.5 */
1516 /* Control */
1517 vmcs_write32(PIN_BASED_VM_EXEC_CONTROL,
1518 vmcs_config.pin_based_exec_ctrl);
1520 exec_control = vmcs_config.cpu_based_exec_ctrl;
1521 if (!vm_need_tpr_shadow(vmx->vcpu.kvm)) {
1522 exec_control &= ~CPU_BASED_TPR_SHADOW;
1523 #ifdef CONFIG_X86_64
1524 exec_control |= CPU_BASED_CR8_STORE_EXITING |
1525 CPU_BASED_CR8_LOAD_EXITING;
1526 #endif
1528 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, exec_control);
1530 if (cpu_has_secondary_exec_ctrls()) {
1531 exec_control = vmcs_config.cpu_based_2nd_exec_ctrl;
1532 if (!vm_need_virtualize_apic_accesses(vmx->vcpu.kvm))
1533 exec_control &=
1534 ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
1535 vmcs_write32(SECONDARY_VM_EXEC_CONTROL, exec_control);
1538 vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, !!bypass_guest_pf);
1539 vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, !!bypass_guest_pf);
1540 vmcs_write32(CR3_TARGET_COUNT, 0); /* 22.2.1 */
1542 vmcs_writel(HOST_CR0, read_cr0()); /* 22.2.3 */
1543 vmcs_writel(HOST_CR4, read_cr4()); /* 22.2.3, 22.2.5 */
1544 vmcs_writel(HOST_CR3, read_cr3()); /* 22.2.3 FIXME: shadow tables */
1546 vmcs_write16(HOST_CS_SELECTOR, __KERNEL_CS); /* 22.2.4 */
1547 vmcs_write16(HOST_DS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
1548 vmcs_write16(HOST_ES_SELECTOR, __KERNEL_DS); /* 22.2.4 */
1549 vmcs_write16(HOST_FS_SELECTOR, read_fs()); /* 22.2.4 */
1550 vmcs_write16(HOST_GS_SELECTOR, read_gs()); /* 22.2.4 */
1551 vmcs_write16(HOST_SS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
1552 #ifdef CONFIG_X86_64
1553 rdmsrl(MSR_FS_BASE, a);
1554 vmcs_writel(HOST_FS_BASE, a); /* 22.2.4 */
1555 rdmsrl(MSR_GS_BASE, a);
1556 vmcs_writel(HOST_GS_BASE, a); /* 22.2.4 */
1557 #else
1558 vmcs_writel(HOST_FS_BASE, 0); /* 22.2.4 */
1559 vmcs_writel(HOST_GS_BASE, 0); /* 22.2.4 */
1560 #endif
1562 vmcs_write16(HOST_TR_SELECTOR, GDT_ENTRY_TSS*8); /* 22.2.4 */
1564 get_idt(&dt);
1565 vmcs_writel(HOST_IDTR_BASE, dt.base); /* 22.2.4 */
1567 asm("mov $.Lkvm_vmx_return, %0" : "=r"(kvm_vmx_return));
1568 vmcs_writel(HOST_RIP, kvm_vmx_return); /* 22.2.5 */
1569 vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0);
1570 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0);
1571 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0);
1573 rdmsr(MSR_IA32_SYSENTER_CS, host_sysenter_cs, junk);
1574 vmcs_write32(HOST_IA32_SYSENTER_CS, host_sysenter_cs);
1575 rdmsrl(MSR_IA32_SYSENTER_ESP, a);
1576 vmcs_writel(HOST_IA32_SYSENTER_ESP, a); /* 22.2.3 */
1577 rdmsrl(MSR_IA32_SYSENTER_EIP, a);
1578 vmcs_writel(HOST_IA32_SYSENTER_EIP, a); /* 22.2.3 */
1580 for (i = 0; i < NR_VMX_MSR; ++i) {
1581 u32 index = vmx_msr_index[i];
1582 u32 data_low, data_high;
1583 u64 data;
1584 int j = vmx->nmsrs;
1586 if (rdmsr_safe(index, &data_low, &data_high) < 0)
1587 continue;
1588 if (wrmsr_safe(index, data_low, data_high) < 0)
1589 continue;
1590 data = data_low | ((u64)data_high << 32);
1591 vmx->host_msrs[j].index = index;
1592 vmx->host_msrs[j].reserved = 0;
1593 vmx->host_msrs[j].data = data;
1594 vmx->guest_msrs[j] = vmx->host_msrs[j];
1595 ++vmx->nmsrs;
1598 vmcs_write32(VM_EXIT_CONTROLS, vmcs_config.vmexit_ctrl);
1600 /* 22.2.1, 20.8.1 */
1601 vmcs_write32(VM_ENTRY_CONTROLS, vmcs_config.vmentry_ctrl);
1603 vmcs_writel(CR0_GUEST_HOST_MASK, ~0UL);
1604 vmcs_writel(CR4_GUEST_HOST_MASK, KVM_GUEST_CR4_MASK);
1606 if (vm_need_virtualize_apic_accesses(vmx->vcpu.kvm))
1607 if (alloc_apic_access_page(vmx->vcpu.kvm) != 0)
1608 return -ENOMEM;
1610 return 0;
1613 static int vmx_vcpu_reset(struct kvm_vcpu *vcpu)
1615 struct vcpu_vmx *vmx = to_vmx(vcpu);
1616 u64 msr;
1617 int ret;
1619 if (!init_rmode_tss(vmx->vcpu.kvm)) {
1620 ret = -ENOMEM;
1621 goto out;
1624 vmx->vcpu.rmode.active = 0;
1626 vmx->vcpu.regs[VCPU_REGS_RDX] = get_rdx_init_val();
1627 set_cr8(&vmx->vcpu, 0);
1628 msr = 0xfee00000 | MSR_IA32_APICBASE_ENABLE;
1629 if (vmx->vcpu.vcpu_id == 0)
1630 msr |= MSR_IA32_APICBASE_BSP;
1631 kvm_set_apic_base(&vmx->vcpu, msr);
1633 fx_init(&vmx->vcpu);
1636 * GUEST_CS_BASE should really be 0xffff0000, but VT vm86 mode
1637 * insists on having GUEST_CS_BASE == GUEST_CS_SELECTOR << 4. Sigh.
