perf_counter, x86: Set global control MSR correctly
[linux-2.6/mini2440.git] / drivers / net / bnx2x_init_ops.h
blob32552b9366cbdfb1bd9cf38adc17dfa8b04539c6
1 /* bnx2x_init_ops.h: Broadcom Everest network driver.
2 * Static functions needed during the initialization.
3 * This file is "included" in bnx2x_main.c.
5 * Copyright (c) 2007-2009 Broadcom Corporation
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation.
11 * Maintained by: Eilon Greenstein <eilong@broadcom.com>
12 * Written by: Vladislav Zolotarov <vladz@broadcom.com>
14 #ifndef BNX2X_INIT_OPS_H
15 #define BNX2X_INIT_OPS_H
17 static void bnx2x_reg_wr_ind(struct bnx2x *bp, u32 addr, u32 val);
18 static int bnx2x_gunzip(struct bnx2x *bp, const u8 *zbuf, int len);
20 static void bnx2x_init_str_wr(struct bnx2x *bp, u32 addr, const u32 *data,
21 u32 len)
23 int i;
25 for (i = 0; i < len; i++) {
26 REG_WR(bp, addr + i*4, data[i]);
27 if (!(i % 10000)) {
28 touch_softlockup_watchdog();
29 cpu_relax();
34 static void bnx2x_init_ind_wr(struct bnx2x *bp, u32 addr, const u32 *data,
35 u16 len)
37 int i;
39 for (i = 0; i < len; i++) {
40 REG_WR_IND(bp, addr + i*4, data[i]);
41 if (!(i % 10000)) {
42 touch_softlockup_watchdog();
43 cpu_relax();
48 static void bnx2x_write_big_buf(struct bnx2x *bp, u32 addr, u32 len)
50 int offset = 0;
52 if (bp->dmae_ready) {
53 while (len > DMAE_LEN32_WR_MAX) {
54 bnx2x_write_dmae(bp, bp->gunzip_mapping + offset,
55 addr + offset, DMAE_LEN32_WR_MAX);
56 offset += DMAE_LEN32_WR_MAX * 4;
57 len -= DMAE_LEN32_WR_MAX;
59 bnx2x_write_dmae(bp, bp->gunzip_mapping + offset,
60 addr + offset, len);
61 } else
62 bnx2x_init_str_wr(bp, addr, bp->gunzip_buf, len);
65 static void bnx2x_init_fill(struct bnx2x *bp, u32 addr, int fill, u32 len)
67 u32 buf_len = (((len * 4) > FW_BUF_SIZE) ? FW_BUF_SIZE : (len * 4));
68 u32 buf_len32 = buf_len / 4;
69 int i;
71 memset(bp->gunzip_buf, fill, buf_len);
73 for (i = 0; i < len; i += buf_len32) {
74 u32 cur_len = min(buf_len32, len - i);
76 bnx2x_write_big_buf(bp, addr + i * 4, cur_len);
80 static void bnx2x_init_wr_64(struct bnx2x *bp, u32 addr, const u32 *data,
81 u32 len64)
83 u32 buf_len32 = FW_BUF_SIZE / 4;
84 u32 len = len64 * 2;
85 u64 data64 = 0;
86 int i;
88 /* 64 bit value is in a blob: first low DWORD, then high DWORD */
89 data64 = HILO_U64((*(data + 1)), (*data));
90 len64 = min((u32)(FW_BUF_SIZE/8), len64);
91 for (i = 0; i < len64; i++) {
92 u64 *pdata = ((u64 *)(bp->gunzip_buf)) + i;
94 *pdata = data64;
97 for (i = 0; i < len; i += buf_len32) {
98 u32 cur_len = min(buf_len32, len - i);
100 bnx2x_write_big_buf(bp, addr + i * 4, cur_len);
104 /*********************************************************
105 There are different blobs for each PRAM section.
106 In addition, each blob write operation is divided into a few operations
107 in order to decrease the amount of phys. contiguous buffer needed.
