2 * linux/fs/ext2/inode.c
4 * Copyright (C) 1992, 1993, 1994, 1995
5 * Remy Card (card@masi.ibp.fr)
6 * Laboratoire MASI - Institut Blaise Pascal
7 * Universite Pierre et Marie Curie (Paris VI)
11 * linux/fs/minix/inode.c
13 * Copyright (C) 1991, 1992 Linus Torvalds
15 * Goal-directed block allocation by Stephen Tweedie
16 * (sct@dcs.ed.ac.uk), 1993, 1998
17 * Big-endian to little-endian byte-swapping/bitmaps by
18 * David S. Miller (davem@caip.rutgers.edu), 1995
19 * 64-bit file support on 64-bit platforms by Jakub Jelinek
20 * (jj@sunsite.ms.mff.cuni.cz)
22 * Assorted race fixes, rewrite of ext2_get_block() by Al Viro, 2000
25 #include <linux/smp_lock.h>
26 #include <linux/time.h>
27 #include <linux/highuid.h>
28 #include <linux/pagemap.h>
29 #include <linux/quotaops.h>
30 #include <linux/module.h>
31 #include <linux/writeback.h>
32 #include <linux/buffer_head.h>
33 #include <linux/mpage.h>
38 MODULE_AUTHOR("Remy Card and others");
39 MODULE_DESCRIPTION("Second Extended Filesystem");
40 MODULE_LICENSE("GPL");
42 static int ext2_update_inode(struct inode
* inode
, int do_sync
);
45 * Test whether an inode is a fast symlink.
47 static inline int ext2_inode_is_fast_symlink(struct inode
*inode
)
49 int ea_blocks
= EXT2_I(inode
)->i_file_acl
?
50 (inode
->i_sb
->s_blocksize
>> 9) : 0;
52 return (S_ISLNK(inode
->i_mode
) &&
53 inode
->i_blocks
- ea_blocks
== 0);
57 * Called at the last iput() if i_nlink is zero.
59 void ext2_delete_inode (struct inode
* inode
)
61 truncate_inode_pages(&inode
->i_data
, 0);
63 if (is_bad_inode(inode
))
65 EXT2_I(inode
)->i_dtime
= get_seconds();
66 mark_inode_dirty(inode
);
67 ext2_update_inode(inode
, inode_needs_sync(inode
));
71 ext2_truncate (inode
);
72 ext2_free_inode (inode
);
76 clear_inode(inode
); /* We must guarantee clearing of inode... */
82 struct buffer_head
*bh
;
85 static inline void add_chain(Indirect
*p
, struct buffer_head
*bh
, __le32
*v
)
91 static inline int verify_chain(Indirect
*from
, Indirect
*to
)
93 while (from
<= to
&& from
->key
== *from
->p
)
99 * ext2_block_to_path - parse the block number into array of offsets
100 * @inode: inode in question (we are only interested in its superblock)
101 * @i_block: block number to be parsed
102 * @offsets: array to store the offsets in
103 * @boundary: set this non-zero if the referred-to block is likely to be
104 * followed (on disk) by an indirect block.
105 * To store the locations of file's data ext2 uses a data structure common
106 * for UNIX filesystems - tree of pointers anchored in the inode, with
107 * data blocks at leaves and indirect blocks in intermediate nodes.
108 * This function translates the block number into path in that tree -
109 * return value is the path length and @offsets[n] is the offset of
110 * pointer to (n+1)th node in the nth one. If @block is out of range
111 * (negative or too large) warning is printed and zero returned.
113 * Note: function doesn't find node addresses, so no IO is needed. All
114 * we need to know is the capacity of indirect blocks (taken from the
119 * Portability note: the last comparison (check that we fit into triple
120 * indirect block) is spelled differently, because otherwise on an
121 * architecture with 32-bit longs and 8Kb pages we might get into trouble
122 * if our filesystem had 8Kb blocks. We might use long long, but that would
123 * kill us on x86. Oh, well, at least the sign propagation does not matter -
124 * i_block would have to be negative in the very beginning, so we would not
128 static int ext2_block_to_path(struct inode
*inode
,
129 long i_block
, int offsets
[4], int *boundary
)
131 int ptrs
= EXT2_ADDR_PER_BLOCK(inode
->i_sb
);
132 int ptrs_bits
= EXT2_ADDR_PER_BLOCK_BITS(inode
->i_sb
);
133 const long direct_blocks
= EXT2_NDIR_BLOCKS
,
134 indirect_blocks
= ptrs
,
135 double_blocks
= (1 << (ptrs_bits
* 2));
140 ext2_warning (inode
->i_sb
, "ext2_block_to_path", "block < 0");
141 } else if (i_block
< direct_blocks
) {
142 offsets
[n
++] = i_block
;
143 final
= direct_blocks
;
144 } else if ( (i_block
-= direct_blocks
) < indirect_blocks
) {
145 offsets
[n
++] = EXT2_IND_BLOCK
;
146 offsets
[n
++] = i_block
;
148 } else if ((i_block
-= indirect_blocks
) < double_blocks
) {
149 offsets
[n
++] = EXT2_DIND_BLOCK
;
150 offsets
[n
++] = i_block
>> ptrs_bits
;
151 offsets
[n
++] = i_block
& (ptrs
- 1);
153 } else if (((i_block
-= double_blocks
) >> (ptrs_bits
* 2)) < ptrs
) {
154 offsets
[n
++] = EXT2_TIND_BLOCK
;
155 offsets
[n
++] = i_block
>> (ptrs_bits
* 2);
156 offsets
[n
++] = (i_block
>> ptrs_bits
) & (ptrs
- 1);
157 offsets
[n
++] = i_block
& (ptrs
- 1);
160 ext2_warning (inode
->i_sb
, "ext2_block_to_path", "block > big");
163 *boundary
= final
- 1 - (i_block
& (ptrs
- 1));
169 * ext2_get_branch - read the chain of indirect blocks leading to data
170 * @inode: inode in question
171 * @depth: depth of the chain (1 - direct pointer, etc.)