1639 if (vmx->vcpu.vcpu_id == 0) {
1640 vmcs_write16(GUEST_CS_SELECTOR, 0xf000);
1641 vmcs_writel(GUEST_CS_BASE, 0x000f0000);
1642 } else {
1643 vmcs_write16(GUEST_CS_SELECTOR, vmx->vcpu.sipi_vector << 8);
1644 vmcs_writel(GUEST_CS_BASE, vmx->vcpu.sipi_vector << 12);
1646 vmcs_write32(GUEST_CS_LIMIT, 0xffff);
1647 vmcs_write32(GUEST_CS_AR_BYTES, 0x9b);
1649 seg_setup(VCPU_SREG_DS);
1650 seg_setup(VCPU_SREG_ES);
1651 seg_setup(VCPU_SREG_FS);
1652 seg_setup(VCPU_SREG_GS);
1653 seg_setup(VCPU_SREG_SS);
1655 vmcs_write16(GUEST_TR_SELECTOR, 0);
1656 vmcs_writel(GUEST_TR_BASE, 0);
1657 vmcs_write32(GUEST_TR_LIMIT, 0xffff);
1658 vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
1660 vmcs_write16(GUEST_LDTR_SELECTOR, 0);
1661 vmcs_writel(GUEST_LDTR_BASE, 0);
1662 vmcs_write32(GUEST_LDTR_LIMIT, 0xffff);
1663 vmcs_write32(GUEST_LDTR_AR_BYTES, 0x00082);
1665 vmcs_write32(GUEST_SYSENTER_CS, 0);
1666 vmcs_writel(GUEST_SYSENTER_ESP, 0);
1667 vmcs_writel(GUEST_SYSENTER_EIP, 0);
1669 vmcs_writel(GUEST_RFLAGS, 0x02);
1670 if (vmx->vcpu.vcpu_id == 0)
1671 vmcs_writel(GUEST_RIP, 0xfff0);
1672 else
1673 vmcs_writel(GUEST_RIP, 0);
1674 vmcs_writel(GUEST_RSP, 0);
1676 /* todo: dr0 = dr1 = dr2 = dr3 = 0; dr6 = 0xffff0ff0 */
1677 vmcs_writel(GUEST_DR7, 0x400);
1679 vmcs_writel(GUEST_GDTR_BASE, 0);
1680 vmcs_write32(GUEST_GDTR_LIMIT, 0xffff);
1682 vmcs_writel(GUEST_IDTR_BASE, 0);
1683 vmcs_write32(GUEST_IDTR_LIMIT, 0xffff);
1685 vmcs_write32(GUEST_ACTIVITY_STATE, 0);
1686 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, 0);
1687 vmcs_write32(GUEST_PENDING_DBG_EXCEPTIONS, 0);
1689 guest_write_tsc(0);
1691 /* Special registers */
1692 vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
1694 setup_msrs(vmx);
1696 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0); /* 22.2.1 */
1698 if (cpu_has_vmx_tpr_shadow()) {
1699 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, 0);
1700 if (vm_need_tpr_shadow(vmx->vcpu.kvm))
1701 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR,
1702 page_to_phys(vmx->vcpu.apic->regs_page));
1703 vmcs_write32(TPR_THRESHOLD, 0);
1706 if (vm_need_virtualize_apic_accesses(vmx->vcpu.kvm))
1707 vmcs_write64(APIC_ACCESS_ADDR,
1708 page_to_phys(vmx->vcpu.kvm->apic_access_page));
1710 vmx->vcpu.cr0 = 0x60000010;
1711 vmx_set_cr0(&vmx->vcpu, vmx->vcpu.cr0); /* enter rmode */
1712 vmx_set_cr4(&vmx->vcpu, 0);
1713 #ifdef CONFIG_X86_64
1714 vmx_set_efer(&vmx->vcpu, 0);
1715 #endif
1716 vmx_fpu_activate(&vmx->vcpu);
1717 update_exception_bitmap(&vmx->vcpu);
1719 return 0;
1721 out:
1722 return ret;
1725 static void vmx_inject_irq(struct kvm_vcpu *vcpu, int irq)
1727 struct vcpu_vmx *vmx = to_vmx(vcpu);
1729 if (vcpu->rmode.active) {
1730 vmx->rmode.irq.pending = true;
1731 vmx->rmode.irq.vector = irq;
1732 vmx->rmode.irq.rip = vmcs_readl(GUEST_RIP);
1733 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
1734 irq | INTR_TYPE_SOFT_INTR | INTR_INFO_VALID_MASK);
1735 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN, 1);
1736 vmcs_writel(GUEST_RIP, vmx->rmode.irq.rip - 1);
1737 return;
1739 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
1740 irq | INTR_TYPE_EXT_INTR | INTR_INFO_VALID_MASK);
1743 static void kvm_do_inject_irq(struct kvm_vcpu *vcpu)
1745 int word_index = __ffs(vcpu->irq_summary);
1746 int bit_index = __ffs(vcpu->irq_pending[word_index]);
1747 int irq = word_index * BITS_PER_LONG + bit_index;
1749 clear_bit(bit_index, &vcpu->irq_pending[word_index]);
1750 if (!vcpu->irq_pending[word_index])
1751 clear_bit(word_index, &vcpu->irq_summary);
1752 vmx_inject_irq(vcpu, irq);
1756 static void do_interrupt_requests(struct kvm_vcpu *vcpu,
1757 struct kvm_run *kvm_run)
1759 u32 cpu_based_vm_exec_control;
1761 vcpu->interrupt_window_open =
1762 ((vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF) &&
1763 (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & 3) == 0);
1765 if (vcpu->interrupt_window_open &&
1766 vcpu->irq_summary &&
1767 !(vmcs_read32(VM_ENTRY_INTR_INFO_FIELD) & INTR_INFO_VALID_MASK))
1769 * If interrupts enabled, and not blocked by sti or mov ss. Good.