108 Thus, when we select a blob the address may be with some offset
109 from the beginning of PRAM section.
110 The same holds for the INT_TABLE sections.
111 **********************************************************/
112 #define IF_IS_INT_TABLE_ADDR(base, addr) \
113 if (((base) <= (addr)) && ((base) + 0x400 >= (addr)))
115 #define IF_IS_PRAM_ADDR(base, addr) \
116 if (((base) <= (addr)) && ((base) + 0x40000 >= (addr)))
118 static const u8 *bnx2x_sel_blob(struct bnx2x *bp, u32 addr, const u8 *data)
120 IF_IS_INT_TABLE_ADDR(TSEM_REG_INT_TABLE, addr)
121 data = bp->tsem_int_table_data;
122 else IF_IS_INT_TABLE_ADDR(CSEM_REG_INT_TABLE, addr)
123 data = bp->csem_int_table_data;
124 else IF_IS_INT_TABLE_ADDR(USEM_REG_INT_TABLE, addr)
125 data = bp->usem_int_table_data;
126 else IF_IS_INT_TABLE_ADDR(XSEM_REG_INT_TABLE, addr)
127 data = bp->xsem_int_table_data;
128 else IF_IS_PRAM_ADDR(TSEM_REG_PRAM, addr)
129 data = bp->tsem_pram_data;
130 else IF_IS_PRAM_ADDR(CSEM_REG_PRAM, addr)
131 data = bp->csem_pram_data;
132 else IF_IS_PRAM_ADDR(USEM_REG_PRAM, addr)
133 data = bp->usem_pram_data;
134 else IF_IS_PRAM_ADDR(XSEM_REG_PRAM, addr)
135 data = bp->xsem_pram_data;
137 return data;
140 static void bnx2x_write_big_buf_wb(struct bnx2x *bp, u32 addr, u32 len)
142 int offset = 0;
144 if (bp->dmae_ready) {
145 while (len > DMAE_LEN32_WR_MAX) {
146 bnx2x_write_dmae(bp, bp->gunzip_mapping + offset,
147 addr + offset, DMAE_LEN32_WR_MAX);
148 offset += DMAE_LEN32_WR_MAX * 4;
149 len -= DMAE_LEN32_WR_MAX;
151 bnx2x_write_dmae(bp, bp->gunzip_mapping + offset,
152 addr + offset, len);
153 } else
154 bnx2x_init_ind_wr(bp, addr, bp->gunzip_buf, len);
157 static void bnx2x_init_wr_wb(struct bnx2x *bp, u32 addr, const u32 *data,
158 u32 len)
160 /* This is needed for NO_ZIP mode, currently supported
161 in little endian mode only */
162 data = (const u32*)bnx2x_sel_blob(bp, addr, (const u8*)data);
164 if ((len * 4) > FW_BUF_SIZE) {
165 BNX2X_ERR("LARGE DMAE OPERATION ! "
166 "addr 0x%x len 0x%x\n", addr, len*4);
167 return;
169 memcpy(bp->gunzip_buf, data, len * 4);
171 bnx2x_write_big_buf_wb(bp, addr, len);
174 static void bnx2x_init_wr_zp(struct bnx2x *bp, u32 addr,
175 u32 len, u32 blob_off)
177 int rc, i;
178 const u8 *data = NULL;
180 data = bnx2x_sel_blob(bp, addr, data) + 4*blob_off;
182 if (data == NULL) {
183 panic("Blob not found for addr 0x%x\n", addr);
184 return;
187 rc = bnx2x_gunzip(bp, data, len);
188 if (rc) {
189 BNX2X_ERR("gunzip failed ! addr 0x%x rc %d\n", addr, rc);
190 BNX2X_ERR("blob_offset=0x%x\n", blob_off);
191 return;
194 /* gunzip_outlen is in dwords */
195 len = bp->gunzip_outlen;
196 for (i = 0; i < len; i++)
197 ((u32 *)bp->gunzip_buf)[i] =