172 * @offsets: offsets of pointers in inode/indirect blocks
173 * @chain: place to store the result
174 * @err: here we store the error value
176 * Function fills the array of triples <key, p, bh> and returns %NULL
177 * if everything went OK or the pointer to the last filled triple
178 * (incomplete one) otherwise. Upon the return chain[i].key contains
179 * the number of (i+1)-th block in the chain (as it is stored in memory,
180 * i.e. little-endian 32-bit), chain[i].p contains the address of that
181 * number (it points into struct inode for i==0 and into the bh->b_data
182 * for i>0) and chain[i].bh points to the buffer_head of i-th indirect
183 * block for i>0 and NULL for i==0. In other words, it holds the block
184 * numbers of the chain, addresses they were taken from (and where we can
185 * verify that chain did not change) and buffer_heads hosting these
188 * Function stops when it stumbles upon zero pointer (absent block)
189 * (pointer to last triple returned, *@err == 0)
190 * or when it gets an IO error reading an indirect block
191 * (ditto, *@err == -EIO)
192 * or when it notices that chain had been changed while it was reading
193 * (ditto, *@err == -EAGAIN)
194 * or when it reads all @depth-1 indirect blocks successfully and finds
195 * the whole chain, all way to the data (returns %NULL, *err == 0).
197 static Indirect
*ext2_get_branch(struct inode
*inode
,
203 struct super_block
*sb
= inode
->i_sb
;
205 struct buffer_head
*bh
;
208 /* i_data is not going away, no lock needed */
209 add_chain (chain
, NULL
, EXT2_I(inode
)->i_data
+ *offsets
);
213 bh
= sb_bread(sb
, le32_to_cpu(p
->key
));
216 read_lock(&EXT2_I(inode
)->i_meta_lock
);
217 if (!verify_chain(chain
, p
))
219 add_chain(++p
, bh
, (__le32
*)bh
->b_data
+ *++offsets
);
220 read_unlock(&EXT2_I(inode
)->i_meta_lock
);
227 read_unlock(&EXT2_I(inode
)->i_meta_lock
);
238 * ext2_find_near - find a place for allocation with sufficient locality
240 * @ind: descriptor of indirect block.
242 * This function returns the preferred place for block allocation.
243 * It is used when heuristic for sequential allocation fails.
245 * + if there is a block to the left of our position - allocate near it.
246 * + if pointer will live in indirect block - allocate near that block.
247 * + if pointer will live in inode - allocate in the same cylinder group.
249 * In the latter case we colour the starting block by the callers PID to
250 * prevent it from clashing with concurrent allocations for a different inode
251 * in the same block group. The PID is used here so that functionally related
252 * files will be close-by on-disk.
254 * Caller must make sure that @ind is valid and will stay that way.
257 static ext2_fsblk_t
ext2_find_near(struct inode
*inode
, Indirect
*ind
)
259 struct ext2_inode_info
*ei
= EXT2_I(inode
);
260 __le32
*start
= ind
->bh
? (__le32
*) ind
->bh
->b_data
: ei
->i_data
;
262 ext2_fsblk_t bg_start
;
265 /* Try to find previous block */
266 for (p
= ind
->p
- 1; p
>= start
; p
--)
268 return le32_to_cpu(*p
);
270 /* No such thing, so let's try location of indirect block */
272 return ind
->bh
->b_blocknr
;
275 * It is going to be refered from inode itself? OK, just put it into
276 * the same cylinder group then.
278 bg_start
= ext2_group_first_block_no(inode
->i_sb
, ei
->i_block_group
);
279 colour
= (current
->pid
% 16) *
280 (EXT2_BLOCKS_PER_GROUP(inode
->i_sb
) / 16);
281 return bg_start
+ colour
;
285 * ext2_find_goal - find a preferred place for allocation.
287 * @block: block we want
288 * @partial: pointer to the last triple within a chain
290 * Returns preferred place for a block (the goal).
293 static inline ext2_fsblk_t
ext2_find_goal(struct inode
*inode
, long block
,
296 struct ext2_block_alloc_info
*block_i
;
298 block_i
= EXT2_I(inode
)->i_block_alloc_info
;
301 * try the heuristic for sequential allocation,
302 * failing that at least try to get decent locality.
304 if (block_i
&& (block
== block_i
->last_alloc_logical_block
+ 1)
305 && (block_i
->last_alloc_physical_block
!= 0)) {
306 return block_i
->last_alloc_physical_block
+ 1;
309 return ext2_find_near(inode
, partial
);
313 * ext2_blks_to_allocate: Look up the block map and count the number
314 * of direct blocks need to be allocated for the given branch.
316 * @branch: chain of indirect blocks
317 * @k: number of blocks need for indirect blocks
318 * @blks: number of data blocks to be mapped.
319 * @blocks_to_boundary: the offset in the indirect block
321 * return the total number of blocks to be allocate, including the
322 * direct and indirect blocks.
325 ext2_blks_to_allocate(Indirect
* branch
, int k
, unsigned long blks
,
326 int blocks_to_boundary
)
328 unsigned long count
= 0;
331 * Simple case, [t,d]Indirect block(s) has not allocated yet
332 * then it's clear blocks on that path have not allocated
335 /* right now don't hanel cross boundary allocation */
336 if (blks
< blocks_to_boundary
+ 1)
339 count
+= blocks_to_boundary
+ 1;
344 while (count
< blks
&& count
<= blocks_to_boundary
345 && le32_to_cpu(*(branch
[0].p
+ count
)) == 0) {
352 * ext2_alloc_blocks: multiple allocate blocks needed for a branch
353 * @indirect_blks: the number of blocks need to allocate for indirect
356 * @new_blocks: on return it will store the new block numbers for
357 * the indirect blocks(if needed) and the first direct block,
358 * @blks: on return it will store the total number of allocated
361 static int ext2_alloc_blocks(struct inode
*inode
,
362 ext2_fsblk_t goal
, int indirect_blks
, int blks
,
363 ext2_fsblk_t new_blocks
[4], int *err
)
366 unsigned long count
= 0;
368 ext2_fsblk_t current_block
= 0;
372 * Here we try to allocate the requested multiple blocks at once,
373 * on a best-effort basis.
374 * To build a branch, we should allocate blocks for
375 * the indirect blocks(if not allocated yet), and at least
376 * the first direct block of this branch. That's the
377 * minimum number of blocks need to allocate(required)
379 target
= blks
+ indirect_blks
;
383 /* allocating blocks for indirect blocks and direct blocks */
384 current_block
= ext2_new_blocks(inode
,goal
,&count
,err
);
389 /* allocate blocks for indirect blocks */
390 while (index
< indirect_blks
&& count
) {
391 new_blocks
[index
++] = current_block
++;
399 /* save the new block number for the first direct block */
400 new_blocks
[index
] = current_block
;
402 /* total number of blocks allocated for direct blocks */
407 for (i
= 0; i
<index
; i
++)
408 ext2_free_blocks(inode
, new_blocks
[i
], 1);
413 * ext2_alloc_branch - allocate and set up a chain of blocks.