1771 kvm_do_inject_irq(vcpu);
1773 cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
1774 if (!vcpu->interrupt_window_open &&
1775 (vcpu->irq_summary || kvm_run->request_interrupt_window))
1777 * Interrupts blocked. Wait for unblock.
1779 cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_INTR_PENDING;
1780 else
1781 cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING;
1782 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
1785 static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr)
1787 int ret;
1788 struct kvm_userspace_memory_region tss_mem = {
1789 .slot = 8,
1790 .guest_phys_addr = addr,
1791 .memory_size = PAGE_SIZE * 3,
1792 .flags = 0,
1795 ret = kvm_set_memory_region(kvm, &tss_mem, 0);
1796 if (ret)
1797 return ret;
1798 kvm->tss_addr = addr;
1799 return 0;
1802 static void kvm_guest_debug_pre(struct kvm_vcpu *vcpu)
1804 struct kvm_guest_debug *dbg = &vcpu->guest_debug;
1806 set_debugreg(dbg->bp[0], 0);
1807 set_debugreg(dbg->bp[1], 1);
1808 set_debugreg(dbg->bp[2], 2);
1809 set_debugreg(dbg->bp[3], 3);
1811 if (dbg->singlestep) {
1812 unsigned long flags;
1814 flags = vmcs_readl(GUEST_RFLAGS);
1815 flags |= X86_EFLAGS_TF | X86_EFLAGS_RF;
1816 vmcs_writel(GUEST_RFLAGS, flags);
1820 static int handle_rmode_exception(struct kvm_vcpu *vcpu,
1821 int vec, u32 err_code)
1823 if (!vcpu->rmode.active)
1824 return 0;
1827 * Instruction with address size override prefix opcode 0x67
1828 * Cause the #SS fault with 0 error code in VM86 mode.
1830 if (((vec == GP_VECTOR) || (vec == SS_VECTOR)) && err_code == 0)
1831 if (emulate_instruction(vcpu, NULL, 0, 0, 0) == EMULATE_DONE)
1832 return 1;
1833 return 0;
1836 static int handle_exception(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1838 struct vcpu_vmx *vmx = to_vmx(vcpu);
1839 u32 intr_info, error_code;
1840 unsigned long cr2, rip;
1841 u32 vect_info;
1842 enum emulation_result er;
1844 vect_info = vmx->idt_vectoring_info;
1845 intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
1847 if ((vect_info & VECTORING_INFO_VALID_MASK) &&
1848 !is_page_fault(intr_info))
1849 printk(KERN_ERR "%s: unexpected, vectoring info 0x%x "
1850 "intr info 0x%x\n", __FUNCTION__, vect_info, intr_info);
1852 if (!irqchip_in_kernel(vcpu->kvm) && is_external_interrupt(vect_info)) {
1853 int irq = vect_info & VECTORING_INFO_VECTOR_MASK;
1854 set_bit(irq, vcpu->irq_pending);
1855 set_bit(irq / BITS_PER_LONG, &vcpu->irq_summary);
1858 if ((intr_info & INTR_INFO_INTR_TYPE_MASK) == 0x200) /* nmi */
1859 return 1; /* already handled by vmx_vcpu_run() */
1861 if (is_no_device(intr_info)) {
1862 vmx_fpu_activate(vcpu);
1863 return 1;
1866 if (is_invalid_opcode(intr_info)) {
1867 er = emulate_instruction(vcpu, kvm_run, 0, 0, 0);
1868 if (er != EMULATE_DONE)
1869 vmx_inject_ud(vcpu);
1871 return 1;
1874 error_code = 0;
1875 rip = vmcs_readl(GUEST_RIP);
1876 if (intr_info & INTR_INFO_DELIEVER_CODE_MASK)
1877 error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
1878 if (is_page_fault(intr_info)) {
1879 cr2 = vmcs_readl(EXIT_QUALIFICATION);
1880 return kvm_mmu_page_fault(vcpu, cr2, error_code);
1883 if (vcpu->rmode.active &&
1884 handle_rmode_exception(vcpu, intr_info & INTR_INFO_VECTOR_MASK,
1885 error_code)) {
1886 if (vcpu->halt_request) {
1887 vcpu->halt_request = 0;
1888 return kvm_emulate_halt(vcpu);
1890 return 1;
1893 if ((intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK)) ==
1894 (INTR_TYPE_EXCEPTION | 1)) {
1895 kvm_run->exit_reason = KVM_EXIT_DEBUG;
1896 return 0;
1898 kvm_run->exit_reason = KVM_EXIT_EXCEPTION;
1899 kvm_run->ex.exception = intr_info & INTR_INFO_VECTOR_MASK;
1900 kvm_run->ex.error_code = error_code;
1901 return 0;
1904 static int handle_external_interrupt(struct kvm_vcpu *vcpu,
1905 struct kvm_run *kvm_run)
1907 ++vcpu->stat.irq_exits;
1908 return 1;
1911 static int handle_triple_fault(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1913 kvm_run->exit_reason = KVM_EXIT_SHUTDOWN;
1914 return 0;
1917 static int handle_io(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1919 unsigned long exit_qualification;
1920 int size, down, in, string, rep;
1921 unsigned port;
1923 ++vcpu->stat.io_exits;
1924 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
1925 string = (exit_qualification & 16) != 0;
1927 if (string) {
1928 if (emulate_instruction(vcpu,
1929 kvm_run, 0, 0, 0) == EMULATE_DO_MMIO)
1930 return 0;
1931 return 1;
1934 size = (exit_qualification & 7) + 1;
1935 in = (exit_qualification & 8) != 0;
1936 down = (vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_DF) != 0;
1937 rep = (exit_qualification & 32) != 0;
1938 port = exit_qualification >> 16;
1940 return kvm_emulate_pio(vcpu, kvm_run, in, size, port);
1943 static void
1944 vmx_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
1947 * Patch in the VMCALL instruction:
1949 hypercall[0] = 0x0f;
1950 hypercall[1] = 0x01;
1951 hypercall[2] = 0xc1;
1954 static int handle_cr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1956 unsigned long exit_qualification;
1957 int cr;
1958 int reg;
1960 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
1961 cr = exit_qualification & 15;
1962 reg = (exit_qualification >> 8) & 15;
1963 switch ((exit_qualification >> 4) & 3) {
1964 case 0: /* mov to cr */