198 cpu_to_le32(((u32 *)bp->gunzip_buf)[i]);
200 bnx2x_write_big_buf_wb(bp, addr, len);
203 static void bnx2x_init_block(struct bnx2x *bp, u32 block, u32 stage)
205 int hw_wr, i;
206 u16 op_start =
207 bp->init_ops_offsets[BLOCK_OPS_IDX(block,stage,STAGE_START)];
208 u16 op_end =
209 bp->init_ops_offsets[BLOCK_OPS_IDX(block,stage,STAGE_END)];
210 union init_op *op;
211 u32 op_type, addr, len;
212 const u32 *data, *data_base;
214 /* If empty block */
215 if (op_start == op_end)
216 return;
218 if (CHIP_REV_IS_FPGA(bp))
219 hw_wr = OP_WR_FPGA;
220 else if (CHIP_REV_IS_EMUL(bp))
221 hw_wr = OP_WR_EMUL;
222 else
223 hw_wr = OP_WR_ASIC;
225 data_base = bp->init_data;
227 for (i = op_start; i < op_end; i++) {
229 op = (union init_op *)&(bp->init_ops[i]);
231 op_type = op->str_wr.op;
232 addr = op->str_wr.offset;
233 len = op->str_wr.data_len;
234 data = data_base + op->str_wr.data_off;
236 /* HW/EMUL specific */
237 if (unlikely((op_type > OP_WB) && (op_type == hw_wr)))
238 op_type = OP_WR;
240 switch (op_type) {
241 case OP_RD:
242 REG_RD(bp, addr);
243 break;
244 case OP_WR:
245 REG_WR(bp, addr, op->write.val);
246 break;
247 case OP_SW:
248 bnx2x_init_str_wr(bp, addr, data, len);
249 break;
250 case OP_WB:
251 bnx2x_init_wr_wb(bp, addr, data, len);
252 break;
253 case OP_SI:
254 bnx2x_init_ind_wr(bp, addr, data, len);
255 break;
256 case OP_ZR:
257 bnx2x_init_fill(bp, addr, 0, op->zero.len);
258 break;
259 case OP_ZP:
260 bnx2x_init_wr_zp(bp, addr, len,
261 op->str_wr.data_off);
262 break;
263 case OP_WR_64:
264 bnx2x_init_wr_64(bp, addr, data, len);
265 break;
266 default:
267 /* happens whenever an op is of a diff HW */
268 #if 0
269 DP(NETIF_MSG_HW, "skipping init operation "
270 "index %d[%d:%d]: type %d addr 0x%x "
271 "len %d(0x%x)\n",
272 i, op_start, op_end, op_type, addr, len, len);
273 #endif
274 break;
279 /* PXP */
280 static void bnx2x_init_pxp(struct bnx2x *bp)
282 u16 devctl;
283 int r_order, w_order;
284 u32 val, i;
286 pci_read_config_word(bp->pdev,
287 bp->pcie_cap + PCI_EXP_DEVCTL, &devctl);
288 DP(NETIF_MSG_HW, "read 0x%x from devctl\n", devctl);
289 w_order = ((devctl & PCI_EXP_DEVCTL_PAYLOAD) >> 5);
290 if (bp->mrrs == -1)
291 r_order = ((devctl & PCI_EXP_DEVCTL_READRQ) >> 12);
292 else {
293 DP(NETIF_MSG_HW, "force read order to %d\n", bp->mrrs);
294 r_order = bp->mrrs;
297 if (r_order > MAX_RD_ORD) {
298 DP(NETIF_MSG_HW, "read order of %d order adjusted to %d\n",
299 r_order, MAX_RD_ORD);
300 r_order = MAX_RD_ORD;
302 if (w_order > MAX_WR_ORD) {
303 DP(NETIF_MSG_HW, "write order of %d order adjusted to %d\n",
304 w_order, MAX_WR_ORD);
305 w_order = MAX_WR_ORD;
307 if (CHIP_REV_IS_FPGA(bp)) {