415 * @num: depth of the chain (number of blocks to allocate)
416 * @offsets: offsets (in the blocks) to store the pointers to next.
417 * @branch: place to store the chain in.
419 * This function allocates @num blocks, zeroes out all but the last one,
420 * links them into chain and (if we are synchronous) writes them to disk.
421 * In other words, it prepares a branch that can be spliced onto the
422 * inode. It stores the information about that chain in the branch[], in
423 * the same format as ext2_get_branch() would do. We are calling it after
424 * we had read the existing part of chain and partial points to the last
425 * triple of that (one with zero ->key). Upon the exit we have the same
426 * picture as after the successful ext2_get_block(), excpet that in one
427 * place chain is disconnected - *branch->p is still zero (we did not
428 * set the last link), but branch->key contains the number that should
429 * be placed into *branch->p to fill that gap.
431 * If allocation fails we free all blocks we've allocated (and forget
432 * their buffer_heads) and return the error value the from failed
433 * ext2_alloc_block() (normally -ENOSPC). Otherwise we set the chain
434 * as described above and return 0.
437 static int ext2_alloc_branch(struct inode
*inode
,
438 int indirect_blks
, int *blks
, ext2_fsblk_t goal
,
439 int *offsets
, Indirect
*branch
)
441 int blocksize
= inode
->i_sb
->s_blocksize
;
444 struct buffer_head
*bh
;
446 ext2_fsblk_t new_blocks
[4];
447 ext2_fsblk_t current_block
;
449 num
= ext2_alloc_blocks(inode
, goal
, indirect_blks
,
450 *blks
, new_blocks
, &err
);
454 branch
[0].key
= cpu_to_le32(new_blocks
[0]);
456 * metadata blocks and data blocks are allocated.
458 for (n
= 1; n
<= indirect_blks
; n
++) {
460 * Get buffer_head for parent block, zero it out
461 * and set the pointer to new one, then send
464 bh
= sb_getblk(inode
->i_sb
, new_blocks
[n
-1]);
467 memset(bh
->b_data
, 0, blocksize
);
468 branch
[n
].p
= (__le32
*) bh
->b_data
+ offsets
[n
];
469 branch
[n
].key
= cpu_to_le32(new_blocks
[n
]);
470 *branch
[n
].p
= branch
[n
].key
;
471 if ( n
== indirect_blks
) {
472 current_block
= new_blocks
[n
];
474 * End of chain, update the last new metablock of
475 * the chain to point to the new allocated
476 * data blocks numbers
478 for (i
=1; i
< num
; i
++)
479 *(branch
[n
].p
+ i
) = cpu_to_le32(++current_block
);
481 set_buffer_uptodate(bh
);
483 mark_buffer_dirty_inode(bh
, inode
);
484 /* We used to sync bh here if IS_SYNC(inode).
485 * But we now rely upon generic_osync_inode()
486 * and b_inode_buffers. But not for directories.
488 if (S_ISDIR(inode
->i_mode
) && IS_DIRSYNC(inode
))
489 sync_dirty_buffer(bh
);
496 * ext2_splice_branch - splice the allocated branch onto inode.
498 * @block: (logical) number of block we are adding
499 * @chain: chain of indirect blocks (with a missing link - see
501 * @where: location of missing link
502 * @num: number of indirect blocks we are adding
503 * @blks: number of direct blocks we are adding
505 * This function fills the missing link and does all housekeeping needed in
506 * inode (->i_blocks, etc.). In case of success we end up with the full
507 * chain to new block and return 0.
509 static void ext2_splice_branch(struct inode
*inode
,
510 long block
, Indirect
*where
, int num
, int blks
)
513 struct ext2_block_alloc_info
*block_i
;
514 ext2_fsblk_t current_block
;
516 block_i
= EXT2_I(inode
)->i_block_alloc_info
;
518 /* XXX LOCKING probably should have i_meta_lock ?*/
521 *where
->p
= where
->key
;
524 * Update the host buffer_head or inode to point to more just allocated
525 * direct blocks blocks
527 if (num
== 0 && blks
> 1) {
528 current_block
= le32_to_cpu(where
->key
) + 1;
529 for (i
= 1; i
< blks
; i
++)
530 *(where
->p
+ i
) = cpu_to_le32(current_block
++);
534 * update the most recently allocated logical & physical block
535 * in i_block_alloc_info, to assist find the proper goal block for next
539 block_i
->last_alloc_logical_block
= block
+ blks
- 1;
540 block_i
->last_alloc_physical_block
=
541 le32_to_cpu(where
[num
].key
) + blks
- 1;
544 /* We are done with atomic stuff, now do the rest of housekeeping */
546 /* had we spliced it onto indirect block? */
548 mark_buffer_dirty_inode(where
->bh
, inode
);
550 inode
->i_ctime
= CURRENT_TIME_SEC
;
551 mark_inode_dirty(inode
);
555 * Allocation strategy is simple: if we have to allocate something, we will
556 * have to go the whole way to leaf. So let's do it before attaching anything
557 * to tree, set linkage between the newborn blocks, write them if sync is
558 * required, recheck the path, free and repeat if check fails, otherwise
559 * set the last missing link (that will protect us from any truncate-generated
560 * removals - all blocks on the path are immune now) and possibly force the
561 * write on the parent block.
562 * That has a nice additional property: no special recovery from the failed
563 * allocations is needed - we simply release blocks and do not touch anything
564 * reachable from inode.
566 * `handle' can be NULL if create == 0.
568 * return > 0, # of blocks mapped or allocated.
569 * return = 0, if plain lookup failed.
570 * return < 0, error case.
572 static int ext2_get_blocks(struct inode
*inode
,
573 sector_t iblock
, unsigned long maxblocks
,
574 struct buffer_head
*bh_result
,
583 int blocks_to_boundary
= 0;
585 struct ext2_inode_info
*ei
= EXT2_I(inode
);
587 ext2_fsblk_t first_block
= 0;
589 depth
= ext2_block_to_path(inode
,iblock
,offsets
,&blocks_to_boundary
);
594 partial
= ext2_get_branch(inode
, depth
, offsets
, chain
, &err
);
596 /* Simplest case - block found, no allocation needed */
598 first_block
= le32_to_cpu(chain
[depth
- 1].key
);
599 clear_buffer_new(bh_result
); /* What's this do? */
602 while (count
< maxblocks
&& count
<= blocks_to_boundary
) {
605 if (!verify_chain(chain
, partial
)) {
607 * Indirect block might be removed by
608 * truncate while we were reading it.