1965 switch (cr) {
1966 case 0:
1967 vcpu_load_rsp_rip(vcpu);
1968 set_cr0(vcpu, vcpu->regs[reg]);
1969 skip_emulated_instruction(vcpu);
1970 return 1;
1971 case 3:
1972 vcpu_load_rsp_rip(vcpu);
1973 set_cr3(vcpu, vcpu->regs[reg]);
1974 skip_emulated_instruction(vcpu);
1975 return 1;
1976 case 4:
1977 vcpu_load_rsp_rip(vcpu);
1978 set_cr4(vcpu, vcpu->regs[reg]);
1979 skip_emulated_instruction(vcpu);
1980 return 1;
1981 case 8:
1982 vcpu_load_rsp_rip(vcpu);
1983 set_cr8(vcpu, vcpu->regs[reg]);
1984 skip_emulated_instruction(vcpu);
1985 kvm_run->exit_reason = KVM_EXIT_SET_TPR;
1986 return 0;
1988 break;
1989 case 2: /* clts */
1990 vcpu_load_rsp_rip(vcpu);
1991 vmx_fpu_deactivate(vcpu);
1992 vcpu->cr0 &= ~X86_CR0_TS;
1993 vmcs_writel(CR0_READ_SHADOW, vcpu->cr0);
1994 vmx_fpu_activate(vcpu);
1995 skip_emulated_instruction(vcpu);
1996 return 1;
1997 case 1: /*mov from cr*/
1998 switch (cr) {
1999 case 3:
2000 vcpu_load_rsp_rip(vcpu);
2001 vcpu->regs[reg] = vcpu->cr3;
2002 vcpu_put_rsp_rip(vcpu);
2003 skip_emulated_instruction(vcpu);
2004 return 1;
2005 case 8:
2006 vcpu_load_rsp_rip(vcpu);
2007 vcpu->regs[reg] = get_cr8(vcpu);
2008 vcpu_put_rsp_rip(vcpu);
2009 skip_emulated_instruction(vcpu);
2010 return 1;
2012 break;
2013 case 3: /* lmsw */
2014 lmsw(vcpu, (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f);
2016 skip_emulated_instruction(vcpu);
2017 return 1;
2018 default:
2019 break;
2021 kvm_run->exit_reason = 0;
2022 pr_unimpl(vcpu, "unhandled control register: op %d cr %d\n",
2023 (int)(exit_qualification >> 4) & 3, cr);
2024 return 0;
2027 static int handle_dr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2029 unsigned long exit_qualification;
2030 unsigned long val;
2031 int dr, reg;
2034 * FIXME: this code assumes the host is debugging the guest.
2035 * need to deal with guest debugging itself too.
2037 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
2038 dr = exit_qualification & 7;
2039 reg = (exit_qualification >> 8) & 15;
2040 vcpu_load_rsp_rip(vcpu);
2041 if (exit_qualification & 16) {
2042 /* mov from dr */
2043 switch (dr) {
2044 case 6:
2045 val = 0xffff0ff0;
2046 break;
2047 case 7:
2048 val = 0x400;
2049 break;
2050 default:
2051 val = 0;
2053 vcpu->regs[reg] = val;
2054 } else {
2055 /* mov to dr */
2057 vcpu_put_rsp_rip(vcpu);
2058 skip_emulated_instruction(vcpu);
2059 return 1;
2062 static int handle_cpuid(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2064 kvm_emulate_cpuid(vcpu);
2065 return 1;
2068 static int handle_rdmsr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2070 u32 ecx = vcpu->regs[VCPU_REGS_RCX];
2071 u64 data;
2073 if (vmx_get_msr(vcpu, ecx, &data)) {
2074 kvm_inject_gp(vcpu, 0);
2075 return 1;
2078 /* FIXME: handling of bits 32:63 of rax, rdx */
2079 vcpu->regs[VCPU_REGS_RAX] = data & -1u;
2080 vcpu->regs[VCPU_REGS_RDX] = (data >> 32) & -1u;
2081 skip_emulated_instruction(vcpu);
2082 return 1;
2085 static int handle_wrmsr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2087 u32 ecx = vcpu->regs[VCPU_REGS_RCX];
2088 u64 data = (vcpu->regs[VCPU_REGS_RAX] & -1u)
2089 | ((u64)(vcpu->regs[VCPU_REGS_RDX] & -1u) << 32);
2091 if (vmx_set_msr(vcpu, ecx, data) != 0) {
2092 kvm_inject_gp(vcpu, 0);
2093 return 1;
2096 skip_emulated_instruction(vcpu);
2097 return 1;
2100 static int handle_tpr_below_threshold(struct kvm_vcpu *vcpu,
2101 struct kvm_run *kvm_run)
2103 return 1;
2106 static int handle_interrupt_window(struct kvm_vcpu *vcpu,
2107 struct kvm_run *kvm_run)
2109 u32 cpu_based_vm_exec_control;
2111 /* clear pending irq */
2112 cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
2113 cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING;
2114 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
2116 * If the user space waits to inject interrupts, exit as soon as
2117 * possible
2119 if (kvm_run->request_interrupt_window &&
2120 !vcpu->irq_summary) {
2121 kvm_run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
2122 ++vcpu->stat.irq_window_exits;
2123 return 0;
2125 return 1;
2128 static int handle_halt(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2130 skip_emulated_instruction(vcpu);
2131 return kvm_emulate_halt(vcpu);
2134 static int handle_vmcall(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2136 skip_emulated_instruction(vcpu);
2137 kvm_emulate_hypercall(vcpu);
2138 return 1;
2141 static int handle_wbinvd(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2143 skip_emulated_instruction(vcpu);
2144 /* TODO: Add support for VT-d/pass-through device */
2145 return 1;
2148 static int handle_apic_access(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2150 u64 exit_qualification;
2151 enum emulation_result er;
2152 unsigned long offset;
2154 exit_qualification = vmcs_read64(EXIT_QUALIFICATION);
2155 offset = exit_qualification & 0xffful;
2157 er = emulate_instruction(vcpu, kvm_run, 0, 0, 0);
2159 if (er != EMULATE_DONE) {
2160 printk(KERN_ERR
2161 "Fail to handle apic access vmexit! Offset is 0x%lx\n",
2162 offset);
2163 return -ENOTSUPP;
2165 return 1;
2169 * The exit handlers return 1 if the exit was handled fully and guest execution
2170 * may resume. Otherwise they set the kvm_run parameter to indicate what needs
2171 * to be done to userspace and return 0.