308 DP(NETIF_MSG_HW, "write order adjusted to 1 for FPGA\n");
309 w_order = 0;
311 DP(NETIF_MSG_HW, "read order %d write order %d\n", r_order, w_order);
313 for (i = 0; i < NUM_RD_Q-1; i++) {
314 REG_WR(bp, read_arb_addr[i].l, read_arb_data[i][r_order].l);
315 REG_WR(bp, read_arb_addr[i].add,
316 read_arb_data[i][r_order].add);
317 REG_WR(bp, read_arb_addr[i].ubound,
318 read_arb_data[i][r_order].ubound);
321 for (i = 0; i < NUM_WR_Q-1; i++) {
322 if ((write_arb_addr[i].l == PXP2_REG_RQ_BW_WR_L29) ||
323 (write_arb_addr[i].l == PXP2_REG_RQ_BW_WR_L30)) {
325 REG_WR(bp, write_arb_addr[i].l,
326 write_arb_data[i][w_order].l);
328 REG_WR(bp, write_arb_addr[i].add,
329 write_arb_data[i][w_order].add);
331 REG_WR(bp, write_arb_addr[i].ubound,
332 write_arb_data[i][w_order].ubound);
333 } else {
335 val = REG_RD(bp, write_arb_addr[i].l);
336 REG_WR(bp, write_arb_addr[i].l,
337 val | (write_arb_data[i][w_order].l << 10));
339 val = REG_RD(bp, write_arb_addr[i].add);
340 REG_WR(bp, write_arb_addr[i].add,
341 val | (write_arb_data[i][w_order].add << 10));
343 val = REG_RD(bp, write_arb_addr[i].ubound);
344 REG_WR(bp, write_arb_addr[i].ubound,
345 val | (write_arb_data[i][w_order].ubound << 7));
349 val = write_arb_data[NUM_WR_Q-1][w_order].add;
350 val += write_arb_data[NUM_WR_Q-1][w_order].ubound << 10;
351 val += write_arb_data[NUM_WR_Q-1][w_order].l << 17;
352 REG_WR(bp, PXP2_REG_PSWRQ_BW_RD, val);
354 val = read_arb_data[NUM_RD_Q-1][r_order].add;
355 val += read_arb_data[NUM_RD_Q-1][r_order].ubound << 10;
356 val += read_arb_data[NUM_RD_Q-1][r_order].l << 17;
357 REG_WR(bp, PXP2_REG_PSWRQ_BW_WR, val);
359 REG_WR(bp, PXP2_REG_RQ_WR_MBS0, w_order);
360 REG_WR(bp, PXP2_REG_RQ_WR_MBS1, w_order);
361 REG_WR(bp, PXP2_REG_RQ_RD_MBS0, r_order);
362 REG_WR(bp, PXP2_REG_RQ_RD_MBS1, r_order);
364 if (r_order == MAX_RD_ORD)
365 REG_WR(bp, PXP2_REG_RQ_PDR_LIMIT, 0xe00);
367 REG_WR(bp, PXP2_REG_WR_USDMDP_TH, (0x18 << w_order));
369 if (CHIP_IS_E1H(bp)) {
370 val = ((w_order == 0) ? 2 : 3);
371 REG_WR(bp, PXP2_REG_WR_HC_MPS, val);
372 REG_WR(bp, PXP2_REG_WR_USDM_MPS, val);
373 REG_WR(bp, PXP2_REG_WR_CSDM_MPS, val);
374 REG_WR(bp, PXP2_REG_WR_TSDM_MPS, val);
375 REG_WR(bp, PXP2_REG_WR_XSDM_MPS, val);
376 REG_WR(bp, PXP2_REG_WR_QM_MPS, val);
377 REG_WR(bp, PXP2_REG_WR_TM_MPS, val);
378 REG_WR(bp, PXP2_REG_WR_SRC_MPS, val);
379 REG_WR(bp, PXP2_REG_WR_DBG_MPS, val);
380 REG_WR(bp, PXP2_REG_WR_DMAE_MPS, 2); /* DMAE is special */
381 REG_WR(bp, PXP2_REG_WR_CDU_MPS, val);
385 /*****************************************************************************
386 * Description:
387 * Calculates crc 8 on a word value: polynomial 0-1-2-8
388 * Code was translated from Verilog.