609 * Handling of that case: forget what we've
610 * got now, go to reread.
615 blk
= le32_to_cpu(*(chain
[depth
-1].p
+ count
));
616 if (blk
== first_block
+ count
)
624 /* Next simple case - plain lookup or failed read of indirect block */
625 if (!create
|| err
== -EIO
)
628 mutex_lock(&ei
->truncate_mutex
);
631 * Okay, we need to do block allocation. Lazily initialize the block
632 * allocation info here if necessary
634 if (S_ISREG(inode
->i_mode
) && (!ei
->i_block_alloc_info
))
635 ext2_init_block_alloc_info(inode
);
637 goal
= ext2_find_goal(inode
, iblock
, partial
);
639 /* the number of blocks need to allocate for [d,t]indirect blocks */
640 indirect_blks
= (chain
+ depth
) - partial
- 1;
642 * Next look up the indirect map to count the totoal number of
643 * direct blocks to allocate for this branch.
645 count
= ext2_blks_to_allocate(partial
, indirect_blks
,
646 maxblocks
, blocks_to_boundary
);
648 * XXX ???? Block out ext2_truncate while we alter the tree
650 err
= ext2_alloc_branch(inode
, indirect_blks
, &count
, goal
,
651 offsets
+ (partial
- chain
), partial
);
654 mutex_unlock(&ei
->truncate_mutex
);
658 if (ext2_use_xip(inode
->i_sb
)) {
660 * we need to clear the block
662 err
= ext2_clear_xip_target (inode
,
663 le32_to_cpu(chain
[depth
-1].key
));
665 mutex_unlock(&ei
->truncate_mutex
);
670 ext2_splice_branch(inode
, iblock
, partial
, indirect_blks
, count
);
671 mutex_unlock(&ei
->truncate_mutex
);
672 set_buffer_new(bh_result
);
674 map_bh(bh_result
, inode
->i_sb
, le32_to_cpu(chain
[depth
-1].key
));
675 if (count
> blocks_to_boundary
)
676 set_buffer_boundary(bh_result
);
678 /* Clean up and exit */
679 partial
= chain
+ depth
- 1; /* the whole chain */
681 while (partial
> chain
) {
687 while (partial
> chain
) {
694 int ext2_get_block(struct inode
*inode
, sector_t iblock
, struct buffer_head
*bh_result
, int create
)
696 unsigned max_blocks
= bh_result
->b_size
>> inode
->i_blkbits
;
697 int ret
= ext2_get_blocks(inode
, iblock
, max_blocks
,
700 bh_result
->b_size
= (ret
<< inode
->i_blkbits
);
707 static int ext2_writepage(struct page
*page
, struct writeback_control
*wbc
)
709 return block_write_full_page(page
, ext2_get_block
, wbc
);
712 static int ext2_readpage(struct file
*file
, struct page
*page
)
714 return mpage_readpage(page
, ext2_get_block
);
718 ext2_readpages(struct file
*file
, struct address_space
*mapping
,
719 struct list_head
*pages
, unsigned nr_pages
)
721 return mpage_readpages(mapping
, pages
, nr_pages
, ext2_get_block
);
724 int __ext2_write_begin(struct file
*file
, struct address_space
*mapping
,
725 loff_t pos
, unsigned len
, unsigned flags
,
726 struct page
**pagep
, void **fsdata
)
728 return block_write_begin(file
, mapping
, pos
, len
, flags
, pagep
, fsdata
,
733 ext2_write_begin(struct file
*file
, struct address_space
*mapping
,
734 loff_t pos
, unsigned len
, unsigned flags
,
735 struct page
**pagep
, void **fsdata
)
738 return __ext2_write_begin(file
, mapping
, pos
, len
, flags
, pagep
,fsdata
);
742 ext2_nobh_write_begin(struct file
*file
, struct address_space
*mapping
,
743 loff_t pos
, unsigned len
, unsigned flags
,
744 struct page
**pagep
, void **fsdata
)
747 * Dir-in-pagecache still uses ext2_write_begin. Would have to rework
748 * directory handling code to pass around offsets rather than struct
749 * pages in order to make this work easily.
751 return nobh_write_begin(file
, mapping
, pos
, len
, flags
, pagep
, fsdata
,
755 static int ext2_nobh_writepage(struct page
*page
,
756 struct writeback_control
*wbc
)
758 return nobh_writepage(page
, ext2_get_block
, wbc
);
761 static sector_t
ext2_bmap(struct address_space
*mapping
, sector_t block
)
763 return generic_block_bmap(mapping
,block
,ext2_get_block
);
767 ext2_direct_IO(int rw
, struct kiocb
*iocb
, const struct iovec
*iov
,
768 loff_t offset
, unsigned long nr_segs
)
770 struct file
*file
= iocb
->ki_filp
;
771 struct inode
*inode
= file
->f_mapping
->host
;
773 return blockdev_direct_IO(rw
, iocb
, inode
, inode
->i_sb
->s_bdev
, iov
,
774 offset
, nr_segs
, ext2_get_block
, NULL
);
778 ext2_writepages(struct address_space
*mapping
, struct writeback_control
*wbc
)
780 return mpage_writepages(mapping
, wbc
, ext2_get_block
);
783 const struct address_space_operations ext2_aops
= {
784 .readpage
= ext2_readpage
,
785 .readpages
= ext2_readpages
,
786 .writepage
= ext2_writepage
,
787 .sync_page
= block_sync_page
,
788 .write_begin
= ext2_write_begin
,
789 .write_end
= generic_write_end
,
791 .direct_IO
= ext2_direct_IO
,
792 .writepages
= ext2_writepages
,
793 .migratepage
= buffer_migrate_page
,
796 const struct address_space_operations ext2_aops_xip
= {
798 .get_xip_mem
= ext2_get_xip_mem
,
801 const struct address_space_operations ext2_nobh_aops
= {
802 .readpage
= ext2_readpage
,
803 .readpages
= ext2_readpages
,
804 .writepage
= ext2_nobh_writepage
,
805 .sync_page
= block_sync_page
,
806 .write_begin
= ext2_nobh_write_begin
,
807 .write_end
= nobh_write_end
,
809 .direct_IO
= ext2_direct_IO
,
810 .writepages
= ext2_writepages
,
811 .migratepage
= buffer_migrate_page
,
815 * Probably it should be a library function... search for first non-zero word
816 * or memcmp with zero_page, whatever is better for particular architecture.