2173 static int (*kvm_vmx_exit_handlers[])(struct kvm_vcpu *vcpu,
2174 struct kvm_run *kvm_run) = {
2175 [EXIT_REASON_EXCEPTION_NMI] = handle_exception,
2176 [EXIT_REASON_EXTERNAL_INTERRUPT] = handle_external_interrupt,
2177 [EXIT_REASON_TRIPLE_FAULT] = handle_triple_fault,
2178 [EXIT_REASON_IO_INSTRUCTION] = handle_io,
2179 [EXIT_REASON_CR_ACCESS] = handle_cr,
2180 [EXIT_REASON_DR_ACCESS] = handle_dr,
2181 [EXIT_REASON_CPUID] = handle_cpuid,
2182 [EXIT_REASON_MSR_READ] = handle_rdmsr,
2183 [EXIT_REASON_MSR_WRITE] = handle_wrmsr,
2184 [EXIT_REASON_PENDING_INTERRUPT] = handle_interrupt_window,
2185 [EXIT_REASON_HLT] = handle_halt,
2186 [EXIT_REASON_VMCALL] = handle_vmcall,
2187 [EXIT_REASON_TPR_BELOW_THRESHOLD] = handle_tpr_below_threshold,
2188 [EXIT_REASON_APIC_ACCESS] = handle_apic_access,
2189 [EXIT_REASON_WBINVD] = handle_wbinvd,
2192 static const int kvm_vmx_max_exit_handlers =
2193 ARRAY_SIZE(kvm_vmx_exit_handlers);
2196 * The guest has exited. See if we can fix it or if we need userspace
2197 * assistance.
2199 static int kvm_handle_exit(struct kvm_run *kvm_run, struct kvm_vcpu *vcpu)
2201 u32 exit_reason = vmcs_read32(VM_EXIT_REASON);
2202 struct vcpu_vmx *vmx = to_vmx(vcpu);
2203 u32 vectoring_info = vmx->idt_vectoring_info;
2205 if (unlikely(vmx->fail)) {
2206 kvm_run->exit_reason = KVM_EXIT_FAIL_ENTRY;
2207 kvm_run->fail_entry.hardware_entry_failure_reason
2208 = vmcs_read32(VM_INSTRUCTION_ERROR);
2209 return 0;
2212 if ((vectoring_info & VECTORING_INFO_VALID_MASK) &&
2213 exit_reason != EXIT_REASON_EXCEPTION_NMI)
2214 printk(KERN_WARNING "%s: unexpected, valid vectoring info and "
2215 "exit reason is 0x%x\n", __FUNCTION__, exit_reason);
2216 if (exit_reason < kvm_vmx_max_exit_handlers
2217 && kvm_vmx_exit_handlers[exit_reason])
2218 return kvm_vmx_exit_handlers[exit_reason](vcpu, kvm_run);
2219 else {
2220 kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
2221 kvm_run->hw.hardware_exit_reason = exit_reason;
2223 return 0;
2226 static void vmx_flush_tlb(struct kvm_vcpu *vcpu)
2230 static void update_tpr_threshold(struct kvm_vcpu *vcpu)
2232 int max_irr, tpr;
2234 if (!vm_need_tpr_shadow(vcpu->kvm))
2235 return;
2237 if (!kvm_lapic_enabled(vcpu) ||
2238 ((max_irr = kvm_lapic_find_highest_irr(vcpu)) == -1)) {
2239 vmcs_write32(TPR_THRESHOLD, 0);
2240 return;
2243 tpr = (kvm_lapic_get_cr8(vcpu) & 0x0f) << 4;
2244 vmcs_write32(TPR_THRESHOLD, (max_irr > tpr) ? tpr >> 4 : max_irr >> 4);
2247 static void enable_irq_window(struct kvm_vcpu *vcpu)
2249 u32 cpu_based_vm_exec_control;
2251 cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
2252 cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_INTR_PENDING;
2253 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
2256 static void vmx_intr_assist(struct kvm_vcpu *vcpu)
2258 struct vcpu_vmx *vmx = to_vmx(vcpu);
2259 u32 idtv_info_field, intr_info_field;
2260 int has_ext_irq, interrupt_window_open;
2261 int vector;
2263 update_tpr_threshold(vcpu);
2265 has_ext_irq = kvm_cpu_has_interrupt(vcpu);
2266 intr_info_field = vmcs_read32(VM_ENTRY_INTR_INFO_FIELD);
2267 idtv_info_field = vmx->idt_vectoring_info;
2268 if (intr_info_field & INTR_INFO_VALID_MASK) {
2269 if (idtv_info_field & INTR_INFO_VALID_MASK) {
2270 /* TODO: fault when IDT_Vectoring */
2271 printk(KERN_ERR "Fault when IDT_Vectoring\n");
2273 if (has_ext_irq)
2274 enable_irq_window(vcpu);
2275 return;
2277 if (unlikely(idtv_info_field & INTR_INFO_VALID_MASK)) {
2278 if ((idtv_info_field & VECTORING_INFO_TYPE_MASK)
2279 == INTR_TYPE_EXT_INTR
2280 && vcpu->rmode.active) {
2281 u8 vect = idtv_info_field & VECTORING_INFO_VECTOR_MASK;
2283 vmx_inject_irq(vcpu, vect);
2284 if (unlikely(has_ext_irq))
2285 enable_irq_window(vcpu);
2286 return;
2289 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, idtv_info_field);
2290 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
2291 vmcs_read32(VM_EXIT_INSTRUCTION_LEN));
2293 if (unlikely(idtv_info_field & INTR_INFO_DELIEVER_CODE_MASK))
2294 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE,
2295 vmcs_read32(IDT_VECTORING_ERROR_CODE));
2296 if (unlikely(has_ext_irq))
2297 enable_irq_window(vcpu);
2298 return;
2300 if (!has_ext_irq)
2301 return;
2302 interrupt_window_open =
2303 ((vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF) &&
2304 (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & 3) == 0);
2305 if (interrupt_window_open) {
2306 vector = kvm_cpu_get_interrupt(vcpu);
2307 vmx_inject_irq(vcpu, vector);
2308 kvm_timer_intr_post(vcpu, vector);
2309 } else
2310 enable_irq_window(vcpu);
2314 * Failure to inject an interrupt should give us the information
2315 * in IDT_VECTORING_INFO_FIELD. However, if the failure occurs
2316 * when fetching the interrupt redirection bitmap in the real-mode
2317 * tss, this doesn't happen. So we do it ourselves.