389 ****************************************************************************/
390 static u8 calc_crc8(u32 data, u8 crc)
392 u8 D[32];
393 u8 NewCRC[8];
394 u8 C[8];
395 u8 crc_res;
396 u8 i;
398 /* split the data into 31 bits */
399 for (i = 0; i < 32; i++) {
400 D[i] = data & 1;
401 data = data >> 1;
404 /* split the crc into 8 bits */
405 for (i = 0; i < 8; i++) {
406 C[i] = crc & 1;
407 crc = crc >> 1;
410 NewCRC[0] = D[31] ^ D[30] ^ D[28] ^ D[23] ^ D[21] ^ D[19] ^ D[18] ^
411 D[16] ^ D[14] ^ D[12] ^ D[8] ^ D[7] ^ D[6] ^ D[0] ^ C[4] ^
412 C[6] ^ C[7];
413 NewCRC[1] = D[30] ^ D[29] ^ D[28] ^ D[24] ^ D[23] ^ D[22] ^ D[21] ^
414 D[20] ^ D[18] ^ D[17] ^ D[16] ^ D[15] ^ D[14] ^ D[13] ^
415 D[12] ^ D[9] ^ D[6] ^ D[1] ^ D[0] ^ C[0] ^ C[4] ^ C[5] ^ C[6];
416 NewCRC[2] = D[29] ^ D[28] ^ D[25] ^ D[24] ^ D[22] ^ D[17] ^ D[15] ^
417 D[13] ^ D[12] ^ D[10] ^ D[8] ^ D[6] ^ D[2] ^ D[1] ^ D[0] ^
418 C[0] ^ C[1] ^ C[4] ^ C[5];
419 NewCRC[3] = D[30] ^ D[29] ^ D[26] ^ D[25] ^ D[23] ^ D[18] ^ D[16] ^
420 D[14] ^ D[13] ^ D[11] ^ D[9] ^ D[7] ^ D[3] ^ D[2] ^ D[1] ^
421 C[1] ^ C[2] ^ C[5] ^ C[6];
422 NewCRC[4] = D[31] ^ D[30] ^ D[27] ^ D[26] ^ D[24] ^ D[19] ^ D[17] ^
423 D[15] ^ D[14] ^ D[12] ^ D[10] ^ D[8] ^ D[4] ^ D[3] ^ D[2] ^
424 C[0] ^ C[2] ^ C[3] ^ C[6] ^ C[7];
425 NewCRC[5] = D[31] ^ D[28] ^ D[27] ^ D[25] ^ D[20] ^ D[18] ^ D[16] ^
426 D[15] ^ D[13] ^ D[11] ^ D[9] ^ D[5] ^ D[4] ^ D[3] ^ C[1] ^
427 C[3] ^ C[4] ^ C[7];
428 NewCRC[6] = D[29] ^ D[28] ^ D[26] ^ D[21] ^ D[19] ^ D[17] ^ D[16] ^
429 D[14] ^ D[12] ^ D[10] ^ D[6] ^ D[5] ^ D[4] ^ C[2] ^ C[4] ^
430 C[5];
431 NewCRC[7] = D[30] ^ D[29] ^ D[27] ^ D[22] ^ D[20] ^ D[18] ^ D[17] ^
432 D[15] ^ D[13] ^ D[11] ^ D[7] ^ D[6] ^ D[5] ^ C[3] ^ C[5] ^
433 C[6];
435 crc_res = 0;
436 for (i = 0; i < 8; i++)
437 crc_res |= (NewCRC[i] << i);
439 return crc_res;
442 #endif /* BNX2X_INIT_OPS_H */