819 static inline int all_zeroes(__le32
*p
, __le32
*q
)
828 * ext2_find_shared - find the indirect blocks for partial truncation.
829 * @inode: inode in question
830 * @depth: depth of the affected branch
831 * @offsets: offsets of pointers in that branch (see ext2_block_to_path)
832 * @chain: place to store the pointers to partial indirect blocks
833 * @top: place to the (detached) top of branch
835 * This is a helper function used by ext2_truncate().
837 * When we do truncate() we may have to clean the ends of several indirect
838 * blocks but leave the blocks themselves alive. Block is partially
839 * truncated if some data below the new i_size is refered from it (and
840 * it is on the path to the first completely truncated data block, indeed).
841 * We have to free the top of that path along with everything to the right
842 * of the path. Since no allocation past the truncation point is possible
843 * until ext2_truncate() finishes, we may safely do the latter, but top
844 * of branch may require special attention - pageout below the truncation
845 * point might try to populate it.
847 * We atomically detach the top of branch from the tree, store the block
848 * number of its root in *@top, pointers to buffer_heads of partially
849 * truncated blocks - in @chain[].bh and pointers to their last elements
850 * that should not be removed - in @chain[].p. Return value is the pointer
851 * to last filled element of @chain.
853 * The work left to caller to do the actual freeing of subtrees:
854 * a) free the subtree starting from *@top
855 * b) free the subtrees whose roots are stored in
856 * (@chain[i].p+1 .. end of @chain[i].bh->b_data)
857 * c) free the subtrees growing from the inode past the @chain[0].p
858 * (no partially truncated stuff there).
861 static Indirect
*ext2_find_shared(struct inode
*inode
,
867 Indirect
*partial
, *p
;
871 for (k
= depth
; k
> 1 && !offsets
[k
-1]; k
--)
873 partial
= ext2_get_branch(inode
, k
, offsets
, chain
, &err
);
875 partial
= chain
+ k
-1;
877 * If the branch acquired continuation since we've looked at it -
878 * fine, it should all survive and (new) top doesn't belong to us.
880 write_lock(&EXT2_I(inode
)->i_meta_lock
);
881 if (!partial
->key
&& *partial
->p
) {
882 write_unlock(&EXT2_I(inode
)->i_meta_lock
);
885 for (p
=partial
; p
>chain
&& all_zeroes((__le32
*)p
->bh
->b_data
,p
->p
); p
--)
888 * OK, we've found the last block that must survive. The rest of our
889 * branch should be detached before unlocking. However, if that rest
890 * of branch is all ours and does not grow immediately from the inode
891 * it's easier to cheat and just decrement partial->p.
893 if (p
== chain
+ k
- 1 && p
> chain
) {
899 write_unlock(&EXT2_I(inode
)->i_meta_lock
);
911 * ext2_free_data - free a list of data blocks
912 * @inode: inode we are dealing with
913 * @p: array of block numbers
914 * @q: points immediately past the end of array
916 * We are freeing all blocks refered from that array (numbers are
917 * stored as little-endian 32-bit) and updating @inode->i_blocks
920 static inline void ext2_free_data(struct inode
*inode
, __le32
*p
, __le32
*q
)
922 unsigned long block_to_free
= 0, count
= 0;
925 for ( ; p
< q
; p
++) {
926 nr
= le32_to_cpu(*p
);
929 /* accumulate blocks to free if they're contiguous */
932 else if (block_to_free
== nr
- count
)
935 mark_inode_dirty(inode
);
936 ext2_free_blocks (inode
, block_to_free
, count
);
944 mark_inode_dirty(inode
);
945 ext2_free_blocks (inode
, block_to_free
, count
);
950 * ext2_free_branches - free an array of branches
951 * @inode: inode we are dealing with
952 * @p: array of block numbers
953 * @q: pointer immediately past the end of array
954 * @depth: depth of the branches to free
956 * We are freeing all blocks refered from these branches (numbers are
957 * stored as little-endian 32-bit) and updating @inode->i_blocks
960 static void ext2_free_branches(struct inode
*inode
, __le32
*p
, __le32
*q
, int depth
)
962 struct buffer_head
* bh
;
966 int addr_per_block
= EXT2_ADDR_PER_BLOCK(inode
->i_sb
);
967 for ( ; p
< q
; p
++) {
968 nr
= le32_to_cpu(*p
);
972 bh
= sb_bread(inode
->i_sb
, nr
);
974 * A read failure? Report error and clear slot
978 ext2_error(inode
->i_sb
, "ext2_free_branches",
979 "Read failure, inode=%ld, block=%ld",
983 ext2_free_branches(inode
,
985 (__le32
*)bh
->b_data
+ addr_per_block
,
988 ext2_free_blocks(inode
, nr
, 1);
989 mark_inode_dirty(inode
);
992 ext2_free_data(inode
, p
, q
);
995 void ext2_truncate(struct inode
*inode
)
997 __le32
*i_data
= EXT2_I(inode
)->i_data
;
998 struct ext2_inode_info
*ei
= EXT2_I(inode
);
999 int addr_per_block
= EXT2_ADDR_PER_BLOCK(inode
->i_sb
);
1008 if (!(S_ISREG(inode
->i_mode
) || S_ISDIR(inode
->i_mode
) ||
1009 S_ISLNK(inode
->i_mode
)))
1011 if (ext2_inode_is_fast_symlink(inode
))
1013 if (IS_APPEND(inode
) || IS_IMMUTABLE(inode
))
1016 blocksize
= inode
->i_sb
->s_blocksize
;
1017 iblock
= (inode
->i_size
+ blocksize
-1)
1018 >> EXT2_BLOCK_SIZE_BITS(inode
->i_sb
);
1020 if (mapping_is_xip(inode
->i_mapping
))
1021 xip_truncate_page(inode
->i_mapping
, inode
->i_size
);
1022 else if (test_opt(inode
->i_sb
, NOBH
))
1023 nobh_truncate_page(inode
->i_mapping
,
1024 inode
->i_size
, ext2_get_block
);
1026 block_truncate_page(inode
->i_mapping
,
1027 inode
->i_size
, ext2_get_block
);
1029 n
= ext2_block_to_path(inode
, iblock
, offsets
, NULL
);
1034 * From here we block out all ext2_get_block() callers who want to
1035 * modify the block allocation tree.