2319 static void fixup_rmode_irq(struct vcpu_vmx *vmx)
2321 vmx->rmode.irq.pending = 0;
2322 if (vmcs_readl(GUEST_RIP) + 1 != vmx->rmode.irq.rip)
2323 return;
2324 vmcs_writel(GUEST_RIP, vmx->rmode.irq.rip);
2325 if (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK) {
2326 vmx->idt_vectoring_info &= ~VECTORING_INFO_TYPE_MASK;
2327 vmx->idt_vectoring_info |= INTR_TYPE_EXT_INTR;
2328 return;
2330 vmx->idt_vectoring_info =
2331 VECTORING_INFO_VALID_MASK
2332 | INTR_TYPE_EXT_INTR
2333 | vmx->rmode.irq.vector;
2336 static void vmx_vcpu_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2338 struct vcpu_vmx *vmx = to_vmx(vcpu);
2339 u32 intr_info;
2342 * Loading guest fpu may have cleared host cr0.ts
2344 vmcs_writel(HOST_CR0, read_cr0());
2346 asm(
2347 /* Store host registers */
2348 #ifdef CONFIG_X86_64
2349 "push %%rdx; push %%rbp;"
2350 "push %%rcx \n\t"
2351 #else
2352 "push %%edx; push %%ebp;"
2353 "push %%ecx \n\t"
2354 #endif
2355 ASM_VMX_VMWRITE_RSP_RDX "\n\t"
2356 /* Check if vmlaunch of vmresume is needed */
2357 "cmpl $0, %c[launched](%0) \n\t"
2358 /* Load guest registers. Don't clobber flags. */
2359 #ifdef CONFIG_X86_64
2360 "mov %c[cr2](%0), %%rax \n\t"
2361 "mov %%rax, %%cr2 \n\t"
2362 "mov %c[rax](%0), %%rax \n\t"
2363 "mov %c[rbx](%0), %%rbx \n\t"
2364 "mov %c[rdx](%0), %%rdx \n\t"
2365 "mov %c[rsi](%0), %%rsi \n\t"
2366 "mov %c[rdi](%0), %%rdi \n\t"
2367 "mov %c[rbp](%0), %%rbp \n\t"
2368 "mov %c[r8](%0), %%r8 \n\t"
2369 "mov %c[r9](%0), %%r9 \n\t"
2370 "mov %c[r10](%0), %%r10 \n\t"
2371 "mov %c[r11](%0), %%r11 \n\t"
2372 "mov %c[r12](%0), %%r12 \n\t"
2373 "mov %c[r13](%0), %%r13 \n\t"
2374 "mov %c[r14](%0), %%r14 \n\t"
2375 "mov %c[r15](%0), %%r15 \n\t"
2376 "mov %c[rcx](%0), %%rcx \n\t" /* kills %0 (rcx) */
2377 #else
2378 "mov %c[cr2](%0), %%eax \n\t"
2379 "mov %%eax, %%cr2 \n\t"
2380 "mov %c[rax](%0), %%eax \n\t"
2381 "mov %c[rbx](%0), %%ebx \n\t"
2382 "mov %c[rdx](%0), %%edx \n\t"
2383 "mov %c[rsi](%0), %%esi \n\t"
2384 "mov %c[rdi](%0), %%edi \n\t"
2385 "mov %c[rbp](%0), %%ebp \n\t"
2386 "mov %c[rcx](%0), %%ecx \n\t" /* kills %0 (ecx) */
2387 #endif
2388 /* Enter guest mode */
2389 "jne .Llaunched \n\t"
2390 ASM_VMX_VMLAUNCH "\n\t"
2391 "jmp .Lkvm_vmx_return \n\t"
2392 ".Llaunched: " ASM_VMX_VMRESUME "\n\t"
2393 ".Lkvm_vmx_return: "
2394 /* Save guest registers, load host registers, keep flags */
2395 #ifdef CONFIG_X86_64
2396 "xchg %0, (%%rsp) \n\t"
2397 "mov %%rax, %c[rax](%0) \n\t"
2398 "mov %%rbx, %c[rbx](%0) \n\t"
2399 "pushq (%%rsp); popq %c[rcx](%0) \n\t"
2400 "mov %%rdx, %c[rdx](%0) \n\t"
2401 "mov %%rsi, %c[rsi](%0) \n\t"
2402 "mov %%rdi, %c[rdi](%0) \n\t"
2403 "mov %%rbp, %c[rbp](%0) \n\t"
2404 "mov %%r8, %c[r8](%0) \n\t"
2405 "mov %%r9, %c[r9](%0) \n\t"
2406 "mov %%r10, %c[r10](%0) \n\t"
2407 "mov %%r11, %c[r11](%0) \n\t"
2408 "mov %%r12, %c[r12](%0) \n\t"
2409 "mov %%r13, %c[r13](%0) \n\t"
2410 "mov %%r14, %c[r14](%0) \n\t"
2411 "mov %%r15, %c[r15](%0) \n\t"
2412 "mov %%cr2, %%rax \n\t"
2413 "mov %%rax, %c[cr2](%0) \n\t"
2415 "pop %%rbp; pop %%rbp; pop %%rdx \n\t"
2416 #else
2417 "xchg %0, (%%esp) \n\t"
2418 "mov %%eax, %c[rax](%0) \n\t"
2419 "mov %%ebx, %c[rbx](%0) \n\t"
2420 "pushl (%%esp); popl %c[rcx](%0) \n\t"
2421 "mov %%edx, %c[rdx](%0) \n\t"
2422 "mov %%esi, %c[rsi](%0) \n\t"
2423 "mov %%edi, %c[rdi](%0) \n\t"
2424 "mov %%ebp, %c[rbp](%0) \n\t"
2425 "mov %%cr2, %%eax \n\t"
2426 "mov %%eax, %c[cr2](%0) \n\t"
2428 "pop %%ebp; pop %%ebp; pop %%edx \n\t"
2429 #endif
2430 "setbe %c[fail](%0) \n\t"