1037 mutex_lock(&ei
->truncate_mutex
);
1040 ext2_free_data(inode
, i_data
+offsets
[0],
1041 i_data
+ EXT2_NDIR_BLOCKS
);
1045 partial
= ext2_find_shared(inode
, n
, offsets
, chain
, &nr
);
1046 /* Kill the top of shared branch (already detached) */
1048 if (partial
== chain
)
1049 mark_inode_dirty(inode
);
1051 mark_buffer_dirty_inode(partial
->bh
, inode
);
1052 ext2_free_branches(inode
, &nr
, &nr
+1, (chain
+n
-1) - partial
);
1054 /* Clear the ends of indirect blocks on the shared branch */
1055 while (partial
> chain
) {
1056 ext2_free_branches(inode
,
1058 (__le32
*)partial
->bh
->b_data
+addr_per_block
,
1059 (chain
+n
-1) - partial
);
1060 mark_buffer_dirty_inode(partial
->bh
, inode
);
1061 brelse (partial
->bh
);
1065 /* Kill the remaining (whole) subtrees */
1066 switch (offsets
[0]) {
1068 nr
= i_data
[EXT2_IND_BLOCK
];
1070 i_data
[EXT2_IND_BLOCK
] = 0;
1071 mark_inode_dirty(inode
);
1072 ext2_free_branches(inode
, &nr
, &nr
+1, 1);
1074 case EXT2_IND_BLOCK
:
1075 nr
= i_data
[EXT2_DIND_BLOCK
];
1077 i_data
[EXT2_DIND_BLOCK
] = 0;
1078 mark_inode_dirty(inode
);
1079 ext2_free_branches(inode
, &nr
, &nr
+1, 2);
1081 case EXT2_DIND_BLOCK
:
1082 nr
= i_data
[EXT2_TIND_BLOCK
];
1084 i_data
[EXT2_TIND_BLOCK
] = 0;
1085 mark_inode_dirty(inode
);
1086 ext2_free_branches(inode
, &nr
, &nr
+1, 3);
1088 case EXT2_TIND_BLOCK
:
1092 ext2_discard_reservation(inode
);
1094 mutex_unlock(&ei
->truncate_mutex
);
1095 inode
->i_mtime
= inode
->i_ctime
= CURRENT_TIME_SEC
;
1096 if (inode_needs_sync(inode
)) {
1097 sync_mapping_buffers(inode
->i_mapping
);
1098 ext2_sync_inode (inode
);
1100 mark_inode_dirty(inode
);
1104 static struct ext2_inode
*ext2_get_inode(struct super_block
*sb
, ino_t ino
,
1105 struct buffer_head
**p
)
1107 struct buffer_head
* bh
;
1108 unsigned long block_group
;
1109 unsigned long block
;
1110 unsigned long offset
;
1111 struct ext2_group_desc
* gdp
;
1114 if ((ino
!= EXT2_ROOT_INO
&& ino
< EXT2_FIRST_INO(sb
)) ||
1115 ino
> le32_to_cpu(EXT2_SB(sb
)->s_es
->s_inodes_count
))
1118 block_group
= (ino
- 1) / EXT2_INODES_PER_GROUP(sb
);
1119 gdp
= ext2_get_group_desc(sb
, block_group
, NULL
);
1123 * Figure out the offset within the block group inode table
1125 offset
= ((ino
- 1) % EXT2_INODES_PER_GROUP(sb
)) * EXT2_INODE_SIZE(sb
);
1126 block
= le32_to_cpu(gdp
->bg_inode_table
) +
1127 (offset
>> EXT2_BLOCK_SIZE_BITS(sb
));
1128 if (!(bh
= sb_bread(sb
, block
)))
1132 offset
&= (EXT2_BLOCK_SIZE(sb
) - 1);
1133 return (struct ext2_inode
*) (bh
->b_data
+ offset
);
1136 ext2_error(sb
, "ext2_get_inode", "bad inode number: %lu",
1137 (unsigned long) ino
);
1138 return ERR_PTR(-EINVAL
);
1140 ext2_error(sb
, "ext2_get_inode",
1141 "unable to read inode block - inode=%lu, block=%lu",
1142 (unsigned long) ino
, block
);
1144 return ERR_PTR(-EIO
);
1147 void ext2_set_inode_flags(struct inode
*inode
)
1149 unsigned int flags
= EXT2_I(inode
)->i_flags
;
1151 inode
->i_flags
&= ~(S_SYNC
|S_APPEND
|S_IMMUTABLE
|S_NOATIME
|S_DIRSYNC
);
1152 if (flags
& EXT2_SYNC_FL
)
1153 inode
->i_flags
|= S_SYNC
;
1154 if (flags
& EXT2_APPEND_FL
)
1155 inode
->i_flags
|= S_APPEND
;
1156 if (flags
& EXT2_IMMUTABLE_FL
)
1157 inode
->i_flags
|= S_IMMUTABLE
;
1158 if (flags
& EXT2_NOATIME_FL
)
1159 inode
->i_flags
|= S_NOATIME
;
1160 if (flags
& EXT2_DIRSYNC_FL
)
1161 inode
->i_flags
|= S_DIRSYNC
;
1164 /* Propagate flags from i_flags to EXT2_I(inode)->i_flags */
1165 void ext2_get_inode_flags(struct ext2_inode_info
*ei
)
1167 unsigned int flags
= ei
->vfs_inode
.i_flags
;
1169 ei
->i_flags
&= ~(EXT2_SYNC_FL
|EXT2_APPEND_FL
|
1170 EXT2_IMMUTABLE_FL
|EXT2_NOATIME_FL
|EXT2_DIRSYNC_FL
);
1172 ei
->i_flags
|= EXT2_SYNC_FL
;
1173 if (flags
& S_APPEND
)
1174 ei
->i_flags
|= EXT2_APPEND_FL
;
1175 if (flags
& S_IMMUTABLE
)
1176 ei
->i_flags
|= EXT2_IMMUTABLE_FL
;
1177 if (flags
& S_NOATIME
)
1178 ei
->i_flags
|= EXT2_NOATIME_FL
;
1179 if (flags
& S_DIRSYNC
)
1180 ei
->i_flags
|= EXT2_DIRSYNC_FL
;
1183 struct inode
*ext2_iget (struct super_block
*sb
, unsigned long ino
)
1185 struct ext2_inode_info
*ei
;
1186 struct buffer_head
* bh
;
1187 struct ext2_inode
*raw_inode