2431 : : "c"(vmx), "d"((unsigned long)HOST_RSP),
2432 [launched]"i"(offsetof(struct vcpu_vmx, launched)),
2433 [fail]"i"(offsetof(struct vcpu_vmx, fail)),
2434 [rax]"i"(offsetof(struct vcpu_vmx, vcpu.regs[VCPU_REGS_RAX])),
2435 [rbx]"i"(offsetof(struct vcpu_vmx, vcpu.regs[VCPU_REGS_RBX])),
2436 [rcx]"i"(offsetof(struct vcpu_vmx, vcpu.regs[VCPU_REGS_RCX])),
2437 [rdx]"i"(offsetof(struct vcpu_vmx, vcpu.regs[VCPU_REGS_RDX])),
2438 [rsi]"i"(offsetof(struct vcpu_vmx, vcpu.regs[VCPU_REGS_RSI])),
2439 [rdi]"i"(offsetof(struct vcpu_vmx, vcpu.regs[VCPU_REGS_RDI])),
2440 [rbp]"i"(offsetof(struct vcpu_vmx, vcpu.regs[VCPU_REGS_RBP])),
2441 #ifdef CONFIG_X86_64
2442 [r8]"i"(offsetof(struct vcpu_vmx, vcpu.regs[VCPU_REGS_R8])),
2443 [r9]"i"(offsetof(struct vcpu_vmx, vcpu.regs[VCPU_REGS_R9])),
2444 [r10]"i"(offsetof(struct vcpu_vmx, vcpu.regs[VCPU_REGS_R10])),
2445 [r11]"i"(offsetof(struct vcpu_vmx, vcpu.regs[VCPU_REGS_R11])),
2446 [r12]"i"(offsetof(struct vcpu_vmx, vcpu.regs[VCPU_REGS_R12])),
2447 [r13]"i"(offsetof(struct vcpu_vmx, vcpu.regs[VCPU_REGS_R13])),
2448 [r14]"i"(offsetof(struct vcpu_vmx, vcpu.regs[VCPU_REGS_R14])),
2449 [r15]"i"(offsetof(struct vcpu_vmx, vcpu.regs[VCPU_REGS_R15])),
2450 #endif
2451 [cr2]"i"(offsetof(struct vcpu_vmx, vcpu.cr2))
2452 : "cc", "memory"
2453 #ifdef CONFIG_X86_64
2454 , "rbx", "rdi", "rsi"
2455 , "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15"
2456 #else
2457 , "ebx", "edi", "rsi"
2458 #endif
2461 vmx->idt_vectoring_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
2462 if (vmx->rmode.irq.pending)
2463 fixup_rmode_irq(vmx);
2465 vcpu->interrupt_window_open =
2466 (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & 3) == 0;
2468 asm("mov %0, %%ds; mov %0, %%es" : : "r"(__USER_DS));
2469 vmx->launched = 1;
2471 intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
2473 /* We need to handle NMIs before interrupts are enabled */
2474 if ((intr_info & INTR_INFO_INTR_TYPE_MASK) == 0x200) /* nmi */
2475 asm("int $2");
2478 static void vmx_free_vmcs(struct kvm_vcpu *vcpu)
2480 struct vcpu_vmx *vmx = to_vmx(vcpu);
2482 if (vmx->vmcs) {
2483 on_each_cpu(__vcpu_clear, vmx, 0, 1);
2484 free_vmcs(vmx->vmcs);
2485 vmx->vmcs = NULL;
2489 static void vmx_free_vcpu(struct kvm_vcpu *vcpu)
2491 struct vcpu_vmx *vmx = to_vmx(vcpu);
2493 vmx_free_vmcs(vcpu);
2494 kfree(vmx->host_msrs);
2495 kfree(vmx->guest_msrs);
2496 kvm_vcpu_uninit(vcpu);
2497 kmem_cache_free(kvm_vcpu_cache, vmx);
2500 static struct kvm_vcpu *vmx_create_vcpu(struct kvm *kvm, unsigned int id)
2502 int err;
2503 struct vcpu_vmx *vmx = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
2504 int cpu;
2506 if (!vmx)
2507 return ERR_PTR(-ENOMEM);
2509 err = kvm_vcpu_init(&vmx->vcpu, kvm, id);
2510 if (err)
2511 goto free_vcpu;
2513 vmx->guest_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL);
2514 if (!vmx->guest_msrs) {
2515 err = -ENOMEM;
2516 goto uninit_vcpu;
2519 vmx->host_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL);
2520 if (!vmx->host_msrs)
2521 goto free_guest_msrs;
2523 vmx->vmcs = alloc_vmcs();
2524 if (!vmx->vmcs)
2525 goto free_msrs;
2527 vmcs_clear(vmx->vmcs);
2529 cpu = get_cpu();
2530 vmx_vcpu_load(&vmx->vcpu, cpu);
2531 err = vmx_vcpu_setup(vmx);
2532 vmx_vcpu_put(&vmx->vcpu);
2533 put_cpu();
2534 if (err)
2535 goto free_vmcs;
2537 return &vmx->vcpu;
2539 free_vmcs:
2540 free_vmcs(vmx->vmcs);
2541 free_msrs:
2542 kfree(vmx->host_msrs);
2543 free_guest_msrs:
2544 kfree(vmx->guest_msrs);
2545 uninit_vcpu:
2546 kvm_vcpu_uninit(&vmx->vcpu);