;
1188 struct inode
*inode
;
1192 inode
= iget_locked(sb
, ino
);
1194 return ERR_PTR(-ENOMEM
);
1195 if (!(inode
->i_state
& I_NEW
))
1199 #ifdef CONFIG_EXT2_FS_POSIX_ACL
1200 ei
->i_acl
= EXT2_ACL_NOT_CACHED
;
1201 ei
->i_default_acl
= EXT2_ACL_NOT_CACHED
;
1203 ei
->i_block_alloc_info
= NULL
;
1205 raw_inode
= ext2_get_inode(inode
->i_sb
, ino
, &bh
);
1206 if (IS_ERR(raw_inode
)) {
1207 ret
= PTR_ERR(raw_inode
);
1211 inode
->i_mode
= le16_to_cpu(raw_inode
->i_mode
);
1212 inode
->i_uid
= (uid_t
)le16_to_cpu(raw_inode
->i_uid_low
);
1213 inode
->i_gid
= (gid_t
)le16_to_cpu(raw_inode
->i_gid_low
);
1214 if (!(test_opt (inode
->i_sb
, NO_UID32
))) {
1215 inode
->i_uid
|= le16_to_cpu(raw_inode
->i_uid_high
) << 16;
1216 inode
->i_gid
|= le16_to_cpu(raw_inode
->i_gid_high
) << 16;
1218 inode
->i_nlink
= le16_to_cpu(raw_inode
->i_links_count
);
1219 inode
->i_size
= le32_to_cpu(raw_inode
->i_size
);
1220 inode
->i_atime
.tv_sec
= (signed)le32_to_cpu(raw_inode
->i_atime
);
1221 inode
->i_ctime
.tv_sec
= (signed)le32_to_cpu(raw_inode
->i_ctime
);
1222 inode
->i_mtime
.tv_sec
= (signed)le32_to_cpu(raw_inode
->i_mtime
);
1223 inode
->i_atime
.tv_nsec
= inode
->i_mtime
.tv_nsec
= inode
->i_ctime
.tv_nsec
= 0;
1224 ei
->i_dtime
= le32_to_cpu(raw_inode
->i_dtime
);
1225 /* We now have enough fields to check if the inode was active or not.
1226 * This is needed because nfsd might try to access dead inodes
1227 * the test is that same one that e2fsck uses
1228 * NeilBrown 1999oct15
1230 if (inode
->i_nlink
== 0 && (inode
->i_mode
== 0 || ei
->i_dtime
)) {
1231 /* this inode is deleted */
1236 inode
->i_blocks
= le32_to_cpu(raw_inode
->i_blocks
);
1237 ei
->i_flags
= le32_to_cpu(raw_inode
->i_flags
);
1238 ei
->i_faddr
= le32_to_cpu(raw_inode
->i_faddr
);
1239 ei
->i_frag_no
= raw_inode
->i_frag
;
1240 ei
->i_frag_size
= raw_inode
->i_fsize
;
1241 ei
->i_file_acl
= le32_to_cpu(raw_inode
->i_file_acl
);
1243 if (S_ISREG(inode
->i_mode
))
1244 inode
->i_size
|= ((__u64
)le32_to_cpu(raw_inode
->i_size_high
)) << 32;
1246 ei
->i_dir_acl
= le32_to_cpu(raw_inode
->i_dir_acl
);
1248 inode
->i_generation
= le32_to_cpu(raw_inode
->i_generation
);
1250 ei
->i_block_group
= (ino
- 1) / EXT2_INODES_PER_GROUP(inode
->i_sb
);
1251 ei
->i_dir_start_lookup
= 0;
1254 * NOTE! The in-memory inode i_data array is in little-endian order
1255 * even on big-endian machines: we do NOT byteswap the block numbers!
1257 for (n
= 0; n
< EXT2_N_BLOCKS
; n
++)
1258 ei
->i_data
[n
] = raw_inode
->i_block
[n
];
1260 if (S_ISREG(inode
->i_mode
)) {
1261 inode
->i_op
= &ext2_file_inode_operations
;
1262 if (ext2_use_xip(inode
->i_sb
)) {
1263 inode
->i_mapping
->a_ops
= &ext2_aops_xip
;
1264 inode
->i_fop
= &ext2_xip_file_operations
;
1265 } else if (test_opt(inode
->i_sb
, NOBH
)) {
1266 inode
->i_mapping
->a_ops
= &ext2_nobh_aops
;
1267 inode
->i_fop
= &ext2_file_operations
;
1269 inode
->i_mapping
->a_ops
= &ext2_aops
;
1270 inode
->i_fop
= &ext2_file_operations
;
1272 } else if (S_ISDIR(inode
->i_mode
)) {
1273 inode
->i_op
= &ext2_dir_inode_operations
;
1274 inode
->i_fop
= &ext2_dir_operations
;
1275 if (test_opt(inode
->i_sb
, NOBH
))
1276 inode
->i_mapping
->a_ops
= &ext2_nobh_aops
;
1278 inode
->i_mapping
->a_ops
= &ext2_aops
;
1279 } else if (S_ISLNK(inode
->i_mode
)) {
1280 if (ext2_inode_is_fast_symlink(inode
))
1281 inode
->i_op
= &ext2_fast_symlink_inode_operations
;
1283 inode
->i_op
= &ext2_symlink_inode_operations
;
1284 if (test_opt(inode
->i_sb
, NOBH
))
1285 inode
->i_mapping
->a_ops
= &ext2_nobh_aops
;
1287 inode
->i_mapping
->a_ops
= &ext2_aops
;
1290 inode
->i_op
= &ext2_special_inode_operations
;
1291 if (raw_inode
->i_block
[0])
1292 init_special_inode(inode
, inode
->i_mode
,
1293 old_decode_dev(le32_to_cpu(raw_inode
->i_block
[0])));
1295 init_special_inode(inode
, inode
->i_mode
,
1296 new_decode_dev(le32_to_cpu(raw_inode
->i_block
[1])));
1299 ext2_set_inode_flags(inode
);
1300 unlock_new_inode(inode
);
1305 return ERR_PTR(ret
);
1308 static int ext2_update_inode(struct inode
* inode
, int do_sync
)
1310 struct ext2_inode_info
*ei
= EXT2_I(inode
);
1311 struct super_block