2547 free_vcpu:
2548 kmem_cache_free(kvm_vcpu_cache, vmx);
2549 return ERR_PTR(err);
2552 static void __init vmx_check_processor_compat(void *rtn)
2554 struct vmcs_config vmcs_conf;
2556 *(int *)rtn = 0;
2557 if (setup_vmcs_config(&vmcs_conf) < 0)
2558 *(int *)rtn = -EIO;
2559 if (memcmp(&vmcs_config, &vmcs_conf, sizeof(struct vmcs_config)) != 0) {
2560 printk(KERN_ERR "kvm: CPU %d feature inconsistency!\n",
2561 smp_processor_id());
2562 *(int *)rtn = -EIO;
2566 static struct kvm_x86_ops vmx_x86_ops = {
2567 .cpu_has_kvm_support = cpu_has_kvm_support,
2568 .disabled_by_bios = vmx_disabled_by_bios,
2569 .hardware_setup = hardware_setup,
2570 .hardware_unsetup = hardware_unsetup,
2571 .check_processor_compatibility = vmx_check_processor_compat,
2572 .hardware_enable = hardware_enable,
2573 .hardware_disable = hardware_disable,
2575 .vcpu_create = vmx_create_vcpu,
2576 .vcpu_free = vmx_free_vcpu,
2577 .vcpu_reset = vmx_vcpu_reset,
2579 .prepare_guest_switch = vmx_save_host_state,
2580 .vcpu_load = vmx_vcpu_load,
2581 .vcpu_put = vmx_vcpu_put,
2582 .vcpu_decache = vmx_vcpu_decache,
2584 .set_guest_debug = set_guest_debug,
2585 .guest_debug_pre = kvm_guest_debug_pre,
2586 .get_msr = vmx_get_msr,
2587 .set_msr = vmx_set_msr,
2588 .get_segment_base = vmx_get_segment_base,
2589 .get_segment = vmx_get_segment,
2590 .set_segment = vmx_set_segment,
2591 .get_cs_db_l_bits = vmx_get_cs_db_l_bits,
2592 .decache_cr4_guest_bits = vmx_decache_cr4_guest_bits,
2593 .set_cr0 = vmx_set_cr0,
2594 .set_cr3 = vmx_set_cr3,
2595 .set_cr4 = vmx_set_cr4,
2596 #ifdef CONFIG_X86_64
2597 .set_efer = vmx_set_efer,
2598 #endif
2599 .get_idt = vmx_get_idt,
2600 .set_idt = vmx_set_idt,
2601 .get_gdt = vmx_get_gdt,
2602 .set_gdt = vmx_set_gdt,
2603 .cache_regs = vcpu_load_rsp_rip,
2604 .decache_regs = vcpu_put_rsp_rip,
2605 .get_rflags = vmx_get_rflags,
2606 .set_rflags = vmx_set_rflags,
2608 .tlb_flush = vmx_flush_tlb,
2610 .run = vmx_vcpu_run,
2611 .handle_exit = kvm_handle_exit,
2612 .skip_emulated_instruction = skip_emulated_instruction,
2613 .patch_hypercall = vmx_patch_hypercall,
2614 .get_irq = vmx_get_irq,
2615 .set_irq = vmx_inject_irq,
2616 .queue_exception = vmx_queue_exception,
2617 .exception_injected = vmx_exception_injected,
2618 .inject_pending_irq = vmx_intr_assist,
2619 .inject_pending_vectors = do_interrupt_requests,
2621 .set_tss_addr = vmx_set_tss_addr,
2624 static int __init vmx_init(void)
2626 void *iova;
2627 int r;
2629 vmx_io_bitmap_a = alloc_page(GFP_KERNEL | __GFP_HIGHMEM);
2630 if (!vmx_io_bitmap_a)
2631 return -ENOMEM;
2633 vmx_io_bitmap_b = alloc_page(GFP_KERNEL | __GFP_HIGHMEM);
2634 if (!vmx_io_bitmap_b) {
2635 r = -ENOMEM;
2636 goto out;
2640 * Allow direct access to the PC debug port (it is often used for I/O
2641 * delays, but the vmexits simply slow things down).
2643 iova = kmap(vmx_io_bitmap_a);
2644 memset(iova, 0xff, PAGE_SIZE);
2645 clear_bit(0x80, iova);
2646 kunmap(vmx_io_bitmap_a);
2648 iova = kmap(vmx_io_bitmap_b);
2649 memset(iova, 0xff, PAGE_SIZE);
2650 kunmap(vmx_io_bitmap_b);
2652 r = kvm_init(&vmx_x86_ops, sizeof(struct vcpu_vmx), THIS_MODULE);
2653 if (r)
2654 goto out1;
2656 if (bypass_guest_pf)
2657 kvm_mmu_set_nonpresent_ptes(~0xffeull, 0ull);
2659 return 0;
2661 out1:
2662 __free_page(vmx_io_bitmap_b);
2663 out:
2664 __free_page(vmx_io_bitmap_a);
2665 return r;
2668 static void __exit vmx_exit(void)
2670 __free_page(vmx_io_bitmap_b);
2671 __free_page(vmx_io_bitmap_a);
2673 kvm_exit();
2676 module_init(vmx_init)
2677 module_exit(vmx_exit)