*sb
= inode
->i_sb
;
1312 ino_t ino
= inode
->i_ino
;
1313 uid_t uid
= inode
->i_uid
;
1314 gid_t gid
= inode
->i_gid
;
1315 struct buffer_head
* bh
;
1316 struct ext2_inode
* raw_inode
= ext2_get_inode(sb
, ino
, &bh
);
1320 if (IS_ERR(raw_inode
))
1323 /* For fields not not tracking in the in-memory inode,
1324 * initialise them to zero for new inodes. */
1325 if (ei
->i_state
& EXT2_STATE_NEW
)
1326 memset(raw_inode
, 0, EXT2_SB(sb
)->s_inode_size
);
1328 ext2_get_inode_flags(ei
);
1329 raw_inode
->i_mode
= cpu_to_le16(inode
->i_mode
);
1330 if (!(test_opt(sb
, NO_UID32
))) {
1331 raw_inode
->i_uid_low
= cpu_to_le16(low_16_bits(uid
));
1332 raw_inode
->i_gid_low
= cpu_to_le16(low_16_bits(gid
));
1334 * Fix up interoperability with old kernels. Otherwise, old inodes get
1335 * re-used with the upper 16 bits of the uid/gid intact
1338 raw_inode
->i_uid_high
= cpu_to_le16(high_16_bits(uid
));
1339 raw_inode
->i_gid_high
= cpu_to_le16(high_16_bits(gid
));
1341 raw_inode
->i_uid_high
= 0;
1342 raw_inode
->i_gid_high
= 0;
1345 raw_inode
->i_uid_low
= cpu_to_le16(fs_high2lowuid(uid
));
1346 raw_inode
->i_gid_low
= cpu_to_le16(fs_high2lowgid(gid
));
1347 raw_inode
->i_uid_high
= 0;
1348 raw_inode
->i_gid_high
= 0;
1350 raw_inode
->i_links_count
= cpu_to_le16(inode
->i_nlink
);
1351 raw_inode
->i_size
= cpu_to_le32(inode
->i_size
);
1352 raw_inode
->i_atime
= cpu_to_le32(inode
->i_atime
.tv_sec
);
1353 raw_inode
->i_ctime
= cpu_to_le32(inode
->i_ctime
.tv_sec
);
1354 raw_inode
->i_mtime
= cpu_to_le32(inode
->i_mtime
.tv_sec
);
1356 raw_inode
->i_blocks
= cpu_to_le32(inode
->i_blocks
);
1357 raw_inode
->i_dtime
= cpu_to_le32(ei
->i_dtime
);
1358 raw_inode
->i_flags
= cpu_to_le32(ei
->i_flags
);
1359 raw_inode
->i_faddr
= cpu_to_le32(ei
->i_faddr
);
1360 raw_inode
->i_frag
= ei
->i_frag_no
;
1361 raw_inode
->i_fsize
= ei
->i_frag_size
;
1362 raw_inode
->i_file_acl
= cpu_to_le32(ei
->i_file_acl
);
1363 if (!S_ISREG(inode
->i_mode
))
1364 raw_inode
->i_dir_acl
= cpu_to_le32(ei
->i_dir_acl
);
1366 raw_inode
->i_size_high
= cpu_to_le32(inode
->i_size
>> 32);
1367 if (inode
->i_size
> 0x7fffffffULL
) {
1368 if (!EXT2_HAS_RO_COMPAT_FEATURE(sb
,
1369 EXT2_FEATURE_RO_COMPAT_LARGE_FILE
) ||
1370 EXT2_SB(sb
)->s_es
->s_rev_level
==
1371 cpu_to_le32(EXT2_GOOD_OLD_REV
)) {
1372 /* If this is the first large file
1373 * created, add a flag to the superblock.
1376 ext2_update_dynamic_rev(sb
);
1377 EXT2_SET_RO_COMPAT_FEATURE(sb
,
1378 EXT2_FEATURE_RO_COMPAT_LARGE_FILE
);
1380 ext2_write_super(sb
);
1385 raw_inode
->i_generation
= cpu_to_le32(inode
->i_generation
);
1386 if (S_ISCHR(inode
->i_mode
) || S_ISBLK(inode
->i_mode
)) {
1387 if (old_valid_dev(inode
->i_rdev
)) {
1388 raw_inode
->i_block
[0] =
1389 cpu_to_le32(old_encode_dev(inode
->i_rdev
));
1390 raw_inode
->i_block
[1] = 0;
1392 raw_inode
->i_block
[0] = 0;
1393 raw_inode
->i_block
[1] =
1394 cpu_to_le32(new_encode_dev(inode
->i_rdev
));
1395 raw_inode
->i_block
[2] = 0;
1397 } else for (n
= 0; n
< EXT2_N_BLOCKS
; n
++)
1398 raw_inode
->i_block
[n
] = ei
->i_data
[n
];
1399 mark_buffer_dirty(bh
);
1401 sync_dirty_buffer(bh
);
1402 if (buffer_req(bh
) && !buffer_uptodate(bh
)) {
1403 printk ("IO error syncing ext2 inode [%s:%08lx]\n",
1404 sb
->s_id
, (unsigned long) ino
);
1408 ei
->i_state
&= ~EXT2_STATE_NEW
;
1413 int ext2_write_inode(struct inode
*inode
, int wait
)
1415 return ext2_update_inode(inode
, wait
);
1418 int ext2_sync_inode(struct inode
*inode
)
1420 struct writeback_control wbc
= {
1421 .sync_mode
= WB_SYNC_ALL
,
1422 .nr_to_write
= 0, /* sys_fsync did this */
1424 return sync_inode(inode
, &wbc
);
1427 int ext2_setattr(struct dentry
*dentry
, struct iattr
*iattr
)
1429 struct inode
*inode
= dentry
->d_inode
;
1432 error
= inode_change_ok(inode
, iattr
);
1435 if ((iattr
->ia_valid
& ATTR_UID
&& iattr
->ia_uid
!= inode
->i_uid
) ||
1436 (iattr
->ia_valid
& ATTR_GID
&& iattr
->ia_gid
!= inode
->i_gid
)) {
1437 error
= DQUOT_TRANSFER(inode
, iattr
) ? -EDQUOT
: 0;
1441 error
= inode_setattr(inode
, iattr
);
1442 if (!error
&& (iattr
->ia_valid
& ATTR_MODE
))
1443 error
= ext2_acl_chmod(inode
);